Science.gov

Sample records for lps-induced inducible nitric

  1. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene. PMID:17995901

  2. Minus Charge Stimulation Prevents LPS-Induced Liver Injury by Reduction of Nitric Oxide

    PubMed Central

    Senga, Fujitoshi; Yin, Li; Karasuno, Hiroshi; Ohtaki, Hirokazu; Nakamachi, Tomoya; Satoh, Kazue; Shioda, Seiji

    2008-01-01

    The liver is one of the major target organs affected in sepsis that are usually accompanied with free radical formation. The use of minus charge for the prevention and cure of various radical related diseases is gaining wide importance in the medicinal field. Here, we investigate whether minus charge stimulation (MCS) inhibits nitric oxide (NO) production induced by lipopolysaccharide (LPS) in the mice liver. The survival rate was compared in LPS-treated group with MCS group. The liver NO radical was measured using electron spin resonance technique. Serum alanine transaminase (ALT) was estimated for liver injury. MCS significantly improved the survival rate of LPS-treated mice and inhibited increase of ALT in serum levels. MCS also reduced NO radical production significantly in the LPS-treated mice liver tissue. In conclusion, our results indicate that MCS prevents LPS-induced liver injury, which may be through the inhibition of liver NO radical production. PMID:18545644

  3. neo-Clerodane Diterpenoids from Scutellaria barbata and Their Inhibitory Effects on LPS-Induced Nitric Oxide Production.

    PubMed

    Yeon, Eung Tae; Lee, Jin Woo; Lee, Chul; Jin, Qinghao; Jang, Hari; Lee, Dongho; Ahn, Jong Seog; Hong, Jin Tae; Kim, Youngsoo; Lee, Mi Kyeong; Hwang, Bang Yeon

    2015-09-25

    Three new neo-clerodane diterpenoids (1-3) along with 12 known compounds (4-15) were isolated from a methanol extract of the aerial parts of Scutellaria barbata. The structures of 1-3 were determined by interpretation of their 1D and 2D NMR spectroscopic data as well as HRESIMS values. All isolated compounds were tested for their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages. Compounds 1-4, 7, and 10-12 were found to inhibit nitric oxide production with IC50 values ranging from 20.2 to 35.6 ?M. PMID:26331882

  4. Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of lps-induced nitric oxide production.

    PubMed

    Hong, Seong Su; Lee, Seon A; Han, Xiang Hua; Lee, Min Hee; Hwang, Ji Sang; Park, Jeong Sook; Oh, Ki-Wan; Han, Kun; Lee, Myung Koo; Lee, Heesoon; Kim, Wook; Lee, Dongho; Hwang, Bang Yeon

    2008-02-01

    Two new melampolide-type sesquiterpene lactones, 8beta-epoxyangeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (1) and 8beta-angeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (2), were isolated from the leaves of yacon [Smallanthus sonchifolia (POEPP. et ENDL.) H. Robinson] along with eleven known melampolides, allo-schkuhriolide (3), enhydrin (4), polymatin A (5), fluctuanin (6), 8beta-angeloyloxy-9alpha-acetoxy-14-oxo-acanthospermolide (7), 8beta-angeloyloxy-14-oxo-acanthospermolide (8), 8beta-methacryloyloxymelampolid-14-oic acid methyl ester (9), uvedalin (10), polymatin B (11), 8beta-tigloyloxymelampolid-14-oic acid methyl ester (12), and sonchifolin (13). Their structures were established on the basis of spectroscopic evidence including 1D- and 2D-NMR experiments. All isolates were evaluated for inhibition of LPS-induced nitric oxide production in murine macrophage RAW 264.7 cells. PMID:18239309

  5. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages.

    PubMed

    Kanno, Syu-Ichi; Shouji, Ai; Tomizawa, Ayako; Hiura, Takako; Osanai, Yuu; Ujibe, Mayuko; Obara, Yutaro; Nakahata, Norimichi; Ishikawa, Masaaki

    2006-01-11

    Lipopolysaccharide (LPS) has been known to induce endotoxin shock via production of inflammatory modulators such as tumor necrosis factor alpha (TNF-alpha), or nitric oxide (NO). In this study, we have examined the effect of naringin (NG), one of the flavonoids, on LPS-induced endotoxin shock in mice and NO production in RAW 264.7 macrophages. For intraperitoneal (i.p., 20 mg/kg) injection of LPS at 48 h, the survival rate of mice administered with LPS alone (n=10) or pretreated with NG at 10, 30 and 60 mg/kg (i.p.) group (n=10) was 0% or 10%, 50% and 70%, respectively. NG dose-dependently suppressed LPS-induced production of TNF-alpha. LPS-induced production of NO at 6 h (125.89+/-16.35 microM), as measured by nitrite formation, was significantly reduced by NG at 30 or 60 mg/kg for 49.49+/-4.81 or 27.91+/-1.81 microM (P<0.01 vs. LPS alone), respectively. To further examine the mechanism by which NG suppresses LPS-induced endotoxin shock, we used an in vitro model, RAW 264.7 mouse macrophage cells. NG (1 mM) suppressed LPS (0.01, 0.1 or 1 microg/ml)-induced production of NO and the expression of inflammatory gene products such as inducible NO synthase (iNOS), TNF-alpha, inducible cyclooxygenase (COX-2) and interleukin-6 (IL-6) as determined by RT-PCR assay. NG was found to have blocked the LPS-induced transcriptional activity of NF-kappaB in electrophoretic mobility shift assay and reporter assay. These findings suggest that suppression of the LPS-induced mortality and production of NO by NG is due to inhibition of the activation of NF-kappaB. PMID:16137700

  6. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells

    PubMed Central

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B.; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P.

    2014-01-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimers disease, multiple sclerosis, and Parkinsons disease. Though LPS-induced microglial activation in models of Parkinsons disease (PD) is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation is not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor) and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, are involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-kB inhibitor PDTC and the P38 MAPK inhibitor SB202190 were used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. PMID:24746617

  7. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    PubMed

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-?B (NF-?B) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. PMID:25046384

  8. Hypericum triquetrifoliumDerived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-? in THP-1 Cells

    PubMed Central

    Saad, Bashar; AbouAtta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-? (TNF-?) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-? and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5??g lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250??g?mL?1) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-?. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-? and iNOS expressions. PMID:18955363

  9. Pheophytin a Inhibits Inflammation via Suppression of LPS-Induced Nitric Oxide Synthase-2, Prostaglandin E2, and Interleukin-1β of Macrophages

    PubMed Central

    Lin, Chun-Yu; Lee, Chien-Hsing; Chang, Yu-Wei; Wang, Hui-Min; Chen, Chung-Yi; Chen, Yen-Hsu

    2014-01-01

    Inflammation is a serious health issue worldwide that induces many diseases such as sepsis. There has been a vast search for potentially effective drugs to decrease mortality from sepsis. Pheophytin a is a chlorophyll-related compound derived from green tea. We found that pre-treatment with pheophytin a suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin-1β in RAW 264.7 macrophages. NO synthase-2 (NOS2) and cyclooxygenase-2 (COX-2) expression levels were repressed by pre-treatment with pheophytin a at both the transcriptional and translational levels. Pheophytin a inhibited NOS2 promoter activity, but not its mRNA stability, through extracellular signal-regulated kinase (ERK1/2). This suppression was reversed by ERK1/2 inhibitor (U0126). Pheophytin a reduced signal transducers and activators of transcription 1 (STAT-1) activation, without an obvious influence on activator protein-1 (AP-1) and nuclear factor κB (NF-κB). These results suggest that pheophytin a functions by down-regulating the transcriptional levels of inflammatory mediators and blocking the ERK and STAT-1 pathways. PMID:25501336

  10. 6,6'-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE? production and inflammatory cytokine expression in macrophages: the inhibition of NF?B.

    PubMed

    Yang, Yeong-In; Shin, Hyeon-Cheol; Kim, Seong Ho; Park, Woong-Yang; Lee, Kyung-Tae; Choi, Jung-Hye

    2012-03-01

    Ecklonia cava is an edible brown alga that contains high levels of phlorotannins, which are unique marine polyphenolic compounds. In the present study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of phlorotannin 6,6'-bieckol, which is an active component isolated from E. cava, on lipopolysaccharide (LPS)-stimulated primary macrophages and RAW 264.7 macrophage cells. 6,6'-Bieckol was found to inhibit nitric oxide (NO) and prostaglandin E? (PGE?) production and to suppress the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, 6,6'-bieckol downregulated the production and mRNA expression of the inflammatory cytokines TNF-? and IL-6. Moreover, pretreatment with 6,6'-bieckol decreased LPS-induced transactivation of nuclear factor-kappa B (NF?B) and nuclear translocation of p50 and p65 subunits of NF?B. Furthermore, chromatin immunoprecipitation assay revealed that 6,6'-bieckol inhibited LPS-induced NF?B binding to the TNF-? and IL-6 promoters. Taken together, these data suggest that the anti-inflammatory properties of 6,6'-bieckol are related to the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the negative regulation of the NF?B pathway in LPS-stimulated macrophages. PMID:22289571

  11. Inhibition of LPS-induced cyclooxygenase 2 and nitric oxide production by transduced PEP-1-PTEN fusion protein in Raw 264.7 macrophage cells

    PubMed Central

    Lee, Sun Hwa; Lee, Yeom Pyo; Kim, So Young; Jeong, Min Seop; Lee, Min Jung; Kang, Hye Won; Jeong, Hoon Jae; Kim, Dae Won; Sohn, Eun Joung; Jang, Sang Ho; Kim, Yeon Hyang; Kwon, Hyung Joo; Cho, Sung-Woo; Park, Jinseu

    2008-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor. Although it is well known to have various physiological roles in cancer, its inhibitory effect on inflammation remains poorly understood. In the present study, a human PTEN gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-PTEN fusion protein. The expressed and purified PEP-1-PTEN fusion protein were transduced efficiently into macrophage Raw 264.7 cells in a time- and dose-dependent manner when added exogenously in culture media. Once inside the cells, the transduced PEP-1-PTEN protein was stable for 24 h. Transduced PEP-1-PTEN fusion protein inhibited the LPS-induced cyclooxygenase 2 (COX-2) and iNOS expression levels in a dose-dependent manner. Furthermore, transduced PEP-1-PTEN fusion protein inhibited the activation of NF-?B induced by LPS. These results suggest that the PEP-1-PTEN fusion protein can be used in protein therapy for inflammatory disorders. PMID:19116448

  12. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation. PMID:26852703

  13. Achillea millefolium L. Essential Oil Inhibits LPS-Induced Oxidative Stress and Nitric Oxide Production in RAW 264.7 Macrophages

    PubMed Central

    Chou, Su-Tze; Peng, Hsin-Yi; Hsu, Jaw-Cherng; Lin, Chih-Chien; Shih, Ying

    2013-01-01

    Achillea millefolium L. is a member of the Asteraceae family and has been used in folk medicine in many countries. In this study, 19 compounds in A. millefolium essential oil (AM-EO) have been identified; the major components are artemisia ketone (14.92%), camphor (11.64%), linalyl acetate (11.51%) and 1,8-cineole (10.15%). AM-EO can suppress the inflammatory responses of lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages, including decreased levels of cellular nitric oxide (NO) and superoxide anion production, lipid peroxidation and glutathione (GSH) concentration. This antioxidant activity is not a result of increased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, but rather occurs as a result of the down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6) and heme oxygenase-1 (HO-1) expression, thus reducing the inflammatory response. Therefore, AM-EO can be utilized in many applications, including the treatment of inflammatory diseases in the future. PMID:23797659

  14. Antioxidant, inhibition of ?-glucosidase and suppression of nitric oxide production in LPS-induced murine macrophages by different fractions of Actinidia arguta stem.

    PubMed

    Lee, Jaehak; Sowndhararajan, Kandhasamy; Kim, Mihae; Kim, Jaehun; Kim, Daeho; Kim, Sunpyo; Kim, Gur-Yoo; Kim, Songmun; Jhoo, Jin-Woo

    2014-12-01

    In traditional systems of medicine, fruits, leaves, and stems of Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq. have been used to treat various inflammatory diseases. The present study determined the proximate composition, antioxidant, anti-inflammatory, and hypoglycemic potential of A. arguta stem. Phenolic composition of hot water extract and its sub-fractions was determined by Folin-Ciocalteu's reagent method. In vitro antioxidant activities of the samples were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Anti-inflammatory activity of different fractions was investigated through the inhibition of nitric oxide (NO) production in lipopolysaccharide (1?g/ml) stimulated RAW 264.7 cells. In addition, inhibition of ?-glucosidase activity of hot water extract was determined using p-nitrophenyl-?-d-glucopyranoside (pNPG) as a substrate. Ethyl acetate (557.23mgGAE/g) fraction contains higher level of total phenolic content. The antioxidant activity evaluated by DPPH radical scavenging assay showed a strong activity for ethyl acetate (IC50 of 14.28?g/ml) and n-butanol fractions (IC50 of 48.27?g/ml). Further, ethyl acetate fraction effectively inhibited NO production in RAW 264.7 cells induced by lipopolysaccharide (LPS) than other fractions (nitrite level to 32.14?M at 200?g/ml). In addition, hot water extract of A. arguta stem exhibited appreciable inhibitory activity against ?-glucosidase enzyme with IC50 of 1.71mg/ml. The obtained results have important consequence of using A. arguta stem toward the development of effective anti-inflammatory drugs. PMID:25473361

  15. Antioxidant, inhibition of ?-glucosidase and suppression of nitric oxide production in LPS-induced murine macrophages by different fractions of Actinidia arguta stem

    PubMed Central

    Lee, Jaehak; Sowndhararajan, Kandhasamy; Kim, Mihae; Kim, Jaehun; Kim, Daeho; Kim, Sunpyo; Kim, Gur-Yoo; Kim, Songmun; Jhoo, Jin-Woo

    2014-01-01

    In traditional systems of medicine, fruits, leaves, and stems of Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq. have been used to treat various inflammatory diseases. The present study determined the proximate composition, antioxidant, anti-inflammatory, and hypoglycemic potential of A. arguta stem. Phenolic composition of hot water extract and its sub-fractions was determined by FolinCiocalteus reagent method. In vitro antioxidant activities of the samples were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Anti-inflammatory activity of different fractions was investigated through the inhibition of nitric oxide (NO) production in lipopolysaccharide (1?g/ml) stimulated RAW 264.7 cells. In addition, inhibition of ?-glucosidase activity of hot water extract was determined using p-nitrophenyl-?-d-glucopyranoside (pNPG) as a substrate. Ethyl acetate (557.23mgGAE/g) fraction contains higher level of total phenolic content. The antioxidant activity evaluated by DPPH radical scavenging assay showed a strong activity for ethyl acetate (IC50 of 14.28?g/ml) and n-butanol fractions (IC50 of 48.27?g/ml). Further, ethyl acetate fraction effectively inhibited NO production in RAW 264.7 cells induced by lipopolysaccharide (LPS) than other fractions (nitrite level to 32.14?M at 200?g/ml). In addition, hot water extract of A. arguta stem exhibited appreciable inhibitory activity against ?-glucosidase enzyme with IC50 of 1.71mg/ml. The obtained results have important consequence of using A. arguta stem toward the development of effective anti-inflammatory drugs. PMID:25473361

  16. 2-Phenoxychromones and prenylflavonoids from Epimedium koreanum and their inhibitory effects on LPS-induced nitric oxide and interleukin-1? production.

    PubMed

    Jin, Qinghao; Lee, Chul; Lee, Jin Woo; Yeon, Eung Tae; Lee, Dongho; Han, Sang Bae; Hong, Jin Tae; Kim, Youngsoo; Lee, Mi Kyeong; Hwang, Bang Yeon

    2014-07-25

    Two new 2-phenoxychromones 1 and 2 and two prenylflavonoids 3 and 4 along with 12 known compounds (5-16) were isolated from the CH2Cl2-soluble fraction of a methanol extract of Epimedium koreanum. Compounds 1, 4, 6, 7, 9, 10, 12, and 15 exhibit inhibitory effects on nitric oxide production with IC50 values ranging from 16.8 to 49.3 ?M. Compounds 1, 4, 7, and 12 also showed inhibitory effects on interleukin-1? production with IC50 values ranging from 8.6 to 38.9 ?M in RAW 264.7 macrophages. PMID:24963714

  17. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  18. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  19. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-{kappa}B{alpha} degradation in RAW 264.7 cells

    SciTech Connect

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-15

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1{beta}, IL-6 and TNF-{alpha}. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-{kappa}B activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-{kappa}B{alpha} and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  20. Neuropilin-2 contributes to LPS-induced corneal inflammatory lymphangiogenesis.

    PubMed

    Tang, Xianling; Sun, Junfeng; Du, Lingling; Du, Haitao; Wang, Liyuan; Mai, Jieying; Zhang, Fengmin; Liu, Ping

    2016-02-01

    Neuropilin-2 (NP2), a high-affinity kinase-deficient co-receptor for vascular endothelial growth factor (VEGF)-C, is involved in embryonic vessel development, tumor growth, tumor lymphangiogenesis and metastasis. However, the pathological role of NP2 in other disorders, particularly under inflammatory lymphangiogenic conditions, remains largely unknown. In this study, we investigated the role of NP2 in inflammation-induced lymphangiogenesis in vivo using a lipopolysaccharide (LPS)-induced corneal neovascularization mouse model and in vitro using a macrophage-mouse lymphatic endothelial cell (mLEC) co-culture system. In the mouse model of LPS-induced inflammatory corneal neovascularization, NP2 and VEGFR-3 expression were rapidly up-regulated after LPS stimulation, and microRNA-mediated knockdown of NP2 significantly inhibited the up-regulation of VEGFR-3. Moreover, NP2 knockdown specifically inhibited the increase in the number of corneal lymphatic vessels but did not influence the increase in the number of blood vessels or macrophage recruitment induced by LPS. In a macrophage-LEC co-culture system, LPS up-regulated VEGFR-3 expression and induced mLEC migration and proliferation, and NP2 knockdown inhibited the up-regulation of VEGFR-3 expression and mLEC migration but not proliferation. Taken together, these results suggested that NP2 might be involved in the regulation of lymphangiogenesis via the regulation of VEGFR-3 expression during corneal inflammation. Therefore, NP2-targeted therapy might be a promising strategy for selective inhibition of inflammatory lymphangiogenesis in corneal inflammatory diseases, transplant immunology and oncology. PMID:26500194

  1. Inhibitory effects of (-)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages.

    PubMed

    Kim, Seungbeom; Jung, Eunsun; Kim, Jang-Hyun; Park, Young-Ho; Lee, Jongsung; Park, Deokhoon

    2011-10-01

    Although (-)-α-bisabolol, a natural monocyclic sesquiterpene alcohol, is often used as a cosmetic soothing supplement, little is known about its mechanisms of anti-inflammatory effects. Therefore, this study was designed to investigate anti-inflammatory effects of (-)-α-bisabolol and its mechanisms of action. In this study, we found that (-)-α-bisabolol inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by Western blot and luciferase reporter assays for COX-2 and iNOS. To assess the mechanism of the anti-inflammatory property of (-)-α-bisabolol, its effects on the activity of AP-1 and NF-κB promoters were examined. LPS-induced activation of AP-1 and NF-κB promoters was significantly reduced by (-)-α-bisabolol. Consistently, (-)-α-bisabolol reduced LPS-induced phosphorylation of IκBα. In addition, while LPS-induced phosphorylation of ERK and p38 was attenuated by (-)-α-bisabolol, significant changes in the level of phosphorylated JNK were not observed. Our results indicate that (-)-α-bisabolol exerts anti-inflammatory effects by downregulating expression of iNOS and COX-2 genes through inhibition of NF-κB and AP-1 (ERK and p38) signaling. PMID:21771629

  2. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  3. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.

    PubMed

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M; McNeill, Eileen

    2016-02-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1(fl/fl)Tie2cre mice) received a 24hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1(fl/fl)Tie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1(fl/fl)Tie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1(fl/fl)Tie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  4. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1? and -6, and tumour necrosis factor ?). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-?B) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 ?g/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-?B and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-?B and MAPKs. PMID:23458198

  5. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15?M) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15?M concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases. PMID:25068824

  6. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish.

    PubMed

    Ryu, Su-Jung; Choi, Hyeon-Son; Yoon, Kye-Yoon; Lee, Ok-Hwan; Kim, Kui-Jin; Lee, Boo-Yong

    2015-02-25

    Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macrophages was supported by the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, our enzyme immunoassay showed that oleuropein suppressed the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oleuropein inhibited the translocation of p65 by suppressing phosphorylation of inhibitory kappa B-α (IκB-α). Oleuropein also decreased activation of ERK1/2 and JNK, which are associated with LPS-induced inflammation, and its downstream gene of AP-1. Furthermore, oleuropein inhibited LPS-stimulated NO generation in a zebrafish model. Taken together, our results demonstrated that oleuropein could reduce inflammatory responses by inhibiting TLR and MAPK signaling, and may be used as an anti-inflammatory agent. PMID:25613688

  7. IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-? secretion and LPS-induced endotoxin shock.

    PubMed

    Siegfried, Alexandra; Berchtold, Susanne; Manncke, Birgit; Deuschle, Eva; Reber, Julia; Ott, Thomas; Weber, Michaela; Kalinke, Ulrich; Hofer, Markus J; Hatesuer, Bastian; Schughart, Klaus; Gailus-Durner, Valrie; Fuchs, Helmut; Hrabe de Angelis, Martin; Weber, Friedemann; Hornef, Mathias W; Autenrieth, Ingo B; Bohn, Erwin

    2013-10-01

    Type I IFN signaling amplifies the secretion of LPS-induced proinflammatory cytokines such as TNF-? or IL-6 and might thus contribute to the high mortality associated with Gram-negative septic shock in humans. The underlying molecular mechanism, however, is ill defined. In this study, we report the generation of mice deficient in IFN-induced protein with tetratricopeptide repeats 2 (Ifit2) and demonstrate that Ifit2 is a critical signaling intermediate for LPS-induced septic shock. Ifit2 expression was significantly upregulated in response to LPS challenge in an IFN-? receptor- and IFN regulatory factor (Irf)9-dependent manner. Also, LPS induced secretion of IL-6 and TNF-? by bone marrow-derived macrophages (BMDMs) was significantly enhanced in the presence of Ifit2. In accordance, Ifit2-deficient mice exhibited significantly reduced serum levels of IL-6 and TNF-? and reduced mortality in an endotoxin shock model. Investigation of the underlying signal transduction events revealed that Ifit2 upregulates Irf3 phosphorylation. In the absence of Irf3, reduced Ifn-? mRNA expression and Ifit2 protein expression after LPS stimulation was found. Also, Tnf-? and Il-6 secretion but not Tnf-? and Il-6 mRNA expression levels were reduced. Thus, IFN-stimulated Ifit2 via enhanced Irf3 phosphorylation upregulates the secretion of proinflammatory cytokines. It thereby amplifies LPS-induced cytokine production and critically influences the outcome of endotoxin shock. PMID:24014876

  8. Opposite effects of ANP receptors in attenuation of LPS-induced endothelial permeability and lung injury.

    PubMed

    Xing, Junjie; Yakubov, Bakhtiyor; Poroyko, Valeriy; Birukova, Anna A

    2012-03-01

    Atrial natriuretic peptide (ANP) has been recently identified as a modulator of acute lung injury (ALI) induced by pro-inflammatory agonists. While previous studies tested effects of exogenous ANP administration, the role of endogenous ANP in the course of ALI remains unexplored. This study examined regulation of ANP and its receptors NPR-A, NPR-B and NPR-C by LPS and involvement of ANP receptors in the modulation of LPS-induced lung injury. Primary cultures of human pulmonary endothelial cells (EC) were used in the in vitro tests. Expression of ANP and its receptors was determined by quantitative RT-PCR analysis. Agonist-induced cytoskeletal remodeling was evaluated by immunofluorescence staining, and EC barrier function was characterized by measurements of transendothelial electrical resistance. In the murine model of ALI, LPS-induced lung injury was assessed by measurements of protein concentration and cell count in bronchoalveolar lavage fluid (BAL). LPS stimulation significantly increased mRNA expression levels of ANP and NPR-A in pulmonary EC. Pharmacological inhibition of NPR-A augmented LPS-induced EC permeability and blocked barrier protective effects of exogenous ANP on LPS-induced intercellular gap formation. In contrast, pharmacological inhibition of ANP clearance receptor NPR-C significantly attenuated LPS-induced barrier disruptive effects. Administration of NPR-A inhibitor in vivo exacerbated LPS-induced lung injury, whereas inhibition of NPR-C suppressed LPS-induced increases in BAL cell count and protein content. These results demonstrate for the first time opposite effects of NPR-A and NPR-C in the modulation of ALI and suggest a compensatory protective mechanism of endogenous ANP in the maintenance of lung vascular permeability in ALI. PMID:22001395

  9. Opposite effects of ANP receptors in attenuation of LPS-induced endothelial permeability and lung injury

    PubMed Central

    Xing, Junjie; Yakubov, Bakhtiyor; Poroyko, Valeriy; Birukova, Anna A.

    2011-01-01

    Atrial natriuretic peptide (ANP) has been recently identified as a modulator of acute lung injury (ALI) induced by pro-inflammatory agonists. While previous studies tested effects of exogenous ANP administration, the role of endogenous ANP in the course of ALI remains unexplored. This study examined regulation of ANP and its receptors NPR-A, NPR-B and NPR-C by LPS and involvement of ANP receptors in the modulation of LPS-induced lung injury. Primary cultures of human pulmonary endothelial cells (EC) were used in the in vitro tests. Expression of ANP and its receptors was determined by quantitative RT-PCR analysis. Agonist-induced cytoskeletal remodeling was evaluated by immunofluorescence staining, and EC barrier function was characterized by measurements of transendothelial electrical resistance. In the murine model of ALI, LPS-induced lung injury was assessed by measurements of protein concentration and cell count in bronchoalveolar lavage fluid (BAL). LPS stimulation significantly increased mRNA expression levels of ANP and NPR-A in pulmonary EC. Pharmacological inhibition of NPR-A augmented LPS-induced EC permeability and blocked barrier protective effects of exogenous ANP on LPS-induced intercellular gap formation. In contrast, pharmacological inhibition of ANP clearance receptor NPR-C significantly attenuated LPS-induced barrier disruptive effects. Administration of NPR-A inhibitor in vivo exacerbated LPS-induced lung injury, whereas inhibition of NPR-C suppressed LPS-induced increases in BAL cell count and protein content. These results demonstrate for the first time opposite effects of NPR-A and NPR-C in the modulation of ALI and suggest a compensatory protective mechanism of endogenous ANP in the maintenance of lung vascular permeability in ALI. PMID:22001395

  10. Inhibition of acute lung injury by rubriflordilactone in LPS-induced rat model through suppression of inflammatory factor expression

    PubMed Central

    Wang, Yan-Ying; Qiu, Xin-Guang; Ren, Hong-Liang

    2015-01-01

    The present study demonstrates the effect of rubriflordilactone on lipopolysaccharide (LPS)-induced acute kidney injury in rats and MLE-15 cells. LPS administration in rats resulted in formation of edema which was inhibited by pretreatment with rubriflordilactone. The pulmonary tissues of LPS administered rats and MLE-15 cells showed a significant increase in the expression of matrix metalloproteinase-9, interleukin-6 and inducible nitric oxide synthase. However, rubriflordilactone treatment prior to LPS administration caused a significant reduction in the expression of these factors at a concentration of 10 nm/kg. Analysis of the Sirtuin 1 (Sirt1) expression revealed significant (P=0.002) reduction on exposure to LPS in MLE-15 cells. However, rubriflordilactone treatment at 10 nm/ml concentration before LPS exposure caused inhibition of LPS induced reduction in Sirt1 expression. Silencing of Sirt1 by siRNA in MLE-15 cells led to inhibition of increased Sirt1 expression by rubriflordilactone in LPS administered rats. These findings suggest that rubriflordilactone inhibits LPS induced acute lung injury in rats and MLE-15 cells through promotion of Sirt1 expression.

  11. Enforced expression of miR-125b attenuates LPS-induced acute lung injury.

    PubMed

    Guo, Zhongliang; Gu, Yutong; Wang, Chunhong; Zhang, Jie; Shan, Shan; Gu, Xia; Wang, Kailing; Han, Yang; Ren, Tao

    2014-11-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Recent evidence implicated a potential role of miR-125b in development of ALI. Here we evaluated the miR-125b-based strategy in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We found that up-regulation of miR-125b expression maintained the body weight and survival of ALI mice, and significantly reduced LPS-induced pulmonary inflammation as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Further, enforced expression of miR-125b resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin and IgM in BAL fluid, and ameliorated the histopathology changes of lung in LPS-induced ALI mice. Of interest, serum miR-125b expression was also decreased and inversely correlated with the disease severity in patients with ARDS. Our findings strongly demonstrated that enforced expression of miR-125b could effectively ameliorate the LPS-induced ALI, suggesting a potential application for miR-125b-based therapy to treat clinical ARDS. PMID:25004393

  12. (+)-Catechin Attenuates NF-?B Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-? (TNF-?) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-?B (NF-?B) p65 nuclear translocation via the inhibition of I?B-? phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-?B through Akt, ERK, p38 MAPK, and AMPK pathways. PMID:26227399

  13. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXR?.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXR? in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1?, IL-6 and TNF-? production in a time- and dose-dependent manner. Moreover, capsaicin increases LXR? expression through PPAR? pathway. Inhibition of LXR? activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1?, IL-6 and TNF-? production. Additionally, LXR? siRNA abrogated the inhibitory action of capsaicin on p65 NF-?B protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXR? dependent, and LXR? may potentially link the capsaicin mediated PPAR? activation and NF-?B inhibition in LPS-induced inflammatory response. PMID:26093270

  14. Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal.

    PubMed

    De, Sarmishtha; Zhou, Hao; DeSantis, David; Croniger, Colleen M; Li, Xiaoxia; Stark, George R

    2015-08-01

    Several components of the canonical pathway of response to lipopolysaccharide (LPS) are required for the EGF-dependent activation of NF?B. Conversely, the ability of Toll-like Receptor 4 (TLR4) to activate NF?B in response to LPS is impaired by down regulating EGF receptor (EGFR) expression or by using the EGFR inhibitor erlotinib. The LYN proto-oncogene (LYN) is required for signaling in both directions. LYN binds to the EGFR upon LPS stimulation, and erlotinib impairs this association. In mice, erlotinib blocks the LPS-induced expression of tumor necrosis factor ? (TNF?) and interleukin-6 (IL-6) and ameliorates LPS-induced endotoxity, revealing that EGFR is essential for LPS-induced signaling in vivo. PMID:26195767

  15. Erlotinib protects against LPS-induced Endotoxicity because TLR4 needs EGFR to signal

    PubMed Central

    De, Sarmishtha; Zhou, Hao; DeSantis, David; Croniger, Colleen M.; Li, Xiaoxia; Stark, George R.

    2015-01-01

    Several components of the canonical pathway of response to lipopolysaccharide (LPS) are required for the EGF-dependent activation of NFκB. Conversely, the ability of Toll-like Receptor 4 (TLR4) to activate NFκB in response to LPS is impaired by down regulating EGF receptor (EGFR) expression or by using the EGFR inhibitor erlotinib. The LYN proto-oncogene (LYN) is required for signaling in both directions. LYN binds to the EGFR upon LPS stimulation, and erlotinib impairs this association. In mice, erlotinib blocks the LPS-induced expression of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) and ameliorates LPS-induced endotoxity, revealing that EGFR is essential for LPS-induced signaling in vivo. PMID:26195767

  16. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  17. Mulberry fruit prevents LPS-induced NF-?B/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice.

    PubMed

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2(-/-) mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-?) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-?B/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2(-/-) mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  18. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-?, IL-1? and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-? and IL-6 production and phosphorylation of NF-?B and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-?B and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. PMID:26679677

  19. Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice.

    PubMed

    Zhang, Xuemei; Xiong, Huanzhang; Li, Hongyu; Cheng, Yao

    2014-02-01

    Taraxasterol, a pentacyclic-triterpene, was isolated from the Chinese medicinal herb Taraxacum officinale. In the present study, we investigated the protective effect of taraxasterol on murine model of endotoxic shock and the mechanism of its action. Mice were treated with 2.5, 5 and 10 mg/kg of taraxasterol prior to a lethal dose of lipopolysaccharide (LPS) challenge. Survival of mice was monitored twice a day for 7 days. To further understand the mechanism, the serum levels of inflammatory cytokine tumor necrosis factor-? (TNF-?), interferon-? (IFN-?), interleukin-1? (IL-1?), interleukin-6 (IL-6) and mediator nitric oxide (NO), prostaglandin E? (PGE?) as well as histology of lungs were examined. The results showed that taraxasterol significantly improved mouse survival and attenuated tissue injury of the lungs in LPS-induced endotoxemic mice. Further studies revealed that taraxasterol significantly reduced TNF-?, IFN-?, IL-1?, IL-6, NO and PGE? levels in sera from mice with endotoxic shock. These results indicate that taraxasterol has a protective effect on murine endotoxic shock induced by LPS through modulating inflammatory cytokine and mediator secretion. This finding might provide a new strategy for the treatment of endotoxic shock and associated inflammation. PMID:24286370

  20. Effects of kramecyne on LPS induced chronic inflammation and gastric ulcers.

    PubMed

    Alonso-Castro, Angel Josabad; Pérez-Ramos, Julia; Sánchez-Mendoza, Ernesto; Pérez-González, Cuauhtemoc; Pérez-Gutiérrez, Salud

    2015-06-01

    Preclinical Research Krameria cytisoides is used for the treatment of inflammation, stomach pain, and gastric ulcers. The active ingredient from this plant is a peroxide, kramecyne (KACY) which has anti-inflammatory effects. The aim of the present study was to evaluate the anti-inflammatory activities of KACY in lipopolysaccharide (LPS)-induced systemic chronic inflammation in mice for 60 days, using dexamethasone (DEX) as the positive control, vehicle (the LPS group) as the negative control and the control group (mice without inflammation). KACY did not affect survival, body weight or relative organ weight in mice but it: decreased nitric oxide (NO) production by 68%; prostaglandin E2 (PGE2 ) by 67%; increased release of anti-inflammatory cytokine IL-10 (2.0-fold), and reduced production of the proinflammatory cytokines, IL-6 (2.0-fold), IL-1β (2.4-fold), and TNF-α (2.0-fold). Furthermore, the gastroprotective effects of KACY in mice were evaluated in an ethanol-induced gastric ulcer model. The results showed that KACY at 50 and 100 mg/kg exerted gastroprotective effects with similar activity to 50 mg/kg ranitidine. In gastric tissues, KACY decreased the level of malondialdehyde (MDA) but increased the catalase (CAT) activity. KACY have potential for the treatment of chronic inflammatory diseases due its similar activity to that of DEX. It also has gastroprotective effects. PMID:26109468

  1. Kavain Inhibition of LPS-Induced TNF-? via ERK/LITAF

    PubMed Central

    Tang, Xiaoren; Amar, Salomon

    2015-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-? expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-? production but this effect was almost abrogated in LITAF?/? and ERK2?/? cells. Therefore we reintroduced the ERK2 gene in ERK2?/? cells and partially restored E.coli LPS-induced LITAF-mediated TNF-? production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-? expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2?/? mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-?.

  2. Low-Level Laser Therapy Attenuates LPS-Induced Rats Mastitis by Inhibiting Polymorphonuclear Neutrophil Adhesion

    PubMed Central

    WANG, Yueqiang; HE, Xianjing; HAO, Dandan; YU, Debin; LIANG, Jianbin; QU, Yanpeng; SUN, Dongbo; YANG, Bin; YANG, Keli; WU, Rui; WANG, Jianfa

    2014-01-01

    ABSTRACT The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a rat model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms. The rat model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. The results showed that LPS-induced secretion of IL-1? and IL-8 significantly decreased after LLLT (650 nm, 2.5 mW, 30 mW/cm2). LLLT also inhibited intercellular adhesion molecule-1 (ICAM-1) expression and attenuated the LPS-induced decrease of the expression of CD62L and increase of the expression of CD11b. Moreover, LLLT also suppressed LPS-induced polymorphonuclear neutrophils (PMNs) entering the alveoli of the mammary gland. The number of PMNs in the mammary alveolus and the myeloperoxidase (MPO) activity were decreased after LLLT. These results suggested that LLLT therapy is beneficial in decreasing the somatic cell count and improving milk nutritional quality in cows with an intramammary infection. PMID:25452258

  3. Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Kang, Sukyung; Lee, Jae Sung; Lee, Hai Chon; Petriello, Michael C; Kim, Bae Yong; Do, Jeong Tae; Lim, Dae-Seog; Lee, Hong Gu; Han, Sung Gu

    2016-03-28

    Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPSinduced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells. PMID:26608166

  4. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  5. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  6. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    PubMed

    Ali, Asif; Khajuria, Anamika; Sidiq, Tabasum; Kumar, Ashok; Thakur, Narsinh L; Naik, Deepak; Vishwakarma, Ram A

    2013-02-01

    In continuing research for compounds with immunosuppressive activity, Lawsonone (1), a novel Lawsonyl derivative isolated from marine-derived bacteria Streptomyces sp. was evaluated for its potent immunosuppressive activity on immune system. The effect of Lawsonone (1) was elucidated on the immune cells (splenocytes and macrophages) collected from BALB/c mice. Study was carried out to find the effect of Lawsonone (1) on Con-A and LPS stimulated splenocyte proliferation, LPS-induced NO, IL-1β, IL-6 and TNF-α production in macrophages. Furthermore, the effect of Lawsonone (1) on T-cell subsets (CD4 and CD8) and total B-cell (CD19) population was analyzed by flow cytometry. The results obtained in the present study showed that Lawsonone (1) inhibited the proliferation of both T and B splenocytes. It inhibited the nitric oxide (NO) and pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) production in LPS-stimulated macrophages in a dose-dependent manner. Moreover, flow cytometric analysis indicated the prominent inhibition of CD4, CD8 and CD19 cell populations in the spleen of mice treated with the variable doses of Lawsonone (1), with the maximum inhibition at the lowest dose (0.1μM). Taken together, the present results suggest that Lawsonone (1) may act as a potent molecule for immunosuppression and anti-inflammation, supporting its immunopharmacologic application to modify the immune system. PMID:22975588

  7. Effects of Voluntary Wheel Running on LPS-induced Sickness Behavior in Aged Mice

    PubMed Central

    Martin, S.A.; Pence, B. A.; Greene, R.; Johnson, S.; Dantzer, R.; Kelley, K.W.; Woods, J.A.

    2013-01-01

    Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNF?, IL-1?, and IL-10 mRNA, and increased IL-1? and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals. PMID:23277090

  8. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. PMID:26522738

  9. Sulfated chitosan oligosaccharides suppress LPS-induced NO production via JNK and NF-κB inactivation.

    PubMed

    Kim, Jung-Hyun; Kim, Yon-Suk; Hwang, Jin-Woo; Han, Young-Ki; Lee, Jung-Suck; Kim, Se-Kwon; Jeon, You-Jin; Moon, Sang-Ho; Jeon, Byong-Tae; Bahk, Young Yil; Park, Pyo-Jam

    2014-01-01

    Various biological effects have been reported for sulfated chitosan oligosaccharides, but the molecular mechanisms of action of their anti-inflammatory effects are still unknown. This study aimed to evaluate the anti-inflammatory effects of sulfated chitosan oligosaccharides and to elucidate the possible mechanisms of action. The results showed that pretreated low molecular weight sulfated chitosan oligosaccharides inhibited the production of nitric oxide (NO) and inflammatory cytokines such as IL-6 and TNF-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. The sulfated chitosan oligosaccharides also suppressed inducible nitric oxide synthase (iNOS), phosphorylation of JNK and translocation of p65, a subunit of NF-κB, into the nucleus by inhibiting degradation of IκB-α. Our investigation suggests sulfated chitosan oligosaccharides inhibit IL-6/TNF-α in LPS-induced macrophages, regulated by mitogen-activated protein kinases (MAPKs) pathways dependent on NF-κB activation. PMID:25387351

  10. DUOX-Mediated Signaling Is Not Required for LPS-Induced Neutrophilic Response in the Airways

    PubMed Central

    Chang, Sandra; Linderholm, Angela; Harper, Richart

    2015-01-01

    Oxidant production from DUOX1 has been proposed to lead to neutrophil recruitment into the airways when lung homeostasis is compromised. The objective of this study was to determine whether DUOX-derived hydrogen peroxide is required for LPS-induced neutrophil recruitment, using a functional DUOX knock out mouse model. We found that LPS induced profound neutrophilic lung inflammation in both Duoxa+/+ and Duoxa-/- mice between 3h and 24h. Duoxa-/- mice had significantly higher neutrophil influx 24h after LPS instillation despite similar cytokine levels (KC, MIP-2, or TGF-α) between the two groups. These findings suggest that LPS-TLR-4-induced KC or MIP-2 cytokine induction and subsequent neutrophil recruitment in the airway does not require DUOX-derived hydrogen peroxide from airway epithelium. PMID:26148206

  11. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)

    PubMed Central

    Trussoni, Christy E.; Tabibian, James H.; Splinter, Patrick L.; OHara, Steven P.

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes. PMID:25915403

  12. Epigallocatechin-3-gallate Inhibits LPS-Induced NF-?B and MAPK Signaling Pathways in Bone Marrow-Derived Macrophages

    PubMed Central

    Joo, So-Young; Song, Young-A; Park, Young-Lan; Myung, Eun; Chung, Cho-Yun; Park, Kang-Jin; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Hyun-Soo; Rew, Jong-Sun; Kim, Nack-Sung

    2012-01-01

    Background/Aims Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice. Methods The effect of EGCG on LPS-induced pro-inflammatory gene expression and nuclear factor-?B (NF-?B) and mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-polymerase chain reaction, Western blotting, immunofluorescence, and the electrophoretic mobility shift assay. Results EGCG inhibited accumulation of LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA in BMMs. EGCG blocked LPS-induced I?B? degradation and RelA nuclear translocation. EGCG blocked the DNA-binding activity of NF-?B. LPS-induced phosphorylation of ERK1/2, JNK, and p38 was inhibited by EGCG. U0126 (an inhibitor of MEK-1/2) suppressed the LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA accumulation in BMMs. Conclusions These results indicate that EGCG may prevent LPS-induced pro-inflammatory gene expression through blocking NF-?B and MAPK signaling pathways in BMMs. PMID:22570747

  13. Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1

    PubMed Central

    Xing, Junjie; Fu, Panfeng; Yakubov, Bakhtiyor; Dubrovskyi, Oleksii; Fortune, Jennifer A.; Klibanov, Alexander M.; Birukov, Konstantin G.

    2010-01-01

    Increased levels of atrial natriuretic peptide (ANP) in the models of sepsis, pulmonary edema, and acute respiratory distress syndrome (ARDS) suggest its potential role in the modulation of acute lung injury. We have recently described ANP-protective effects against thrombin-induced barrier dysfunction in pulmonary endothelial cells (EC). The current study examined involvement of the Rac effector p21-activated kinase (PAK1) in ANP-protective effects in the model of lung vascular permeability induced by bacterial wall LPS. C57BL/6J mice or ANP knockout mice (Nppa?/?) were treated with LPS (0.63 mg/kg intratracheal) with or without ANP (2 ?g/kg iv). Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, Evans blue extravasation, and lung histology. Endothelial barrier properties were assessed by morphological analysis and measurements of transendothelial electrical resistance. ANP treatment stimulated Rac-dependent PAK1 phosphorylation, attenuated endothelial permeability caused by LPS, TNF-?, and IL-6, decreased LPS-induced cell and protein accumulation in bronchoalveolar lavage fluid, and suppressed Evans blue extravasation in the murine model of acute lung injury. More severe LPS-induced lung injury and vascular leak were observed in ANP knockout mice. In rescue experiments, ANP injection significantly reduced lung injury in Nppa?/? mice caused by LPS. Molecular inhibition of PAK1 suppressed the protective effects of ANP treatment against LPS-induced lung injury and endothelial barrier dysfunction. This study shows that the protective effects of ANP against LPS-induced vascular leak are mediated at least in part by PAK1-dependent signaling leading to EC barrier enhancement. Our data suggest a direct role for ANP in endothelial barrier regulation via modulation of small GTPase signaling. PMID:20729389

  14. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility.

    PubMed

    Kleveta, Galyna; Borz?cka, Kinga; Zdioruk, Mykola; Czerkies, Maciej; Kuberczyk, Hanna; Sybirna, Natalia; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2012-01-01

    Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro-inflammatory mediators. We examined mechanisms of LPS-stimulated motility and found that LPS at 100?ng/ml induced rapid elongation and ruffling of macrophage-like J774 cells. A wound-healing assay revealed that LPS also activated directed cell movement that was followed by TNF-? production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5-bisphosphate. Fractionation of Triton X-100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin-regulatory proteins, paxillin on tyrosine 118 by 80% and N-WASP on serine 484/485 by 20%, and these events preceded activation of NF-?B. LPS-induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N-WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS-stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF-? production suggesting that LPS-induced cell motility is not required for TNF-? release. PMID:21898535

  15. Neuraminidase reprograms lung tissue and potentiates LPS-induced acute lung injury in mice

    PubMed Central

    Feng, Chiguang; Zhang, Lei; Nguyen, Chinh; Vogel, Stefanie N.; Goldblum, Simeon E.; Blackwelder, William C.; Cross, Alan S.

    2013-01-01

    We previously reported that removal of sialyl residues primed PBMCs to respond to bacterial LPS stimulation in vitro. Therefore, we speculated that prior desialylation can sensitize the host to generate an enhanced inflammatory response upon exposure to a TLR ligand, such as LPS, in a murine model of acute lung injury. Intratracheal instillation of neuraminidase (NA) 30 min prior to intratracheal administration of LPS increased PMNs in the bronchoalveolar lavage fluid (BALF) and the wet-to-dry lung weight ratio, a measure of pulmonary edema, compared to mice that received LPS alone. Administration of NA alone resulted in desialylation of bronchiolar and alveolar surfaces and induction of TNF-?, IL-1?, and chemokines in lung homogenates and BALF; however, PMN recruitment in mice treated with NA alone did not differ from those of PBS-administered controls. NA pretreatment alone induced apoptosis and markedly enhanced LPS-induced endothelial apoptosis. Administration of recombinant Bcl-2, an anti-apoptotic molecule, abolished the effect of NA treatment on LPS-induced PMN recruitment and pulmonary edema formation. We conclude that NA pretreatment potentiates LPS-induced lung injury through enhanced PMN recruitment, pulmonary edema formation, and endothelial and myeloid cell apoptosis. A similar reprogramming of immune responses with desialylation may occur during respiratory infection with NA-expressing microbes and contribute to severe lung injury. PMID:24068662

  16. Impact of LPS-induced cardiomyoblast cell apoptosis inhibited by earthworm extracts.

    PubMed

    Li, Ping-Chun; Tien, Yun-Chen; Day, Cecilia Hsuan; Pai, Peiying; Kuo, Wei-Wen; Chen, Tung-Sheng; Kuo, Chia-Hua; Tsai, Chang-Hai; Ju, Da-Tong; Huang, Chih-Yang

    2015-04-01

    Dilong is an earthworm extract with a dense nutritional content, widely used in Chinese herbal medicine to remove stasis and stimulate wound healing. Earthworm extracts are traditionally used by indigenous people throughout the world. How this Dilong inhibits Lipopolysaccharide (LPS)-induced cardiomyoblast cell apoptosis is still unclear. This study investigates the Dilong extract effect on LPS-induced apoptosis in H9c2 cardiomyoblast cells. LPS (1 ?g/ml) administration for 24 h induced apoptosis in H9c2 cells. Cell apoptosis was detected using MTT, LDH, TUNEL assay and JC-1 staining. Western blot analysis was used to detect pro-apoptotic and anti-apoptotic proteins. Dilong extract totally blocked the LPS impact, leading to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, stabilized the mitochondria membrane and down-regulated the extrinsic and intrinsic pro-apoptotic proteins, TNF-?, active caspase-8, t-Bid, Bax, active caspase-9 and active caspase-3. Dilong could potentially serve as a cardio protective agent against LPS-induced H9c2 cardiomyoblast cell apoptosis. PMID:25249212

  17. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    PubMed Central

    2010-01-01

    Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 ?g/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 ?g/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 ?g/mL), or CA (0.384 ?g/mL), or CO (0.057 ?g/mL) or FA (0.038 ?g/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1? (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 ?g/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (? 8 ?g/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (? 80 ?g/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces a substance which is similar in composition to post-hepatic products. HRAMsim is an effective inhibitor of LPS-induced inflammation in cartilage explants, and effects are primarily independent of RA. Further research is needed to identify bioactive phytochemical(s) in HRAMsim. PMID:20459798

  18. Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc.

    PubMed

    Li, Yan; Li, Kang; Hu, Yiqin; Xu, Bo; Zhao, Jie

    2015-01-01

    Piperine is an exact of the active phenolic component from Black pepper. It has been reported to have many biological activities including anti-oxidant, anti-inflammatory and anti-tumor effects. Intervertebral disc degeneration (IDD) is a degenerative disease closely relate to inflammation of nucleus pulposus (NP) cells. This study aimed to assess the anti-inflammatory and anti-catabolic effects of piperine in rat intervertebral disc using in vitro and ex vivo analyzes. We demonstrated that piperine could inhibit LPS induced expression and production of inflammatory factors and catabolic proteases in NP cells culture model. It significantly inhibited multiple inflammatory factors and oxidative stress-associated genes (IL-1?, TNF-?, IL-6, iNOS), MMPs (MMP-3, MMP-13), ADAMTS (ADAMTS-4, ADAMTS-5) mRNA expression and NO production in a concentration-dependent manner. Moreover, piperine could reverse the LPS-induced inhibition of gene expression of aggrecan and collagen-II. Histologic and dimethylmethylene blue analysis indicated piperine could also against LPS induced proteoglycan (PG) depletion in a rat intervertebral disc culture model. Western blot results showed that piperine inhibited the LPS-mediated phosphorylation of JNK and activation of NF-?B. Finally, our results demonstrated the ability of piperine to antagonize LPS-mediated inflammation of NP cells and suppression of PG in rat intervertebral disc, suggesting a potential agent for treatment of IDD in future. PMID:26261497

  19. Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc

    PubMed Central

    Li, Yan; Li, Kang; Hu, Yiqin; Xu, Bo; Zhao, Jie

    2015-01-01

    Piperine is an exact of the active phenolic component from Black pepper. It has been reported to have many biological activities including anti-oxidant, anti-inflammatory and anti-tumor effects. Intervertebral disc degeneration (IDD) is a degenerative disease closely relate to inflammation of nucleus pulposus (NP) cells. This study aimed to assess the anti-inflammatory and anti-catabolic effects of piperine in rat intervertebral disc using in vitro and ex vivo analyzes. We demonstrated that piperine could inhibit LPS induced expression and production of inflammatory factors and catabolic proteases in NP cells culture model. It significantly inhibited multiple inflammatory factors and oxidative stress-associated genes (IL-1?, TNF-?, IL-6, iNOS), MMPs (MMP-3, MMP-13), ADAMTS (ADAMTS-4, ADAMTS-5) mRNA expression and NO production in a concentration-dependent manner. Moreover, piperine could reverse the LPS-induced inhibition of gene expression of aggrecan and collagen-II. Histologic and dimethylmethylene blue analysis indicated piperine could also against LPS induced proteoglycan (PG) depletion in a rat intervertebral disc culture model. Western blot results showed that piperine inhibited the LPS-mediated phosphorylation of JNK and activation of NF-?B. Finally, our results demonstrated the ability of piperine to antagonize LPS-mediated inflammation of NP cells and suppression of PG in rat intervertebral disc, suggesting a potential agent for treatment of IDD in future. PMID:26261497

  20. Diarylheptanoids from Alnus nepalensis attenuates LPS-induced inflammation in macrophages and endotoxic shock in mice.

    PubMed

    Saxena, Archana; Yadav, Deepti; Maurya, Anil K; Kumar, Anant; Mohanty, Shilpa; Gupta, Madan M; Lingaraju, Madhu C; Yatoo, M I; Thakur, Uttam S; Bawankule, Dnyaneshwar U

    2016-01-01

    Diarylheptanoids, a group of plant secondary metabolites are increasingly recognized as potential therapeutic agents. The aim of study was to ascertain the anti-inflammatory profile of diarylheptanoids from Alnus nepalensis against lipopolysaccharide (LPS)-induced inflammation in macrophages and endotoxic shock in mice. Extracts prepared from dried leaves of A. nepalensis using standard solvents were tested against LPS-induced inflammation in macrophages. Among all, butanol extract (ANB) has shown most significant inhibition of pro-inflammatory cytokines without any cytotoxicity. HPLC analysis of ANB showed the presence of diarylheptanoids. The diarylheptanoids were further isolated and tested in-vitro for anti-inflammatory activity. Treatment of isolated diarylheptanoids (HOG, ORE and PLS) was able to reduce the production and mRNA level of pro-inflammatory cytokines (TNF-? and IL-6). Furthermore, we demonstrated that it inhibited the expression of NF-kB protein in LPS-induced inflammation in macrophages. In-vivo efficacy and safety profile of ANB revealed that oral treatment of ANB was able to improve the survival rate, and inhibited the production of pro-inflammatory cytokines in serum, attenuated vital organ injury in a dose dependent manner without any toxic effect at higher dose in mice. The results suggest that diarylheptanoids from A. nepalensis can be considered as potential therapeutic candidates for the management of inflammation related diseases. PMID:26679675

  1. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80?mg/kg) was administered (i.p.) to mice 6?h after LPS-induced lung inflammation. One day (24?h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases. PMID:25356537

  2. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells.

    PubMed

    Kim, You Ah; Kong, Chang-Suk; Park, Hyo Hyun; Lee, Eunkyung; Jang, Mi-Soon; Nam, Ki-Ho; Seo, Youngwan

    2015-01-01

    The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?) and interleukin-6 (IL-6). PMID:26266403

  3. The dopamine D3 receptor regulates the effects of methamphetamine on LPS-induced cytokine production in murine mast cells.

    PubMed

    Xue, Li; Li, Xia; Ren, Hui-Xun; Wu, Feng; Li, Ming; Wang, Biao; Chen, Fang-Yuan; Cheng, Wei-Ying; Li, Ju-Ping; Chen, Yan-Jiong; Chen, Teng

    2015-06-01

    Previous studies have demonstrated that methamphetamine (METH) alter inflammatory and anti-inflammatory cytokine production in the periphery. However, the effect of METH on lipopolysaccharide (LPS)-induced immune responses and its underlying mechanism of action remains unclear. The dopamine D3 receptor (D3R) plays an important role in METH addiction, indicating that the D3R may regulate METH-mediated immune responses. In this study, we examined the effect of METH on mast cell released cytokines in the lungs and thymi of mice stimulated by LPS, and on LPS-induced murine bone marrow-derived mast cells (BMMCs). Moreover, we used D3R-deficient mice to investigate the effect of this receptor on LPS-stimulated mast cell released cytokine production after METH treatment in the lungs and thymi. The effects of a D3R agonist and antagonist on LPS-induced cytokine production after METH treatment in murine BMMCs were also evaluated. METH suppressed LPS-induced cytokine production in the lungs and thymi of wild-type (WT) mice and BMMCs. However, METH did not alter LPS-induced cytokine production in the lungs and thymi of D3R-deficient mice. When BMMCs were treated with the D3R receptor antagonist, NGB2904 hydrochloride (NGB-2904), METH did not alter LPS-induced cytokine production. However, treatment with the D3R agonist, 7-hydroxy-(di-n-propylamino) tetralin (7-OH-DPAT), significantly enhanced the effects of METH on LPS-induced cytokine production. Our results suggest that METH regulates mast cell released cytokines production in an LPS-induced mouse model via the D3R. PMID:25601390

  4. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens. PMID:25539852

  5. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2014-01-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens. PMID:25539852

  6. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway.

    PubMed

    Huang, Yujie; Luo, Xuwei; Li, Xiaorui; Song, Xiuming; Wei, Libin; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2015-09-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor. PMID:25956732

  7. Epoxyeicosatrienoic Acids Regulate Macrophage Polarization and Prevent LPS-Induced Cardiac Dysfunction

    PubMed Central

    Dai, Meiyan; Wu, Lujin; He, Zuowen; Zhang, Shasha; Chen, Chen; Xu, Xizhen; Wang, Peihua; Gruzdev, Artiom; Zeldin, Darryl C.; Wang, Dao Wen

    2015-01-01

    Macrophages, owning tremendous phenotypic plasticity and diverse functions, were becoming the target cells in various inflammatory, metabolic and immune diseases. Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to form epoxyeicosatrienoic acids (EETs), which possess various beneficial effects on cardiovascular system. In the present study, we evaluated the effects of EETs treatment on macrophage polarization and recombinant adeno-associated virus (rAAV)-mediated CYP2J2 expression on lipopolysaccharide (LPS)-induced cardiac dysfunction, and sought to investigate the underlying mechanisms. In vitro studies showed that EETs (1?mol/L) significantly inhibited LPS-induced M1 macrophage polarization and diminished the proinflammatory cytokines at transcriptional and post-transcriptional level; meanwhile it preserved M2 macrophage related molecules expression and upregulated antiinflammatory cytokine IL-10. Furthermore, EETs down-regulated NF-?B activation and up-regulated peroxisome proliferator-activated receptors (PPAR?/?) and heme oxygenase 1 (HO-1) expression, which play important roles in regulating M1 and M2 polarization. In addition, LPS treatment in mice induced cardiac dysfunction, heart tissue damage and infiltration of M1 macrophages, as well as the increase of inflammatory cytokines in serum and heart tissue, but rAAV-mediated CYP2J2 expression increased EETs generation in heart and significantly attenuated the LPS-induced harmful effects, which mechanisms were similar as the in vitro study. Taken together, the results indicate that CYP2J2/EETs regulates macrophage polarization by attenuating NF-?B signaling pathway via PPAR?/? and HO-1 activation and its potential use in treatment of inflammatory diseases. PMID:25626689

  8. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    PubMed Central

    2010-01-01

    Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1?, TNF-? and the chemokines MIP-1? and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite-specific manner, however it augments the production of other proinflammatory cytokines. Our findings highlight the complexity of inflammatory cytokine signalling regulation in the context of the macrophage and Leishmania interaction and confirm the utility of the Leishmania/macrophage infection model as an experimental system for further studies of inflammatory regulation. Such studies may advance the development of therapies against inflammatory disease. PMID:20205812

  9. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    PubMed

    Spulber, Stefan; Edoff, Karin; Hong, Lie; Morisawa, Shinkatsu; Shirahata, Sanetaka; Ceccatelli, Sandra

    2012-01-01

    Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW) improves the outcome of lipopolysaccharide (LPS)-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p.) or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- ? and upregulation of IL-10). In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line), suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen. PMID:22860058

  10. Molecular Hydrogen Reduces LPS-Induced Neuroinflammation and Promotes Recovery from Sickness Behaviour in Mice

    PubMed Central

    Spulber, Stefan; Edoff, Karin; Hong, Lie; Morisawa, Shinkatsu; Shirahata, Sanetaka; Ceccatelli, Sandra

    2012-01-01

    Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW) improves the outcome of lipopolysaccharide (LPS)-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p.) or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- ? and upregulation of IL-10). In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line), suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen. PMID:22860058

  11. Blockade of Interplay between IL-17A and Endoplasmic Reticulum Stress Attenuates LPS-Induced Lung Injury

    PubMed Central

    Kim, So Ri; Kim, Hee Jung; Kim, Dong Im; Lee, Kyung Bae; Park, Hae Jin; Jeong, Jae Seok; Cho, Seong Ho; Lee, Yong Chul

    2015-01-01

    IL-17 is a cytokine mainly from IL-17-producing T cells, which are one of subsets of CD4+ T cells and play a role in adaptive immune system. Recent studies have demonstrated that IL-17A can act rapidly as an innate immune responder during infection before the onset of its classic adaptive immune response. This role of IL-17A in innate immune response is implicated in lipopolysaccharide (LPS)-induced lung inflammation. Very recently, we have reported that endoplasmic reticulum (ER) stress is involved in LPS-induced lung inflammation in vivo and in vitro. This study aimed to elucidate the role of IL-17A in LPS-induced lung injury, focusing on the link with ER stress. We treated a murine model of LPS-induced lung injury with IL-17A neutralizing antibody and 4-phenylbutyrate (4-PBA), a representative ER stress inhibitor. In addition, we evaluated the effects of IL-17A on ER stress in LPS-stimulated bronchial epithelial cells. Our results showed that inhibition of IL-17A decreased LPS-induced pulmonary neutrophilia, vascular leakage, nuclear translocation of nuclear factor-κB (NF-κB), infiltration of dendritic cells, increased expression of Toll-like receptor 4 (TLR4), activation of NLRP3 inflammasome, and increased ER stress in the lung. 4-PBA or TAK-242, a TLR4 inhibitor attenuated expression of IL-17A thereby improving LPS-induced lung inflammation. Intriguingly, we observed that stimulation with LPS increased expression of IL-17A in airway epithelial cells and co-stimulation with IL-17A further increased ER stress and NF-κB activation. This study indicates that the interrelationship between IL-17A and ER stress plays an important role in LPS-induced injury showing a positive feedback in airway epithelial cells and suggests that targeting their interaction can be a potential therapeutic approach to overcome one of severe refractory pulmonary disorders. PMID:26516372

  12. Effects of olanzapine on LPS-induced inflammation in rat primary glia cells.

    PubMed

    Faour-Nmarne, Caroline; Azab, Abed N

    2016-01-01

    Olanzapine (OLZ) is an atypical antipsychotic drug that also has mood-stabilizing effects. The mechanism of action of OLZ is not fully understood. Accumulating data suggest that inflammation plays a role in the pathophysiology of mental disorders and that psychotropic drugs exhibit some anti-inflammatory properties. This study was undertaken to examine the effects of OLZ on LPS-induced inflammation in rat primary glia cells. Glia cells were extracted from newborn rat brains. OLZ (1 or 50?M) was added to culture medium at 6 or 72?h before addition of LPS for another 18?h, and levels of IL-10, prostaglandin (PG) E2, NO and TNF-?, and expression of cyclo-oxygensase (COX)-2 and inducible NO synthase (iNOS) were determined. Treatment with 50?M OLZ (but not 1?M) significantly decreased LPS-induced secretion of IL-10, PGE2 and TNF-?. In contrast, 50?M OLZ significantly increased NO levels. OLZ did not alter the expression of COX-2 or iNOS in LPS-treated cells. These results suggest that OLZ differently affects the secretion of inflammatory mediators. Most of the significant effects of OLZ were obtained when 50?M was used, which is a high and probably therapeutically irrelevant concentration. Therefore, under the conditions used in the present study OLZ seemed to lack a potent anti-inflammatory effect. PMID:26542836

  13. BHBA Suppresses LPS-Induced Inflammation in BV-2 Cells by Inhibiting NF-?B Activation

    PubMed Central

    Fu, Shou-Peng; Li, Su-Nan; Wang, Jian-Fa; Li, Yang; Xie, Shan-Shan; Xue, Wen-Jing; Liu, Hong-Mei; Huang, Bing-Xu; Lv, Qing-Kang; Lei, Lian-Cheng; Liu, Guo-Wen; Wang, Wei; Liu, Ju-Xiong

    2014-01-01

    ?-Hydroxybutyric acid (BHBA) has neuroprotective effects, but the underlying molecular mechanisms are unclear. Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The current study investigates the potential mechanisms whereby BHBA affects the expression of potentially proinflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). The results showed that BHBA significantly reduced LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-?, IL-1?, and IL-6. Blocking of GPR109A by PTX resulted in a loss of this anti-inflammatory effect in BV-2 cells. Western blot analysis showed that BHBA reduced LPS-induced degradation of I?B-? and translocation of NF-?B, while no effect was observed on MAPKs phosphorylation. All results imply that BHBA significantly reduces levels of proinflammatory enzymes and proinflammatory cytokines by inhibition of the NF-?B signaling pathway but not MAPKs pathways, and GPR109A is essential to this function. Overall, these data suggest that BHBA has a potential as neuroprotective drug candidate in neurodegenerative diseases. PMID:24803746

  14. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  15. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  16. miR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury.

    PubMed

    Xiao, Ji; Tang, Jing; Chen, Quan; Tang, Dan; Liu, Meimei; Luo, Min; Wang, Yan; Wang, Jiazheng; Zhao, Zhenyu; Tang, Chaoke; Wang, Deming; Mo, Zhongcheng

    2015-10-15

    p38 MAPK (mitogen-activated protein kinase) is a critical regulator in lung inflammation. It can be inactivated by DUSP1 (dual-specificity phosphatase 1) which was identified as a putative target of miR-429. miR-429 mimics directly targeted to the 3'-UTR of the gene encoding DUSP1 may result in the translational attenuation of DUSP1. Moreover, the phosphorylation of p38 MAPK was prolonged after miR-429 mimic treatment. Additionally, miR-429 expression was sensitive to LPS (lipopolysaccharide) stimulation and the miR-429 mimics increased the production of pro-inflammatory cytokines. However, anti-miR-429 reduced the LPS-induced production of pro-inflammatory cytokines. These results provide direct evidence that miR-429 is involved in the LPS-induced inflammatory response. In parallel with miR-429, miR-200b and miR-200c, but not miR-200a or miR-141, shared similar effects. Invivo, LPS induced the expression of miR-429, miR-200b and miR-200c in lung. At the same time, inhibiting these miRNAs by anti-miRNAs attenuated the LPS-induced pulmonary inflammatory response and injury. These findings reveal that miR-429 possesses pro-inflammatory activities and may be a potential therapy target for LPS-induced lung injury. PMID:26431850

  17. Calorie restriction attenuates lipopolysaccharide (LPS)-induced microglial activation in discrete regions of the hypothalamus and the subfornical organ.

    PubMed

    Radler, Morgan E; Hale, Matthew W; Kent, Stephen

    2014-05-01

    Calorie restriction (CR) has been shown to increase longevity and elicit many health promoting benefits including delaying immunosenescence and attenuating neurodegeneration in animal models of Alzheimer's disease and Parkinson's disease. CR also suppresses microglial activation following cortical injury and aging. We previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and shifts hypothalamic signaling pathways to an anti-inflammatory bias; however, the effects of CR on LPS-induced microglial activation remain largely unexplored. The current study investigated regional changes in LPS-induced microglial activation in mice exposed to 50% CR for 28days. Immunohistochemistry was conducted to examine changes in ionized calcium-binding adapter molecule-1 (Iba1), a protein constitutively expressed by microglia, in a total of 27 brain regions involved in immunity, stress, and/or thermoregulation. Exposure to CR attenuated LPS-induced fever, and LPS-induced microglial activation in a subset of regions: the arcuate nucleus (ARC) and ventromedial nucleus of the hypothalamus (VMH) and the subfornical organ (SFO). Microglial activation in the ARC and VMH was positively correlated with body temperature. These data suggest that CR exerts effects on regionally specific populations of microglia; particularly, in appetite-sensing regions of the hypothalamus, and/or regions lacking a complete blood brain barrier, possibly through altered pro- and anti-inflammatory signaling in these regions. PMID:24291211

  18. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-?B pathways.

    PubMed

    Oseguera-Toledo, Miguel E; de Mejia, Elvira Gonzalez; Dia, Vermont P; Amaya-Llano, Silvia L

    2011-08-01

    The objectives of this study were to evaluate the antioxidant capacity of protein hydrolysates of the common bean (Phaseolus vulgaris L.) varieties Negro 8025 and Pinto Durango and determine their effect on the markers of inflammation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Cell viability was determined and the percentage of viable cells was calculated and concentrations that allowed >80% cell viability were used to determine the markers of inflammation. Alcalase hydrolysates and pepsin-pancreatin hydrolysates showed the highest antioxidant capacity after 80 and 120min of hydrolysis, respectively. Alcalase hydrolysates of the common bean Pinto Durango at 120min inhibited inflammation, with IC50 values of 34.90.3, 13.90.3, 5.00.1 and 3.70.2?M, while var. Negro needed 43.60.2, 61.30.3, 14.20.3 and 48.20.1?M for the inhibition of cyclooxygenase-2 expression, prostaglandin E2 production, inducible nitric oxide synthase expression and nitric oxide production, respectively. Also, hydrolysates significantly inhibited the transactivation of NF-?B and the nuclear translocation of the NF-?B p65 subunit. In conclusion, hydrolysates from the common bean can be used to combat inflammatory and oxidative-associated diseases. PMID:25214111

  19. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic ?2A-adrenergic receptor.

    PubMed

    Wang, Yiyang; Yu, Xiaohui; Wang, Faqiang; Wang, Yuan; Wang, Yanping; Li, Hongmei; Lv, Xiuxiu; Lu, Daxiang; Wang, Huadong

    2013-01-01

    Myocardial depression is an important contributor to mortality in sepsis. We have recently demonstrated that ?2-adrenoceptor (AR) antagonist, yohimbine (YHB), attenuates lipopolysaccharide (LPS)-induced myocardial depression. However, the mechanisms for this action of YHB are unclear. Here, we demonstrated that YHB decreased nitric oxide (NO) and tumor necrosis factor-alpha (TNF-?) levels in the myocardium and plasma, attenuated cardiac and hepatic dysfunction, but not kidney and lung injuries in endotoxemic mice. Immunohistochemical analysis revealed that cardiac ?2A-AR was mostly located in sympathetic nerve presynaptic membrane; YHB decreased cardiac ?2A-AR level and promoted cardiac norepinephrine (NE) release in endotoxemic mice. Reserpine that exhausted cardiac NE without markedly decreasing plasma NE level abrogated the inhibitory effects of YHB on cardiac TNF-? and iNOS expression as well as cardiac dysfunction, but not the suppressive effects of YHB on plasma TNF-? and NO elevation in LPS-challenged mice. Furthermore, both reserpine and YHB significantly inhibited LPS-induced myocardial apoptosis. ?1-AR, ?2-AR, but not ?1-AR antagonists reversed the inhibitory effect of YHB on LPS-stimulated myocardial apoptosis. However, ?1-AR antagonist attenuated LPS-caused cardiomyocyte apoptosis, partly abolished the protective effect of YHB on the left ventricular ejection fraction in endotoxemic mice. Altogether, these findings indicate that YHB attenuates LPS-induced cardiac dysfunction, at least in part, through blocking presynaptic ?2A-AR and thus increasing cardiac NE release. YHB-elevated cardiac NE improves cardiac function via suppressing cardiac iNOS and TNF-? expression, activating ?1-AR and inhibiting cardiomyocyte apoptosis through ?1- and ?2-AR in endotoxemic mice. However, cardiac ?1-AR activation promotes LPS-induced cardiomyocyte apoptosis. PMID:23691077

  20. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats.

    PubMed

    Borges, Beatriz de Carvalho; Rorato, Rodrigo C; Uchoa, Ernane Torres; Marangon, Paula B; Elias, Carol F; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2015-01-01

    Leptin resistance is induced by the feedback inhibitors tyrosine phosphatase-1B (PTP1B) and decreased Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) signaling. To investigate the participation of PTP1B and SHP-2 in LPS-induced leptin resistance, we injected repeated (6-LPS) intraperitoneal LPS doses (100 ?g/kg ip) for comparison with a single (1-LPS) treatment and evaluated the expression of SHP-2, PTP1B, p-ERK1/2, and p-STAT3 in the hypothalamus of male Wistar rats. The single LPS treatment increased the expression of p-STAT3 and PTP1B but not SHP-2. The repeated LPS treatment reduced SHP-2, increased PTP1B, and did not change p-STAT3. We observed that the PTP1B expression induced by the endotoxin was highly colocalized with leptin receptor cells in the hypothalamus of LepRb-IRES-Cre-tdTomato reporter mice. The single, but not the repeated, LPS treatment decreased the food intake and body weight. Leptin had no stimulatory effect on the hypophagia, body weight loss, or pSTAT3 expression in 6-LPS rats, indicating leptin unresponsiveness. Notably, the PTP1B inhibitor (3.0 nmol/rat in 5 ?l icv) restored the LPS-induced hypophagia in 6-LPS rats and restored the ability of leptin to reduce food intake and body weight as well as to phosphorylate STAT3 in the arcuate, paraventricular, and ventromedial nuclei of the hypothalamus. The present data suggest that an increased PTP1B expression in the hypothalamus underlies the development of leptin resistance during repeated exposure to LPS. Our findings contribute to understanding the mechanisms involved in leptin resistance during low-grade inflammation as seen in obesity. PMID:25352433

  1. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43C) and divided into three groups. They were then allowed to recover in a room at 24C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1? instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNF? increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  2. 6-7-Dimethoxy-4-methylcoumarin suppresses pro-inflammatory mediator expression through inactivation of the NF-κB and MAPK pathways in LPS-induced RAW 264.7 cells

    PubMed Central

    Kim, Kil-Nam; Yang, Hye-Won; Ko, Seok-Chun; Ko, Yeong-Jong; Kim, Eun-A; Roh, Seong Woon; Ko, Eun-Yi; Ahn, Ginnae; Heo, Soo-Jin; Jeon, You-Jin; Yoon, Weon-Jong; Hyun, Chang-Gu; Kim, Daekyung

    2014-01-01

    In this study, we investigated the ability of 6,7-dimethoxy-4-methylcoumarin (DMC) to inhibit lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators in mouse macrophage (RAW 264.7) cells, and the molecular mechanism through which this inhibition occurred. Our results indicated that DMC downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 cells. Furthermore, DMC suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. To elucidate the mechanism underlying the anti-inflammatory activity of DMC, we assessed its effects on the mitogen-activated protein kinase (MAPK) pathway and the activity and expression of nuclear transcription factor kappa-B (NF-κB). The experiments demonstrated that DMC inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. In addition, it attenuated LPS-induced NF-κB activation via the inhibition of IκB-α phosphorylation. Taken together, these data suggest that DMC exerts its anti-inflammatory effects in RAW 264.7 cells through the inhibition of LPS-stimulated NF-κB and MAPK signaling, thereby downregulating the expression of pro-inflammatory mediators. PMID:26417302

  3. ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata with their inhibitory activities on LPS-induced NO production in RAW 264.7 macrophages.

    PubMed

    Liu, Zhi-Guo; Li, Zhan-Lin; Li, Da-Hong; Li, Ning; Bai, Jiao; Zhao, Feng; Meng, Da-Li; Hua, Hui-Ming

    2016-01-01

    Ten ent-abietane diterpenoids (1-10), including four new (1-4) and six known ones (5-10) were isolated from the roots of Euphorbia ebracteolata. Their structures were determined by 1D, 2D NMR, and HRESIMS. Compounds 2, 4, and 7 exhibited significant inhibitory activities on lipopolysaccharide (LPS)-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 0.69, 1.97, and 0.88?M, respectively. A primary structure-activity relationship was also discussed. PMID:26615888

  4. NF-?B regulation of endothelial cell function during LPS-induced toxemia and cancer

    PubMed Central

    Kisseleva, Tatiana; Song, Li; Vorontchikhina, Marina; Feirt, Nikki; Kitajewski, Jan; Schindler, Christian

    2006-01-01

    The transcription factor NF-?B is an important regulator of homeostatic growth and inflammation. Although gene-targeting studies have revealed important roles for NF-?B, they have been complicated by component redundancy and lethal phenotypes. To examine the role of NF-?B in endothelial tissues, Tie2 promoter/enhancerI?B?S32A/S36A transgenic mice were generated. These mice grew normally but exhibited enhanced sensitivity to LPS-induced toxemia, notable for an increase in vascular permeability and apoptosis. Moreover, B16-BL6 tumors grew significantly more aggressively in transgenic mice, underscoring a new role for NF-?B in the homeostatic response to cancer. Tumor vasculature in transgenic mice was extensive and disorganized. This correlated with a marked loss in tight junction formation and suggests that NF-?B plays an important role in the maintenance of vascular integrity and response to stress. PMID:17053836

  5. Three diketopiperazines from marine-derived bacteria inhibit LPS-induced endothelial inflammatory responses.

    PubMed

    Kang, Hyejin; Ku, Sae-Kwang; Choi, Hyukjae; Bae, Jong-Sup

    2016-04-15

    Diketopiperazine is a natural products found from bacteria, fungi, marine sponges, gorgonian and red algae. They are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, three (1-3) of diketopiperazines were isolated from two strains of marine-derived bacteria. The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses in vitro and in vivo. From 1μM, 1-3 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer and in mice in a dose-dependent manner suggesting that 1-3 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. PMID:26988307

  6. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization

    PubMed Central

    Sender, Vicky; Stamme, Cordula

    2014-01-01

    Lung infection by Gram-negative bacteria is a major cause of morbidity and mortality in humans. Lipopolysaccharide (LPS), located in the outer membrane of the Gram-negative bacterial cell wall, is a highly potent stimulus of immune and structural cells via the TLR4/MD2 complex whose function is sequentially regulated by defined subsets of adaptor proteins. Regulatory mechanisms of lung-specific defense pathways point at the crucial role of resident alveolar macrophages, alveolar epithelial cells, the TLR4 receptor pathway, and lung surfactant in shaping the innate immune response to Gram-negative bacteria and LPS. During the past decade intracellular spatiotemporal localization of TLR4 emerged as a key feature of TLR4 function. Here, we briefly review lung cell type- and compartment-specific mechanisms of LPS-induced TLR4 regulation with a focus on primary resident hematopoietic and structural cells as well as modifying microenvironmental factors involved. PMID:25136402

  7. Persistence of LPS-Induced Lung Inflammation in Surfactant Protein-CDeficient Mice

    PubMed Central

    Maxfield, Melissa D.; Ruetschilling, Teah L.; Akinbi, Henry T.; Baatz, John E.; Kitzmiller, Joseph A.; Page, Kristen; Xu, Yan; Bao, Erik L.; Korfhagen, Thomas R.

    2013-01-01

    Pulmonary surfactant protein-C (SP-C) genetargeted mice (Sftpc?/?) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc+/+ and Sftpc?/? mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc?/? mice at 3 and 5 days after the final dose. Compared with Sftpc+/+mice, inflammatory injury persisted in the lungs of Sftpc?/? mice 30 days after the final LPS challenge. Sftpc?/? mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc?/? type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc+/+ cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-Ccontaining clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation. PMID:23795648

  8. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice.

    PubMed

    Glasser, Stephan W; Maxfield, Melissa D; Ruetschilling, Teah L; Akinbi, Henry T; Baatz, John E; Kitzmiller, Joseph A; Page, Kristen; Xu, Yan; Bao, Erik L; Korfhagen, Thomas R

    2013-11-01

    Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation. PMID:23795648

  9. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXR? in human umbilical vein endothelial cells.

    PubMed

    Li, Yong; Zhang, Xiao-Shi; Yu, Jin-Long

    2016-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effect of acanthoic acid on vascular inflammation has not been investigated. The aim of this study was to investigate the anti-inflammatory effects of acanthoic acid on lipopolysaccharide (LPS)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs). The production of cytokines TNF-? and IL-8 was detected by ELISA. The expression of VCAM-1, ICAM-1, E-selectin, NF-?B and LXR? were detected by Western blotting. Adhesion of monocytes to HUVECs was detected by monocytic cell adhesion assay. The results showed that acanthoic acid dose-dependently inhibited LPS-induced TNF-? and IL-8 production. Acanthoic acid also inhibited TNF-?-induced IL-8 and IL-6 production. LPS-induced endothelial cell adhesion molecules, VCAM-1 and ICAM-1 were also inhibited by acanthoic acid. Acanthoic acid inhibited LPS-induced NF-?B activation. Furthermore, acanthoic acid dose-dependently up-regulated the expression of LXR?. In addition, our results showed that the anti-inflammatory effect of acanthoic acid was attenuated by transfection with LXR? siRNA. In conclusion, the anti-inflammatory effect of acanthoic acid is due to its ability to activate LXR?. Acanthoic acid may be a therapeutic agent for inflammatory cardiovascular disease. PMID:26803523

  10. CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages

    PubMed Central

    Wang, Shuai; Sun, Zewei; Zhao, Wenting; Wang, Zhen; Wu, Mingjie; Pan, Yanyun; Yan, Hui; Zhu, Jianhua

    2016-01-01

    CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation. PMID:26997758

  11. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.011??g/mL) and lutein and zeaxanthin (110??M) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-?B levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-?B and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-?B signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye. PMID:26609426

  12. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-?B and endothelial inflammatory response

    PubMed Central

    Li, Yu; Liu, Hongtao; Xu, Qing-Song; Du, Yu-Guang; Xu, Jian

    2013-01-01

    It is known that chitosan oligosaccharides (COS) suppress LPS-induced vascular endothelial inflammatory response by mechanism involving NF-?B blockade. It remains unknown how COS inhibit NF-?B. We provided evidence both in cultured endothelial cells and mouse model supporting a new mechanism. Regardless of the endothelial cell types, the LPS-induced NF-?B-dependent inflammatory gene expression was suppressed by COS, which was associated with reduced NF-?B nucleus translocation. LPS enhanced O-GlcNAc modification of NF-?B/p65 and activated NF-?B pathway, which could be prevented either by siRNA knockdown of O-GlcNAc transferase (OGT) or pretreatment with COS. Inhibition of either mitogen-activated protein kinase or superoxide generation abolishes LPS-induced NF-?B O-GlcNAcylation. Consistently, aortic tissues from LPS-treated mice presented enhanced NF-?B/p65 O-GlcNAcylation in association with upregulated gene expression of inflammatory cytokines in vascular tissues; however, pre-administration of COS prevented these responses. In conclusion, COS decreased OGT-dependent O-GlcNAcylation of NF-?B and thereby attenuated LPS-induced vascular endothelial inflammatory response. PMID:24274545

  13. Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-?B signaling pathway.

    PubMed

    Xu, Daliang; Chen, Maosheng; Ren, Xianzhi; Ren, Xianguo; Wu, Yonggui

    2014-09-01

    Acute kidney injury (AKI) is an abrupt loss of kidney function. Severe AKI requires renal replacement therapy and has high mortality. Leonurine (LEO), an alkaloid isolated from Leonurus cardiaca, has shown biological effects such as antioxidant, anticoagulant, and anti-apoptosis. We have examined the effect of LEO on lipopolysaccharide (LPS)-induced AKI in mice and further studied the mechanism involved. Blood urea nitrogen (BUN), creatinine and cytokine were estimated in the serum or tissue. Kidney tissue specimens were used for biochemical estimations of lipid peroxides (LPO), reduced glutathione (GSH), and reactive oxygen species (ROS). The effects of LEO on LPS-induced renal tissue damage were detected by hematoxylin and eosin (HE) stain and electron microscopy. The production of cytokines in the tissue and blood was measured by ELISA. Protein phosphorylation and protein subcellular localization were tested by Western blot. LEO is protected against LPS-induced AKI, improved animal survival and maintained the redox balance. The beneficial effects of LEO were accompanied by the down-regulation of TNF-?, IL-1, IL-6, IL-8, KIM-1 expression and by the inhibition of the phosphorylation of I?B? and p65 translocalization. These results suggest that LEO may suppress NF-?B activation and inhibit pro-inflammatory cytokine production via decreasing cellular ROS production. Accumulating studies have demonstrated that LEO reduces kidney injury and protects renal functions from LPS-induced kidney injury. PMID:24924288

  14. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-?B inactivation.

    PubMed

    Yang, Seung Bo; Lee, Sang Min; Park, Ji-Hae; Lee, Tae Hoon; Baek, Nam-In; Park, Hi-Joon; Lee, Hyejung; Kim, Jiyoung

    2014-01-01

    Cynanchum wilfordii is one of most widely used medicinal plants in Oriental medicine for the treatment of various conditions. In the present study, we isolated cynandione A (CA) from an extract of Cynanchum wilfordii roots (CWE) and investigated the effects of CA on the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced BV-2 microglial cells. CWE and CA significantly decreased LPS-induced nitric oxide production and the expression of iNOS in a concentration-dependent manner, while they (CWE up to 500 g/mL and CA up to 80 M) did not exhibit cytotoxic activity. Results from reverse transcription-polymerase chain reaction (RT-PCR) analysis and enzyme-linked immunosorbent assay (ELISA) showed that CA significantly attenuated the expression of tumor necrosis factor-alpha (TNF-?), interleukin-6 (IL-6), and IL-1? in LPS-stimulated BV-2 cells. Furthermore, CA inhibited the phosphorylation of inhibitor kappa B-alpha (I?B-?) and translocation of nuclear factor-kappa B (NF-?B) to the BV-2 cell nucleus, indicating that CWE and CA may have effective anti-inflammatory activities via NF-?B inactivation in stimulated microglial cells. PMID:25087960

  15. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract. PMID:24117072

  16. Organ-specific and differential requirement of TYK2 and IFNAR1 for LPS-induced iNOS expression in vivo.

    PubMed

    Painz, Ronald; Walter, Ingrid; Kolbe, Thomas; Rigler, Doris; Vogl, Claus; Steinborn, Ralf; Rlicke, Thomas; Helmreich, Magdalena; Karaghiosoff, Marina; Mller, Mathias

    2007-01-01

    Lipopolysaccharide (LPS) is an integral structural component of the outer membrane of Gram-negative bacteria and the principal active agent in the pathogenesis of endotoxin shock. LPS is a potent inducer of a variety of cytokines and inflammatory agents that lead to a profound alteration of gene expression patterns in cells and organs. The gene coding for the inducible nitric oxide synthase (iNOS) is highly responsive to LPS in vitro and in vivo and accounts for the production of nitric oxide (NO). The Janus kinase (JAK) family member tyrosine kinase 2 (TYK2) is a constituent of the interferon (IFN) type I response pathway and an important effector in the progression of endotoxin shock. Macrophages deficient for IFNalphabeta receptor chain 1 (IFNAR1) or TYK2 were shown to have an impaired LPS-induced iNOS expression. Here we determined the contribution of IFNAR1 and TYK2 to iNOS expression in vivo in a lethal LPS challenge model. TYK2 and IFNAR1 were found to be crucial for the LPS-induced iNOS mRNA and protein expression in spleen and lung that could be attributed to the Mac3-positive population. In liver LPS-induced iNOS mRNA expression was only partially impaired in TYK2-deficient mice and was unimpaired in IFNAR1-deficient mice, indicating organ specificity. TYK2(-/-) and IFNAR1(-/-) mice also differ with respect to IFNgamma production upon LPS challenge in that TYK2(-/-) mice show a defect while IFNAR1(-/-) mice do not. Our data suggest that iNOS is induced through IFNAR1 and TYK2 in Mac3-positive cells which are the main source of iNOS in spleen and lung. The LPS-induced iNOS expression in liver is independent of IFNAR1 and partially dependent on TYK2, which is most likely due to the lack of IFNgamma production in the absence of TYK2. PMID:18086385

  17. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells.

    PubMed

    Suzuki, Kaori; Murakami, Taisuke; Kuwahara-Arai, Kyoko; Tamura, Hiroshi; Hiramatsu, Keiichi; Nagaoka, Isao

    2011-03-01

    Sepsis is a systemic disease resulting from harmful host response to bacterial infections. During the exacerbation of severe sepsis or septic shock, apoptosis of endothelial cells is induced in susceptible organs such as the lung and liver and triggers microcirculatory disorder and organ dysfunction. LPS, an outer membrane component of Gram-negative bacteria, is one of the major virulence factors for the pathogenesis. We previously reported that LL-37, a human anti-microbial cathelicidin peptide, potently neutralizes the biological activity of LPS and protects mice from lethal endotoxin shock. However, the effect of LL-37 on the LPS-induced endothelial cell apoptosis remains to be clarified. In this study, to further elucidate the action of LL-37 on severe sepsis/endotoxin shock, we investigated the effects of LL-37 on the LPS-induced endothelial cell apoptosis in vitro and in vivo using lung-derived normal human microvascular blood vessel endothelial cells (HMVEC-LBls) and D-galactosamine hydrochloride (D-GalN)-sensitized murine endotoxin shock model. LL-37 suppressed the LPS-induced apoptosis of HMVEC-LBls. In addition, LL-37 inhibited the binding of LPS possibly to the LPS receptors (CD14 and toll-like receptor 4) expressed on the cells. Thus, LL-37 can suppress the LPS-induced apoptosis of HMVEC-LBls via the inhibition of LPS binding to the cells. Furthermore, LL-37 drastically suppressed the apoptosis of hepatic endothelial cells as well as hepatocytes in the liver of murine endotoxin shock model. Together, these observations suggest that LL-37 could suppress the LPS-induced apoptosis of endothelial cells, thereby attenuating lethal sepsis/endotoxin shock. PMID:21393634

  18. Antiinflammatory Activities of Crebanine by Inhibition of NF-?B and AP-1 Activation through Suppressing MAPKs and Akt Signaling in LPS-Induced RAW264.7 Macrophages.

    PubMed

    Intayoung, Pichanan; Limtrakul, Pornngarm; Yodkeeree, Supachai

    2016-01-01

    Crebanine, an aporphine alkaloid, displays various biological activities such as anticancer and antimicrobial activities. In this study, we further investigated the suppressive effect of crebanine on lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and the molecular mechanisms underlying these activities in RAW264.7 macrophages. Crebanine inhibited the production of proinflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor-alpha in LPS-induced RAW264.7 cells. Moreover, crebanine suppressed LPS-induced inducible nitric oxide (iNO) and prostaglandin E2 and reduced the expression of iNO synthase and cyclooxygenase-2 in RAW264.7 cells. Crebanine suppressed LPS-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling. In addition, the specific inhibitor of MAPKs and Akt reduced the expression of IL-6 and NO production in LPS-induced macrophages. Furthermore, crebanine inhibited LPS-induced nuclear factor kappa B (NF-?B) activation by reducing the phosphorylation of p65 at Ser536 but not the p65 translocation to the nucleus and inhibitory factor kappa B alpha degradation. Crebanine also suppressed phosphorylation and nucleus translocation of activator protein-1 (AP-1). These observations suggest that the antiinflammatory properties of crebanine may stem from the inhibition of proinflammatory mediators via suppression of the NF-?B, AP-1, MAPKs, and Akt signaling pathways. PMID:26499331

  19. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation.

    PubMed

    Yang, Zhiyong; Li, Li; Chen, Lijuan; Yuan, Weiwei; Dong, Liming; Zhang, Yushun; Wu, Heshui; Wang, Chunyou

    2014-12-15

    The high-mobility group box protein 1 (HMGB1) is increasingly recognized as an important inflammatory mediator. In some cases, the release of HMGB1 is regulated by poly(ADP-ribose) polymerase-1 (PARP-1), but the mechanism is still unclear. In this study, we report that PARP-1 activation contributes to LPS-induced PARylation of HMGB1, but the PARylation of HMGB1 is insufficient to direct its migration from the nucleus to the cytoplasm; PARP-1 regulates the translocation of HMGB1 to the cytoplasm through upregulating the acetylation of HMGB1. In mouse bone marrow-derived macrophages, genetic and pharmacological inhibition of PARP-1 suppressed LPS-induced translocation and release of HMGB1. Increased PARylation was accompanied with the nucleus-to-cytoplasm translocation and release of HMGB1 upon LPS exposure, but PARylated HMGB1 was located at the nucleus, unlike acetylated HMGB1 localized at the cytoplasm in an import assay. PARP inhibitor and PARP-1 depletion decreased the activity ratio of histone acetyltransferases to histone deacetylases that elevated after LPS stimulation and impaired LPS-induced acetylation of HMGB1. In addition, PARylation of HMGB1 facilitates its acetylation in an in vitro enzymatic reaction. Furthermore, reactive oxygen species scavenger (N-acetyl-l-cysteine) and the ERK inhibitor (FR180204) impaired LPS-induced PARP activation and HMGB1 release. Our findings suggest that PARP-1 regulates LPS-induced acetylation of HMGB1 in two ways: PARylating HMGB1 to facilitate the latter acetylation and increasing the activity ratio of histone acetyltransferases to histone deacetylases. These studies revealed a new mechanism of PARP-1 in regulating the inflammatory response to endotoxin. PMID:25392528

  20. Dexamethasone Suppressed LPS-Induced Matrix Metalloproteinase and Its Effect on Endothelial Glycocalyx Shedding.

    PubMed

    Cui, Na; Wang, Hao; Long, Yun; Su, Longxiang; Liu, Dawei

    2015-01-01

    The aim of this study is to determine the mechanism of sepsis-induced vascular hyperpermeability and the beneficial effect of glucocorticoid in protecting vascular endothelium. Male Sprague-Dawley rats were given either a bolus intraperitoneal injection of a nonlethal dose of LPS (Escherichia coli 055:B5, 10?mg/kg, Sigma) or vehicle (pyrogen-free water). Animals of treatment groups were also given either dexamethasone (4?mg/kg, 30?min prior to LPS injection) or the matrix metalloproteinases (MMPs) inhibitor doxycycline (4?mg/kg, 30?min after LPS injection). Both activities and protein levels of MMP-2 (p < 0.001) and MMP-9 (p < 0.001) were significantly upregulated in aortic homogenates from LPS-treated rats, associated with decreased ZO-1 (p < 0.001) and syndecan-1 (p = 0.011) protein contents. Both dexamethasone and doxycycline could significantly inhibit MMPs activity and reserve the expressions of ZO-1 and syndecan-1. The inhibition of MMPs by dexamethasone was significantly lower than that by doxycycline, while the rescue of syndecan-1 expression from LPS-induced endotoxemic rat thoracic aorta was significantly higher in the dexamethasone-treated compared to the doxycycline-treated (p = 0.03). In conclusion, activation of MMPs plays important role in regulating ZO-1 and syndecan-1 protein levels in LPS mediated endothelial perturbation. Both dexamethasone and doxycycline inhibit activation of MMPs that may contribute to the rescue of ZO-1 and syndecan-1 expression. PMID:26199464

  1. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2015-11-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  2. Dexamethasone Suppressed LPS-Induced Matrix Metalloproteinase and Its Effect on Endothelial Glycocalyx Shedding

    PubMed Central

    Cui, Na; Wang, Hao; Long, Yun; Su, Longxiang; Liu, Dawei

    2015-01-01

    The aim of this study is to determine the mechanism of sepsis-induced vascular hyperpermeability and the beneficial effect of glucocorticoid in protecting vascular endothelium. Male Sprague-Dawley rats were given either a bolus intraperitoneal injection of a nonlethal dose of LPS (Escherichia coli 055:B5, 10?mg/kg, Sigma) or vehicle (pyrogen-free water). Animals of treatment groups were also given either dexamethasone (4?mg/kg, 30?min prior to LPS injection) or the matrix metalloproteinases (MMPs) inhibitor doxycycline (4?mg/kg, 30?min after LPS injection). Both activities and protein levels of MMP-2 (p < 0.001) and MMP-9 (p < 0.001) were significantly upregulated in aortic homogenates from LPS-treated rats, associated with decreased ZO-1 (p < 0.001) and syndecan-1 (p = 0.011) protein contents. Both dexamethasone and doxycycline could significantly inhibit MMPs activity and reserve the expressions of ZO-1 and syndecan-1. The inhibition of MMPs by dexamethasone was significantly lower than that by doxycycline, while the rescue of syndecan-1 expression from LPS-induced endotoxemic rat thoracic aorta was significantly higher in the dexamethasone-treated compared to the doxycycline-treated (p = 0.03). In conclusion, activation of MMPs plays important role in regulating ZO-1 and syndecan-1 protein levels in LPS mediated endothelial perturbation. Both dexamethasone and doxycycline inhibit activation of MMPs that may contribute to the rescue of ZO-1 and syndecan-1 expression. PMID:26199464

  3. Fingolimod affects gene expression profile associated with LPS-induced memory impairment.

    PubMed

    Omidbakhsh, Rana; Rajabli, Banafshe; Nasoohi, Sanaz; Khallaghi, Behzad; Mohamed, Zahurin; Naidu, Murali; Ahmadiani, Abolhassan; Dargahi, Leila

    2014-11-01

    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation. PMID:25098558

  4. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNF? by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  5. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge

    PubMed Central

    Qin, Xiangyang; Jiang, Xinru; Jiang, Xin; Wang, Yuli; Miao, Zhulei; He, Weigang; Yang, Guizhen; Lv, Zhenhui; Yu, Yizhi; Zheng, Yuejuan

    2016-01-01

    Sepsis is the principal cause of fatality in the intensive care units worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Micheliolide (MCL), a sesquiterpene lactone, was reported to inhibit dextran sodium sulphate (DSS)-induced inflammatory intestinal disease, colitis-associated cancer and rheumatic arthritis. Nevertheless, the role of MCL in microbial infection and sepsis is unclear. We demonstrated that MCL decreased lipopolysaccharide (LPS, the main cell wall component of Gram-negative bacteria)-mediated production of cytokines (IL-6, TNF-α, MCP-1, etc) in Raw264.7 cells, primary macrophages, dendritic cells and human monocytes. MCL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB and PI3K/Akt/p70S6K pathways. It has negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. In the acute peritonitis mouse model, MCL reduced the secretion of IL-6, TNF-α, IL-1β, MCP-1, IFN-β and IL-10 in sera, and ameliorated lung and liver damage. MCL down-regulated the high mortality rate caused by lethal LPS challenge. Collectively, our data illustrated that MCL enabled maintenance of immune equilibrium may represent a potentially new anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock. PMID:26984741

  6. GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways

    PubMed Central

    Li, Nan; Liu, Bo-Wen; Ren, Wen-Zhi; Liu, Ju-Xiong; Li, Su-Nan; Fu, Shou-Peng; Zeng, Ya-Long; Xu, Shi-Yao; Yan, Xuan; Gao, Ying-Jie; Liu, Dian-Feng; Wang, Wei

    2016-01-01

    The pathogenesis of Parkinson’s disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1β, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65. PMID:26861286

  7. Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse.

    PubMed

    Niu, Xiaofeng; Zhang, Hailin; Li, Weifeng; Mu, Qingli; Yao, Huan; Wang, Yu

    2015-04-01

    Cavidine is an isoquinoline alkaloid which is isolated from Corydalis impatiens. In traditional Tibetan herb, C. impatiens has been widely used for treatment of skin injuries, hepatitis, cholecystitis, and scabies. The present study aimed to evaluate its anti-inflammatory effect and investigate the mechanisms underlying this anti-inflammatory action. We used different inflammation model animals and lipopolysaccharide (LPS)-induced murine peritoneal macrophages to examine the anti-inflammatory function of cavidine. Results indicated pretreatment with cavidine (i.p.) decreased xylene-induced ear edema, formaldehyde-induced paw edema, leukocyte number, and the level of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-alpha (TNF-?) in acetic acid-induced peritonitis in mice. The data also demonstrated that cavidine significantly inhibited LPS-induced TNF-?, interleukin-6 (IL-6), and NO production in peritoneal macrophages. Moreover, cavidine regulated the expression of cyclooxygenase-2 (COX-2) instead of cyclooxygenase-1 (COX-1) at protein levels. These results suggested that cavidine is a selective COX-2 inhibitor which possesses an anti-inflammatory activity. PMID:25373916

  8. Eukaryotic elongation factor 2 controls TNF-? translation in LPS-induced hepatitis

    PubMed Central

    Gonzlez-Tern, Brbara; Corts, Jos R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ?ngeles; Rodrguez, Mara E.; Gonzlez-Rodrguez, ?gueda; Valverde, ?ngela; Martn, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-?. TNF-? is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-? expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38?/? MAPK proteins is required for the elongation of nascent TNF-? protein in macrophages. The MKK3/6-p38?/? pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-? elongation. These results identify a new signaling pathway that regulates TNF-? production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-? production is involved. PMID:23202732

  9. Eukaryotic elongation factor 2 controls TNF-? translation in LPS-induced hepatitis.

    PubMed

    Gonzlez-Tern, Brbara; Corts, Jos R; Manieri, Elisa; Matesanz, Nuria; Verdugo, ngeles; Rodrguez, Mara E; Gonzlez-Rodrguez, gueda; Valverde, ngela M; Valverde, ngela; Martn, Pilar; Davis, Roger J; Sabio, Guadalupe

    2013-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-?. TNF-? is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-? expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38?/? MAPK proteins is required for the elongation of nascent TNF-? protein in macrophages. The MKK3/6-p38?/? pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-? elongation. These results identify a new signaling pathway that regulates TNF-? production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-? production is involved. PMID:23202732

  10. Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson's disease model.

    PubMed

    Li, Yan-Hua; He, Qing; Yu, Jie-zhong; Liu, Chun-yun; Feng, Ling; Chai, Zhi; Wang, Qing; Zhang, Hong-zhen; Zhang, Guang-Xian; Xiao, Bao-guo; Ma, Cun-gen

    2015-10-01

    Parkinson's disease (PD) is a chronic neurodegenerative disease of the central nervous system (CNS), characterized by a loss of dopaminergic neurons, which is thought to be caused by both genetic and environmental factors. Recent findings suggest that neuroinflammation may be a pathogenic factor in the onset and progression of sporadic PD. Here we explore the potential therapeutic effect of lipoic acid (LA) on a lipolysaccharide (LPS)-induced inflammatory PD model. Our results for the first time showed that LA administration improved motor dysfunction, protected dopaminergic neurons loss, and decreased ?-synuclein accumulation in the substantia nigra (SN) area of brain. Further, LA inhibited the activation of nuclear factor-?B (NF-?B) and expression of pro-inflammatory molecules in M1 microglia. Taken together, these results suggest that LA may exert a profound neuroprotective effect and is thus a promising anti-neuroinflammatory and anti-oxidative agent for halting the progression of PD. Interventions aimed at either blocking microglia-derived inflammatory mediators or modulating the polarization of microglia may be potentially useful therapies that are worth further investigation. PMID:26084861

  11. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages.

    PubMed

    Cheng, Anwei; Yan, Haiqing; Han, Caijing; Wang, Wenliang; Tian, Yaoqi; Chen, Xiangyan

    2014-08-01

    Polyphenols including 3-glucoside/arabinoside/galactoside-based polymers of delphinidins, petunidins, peonidins, malvidins and cyanidins are one type of biological macromolecules, which are extraordinarily rich in blueberries. Anti-inflammatory activity of blueberry polyphenols (BPPs) was investigated by using lipopolysaccharide (LPS) induced RAW264.7 macrophages. The results showed that BPPs suppressed the gene expression of IL-1? (interleukin-1?), IL-6 and IL-12p35. The inhibition effect on IL-1? and IL-6 mRNA was most obvious at the concentration of 10-200?g/mL BPPs. But the inhibition effect on IL-12p35 mRNA was increased with the increasing concentration of BPPs. When fixed at 100?g/mL BPPs, the most significant inhibition on IL-1?, IL-6 and IL-12p35 mRNA expression was detected at 12-48h. In conclusion, BPPs exhibit anti-inflammation activity by mediating and modulating the balances in pro-inflammatory cytokines of IL-1?, IL-6, and IL-12. PMID:24905959

  12. Protective effect of sanguinarine on LPS-induced endotoxic shock in mice and its effect on LPS-induced COX-2 expression and COX-2 associated PGE2 release from peritoneal macrophages.

    PubMed

    Li, Weifeng; Li, Huani; Mu, Qingli; Zhang, Hailin; Yao, Huan; Li, Jiaoshe; Niu, Xiaofeng

    2014-10-01

    The quaternary ammonium salt, sanguinarine (SG) was reported to possess widespread anti-microbial and anti-inflammatory effects in experimental animals and it has been used to treat many inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory effect and the possible mechanisms underlying the anti-inflammatory activity of SG. Experimentally-induced mice ES model and LPS-induced peritoneal macrophages were used to examine the anti-inflammatory function of SG. In this study, SG pretreatment significantly increased the survival rate of mice from 25% to 58%, 75% and 91% respectively. The production of PGE2 in BALF, the lung MPO activity and the (W/D) weight ratios were also markedly reduced. In addition, immunohistochemical analysis showed that the expression of COX-2 was significantly suppressed in vivo. We also evaluated the effect of SG in LPS-induced peritoneal macrophages to clarify the possible mechanism. The data indicated that SG greatly inhibited the production of PGE2, and it also decreased COX-2 protein expression, without affecting COX-1 expression, in LPS-stimulated peritoneal macrophages. Taken all together, SG potently protected against LPS-induced ES, and our results suggest that the possible mechanism may be relevant to COX-2 regulation. PMID:25063710

  13. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone

    PubMed Central

    Aisemberg, Julieta; Vercelli, Claudia A.; Bariani, Mara V.; Billi, Silvia C.; Wolfson, Manuel L.; Franchi, Ana M.

    2013-01-01

    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders. PMID:23409146

  14. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  15. Hypertonic Saline (NaCl 7.5%) Reduces LPS-Induced Acute Lung Injury in Rats.

    PubMed

    Petroni, Ricardo Costa; Biselli, Paolo Jose Cesare; de Lima, Thais Martins; Theobaldo, Mariana Cardillo; Caldini, Elia Tamaso; Pimentel, Rosângela Nascimento; Barbeiro, Hermes Vieira; Kubo, Suely Ariga; Velasco, Irineu Tadeu; Soriano, Francisco Garcia

    2015-12-01

    Acute respiratory distress syndrome (ARDS) is the most severe lung inflammatory manifestation and has no effective therapy nowadays. Sepsis is one of the main illnesses among ARDS causes. The use of fluid resuscitation is an important treatment for sepsis, but positive fluid balance may induce pulmonary injury. As an alternative, fluid resuscitation with hypertonic saline ((HS) NaCl 7.5%) has been described as a promising therapeutical agent in sepsis-induced ARDS by the diminished amount of fluid necessary. Thus, we evaluated the effect of hypertonic saline in the treatment of LPS-induced ARDS. We found that hypertonic saline (NaCl 7.5%) treatment in rat model of LPS-induced ARDS avoided pulmonary function worsening and inhibited type I collagen deposition. In addition, hypertonic saline prevented pulmonary injury by decreasing metalloproteinase 9 (MMP-9) activity in tissue. Focal adhesion kinase (FAK) activation was reduced in HS group as well as neutrophil infiltration, NOS2 expression and NO content. Our study shows that fluid resuscitation with hypertonic saline decreases the progression of LPS-induced ARDS due to inhibition of pulmonary remodeling that is observed when regular saline is used. PMID:25962375

  16. Enhanced expression of single immunoglobulin IL-1 receptor-related molecule ameliorates LPS-induced acute lung injury in mice.

    PubMed

    Chen, XuXin; Zhao, YunFeng; Wu, XueLing; Qian, GuiSheng

    2011-02-01

    Single Ig IL-1 receptor-related molecule (SIGIRR) is one of the members of the Toll-like receptor (TLR)-IL-1 receptor superfamily. Previous studies demonstrated that SIGIRR can function as a negative regulator of IL-1 and LPS signaling. The purpose of this study was to evaluate the effect of enhanced expression of SIGIRR on LPS-induced acute lung injury. We constructed a recombinant adenoviral vector expressing murine SIGIRR (Ad.mSIGIRR) and a control adenoviral vector containing no transgene (Ad.V). A total of 4 10? plaque-forming units of Ad.mSIGIRR or Ad.V adenoviral vector were administered intranasally to BALB/c mice. Forty-eight hours later, all the mice were administered a single dose of LPS via i.p. injection to induce lung injury. Lungs and blood were harvested at several time points. The expression of SIGIRR in lung, the histological changes in the lung, the levels of TNF-? in serum and lung, the concentration of nitric monoxide (NO) in lung, and the activity of myeloperoxidase and nuclear transcription factor ?B in the lung were examined. A second cohort of mice was followed for survival for 7 days. Administration of Ad.mSIGIRR increased the expression of SIGIRR in lung tissue, as determined by reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry. Administration of Ad.mSIGIRR significantly suppressed the inflammatory reaction to LPS, attenuated the lung pathological changes, and improved the survival of mice, relative to a control adenovirus. These findings suggest that modulating the expression level of SIGIRR may be a promising potential treatment for acute lung injury. PMID:20661180

  17. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. PMID:25791017

  18. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  19. Dexamethasone prevents LPS-induced microglial activation and astroglial impairment in an experimental bacterial meningitis co-culture model.

    PubMed

    Hinkerohe, Daniel; Smikalla, Dirk; Schoebel, Andreas; Haghikia, Aiden; Zoidl, Georg; Haase, Claus G; Schlegel, Uwe; Faustmann, Pedro M

    2010-05-01

    We analyzed the effect of dexamethasone on gram-negative bacteria derived lipopolysaccharide (LPS) induced inflammation in astroglial/microglial co-cultures. At the cellular level the microglial phenotype converted to an activated type after LPS incubation. Furthermore, LPS compromised functional astroglial properties like membrane resting potential, intracellular coupling and connexin 43 (Cx43) expression. This change in Cx43 expression was not due to a downregulation of Cx43 mRNA expression. Morphological and functional changes were accompanied by a time-dependent release of inflammation related cytokines. Co-incubation of dexamethasone with LPS prevented these LPS-induced changes within our glial co-culture model. The ability of dexamethasone to reconstitute astrocytic properties and to decrease microglial activation in vitro could be one possible explanation for the beneficial effects of dexamethasone in the treatment of acute bacterial meningitis in vivo. PMID:20230803

  20. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice.

    PubMed

    Medeiros, Iris U; Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Romo, Pedro R T; Gavioli, Elaine C; Calo, Girolamo

    2015-10-01

    Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior. PMID:26028163

  1. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  2. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation.

    PubMed

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP-/-) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP-/-, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NF?B) activation was enhanced in PLTP-/- BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NF?B activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP-/- BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  3. Suppression of Dendritic Cell-Derived IL-12 by Endogenous Glucocorticoids Is Protective in LPS-Induced Sepsis

    PubMed Central

    Mittelstadt, Paul R.; Castro, Ehydel; Ashwell, Jonathan D.

    2015-01-01

    Sepsis, an exaggerated systemic inflammatory response, remains a major medical challenge. Both hyperinflammation and immunosuppression are implicated as causes of morbidity and mortality. Dendritic cell (DC) loss has been observed in septic patients and in experimental sepsis models, but the role of DCs in sepsis, and the mechanisms and significance of DC loss, are poorly understood. Here, we report that mice with selective deletion of the glucocorticoid receptor (GR) in DCs (GRCD11c-cre) were highly susceptible to LPS-induced septic shock, evidenced by elevated inflammatory cytokine production, hypothermia, and mortality. Neutralizing anti-IL-12 antibodies prevented hypothermia and death, demonstrating that endogenous GC-mediated suppression of IL-12 is protective. In LPS-challenged GRCD11c-cre mice, CD8+ DCs were identified as the major source of prolonged IL-12 production, which correlated with elevations of NK cell-derived IFN-?. In addition, the loss of GR in CD11c+ cells rescued LPS-induced loss of CD8+ DCs but not other DC subsets. Unlike wild-type animals, exposure of GRCD11c-cre mice to low-dose LPS did not induce CD8+ DC loss or tolerance to subsequent challenge with high dose, but neutralization of IL-12 restored the ability of low-dose LPS to tolerize. Therefore, endogenous glucocorticoids blunt LPS-induced inflammation and promote tolerance by suppressing DC IL-12 production. PMID:26440998

  4. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation. PMID:26659076

  5. AUTOTAXIN DOWNREGULATES LPS INDUCED MICROGLIA ACTIVATION AND PRO-INFLAMMATORY CYTOKINES PRODUCTION

    PubMed Central

    Awada, Rana; Saulnier-Blache, Jean Sbastien; Grs, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G. Jean; dHellencourt, Christian Lefebvre

    2014-01-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A+) microglia were treated with LPS. Tumor necrosis factor ? (TNF?), interleukin (IL)-6 and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1 and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNF? and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1 and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. PMID:25053164

  6. Autotaxin downregulates LPS-induced microglia activation and pro-inflammatory cytokines production.

    PubMed

    Awada, Rana; Saulnier-Blache, Jean Sbastien; Grs, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G Jean; d'Hellencourt, Christian Lefebvre

    2014-12-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death, and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A?+) microglia were treated with LPS. Tumor necrosis factor ? (TNF?), interleukin (IL)-6, and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1, and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNF? and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1, and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. PMID:25053164

  7. LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice.

    PubMed

    Lee, Daniel C; Rizer, Justin; Selenica, Maj-Linda B; Reid, Patrick; Kraft, Clara; Johnson, Amelia; Blair, Laura; Gordon, Marcia N; Dickey, Chad A; Morgan, Dave

    2010-01-01

    Inflammation and microglial activation are associated with Alzheimer's disease (AD) pathology. Somewhat surprisingly, injection of a prototypical inflammatory agent, lipopolysaccharide (LPS) into brains of amyloid precursor protein (APP) transgenic mice clears some of the pre-existing amyloid deposits. It is less well understood how brain inflammation modulates tau pathology in the absence of A?. These studies examined the role of LPS-induced inflammation on tau pathology. We used transgenic rTg4510 mice, which express the P301L mutation (4R0N TauP301L) and initiate tau pathology between 3-5 months of age. First, we found an age-dependent increase in several markers of microglial activation as these rTg4510 mice aged and tau tangles accumulated. LPS injections into the frontal cortex and hippocampus induced significant activation of CD45 and arginase 1 in rTg4510 and non-transgenic mice. In addition, activation of YM1 by LPS was exaggerated in transgenic mice relative to non-transgenic animals. Expression of Ser199/202 and phospho-tau Ser396 was increased in rTg4510 mice that received LPS compared to vehicle injections. However, the numbers of silver-positive neurons, implying presence of more pre- and mature tangles, was not significantly affected by LPS administration. These data suggest that inflammatory stimuli can facilitate tau phosphorylation. Coupled with prior results demonstrating clearance of A? by similar LPS injections, these results suggest that brain inflammation may have opposing effects on amyloid and tau pathology, possibly explaining the failures (to date) of anti-inflammatory therapies in AD patients. PMID:20846376

  8. Oral phosphatidylcholine preserves the gastrointestinal mucosal barrier during LPS-induced inflammation.

    PubMed

    Dial, Elizabeth J; Zayat, Mayssa; Lopez-Storey, Michelle; Tran, Duy; Lichtenberger, Lenard

    2008-12-01

    The hydrophobic surface layer of the gastrointestinal (GI) tract, which has been attributed to the presence of phosphatidylcholine (PC) in the mucus gel, protects the mucosa of the GI tract and is disrupted by parenteral LPS treatment. We investigated the potential for repletion of this layer as a means to prevent LPS-induced GI injury. Rats were treated orally with PC 1 h before LPS (i.p.). Gastric and ileal tissues were assessed for changes in permeability 5 h later, and gastric fluid was analyzed for signs of GI-related LPS effects (bile acid reflux, increased volume, and pH) and gastric injury (bleeding). Serum TNF-alpha was assessed as a measure of a non-GI, LPS response. Radiolabeled PC was tracked through the GI tract to verify the extent of luminal exposure during the time of the study. Pretreatment with oral PC significantly blocked permeability increases in gastric and ileal tissue due to LPS. A portion of orally administered PC gained access to the entire GI tract in 1 h. Exogenous PC did not prevent the increase in serum TNF-alpha or gastric fluid volume or pH induced by LPS, nor did it prevent the duodenogastric reflux of bile acid. There was a tendency for PC to reduce gastric bleeding after LPS. Orally administered PC seems to act directly on the mucosa to prevent GI permeability disturbances due to LPS. Under the conditions studied, oral PC does not block systemic effects of LPS. However, enteral formulations containing PC may be useful adjuncts in the prevention of GI injury from endotoxemia. PMID:18496240

  9. The Fusarium toxin deoxynivalenol (DON) modulates the LPS induced acute phase reaction in pigs.

    PubMed

    Dänicke, Sven; Brosig, Bianca; Kersten, Susanne; Kluess, Jeannette; Kahlert, Stefan; Panther, Patricia; Diesing, Anne-Kathrin; Rothkötter, Hermann-Josef

    2013-07-01

    The systemic effects of the Fusarium toxin deoxynivalenol (DON) and of bacterial lipopolysaccharides (LPS) were studied in male castrated pigs (40.4 ± 3.7 kg) infused intravenously with either DON or LPS alone (100 μg DON/kg/h, 7.5 μg/LPS/kg/h), or together (100 μg DON plus 7.5 μg/LPS/kg/h). The Control group received a saline infusion (n=6/treatment, 24h observation period). An additional DON infusion did not exacerbate the clinical signs observed in LPS-infused pigs. For example, rectal temperature climaxed after 4h (40.4 ± 0.2°C) and 5h (40.1 ± 0.3°C), in the LPS and LPS+DON group, respectively. Saline and DON alone did not induce an acute phase reaction as indicated by unaltered plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) while LPS caused a significant rise of both cytokines. TNF-alpha plasma peak concentrations were significantly higher in the LPS compared to the DON+LPS group (94.3 ± 17.2 ng/mL vs. 79.2 ± 15.7 ng/mL) while IL-6 climaxed earlier in the latter group (3h p.i. vs. 2h p.i.). From the tested clinical-chemical plasma characteristics the total bilirubin concentration and the ASAT activity were strongly elevated by the LPS infusion and additionally increased and decreased by DON, respectively. In conclusion, the LPS-induced effects were only marginally modified by DON. PMID:23603058

  10. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model.

    PubMed

    Patel, Neeraj K; Khan, Mohd Shahid; Bhutani, Kamlesh K

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely ?-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-? and interleukin (IL)-1? production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 ?M while IC50 for LCD-F1 was found to be 15.56 to 31.71 ?g/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-? and interleukin (IL)-1? production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  11. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely ?-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-? and interleukin (IL)-1? production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 ?M while IC50 for LCD-F1 was found to be 15.56 to 31.71 ?g/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-? and interleukin (IL)-1? production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  12. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation.

    PubMed

    Sun, Zhengwu; Lan, Xiaoyan; Ahsan, Anil; Xi, Yalin; Liu, Shumin; Zhang, Zonghui; Chu, Peng; Song, Yushu; Piao, Fengyuan; Peng, Jinyong; Lin, Yuan; Han, Guozhu; Tang, Zeyao

    2016-03-01

    Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function. PMID:26708229

  13. A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury

    PubMed Central

    Qian, Feng; Deng, Jing; Cheng, Ni; Welch, Emily J; Zhang, Yongliang; Malik, Asrar B; Flavell, Richard A; Dong, Chen; Ye, Richard D

    2009-01-01

    There are at least 11 mitogen-activated protein kinase (MAPK) phosphatases (MKPs) and only 3 major groups of MAPKs, raising the question of whether these phosphatases have non-redundant functions in vivo. Using a modified mouse model of local Shwartzman reaction, we found that deletion of the MKP5 gene, but not the MKP1 gene, led to robust and accelerated vascular inflammatory responses to a single dose of LPS injection. Depletion of neutrophils significantly reduced the vascular injury in Mkp5−/− mice, whereas adoptive transfer of Mkp5−/− neutrophils replicated the LPS-induced skin lesions in wild-type recipients. Neutrophils isolated from Mkp5−/− mice exhibited augmented p38 MAPK activation and increased superoxide generation on activation. The p38 MAPK inhibitor, SB203580, significantly reduced p47phox phosphorylation and diminished superoxide production in neutrophils. p38 MAPK phosphorylated mouse p47phox, and deletion of the p47phox gene ablated the LPS-induced vascular injury in Mkp5−/− mice. Collectively, these results show an earlier unrecognized and non-redundant function of MKP5 in restraining p38 MAPK-mediated neutrophil oxidant production, thereby preventing LPS-induced vascular injury. PMID:19696743

  14. Agomelatine Protection in an LPS-Induced Psychosis-Relevant Behavior Model.

    PubMed

    Inanir, Sema; Copoglu, Umit Sertan; Kokacya, Hanifi; Dokuyucu, Recep; Erbas, Oytun; Inanir, Ahmet

    2015-01-01

    BACKGROUND The aim of this study was to investigate the effect of agomelatine in a psychosis-relevant behavior model. MATERIAL AND METHODS We used 18 adult male Wistar rats in this study. Twelve rats given LPS for endotoxemia were randomly divided into 2 groups (n=6). Group I was treated with 1 mL/kg 0.9% NaCl i.p. and Group II was treated with 40 mg/kg agomelatine. Six normal rats served as the control group and were not given LPS for endotoxemia. Cylindrical steel cages containing vertical and horizontal metal bars with top cover were used. Rats were put in these cages for the purpose of orientation for 10 min. Apomorphine was given to rats removed from cages, and then they were immediately put back in the cages for the purpose of observing stereotyped conduct. Brain HVA levels and plasma TNF-a levels were evaluated in tissue homogenates using ELISA. The proportion of malondialdehyde (MDA) was measured in samples taken from plasma for detection of lipid peroxidation similar to thiobarbituric acid reactive substances. RESULTS LPS induced-plasma TNF-α, brain TNF-α, and plasma MDA levels were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p<0.05). HVA levels and stereotype scores were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p <0.001). CONCLUSIONS Agomelatine reduced TNF-α, HVA, MDA levels, and the stereotype score in relevant models of psychosis. Our results suggest that the anti-inflammatory effect of agomelatine involved oxidant cleansing properties and that its effects on the metabolism of dopamine can play an important role in the model of psychosis. PMID:26647355

  15. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation.

    PubMed

    Konrad, F M; Knausberg, U; Hne, R; Ngamsri, K-C; Reutershan, J

    2016-01-01

    Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-? (TNF?), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability. PMID:25943274

  16. Agomelatine Protection in an LPS-Induced Psychosis-Relevant Behavior Model

    PubMed Central

    Inanir, Sema; Copoglu, Umit Sertan; Kokacya, Hanifi; Dokuyucu, Recep; Erbas, Oytun; Inanir, Ahmet

    2015-01-01

    Background The aim of this study was to investigate the effect of agomelatine in a psychosis-relevant behavior model. Material/Methods We used 18 adult male Wistar rats in this study. Twelve rats given LPS for endotoxemia were randomly divided into 2 groups (n=6). Group I was treated with 1 mL/kg 0.9% NaCl i.p. and Group II was treated with 40 mg/kg agomelatine. Six normal rats served as the control group and were not given LPS for endotoxemia. Cylindrical steel cages containing vertical and horizontal metal bars with top cover were used. Rats were put in these cages for the purpose of orientation for 10 min. Apomorphine was given to rats removed from cages, and then they were immediately put back in the cages for the purpose of observing stereotyped conduct. Brain HVA levels and plasma TNF-α levels were evaluated in tissue homogenates using ELISA. The proportion of malondialdehyde (MDA) was measured in samples taken from plasma for detection of lipid peroxidation similar to thiobarbituric acid reactive substances. Results LPS induced-plasma TNF-α, brain TNF-α, and plasma MDA levels were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p<0.05). HVA levels and stereotype scores were significantly lower in the LPS+agomelatine group compared to the LPS+saline group (p <0.001). Conclusions Agomelatine reduced TNF-α, HVA, MDA levels, and the stereotype score in relevant models of psychosis. Our results suggest that the anti-inflammatory effect of agomelatine involved oxidant cleansing properties and that its effects on the metabolism of dopamine can play an important role in the model of psychosis. PMID:26647355

  17. Apigenin-7-O-β-d-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-17

    Apigenin-7-O-β-d-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion. PMID:26750400

  18. Anthemis wiedemanniana essential oil prevents LPS-induced production of NO in RAW 264.7 macrophages and exerts antiproliferative and antibacterial activities invitro.

    PubMed

    Conforti, Filomena; Menichini, Federica; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Bruno, Maurizio; Rosselli, Sergio; Celik, Sezgin

    2012-01-01

    Anthemis wiedemanniana is known in folk medicine for the treatment of microbial infections, cancer and also urinary and pulmonary problems. In this study, the chemical composition of the essential oil from A. wiedemanniana was evaluated and its antibacterial activity was tested against 10 bacterial strains. The oil was also tested for its potentiality to inhibit nitric oxide production in RAW 264.7 macrophages and for its cytotoxicity against four human cancer cell lines. A. wiedemanniana oil, rich of oxygenated monoterpenes (25.4%), showed a good antibacterial activity against Gram-positive bacteria and a good activity against the two Gram-negative bacteria, Escherichia coli and Proteus vulgaris. Besides that, it exhibited a high inhibitory effect on the LPS-induced nitrite production and a strong cytotoxic activity, especially against amelanotic melanoma (C32) and large lung cell carcinoma (COR-L23) cell lines. PMID:22124231

  19. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases. PMID:26745712

  20. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  1. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP2-PLC☆

    PubMed Central

    Mateos, Melina V.; Kamerbeek, Constanza B.; Giusto, Norma M.; Salvador, Gabriela A.

    2016-01-01

    This article presents additional data regarding the study “The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium” [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  2. Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells

    PubMed Central

    2013-01-01

    Background Host cell autophagy is implicated in the control of intracellular pathogen. Escherichia coli (E.coli) is the most common organism caused single-germ enterobacterial peritonitis during peritoneal dialysis. In this study, we investigated autophagy of peritoneal mesothelial cells and its role in defense against E.coli. Results Autophagy in human peritoneal mesothelial cell line (HMrSV5) was induced by lipopolysaccharide (LPS) in a dose-dependent and time-dependent way, which was demonstrated by increased expression of Beclin-1 and light chain 3 (LC3)-II, the accumulation of punctate green fluorescent protein-LC3, and a higher number of monodansylcadaverine-labeled autophagic vacuoles. After incubation of HMrSV5 cells with E.coli following LPS stimulation, both the intracellular bactericidal activity and the co-localization of E.coli (K12-strain) with autophagosomes were enhanced. Conversely, blockade of autophagy with 3-methyladenine, wortmannin or Beclin-1 small-interfering RNA (siRNA) led to a significant reduction in autophagy-associated protein expression, attenuation of intracellular bactericidal activity, and reduced co-localization of E.coli with monodansylcadaverine-labeled autophagosomes. In addition, treatment of HMrSV5 cells with LPS caused a dose-dependent and time-dependent increase in Toll-like receptor 4 (TLR4) expression. Both knockdown of TLR4 with siRNA and pharmacological inhibition of TLR4 with Polymyxin B significantly decreased LPS-induced autophagy. Furthermore, TLR4 siRNA attenuated remarkably LPS-induced intracellular bactericidal activity. Conclusions Our findings demonstrated for the first time that LPS-induced autophagy in peritoneal mesothelial cells could enhance the intracellular bactericidal activity and the co-localization of E.coli with autophagosomes. The activation of TLR4 signaling was involved in this process. These results indicate that LPS-induced autophagy may be a cell-autonomous defense mechanism triggered in peritoneal mesothelial cells in response to E.coli infection. PMID:24219662

  3. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  4. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators.

    PubMed

    Patel, Neeraj K; Bhutani, Kamlesh K

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  5. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice.

    PubMed

    Kim, Min Jee; Yoo, Yung Choon; Kim, Hyun Jung; Shin, Suk Kyung; Sohn, Eun Jeong; Min, A Young; Sung, Nak Yun; Kim, Mee Ree

    2014-10-01

    In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 ?g/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-? (TNF-?), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-? mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 ?g/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-?B induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-? and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE. PMID:25238199

  6. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    PubMed

    Boisram-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(), containing long-chain triglycerides (LCT--soybean oil); Medialipid(), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid() compared to Intralipid(), SMOFlipid() and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation. PMID:25038627

  7. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells.

    PubMed

    Tu, Jue; Xu, Yinglei; Xu, Jianqin; Ling, Yun; Cai, Yueqin

    2016-05-01

    Chitosan nanoparticles (CNP), an extensively oral-administered drug carrier, was investigated for the anti-inflammatory effects on LPS-inflamed Caco-2 cells and the relate mechanisms. CNP could alleviate the decrease of transepithelial electrical resistance (TEER) induced by LPS in Caco-2 monolayer, and significantly inhibit LPS-induced production of TNF-α, MIF, IL-8 and MCP-1 in a dose-dependent manner. PCR array assay revealed that CNP down-regulated the mRNA expression levels of TLR4 in LPS-inflamed Caco-2 cells. CNP was further showed to reduce cytoplasmic IκB-α degradation and nuclear NF-κB p65 levels in LPS-inflamed Caco-2 cells. These results suggested that CNP suppressed LPS-induced inflammatory response by decreasing permeability of intestinal epithelial monolayer and secretion of pro-inflammatory cytokine in Caco-2 cells, which were partially mediated by NF-κB signaling pathway. PMID:26854884

  8. Apigenin-7-Glycoside Prevents LPS-Induced Acute Lung Injury via Downregulation of Oxidative Enzyme Expression and Protein Activation through Inhibition of MAPK Phosphorylation

    PubMed Central

    Li, Kun-Cheng; Ho, Yu-Ling; Hsieh, Wen-Tsong; Huang, Shyh-Shyun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2015-01-01

    Apigenin-7-glycoside (AP7Glu) with multiple biological activities is a flavonoid that is currently prescribed to treat inflammatory diseases such as upper respiratory infections. Recently, several studies have shown that its anti-inflammatory activities have been strongly linked to the inhibition of secretion of pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOs) and cyclooxygenase-2 (COX-2) induced through phosphorylation nuclear factor-?B (NF-?B) and mitogen-activated protein kinases (MAPK) pathways. Additionally, inflammation, which can decrease the activities of antioxidative enzymes (AOEs) is also observed in these studies. At the same time, flavonoids are reported to promote the activities of heme oxygenase-1 (HO-1) decreased by LPS. The purpose of this study was to assess these theories in a series of experiments on the suppressive effects of AP7Glu based on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and acute lung injury in mice in vivo. After six hours of lipopolysaccharide (LPS) stimulation, pulmonary pathological, myeloperoxidase (MPO) activity, total polymorphonuclear leukocytes (PMN) cells, cytokines in bronchoalveolar lavage fluid (BALF) and AOEs, are all affected and changed. Meanwhile, our data revealed that AP7Glu not only did significantly inhibit the LPS-enhanced inflammatory activity in lung, but also exhibited anti-inflammatory effect through the MAPK and inhibitor NF-?B (I?B) pathways. PMID:25590301

  9. Newly synthesized 'hidabeni' chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-?B, JNK, and p38, pathways in microglia.

    PubMed

    Hara, Hirokazu; Ikeda, Ryoko; Ninomiya, Masayuki; Kamiya, Tetsuro; Koketsu, Mamoru; Adachi, Tetsuo

    2014-01-01

    Chalcones are open-chain flavonoids that are biosynthesized in various plants. Some of them possess anti-inflammatory activity. We previously found that chalcone glycosides from Brassica rapa L. 'hidabeni' suppress lipopolysaccharide (LPS)-induced nitric oxide (NO) production in rat microglia highly aggressively proliferating immortalized (HAPI) cells. In this study, to explore chalcone derivatives with potent NO inhibitory activity, we synthesized ten compounds based on 'hidabeni' chalcone and examined their effects on LPS-triggered inducible NO synthase (iNOS) expression and NO production. Compounds C4 and C10 potently inhibited NO production (IC50: 4.19, 2.88?M, respectively). C4 and C10 suppressed LPS-induced iNOS expression via the inhibition of the signal transduction and activator of transcription 1 (STAT1), but not nuclear factor-kappa B (NF-?B), c-Jun N terminal kinase (JNK), and p38, pathways. C10, but not C4, inhibited activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. C4 and C10 also suppressed LPS-induced expression of interferon regulatory factor 1 (IRF-1), which is an important transcription factor involved in iNOS expression. Our findings indicate that these chalcone derivatives are candidate compounds for preventing microglia-mediated neuroinflammation. PMID:24882415

  10. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  11. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  12. A natural formulation (imoviral?) increases macrophage resistance to LPS-induced oxidative and inflammatory stress in vitro.

    PubMed

    Menghini, L; Leporini, L; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2014-01-01

    Imoviral? is a natural product formulation containing a mixture of uncaria, shiitake and ribes extracts. All ingredients are recognized as antioxidant, anti-inflammatory agent and immunomodulant. In order to evaluate the rational basis of extract mixture as immunomodulatory agent, we tested the effect of Imoviral? formulation on macrophage response to lipopolysaccharide (LPS)-induced stress. The effect was evaluated as variation of reactive oxygen species (ROS) and prostaglandin E2 (PGE2) production and as cytokine gene expression. The extract did not affect cell viability up to 250 ?g/ml. Treatment with extract (10-150 ?g/ml) reduced ROS and PGE2 production as well as IL-8 and TNF-? gene expression. A pre-treatment with extract blunted LPS-induced production of ROS and PGE2, markers of oxidative and inflammatory stress, as well as the gene expression of all cytokines tested, indicators, in vitro, of immune response activation. In conclusion, we demonstrated that Imoviral? formulation could be a useful tool to modulate the immune function, reducing the oxidative and inflammatory markers related to bacterial attack. Experimental data suggest that Imoviral? extract mixture could also represent a preventive pharmacological strategy to enhance cell resistance to bacterial infections. PMID:25620186

  13. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury.

    PubMed

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 ?M enhanced proliferation of BMSCs through both ?- and ?-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. PMID:24684532

  14. STAT4 knockout protects LPS-induced lung injury by increasing of MDSC and promoting of macrophage differentiation.

    PubMed

    Fu, Cuiping; Jiang, Liyan; Xu, Xiaobo; Zhu, Fen; Zhang, Shuqi; Wu, Xu; Liu, Zilong; Yang, Xiangdong; Li, Shanqun

    2016-03-01

    The disruption of signal transducer and activator of transcription 4 (STAT4) signal can inhibit the inflammation and protect organs from injury during severe bacterial infection. However, the mechanism of STAT4 signal in lung injury remains poor understood. Here we report that STAT4 deficiency decreased the lethality and protein leakage in STAT4(-/-) mice and protected lipopolysaccharid (LPS)-induced lung injury with ameliorated edema, inflammatory infiltration and hemorrhage. The expression of CD11b(+)Gr-1(+) myeloid derived suppressor cells (MDSCs) markedly increased in the circulation of STAT4(-/-) mice after LPS stimuli, accompanying with increased macrophages infiltration in inflamed lung tissue. In addition, the levels of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 decreased while anti-inflammatory cytokine (IL-10) increased in the bronchoalveolar lavage fluid of STAT4(-/-) mice. Thus, these results indicate that the accumulation of MDSCs and macrophages play a critical role in LPS-induced lung injury. Targeting MDSCs and macrophages polarization through a STAT4 dependent signaling pathway might help to reduce the inflammation and damage of lung tissue. PMID:26644077

  15. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  16. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice.

    PubMed

    Takaoka, Yuki; Goto, Shigeru; Nakano, Toshiaki; Tseng, Hui-Peng; Yang, Shih-Ming; Kawamoto, Seiji; Ono, Kazuhisa; Chen, Chao-Long

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an energy metabolism-related enzyme in the glycolytic pathway. Recently, it has been reported that GAPDH has other physiological functions, such as apoptosis, DNA repair and autophagy. Some in vitro studies have indicated immunological aspects of GAPDH function, although there is no definite study discussing the advantage of GAPDH as a therapeutic target. Here, we show that GAPDH has an anti-inflammatory function by using a lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury (ALI) mouse model, which is referred to as acute respiratory distress syndrome (ARDS) in humans. GAPDH pre-injected mice were protected from septic death, and their serum levels of proinflammatory cytokines were significantly suppressed. In lung tissue, LPS-induced acute injury and neutrophil accumulation were strongly inhibited by GAPDH pre-injection. Pulmonary, proinflammatory cytokine gene expression and serum chemokine expression in GAPDH pre-injected mice were also reduced. These data suggest the therapeutic potential of GAPDH for sepsis-related ALI/ARDS. PMID:24902773

  17. Indole-3-carbinol inhibits LPS-induced inflammatory response by blocking TRIF-dependent signaling pathway in macrophages.

    PubMed

    Jiang, Jun; Kang, Tae Bong; Shim, Do Wan; Oh, Na Hyun; Kim, Tack Joong; Lee, Kwang Ho

    2013-07-01

    Indole-3-carbinol (I3C), a natural hydrolysis product of glucobrassicin, is a member of the Brassica family of vegetables and is known to have various anti-cancer activities. In the present study, we assessed in vitro and in vivo anti-inflammatory effects of I3C and its molecular mechanisms. I3C attenuated the production of pro-inflammatory mediators such as NO, IL-6, and IL-1? in LPS-induced Raw264.7 cells and THP-1 cells through attenuation of the TRIF-dependent signaling pathway. Furthermore, I3C suppressed the infiltration of immune cells into the lung and pro-inflammatory cytokine production such as IL-6, TNF-? in broncho-alveolar lavage fluid (BALF) in the LPS-induced acute lung injury mouse model. I3C also suppressed IL-1? secretion in nigericin treated in vivo model. I3C has potent anti-inflammatory effects through regulating TRIF-dependent signaling pathways, suggesting that I3C may provide a valuable therapeutic strategy in treating various inflammatory diseases. PMID:23597448

  18. The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice.

    PubMed

    Xu, Xiaohan; Liu, Ning; Zhang, Yu-Xin; Cao, Jinjin; Wu, Donglin; Peng, Qisheng; Wang, Hong-Bing; Sun, Wan-Chun

    2016-01-01

    Acute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies. We have reported that HJB-1, a 17-hydroxy-jolkinolide B derivative, exhibited strong anti-inflammatory effects in vitro. In this study, we investigated its impacts on LPS-induced ARDS mice. We found that HJB-1 significantly alleviated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNF-α, IL-1β and IL-6 in BALF. In addition, HJB-1 markedly suppressed LPS-induced IκB-α degradation, nuclear accumulation of NF-κB p65 subunit and MAPK phosphorylation. These results suggested that HJB-1 improved LPS-induced ARDS by suppressing LPS-induced NF-κB and MAPK activation. PMID:26760995

  19. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells

    PubMed Central

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor ? (TNF-?) and interleukin- (IL-) 1?. Moreover, WGP prevented nuclear translocation of nuclear factor-?B (NF?B) p65 subunit by reducing inhibitory ?B-? (I?B?) and NF?B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF?B and p38 MAPK pathway. PMID:24260615

  20. In vivo Angiotensin II AT1 receptor blockade selectively inhibits LPS-induced innate immune response and ACTH release in rat pituitary gland

    PubMed Central

    Sánchez-Lemus, Enrique; Benicky, Julius; Pavel, Jaroslav; Saavedra, Juan M.

    2009-01-01

    Systemic lipopolysaccharide (LPS) administration induces an innate immune response and stimulates the hypothalamic-pituitary-adrenal axis. We studied Angiotensin II AT1 receptor participation in the LPS effects with focus on the pituitary gland. LPS (50 μg/kg, i.p.) enhanced, 3 hours after administration, gene expression of pituitary CD14 and that of Angiotensin II AT1A receptors in pituitary and hypothalamic paraventricular nucleus (PVN); stimulated ACTH and corticosterone release; decreased pituitary CRF1 receptor mRNA and increased all plasma and pituitary pro-inflammatory factors studied. The AT1 receptor blocker (ARB) candesartan (1 mg/kg/day, s.c. daily for 3 days before LPS) blocked pituitary and PVN AT1 receptors, inhibited LPS-induced ACTH but not corticosterone secretion and decreased LPS-induced release of TNF-α, IL-1β and IL-6 to the circulation. The ARB reduced LPS-induced pituitary gene expression of IL-6, LIF, iNOS, COX-2 and IκB-α; and prevented LPS-induced increase of nNOS/eNOS activity. The ARB did not affect LPS-induced TNF-α and IL-1β gene expression, IL-6 or IL-1βprotein content or LPS-induced decrease of CRF1 receptors. When administered alone, the ARB increased basal plasma corticosterone levels and basal PGE2 mRNA in pituitary. Our results demonstrate that the pituitary gland is a target for systemically administered LPS. AT1 receptor activity is necessary for the complete pituitary response to LPS and is limited to specific pro-inflammatory pathways. There is a complementary and complex influence of the PVN and circulating cytokines on the initial pituitary response to LPS. Our findings support the proposal that ARBs may be considered for the treatment of inflammatory conditions. PMID:19427376

  1. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    PubMed Central

    Malek, Natalia; Popiolek-Barczyk, Katarzyna; Mika, Joanna; Przewlocka, Barbara; Starowicz, Katarzyna

    2015-01-01

    Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur. PMID:26090232

  2. Intra-Amniotic LPS Induced Region-Specific Changes in Presynaptic Bouton Densities in the Ovine Fetal Brain

    PubMed Central

    Strackx, Eveline; Jellema, Reint K.; Rieke, Rebecca; Gussenhoven, Ruth; Vles, Johan S. H.; Kramer, Boris W.; Gavilanes, Antonio W. D.

    2015-01-01

    Rationale. Chorioamnionitis has been associated with increased risk for fetal brain damage. Although, it is now accepted that synaptic dysfunction might be responsible for functional deficits, synaptic densities/numbers after a fetal inflammatory challenge have not been studied in different regions yet. Therefore, we tested in this study the hypothesis that LPS-induced chorioamnionitis caused profound changes in synaptic densities in different regions of the fetal sheep brain. Material and Methods. Chorioamnionitis was induced by a 10 mg intra-amniotic LPS injection at two different exposure intervals. The fetal brain was studied at 125 days of gestation (term = 150 days) either 2 (LPS2D group) or 14 days (LPS14D group) after LPS or saline injection (control group). Synaptophysin immunohistochemistry was used to quantify the presynaptic density in layers 2-3 and 5-6 of the motor cortex, somatosensory cortex, entorhinal cortex, and piriforme cortex, in the nucleus caudatus and putamen and in CA1/2, CA3, and dentate gyrus of the hippocampus. Results. There was a significant reduction in presynaptic bouton densities in layers 2-3 and 5-6 of the motor cortex and in layers 2-3 of the entorhinal and the somatosensory cortex, in the nucleus caudate and putamen and the CA1/2 and CA3 of the hippocampus in the LPS2D compared to control animals. Only in the motor cortex and putamen, the presynaptic density was significantly decreased in the LPS14 D compared to the control group. No changes were found in the dentate gyrus of the hippocampus and the piriforme cortex. Conclusion. We demonstrated that LPS-induced chorioamnionitis caused a decreased density in presynaptic boutons in different areas in the fetal brain. These synaptic changes seemed to be region-specific, with some regions being more affected than others, and seemed to be transient in some regions. PMID:26417592

  3. LPS-INDUCED CCL2 EXPRESSION AND MACROPHAGE INFLUX INTO THE MURINE CENTRAL NERVOUS SYSTEM IS POLYAMINE-DEPENDENT

    PubMed Central

    Puntambekar, Shweta S.; Davis, Deirdre S.; Hawel, Leo; Crane, Janelle; Byus, Craig V.; Carson, Monica J.

    2011-01-01

    Increased polyamine production is observed in a variety of chronic neuroinflammatory disorders, but in vitro and in vivo studies yield conflicting data on the immunomodulatory consequences of their production. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in endogenous polyamine production. To identify the role of polyamine production in CNS-intrinsic inflammatory responses, we defined CNS sites of ODC expression and the consequences of inhibiting ODC in response to intracerebral injection of LPS+/? IFN?. In situ hybridization analysis revealed that both neurons and non-neuronal cells rapidly respond to LPS+/? IFN? by increasing ODC expression. Inhibiting ODC by co-injecting DFMO decreased LPS-induced CCL2 expression and macrophage influx into the CNS, without altering LPS-induced microglial or macrophage activation. Conversely, intracerebral injection of polyamines was sufficient to trigger macrophage influx into the CNS of wild-type but not CCL2KO mice, demonstrating the dependence of macrophage influx on CNS expression of CCL2. Consistent with these data, addition of putrescine and spermine to mixed glial cultures dramatically increased CCL2 expression and to a much lesser extent, TNF expression. Addition of all three polyamines to mixed glial cultures also decreased the numbers and percentages of oligodendrocytes present. However, in vivo, inhibiting the basal levels of polyamine production was sufficient to induce expression of apolipoprotein D, a marker of oxidative stress, within white matter tracts. Considered together, our data indicate that: (1) CNS-resident cells including neurons play active roles in recruiting pro-inflammatory TREM1+ macrophages into the CNS via polyamine-dependent induction of CCL2 expression and (2) modulating polyamine production in vivo may be a difficult strategy to limit inflammation and promote repair due to the dual homeostatic and pro-inflammatory roles played by polyamines. PMID:21237263

  4. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1.

    PubMed

    Birukova, Anna A; Meng, Fanyong; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Quilliam, Lawrence A; Birukov, Konstantin G

    2015-05-01

    Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyclin administration even after 15 h of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NF?B signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a(-/-) mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NF?B inflammatory cascades, altogether leading to accelerated lung recovery. PMID:25545047

  5. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  6. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  7. LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels

    PubMed Central

    Qin, Lan-hui; Huang, Wen; Mo, Xue-an; Chen, Yan-lan; Wu, Xiang-hong

    2015-01-01

    Disrupted blood-brain barrier (BBB) integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS-) induced dysregulation of tight junction (TJ) proteins. Human cerebral microvascular endothelial cells (hCMEC/D3) were exposed to LPS, SB203580 (p38MAPK inhibitor), or SP600125 (JNK inhibitor), and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO-) 1) were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR), and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA). LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22?g/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor) and SB-3CT (a specific MMP-2 inhibitor) partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK. PMID:26290681

  8. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss.

    PubMed

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; So, Hong-Seob; Oh, Jaemin

    2016-02-01

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine-threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine(727). Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. PMID:26792726

  9. Esculin Inhibits the Inflammation of LPS-Induced Acute Lung Injury in Mice Via Regulation of TLR/NF-?B Pathways.

    PubMed

    Tianzhu, Zhang; Shumin, Wang

    2015-08-01

    In this study, we investigated anti-inflammatory effects of esculin (ESC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS, and ESC (20 and 40mg/kg) was given orally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. ESC pretreatment decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, pretreatment with ESC inhibited inflammatory cells and proinflammatory cytokines including tumor necrosis factor-? (TNF-?), interleukin-1?, and interleukin-6 in BALF. Furthermore, we demonstrated that ESC inhibited the Toll-like receptor-2 (TLR2), Toll-like receptor-4 (TLR4), myeloid differentiation primary response gene-88 (MyD88), and nuclear factor-?B (NF-?B) p65 in LPS-induced ALI. The results indicated that the ESC had a protective effect on LPS-induced ALI in mice. PMID:25676436

  10. Acute hypothalamo-pituitary-adrenal axis response to LPS-induced endotoxemia: expression pattern of kinin type B1 and B2 receptors.

    PubMed

    Qadri, Fatimunnisa; Rimmele, Florian; Mallis, Lisa; Huser, Walter; Dendorfer, Andreas; Jhren, Olaf; Dominiak, Peter; Leeb-Lundberg, L M Fredrik; Bader, Michael

    2016-01-01

    Bradykinin (BK) and des-Arg9-BK are pro-inflammatory mediators acting via B2 (B2R) and B1 (B1R) receptors, respectively. We investigated the role of B2R and B1R in lipopolysaccharide (LPS)-induced hypothalamo-pituitary-adrenal (HPA) axis activation in SD rats. LPS given intraperitoneally (ip) up-regulated B1R mRNA in the hypothalamus, both B1R and B2R were up-regulated in pituitary and adrenal glands. Receptor localization was performed using immunofluorescence staining. B1R was localized in the endothelial cells, nucleus supraopticus (SON), adenohypophysis and adrenal cortex. B2R was localized nucleus paraventricularis (PVN) and SON, pituitary and adrenal medulla. Blockade of B1R prior to LPS further increased ACTH release and blockade of B1R 1 h after LPS decreased its release. In addition, we evaluated if blockade of central kinin receptors influence the LPS-induced stimulation of hypothalamic neurons. Blockade of both B1R and B2R reduced the LPS-induced c-Fos immunoreactivity in the hypothalamus. Our data demonstrate that a single injection of LPS induced a differential expression pattern of kinin B1R and B2R in the HPA axis. The tissue specific cellular localization of these receptors indicates that they may play a crucial role in the maintenance of body homeostasis during endotoxemia. PMID:26468906

  11. Soluble ?-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests.

    PubMed

    Pardo-Ruiz, Zenia; Menndez-Sardias, Dalia E; Pacios-Michelena, Anabel; Gabilondo-Ramrez, Tatiana; Montero-Alejo, Vivian; Perdomo-Morales, Rolando

    2016-01-01

    In the present study, we aimed to determine the influence of ?-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that ?-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1?, IL-6 and TNF-?, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same ?-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, ?-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, ?-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while ?-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT. PMID:26428698

  12. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-?B inhibitor DTCM-glutarimide.

    PubMed

    Koide, Naoki; Kaneda, Ayumi; Yokochi, Takashi; Umezawa, Kazuo

    2015-03-01

    We have isolated 9-methylstreptimidone from microorganism as a new NF-?B inhibitor. Later, we designed 3-[(dodecylthiocarbonyl) methyl]-glutarimide (DTCM-glutarimide) as an analog of this compound, which shows anti-inflammatory activity in vivo. In the present research, we found that DTCM-glutarimide inhibited receptor activator of nuclear factor-?B ligand (RANKL)-induced osteoclast differentiation of mouse bone marrow-derived macrophages and RANKL- or lipopolysaccharide (LPS)-induced osteoclast differentiation of RAW 264.7 cells without any toxicity. It also inhibited the RANKL-induced NFATc1 expression. Upstream signaling involving phosphorylation of Akt and GSK-3? was induced by RANKL, of which the signaling was inhibited by DTCM-glutarimide. Then DTCM-glutarimide was confirmed to inhibit RANKL-induced NF-?B activity, possibly by inhibiting the Akt-mediated activation of IKK. Thus, DTCM-glutarimide inhibited osteoclastogenesis by blocking both the Akt-GSK3?-NFATc1 and NF-?B-NFATc1 pathways. DTCM-glutarimide may be a candidate as a chemotherapeutic agent for severe bone resorption diseases. PMID:25617668

  13. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signaling pathways. - Highlights: • In hyperplastic pituitaries, LPS triggered the lactotroph cell proliferation and IL-6 release. • Functional Toll-like receptor 4 (TLR4) is expressed at the plasma membrane of tumoral lactotrophs. • Increases in TLR4 and CD14 intracellular expression levels were detected after an LPS challenge. • The proliferative stimulation and IL-6 release involved the PI3K-Akt pathway and NF-κB activation. • 17β-estradiol attenuated the LPS-evoked tumoral lactotroph proliferation and IL-6 secretion.

  14. Ergosterol of Cordyceps militaris Attenuates LPS Induced Inflammation in BV2 Microglia Cells.

    PubMed

    Nallathamby, Neeranjini; Guan-Serm, Lee; Vidyadaran, Sharmili; Abd Malek, Sri Nurestri; Raman, Jegadeesh; Sabaratnam, Vikineswary

    2015-06-01

    Different solvent extracts of Cordyceps militaris stroma powder were tested for cell viability and inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS) triggered BV2 microglia cells. Chemical investigation of the ethyl acetate fraction resulted in an enriched ergosterol sub-fraction CE3. The BV2 cells showed no cytotoxic effects when treated with the ethyl acetate fraction and sub-fraction CE3 at concentrations of 0.1 ?g/mL - 100 ?g/mL compared with the control. At 10 ?g/mL, the ethyl acetate fraction and sub-fraction CE3 had the highest reduction of 48.0% and 44.7% of nitric oxide production, respectively. The major compound in sub-fraction CE3 was ergosterol, identified by GCMS, and the purity was checked by HPLC. Further, the reduction of nitric oxide in LPS triggered BV2 cells was about three fold higher when compared with the control commercial ergosterol. PMID:26197508

  15. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways

    PubMed Central

    Kim, Byung-Wook; More, Sandeep Vasant; Yun, Yo-Sep; Ko, Hyun-Myung; Kwak, Jae-Hwan; Lee, Heesoon; Suk, Kyoungho; Kim, In-Su; Choi, Dong-Kug

    2016-01-01

    Aim: To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. Methods: Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. Results: Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). Conclusion: MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells. PMID:26838070

  16. ?? adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-? production via modulating ERK1/2 and NF-?B pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor ? (TNF-?) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-? expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-? production in a dose-dependent manner. ??- adrenoceptor (AR) antagonist (prazosin), but neither ??- nor ??-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-? production. Furthermore, phenylephrine (PE), an ??-AR agonist, also suppressed LPS-induced TNF-? production. NE inhibited p38 phosphorylation and NF-?B activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-?B activation and TNF-? production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-? production, but not NF-?B activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-? production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and I?B? degradation, reduced myocardial TNF-? production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of ??-AR by NE suppresses LPS-induced cardiomyocyte TNF-? expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-?B activation. PMID:24304472

  17. ?1 adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-? production via modulating ERK1/2 and NF-?B pathway

    PubMed Central

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-01-01

    Cardiomyocyte tumour necrosis factor ? (TNF-?) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-? expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-? production in a dose-dependent manner. ?1-adrenoceptor (AR) antagonist (prazosin), but neither ?1-nor ?2-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-? production. Furthermore, phenylephrine (PE), an ?1-AR agonist, also suppressed LPS-induced TNF-? production. NE inhibited p38 phosphorylation and NF-?B activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-?B activation and TNF-? production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-? production, but not NF-?B activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-? production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and I?B? degradation, reduced myocardial TNF-? production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of ?1-AR by NE suppresses LPS-induced cardiomyocyte TNF-? expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-?B activation. PMID:24304472

  18. Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory

    PubMed Central

    Brothers, Holly M.; Bardou, Isabelle; Hopp, Sarah C.; Kaercher, Roxanne M.; Corona, Angela W.; Fenn, Ashley M.; Godbout, Jonathan P.; Wenk, Gary L.

    2013-01-01

    Impaired memory may result from synaptic glutamatergic dysregulation related to chronic neuroinflammation. GLT1 is the primary excitatory amino acid transporter responsible for regulating extracellular glutamate levels in the hippocampus. We tested the hypothesis that if impaired spatial memory results from increased extracellular glutamate due to age or experimentally induced chronic neuroinflammation in the hippocampus, then pharmacological augmentation of the glutamate transporter GLT1 will attenuate deficits in a hippocampal-dependent spatial memory task. The profile of inflammation-related genes and proteins associated with normal aging, or chronic neuroinflammation experimentally-induced via a four-week LPS infusion into the IVth ventricle, were correlated with performance in the Morris water maze following treatment with Riluzole, a drug that can enhance glutamate clearance by increasing GLT1 expression. Age-associated inflammation was qualitatively different from LPS-induced neuroinflammation in young rats. LPS produced a pro-inflammatory phenotype characterized by increased IL-1? expression in the hippocampus, whereas aging was not associated with a strong central pro-inflammatory response but with a mixed peripheral immune phenotype. Riluzole attenuated the spatial memory impairment, the elevation of serum cytokines and the decrease in GLT1 gene expression in Aged rats, but had no effect on young rats infused with LPS. Our findings highlight the therapeutic potential of reducing glutamatergic function upon memory impairment in neurodegenerative diseases associated with aging. PMID:23709339

  19. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals

    PubMed Central

    Tajima, Tsuyoshi; Murata, Takahisa; Aritake, Kosuke; Urade, Yoshihiro; Michishita, Masaki; Matsuoka, Toshiyuki; Narumiya, Shuh; Ozaki, Hiroshi

    2012-01-01

    Intestinal resident macrophages play an important role in gastrointestinal dysmotility by producing prostaglandins (PGs) and nitric oxide (NO) in inflammatory conditions. The causal correlation between PGs and NO in gastrointestinal inflammation has not been elucidated. In this study, we examined the possible role of PGE2 in the LPS-inducible inducible NO synthase (iNOS) gene expression in murine distal ileal tissue and macrophages. Treatment of ileal tissue with LPS increased the iNOS and cyclooxygenase (COX)-2 gene expression, which lead to intestinal dysmotility. However, LPS did not induce the expression of iNOS and COX-2 in tissue from macrophage colony-stimulating factor-deficient op/op mice, indicating that these genes are expressed in intestinal resident macrophages. iNOS and COX-2 protein were also expressed in dextran-phagocytized macrophages in the muscle layer. CAY10404, a COX-2 inhibitor, diminished LPS-dependent iNOS gene upregulation in wild-type mouse ileal tissue and also in RAW264.7 macrophages, indicating that PGs upregulate iNOS gene expression. EP2 and EP4 agonists upregulated iNOS gene expression in ileal tissue and isolated resident macrophages. iNOS mRNA induction mediated by LPS was decreased in the ileum isolated from EP2 or EP4 knockout mice. In addition, LPS failed to decrease the motility of EP2 and EP4 knockout mice ileum. EP2- or EP4-mediated iNOS expression was attenuated by KT-5720, a PKA inhibitor and PD-98059, an ERK inhibitor. Forskolin or dibutyryl-cAMP mimics upregulation of iNOS gene expression in macrophages. In conclusion, COX-2-derived PGE2 induces iNOS expression through cAMP/ERK pathways by activating EP2 and EP4 receptors in muscularis macrophages. NO produced in muscularis macrophages induces dysmotility during gastrointestinal inflammation. PMID:22159280

  20. A novel MyD-1 (SIRP-1alpha) signaling pathway that inhibits LPS-induced TNFalpha production by monocytes.

    PubMed

    Smith, Rosemary E; Patel, Vanshree; Seatter, Sandra D; Deehan, Maureen R; Brown, Marion H; Brooke, Gareth P; Goodridge, Helen S; Howard, Christopher J; Rigley, Kevin P; Harnett, William; Harnett, Margaret M

    2003-10-01

    MyD-1 (CD172) is a member of the family of signal regulatory phosphatase (SIRP) binding proteins, which is expressed on human CD14+ monocytes and dendritic cells. We now show a novel role for MyD-1 in the regulation of the innate immune system by pathogen products such as lipopolysaccharide (LPS), purified protein derivative (PPD), and Zymosan. Specifically, we demonstrate that ligation of MyD-1 on peripheral blood mononuclear cells (PBMCs) inhibits tumor necrosis factor alpha (TNFalpha) secretion but has no effect on other cytokines induced in response to each of these products. In an attempt to understand the molecular mechanisms underlying this surprisingly selective effect we investigated signal transduction pathways coupled to MyD-1. Ligation of the SIRP was found to recruit the tyrosine phosphatase SHP-2 and promote sequential activation of phosphatidylinositol (PI) 3-kinase, phospholipase D, and sphingosine kinase. Inhibition of LPS-induced TNFalpha secretion by MyD-1 appears to be mediated by this pathway, as the PI 3-kinase inhibitor wortmannin restores normal LPS-driven TNFalpha secretion. MyD-1-coupling to this PI 3-kinase-dependent signaling pathway may therefore present a novel target for the development of therapeutic strategies for combating TNFalpha production and consequent inflammatory disease. PMID:12805067

  1. Analgesic and anti-hyperalgesic effects of epidural morphine in an equine LPS-induced acute synovitis model.

    PubMed

    van Loon, Johannes P A M; Menke, Eveline S; L'ami, Jiske J; Jonckheer-Sheehy, Valerie S M; Back, Willem; Ren van Weeren, P

    2012-08-01

    Epidural morphine is widely used in veterinary medicine, but there is no information about the anti-hyperalgesic and anti-inflammatory effects in acute inflammatory joint disease in horses. The analgesic, anti-hyperalgesic and anti-inflammatory effects of epidural morphine (100mg/animal or 0.17 0.02 mg/kg) were therefore investigated in horses with acute synovitis. In a cross-over study, synovitis was induced in the talocrural joint by intra-articular lipopolysaccharide (LPS). The effect of epidural morphine was evaluated using physiological, kinematic and behavioural variables. Ranges of motion (ROM) of the metatarsophalangeal and talocrural joints were measured, clinical lameness scores and mechanical nociceptive thresholds (MNTs) were assessed and synovial fluid inflammatory markers were measured. The injection of LPS induced transient synovitis, resulting in clinical lameness, decreased ranges of motion in the talocrural and metatarsophalangeal joints, decreased limb loading at rest and increased composite pain scores. Epidural morphine resulted in a significant improvement in clinical lameness, increased ROM and improved loading of the LPS-injected limb at rest, with no effects on synovial fluid inflammatory markers. Morphine prevented a decrease in MNT and, hence, inhibited the development of hyperalgesia close to the dorsal aspect of inflamed talocrural joints. This study showed that epidural morphine provides analgesic and anti-hyperalgesic effects in horses with acute synovitis, without exerting peripheral anti-inflammatory effects. PMID:22342215

  2. Murine corneal stroma cells inhibit LPS-induced dendritic cell maturation partially through TGF-?2 secretion in vitro

    PubMed Central

    Lu, Jian-Min; Song, Xiu-Jun; Wang, Hui-Fang; Li, Xiao-Lei

    2012-01-01

    Purpose The peripheral cornea contains mature and immature resident dendritic cells (DCs) while the central cornea is exclusively equipped with immature DCs. There must be some factors that cause immature DCs. This study investigated whether corneal stroma cells (CSCs) inhibit DC maturation by secreting cytokines. Methods The messenger ribonucleic acid (mRNA) and protein level of transforming growth factor beta 2 (TGF-?2) was analyzed using reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Immature DCs were induced to mature in the presence of lipopolysaccharide (LPS) and with concentrations of CSC culture supernatant (containing and not containing neutralizing TGF-?2 antibodies). Then, the DC phenotypic and functional maturation were analyzed. Results CSCs exhibited positive expressions of TGF-?2 mRNA and secreted high concentrations of TGF-?2 protein. In the presence of LPS, DCs, which were treated with a CSC culture supernatant, displayed reduced expressions of cluster of differentiation 80 (CD80), CD86, and major histocompatibility complex II (MHC II) in a dose-dependent manner. Moreover, treated DCs showed lower T-cell stimulation capacity and a higher endocytosis function. However, these phenotypic and functional modifications were partially reversed after the application of neutralizing TGF-?2 antibodies. Conclusions This study demonstrates that CSCs can partially inhibit LPS-induced DC maturation through TGF-?2 secretion in vitro. PMID:22933838

  3. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabin, Saray; Ortuo-Sahagn, Daniel; Vzquez-Carrera, Manuel; Lpez-Roa, Roco Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24?h with 100??mol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100?ng/mL LPS for 1?h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  4. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabin, Saray; Ortuo-Sahagn, Daniel; Vzquez-Carrera, Manuel; Lpez-Roa, Roco Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 ?mol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  5. Socs1 and Socs3 degrades Traf6 via polyubiquitination in LPS-induced acute necrotizing pancreatitis

    PubMed Central

    Zhou, X; Liu, Z; Cheng, X; Zheng, Y; Zeng, F; He, Y

    2015-01-01

    Mechanisms involved in inflammatory development during acute pancreatitis (AP) are largely vague, especially in the transformation of acute edematous pancreatitis (AEP) into acute necrotizing pancreatitis (ANP). This current study aims to investigate the functions of Traf6 in different AP models in vitro and in vivo, and to identify the possible regulatory mechanism in the progression of inflammation from mild to severe. Our data revealed that the level of Traf6 expression was significantly increased in the mild AP induced by caerulein, and the upregulation of Traf6 played a protective role in acinar cells against caerulein-induced apoptosis. In contrast, only Traf6 protein but not mRNA was downregulated in the severe ANP induced by combination treatment of caerulein and LPS. Mechanistic studies showed that LPS upregulated the levels of Socs1 and Socs3 expressions in acinar cells, Socs1 and Socs3 interacted Traf6 directly and degraded Traf6 protein via polyubiquitination, thereby counteracted the protective function of Traf6. In vivo study further showed that combination treatment of caerulein and LPS failed to induce an ANP model in the TLR4 knockout mice, and the level of Traf6 expression in the pancreatic tissues remained the same as that from the acute edematous pancreatitis (AEP) mouse. Taken together, our study reveals that Traf6 functioned as a protective factor in the progression of AP, and LPS-induced Socs1 and Socs3 exacerbate mild AP to severe AP, which provides evidence for developing a new therapeutic target to combat AP. PMID:26633718

  6. POLYCHLORINATED BIPHENYL MIXTURES (AROCLORS) INHIBIT LPS-INDUCED MURINE SPLENOCYTE PROLIFERATION IN VITRO. (R826687)

    EPA Science Inventory

    Abstract

    The immune system is believed to be a sensitive indicator for adverse polychlorinated biphenyl (PCB)-induced health effects. Four commercial PCB mixtures (Aroclors) or six individual PCB congeners were evaluated for their effect on splenocyte viability and lip...

  7. The influence of temperament on lipopolysaccharide (LPS) induced secretion of epinephrine and cortisol in bulls.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The host's complex reaction to a pathogenic stressor involves interaction of the neural, endocrine, and immune systems. For example, exposure to bacteria stimulates secretion of the stress-related hormones, cortisol (CS) and epinephrine (Epi; 1). Innate and induced secretion of CS and Epi are influe...

  8. Role of the endocannabinoid system in the mechanisms involved in the LPS-induced preterm labor.

    PubMed

    Bariani, Mara Victoria; Domnguez Rubio, Ana Paula; Cella, Maximiliano; Burdet, Juliana; Franchi, Ana Mara; Aisemberg, Julieta

    2015-12-01

    Prematurity is the leading cause of perinatal morbidity and mortality worldwide. There is a strong causal relationship between infection and preterm births. Intrauterine infection elicits an immune response involving the release of inflammatory mediators like cytokines and prostaglandins (PG) that trigger uterine contractions and parturition events. Anandamide (AEA) is an endogenous ligand for the cannabinoid receptors CB1 and CB2. Similarly to PG, endocannabinoids are implicated in different aspects of reproduction, such as maintenance of pregnancy and parturition. Little is known about the involvement of endocannabinoids on the onset of labor in an infectious milieu. Here, using a mouse model of preterm labor induced by lipopolysaccharide (LPS), we explored changes on the expression of components of endocannabinoid system (ECS). We have also determined whether AEA and CB antagonists alter PG production that induces labor. We observed an increase in uterine N-acylphosphatidylethanolamine-specific phospholipase D expression (NAPE-PLD, the enzyme that synthesizes AEA) upon LPS treatment. Activity of catabolic enzyme fatty acid amide hydrolase (FAAH) did not change significantly. In addition, we also found that LPS modulated uterine cannabinoid receptors expression by downregulating Cb2 mRNA levels and upregulating CB1 protein expression. Furthermore, LPS and AEA induced PGF2a augmentation, and this was reversed by antagonizing CB1 receptor. Collectively, our results suggest that ECS may be involved in the mechanism by which infection causes preterm birth. PMID:26347521

  9. CYTOSOLIC PHOSPHOLIPASE A2α PROTECTS AGAINST FAS-BUT NOT LPS-INDUCED LIVER INJURY

    PubMed Central

    Li, Guiying; Chen, Weina; Han, Chang; Wu, Tong

    2011-01-01

    Background/Aims Cytosolic phospholipase A2α (cPLA2α) is a rate-limiting key enzyme controlling the release of arachidonic acid (AA) substrate for the synthesis of prostaglandins and leukotrienes. This study was designed to explore the role of hepatocyte cPLA2α in Fas-mediated liver injury, in vivo. Methods Transgenic mice with targeted expression of cPLA2α under control of the albumin-promoter enhancer and wild-type mice were injected intraperitoneally with anti-Fas antibody Jo2 or lipopolysaccharide plus D-galactosamine and monitored for liver injury and survival at various time points. Results The cPLA2α Tg mice resist Fas-induced liver failure, as reflected by the lower serum transaminase levels, fewer apoptotic hepatocytes, reduced caspase activation, and reduced PARP cleavage when compared to the matched wild type mice. Inhibition of cPLA2α by its pharmacological inhibitor, pyrrolidine, enhanced Jo2-induced liver injury in both cPLA2α Tg and wild type mice. Hepatic overexpression of cPLA2α increases the expression of EGFR in the liver and the EGFR inhibitor, AG1478, exacerbated Jo2-mediated liver injury. The cPLA2α transgenic mice develop more prominent liver tissue damage than wild-type mice after LPS/D-galactosamine injection. Conclusion Hepatocyte cPLA2α protects against Fas-induced liver injury and this effect is mediated at least in part through upregulation of EGFR. PMID:21703211

  10. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  11. Group B Streptococcus and E. coli LPS-induced NO-dependent hyporesponsiveness to noradrenaline in isolated intrapulmonary arteries of neonatal piglets.

    PubMed

    Villamor, E; Prez-Vizcano, F; Ruiz, T; Leza, J C; Moro, M; Tamargo, J

    1995-05-01

    1. The effects of endotoxin (E. coli lipopolysaccharide, LPS) and heat inactivated group B Streptococcus (GBS) were studied on the contractile responses to noradrenaline (NA) in isolated pulmonary arteries and on the activity of the constitutive and inducible nitric oxide synthase (NOS) in lung fragments of neonatal piglets. 2. Short-term (< or = 5 h) incubation with LPS (1 micrograms ml-1) or GBS (3 x 10(7) colonies forming units ml-1) did not modify the vascular responsiveness to NA (10(-8) M-10(-4) M) in isolated intrapulmonary arteries. However, long-term incubation (20 h) with LPS or GBS produced a significant reduction in the maximal contractile responses and shifted the concentration-response curve for NA downwards. 3. Endothelium removal or the cyclo-oxygenase inhibitor meclofenamate (10(-5) M) did not affect the GBS- and LPS-induced hyporesponsiveness to NA. 4. The presence of the nitric oxide (NO) precursor, L-arginine (10(-5) M), 30 min prior to the contractility challenge increased the LPS- and GBS-induced pulmonary vascular hyporesponsiveness to NA. In contrast, the addition, prior to the challenge with NA, of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) or coincubation with dexamethasone (3 x 10(-6) M), a potent inhibitor of the induction of NOS, or with the protein synthesis inhibitor cycloheximide (10(-5) M) completely restored the reactivity to NA in LPS- and GBS-treated pulmonary arteries. 5. The incubation for 20 h of lung fragments with LPS and GBS produced a significant increase in the Ca2+-independent (inducible) NOS activity determined by the conversion of radiolabelled L-arginine to citrulline, but did not modify the constitutive NOS activity. This NOS induction was abolished by coincubation with dexamethasone (3 X 10-6 M).6. These results demonstrated that prolonged incubation with GBS and LPS causes an induction of NOS activity which results in a reduced vascular responsiveness to NA in pulmonary arteries of neonatal piglets. Thus, induction of NOS seems to be responsible for the delayed pulmonary vascular hyporesponsiveness induced by GBS (a Gram-positive) and E. coli (a Gram-negative), the most common causal agents of neonatal sepsis. PMID:7545518

  12. Hyperin attenuates inflammation by activating PPAR-? in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells.

    PubMed

    Huang, Cheng; Yang, Yang; Li, Wan-Xia; Wu, Xiao-Qin; Li, Xiao-Feng; Ma, Tao-Tao; Zhang, Lei; Meng, Xiao-Ming; Li, Jun

    2015-12-01

    Hyperin (HP) is a flavonoid compound found in various plants like Ericaceae, Guttifera and Celastraceae. The present study has revealed that HP has a variety of pharmacological effects including anti-oxidant, anticancer, and anti-coagulant, especially anti-inflammatory. However, the potential molecular mechanism of anti-inflammatory is still unrevealed. In this study, HP not only significantly attenuated inflammation in C57BL/6J mice with acute liver injury (ALI), but also reduced the expression of TNF-? and IL-6 in lipopolysaccharide (LPS)-induced RAW264.7 cells. Furthermore, our findings showed that HP remarkably induced the expression of PPAR-? in vivo and in vitro. Interestingly, compared with the HP treatment group, a specific blocking agent of PPAR-? T0070907 and PPAR-? small interfering (si)-RNA-mediated silencing in RAW264.7 cells were used to evaluate the involvement of HP in alleviating LPS-induced inflammation. More importantly, over-expression of PPAR-? had an opposite effect on the expression of TNF-? and IL-6 in LPS-induced RAW264.7 cells after treatment with HP. In addition, HP remarkably inhibited the expression of P-ERK1/2 and P-P38 MAPK. Taken together, all the above results indicate that HP may serve as an effective modulator of PPAR-?, further down-regulating ERK1/2 and p38 MAPK during the pathogenesis of inflammation. PMID:26526086

  13. The Probiotic Mixture VSL#3 Dampens LPS-Induced Chemokine Expression in Human Dendritic Cells by Inhibition of STAT-1 Phosphorylation

    PubMed Central

    Mariman, Rob; Tielen, Frans; Koning, Frits; Nagelkerken, Lex

    2014-01-01

    VSL#3, a mixture of 8 different probiotic bacteria, has successfully been used in the clinic to treat Ulcerative Colitis. We previously identified the modulation of chemokines as a major mechanism in the protective effect of the VSL#3 in a mouse model of colitis. This was supported by in vitro studies that implicated a role for VSL#3 in the suppression of LPS-induced chemokine production by mouse bone marrow-derived dendritic cells (DC). Herein, we validated these findings employing human monocyte-derived DC. Stimulation of human DC with LPS, VSL#3, or a combination of both resulted in their maturation, evident from enhanced expression of activation markers on the cell-surface, as well as the induction of various chemokines and cytokines. Interestingly, a set of LPS-induced chemokines was identified that were suppressed by VSL#3. These included CXCL9, CXCL10, CCL2, CCL7, and CCL8. In silico approaches identified STAT-1 as a dominant regulator of these chemokines, and this was confirmed by demonstrating that LPS-induced phosphorylation of this transcription factor was inhibited by VSL#3. This indicates that VSL#3 may contribute to the control of inflammation by selective suppression of STAT-1 induced chemokines. PMID:25546330

  14. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state.

    PubMed

    Jiang, Wenjiao; Luo, Fen; Lu, Qianfeng; Liu, Jingyan; Li, Peijin; Wang, Xiaofan; Fu, Yeliu; Hao, Kun; Yan, Tianhua; Ding, Xuansheng

    2016-01-01

    Inflammation response and oxidative stress have been reported to be involved in the pathogenesis of acute lung injury (ALI). Accordingly, anti-inflammatory treatment is proposed to be a possible efficient therapeutic strategy for ALI. The purpose of our present study was to evaluate the anti-inflammatory efficacy of trillin (Tr) on ALI induced by lipopolysaccharide (LPS) in mice and explore the underlying mechanism. BALB/c mice received Tr (50, 100mg/kg) intraperitoneally 1h prior to the intratracheal instillation of lipopolysaccharide (LPS) challenge. Pretreatment with Tr at the dose of 50, 100mg/kg markedly ameliorated lung wet-to-dry weight (W/D) ratio, myeloperoxidase (MPO) activity and pulmonary histopathological conditions. In addition, the protective efficacy of Tr might be attributed to the down-regulations of neutrophil infiltration, malondialdehyde (MDA), inflammatory cytokines and the up-regulations of super-oxide dismutase (SOD), catalase(CAT), glutathione(GSH), Glutathione Peroxidase(GSH-Px) in bronchoalveolar lavage fluid (BALF). Meanwhile, our study revealed some correlations between (NF-E2-related factor 2) Nrf2/heme oxygenase (HO)-1/nuclear factor-kappa B (NF-?B) pathways and the beneficial effect of Tr, as evidenced by the significant up-regulations of HO-1 and Nrf2 protein expressions as well as the down-regulations of p-NF-?B and p-inhibitor of NF-?B (I?B) in lung tissues. Taken together, our results indicated that Tr exhibited protective effect on LPS-induced ALI by the regulations of related inflammatory events via the activations of Nrf2, HO-1 and NF-?B pathway. The current study indicated that Tr could be a potentially effective candidate medicine for the treatment of ALI. PMID:26363199

  15. Two structurally distinct {kappa}B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages

    SciTech Connect

    Ohmori, Y.; Fukumoto, S.; Hamilton, T.A.

    1995-10-01

    The mouse KC gene is an {alpha}-chemokine gene whose transcription is induced in mononuclear phagocytes by LPS. DNA sequences necessary for transcriptional control of KC by LPS were identified in the region flanking the transcription start site. Transient transfection analysis in macrophages using deletion mutants of a 1.5-kb sequence placed in front of the chloramphenicol acetyl transferase (CAT) gene identified an LPS-responsive region between residues -104 and +30. This region contained two {kappa}B sequence motifs. The first motif (position -70 to -59, {kappa}B1) is highly conserved in all three human GRO genes and in the mouse macrophage inflammatory protein-2 (MIP-2) gene. The second {kappa}B motif (position -89 to -78, {kappa}B2) was conserved only between the mouse and the rat KC genes. Consistent with previous reports, the highly conserved {kappa}B site ({kappa}B1) was essential for LPS inducibility. Surprisingly, the distal {kappa}B site ({kappa}B2) was also necessary for optimal response; mutation of either {kappa}B site markedly reduced sensitivity to LPS in RAW264.7 cells and to TNF-{alpha} in NIH 3T3 fibroblasts. Although both {kappa}B1 and {kappa}B2 sequences were able to bind members of the Rel homology family, including NF{kappa}B1 (P50), RelA (65), and c-Rel, the {kappa}B1 site bound these factors with higher affinity and functioned more effectively than the {kappa}B2 site in a heterologous promoter. These findings demonstrate that transcriptional control of the KC gene requires cooperation between two {kappa}B sites and is thus distinct from that of the three human GRO genes and the mouse MIP-2 gene. 71 refs., 8 figs.

  16. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-?B signaling through TLR4 in macrophages.

    PubMed

    Byun, Eui-Baek; Sung, Nak-Yun; Park, Jae-Nam; Yang, Mi-So; Park, Sang-Hyun; Byun, Eui-Hong

    2015-04-01

    Resveratrol was irradiated at various doses of 15, 30, 50, and 70kGy for the development of physiological functionalities through modification of the structural properties. Gamma irradiation induced a decrease in the resveratrol peak, and the appearance of several new peaks by gamma irradiation was gradually increased up to 70kGy. Gamma-irradiated resveratrol did not exert cytotoxicity to macrophages in dose ranges from 15 to 70kGy; therefore, 70kGy gamma-irradiated resveratrol was used as the maximum dose throughout subsequent experiments. Treatment of LPS-stimulated macrophages with 70kGy gamma-irradiated resveratrol resulted in a dose-dependent decrease in iNOS-mediated NO, PGE2, and pro-inflammatory cytokine level, such as TNF-?, IL-6 and IL-1?. 70kGy gamma-irradiated resveratrol significantly inhibited cyclooxygenase-2 levels, as well as the expression of cell surface molecules, such as CD80 and CD86, in LPS-induced macrophages. Furthermore, the inhibitory action of these pro-inflammatory mediators occurred through an inhibition of MAPKs (ERK1/2, p38 and JNK) and NF-?B signaling pathways based on a toll-like receptor 4 in macrophages, which may be closely mediated with the radiolysis products of resveratrol transformed by gamma-irradiation. From these findings, it seems likely that gamma irradiation can be an effective tool for a reduction of the toxicity and play a potent role in the treatment of inflammatory disease. PMID:25701505

  17. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway

    PubMed Central

    Lin, Wen; Wu, Rachel T; Wu, Tienyuan; Khor, Tin-Oo; Wang, Hu; Kong, Ah-Ng

    2008-01-01

    Sulforaphane (SFN) is a natural isothiocyanate that is present in cruciferous vegetables such as broccoli and cabbage. Previous studies have shown that SFN is effective in preventing carcinogenesis induced by carcinogens in rodents, which is related in part to its potent anti-inflammation properties. In the present study, we compared the anti-inflammatory effect of SFN on LPS-stimulated inflammation in primary peritoneal macrophages derived from Nrf2 (+/+) and Nrf2 mice. Pretreatment of SFN in Nrf2 (+/+) primary peritoneal macrophages potently inhibited LPS-stimulated mRNA expression, protein expression and production of TNF?, IL-1?, Cox-2 and iNOS. HO-1 expression, which is significantly augmented in LPS-stimulated Nrf2 (+/+) primary peritoneal macrophages by SFN. Interestingly, the anti-inflammatory effect was attenuated in Nrf2 (?/?) primary peritoneal macrophages. We concluded that SFN exerts its anti-inflammatory activity mainly via activation of Nrf2 in mouse peritoneal macrophages. PMID:18755157

  18. Improving effect of pretreatment with yiqifumai on LPS-induced microcirculatory disturbance in rat mesentery.

    PubMed

    Yuan, Qing; Liu, Yu-Ying; Sun, Kai; Chen, Chun-Hua; Zhou, Chang-Man; Wang, Chuan-She; Li, Ang; Zhang, Shu-Wen; Ye, Zheng-Liang; Fan, Jing-Yu; Han, Jing-Yan

    2009-09-01

    Yiqifumai is a traditional Chinese medicine compound preparation used for the treatment of various vascular diseases in China. However, little is known regarding its role in microcirculation. The present study investigated the effect of pretreatment of yiqifumai on rat mesentery microcirculatory disturbance induced by LPS. Male Wistar rats were continuously infused with LPS (5 mg kg(-1) h(-1)). The parameters evaluated included diameter of and red blood cell velocity in venules, leukocyte adhesion to venular wall, dihydrorhodamine 123 (DHR) fluorescence in the venular walls, fluorescein isothiocyanate-albumin leakage, and mast cell degranulation, which were observed by an inverted intravital microscope. CD11b/CD18 expression on neutrophils was examined using flow cytometry. In some rats, yiqifumai (5, 30, or 80 mg kg(-1)) was given in one shot 10 min before LPS infusion. After infusion of LPS, the number of leukocytes adherent to venular wall, the intensity of DHR fluorescence in the venular walls, albumin leakage from venules, and degranulated mast cells were significantly increased, whereas the red blood cell velocity in venule was decreased. Pretreatment with high-dose yiqifumai (80 mg kg(-1)) significantly reduced the number of adherent leukocytes, the intensity of DHR fluorescence, degranulation of mast cell, albumin leakage, and the expression of CD11b/CD18, whereas the yiqifumai of medium dose (30 mg kg(-1)) only inhibited leukocyte adhesion to the venular wall. The results suggested that pretreatment with yiqifumai attenuated microcirculatory disturbance induced by LPS. This effect may be associated with yiqifumai's inhibition effect on reactive oxygen species production, leukocyte adhesion, and mast cell degranulation. PMID:19174743

  19. Corticotropin-releasing factor augments LPS-induced immune/inflammatory responses in JAWSII cells.

    PubMed

    Hu, Yue; Li, Meng; Lu, Bin; Wang, Xi; Chen, Chaoying; Zhang, Meng

    2016-04-01

    The effect of corticotropin-releasing factor (CRF) on gastrointestinal tract inflammation via modulation of the immune system cells such as dendritic cells (DCs) is not known. We investigated the expression of CRF and its receptors CRFR1 and CRFR2 in a colonic DC model (JAWSII cells) in a pro-inflammatory and anti-inflammatory milieu. The mRNA expression of CRF and protein expression of CRFR1 and CRFR2 was assessed, and lipopolysaccharide (LPS) was used to induce the maturation of JAWSII cells. JAWSII cells were divided into four groups: control, CRF, LPS, and LPS + CRF. The levels of secreted cytokines IL-6, IL-4, TNF-α, and MIP-1α were determined, both in JAWSII cells and in the culture supernatant, by qRT-PCR and ELISA. The expression of CRFR1 and CRFR2 in JAWSII cells was accompanied by a low CRF expression. Compared with control group, CRF group did not affect the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and MIP-1α, but LPS treatment significantly increased the expression of these cytokines, indicating maturation of JAWSII cells. CRF further augmented the production of IL-6, TNF-α, and MIP-1α in mature JAWSII cells, with no increase in TNF-α mRNA expression. However, the expression of anti-inflammatory factor IL-4 did not change after LPS treatment. CRF treatment decreased the expression of IL-4 in both mature and immature JAWSII cells. JAWSII cells produce low level of CRF and express CRFR1 and CRFR2 surface receptors. CRF promotes immune/inflammatory responses in mature JAWSII cells when induced by LPS treatment. PMID:26754762

  20. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  1. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats

    PubMed Central

    Guimarães, Morgana R.; de Aquino, Sabrina Garcia; Coimbra, Leila S.; Spolidorio, Luis C.; Kirkwood, Keith L.; Rossa, Carlos

    2011-01-01

    Curcumin is a plant-derived dietary spice ascribed various biological activities. Curcumin therapeutic applications have been studied in a variety of conditions, but not on periodontal disease. Periodontal disease is a chronic inflammatory condition initiated by an immune response to microorganisms of the dental biofilm. Experimental periodontal disease was induced in rats by injecting LPS in the gingival tissues on the palatal aspect of upper first molars (30 ug LPS, 3 times/week for 2 weeks). Curcumin was administered to rats daily via oral gavage at 30 and 100 mg/Kg. RT-qPCR and ELISA were used to determine the expression of IL-6, TNF-α and PGE2 synthase on the gingival tissues. The inflammatory status was evaluated by stereometric and descriptive analysis on H&E-stained sections, whereas modulation of p38 MAPK and NK-κB signaling was assessed by Western blot. Curcumin effectively inhibited cytokine gene expression at mRNA and protein levels, but NF-kB was inhibited only with the lower dose of curcumin, whereas p38 MAPK activation was not affected. Curcumin produced a significant reduction on the inflammatory infiltrate and increased collagen content and fibroblastic cell numbers. Curcumin potently inhibits innate immune responses associated with periodontal disease, suggesting a therapeutic potential in this chronic inflammatory condition. PMID:21242275

  2. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats.

    PubMed

    Guimarães, Morgana R; de Aquino, Sabrina Garcia; Coimbra, Leila S; Spolidorio, Luis C; Kirkwood, Keith L; Rossa, Carlos

    2012-02-01

    Curcumin is a plant-derived dietary spice ascribed various biological activities. Curcumin therapeutic applications have been studied in a variety of conditions, but not on periodontal disease. Periodontal disease is a chronic inflammatory condition initiated by an immune response to micro-organisms of the dental biofilm. Experimental periodontal disease was induced in rats by injecting LPS in the gingival tissues on the palatal aspect of upper first molars (30 µg LPS, 3 times/week for 2 weeks). Curcumin was administered to rats daily via oral gavage at 30 and 100 mg/kg body weight. Reverse transcriptase-qPCR and ELISA were used to determine the expression of IL-6, TNF-α and prostaglandin E(2) synthase on the gingival tissues. The inflammatory status was evaluated by stereometric and descriptive analysis on hematoxylin/eosin-stained sections, whereas modulation of p38 MAPK and NK-κB signaling was assessed by Western blot. Curcumin effectively inhibited cytokine gene expression at mRNA and protein levels, but NF-κB was inhibited only with the lower dose of curcumin, whereas p38 MAPK activation was not affected. Curcumin produced a significant reduction on the inflammatory infiltrate and increased collagen content and fibroblastic cell numbers. Curcumin potently inhibits innate immune responses associated with periodontal disease, suggesting a therapeutic potential in this chronic inflammatory condition. PMID:21242275

  3. LPS-Induced Galectin-3 Oligomerization Results in Enhancement of Neutrophil Activation

    PubMed Central

    Fermino, Marise Lopes; Polli, Claudia Danella; Toledo, Karina Alves; Liu, Fu-Tong; Hsu, Dan K.; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2011-01-01

    Galectin-3 (Gal 3) is a glycan-binding protein that can be secreted by activated macrophages and mast cells at inflammation sites and plays an important role in inflammatory diseases caused by Bacteria and their products, such as lipopolysaccharides (LPS). Although it is well established that Gal 3 can interact with LPS, the pathophysiological importance of LPS/Gal 3 interactions is not fully understood. Data presented herein demonstrate for the first time that the interaction of Gal 3, either via its carbohydrate binding C-terminal domain or via its N-terminal part, with LPS from different bacterial strains, enhances the LPS-mediated neutrophil activation in vitro. Gal 3 allowed low LPS concentrations (1 g/mL without serum, 1 ng/mL with serum) to upregulate CD11b expression and reactive oxygen species (ROS) generation on human neutrophils in vitro and drastically enhanced the binding efficiency of LPS to the neutrophil surface. These effects required LPS preincubation with Gal 3, before neutrophil stimulation and involved specific Gal 3/LPS interaction. A C-terminal Gal-3 fragment, which retains the lectin domain but lacks the N-terminal part, was still able to bind both to Escherichia coli LPS and to neutrophils, but had lost the ability to enhance neutrophil response to LPS. This result emphasizes the importance of an N-terminus-mediated Gal 3 oligomerization induced by its interaction with LPS. Finally we demonstrated that Balb/C mice were more susceptible to LPS-mediated shock when LPS was pretreated with Gal 3. Altogether, these results suggest that multimeric interactions between Gal 3 oligomers and LPS potentiate its pro-inflammatory effects on neutrophils. PMID:22031821

  4. Epidural analgesia with morphine or buprenorphine in ponies with lipopolysaccharide (LPS)-induced carpal synovitis

    PubMed Central

    Freitas, Gabrielle C.; Carregaro, Adriano B.; Gehrcke, Martielo I.; De La Crte, Flvio D.; Lara, Valria M.; Pozzobon, Ricardo; Brass, Karin E.

    2011-01-01

    This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 ?g/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 ?g/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies. PMID:21731186

  5. Protection of LPS-Induced Murine Acute Lung Injury by Sphingosine-1-Phosphate Lyase Suppression

    PubMed Central

    Zhao, Yutong; Gorshkova, Irina A.; Berdyshev, Evgeny; He, Donghong; Fu, Panfeng; Ma, Wenli; Su, Yanlin; Usatyuk, Peter V.; Pendyala, Srikanth; Oskouian, Babak; Saba, Julie D.; Garcia, Joe G. N.; Natarajan, Viswanathan

    2011-01-01

    A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL+/? mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-?B, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target. PMID:21148740

  6. Toona sinensis Inhibits LPS-Induced Inflammation and Migration in Vascular Smooth Muscle Cells via Suppression of Reactive Oxygen Species and NF-?B Signaling Pathway

    PubMed Central

    Yang, Hsin-Ling; Huang, Pei-Jane; Liu, Yi-Ru; Kumar, K. J. Senthil; Hsu, Li-Sung; Lu, Te-Ling; Chia, Yi-Chen; Takajo, Tokuko; Kazunori, Anzai; Hseu, You-Cheng

    2014-01-01

    Toona sinensis is one of the most popular vegetarian cuisines in Taiwan and it has been shown to possess antioxidant, antiangiogenic, and anticancer properties. In this study, we investigated the antiatherosclerotic potential of aqueous leaf extracts from Toona sinensis (TS; 25100??g/mL) and its major bioactive compound, gallic acid (GA; 5??g/mL), in LPS-treated rat aortic smooth muscle (A7r5) cells. We found that pretreatment with noncytotoxic concentrations of TS and GA significantly inhibited inflammatory NO and PGE2 production by downregulating their precursors, iNOS and COX-2, respectively, in LPS-treated A7r5 cells. Furthermore, TS and GA inhibited LPS-induced intracellular ROS and their corresponding mediator, p47phox. Notably, TS and GA pretreatment significantly inhibited LPS-induced migration in transwell assays. Gelatin zymography and western blotting demonstrated that treatment with TS and GA suppressed the activity or expression of MMP-9, MMP-2, and t-PA. Additionally, TS and GA significantly inhibited LPS-induced VEGF, PDGF, and VCAM-1 expression. Further investigation revealed that the inhibition of iNOS/COX-2, MMPs, growth factors, and adhesion molecules was associated with the suppression of NF-?B activation and MAPK (ERK1/2, JNK1/2, and p38) phosphorylation. Thus, Toona sinensis may be useful for the prevention of atherosclerosis. PMID:24723997

  7. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    PubMed

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-?, IL-6 and IL-1? in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 ?mol/l) 1h before LPS (1 ?g/ml) challenge. The results showed that niacin reduced the levels of TNF-?, IL-6 and IL-1? in LPS-challenged alveolar macrophages. Furthermore, NF-?B activation was inhibited by niacin through blocking the phosphorylation of NF-?B p65 and I?B?. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages. PMID:25038318

  8. Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-?B pathway.

    PubMed

    Zhang, Tian-Zhu; Yang, Shi-Hai; Yao, Jin-Fu; DU, Juan; Yan, Tian-Hua

    2015-12-01

    In the present study, we investigated anti-inflammatory effects of Sangxingtang (SXT) on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was performed. The degree of lung edema was evaluated by measuring the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6), were assayed by the enzyme-linked immunosorbent assay methods. Pathological changes of lung tissues were observed by Hematoxylin and eosin (HE) staining. The inflammatory signaling pathway-related proteins nuclear factor mitogen activated protein kinases (P38MAPK), extracellular regulated protein kinases (Erk), c-Jun N-terminal kinase (Jnk) and nuclear transcription factor (NF-?B) p65 expressions were measured by Western blotting. Our results showed that the treatment with the SXT markedly attenuated the inflammatory cell numbers in the BALF, decreased the levels of P-P38MAPK, P-Erk, P-Jnk and P-NF-?B p65 and the total protein levels in lungs, improved the SOD activity and inhibited the MPO activity. Histological studies demonstrated that SXT substantially reduced the LPS-induced neutrophils in lung tissues, compared with the untreated LPS group. In conclusion, our results indicated that SXT had protective effects on LPS-induced ALI in mice. PMID:26721707

  9. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells

    PubMed Central

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  10. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells.

    PubMed

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  11. Differential regulation of HIF-3? in LPS-induced BV-2 microglial cells: Comparison and characterization with HIF-1?.

    PubMed

    Kumar, Hemant; Lim, Ji-Hong; Kim, In-Su; Choi, Dong-Kug

    2015-06-12

    Hypoxia inducible factor(s) (HIF) are transcription factors that respond to a low level of oxygen or hypoxic conditions. The HIF pathway has been poorly studied under neuroinflammatory conditions, and no reports are available on the regulation of HIF-3?. Several studies have established that non-hypoxic stimuli can modulate the HIF pathway in a cell-specific manner. Recent reports suggest that hypoxia elicits inflammation or that inflammation during hypoxia is involved in a wide array of human diseases. In the present study, we used lipopolysaccharide (LPS), a well know inflammatory agent, to characterize the HIF-3? expression pattern and compare it with that of HIF-1? under inflammatory conditions in BV-2 microglial cells. Moreover, we used reactive oxygen species inhibitors (rotenone, diphenyleneiodonium, and N-acetyl-L-cysteine) under inflammatory conditions to determine the role of the functional electron transport chain in the regulation of HIF-3? in BV-2 microglial cells. Additionally, we utilized YC-1, a specific inhibitor of HIF-1?, to determine the role of HIF-3? in inflammatory conditions after inhibiting the HIF-1? pathway. YC-1 inhibited nuclear localization of HIF-1? following treatment with LPS in BV-2 microglia cells. Immunoblot and immunocytochemistry revealed a transient effect on HIF-3? after pre-treating the cells with YC-1. Furthermore, we determined the role of nuclear factor kappa B (NF-?B) in the regulation of HIF-3? using the NF-?B inhibitor PDTC in LPS-stimulated BV-2 microglia cells. PDTC altogether abolished LPS-induced nuclear translocation of HIF-3? with a partial effect on HIF-1?, suggesting that HIF-3? expression under inflammatory conditions may be directly under the control of the NF-?B pathway in BV-2 microglial cells. Interestingly, HIF-3? and HIF-1? exhibited almost similar responses to a variety of activating or inhibiting pharmacological agents. These results provide the first evidence for regulation of HIF-3? under inflammatory conditions in BV-2 microglial cells. PMID:25847716

  12. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-? production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-? production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-? in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-? and the phosphorylation of p38 and ERK1/2. PMID:22800929

  13. Selected contribution: role of IL-6 in LPS-induced nuclear STAT3 translocation in sensory circumventricular organs during fever in rats.

    PubMed

    Harr, Eva-Maria; Roth, Joachim; Pehl, Ulrich; Kueth, Matthias; Gerstberger, Rdiger; Hbschle, Thomas

    2002-06-01

    Interleukin-6 (IL-6) is regarded as an endogenous mediator of lipopolysaccharide (LPS)-induced fever. IL-6 is thought to act on the brain at sites that lack a blood-brain barrier, the circumventricular organs (CVOs). Cells that are activated by IL-6 respond with nuclear translocation of the signal transducer and activator of transcription 3 molecule (STAT3) and can be detected by immunohistochemistry. We investigated whether the LPS-induced release of IL-6 into the systemic circulation was accompanied by a nuclear STAT3 translocation within the sensory CVOs. Treatment with LPS (100 microg/kg) led to a slight (1 h) and then a strong increase (2-8 h) in plasma IL-6 levels, which started to decline at the end of the febrile response. Administration of both pyrogens LPS and IL-6 (45 microg/kg) induced a febrile response with IL-6, causing a rather moderate fever compared with the LPS-induced fever. Nuclear STAT3 translocation in response to LPS was observed within the vascular organ of the lamina terminalis (OVLT) and the subfornical organ (SFO) 2 h after LPS treatment. To investigate whether this effect was mediated by IL-6, the cytokine itself was systemically applied and indeed an identical pattern of nuclear STAT3 translocation was observed. However, nuclear STAT3 translocation already occurred 1 h after IL-6 application and proved to be less effective compared with LPS treatment when analyzing OVLT and SFO cell numbers that showed nuclear STAT3 immunoreactivity after the respective pyrogen treatment. Our observations represent the first molecular evidence for an IL-6-induced STAT3-mediated genomic activation of OVLT and SFO cells and support the proposed role of these brain areas as sensory structures for humoral signals created by the activated immune system and resulting in the generation of fever. PMID:12015387

  14. Lipoxin A4 attenuates LPS-induced mouse acute lung injury via Nrf2-mediated E-cadherin expression in airway epithelial cells.

    PubMed

    Cheng, Xue; He, Songqing; Yuan, Jing; Miao, Shuo; Gao, Hongyu; Zhang, Jingnong; Li, Yang; Peng, Wei; Wu, Ping

    2016-04-01

    A fundamental element of acute lung injury (ALI) is the inflammation that is part of the body's immune response to a variety of local or systemic stimuli. Lipoxins (LXs) are important endogenous lipids that mediate resolution of inflammation. Previously, we demonstrated that LXA4 reduced the LPS inhalation-induced pulmonary edema, neutrophil infiltration and TNF-α production in mice. With the same model, the current investigation focused on the role of the airway epithelium, a first-line barrier and a prime target of inhaled toxicants. We report that LXA4 strongly inhibited LPS-induced ALI in mice, in part by protecting the airway epithelium and preserving the E-cadherin expression and airway permeability. Using a cryo-imaging assay and fluorescence detection, LXA4 was shown to block LPS-induced ROS generation and preserve mitochondrial redox status both in vivo and in vitro. To further assess whether and how NF-E2-related factor 2 (Nrf2) was involved in the protective effect of LXA4, fluorescence resonance energy transfer (FRET) analysis was employed in human epithelial cell line (16HBE), to determine the relative distance between Nrf2 and its negative regulator or cytosolic inhibitor, Kelch-like ECH-associated protein 1 (Keap1). It provided us the evidence that LXA4 further promoted the dissociation of Nrf2 and Keap1 in LPS-treated 16HBE cells. The results also showed that LXA4 activates Nrf2 by phosphorylating it on Ser40 and triggering its nuclear translocation. Moreover, when the plasmid expression dominant negative mutation of Nrf2 was transfected as an inhibitor of wild-type Nrf2, the protective effect of LXA4 on E-cadherin expression was almost completely blocked. These results provide a new mechanism by which LXA4 inhibits LPS-induced ALI through Nrf2-mediated E-cadherin expression. PMID:26845617

  15. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease.

    PubMed

    Ceccarelli, Sara; Panera, Nadia; Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-12-01

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH. PMID:26573228

  16. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease

    PubMed Central

    Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-01-01

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH). We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH. In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH. PMID:26573228

  17. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  18. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  19. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    PubMed Central

    2012-01-01

    Background Injurious mechanical ventilation (MV) may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p.) lipopolysaccharide (LPS)-treated rats were ventilated with low (6 ml/kg) and high (19 ml/kg) tidal volumes (Vt) under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP), central venous pressure (CVP), cardiac output (CO) and pulmonary plateau pressure (Pplat) were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM)-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation. PMID:22433071

  20. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-Juan; Jiang, Juan-Xia; Ren, Qian-Qian; Jia, Yong-Liang; Shen, Jian; Shen, Hui-Juan; Lin, Xi-Xi; Lu, Hong; Xie, Qiang-Min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5mg/ml was comparable to that of ambroxol at 20mg/ml i.v. and dexamethasone at 0.5mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. PMID:26872986

  1. Effect of Rabbit Epididymal Antimicrobial Peptide, REHb?P, on LPS-Induced Proinflammatory Cytokine Responses in Human Vaginal Cells In Vitro

    PubMed Central

    Reddy, K. V. R.; Sukanya, D.; Patgaonkar, M. S.; Selvaakumar, C.

    2012-01-01

    Antimicrobial peptides (AMP's) protect epithelial surfaces including epididymis against pathogens and play a key role in orchestrating various defensive responses. Recently, we have identified one such AMP, rabbit epididymal hemoglobin-? subuit (REHb?P) from the epididymal fluid of rabbit, Oryctologus cuniculus. The demonstration of a protective role of REHb?P in epididymal epithelial cells (EPEC's) led us to investigate: (1) the identification of LPS interactive domain in REHb?P, and (2) whether the REHb?P of rabbit origin mediates vaginal cellular immune responses of another species (human). HeLa-S3, human vaginal epithelial cells (hVECs) were exposed to LPS or the LPS-stimulated cells treated with REHb?P or neutral peptide, nREHb?P. Effect of LPS and cytokines (IL-6 and IL-1?) and chemokines (IL-8, MCP-1) levels was determined in the culture supernatants. In response to the LPS, hVECs synthesized these mediators and the levels were significantly higher than controls. This enhancing effect was ameliorated when the LPS-induced hVECs were treated with REHb?P. Similar results were obtained on NF-?B protein and hBD-1 mRNA expression. Confocal microscopy studies revealed that REHb?P attenuated the LPS-induced internalization of E. coli by macrophages. The chemotaxis studies performed using Boyden chamber Transwell assay, which showed elevated migration of U937 cells when the supernatants of LPS-induced hVECs were used, and the effect was inhibited by REHb?P. REHb?P was found to be localized on the acrosome of rabbit spermatozoa, suggesting its role in sperm protection beside sperm function. In conclusion, REHb?P may have the potential to develop as a therapeutic agent for reproductive tract infections (RTI's). PMID:22505946

  2. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-?B Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30?ng/mL of RANKL, costimulated with PgLPS (1?g/mL), and treated with AcE (50-1000?g/mL) or Qt (1.25, 2.5, or 5?M). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-I?B? and I?B? degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1? and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-?B pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-?B activation. PMID:26273314

  3. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  4. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca(2+)/CaMKK/AMPK Axis.

    PubMed

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-?B in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  5. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis

    PubMed Central

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-?B in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  6. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-?B and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-?B, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-?B/STAT signaling cascade. PMID:25839778

  7. Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2015-10-01

    Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases. PMID:26091627

  8. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-?B and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-?) and interleukin (IL-1?) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-?B) p65 and degradation inhibitor of NF-?B? (I?B?) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis. PMID:26202808

  9. Synthesis and Anti-Inflammatory Evaluation of Novel C66 Analogs for the Treatment of LPS-Induced Acute Lung Injury.

    PubMed

    Feng, Jianpeng; Xiao, Bing; Chen, Wenbo; Ding, Ting; Chen, Lingfeng; Yu, Pengtian; Xu, Fengli; Zhang, Huajie; Liu, Zhiguo; Liang, Guang

    2015-10-01

    We previously reported a symmetric monocarbonyl analog of curcumin (MACs), C66, which demonstrated potential anti-inflammatory activity and low toxicity. In continuation of our ongoing research, we designed and synthesized 34 asymmetric MACs based on C66 as a lead molecule. A majority of the C66 analogs effectively inhibited LPS induction of TNF-? and IL-6 expression. Additionally, a preliminary SAR was conducted. Furthermore, active compounds 4a11 and 4a16 were found to effectively reduce theW/D ratio in the lungs and the protein concentration in the bronchoalveolar lavage fluid (BALF). Meanwhile, a histopathological examination indicated that these two analogs significantly attenuate tissue injury in the lungs with LPS-induced ALI rats. 4a11 and 4a16 also inhibited mRNA expression of several inflammatory cytokines, including TNF-?, IL-6, IL-1?, COX-2, ICAM-1 and VCAM-1, in the Beas-2B cellsafter LPS challenge. Altogether, the data exhibit a series of new C66 analogs as promising anti-inflammatory agents for the treatment of LPS-induced ALI. PMID:25727339

  10. A Single 9-Colour Flow Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in a Model of LPS-Induced Pulmonary Inflammation.

    PubMed

    Barnett-Vanes, Ashton; Sharrock, Anna; Birrell, Mark A; Rankin, Sara

    2016-01-01

    The rat is a commonly used model for immunological investigation. Yet basic research and characterisation of leukocyte populations and sub-sets lags far behind murine research, with inconsistency on reported leukocyte markers and their overlap. These shortcomings limit the opportunity for more complex and advanced rat immunology research. In this study, we developed a robust 9-colour flow-cytometric protocol to elucidate the major blood and tissue rat leukocyte populations, and validated it in a model of LPS-induced pulmonary inflammation. Blood and tissues (lung, BALF, spleen, liver, bone marrow) from nave Sprague-Dawley rats were collected and analysed by flow cytometry (FCM). Rats were exposed to aerosolised saline or LPS (1mg/mL), at 3 and 24hrs thereafter blood, lung and BALF were collected and analysed using FCM and ELISA. Neutrophils, two monocyte subsets, NK Cells, B Cells, CD4+, CD8+ T Cells and alveolar macrophages can be identified simultaneously across different tissues using a 9-colour panel. Neutrophils and monocytes can be distinguished based upon differential expression of CD43 and His48. Neutrophils and CD43Lo/His48Hi monocyte-macrophages are elevated in the lung at 3 and 24hrs during LPS-induced pulmonary inflammation. This validated method for leukocyte enumeration will offer a platform for greater consistency in future rat immunology and inflammation research. PMID:26764486

  11. A Single 9-Colour Flow Cytometric Method to Characterise Major Leukocyte Populations in the Rat: Validation in a Model of LPS-Induced Pulmonary Inflammation

    PubMed Central

    Barnett-Vanes, Ashton; Sharrock, Anna; Birrell, Mark A.; Rankin, Sara

    2016-01-01

    The rat is a commonly used model for immunological investigation. Yet basic research and characterisation of leukocyte populations and sub-sets lags far behind murine research, with inconsistency on reported leukocyte markers and their overlap. These shortcomings limit the opportunity for more complex and advanced rat immunology research. In this study, we developed a robust 9-colour flow-cytometric protocol to elucidate the major blood and tissue rat leukocyte populations, and validated it in a model of LPS-induced pulmonary inflammation. Blood and tissues (lung, BALF, spleen, liver, bone marrow) from naïve Sprague-Dawley rats were collected and analysed by flow cytometry (FCM). Rats were exposed to aerosolised saline or LPS (1mg/mL), at 3 and 24hrs thereafter blood, lung and BALF were collected and analysed using FCM and ELISA. Neutrophils, two monocyte subsets, NK Cells, B Cells, CD4+, CD8+ T Cells and alveolar macrophages can be identified simultaneously across different tissues using a 9-colour panel. Neutrophils and monocytes can be distinguished based upon differential expression of CD43 and His48. Neutrophils and CD43Lo/His48Hi monocyte-macrophages are elevated in the lung at 3 and 24hrs during LPS-induced pulmonary inflammation. This validated method for leukocyte enumeration will offer a platform for greater consistency in future rat immunology and inflammation research. PMID:26764486

  12. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages. PMID:26920260

  13. The inhibitory effects of Geranium thunbergii on interferon-?- and LPS-induced inflammatory responses are mediated by Nrf2 activation.

    PubMed

    Choi, Hee-Jin; Choi, Hee-Jung; Park, Mi-Ju; Lee, Ji-Yeon; Jeong, Seung-Il; Lee, Seongoo; Kim, Kyun Ha; Joo, Myungsoo; Jeong, Han-Sol; Kim, Jai-Eun; Ha, Ki-Tae

    2015-05-01

    Geranium thunbergii Sieb. et Zucc. (GT; which belongs to the Geraniaceae family) has been used as a traditional medicine in East Asia for the treatment of inflammatory diseases, including arthritis and diarrhea. However, the underlying mechanisms of the anti-inflammatory effects of GT remain poorly understood. In the present study, we examined the mechanisms responsible for the anti-inflammatory activity of GT in macrophages. The results revealed that GT significantly inhibited the lipopolysaccharide (LPS)- and interferon-? (IFN-?)-induced expression of pro-inflammatory genes, such as inducible nitric oxide synthase, tumor necrosis factor-? and interleukin-1?, as shown by RT-PCR. However, the inhibitory effects of GT on LPS- and IFN-?-induced inflammation were associated with an enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) activity, but not with the suppression of nuclear factor (NF)-?B activity, as shown by western blot analysis. In addition, in bone marrow-derived macrophages (BMDM) isolated from Nrf2 knockout mice, GT did not exert any inhibitory effect on the LPS- and IFN-?-induced inflammation. Taken together, our findings indicate that the anti-inflammatory effects of GT may be associated with the activation of Nrf2, an anti-inflammatory transcription factor. PMID:25761198

  14. The inhibitory effects of Geranium thunbergii on interferon-?- and LPS-induced inflammatory responses are mediated by Nrf2 activation

    PubMed Central

    CHOI, HEE-JIN; CHOI, HEE-JUNG; PARK, MI-JU; LEE, JI-YEON; JEONG, SEUNG-IL; LEE, SEONGOO; KIM, KYUN HA; JOO, MYUNGSOO; JEONG, HAN-SOL; KIM, JAI-EUN; HA, KI-TAE

    2015-01-01

    Geranium thunbergii Sieb. et Zucc. (GT; which belongs to the Geraniaceae family) has been used as a traditional medicine in East Asia for the treatment of inflammatory diseases, including arthritis and diarrhea. However, the underlying mechanisms of the anti-inflammatory effects of GT remain poorly understood. In the present study, we examined the mechanisms responsible for the anti-inflammatory activity of GT in macrophages. The results revealed that GT significantly inhibited the lipopolysaccharide (LPS)- and interferon-? (IFN-?)-induced expression of pro-inflammatory genes, such as inducible nitric oxide synthase, tumor necrosis factor-? and interleukin-1?, as shown by RT-PCR. However, the inhibitory effects of GT on LPS- and IFN-?-induced inflammation were associated with an enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) activity, but not with the suppression of nuclear factor (NF)-?B activity, as shown by western blot analysis. In addition, in bone marrow-derived macrophages (BMDM) isolated from Nrf2 knockout mice, GT did not exert any inhibitory effect on the LPS- and IFN-?-induced inflammation. Taken together, our findings indicate that the anti-inflammatory effects of GT may be associated with the activation of Nrf2, an anti-inflammatory transcription factor. PMID:25761198

  15. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.

  16. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage.

    PubMed

    Nmeth, Beta; Doczi, Judit; Csete, Dniel; Kacso, Gergely; Ravasz, Dora; Adams, Daniel; Kiss, Gergely; Nagy, Adam M; Horvath, Gergo; Tretter, Laszlo; Mcsai, Attila; Cspnyi-Kmi, Roland; Iordanov, Iordan; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the ?-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.-Nmeth, B., Doczi, J., Csete, D., Kacso, G., Ravasz, D., Adams, D., Kiss, G., Nagy, A. M., Horvath, G., Tretter, L., Mcsai, A., Cspnyi-Kmi, R., Iordanov, I., Adam-Vizi, V., Chinopoulos, C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. PMID:26358042

  17. Recombinant rat CC16 protein inhibits LPS-induced MMP-9 expression via NF-?B pathway in rat tracheal epithelial cells.

    PubMed

    Pang, Min; Wang, Hailong; Bai, Ji-Zhong; Cao, Dawei; Jiang, Yi; Zhang, Caiping; Liu, Zhihong; Zhang, Xinri; Hu, Xiaoyun; Xu, Jianying; Du, Yongcheng

    2015-10-01

    Clara cell protein (CC16) is a well-known anti-inflammatory protein secreted by the epithelial Clara cells of the airways. It is involved in the development of airway inflammatory diseases such as chronic obstructive pulmonary disease and asthma. Previous studies suggest that CC16 gene transfer suppresses expression of interleukin (IL)-8 in bronchial epithelial cells. However, its role in the function of these cells during inflammation is not well understood. In this study, we evaluated the effect of CC16 on the expression of matrix metalloproteinase (MMP)-9 in lipopolysaccharide (LPS)-stimulated rat tracheal epithelial cells and its underlying molecular mechanisms. We generated recombinant rat CC16 protein (rCC16) which was bioactive in inhibiting the activity of phospholipase A2. rCC16 inhibited LPS-induced MMP-9 expression at both mRNA and protein levels in a concentration-dependent (0-2?g/mL) manner, as demonstrated by real time RT-PCR, ELISA, and zymography assays. Gene transcription and DNA binding studies demonstrated that rCC16 suppressed LPS-induced NF-?B activation and its binding of gene promoters as identified by luciferase reporter and gel mobility shift assays, respectively. Western blotting and immunofluorescence staining analyses further revealed that rCC16 concentration dependently inhibited the effects of LPS on nuclear increase and cytosol reduction of NF-?B, on the phosphorylation and reduction of NF-?B inhibitory I?B?, and on p38 MAPK-dependent NF-?B activation by phosphorylation at Ser276 of its p65 subunit. These data indicate that inhibition of LPS-mediated NF-?B activation by rCC16 involves both translocation- and phosphorylation-dependent signaling pathways. When the tracheal epithelial cells were pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, cellular uptake of rCC16 and its inhibition of LPS-induced NF-?B nuclear translocation and also MMP-9 production were significantly abolished. Taken together, our data suggest that clathrin-mediated uptake of rCC16 suppresses LPS-mediated inflammatory MMP-9 production through inactivation of NF-?B and p38 MAPK pathways in tracheal epithelial cells. PMID:25716019

  18. Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo.

    PubMed

    Zhu, Xiang; Gao, Jun J; Landao-Bassonga, Euphemie; Pavlos, Nathan J; Qin, An; Steer, James H; Zheng, Ming H; Dong, Yang; Cheng, Tak S

    2016-03-15

    Osteoclasts (OCs) play a pivotal role in a variety of lytic bone diseases including osteoporosis, arthritis, bone tumors, Paget's disease and the aseptic loosening of orthopedic implants. The primary focus for the development of bone-protective therapies in these diseases has centered on the suppression of OC formation and function. In this study we report that thonzonium bromide (TB), a monocationic surface-active agent, inhibited RANKL-induced OC formation, the appearance of OC-specific marker genes and bone-resorbing activity in vitro. Mechanistically, TB blocked the RANKL-induced activation of NF-κB, ERK and c-Fos as well as the induction of NFATc1 which is essential for OC formation. TB disrupted F-actin ring formation resulting in disturbances in cytoskeletal structure in mature OCs during bone resorption. Furthermore, TB exhibited protective effects in an in vivo murine model of LPS-induced calvarial osteolysis. Collectively, these data suggest that TB might be a useful alternative therapy in preventing or treating osteolytic diseases. PMID:26906912

  19. Delphinidin Inhibits LPS-Induced MUC8 and MUC5B Expression Through Toll-like Receptor 4-Mediated ERK1/2 and p38 MAPK in Human Airway Epithelial Cells

    PubMed Central

    Bae, Chang Hoon; Jeon, Bo Sung; Choi, Yoon Seok; Song, Si-Youn

    2014-01-01

    Objectives Delphinidin is one of the anthocyanidins. It is believed to have anti-inflammatory property including antioxidant, antiangiogenic, and anti-cancer properties. However, the anti-inflammatory effect of delphinidin in mucin-producing human airway epithelial cells has not been determined. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of delphinidin in lipopolysaccharide (LPS)-induced MUC8 and MUC5B expression in human airway epithelial cells. Methods In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay were used for investigating the expressions of MUC8, MUC5, and Toll-like receptor 4 (TLR4), after LPS treatment and delphinidin treatment. And the signaling pathway of delphinidin on LPS-induced MUC8 and MUC5B expression was investigated using the RT-PCR, and immunoblot analysis. To confirm the involvement of TLR4 in LPS-induced MUC8 and MU5B expression, the cells were transfected with TLR4 siRNA. Results In NCI-H292 airway epithelial cells, LPS (100 ng/mL) significantly induced TLR4, MUC8, and MUC5B expression. TLR4 siRNA significantly blocked LPS-induced MUC8 and MUC5B mRNA expression. LPS (100 ng/mL) significantly activated the phosphorylation of extracellular signal related kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Delphinidin (50 and 100 µM) inhibited LPS-induced TLR4, MUC8, and MUC5B expression and LPS-induced phosphorylation of ERK1/2 and p38 MAPK. In the primary cultures of normal nasal epithelial cells, delphinidin (50 and 100 µM) significantly inhibited LPS-induced TLR4, MUC8, and MUC5B gene expression. Conclusion These results suggest that delphinidin attenuates LPS-induced MUC8 and MUC5B expression through the TLR4-mediated ERK1/2 and p38 MAPK signaling pathway in human airway epithelial cells. These findings indicated that delphinidin may be a therapeutic agent for control of inflammatory airway diseases. PMID:25177436

  20. LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP

    PubMed Central

    Hochdörfer, Thomas; Tiedje, Christopher; Stumpo, Deborah J.; Blackshear, Perry J.; Gaestel, Matthias; Huber, Michael

    2016-01-01

    The production of the proinflammatory cytokines TNF-α and IL-6 is regulated by various mRNA-binding proteins, influencing stability and translation of the respective transcripts. Research in macrophages has shown the importance of the p38-MK2-tristetraprolin (TTP) axis for regulation of TNF-α mRNA stability and translation. In the current study we examined a possible involvement of p38 and TTP in LPS-induced cytokine production in bone marrow-derived mast cells (BMMCs). Using pharmacological inhibitors we initially found a strong dependence of LPS-induced TNF-α and IL-6 production on p38 activation, whereas activation of the Erk pathway appeared dispensable. LPS treatment also induced p38-dependent expression of the TTP gene. This prompted us to analyze the proinflammatory cytokine response in BMMCs generated from TTP-deficient mice. Unexpectedly, there were no significant differences in cytokine production between TTP-deficient and WT BMMCs in response to LPS. Gene expression and cytokine production of TNF-α and IL-6 as well as stability of the TNF-α transcript were comparable between TTP-deficient and WT BMMCs. In contrast to TTP mRNA expression, TTP protein expression could not be detected in BMMCs. While we successfully precipitated and detected TTP from lysates of LPS-stimulated RAW 264.7 macrophages, this was not accomplished from BMMC lysates. In contrast, we found mRNA and protein expression of the other TIS11 family members connected to regulation of mRNA stability, BRF1 and BRF2, and detected their interaction with 14-3-3 proteins. These data suggest that control of cytokine mRNA stability and translation in MCs is exerted by proteins different from TTP. PMID:23499908

  1. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells.

    PubMed

    Yoshioka, Yasuhiro; Sugino, Yuta; Tozawa, Azusa; Yamamuro, Akiko; Kasai, Atsushi; Ishimaru, Yuki; Maeda, Sadaaki

    2016-02-01

    Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells. PMID:26908040

  2. The influence of ETA and ETB receptor blockers on LPS-induced oxidative stress and NF-?B signaling pathway in heart.

    PubMed

    Piechota-Polanczyk, Aleksandra; Kleniewska, Paulina; Gor?ca, Anna

    2012-09-01

    The aim of this study was to assess whether an endothelin-A receptor (ETA-R) blocker, BQ123, or an endothelin-B (ETB-R) receptor blocker, BQ788, influences nuclear factor kappa beta (NF-?B) pathway, free radical generation, tumor necrosis factor-alpha (TNF-?) concentration, and glutathione redox system in hearts obtained from lipopolysaccharide (LPS)-induced endotoxic rats. The study was performed on rats divided into groups: 1) saline, 2) saline + LPS (15 mg/kg), 3) BQ123 (1 mg/kg b.w.) + LPS, 4) BQ123 (0.5 mg/kg b.w.) + LPS, 5) BQ788 (3 mg/kg b.w.) + LPS. The ETA-R and ETB-R antagonists were injected i.v. 30 min before LPS administration. In rats, BQ123 caused a significant decrease in TBARS (p < 0.05) but not in H2O2 concentration. It also decreased tissue protein level and improved tissue redox status (p < 0.01). Only a dose of 1 mg/kg decreased TNF-? concentration (p < 0.05). BQ788 lowered TBARS, H2O2 and protein concentration (p < 0.05; p < 0.02; p < 0.001, respectively), however, it did not affect TNF-? concentration. Neither ETA-R nor ETB-R blockers influenced LPS-induced increase in p65 subunit level and activation of NF-?B pathway. Our results demonstrated that ETA-R blockage is more effective in inhibiting free radical generation and improving heart antioxidant properties than ETB-R blockage under oxidative stress. NF-?B pathway is not incorporated in ETA-R and ETB-R influence on ROS production. PMID:23047940

  3. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Mrcio M; Moraes, Mrcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  4. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-?B Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mrio Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-?B activation and IL-8 production. These data were confirmed by Western blot analysis of NF-?B translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-?B translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  5. Different Effects of Farrerol on an OVA-Induced Allergic Asthma and LPS-induced Acute Lung Injury

    PubMed Central

    Wei, Miaomiao; Yang, Xiaofeng; Cai, Qinren; Deng, Xuming

    2012-01-01

    Background Farrerol, isolated from rhododendron, has been shown to have the anti-bacterial activity, but no details on the anti-inflammatory activity. We further evaluated the effects of this compound in two experimental models of lung diseases. Methodology/Principal Findings For the asthma model, female BALB/c mice were challenged with ovalbumin (OVA), and then treated daily with farrerol (20 and 40 mg/kg, ip) as a therapeutic treatment from day 22 to day 26 post immunization. To induce acute lung injury, female BALB/c mice were injected intranasally with LPS and treated with farrerol (20 and 40 mg/kg, i.p.) 1 h prior to LPS stimulation. Inflammation in the two different models was determined using ELISA, histology, real-time PCR and western blot. Farrerol significantly regulated the phenotype challenged by OVA, like cell number, Th1 and Th2 cytokines levels in the BALF, the OVA-specific IgE level in the serum, goblet cell hyperplasia in the airway, airway hyperresponsiveness to inhaled methacholine and mRNA expression of chemokines and their receptors. Furthermore, farrerol markedly attenuated the activation of phosphorylation of Akt and nuclear factor-?B (NF-?B) subunit p65 both in vivo and in vitro. However, farrerol has no effect on the acute lung injury model. Conclusion/Significance Our finding demonstrates that the distinct anti-inflammatory effect of farrerol in the treatment of asthma acts by inhibiting the PI3K and NF-?B pathway. PMID:22563373

  6. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  7. Low dose of carbon monoxide intraperitoneal injection provides potent protection against GalN/LPS-induced acute liver injury in mice.

    PubMed

    Wen, Zongmei; Liu, Yan; Li, Feng; Wen, Tao

    2013-12-01

    Carbon monoxide (CO) is an important effector-signaling molecule involved in various pathophysiological processes. Here we investigated the protective effects of exogenous CO in a murine model of acute liver damage induced by d-galactosamine (GalN) and lipopolysaccharide (LPS). Exogenous CO gas was administered to mice via intraperitoneal injection (first at a dose of 15?ml?kg(-1) and then, 6?h later, 8?ml?kg(-1)), which caused a significant elevation of blood carboxyhemoglobin levels of up to 12-14% for more than 12?h. GalN/LPS were given to induce acute liver damage in mice 30?min prior to CO exposure. This showed that GalN/LPS induced severe liver injury in mice, whereas CO injection remarkably improved the survival rate of mice and led to attenuated hepatocellular damage. CO exhibited anti-oxidative capabilities by inhibiting hepatic malondialdehyde contents and restoring superoxide dismutase and glutathione, as well as by reducing inducible NOS/NO production. The anti-apoptotic and anti-inflammatory effects of CO were substantial, characterized by a notable inhibition of hepatocyte apoptosis and a reduction of pro-inflammatory cytokines in mice. Our findings thus supported the hypothesis that exogenous CO provides protective effects against acute liver damage in mice, mainly dependent on its anti-oxidative, anti-inflammatory and anti-apoptotic properties. PMID:23015538

  8. Monocyte B7 and Sialyl Lewis X modulates the efficacy of IL-10 down-regulation of LPS-induced monocyte tissue factor in whole blood.

    PubMed

    Warnes, G; Biggerstaff, J P; Francis, J L

    1998-07-01

    Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade. PMID:9695978

  9. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein

    PubMed Central

    HOU, YU SEN; LIU, LING YING; CHAI, JIA KE; YU, YONG HUI; DUAN, HONG JIE; HU, QUAN; YIN, HUI NAN; WANG, YI HE; ZHUANG, SHU BO; FAN, JUN; CHU, WAN LI; MA, LI

    2015-01-01

    Mesenchymal stem cell (MSC)-based regenerative therapy is currently regarded as a novel approach with which to repair damaged tissues. However, the efficiency of MSC transplantation is limited due to the low survival rate of engrafted MSCs. Lipopolysaccharide (LPS) production is increased in numerous diseases and serves an essential function in the regulation of apoptosis in a variety of cell types. Previous studies have indicated that low-dose LPS pretreatment contributes to cytoprotection. In the current study, LPS was demonstrated to induce apoptosis in human umbilical cord mesenchymal stem cells (hUCMSCs) via the activation of caspase, in a dose-dependent manner. Low-dose LPS pretreatment may protect hUCMSCs against apoptosis induced by high-dose LPS, by upregulating the expression of cellular FADD-like IL-1?-converting enzyme-inhibitory protein (c-FLIP). The results of the present study indicate that pretreatment with an appropriate concentration of LPS may alleviate high-dose LPS-induced apoptosis. PMID:25955291

  10. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein.

    PubMed

    Hou, Yu Sen; Liu, Ling Ying; Chai, Jia Ke; Yu, Yong Hui; Duan, Hong Jie; Hu, Quan; Yin, Hui Nan; Wang, Yi He; Zhuang, Shu Bo; Fan, Jun; Chu, Wan Li; Ma, Li

    2015-08-01

    Mesenchymal stem cell (MSC)-based regenerative therapy is currently regarded as a novel approach with which to repair damaged tissues. However, the efficiency of MSC transplantation is limited due to the low survival rate of engrafted MSCs. Lipopolysaccharide (LPS) production is increased in numerous diseases and serves an essential function in the regulation of apoptosis in a variety of cell types. Previous studies have indicated that low-dose LPS pretreatment contributes to cytoprotection. In the current study, LPS was demonstrated to induce apoptosis in human umbilical cord mesenchymal stem cells (hUCMSCs) via the activation of caspase, in a dose-dependent manner. Low-dose LPS pretreatment may protect hUCMSCs against apoptosis induced by high-dose LPS, by upregulating the expression of cellular FADD-like IL-1?-converting enzyme-inhibitory protein (c-FLIP). The results of the present study indicate that pretreatment with an appropriate concentration of LPS may alleviate high-dose LPS-induced apoptosis. PMID:25955291

  11. Anti-inflammatory activities of phospholipase C inhibitor U73122: Inhibition of monocyte-to-macrophage transformation and LPS-induced pro-inflammatory cytokine expression.

    PubMed

    Zhu, Liqian; Yuan, Chen; Ma, Yan; Ding, Xiuyan; Zhu, Guoqiang; Zhu, Qiyun

    2015-12-01

    A wide range of biological processes are controlled by phospholipase C (PLC)/Ca(2+) signaling, which could be blocked by PLC-specific inhibitor U73122. Whether inhibition of PLC with chemical inhibitor U73122 affects the inflammatory response in monocytes/macrophages is currently unknown. In this study, we demonstrated that U73122 inhibited PMA-induced in vitro differentiation of human promonocytic U937 cells into macrophages as reflected by the reduction of cell adherence and the decreased expression of macrophage specific marker CD163. It is possible that U73122 blocked PMA-induced adhesion of U937 cells partially by down regulation and inactivation of both Pyk2 and paxillin signaling. Furthermore, the expression of LPS-induced pro-inflammatory cytokines TNF-? and IL-1? was significantly blocked by U73122 in both dU937 cells and mouse primary peritoneal macrophages. These results suggest that PLC is involved in the sophisticated inflammatory response by monocytes/macrophages, and thereby chemical antagonists of PLC may be potential agents for the suppression of inflammatory response. PMID:26428848

  12. miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway

    PubMed Central

    Wang, Xiaoliang; Wang, Xiaoli; Liu, Xuelian; Wang, Xiaoli; Xu, Jiaju; Hou, Shanshan; Zhang, Xiaohui; Ding, Yanjie

    2015-01-01

    Infection in neonates, particular the neonatal sepsis continues to be a global problem with significant morbidity and mortality. The diagnosis of neonatal sepsis is complicated by nonspecific clinical symptomatology, a high-false negative rate, and a delay in obtaining blood culture results. MicroRNAs (miRNAs) have recently been used as finger prints for sepsis, and have been validated to be potential sepsis biomarker recently. In the present study, we investigated the level of several miRNAs, such as miR-15a, miR-16, miR-15b, and miR-223, which have been identified as a biomarker in adult sepsis, in neonatal sepsis patients, and then we analyzed the association of miR-15a/16 with the patient prognosis. Results demonstrated that the level of miR-15a/16 was up-regulated in neonatal sepsis patients than in normal neonatal subjects; however, no statistical difference was disclosed in the miR-15b and miR-223 level between two groups. And the ROC analysis indicated the miR-15a and miR-16 were potent fingerprints for diagnosing neonate sepsis. In order to explore the miR-15a/16 function on the lipopolysaccharide (LPS)-induced inflammatory pathway, the mice macrophage RAW264.7 cells were transiently transfected with miR-15a/16 mimics. And it was demonstrated that the miR-15a/16 transfection down-regulated the Toll-like receptor 4 (TLR4) and Interleukin-1 receptor-associated kinase 1 (IRAK-1) transcription level with a statistical difference in the LPS treated cells. And the suppression capability of miR-15a/16 on the expression of TLR-4 and IRAK-1 were evaluated by western blot. Thus, in present study, we identified miR-15a/16 as potential biomarker for the diagnosis and prognosis of neonatal sepsis, and the upregulated miR-15a/16 downregulated the LPS-induced inflammatory pathway. PMID:26131152

  13. High glucose increases LPS-induced DC apoptosis through modulation of ERK1/2, AKT and Bax/Bcl-2

    PubMed Central

    2014-01-01

    Background This study investigates the effect of glucose on the LPS-induced apoptosis of dendritic cells in the intestinal tract of mice and the dendritic cell line DC2.4. Methods Flow cytometry was used to detect dendritic cell apoptosis both in vivo and in vitro. Hoechst 33258 staining was used to detect the morphological changes characteristic of apoptotic nuclei. Expression of apoptosis related proteins was investigated by western blot analysis and immunohistochemistry. Results Pretreatment with a high concentration of glucose increased apoptosis of LPS-treated dendritic cells both in vivo and in vitro at 24h. No effect was evident at the earlier time points of 15min and 6h in vitro. Furthermore, at 24hours the expression of the survival proteins AKT, ERK and Bcl-2 was decreased, while the expression of the proapoptotic protein Bax was increased. AKT, ERK, Bcl-2 and Bax were mainly located in the cytoplasm by immunohistochemistry. Conclusions These results suggest that high glucose concentrations might prime dendritic cells for apoptosis induced by LPS in the intestinal tract through upregulating the expression of Bax and downregulating the expression of AKT, ERK and Bcl-2. Therefore, this study may give clues to understanding the immunological mechanism behind gastrointestinal complications in diabetes mellitus. PMID:24885625

  14. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    PubMed Central

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS. PMID:26457108

  15. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-{kappa}B and MAPK activation in RAW 264.7 macrophages

    SciTech Connect

    Reddy, D. Bharat; Reddanna, Pallu

    2009-03-27

    Chebulagic acid (CA), a natural anti-oxidant, showed potent anti-inflammatory effects in LPS-stimulated RAW 264.7, a mouse macrophage cell line. These effects were exerted via inhibition of NO and PGE{sub 2} production and down-regulation of iNOS, COX-2, 5-LOX, TNF-{alpha} and IL-6. CA inhibited NF-{kappa}B activation by LPS, and this was associated with the abrogation of I{kappa}B-{alpha} phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK 1/2 and JNK in LPS-stimulated RAW 264.7 cells was suppressed by CA in a concentration-dependent manner. LPS-induced generation of reactive oxygen species (ROS) was also effectively inhibited by CA. These results suggest that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-{kappa}B activation and MAP kinase phosphorylation.

  16. Targeting the annexin 1-formyl peptide receptor 2/ALX pathway affords protection against bacterial LPS-induced pathologic changes in the murine adrenal cortex.

    PubMed

    Buss, Nicholas A P S; Gavins, Felicity N E; Cover, Patricia O; Terron, Andrea; Buckingham, Julia C

    2015-07-01

    Hypothalamo-pituitary-adrenocortical dysfunction contributes to morbidity and mortality in a high proportion of patients with sepsis. Here, we provide new insights into the underlying adrenal pathology. Using a murine model of endotoxemia (LPS injection), we demonstrate that adrenal insufficiency is triggered early in the disease. LPS induced a local inflammatory response in the adrenal gland within 4 hours of administration, coupled with increased expression of mRNAs for annexin A1 (AnxA1) and the formyl peptide receptors [(Fprs) 1, 2, and 3], a loss of lipid droplets in cortical cells (index of availability of cholesterol, the substrate for steroidogenesis), and a failure to mount a steroidogenic response to ACTH. Deletion of AnxA1 or Fpr2/3 in mice prevented lipid droplet loss, but not leukocyte infiltration. LPS increased adrenal myeloid differentiation primary response gene 88 and TLR2 mRNA expression, but not lymphocyte antigen 96 or TLR4. By contrast, neutrophil depletion prevented leukocyte infiltration and increased AnxA1, Fpr1, and Fpr3 mRNAs but had no impact on lipid droplet loss. Our novel data demonstrate that AnxA1 and Fpr2 have a critical role in the manifestation of adrenal insufficiency in this model, through regulation of cholesterol ester storage, suggesting that pharmacologic interventions targeting the AnxA1/FPR/ALX pathway may provide a new approach for the maintenance of adrenal steroidogenesis in sepsis. PMID:25818588

  17. Flavonoid Fraction of Bergamot Juice Reduces LPS-Induced Inflammatory Response through SIRT1-Mediated NF-?B Inhibition in THP-1 Monocytes

    PubMed Central

    Risitano, Roberto; Curr, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-?B signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-?B inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1?, TNF-?) by a mechanism involving the inhibition of NF-?B activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-?Bmediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046

  18. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-?B translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells. PMID:26120869

  19. Protective Role of Flavonoids and Lipophilic Compounds from Jatropha platyphylla on the Suppression of Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Ambriz-Pérez, Dulce L; Bang, Woo Young; Nair, Vimal; Angulo-Escalante, Miguel A; Cisneros-Zevallos, Luis; Heredia, J Basilio

    2016-03-01

    Seventeen polyphenols (e.g, apigenin, genistein, and luteolin glycosides) and 11 lipophilic compounds (e.g., fatty acids, sterols, and terpenes) were detected by LC-MS/MS-ESI and GC-MS, respectively, in Jatropha platyphylla. Extracts from pulp, kernel, and leaves and fractions were studied to know their effect on some pro-inflammatory mediators. Phenolic and lipophilic extracts showed significant inhibitory effects on ROS and NO production while not affecting mitochondrial activity or superoxide generation rate in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. In addition, NO production was also diminished by lipophilic leaf fractions F1 and F2 with the latter fraction showing a greater effect and composed mainly of sterols and terpene. Furthermore, total extracts showed nonselective inhibitions against cyclooxygenase COX-1 and COX-2 activities. All together, these results suggest that J. platyphylla extracts have potential in treating inflammatory diseases and their activity is mediated by flavonoids and lipophilic compounds. PMID:26872073

  20. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  1. Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage.

    TOXLINE Toxicology Bibliographic Information

    Haglund L; Bernier SM; Onnerfjord P; Recklies AD

    2008-03-01

    Activation of toll-like receptors (TLR) in articular chondrocytes has been reported to increase the catabolic compartment, leading to matrix degradation, while the main consequence of TLR activation in monocytic cells is the expression and secretion of components of the innate immune response, particularly that of inflammatory cytokines. The objective of the work reported here was to obtain a more complete picture of the response repertoire of articular chondrocytes to TLR activation. Mass spectrometry was used to analyse the secretome of stimulated and unstimulated cells. Characterization of TLR expression in rat articular chondrocytes by RT/PCR indicated that TLR4 was the major receptor form. Exposure of these cells to lipopolysaccharide (LPS), the well-characterized TLR4 ligand, induced production not only of the matrix metalloproteinases MMP3 and 13, but also of components traditionally associated with the innate immune response, such as the complement components C1r, C3 and complement factor B, long pentraxin-3 and osteoglycin. Neither TNF-alpha nor IL-1 was detectable in culture media following exposure to LPS. One of the most prominently-induced proteins was the chitinase-like protein, Chi3L1, linking its expression to the innate immune response repertoire of articular chondrocytes. In intact femoral heads, LPS induced expression of Chi3L1 in chondrocytes close to the articular surface, suggesting that only these cells mount a stress response to LPS. Thus articular chondrocytes have a capacity to respond to TLR activation, which results in the expression of matrix metalloproteases as well as subsets of components of the innate immune response without significant increases in the production of inflammatory cytokines. This could influence the erosive processes leading to cartilage degeneration as well as the repair of damaged matrix.

  2. Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage.

    PubMed

    Haglund, Lisbet; Bernier, Suzanne M; Onnerfjord, Patrik; Recklies, Anneliese D

    2008-03-01

    Activation of toll-like receptors (TLR) in articular chondrocytes has been reported to increase the catabolic compartment, leading to matrix degradation, while the main consequence of TLR activation in monocytic cells is the expression and secretion of components of the innate immune response, particularly that of inflammatory cytokines. The objective of the work reported here was to obtain a more complete picture of the response repertoire of articular chondrocytes to TLR activation. Mass spectrometry was used to analyse the secretome of stimulated and unstimulated cells. Characterization of TLR expression in rat articular chondrocytes by RT/PCR indicated that TLR4 was the major receptor form. Exposure of these cells to lipopolysaccharide (LPS), the well-characterized TLR4 ligand, induced production not only of the matrix metalloproteinases MMP3 and 13, but also of components traditionally associated with the innate immune response, such as the complement components C1r, C3 and complement factor B, long pentraxin-3 and osteoglycin. Neither TNF-alpha nor IL-1 was detectable in culture media following exposure to LPS. One of the most prominently-induced proteins was the chitinase-like protein, Chi3L1, linking its expression to the innate immune response repertoire of articular chondrocytes. In intact femoral heads, LPS induced expression of Chi3L1 in chondrocytes close to the articular surface, suggesting that only these cells mount a stress response to LPS. Thus articular chondrocytes have a capacity to respond to TLR activation, which results in the expression of matrix metalloproteases as well as subsets of components of the innate immune response without significant increases in the production of inflammatory cytokines. This could influence the erosive processes leading to cartilage degeneration as well as the repair of damaged matrix. PMID:18023983

  3. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway.

    PubMed

    Bellaver, Bruna; Souza, Dbora Guerini; Bobermin, Larissa Daniele; Gonalves, Carlos-Alberto; Souza, Diogo Onofre; Quincozes-Santos, Andr

    2015-12-01

    Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and has been shown to promote central nervous system defenses in several in vivo and in vitro injury models. Our group recently demonstrated that guanosine exhibits glioprotective effects in the C6 astroglial cell line by associating the heme oxygenase-1 (HO-1) signaling pathway with protection against azide-induced oxidative stress. Astrocyte overactivation contributes to the triggering of brain inflammation, a condition that is closely related to the development of many neurological disorders. These cells sense and amplify inflammatory signals from microglia and/or initiate the release of inflammatory mediators that are strictly related to transcriptional factors, such as nuclear factor kappa B (NF?B), that are modulated by HO-1. Astrocytes also express toll-like receptors (TLRs); TLRs specifically recognize lipopolysaccharide (LPS), which has been widely used to experimentally study inflammatory response. This study was designed to understand the glioprotective mechanism of guanosine against the inflammatory and oxidative damage induced by LPS exposure in primary cultures of hippocampal astrocytes. Treatment of astrocytes with LPS resulted in deleterious effects, including the augmentation of pro-inflammatory cytokine levels, NF?B activation, mitochondrial dysfunction, increased levels of oxygen/nitrogen species, and decreased levels of antioxidative defenses. Guanosine was able to prevent these effects, protecting the hippocampal astrocytes against LPS-induced cytotoxicity through activation of the HO-1 pathway. Additionally, the anti-inflammatory effects of guanosine were independent of the adenosinergic system. These results highlight the potential role of guanosine against neuroinflammatory-related diseases. PMID:26431832

  4. Suppression of LPS-induced epithelial-mesenchymal transition by aqueous extracts of Prunella vulgaris through inhibition of the NF-?B/Snail signaling pathway and regulation of EMT-related protein expression.

    PubMed

    Cho, In-Hye; Jang, Eun Hyang; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-11-01

    Epithelial-mesenchymal transition (EMT) is a pivotal event in the invasion and metastasis of cancer cells. Prunella vulgaris (PV) inhibits the proliferation of various cancer cells; however, its possible role in EMT has not been demonstrated. In the present study, we explored the effect of PV aqueous extract (PVAE), a typical medicine for decoction, on EMT. Lipopolysaccharide (LPS) induced EMT-like phenotype changes in cancer cell lines that enhanced cell migration and invasion. PVAE markedly inhibited these effects and produced accompanying changes in the expression of EMT markers, including decreased expression of N-cadherin and vimentin, and increased expression of ?-catenin. We found that PVAE effects on LPS-induced EMT were mediated by inhibition of the NF-?B/Snail signaling pathway. Our findings provide new evidence that PVAE suppresses cancer invasion and migration by inhibiting EMT. Therefore, we suggest that PVAE is an effective dietary chemopreventive agent with antimetastatic activity against malignant tumors. PMID:26324883

  5. Pre-treatment of C57BL6/J mice with the TLR4 agonist monophosphoryl lipid A prevents LPS-induced sickness behaviors and elevations in dorsal hippocampus interleukin-1β, independent of interleukin-4 expression.

    PubMed

    Eimerbrink, M J; Kranjac, D; St Laurent, C; White, J D; Weintraub, M K; Pendry, R J; Madigan, R; Hodges, S L; Sadler, L N; Chumley, M J; Boehm, G W

    2016-04-01

    Peripheral administration of lipopolysaccharide (LPS) elevates production of pro-inflammatory cytokines, and motivates the expression of sickness behaviors. In this study, we tested the ability of an LPS-derived adjuvant, monophosphoryl lipid A (MPLA), to prevent LPS-induced sickness behaviors in a burrowing paradigm. Testing occurred over a three-day period. Animals received a single injection of either MPLA or saline the first two days of testing. On day three, animals received either LPS or saline. Tissue from the dorsal hippocampus was collected for qRT-PCR to assess expression of IL-1β and IL-4. Results indicate that, during the pre-treatment phase, administration of MPLA induces an immune response sufficient to trigger sickness behaviors. However, we observed that animals pre-treated with MPLA for two days were resistant to LPS-induced sickness behaviors on day three. Results from the qRT-PCR analysis indicated that LPS-treated animals pre-treated with MPLA expressed significantly less IL-1β compared to LPS-treated animals pre-treated with saline. However, we did not observe a significant difference in IL-4 expression between groups. Therefore, results indicate that under the given parameters of the study, MPLA pre-treatment protects against LPS-induced sickness behaviors, at least in part, by decreasing expression of the pro-inflammatory cytokine IL-1β. PMID:26778788

  6. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  7. Potent irreversible P2Y12 inhibition does not reduce LPS-induced coagulation activation in a randomized, double-blind, placebo-controlled trial.

    PubMed

    Schoergenhofer, Christian; Schwameis, Michael; Hobl, Eva-Luise; Ay, Cihan; Key, Nigel S; Derhaschnig, Ulla; Jilma, Bernd; Spiel, Alexander O

    2016-03-01

    Platelets play an important role in the activation of coagulation. P2Y12 receptor inhibition may be beneficial in inflammatory states. Prasugrel, a potent irreversible inhibitor of P2Y12 receptor-induced platelet activation may reduce activation of coagulation in a human LPS (lipopolysaccharide) model. A double-blind, randomized, crossover trial with a minimum washout period of 6 weeks was performed. Sixteen subjects were randomly assigned to a treatment group that received prasugrel or placebo 2 h before infusion of a bolus of LPS (2 ng/kg of body weight), whereas four subjects were assigned to a control group receiving prasugrel or placebo without LPS. hcDNA (histone-complexed DNA), coagulation and platelet-specific parameters were measured by enzyme immunoassay. Leucocyte aggregate formation was analysed by flow cytometry, and thromboelastometry was performed. LPS infusion markedly activated coagulation. However, prasugrel did not reduce changes in prothrombin fragments 1 and 2 (F1+2), thrombin-antithrombin complexes, microparticle-associated tissue factor, CD40 ligand, P-selectin, platelet-leucocyte aggregation, hcDNA levels or the coagulation profile measured by thromboelastometry. hcDNA plasma levels increased approximately 6-fold after LPS infusion in both treatment groups, but not in the control groups. Potent irreversible P2Y12 inhibition by prasugrel does not affect LPS-induced coagulation activation. The 6-fold increased hcDNA plasma levels after infusion of LPS indicates the formation of neutrophil extracellular traps during sterile inflammation. PMID:26554025

  8. [Effect of paeoniflorin on oxidative stress and energy metabolism in mice with lipopolysaccharide (LPS)-induced brain injury].

    PubMed

    Liu, Ling; Qiu, Xiang-jun; He, Su-na; Yang, Hui; Wang, Deng; Yang, Xue-mei

    2015-07-01

    Paeoniflorin is the main active ingredient of Chinese herbaceous peony. This study is to investigate the protective effect of paeoniflorin (Pae) on acute brain damage induced by lipopolysaccharide (LPS) in mice. The mice were randomly assigned to the normal control, model control (LPS), as well as groups of paeoniflorin and lipopolysaccharide (Pae + LPS). Then the mice were administered intraperitioneally with normal saline or Pae (10, 30 mg · kg(-1)) once daily for 6 d. One hour after intrapertioneally treatment on the seventh day, each group were injected LPS (5 mg · kg(-1)) to establish the endotoxin lipopolysaccharide inflammation model except the normal group. The mice were sacrificed after 6 h and the brain homogenates were prepared and measured. The malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), hydrogen peroxide (H2O2), succinatedehydrogenase (SDH), Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase were dectected by the colorimetric method. The levels of HO-1 and Nrf2 protein in subcellular fractions of brain tissue were detected by Western blot. The results demonstrated that the administration with paeoniflorin reduced the levels of the MDA production; significantly increase the activities of antioxidant enzyme (SOD and GSH-PX). In addition, paeoniflorin could enhance the total antioxidant capacity, decrease the level of H2O2, and increase the activities of SDH, Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase. Furthermore, paeoniflorin can increase the expression of HO-1 and activate the nuclear transfer of Nrf2. Taking together, these findings suggest that paeoniflorin alleviate the acute inflammation in mice brain damage induced by LPS, which is related with its antioxidant effect and improvement of energy metabolism. PMID:26666042

  9. Alterations in mitochondria and mtTFA in response to LPS-induced differentiation of B-cells.

    PubMed

    Kain, K H; Popov, V L; Herzog, N K

    2000-11-15

    Stimulation of immune cells results in altered cell function and metabolism, which must be recognized by and coordinated with energy production from mitochondria. Mitochondria contain their own DNA genome encoding 13 polypeptides that combine with nuclear-derived subunits to create functional enzyme complexes of the electron transport chain. Therefore, coordination of mitochondrial and nuclear transcription is necessary to achieve a sustained elevation in mitochondrial ATP production. Pre-B-lymphocytes stimulated with lipopolysaccharide exhibit increased activity levels of the mitochondrial enzymes, succinate dehydrogenase and cytochrome c oxidase. Immunoblot analyses of purified mitochondria indicate an increase in the mitochondrial transcription factor (mtTFA) levels in mitochondria induced by cell stimulation. This increase is consistent with increased mtTFA production in the cytoplasm. In addition, mitochondrial protein extracts indicate an increase in protein binding to a mtTFA-DNA binding site from the mitochondrial genome, subsequent to cell stimulation. These results indicate that mitochondrial activity changes during B-lymphocyte stimulation, and mtTFA may contribute to the coordination of respiration with cellular energy demand. PMID:11072072

  10. Resveratrol Protects Hippocampal Astrocytes Against LPS-Induced Neurotoxicity Through HO-1, p38 and ERK Pathways.

    PubMed

    Bellaver, Bruna; Souza, Dbora Guerini; Bobermin, Larissa Daniele; Souza, Diogo Onofre; Gonalves, Carlos-Alberto; Quincozes-Santos, Andr

    2015-08-01

    Resveratrol, a phytoalexin found in grapes and wine, exhibits antioxidant, anti-inflammatory, anti-aging and antitumor activities. Resveratrol also protects neurons and astrocytes in several neurological disease models. Astrocytes are responsible for modulating neurotransmitter systems, synaptic information, ionic homeostasis, energy metabolism, antioxidant defense and inflammatory response. In previous work, we showed that resveratrol modulates important glial functions, including glutamate uptake, glutamine synthetase activity, glutathione (GSH) levels and inflammatory response. Furthermore, astrocytes express toll-like receptors that specifically recognize lipopolysaccharide (LPS), which has been widely used to study experimentally inflammatory response. In this sense, LPS may stimulate pro-inflammatory cytokines release and oxidative stress. Moreover, there is interplay between these signals through signaling pathways such as NF?B, HO-1 and MAPK. Thus, here, we evaluated the effects of resveratrol on LPS-stimulated inflammatory response in hippocampal primary astrocyte cultures and the putative role of HO-1, p38 and ERK pathways in the protective effect of resveratrol. LPS increased the levels of TNF-?, IL-1?, IL-6 and IL-18 and resveratrol prevented these effects. Resveratrol also prevented the oxidative and nitrosative stress induced by LPS as well as the decrease in GSH content. Additionally, we demonstrated the involvement of NF?B, HO-1, p38 and ERK signaling pathways in the protective effect of resveratrol, providing the first mechanistic explanation for these effects in hippocampal astrocytes. Our findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with anti-inflammatory and antioxidant activities. PMID:26088684

  11. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation

    PubMed Central

    Liepelt, Anke; Mossanen, Jana C.; Denecke, Bernd; Heymann, Felix; De Santis, Rebecca; Tacke, Frank; Marx, Gernot; Ostareck, Dirk H.; Ostareck-Lederer, Antje

    2014-01-01

    Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-?-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3? UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-?, IL-1?, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3? UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response. PMID:24751651

  12. Constitutive and LPS-induced gene expression in a macrophage-like cell line from the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Brubacher, J L; Secombes, C J; Zou, J; Bols, N C

    2000-01-01

    The lack of cell lines from mononuclear phagocytes of salmonid fish has impeded the study of immune function at a cellular level in these economically and ecologically important animals. Here, we report on the further characterization of RTS11, a previously described macrophage-like cell line from the rainbow trout spleen, with regard to its expression of a number of immunologically relevant genes. Analysis of gene expression by reverse transcription-polymerase chain reaction, using rainbow-trout-specific primers demonstrated that RTS11 cells express the beta chain of the class II major histocompatibility complex, the cytokines transforming growth factor-beta (TGF-beta) and interleukin-1beta (IL-1beta), and cyclo-oxygenase-2 (COX-2). Inducing the cells with lipopolysaccharide led to increased expression of IL-1beta and COX-2, as determined by Northern blotting. These results together suggest that RTS11 retains many of the characteristics expected of mature macrophages, and should be a valuable tool for further study of the expression and function of these immunomodulatory proteins in fish. PMID:10831791

  13. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling.

    PubMed

    P?ciennikowska, Agnieszka; Hromada-Judycka, Aneta; Borz?cka, Kinga; Kwiatkowska, Katarzyna

    2015-02-01

    Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4. PMID:25332099

  14. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  15. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-?B activation against LPS-induced acute lung injury in mice.

    PubMed

    Imam, Faisal; Al-Harbi, Naif O; Al-Harbi, Mohammed M; Ansari, Mushtaq Ahmad; Zoheir, Khairy M A; Iqbal, Muzaffar; Anwer, Md Khalid; Al Hoshani, Ali R; Attia, Sabry M; Ahmad, Sheikh Fayaz

    2015-12-01

    Diosmin, a natural flavonoid glycoside present abundantly in the pericarp of various citrus fruits. Because of its anti-inflammatory and antioxidant properties, it can be used in many diseases. In this study, we investigated the possible protective mechanisms of the diosmin on LPS-induced lung injury through inhibition of T cell receptors, pro-inflammatory cytokines and NF-?B activation. Animals were pretreated with diosmin (50 and 100mg/kg, p.o.) for seven days prior to lipopolysaccharides (LPS) treatment. LPS administration increased neutrophils, monocytes, lymphocytes, total leukocyte count (TLC) and platelets which were decreased by diosmin. We observed that mice exposed to LPS showed increased malondialdehyde level and MPO activity whereas marked decrease in glutathione content. These changes were significantly reversed by treatment with diosmin in a dose dependent manner. Diosmin treatment showed a substantial reduction in T cell (CD4(+) and CD8(+)) receptors and pro-inflammatory (IL-2(+) and IL-17(+)) cytokines in whole blood. In addition, RT-PCR analysis revealed increased mRNA expression of IL-6, IL-17, TNF-?, and NF-?B in the LPS group, while reduced by treatment with diosmin. Western blot analysis confirmed the increased protein expression of IL-1?, TNF-? and NF-?B p65 in the LPS group and treatment of animals with diosmin reversed these effects. The levels of cytoplasmic p-I?B-? and p-NF-?B p65 expression also were mitigated by diosmin. The histological examinations revealed protective effect of diosmin while LPS group aggravated lung injury. These results support the potential for diosmin to be investigated as a potential agent for the treatment of lung injury and inflammatory diseases. PMID:26361726

  16. Insights into the inhibition and mechanism of compounds against LPS-induced PGE2 production: a pathway network-based approach and molecular dynamics simulations.

    PubMed

    Zhang, Xinzhuang; Gu, Jiangyong; Cao, Liang; Ma, Yimin; Su, Zhenzhen; Luo, Fang; Wang, Zhenzhong; Li, Na; Yuan, Gu; Chen, Lirong; Xu, Xiaojie; Xiao, Wei

    2014-12-01

    In comparison to the current target-based screening approach, it is increasingly evident that active lead compounds based on disease-related phenotypes are more likely to be translated to clinical trials during drug development. That is, because human diseases are in essence the outcome of the abnormal function of multiple genes, especially in complex diseases. Therefore, as a conventional technology in the early phase of active lead compound discovery, computational methods that can connect molecular interactions and disease-related phenotypes to evaluate the efficacy of compounds are in urgently required. In this work, a computational approach that integrates molecular docking and pathway network analysis (network efficiency and network flux) was developed to evaluate the efficacy of a compound against LPS-induced Prostaglandin E2(PGE2) production. The predicted results were then validated in vitro, and a correlation with the experimental results was analyzed using linear regression. In addition, molecular dynamics (MD) simulations were performed to explore the molecular mechanism of the most potent compounds. There were 12 hits out of 28 predicted ingredients separated from Reduning injection (RDN). The predicted results have a good agreement with the experimental inhibitory potency (IC50) (correlation coefficient = 0.80). The most potent compounds could target several proteins to regulate the pathway network. This might partly interpret the molecular mechanism of RDN on fever. Meanwhile, the good correlation of the computational model with the wet experimental results might bridge the gap between molecule-target interactions and phenotypic response, especially for multi-target compounds. Therefore, it would be helpful for active lead compound discovery, the understanding of the multiple targets and synergic essence of traditional Chinese medicine (TCM). PMID:25228393

  17. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-?B signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-?B, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-?B and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1? and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-?B regulated genes including TNF-?, IL-1? and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-?B signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI. PMID:26800098

  18. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck ; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin formation and trp degradation in monocytic THP-1 cells, which is elicited by pro-inflammatory triggers like LPS during innate immune responses.

  19. Overexpression of S100A7 Protects LPS-Induced Mitochondrial Dysfunction and Stimulates IL-6 and IL-8 in HaCaT Cells

    PubMed Central

    Sun, Wenyan; Zheng, Yan; Lu, Zhuoyang; Cui, Yang; Tian, Qiong; Xiao, Shengxiang; Liu, Feng; Liu, Jiankang

    2014-01-01

    Background S100A7 (or psoriasin) is distributed in the cytoplasm of keratinocytes of normal human epidermis, and it is overexpressed in many epidermal inflammatory diseases. Lipopolysaccharide (LPS) induces mitochondrial function changes, which play important roles in multiple cellular mechanisms including inflammation. Although S100A7 expression is regulated by various factors in the human epidermis during inflammation, whether S100A7 interacts with mitochondria in keratinocytes is not clear. Objectives Our study was designed to investigate whether S100A7 could prohibit mitochondrial dysfunction and stimulate cytokines in cultured normal HaCaT cells treated with LPS. Results We generated HaCaT cells that constitutively express enhanced green fluorescence protein (EGFP)-S100A7 (S100A7-EGFP) or EGFP alone, as a control. Here, we show that S100A7-EGFP HaCaT cells exhibit an increase in mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP). qRT-PCR revealed that expression of three main mitochondrial biogenesis-associated genes was significantly increased: PPAR-coactivator-1alpha (PGC-1α), the mitochondrial transcription factor A (Tfam) and nuclear respiratory factor-1 (NRF1). S100A7 overexpression increased mtDNA content and effectively increased intracellular adenosine 5′-triphosphate (ATP) production, while decreasing reactive oxygen species (ROS) generation. S100A7 overexpression also significantly decreased the expression of Mfn2 and increased DRP1 expression compared with control EGFP cells. S100A7 down-regulated the expression of the autophagy-related proteins Beclin-1 and LC3B. S100A7 also increased expression of IL-6 and IL-8 cytokines. Knockdown of S100A7 decreased MMP and disrupted mitochondrial homeostasis. Conclusions These findings demonstrate that S100A7 stimulates mitochondrial biogenesis and increases mitochondrial function in HaCaT cells treated with LPS; and S100A7 also promotes secretion of IL-6 and IL-8. PMID:24671027

  20. Synthesis and effects of new caffeic acid derivatives on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophages

    PubMed Central

    Zhang, Jie; Xu, Liu-Xin; Xu, Xu-Sheng; Li, Bo-Wei; Wang, Rui; Fu, Jian-Jun

    2014-01-01

    In this study, 20 new derivatives of caffeic acid esters were synthesized and their inhibitory activities against the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages were determined. Compounds 3l, 3r, 3s and 3t were found to decrease nitrite levels in a dose-dependent manner in LPS-induced cells and showed potent inhibitory activities against the NO production in RAW264.7 macrophages with IC50 values of 7.4, 5.9, 3.3 and 2.2 μM, respectively. They could be selected as compromising compounds for the later pharmacological study. PMID:24955176

  1. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 C and 95 C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-?, IL-1?, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. PMID:23583806

  2. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway.

    TOXLINE Toxicology Bibliographic Information

    Sarkar D; Saha P; Gamre S; Bhattacharjee S; Hariharan C; Ganguly S; Sen R; Mandal G; Chattopadhyay S; Majumdar S; Chatterjee M

    2008-09-01

    The crude ethanol extract of Piper betle leaf is reported to possess anti-inflammatory activity which has been suggested to be mediated by allylpyrocatechol (APC). In the present study, we have demonstrated the anti-inflammatory effects of APC (10 mg/kg, p.o.) in an animal model of inflammation. To investigate the mechanism(s) of this anti-inflammatory activity, we examined its effects on the lipopolysaccaride (LPS)-induced production of NO and PGE(2) in a murine macrophage cell line, RAW 264.7. APC inhibited production of NO and PGE(2) in a dose dependent manner as also decreased mRNA expression of iNOS, COX-2, IL-12p40 and TNF-alpha. Since nuclear factor-kappaB (NF-kappaB) appears to play a central role in transcriptional regulation of these proteins, we investigated the effects of APC on this transcription factor. APC inhibited LPS induced nuclear factor-kappaB (NF-kappaB) activation, by preventing degradation of the inhibitor kappaB (IkappaB). Taken together, our data indicates that APC targets the inflammatory response of macrophages via inhibition of iNOS, COX-2 and IL-12 p40 through down regulation of the NF-kappaB pathway, indicating that APC may have therapeutic potential in inflammation associated disorders.

  3. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway.

    PubMed

    Sarkar, Debjani; Saha, Piu; Gamre, Sunita; Bhattacharjee, Surajit; Hariharan, Chellaram; Ganguly, Sudipto; Sen, Rupashree; Mandal, Goutam; Chattopadhyay, Subrata; Majumdar, Subrata; Chatterjee, Mitali

    2008-09-01

    The crude ethanol extract of Piper betle leaf is reported to possess anti-inflammatory activity which has been suggested to be mediated by allylpyrocatechol (APC). In the present study, we have demonstrated the anti-inflammatory effects of APC (10 mg/kg, p.o.) in an animal model of inflammation. To investigate the mechanism(s) of this anti-inflammatory activity, we examined its effects on the lipopolysaccaride (LPS)-induced production of NO and PGE(2) in a murine macrophage cell line, RAW 264.7. APC inhibited production of NO and PGE(2) in a dose dependent manner as also decreased mRNA expression of iNOS, COX-2, IL-12p40 and TNF-alpha. Since nuclear factor-kappaB (NF-kappaB) appears to play a central role in transcriptional regulation of these proteins, we investigated the effects of APC on this transcription factor. APC inhibited LPS induced nuclear factor-kappaB (NF-kappaB) activation, by preventing degradation of the inhibitor kappaB (IkappaB). Taken together, our data indicates that APC targets the inflammatory response of macrophages via inhibition of iNOS, COX-2 and IL-12 p40 through down regulation of the NF-kappaB pathway, indicating that APC may have therapeutic potential in inflammation associated disorders. PMID:18602073

  4. Oryeongsan inhibits LPS-induced production of inflammatory mediators via blockade of the NF-kappaB, MAPK pathways and leads to HO-1 induction in macrophage cells

    PubMed Central

    2014-01-01

    Background Oryeongsan (OR) is an herbal medication used in east-Asian traditional medicine to treat dysuresia, such as urinary frequency, hematuria, and dysuria due to renal disease and chronic nephritis. Recent studies showed that protective effect against acute gastric mucosal injury and an inhibitory effect on the renin-angiotensin-aldosterone pathway of OR. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OR, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 macrophage cells. Methods We investigated the pharmacological and biological effects of OR on the production of pro-inflammatory cytokines, inflammatory mediators, and related products through Enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Also, we examined the activation and suppression of nuclear factor (NF)-kappaB and mitogen-activated protein kinases (MAPKs) pathways in LPS-stimulated macrophages via Western blot analysis in order to explore inhibitory mechanism of OR. Results OR had anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. In addition, it strongly suppressed cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), NO synthesizing enzymes. It also induced heme oxygenase (HO)-1 expression and inhibited NF-kappaB signaling pathway activation and phosphorylation of MAPKs. Conclusions We further demonstrate the anti-inflammatory effects and inhibitory mechanism of OR in LPS-stimulated macrophages for the first time. OR contains strong anti-inflammatory activity and affects various mechanism pathways including NF-kappaB, MAPKs and HO-1. Our results suggest that OR has potential value to be developed as an inflammatory therapeutic agent from a natural substance. PMID:25023125

  5. Inhibition of LPS-induced TNF-? and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    PubMed

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-?) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-? and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-? and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21?days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-?, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-? and NO play important roles. PMID:24706581

  6. Coenzyme Q0 regulates NF?B/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies.

    PubMed

    Yang, Hsin-Ling; Lin, Ming-Wei; Korivi, Mallikarjuna; Wu, Jia-Jiuan; Liao, Chun-Huei; Chang, Chia-Ting; Liao, Jiunn-Wang; Hseu, You-Cheng

    2016-02-01

    Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10?M) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-? and IL-1? secretions. This inhibition was reasoned by suppression of NF?B (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKK?-mediated I-?B degradation and MAPK-signaling are involved in regulation of NF?B/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-? and IL-1? productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5mg/kg) suppressed LPS-induced (1mg/kg) induction of iNOS/COX-2 and TNF-?/IL-1? through tight regulation of NF?B/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NF?B/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders. PMID:26548719

  7. Redox factor-1 mediates NF-κB nuclear translocation for LPS-induced iNOS expression in murine macrophage cell line RAW 264.7

    PubMed Central

    Song, Ju Dong; Lee, Sang Kwon; Kim, Kang Mi; Kim, Jong Won; Kim, Jong Min; Yoo, Young Hyun; Park, Young Chul

    2008-01-01

    Redox-sensitive transcriptional regulator redox factor-1 (Ref-1) is induced by oxidative stress and protects cells against it. However, the function of Ref-1 in regulating nitric oxide (NO) synthesis in macrophages has not been defined. We investigated the role of Ref-1 related to the regulation of NO synthesis in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. LPS stimulates the up-regulation and nuclear translocation of Ref-1 in macrophages. Importantly, Ref-1-deficient macrophages using a small interfering RNA did not stimulate inducible NO synthase (iNOS) expression as well as nuclear factor-κB nuclear translocation by stimulation with LPS. When the cells were pretreated with diphenyleneiodonium or p47phox small interfering RNA for inhibition of NADPH oxidase activity, LPS did not stimulate the nuclear translocation of Ref-1. We next asked whether reactive oxygen species are sufficient for the nuclear translocation of Ref-1 in macrophages. The direct use of H2O2 stimulated the translocation to the nucleus of nuclear factor-κB, but not Ref-1 and antioxidant N-acetyl cysteine did not inhibit the LPS-stimulated nuclear translocation of Ref-1. These data suggest that Ref-1 nuclear translocation in LPS-stimulated macrophages requires the activation of other signalling molecules aside from reactive oxygen species followed by the activation of NADPH oxidase. PMID:18028373

  8. A Comparative Study of the Effects upon LPS Induced Macrophage RAW264.7 Inflammation in vitro of the Lipids of Hippocampus trimaculatus Leach.

    PubMed

    Chen, LiPing; Shen, XuanRi; Chen, GuoHua; Cao, XianYing; Yang, Jian

    2015-12-01

    The present study attempts to investigate the anti-inflammatory potential of the isolated lipid extracts of three-spot seahorse which is rare marine bony fish. Petroleum ether (PE) extract was obtained from systematic solvent extraction after reflux extraction with 95% ethanol. FrIV was collected after silica gel column chromatography, and neutral lipids (NL), glycolipids (GL), phospholipids (PL) were separated from FrIV. Basic compositions were detected and analyzed via thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Anti-inflammatory activities of total lipids (TL), isolated NL, GL, and PL were detected by secretion of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) in murine monocyte macrophage RAW264.7 cells in vitro. The results revealed that lipids of seahorse showed a positive correlation with the in vitro suppression of the release of nitric oxide (NO), interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α potently in a dose dependent manner, and showed cell compatibility. Among the fractions, GL (50 μg/mL) showed the highest capacity to attenuate the generation of pro-inflammatory cytokines which was comparable to that of the positive drug dexamethasone (DX) (20 μg/mL). Collectively, our findings indicated that the lipids from seahorse may be effective in the management of inflammation. PMID:26582156

  9. Punicalagin Induces Nrf2/HO-1 Expression via Upregulation of PI3K/AKT Pathway and Inhibits LPS-Induced Oxidative Stress in RAW264.7 Macrophages

    PubMed Central

    Xu, Xiaolong; Li, Hongquan; Hou, Xiaolin; Li, Deyin; He, Shasha; Wan, Changrong; Liu, Mingjiang; Liu, Fenghua

    2015-01-01

    Reactive oxygen species (ROS) and oxidative stress are thought to play a central role in potentiating macrophage activation, causing excessive inflammation, tissue damage, and sepsis. Recently, we have shown that punicalagin (PUN) exhibits anti-inflammatory activity in LPS-stimulated macrophages. However, the potential antioxidant effects of PUN in macrophages remain unclear. Revealing these effects will help understand the mechanism underlying its ability to inhibit excessive macrophage activation. Hemeoxygenase-1 (HO-1) exhibits antioxidant activity in macrophages. Therefore, we hypothesized that HO-1 is a potential target of PUN and tried to reveal its antioxidant mechanism. Here, PUN treatment increased HO-1 expression together with its upstream mediator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). However, specific inhibition of Nrf2 by brusatol (a specific Nrf2 inhibitor) dramatically blocked PUN-induced HO-1 expression. Previous research has demonstrated that the PI3K/Akt pathway plays a critical role in modulating Nrf2/HO-1 protein expression as an upstream signaling molecule. Here, LY294002, a specific PI3K/Akt inhibitor, suppressed PUN-induced HO-1 expression and led to ROS accumulation in macrophages. Furthermore, PUN inhibited LPS-induced oxidative stress in macrophages by reducing ROS and NO generation and increasing superoxide dismutase (SOD) 1 mRNA expression. These findings provide new perspectives for novel therapeutic approaches using antioxidant medicines and compounds against oxidative stress and excessive inflammatory diseases including tissue damage, sepsis, and endotoxemic shock. PMID:25969626

  10. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice.

    PubMed

    Luo, Hui; Lv, Xiao-Dan; Wang, Guo-En; Li, Yi-Fang; Kurihara, Hiroshi; He, Rong-Rong

    2014-08-01

    Bilberry (Vaccinium myrtillus L.) has been known to play a protective role in human health due to its high anthocyanin content. This study investigated the anti-inflammatory effects of bilberry extract (BE, containing 42.04% anthocyanin) on Propionibacterium acnes (P. acnes) plus lipopolysaccharide (LPS) induced liver injury and croton oil-induced ear edema in mice. Results showed that BE could effectively inhibit croton oil-induced ear edema and liver inflammation provoked by P. acnes plus LPS, as reflected by the reduced plasma alanine aminotransferase and aspartate aminotransferase activities. These findings were confirmed by hepatic pathological examination. Moreover, BE administration markedly suppressed the increase of liver mRNA levels of iNOS, TNF-?, IL-1? and IL-6, and the protein levels of iNOS, TNF-? and NF-?B. In addition, liver malondialdehyde and NO contents were significantly reduced by BE treatment. These results indicated that BE has potent protective effects on acute and immunological inflammation, which might contribute to the study of the anti-inflammatory effects of natural products and healthy food. PMID:24548119

  11. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  12. Comparison of stress-induced and LPS-induced depressive-like behaviors and the alterations of central proinflammatory cytokines mRNA in rats.

    PubMed

    Guan, Xi-Ting; Lin, Wen-Juan; Tang, Ming-Ming

    2015-09-01

    Although proinflammatory cytokine changes in depression have been studied widely, few investigations have searched for specific and common changes in cytokines. In the present study, two animal models of depression were compared: a chronic stress model using forced swim stress and an immune activation model using repeated central lipopolysaccharide (LPS) infusion. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 mRNA were examined in the brain regions of the prefrontal cortex, amygdala, and hippocampus using real-time polymerase chain reaction (RT-PCR). It was found that both chronic swim stress and repeated central LPS infusion induced depressive-like behaviors, including decreased body weight, reduced saccharin preference, and increased immobility time or shortened latency of immobility in the tail suspension test. Central TNF-α mRNA expression was elevated in both models and central IL-6 mRNA expression was unchanged in both models. Central IL-1β mRNA expression was increased only in the chronic immune activation model. The findings from this study suggest that TNF-α may be a common risk factor for inflammation in depressive disorders. PMID:26354152

  13. The Inhibitory Mechanisms Study of 5,6,4'-Trihydroxy-7,3'-Dimethoxyflavone against the LPS-Induced Macrophage Inflammatory Responses through the Antioxidant Ability.

    PubMed

    Wang, Shih-Hao; Liang, Chia-Hua; Liang, Fong-Pin; Ding, Hsiou-Yu; Lin, Shiuan-Pey; Huang, Guan-Jhong; Lin, Wen-Chuan; Juang, Shin-Hun

    2016-01-01

    The whole plant of Anisomeles ovata has been widely used in Taiwan for treating inflammation-related skin and liver diseases, however, the detailed pharmacology mechanisms have yet to be elucidated. In the present study, one of the major components, 5,6,4'-trihydroxy-7,3'-dimethoxyflavone (5-TDMF), was purified from a methanol extract of Anisomeles ovata. A pharmacological study of this compound suggests that 5-TDMF possesses potent free radical scavenging activity both in vitro and ex vivo. Furthermore, 5-TDMF reduces nitric oxide and pro-inflammatory cytokine production in LPC-treated RAW 264.7 cells through the attenuation of nitric oxide synthase and cyclooxygenase-2. Additional experiments suggest that of 5-TDMF interferes with nuclear factor-?B translocation and mitogen-activated protein kinase pathways. These results identify 5-TDMF as an anti-oxidant and anti-inflammatory compound, explain the pharmacologic function of Anisomeles ovata and suggest its great potential as a new anti-inflammatory remedy. PMID:26805809

  14. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response.

    PubMed

    Zhong, Li; Chen, Xiao-Fen; Zhang, Zhen-Lian; Wang, Zhe; Shi, Xin-Zhen; Xu, Kai; Zhang, Yun-Wu; Xu, Huaxi; Bu, Guojun

    2015-06-19

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a DAP12-associated receptor expressed in microglia, macrophages, and other myeloid-derived cells. Previous studies have suggested that TREM2/DAP12 signaling pathway reduces inflammatory responses and promotes phagocytosis of apoptotic neurons. Recently, TREM2 has been identified as a risk gene for Alzheimer disease (AD). Here, we show that DAP12 stabilizes the C-terminal fragment of TREM2 (TREM2-CTF), a substrate for ?-secretase. Co-expression of DAP12 with TREM2 selectively increased the level of TREM2-CTF with little effects on that of full-length TREM2. The interaction between DAP12 and TREM2 is essential for TREM2-CTF stabilization as a mutant form of DAP12 with disrupted interaction with TREM2 failed to exhibit such an effect. Silencing of either Trem2 or Dap12 gene significantly exacerbated pro-inflammatory responses induced by lipopolysaccharides (LPS). Importantly, overexpression of either full-length TREM2 or TREM2-CTF reduced LPS-induced inflammatory responses. Taken together, our results support a role of DAP12 in stabilizing TREM2-CTF, thereby protecting against excessive pro-inflammatory responses. PMID:25957402

  15. Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: Implication in inducible nitric oxide synthase expression

    PubMed Central

    Lahti, Aleksi; Sareila, Outi; Kankaanranta, Hannu; Moilanen, Eeva

    2006-01-01

    Background Nitric oxide (NO) is an inflammatory mediator, which acts as a cytotoxic agent and modulates immune responses and inflammation. p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is activated by chemical and physical stress and regulates immune responses. Previous studies have shown that p38 MAPK pathway regulates NO production induced by inflammatory stimuli. The aim of the present study was to investigate the mechanisms involved in the regulation of inducible NO synthesis by p38 MAPK pathway. Results p38 MAPK inhibitors SB203580 and SB220025 stimulated lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression and NO production in J774.2 murine macrophages. Increased iNOS mRNA expression was associated with reduced degradation of iNOS mRNA. Treatment with SB220025 increased also LPS-induced c-Jun N-terminal kinase (JNK) activity. Interestingly, JNK inhibitor SP600125 reversed the effect of SB220025 on LPS-induced iNOS mRNA expression and NO production. Conclusion The results suggest that inhibition of p38 MAPK by SB220025 results in increased JNK activity, which leads to stabilisation of iNOS mRNA, to enhanced iNOS expression and to increased NO production. PMID:16504051

  16. Additive Suppression of LPS-Induced IL-10 and TNF-α by Pre-treatment of Dexamethasone and SB203580 in a Murine Alveolar Macrophage Cell Line (MH-S).

    PubMed

    Meng, Aihong; Wang, Bin; Zhang, Xiaopeng; Qi, Na; Liu, Dengchang; Wu, Jiakai

    2015-01-01

    P38 inhibitors are potent anti-inflammatory agents with distinctive mechanism of action from corticosteroid; the potential combined use of both anti-inflammatory agents could be an effective treatment for inflammatory lung disease; however, the impact of such combination on the homeostasis of immune response was poorly understood. To investigate the combined effect of dexamethasone (DEX) and/or SB203580 on tumor necrosis factor (TNF)-α (pro-inflammatory) and interleukin (IL)-10 (anti-inflammatory) secretion in mouse alveolar macrophage cell line. Secreted TNF-α and IL-10 were measured by ELISA. Phosphorylated STAT3 were investigated using Western blotting and immunocytochemistry. Pre-treatment of DEX or SB203580 inhibited lipopolysaccharide (LPS)-stimulated IL-10, TNF-α secretion, and STAT3 phosphorylation. Combined use of both agents showed stronger inhibitory effect. Combining DEX and SB203580 showed strong inhibition on the LPS-induced IL-10 secretion and STAT3 phosphorylation, which might reflect a very important drawback from the combined use of both anti-inflammatory agents. PMID:25563207

  17. siRNA targeting mCD14 inhibits TNF-?, MIP-2, and IL-6 secretion and NO production from LPS-induced RAW264.7 cells.

    PubMed

    Lei, Ming; Jiao, Hanwei; Liu, Tao; Du, Li; Cheng, Ying; Zhang, Donglin; Hao, Yongchang; Man, Churiga; Wang, Fengyang

    2011-10-01

    Innate immunity plays a key role in protecting a host against invading microorganism, including Gram-negative bacteria. Cluster of differentiation antigen 14 (CD14) is an important innate immunity molecule, existing as a soluble (sCD14) and membrane-associated (mCD14) protein. Endotoxin [lipopolysaccharide (LPS)] is recognized as a key molecule in the pathogenesis of sepsis and septic shock caused by Gram negative bacteria. Emerging evidences indicate that upstream inhibition of bacterial LPS/Toll-like receptor 4(TLR4)/CD14-mediated inflammation pathway is an effective therapeutic approach for attenuating damaging immune activation. RNA interference (RNAi) provides a promising approach to down-regulate gene expression specifically. To explore the possibility of using RNAi against mCD14 as a strategy for inhibiting the secretion of cytokines and the nitric oxide (NO) production from LPS-activated RAW264.7 cells, four different short interfering RNA (siRNA) molecules corresponding to the sequence of mCD14 gene were designed and synthesized. We then tested the inhibition effects of these siRNA molecules on mCD14 expression by real-time quantitative RT-PCR and Western blot. After effective siRNA molecule (mCD14-siRNA-224), which is capable of reducing messenger RNA (mRNA) accumulation and protein expression of mCD14 specifically, was identified, RAW264.7 cells pretreated with mCD14-siRNA-224 were stimulated with LPS, and the secretion of tumor necrosis factor alpha (TNF-?), macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) and the NO production were evaluated. The results indicated that mCD14-siRNA-224 effectively inhibited TNF-?, MIP-2, and IL-6 release and NO production from LPS-stimulated RAW 264.7 cells by down-regulating mRNA accumulation and protein expression of mCD14 specifically. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for endotoxin-related diseases. PMID:21701985

  18. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain.

    PubMed

    Nakano, Yousuke; Furube, Eriko; Morita, Shoko; Wanaka, Akio; Nakashima, Toshihiro; Miyata, Seiji

    2015-01-15

    The sensory circumventricular organs (CVOs) comprise the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) and lack the blood-brain barrier. The expression of Toll-like receptor 4 (TLR4) was seen at astrocytes throughout the sensory CVOs and at microglia in the AP and solitary nucleus around the central canal. The peripheral and central administration of lipopolysaccharide induced a similar pattern of nuclear translocation of STAT3. A microglia inhibitor minocycline largely suppressed lipopolysaccharide-induced astrocytic nuclear translocation of STAT3 in the OVLT and AP, but its effect was less in the SFO. PMID:25595264

  19. Suppression of NF-?B by dieckol extracted from Ecklonia cava negatively regulates LPS induction of inducible nitric oxide synthase gene.

    PubMed

    Choi, Hye-Jin; Park, Jung-Hwan; Lee, Bong Ho; Chee, Hee Youn; Lee, Kyung Bok; Oh, Sang-Muk

    2014-06-01

    Dieckol, extracted from brown algae, Ecklonia cava, is suggested to elicit anti-inflammatory or anti-tumorigenic activities. However, dieckol-mediated regulatory mechanism for inflammatory response still remains elusive. Here, we show that dieckol suppressed lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression in mouse leukemic macrophage Raw264.7 cells. Also, dieckol decreased LPS-induced both nitric oxide (NO) production and iNOS promoter-driven transcriptional activity in a dose-dependent manner. On the other hand, LPS-mediated NF-?B activity was inhibited by dieckol treatment. Moreover, results revealed that dieckol diminished LPS-mediated p65 nuclear translocation or I?B? phosphorylation dose-dependently, and reduced LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), significantly p38MAPK. Collectively, these findings suggest that dieckol acts as a negative regulator of LPS-mediated iNOS induction through suppression of NF-?B activity, implying a mechanistic role of dieckol in regulation of inflammatory response. PMID:24744158

  20. Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons

    PubMed Central

    Machado, A.; Herrera, A. J.; Venero, J. L.; Santiago, M.; de Pablos, R. M.; Villarn, R. F.; Espinosa-Oliva, A. M.; Argelles, S.; Sarmiento, M.; Delgado-Corts, M. J.; Maurio, R.; Cano, J.

    2011-01-01

    We have developed an animal model of degeneration of the nigrostriatal dopaminergic neurons, the neuronal system involved in Parkinson's disease (PD). The implication of neuroinflammation on this disease was originally established in 1988, when the presence of activated microglia in the substantia nigra (SN) of parkinsonians was reported by McGeer et al. Neuroinflammation could be involved in the progression of the disease or even has more direct implications. We injected 2??g of the potent proinflammatory compound lipopolysaccharide (LPS) in different areas of the CNS, finding that SN displayed the highest inflammatory response and that dopaminergic (body) neurons showed a special and specific sensitivity to this process with the induction of selective dopaminergic degeneration. Neurodegeneration is induced by inflammation since it is prevented by anti-inflammatory compounds. The special sensitivity of dopaminergic neurons seems to be related to the endogenous dopaminergic content, since it is overcome by dopamine depletion. Compounds that activate microglia or induce inflammation have similar effects to LPS. This model suggest that inflammation is an important component of the degeneration of the nigrostriatal dopaminergic system, probably also in PD. Anti-inflammatory treatments could be useful to prevent or slow down the rate of dopaminergic degeneration in this disease. PMID:22389821

  1. Early expansion and expression of the lipopolysaccharide (LPS)-induced TNF-? factor (LITAF) gene family in the LPS-exposed monogonont rotifer Brachionus koreanus.

    PubMed

    Jeong, Chang-Bum; Lee, Jeong-Hyeon; Lee, Jae-Seong; Rhee, Jae-Sung

    2015-10-01

    To date, a single lipopolysaccharide-induced TNF-? factor (LITAF) homologue, mediating the expression of inflammatory cytokines including TNF-? in terms of host defense was identified in vertebrates and most invertebrates such as insects, mollusks, and crustaceans. However, LITAF gene family members have recently been characterized in only two mollusks, Crassostrea gigas and Mytilus galloprovincialis. Although a large gene family expansion of LITAF homologues was observed in the nematode Caenorhabditis elegans, the amino acid sequences encoded by the C. elegans LITAF homologue have low similarities to other LITAF gene family members. In this study, three LITAF genes were identified in the monogonont rotifer Brachionus koreanus. In silico analyses of B. koreanus LITAF genes of conserved domains and phylogenetic relationships supported gene annotations that indicated that LITAF is involved in innate immunity in primitive rotifers. To examine transcriptional sensitivity of B. koreanus LITAF genes, the rotifers were exposed to different concentrations of lipopolysaccharide (LPS). Transcriptional levels of LITAF1 and LITAF2 gene were significantly upregulated dose- and time-dependently in response to LPS exposure for 24 h. LPS exposure induced glutathione (GSH) depletion and antioxidant enzyme activity levels for 24 h in B. koreanus. These results suggested that the B. koreanus LITAF gene family has potential sensitivities directly and/or indirectly to immune stimulator-triggered oxidative stress. PMID:26056818

  2. Differential protection among fractionated blueberry polyphenolic families against DA-, Aβ42 and LPS-induced decrements in Ca2+ buffering in primary hippocampal cells

    PubMed Central

    Joseph, James A.; Shukitt-Hale, Barbara; Brewer, Gregory J.; Weikel, Karen A.; Kalt, Wilhelmina; Fisher, Derek R.

    2011-01-01

    It has been postulated that at least part of the loss of cognitive function in aging may be the result of deficits in Ca2+ recovery (CAR) and increased oxidative/inflammatory (OX/INF) stress signaling. However, previous research showed that aged animals supplemented with blueberry (BB) extract, showed fewer deficits in CAR, as well as motor and cognitive functional deficits. A recent subsequent experiment has shown that DA- or Aβ42-induced deficits in CAR in primary hippocampal neuronal cells (HNC) were antagonized by BB extract, and (OX/INF) signaling was reduced. Present experiments assessed the most effective BB polyphenol fraction that could protect against OX/INF-induced deficits in CAR, ROS generation, or viability. HNCs treated with BB extract, BB fractions (e.g., proanthocyanidin, PAC), or control medium were exposed to dopamine (DA, 0.1mM), amyloid beta (Aβ42, 25 µM) or lipopolysaccharide (LPS, 1µg/ml). Results indicated that the degree of protection against deficits in CAR varied as a function of the stressor and was generally greater against Aβ42 and LPS than DA. The whole BB, anthocyanin (ANTH) and pre-C18 fractions offered the greatest protection, while chlorogenic acid offered the lowest protection. Protective capabilities of the various fractions against ROS depended upon the stressor, where the BB extract and the combined PAC (high and low m.w.) fraction offered the best protection against LPS and Aβ42 but were less effective against DA-induced ROS. The high and low m.w. PACs and the ANTH fractions enhanced ROS production regardless of the stressor used and this reflected increased activation of stress signals (e.g., P38 MAPK). The viability data indicated that the whole BB and combined PAC fraction showed greater protective effects against the stressors than the more fractionated polyphenolic components. Thus, these results suggest that, except for a few instances, the lesser the polyphenolic fractionation the greater the effects, especially with respect to prevention of ROS and stress signal generation, and viability. PMID:20597478

  3. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles

    PubMed Central

    Al Faraj, Achraf; Shaik, Asma Sultana; Afzal, Sibtain; Al Sayed, Baraa; Halwani, Rabih

    2014-01-01

    Purpose Targeting and noninvasive imaging of a specific alveolar macrophage subpopulation in the lung has revealed the importance for early and better diagnosis and therapy of chronic obstructive pulmonary disease (COPD). In this study, the in vivo effect of pulmonary administration of iron oxide nanoparticles on the polarization profile of macrophages was assessed, and a noninvasive free-breathing magnetic resonance imaging (MRI) protocol coupled with the use of biocompatible antibody-conjugated superparamagnetic iron oxide (SPIO) nanoparticles was developed to enable specific targeting and imaging of a particular macrophage subpopulation in lipopolysaccharide-induced COPD mice model. Materials and methods Enzyme-linked immunosorbent assay, Real-time polymerase chain reaction, and flow cytometry analysis were performed to assess the biocompatibility of PEGylated dextran-coated SPIO nanoparticles. Specific biomarkers for M1 and M2 macrophages subsets were selected for conjugation with magnetic nanoparticles. MRI protocol using ultra-short echo time sequence was optimized to enable simultaneous detection of inflammation progress in the lung and detection of macrophages subsets. Flow cytometry and immunohistochemistry analysis were finally performed to confirm MRI readouts and to characterize the polarization profile of targeted macrophages. Results The tested SPIO nanoparticles, under the current experimental conditions, were found to be biocompatible for lung administration in preclinical settings. Cluster of differentiation (CD)86- and CD206-conjugated magnetic nanoparticles enabled successful noninvasive detection of M1 and M2 macrophage subpopulations, respectively, and were found to co-localize with inflammatory regions induced by lipopolysaccharide challenge. No variation in the polarization profile of targeted macrophages was observed, even though a continuum switch in their polarization might occur. However, further confirmatory studies are required to conclusively establish this observation. Conclusion Coupling of magnetic iron oxide nanoparticles with a specific antibody targeted to a particular macrophage subpopulation could offer a promising strategy for an early and better diagnosis of pulmonary inflammatory diseases using noninvasive MRI. PMID:24711699

  4. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice

    PubMed Central

    Liou, Chian-Jiun; Lai, You-Rong; Chen, Ya-Ling; Chang, Yi-Hsien; Li, Zih-Ying; Huang, Wen-Chung

    2016-01-01

    Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine's suppressive effects on cyclooxygenase 2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expressions in lipopolysaccharide- (LPS-) stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8), monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells. PMID:26880863

  5. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain

    PubMed Central

    Inceoglu, Bora; Jinks, Steven L.; Schmelzer, Kara R.; Waite, Troy; Kim, In Hae; Hammock, Bruce D.

    2007-01-01

    Soluble epoxide hydrolases catalyze the hydrolysis of epoxides in acyclic systems. In man this enzyme is the product of a single copy gene (EPXH-2) present on chromosome 8. The human sEH is of interest due to emerging roles of its endogenous substrates, epoxygenated fatty acids, in inflammation and hypertension. One of the consequences of inhibiting sEH in rodent inflammation models is a profound decrease in the production of pro-inflammatory and proalgesic lipid metabolites including prostaglandins. This prompted us to hypothesize that sEH inhibitors may have antinociceptive properties. Here we tested if sEH inhibitors can reduce inflammatory pain. Hyperalgesia was induced by intraplantar LPS injection and sEH inhibitors were delivered topically. We found that two structurally dissimilar but equally potent sEH inhibitors can be delivered through the transdermal route and that sEH inhibitors effectively attenuate thermal hyperalgesia and mechanical allodynia in rats treated with LPS. In addition we show that epoxydized arachidonic acid metabolites, EETs, are also effective in attenuating thermal hyperalgesia in this model. In parallel with the observed biological activity metabolic analysis of oxylipids showed that inhibition of sEH resulted with a decrease in PGD2 levels and sEH generated degradation products of linoleic and arachidonic acid metabolites with a concomitant increase in epoxides of linoleic acid. These data show that inhibition of sEH may become a viable therapeutic strategy to attain analgesia. PMID:16962614

  6. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages

    PubMed Central

    Aparicio-Soto, M; Alarcón-de-la-Lastra, C; Cárdeno, A; Sánchez-Fidalgo, S; Sanchez-Hidalgo, M

    2014-01-01

    BACKGROUND AND PURPOSE Increasing evidence demonstrates that melatonin regulates inflammatory and immune processes acting as both an activator and inhibitor of these responses. Nevertheless, the molecular mechanisms of its anti-inflammatory action remain unclear. Here we have characterized the cellular mechanisms underlying the redox modulation of LPS-stimulated inflammatory responses in murine peritoneal macrophages by melatonin to provide insight into its anti-inflammatory effects. EXPERIMENTAL APPROACH Murine peritoneal macrophages were isolated and treated with melatonin in the presence or absence of LPS (5 μg·mL−1) for 18 h. Cell viability was determined using sulforhodamine B assay and NO production was measured using the Griess reaction. Pro-inflammatory enzymes and transcription factors were detected by Western blotting. KEY RESULTS Without affecting cell viability, melatonin (12.5, 25, 50 and 100 μM) reduced the level of nitrites, inducible NOS (iNOS), COX-2 and microsomal PGE synthase-1 (mPGES1) protein, and p38 MAPK phosphorylation, and prevented NF-κB translocation. Furthermore, melatonin treatment significantly increased NF-E2-related factor 2 (Nrf2) and haem oxygenase 1 (HO1) protein levels in murine macrophages exposed to LPS. CONCLUSIONS AND IMPLICATIONS Melatonin reduced pro-inflammatory mediators and enhanced the expression of HO1 via NF-κB, p38 MAPK and Nrf2 cascade signalling pathways in murine macrophages. Thus, melatonin might be a promising target for diseases associated with overactivation of macrophages. PMID:24116971

  7. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation

    PubMed Central

    Ejarque-Ortiz, Aroa; Sol, Carme; Martnez-Barriocanal, gueda; Schwartz, Sim; Martn, Margarita; Peluffo, Hugo; Says, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85? regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinicpolycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNF?, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation. PMID:25927603

  8. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    SciTech Connect

    Chiou, S.-H. . E-mail: shchiou@vghtpe.gov.tw; Chen, S.-J. . E-mail: sjchen@vghtpe.gov.tw; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-05-05

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 {mu}M fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1{beta}, IL-6, and TNF-{alpha} in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.

  9. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-? levels in male mice.

    PubMed

    Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-02-01

    The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno, BGOS) for 3weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1? concentrations in control mice 28h after LPS were not observed in BGOS-fed animals. This significant BGOSLPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1? and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features. PMID:26476141

  10. Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

    PubMed Central

    Juknat, Ana; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Gao, Fuying; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2013-01-01

    Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005). Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2), cell cycle related (Cdkn2b, Gadd45a) as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1). The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress response and that this response underlies their high immunosuppressant activities. PMID:23637839

  11. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    PubMed Central

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10??M) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1??M) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10??M ribavirin promoted LPS induced apoptosis. We determined that 1??M ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10??M ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  12. Protective Effect of Lupeol Against Lipopolysaccharide-Induced Neuroinflammation via the p38/c-Jun N-Terminal Kinase Pathway in the Adult Mouse Brain.

    PubMed

    Badshah, Haroon; Ali, Tahir; Rehman, Shafiq-Ur; Amin, Faiz-Ul; Ullah, Faheem; Kim, Tae Hyun; Kim, Myeong Ok

    2016-03-01

    Recent studies have demonstrated a close interaction between neuroinflammatory responses, increased production of inflammatory mediators, and neurodegeneration. Pathological findings in neurological diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease have shown common signs of neuroinflammation and neurodegeneration. Lupeol, a natural pentacyclic triterpene, has revealed a number of pharmacological properties including an anti-inflammatory activity. This study aimed to evaluate the effect of lupeol against lipopolysaccharide (LPS)-induced neuroinflammation in the cortex and hippocampus of adult mice. Our results showed that systemic administration of LPS induced glial cell production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and interleukin (IL)-1β, while co-treatment with lupeol significantly inhibited the LPS-induced activation of microglia and astrocytes, and decreased the LPS-induced generation of TNF-α, iNOS, and IL-1β. The intracellular mechanism involved in the LPS-induced activation of inflammatory responses includes phosphorylation of P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which was significantly inhibited by lupeol. We further elucidated that lupeol inhibited the LPS-induced activation of the mitochondrial apoptotic pathway and reversed the LPS-induced expression of apoptotic markers such as Bax, cytochrome C, caspase-9, and caspase-3. Taken together; our results suggest that lupeol inhibits LPS-induced microglial neuroinflammation via the P38-MAPK and JNK pathways and has therapeutic potential to treat various neuroinflammatory disorders. PMID:26139594

  13. Suppression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS) expression by a novel humulene derivative in macrophage cells.

    PubMed

    Min, Hye-Young; Kim, Moon Sun; Jang, Dae Sik; Park, Eun-Jung; Seo, Eun-Kyoung; Lee, Sang Kook

    2009-07-01

    In our previous study, we reported the isolation of a novel humulene derivative, 5-hydroxyzerumbone, from Zingiber zerumbet and its inhibitory activity on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 mouse macrophage cells. This study was performed to examine its mechanism of action on the regulation of NO production. 5-Hydroxyzerumbone inhibited the expressions of iNOS mRNA and protein in a concentration-dependent manner. Treatment with 5-hydroxyzerumbone also induced the expression of heme oxygenase-1 (HO-1) in macrophage cells. In addition, 5-hydroxyzerumbone inhibited LPS-induced transcriptional activation of NF-kappaB, indicating that regulation of NF-kappaB activity might be involved in the inhibition of NO production by 5-hydroxyzerumbone. 5-Hydroxyzerumbone, however, did not affect the degradation of IkappaB-alpha and the activation of p38 and ERK in LPS-treated cells. Taken together, these results suggest that down-regulation of LPS-induced NO production by 5-hydroxyzerumbone is mediated by the suppression of iNOS expression through the modulation of NF-kappaB activation and HO-1 induction in macrophage cells. PMID:19298870

  14. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    SciTech Connect

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2006-07-21

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 {mu}g/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-{kappa}B (NF-{kappa}B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects.

  15. Extract of gum resins of Boswellia serrata L. inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property.

    PubMed

    Pandey, Ravi S; Singh, Birendra K; Tripathi, Yamini B

    2005-06-01

    Boswellia serrata, Linn F (Burseraceae) is commonly used in Indian system of medicine (Ayurvedic) as an anti-inflammatory, analgesic, anti-arthritic and anti-proliferative agent. This study was planned to investigate the water-soluble fraction of the oleoresin gum of Boswellia serrata (BS extract) on lipopolysaccharide (LPS) induced nitric oxide (NO) production by macrophages under in vivo and in vitro conditions. In the previous condition, rats were fed on atherogenic diet (2.5% cholesterol, 1% cholic acid, 15.7 % saturated fat) along with the BS extract for 90 days. Blood was collected for lipid profile and toxicological safety parameters. Peritoneal macrophages were isolated and cultured to see the LPS induced NO production. Under in vivo experiment, BS extract significantly reduced serum total cholesterol (38-48 %), increased serum high-density lipoprotein- cholesterol (HDL-cholesterol, 22-30%). Under in vitro experiments with thioglycolate activated macrophages, it inhibited LPS induced (NO) production with IC 50 value at 662 ng /ml. Further, this fraction, in the dose of 15 mg/100 g body wt for 90 days, did not show any increase in serum glutamate-pyruvate transaminase (SGPT) and blood urea, in normal control animals. However, it significantly reversed the raised SGPT and blood urea in the atherogenic diet-fed animals. Transverse section of liver and kidney also supported its protective effect. Thus it may be concluded that water extract of Boswellia serrata possesses strong hypocholesterolemic property along with increase in serum HDL. It inhibits the LPS induced NO production by the activated rat peritoneal macrophages and show hepato-protective and reno-protective property. PMID:15991575

  16. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 in downregulating nuclear factor-kappa B pathway by Garcinol.

    PubMed

    Liao, Chiung-Ho; Sang, Shengmin; Liang, Yu-Chih; Ho, Chi-Tang; Lin, Jen-Kun

    2004-11-01

    Garcinol is a polyisoprenylated benzophenone derivative of Garcinia indica fruit rind and other species. Recent studies have demonstrated that garcinol exhibited antioxidative effects in vitro. In this study, we found that garcinol inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-activated macrophages. Western blot analyzes and gel-shift assays revealed that garcinol strongly blocks the activation of eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B)-induced by LPS. Moreover, transient transfection experiments showed that garcinol inhibited the NF-kappa B-dependent transcriptional activity. Based on these data, we demonstrated that inhibition of LPS-induced NF-kappa B activation occurred through suppressing the phosphorylation of I kappa B alpha and p38 mitogen-activated kinase (MAPK). Garcinol also lowers the LPS-induced increase of intracellular reactive oxygen species (ROS), which contributes to the activation of NF-kappa B. The NF-kappa B signaling pathway leads to inflammatory reaction and our results suggest that garcinol suppresses the expression of iNOS in this pathway. PMID:15390082

  17. Effects of adenosine on bacterial lipopolysaccharide- and interleukin 1-induced nitric oxide release from equine articular chondrocytes.

    TOXLINE Toxicology Bibliographic Information

    Benton HP; MacDonald MH; Tesch AM

    2002-02-01

    OBJECTIVE: To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes.SAMPLE POPULATION: Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease.PROCEDURE: Chondrocytes were isolated, plated at a high density (10(5) cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1alpha (rhIL-1alpha). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as micromol of nitrite in the supernatant/microg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline.RESULTS: Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1alpha-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187 Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity.CONCLUSIONS AND CLINICAL RELEVANCE: Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease.

  18. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Li, Wenqing; Wang, Feng; Sun, Chunyang; Wang, Lu; Wang, Jun; Sun, Fei

    2012-10-01

    While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators.While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31355c

  19. Rosmarinic Acid in Prunella vulgaris Ethanol Extract Inhibits LPS-induced Prostaglandin E2 and Nitric Oxide in RAW264.7 Mouse Macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prunella vulgaris has been used therapeutically for inflammation related conditions for centuries, but systematic studies of its anti-inflammatory activity are lacking and no specific active components have been identified. In this study, water and ethanol extracts of four P. vulgaris accessions we...

  20. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 ?g/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes. PMID:26013770

  1. Inhibition of inducible nitric oxide synthase expression by novel nonsteroidal anti-inflammatory derivatives with gastrointestinal-sparing properties.

    PubMed Central

    Cirino, G.; Wheeler-Jones, C. P.; Wallace, J. L.; Del Soldato, P.; Baydoun, A. R.

    1996-01-01

    1. The effects of novel nitric oxide-releasing nonsteroidal anti-inflammatory compounds (NO-NSAIDs) on induction of nitric oxide (NO) synthase by bacterial lipopolysaccharide (LPS) were examined in a murine cultured macrophage cell line, J774. 2. LPS-induced nitrite production was markedly attenuated by the nitroxybutylester derivatives of flurbiprofen (FNBE), aspirin, ketoprofen, naproxen, diclofenac and ketorolac, with each compound reducing accumulated nitrite levels by > 40% at the maximum concentrations (100 micrograms ml-1) used. 3. Further examination revealed that nitrite production was inhibited in a concentration-dependent (1-100 micrograms ml-1) manner by FNBE which at 100 micrograms ml-1 decreased LPS-stimulated levels by 63.3 +/- 8.6% (n = 7). The parent compound flurbiprofen was relatively ineffective over the same concentration-range, inhibiting nitrite accumulation by 24 +/- 0.9% (n = 3) at the maximum concentration used (100 micrograms ml-1). 4. FNBE reduced LPS-induced nitrite production when added to cells up to 4 h after LPS. Thereafter, FNBE caused very little or no reduction in nitrite levels. Furthermore NO-NSAIDs (100 micrograms ml-1) did not inhibit the metabolism of L-[3H]-arginine to citrulline by NO synthase isolated from LPS-activated macrophages. 5. Western blot analysis demonstrated that NO synthase expression was markedly attenuated following co-incubation of J774 cell with LPS (1 microgram ml-1; 24 h) and FNBE (100 micrograms ml-1; 24 h). Thus taken together, these findings indicate that NO-NSAIDs inhibit induction of NO synthase without directly affecting enzyme activity. 6. In conclusion our results indicate that NO-NSAIDs can inhibit the inducible L-arginine-NO pathway, and are capable of suppressing NO synthesis by inhibiting expression of NO synthase. The clinical implications of these findings remain to be established. Images Figure 4 PMID:8730734

  2. Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young

    2014-12-01

    Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. PMID:25454762

  3. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice.

    PubMed

    Haskó, G; Szabó, C; Németh, Z H; Kvetan, V; Pastores, S M; Vizi, E S

    1996-11-15

    Adenosine released into the extracellular space by immunologic and nonimmunologic stimuli has been shown to regulate various immune functions. In this study we report that i.p. pretreatment of mice with CGS-21680 HCl (CGS), a selective agonist of A2 adenosine receptors, at 0.2 to 2 mg/kg caused an augmentation of plasma IL-10 levels induced by i.p. injection of LPS, but decreased plasma levels of LPS-induced TNF-alpha. 2-Chloro-N6-cyclopentyladenosine (CCPA), an agonist of A1 adenosine receptors, at 0.5 mg/kg diminished LPS-induced plasma TNF-alpha concentrations, but enhanced LPS-induced IL-10 levels only at the highest dose used (2 mg/kg). The specific A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta- D-ribofuranuronamide, at 0.2 and 0.5 mg/kg potentiated LPS-stimulated IL-10 production and inhibited LPS-induced TNF-alpha production. LPS-induced plasma nitrite and nitrate levels (the breakdown products of nitric oxide (NO)) were suppressed by CGS and CCPA. In the RAW 264.7 macrophage cell line, pretreatment of the cells with both CGS and CCPA inhibited LPS-induced IL-10, TNF-alpha, and NO production, each in a concentration-dependent manner. The inhibitory effect of these drugs on cytokine and NO production was associated with improved mitochondrial respiration. Neither CGS nor CCPA affected the LPS-induced nuclear translocation of transcription factor nuclear factor-kappaB in these cells. These results demonstrate that adenosine receptor stimulation differentially modulates the LPS-induced production of IL-10, TNF-alpha, and NO in vitro and in vivo. The increase in LPS-induced IL-10 production and suppression of LPS-induced TNF-alpha and NO production caused by adenosine receptor activation may explain some of the immunomodulatory actions of adenosine released in excess during inflammatory and/or ischemic insult. PMID:8906843

  4. Involvement of the membrane form of tumour necrosis factor-alpha in lipopolysaccharide-induced priming of mouse peritoneal macrophages for enhanced nitric oxide response to lipopolysaccharide.

    PubMed Central

    Ancuta, P; Fahmi, H; Pons, J F; Le Blay, K; Chaby, R

    1997-01-01

    We studied the pathways of macrophage response to lipopolysaccharide (LPS). When mouse macrophages pre-exposed to LPS were restimulated with this agent, reduced tumour necrosis factor-alpha (TNF-alpha) responses (desensitization/endotoxin tolerance) were accompanied by increased (priming) nitric oxide (NO) responses. Priming was also inducible with recombinant interferon-beta (IFN-beta). The requirement of TNF-alpha biosynthesis in the LPS-induced priming was also suggested by the observation that both anti-TNF-alpha serum and pentoxifylline inhibited this effect. However, addition of mouse recombinant TNF-alpha (mrTNF-alpha) did not enhance the priming induced by LPS or IFN-beta, and preincubation with mrTNF-alpha alone, or in association with other cytokines produced by macrophages (interleukin-1 beta, interleukin-6, or leukaemia inhibitory factor), did not induce a priming effect. We found however, that pentoxifylline, which blocked the priming, also decreased the level of membrane-bound TNF-alpha. Furthermore, exposure to compound BB-3103 (a metalloproteinase inhibitor that blocks the processing of membrane-bound TNF-alpha yielding to the secreted cytokine) enhanced the priming effect, the expression of membrane TNF-alpha and the specific binding of LPS. These observations suggest that the membrane form of TNF-alpha is involved in the interaction of LPS with a receptor required for LPS-induced priming. PMID:9415035

  5. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates MAPK phosphorylation and nuclear translocation of NF-κB. • α-DHC induces ARE-regulated gene expression via Keap-1 modification.

  6. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  7. Bauer ketones 23 and 24 from Echinacea paradoxa var. paradoxa inhibit lipopolysaccharide-induced nitric oxide, prostaglandin E2 and cytokines in RAW264.7 mouse macrophages.

    PubMed

    Zhang, Xiaozhu; Rizshsky, Ludmila; Hauck, Catherine; Qu, Luping; Widrlechner, Mark P; Nikolau, Basil J; Murphy, Patricia A; Birt, Diane F

    2012-02-01

    Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In this study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were screened in lipopolysaccharide (LPS)-stimulated macrophage cells to assess potential anti-inflammatory activity. E. paradoxa var. paradoxa, rich in polyenes/polyacetylenes, was an especially efficient inhibitor of LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1?) and interleukin-6 (IL-6) by 46%, 32%, 53% and 26%, respectively, when tested at 20 ?g/ml in comparison to DMSO control. By bioactivity-guided fractionation, pentadeca-8Z-ene-11, 13-diyn-2-one (Bauer ketone 23) and pentadeca-8Z, 13Z-dien-11-yn-2-one (Bauer ketone 24) from E. paradoxa var. paradoxa were found primarily responsible for inhibitory effects on NO and PGE2 production. Moreover, Bauer ketone 24 was the major contributor to inhibition of inflammatory cytokine production in LPS-induced mouse macrophage cells. These results provide a rationale for exploring the medicinal effects of the Bauer ketone-rich taxon, E. paradoxa var. paradoxa, and confirm the anti-inflammatory properties of Bauer ketones 23 and 24. PMID:22133644

  8. Polyphenolics from ac?ai? ( Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia ) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126.

    PubMed

    Noratto, Giuliana D; Angel-Morales, Gabriela; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2011-07-27

    Endothelial anti-inflammatory effects of ac?ai? (Ac) and red muscadine grape (Gp) polyphenolics have not been extensively investigated. It was hypothesized that polyphenolics from Ac and Gp exert comparable protective effects in human vascular endothelial cells (HUVEC) upon inflammatory stress. Furthermore, this study investigated whether microRNAs relevant to endothelial function might be regulated by Ac and Gp. Results showed that Ac and Gp (5-20 mg gallic acid equivalent/L) protected HUVEC against glucose-induced oxidative stress and inflammation. Glucose-induced expression of interleukin-6 and -8 was down-regulated by Ac and Gp at mRNA and protein levels. Upon lipopolysaccharide (LPS; 1 ?g/L)-induced inflammation, Ac and Gp inhibited gene expression of adhesion molecules and NF-?B activation to similar extents, although Gp was more effective in decreasing PECAM-1 and ICAM-1 protein. Of the screened microRNAs, only microRNA-126 expression was found to be modulated by Ac and Gp as the underlying mechanism to inhibit gene and protein expression of VCAM-1. PMID:21682256

  9. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  10. Atypical “seizure-like” activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons

    PubMed Central

    Gullo, Francesca; Amadeo, Alida; Donvito, Giulia; Lecchi, Marzia; Costa, Barbara; Constanti, Andrew; Wanke, Enzo

    2014-01-01

    We show here that a mild sterile inflammation induced by the endotoxin lipopolysaccharide (LPS), in a neuron/astrocyte/microglial cortical network, modulates neuronal excitability and can initiate long-duration burst events resembling epileptiform seizures, a recognized feature of various central nervous neurodegenerative, neurological and acute systemic diseases associated with neuroinflammation. To study this action, we simultaneously analyzed the reverberating bursting activity of a hundred neurons by using in vitro multi-electrode array methods. ∼5 h after LPS application, we observed a net increase in the average number of spikes elicited in engaged cells and within each burst, but no changes neither in spike waveforms nor in burst rate. This effect was characterized by a slow, twofold exponential increase of the burst duration and the appearance of rarely occurring long burst events that were never seen during control recordings. These changes and the time-course of microglia-released proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), were blocked by pre-treatment with 50 nM minocycline, an established anti-inflammatory agent which was inactive when applied alone. Assay experiments also revealed that application of 60 pM exogenous TNF-α after 12–15 h, produced non-washable changes of neuronal excitability, completely different from those induced by LPS, suggesting that TNF-α release alone was not responsible for our observed findings. Our results indicate that the link between neuroinflammation and hyperexcitability can be unveiled by studying the long-term activity of in vitro neuronal/astrocyte/microglial networks. PMID:25404893

  11. Microsatellite (GT)n polymorphism at 3'UTR of SLC11A1 influences the expression of brucella LPS induced MCP1 mRNA in buffalo peripheral blood mononuclear cells.

    PubMed

    Balasubramaniam, Sivamani; Kumar, Subodh; Sharma, Arjava; Mitra, Abhijit

    2013-04-15

    A (GT)n microsatellite polymorphism at 3'UTR of SLC11A1(solute carrier family 11A1) is associated with the natural resistance to bovine brucellosis. A pleiotropic effect of SLC11A1 on other candidate genes influencing the host resistance including monocyte chemotactic/chemoattractant protein 1 (MCP1) is also hypothesized. In the present study, we report the cloning and characterization of the complete coding sequence of bubaline (bu) MCP1 and its tissue distribution at the transcript level. The buMCP1 exhibited as high as 99% and >80% of sequence identities with the bovine and other domestic animal species homologues. The buMCP1 mRNA was abundant across the different tissues: most abundant in liver and mammary gland, moderate in ovary, skeletal muscle and testis, and least in uterus. Further, quantitative real-time PCR (RTqPCR) analysis revealed that PBMCs carrying so called resistant GT13 allele produced more MCP1 mRNA endogenously as well as when induced with brucella LPS suggesting the pleiotropic roles of SLC11A1 in conferring resistance against the intracellular pathogens particularly against brucellosis. However, the underlying molecular mechanisms by which 3'UTR SLC11A1 concomitantly increases the production of chemokines like MCP1 are yet to be investigated. PMID:23333195

  12. Inhibition of inducible nitric oxide synthase by ?-lapachone in rat alveolar macrophages and aorta

    PubMed Central

    Liu, Shing-Hwa; Tzeng, Huei-Ping; Kuo, Min-Liang; Lin-Shiau, Shoei-Yn

    1999-01-01

    ?-Lapachone, a plant product, has been shown to be a novel inhibitor of DNA topoisomerase. In this study, we performed experiments to examine the effects of ?-lapachone on lipopolysaccharide (LPS)-induced inducible nitric oxide (NO) synthase (iNOS) in rat alveolar macrophages and aortic rings. In alveolar macrophages, incubation with LPS (10??g?ml?1) for various time intervals resulted in a significant increase in nitrite production and iNOS protein synthesis, that was inhibited by co-incubation with ?-lapachone (14.5??M) without any cytotoxic effects. However, addition of ?-lapachone after induction of NO synthase by LPS failed to affect the nitrite production. Treatment with LPS (10??g?ml?1) for 6?h resulted in significant expression of mRNA for iNOS which was significantly inhibited in the presence of ?-lapachone (3??M) in alveolar macrophages. In endothelium-intact rings of thoracic aorta, ?-lapachone (1 and 3??M) markedly inhibited the hypocontractility to phenylephrine in aortic rings treated with LPS (10??g?ml?1) for 4?h. When ?-lapachone was added 3?h after LPS into the medium, the contractions evoked by phenylephrine were not significantly different in the presence or absence of ?-lapachone. Treatment with LPS (10??g?ml?1) for 4?h resulted in a significant increase in iNOS protein synthesis which was inhibited in the presence of ?-lapachone (3??M), but did not affect the constitutive (endothelial and neuronal) NOS forms in aortic rings. These results indicate that ?-lapachone is capable of inhibiting expression and function of iNOS in rat alveolar macrophages and aortic rings. It is considered that ?-lapachone can be developed as a potential anti-inflammatory agent in the future. PMID:10188987

  13. Recognition of Betaine as an Inhibitor of Lipopolysaccharide-Induced Nitric Oxide Production in Activated Microglial Cells

    PubMed Central

    Amiraslani, Banafsheh; Sabouni, Farzaneh; Abbasi, Shahsanam; Nazem, Habiballah; Sabet, Mohammadsadegh

    2012-01-01

    Background: Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. The aim of this study was to inhibit production of NO in activated microglial cells in order to decrease neurological damages that threat the central nervous system. Methods: An in vitro model of a newborn rat brain cell culture was used to examine the effect of betaine on the release of NO induced by lipopolysaccharide (LPS). Briefly, primary microglial cells were stimulated by LPS and after 2 minutes, they were treated by different concentrations of betaine. The production of NO was assessed by the Griess assay while cell viability was determined by the MTT assay. Results: Our investigations indicated that LPS-induced NO release was attenuated by betaine, suggesting that this compound might inhibit NO release. The effects of betaine on NO production in activated microglial cells after 24 h were "dose-dependent". It means that microglial cells which were treated with higher concentrations of betaine, released lower amounts of NO. Also our observations showed that betaine compound has no toxic effect on microglial cells. Conclusion: Betaine has an inhibitory effect on NO release in activated microglial cells and may be an effective therapeutic component to control neurological disorders. PMID:22801281

  14. Soyasaponin Ab inhibits lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Lin, Jing; Cheng, Yanwen; Wang, Tao; Tang, Lihua; Sun, Yan; Lu, Xiuyun; Yu, Huimin

    2016-01-01

    Soyasaponin Ab (SA) has been reported to have anti-inflammatory effect. However, the effects of SA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. The aim of this study was to investigate the anti-inflammatory effects of SA on LPS-induced ALI and clarify the possible mechanism. The mice were stimulated with LPS to induce ALI. SA was given 1h after LPS treatment. 12h later, lung tissues were collected to assess pathological changes and edema. Bronchoalveolar lavage fluid (BALF) was collected to assess inflammatory cytokines and nitric oxide (NO) production. In vitro, mice alveolar macrophages were used to investigate the anti-inflammatory mechanism of SA. Our results showed that SA attenuated LPS-induced lung pathological changes, edema, the expression of cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lung tissues, as well as TNF-?, IL-6, IL-1?, and NO production in mice. Meanwhile, SA up-regulated the activities of superoxide dismutase (SOD) and catalase decreased by LPS in mice. SA also inhibited LPS-induced TNF-?, IL-6 and IL-1? production as well as NF-?B activation in alveolar macrophages. Furthermore, SA could activate Liver X Receptor Alpha (LXR?) and knockdown of LXR? by RNAi abrogated the anti-inflammatory effects of SA. In conclusion, the current study demonstrated that SA exhibited protective effects against LPS-induced acute lung injury and the possible mechanism was involved in activating LXR?, thereby inhibiting LPS-induced inflammatory response. PMID:26672918

  15. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent. PMID:25730806

  16. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Mller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle. PMID:11269668

  17. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination

    SciTech Connect

    Chow, J.-M.; Lin, H.-Y.; Shen, S.-C.; Wu, M.-S.; Lin, C.-W.; Chiu, W.-T.; Lin, C.-H. Chen, Y.-C.

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl{sub 2}), at the doses of 0.5, 1, and 2 {mu}M, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  18. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action.

    PubMed

    Cho, Dong-Im; Koo, Na-Youn; Chung, Woon Jae; Kim, Tae-Sung; Ryu, Shi Yong; Im, Suhn Young; Kim, Kyeong-Man

    2002-09-13

    NF-kappaB that plays an important role in iNOS expression is one of the targets of various potential anti-inflammatory agents including resveratrol. Resveratrol contains a structural similarity with estrogen, and there has been speculation about resveratrol as estrogen agonist. In this study, the mechanism and structural requirements of resveratrol and related hydroxystilbenes for the inhibition of LPS-induced nitric oxide production were studied in macrophage cells (RAW 264.7 and J774) by comparing its effect on LPS-induced NF-kappaB translocation and nitric oxide production, and by considering the possibility of involvement of an estrogen receptor. LPS-induced nitric oxide production was inhibited only when cells were treated with resveratrol prior to stimulation with LPS, suggesting that resveratrol does not affect the enzyme itself. A higher concentration of resveratrol than needed for the inhibition of nitric oxide production was required for the inhibition of NF-kappaB mobilization or iNOS expression. Estrogen and diethylstilbesterol, an estrogen agonist, caused only weak inhibition of nitric oxide production, and the effects of resveratrol were not noticeably blocked by ICI-182780, an estrogen antagonist. Structure-activity analysis of resveratrol and nine hydroxystilbenes suggests that the structural balance between oxygen functional groups on the benzene rings is important for their activity. Our results suggest that resveratrol might act on other cellular targets as well as NF-kappaB at the initial stage of gene expression. Unique structural features of hydroxystilbenes are needed for suppression of nitric oxide production and it is unlikely that estrogen receptor is involved in it. PMID:12175900

  19. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia.

    PubMed

    Luo, Xiao-Ling; Liu, Si-Yu; Wang, Li-Jun; Zhang, Qiu-Yan; Xu, Peng; Pan, Li-Long; Hu, Jin-Feng

    2016-03-01

    Neuroinflammation underlies the pathogenesis and progression of neurodegenerative diseases. 2?-hydroxy-4,3?,4?,6?-tetramethoxychalcone (HTMC) is a known chalcone derivative isolated from Chloranthus henryi with anti-inflammatory activities in BV2 macrophages. However, its pharmacological effects on microglial cells have not been demonstrated. To this end, we examined the effects of HTMC on lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglial cells. HTMC concentration-dependently inhibited LPS-induced expression of inflammatory enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nitric oxide (NO) production, and the secretion of inflammatory cytokines, including tumor necrosis factor (TNF)-?, interleukin (IL)-1?, and IL-6. In addition, HTMC inhibited reactive oxygen species (ROS) production by reducing NADPH oxidase (Nox) 2 and Nox4 expression. In addition, HTMC interfered LPS-induced c-Jun N-terminal kinase 1/2 (JNK) phosphorylation in a time- and concentration-dependent manner. By inhibiting phosphorylation and nuclear translocation of Jun, HTMC suppressed LPS-induced activator protein-1 (AP-1) activation. Taken together, our data indicate that HTMC suppresses inflammatory responses in LPS-stimulated BV2 microglial cells by modulating JNK-AP-1 and NADPH oxidases-ROS pathways. HTMC represents a promising therapeutic agent for neurodegenerative and related aging-associated diseases. PMID:26852953

  20. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor ?-activated kinase 1-nuclear factor-?B signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-?B as well as the degradation of inhibitor of ?B (I?B)-? and phosphorylation of I?B kinase ? (IKK?). This prevention effect of Hsp70 inhibition on IKK?-NF-?B activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor ?-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-?B signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. PMID:25691123

  1. Inhibition of pro-inflammatory cytokines and inducible nitric oxide by extract of Emilia sonchifolia L. aerial parts.

    PubMed

    Nworu, Chukwuemeka S; Akah, Peter A; Okoye, Festus B C; Esimone, Charles O

    2012-12-01

    Emilia sonchifolia L. (Asteraceae) is used in ethnomedicine for the treatment of a wide array of inflammatory disorders. This practice has also been supported by scientific reports which showed that extracts of E. sonchifolia possess anti-inflammatory effects in rodents. However, the mechanism(s) through which the extracts produce these effects is not known. In this study, the effect of a methanol/methylene chloride extract of E. sonchifolia (ES) on the levels of IL-1? and TNF-? after an intraperitoneal lipopolysaccharide (LPS; 1?mg/kg) challenge was investigated in mice. The effect of ES on TNF-? and inducible nitric oxide (iNO) production by LPS-stimulated bone marrow-derived macrophages (BMMDM) was also investigated in vitro. BMMDM were pre-incubated for 2?h with ES (20, and 100 ?g/mL) or with Pyrrolidine dithiocarbamate, PDTC (100 M) and then activated with LPS, and then the IL-1?, TNF-? and NO production measured in the cell-free conditioned culture supernatant after 24?h of incubation. In groups of mice pre-treated with ES, the systemic levels of IL-1? and TNF-? induced by LPS were found to be significantly (p < 0.05) lower. In vitro, ES treatment caused a concentration-dependent decrease in LPS-inducible IL-1?, TNF-?, and NO production by BMDM compared to the effects of treatment of the cells with LPS alone without affecting the viability of the cells. The results of these studies suggest that treatment with ES alleviated inflammatory responses possibly through a suppression of pro-inflammatory mediators and cytokines such as IL-1?, TNF-?, and iNO. PMID:22712801

  2. Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia.

    PubMed

    Wang, Chang-Nan; Duan, Guo-Li; Liu, Yu-Jian; Yu, Qing; Tang, Xiao-Lu; Zhao, Wei; Li, Xiao-Han; Zhu, Xiao-Yan; Ni, Xin

    2015-06-01

    We have recently demonstrated that lipopolysaccharide (LPS) causes mitochondrial oxidative stress and dysfunction in adrenal glands, thereby leading to adrenocortical insufficiency. Since nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) leads to mitochondrial damage in various tissues, the present study aims to investigate whether NO contributes to mitochondrial oxidative stress in adrenal cortex and adrenocortical insufficiency during endotoxemia. Systemic administration of LPS increased iNOS expression and NO production in adrenal glands of mice. The specific iNOS inhibitor 1400 W significantly attenuated the LPS-induced mitochondrial superoxide production and dysfunction in adrenal glands, and reversed the LPS-induced adrenocortical hyporesponsiveness to adrenocorticotropic hormone (ACTH). In contrast, administration of the NO donor sodium nitroprusside (SNP) led to mitochondrial oxidative stress and dysfunction in adrenal glands, which resulted in a blunted corticosterone response to ACTH. Using double immunofluorescence staining for iNOS with the vascular endothelial cell marker CD31 or the macrophage marker CD68, we found that increased iNOS expression was found in vascular endothelial cells and macrophages, but not adrenocortical cells in the adrenal gland during endotoxemia. Administration of the hydrogen sulfide (H2S) donor GYY4137 inhibited NO production and reversed LPS-induced adrenocortical hyporesponsiveness. Our data suggest that overproduction of NO, which is mainly generated by endothelial cells and macrophages during endotoxemia, contributes to mitochondrial oxidative stress in adrenocortical cells and subsequently leads to adrenal insufficiency. PMID:25744413

  3. N-adamantyl-4-methylthiazol-2-amine suppresses lipopolysaccharide-induced brain inflammation by regulating NF-κB signaling in mice.

    PubMed

    Cho, Chang Hun; Kim, Jiae; Ahn, Jee-Yin; Hahn, Hoh-Gyu; Cho, Sung-Woo

    2015-12-15

    We report that N-adamantyl-4-methylthiazol-2-amine (KHG26693), a novel thiazole derivative, can prevent lipopolysaccharide (LPS)-induced brain inflammation in mice. In this LPS-induced model of brain inflammation, administration of KHG26693 effectively prevented increases in the levels of IL-1β, TNF-α, prostaglandin E2, malondialdehyde, and nitric oxide, and mitigated reductions in the levels of superoxide dismutase in the hippocampus. KHG26693 also prevented reductions in the levels of hippocampal brain-derived neurotrophic factors. Furthermore, pretreatment with KHG26693 prior to LPS treatment dramatically attenuated the elevation of inducible nitric oxide synthase and cyclooxygenase-2 protein levels. Moreover, pretreatment with KHG26693 significantly suppressed LPS-induced phosphorylation of NF-κB and IκBα through the inactivation of IKKβ. Additionally, KHG26693 caused the downregulation of LPS-induced cystathionine-b-synthase gene expression in the brain. Although the clinical relevance of our findings remains to be determined, our data suggest that KHG26693 might prevent neuronal cell injury via the reduction of inflammation and oxidative stress in the brain. PMID:26616878

  4. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase

    PubMed Central

    2015-01-01

    The inducible form of nitric oxide synthase (iNOS) is expressed in hepatic cells in pathological conditions. Its induction is involved in the development of liver fibrosis, and thus iNOS could be a therapeutic target for liver fibrosis. This review summarizes the role of iNOS in liver fibrosis, focusing on 1) iNOS biology, 2) iNOS-expressing liver cells, 3) iNOS-related therapeutic strategies, and 4) future directions. PMID:26770919

  5. Soybean glyceollins mitigate inducible nitric oxide synthase and cyclooxygenase-2 expression levels via suppression of the NF-κB signaling pathway in RAW 264.7 cells

    PubMed Central

    YOON, EUN-KYUNG; KIM, HYUN-KYOUNG; CUI, SONG; KIM, YONG-HOON; LEE, SANG-HAN

    2012-01-01

    Glyceollins, produced to induce disease resistance responses against specific species, such as an incompatible pathogen Phytophthora sojae in soybeans, have the potential to exhibit anti-inflammatory activity in RAW 264.7 cells. To investigate the anti-inflammatory effects of elicited glyceollins via a signaling pathway, we studied the glyceollin signaling pathway using several assays including RNA and protein expression levels. We found that soybean glyceollins significantly reduced LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) via the suppression of NF-κB activation. Glyceollins also inhibited the phosphorylation of IκBα kinase (IKK), the degradation of IκBα, and the formation of NF-κB-DNA binding complex in a dose-dependent manner. Furthermore, they inhibited pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-18, but increased the generation of the anti-inflammatory cytokine IL-10. Collectively, the present data show that glyceollins elicit potential anti-inflammatory effects by suppressing the NF-κB signaling pathway in RAW 264.7 cells. PMID:22246209

  6. U-Bang-Haequi Tang: A Herbal Prescription that Prevents Acute Inflammation through Inhibition of NF-?B-Mediated Inducible Nitric Oxide Synthase

    PubMed Central

    Hwangbo, Min; Jung, Ji Yun; Ki, Sung Hwan; Park, Sang Mi; Jegal, Kyung Hwan; Lee, Ju-Hee; Kang, Seung Ho; Park, Sun-Dong; Ku, Sae Kwang; Zhao, Rong Jie; Jee, Seon Young

    2014-01-01

    Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT) is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO) and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS). Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1?g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-?B, phosphorylation of I?-B? induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-?B in RAW264.7 cells. PMID:24959187

  7. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  8. Ninjurin1 regulates lipopolysaccharide-induced inflammation through direct binding.

    PubMed

    Shin, Min Wook; Bae, Sung-Jin; Wee, Hee-Jun; Lee, Hyo-Jong; Ahn, Bum Ju; Le, Hoang; Lee, Eun Ji; Kim, Ran Hee; Lee, Hye Shin; Seo, Ji Hae; Park, Ji-Hyeon; Kim, Kyu-Won

    2016-02-01

    Ninjurin1 is a transmembrane protein involved in macrophage migration and adhesion during inflammation. It was recently reported that repression of Ninjurin1 attenuated the lipopolysaccharide (LPS)-induced inflammatory response in macrophages; however, the precise mechanism by which Ninjurin1 modulates LPS-induced inflammation remains poorly understood. In the present study, we found that the interaction between Ninjurin1 and LPS contributed to the LPS-induced inflammatory response. Notably, pull-down assays using lysates from HEK293T cells transfected with human or mouse Ninjurin1 and biotinylated LPS (LPS-biotin) showed that LPS directly bound Ninjurin1. Subsequently, LPS binding assays with various truncated forms of Ninjurin1 protein revealed that amino acids (aa) 81-100 of Ninjurin1 were required for LPS binding. In addition, knockdown experiments using Ninj1 siRNA resulted in decreased nitric oxide (NO) and tumor necrosis factor-? (TNF?) secretion upon LPS treatment in Raw264.7 cells. Collectively, our results suggest that Ninjurin1 regulates the LPS-induced inflammatory response through its direct binding to LPS, thus, identifying Ninjurin1 as a putative target for the treatment of inflammatory diseases, such as sepsis and inflammation-associated carcinogenesis. PMID:26677008

  9. Antioxidant and nitric oxide inhibition activities of Thai medicinal plants.

    PubMed

    Makchuchit, Sunita; Itharat, Arunporn; Tewtrakul, Supinya

    2010-12-01

    Nineteen Thai medicinal plants used in Thai traditional medicine preparation to treat colds, asthma and fever were studied for their antioxidant and NO inhibitory activities. Three extracts were obtained from each plant. First extract obtained by macerating the plant part in 95% ethanol (Et) residue was boiled in water, where water extract (EW) was obtained. The third extract (HW) was obtained by boiling each plant in water similar to that of Thai traditional medicine practice. These extracts were tested for their antioxidant activity using DPPH assay, and anti-inflammatory activity by determination of inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cell lines using Griess reagent. Results indicated that Et, EW and HW of Syzygium aromaticum showed the highest antioxidant activity (EC50 = 6.56, 4.73 and 5.30 microg/ml, respectively). Et of Atractylodes lancea exhibited the most potent inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 cells, with IC50 value of 9.70 microg/ml, followed by Et of Angelica sinensis and Cuminum cyminum (IC50 = 12.52 and 13.56 microg/ml, respectively) but water extract (EW, HW) of all plants were apparently inactive. These results of anti-inflammatory activity of these plants correspond with the traditional use for fever; cold, allergic-related diseases and inflammatory-related diseases. PMID:21294419

  10. Acanthopanax koreanum fruit waste inhibits lipopolysaccharide-induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Yang, Eun-Jin; Moon, Ji-Young; Lee, Jung-Soon; Koh, Jaesook; Lee, Nam Ho; Hyun, Chang-Gu

    2010-01-01

    The Acanthopanax koreanum fruit is a popular fruit in Jeju Island, but the byproducts of the alcoholic beverage prepared using this fruit are major agricultural wastes. The fermentability of this waste causes many economic and environmental problems. Therefore, we investigated the suitability of using A. koreanum fruit waste (AFW) as a source of antiinflammatory agents. AFWs were extracted with 80% EtOH. The ethanolic extract was then successively partitioned with hexane, CH(2)Cl(2), EtOAc, BuOH, and water. The results indicate that the CH(2)Cl(2) fraction (100 microg/mL) of AFW inhibited the LPS-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in RAW 264.7 cells by 79.6% and 39.7%, respectively. These inhibitory effects of the CH(2)Cl(2) fraction of AFWs were accompanied by decreases in the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and iNOS and COX-2 mRNA in a dose-dependent pattern. The CH(2)Cl(2) fraction of AFWs also prevented degradation of IkappaB-alpha in a dose-dependent manner. Ursolic acid was identified as major compound present in AFW, and CH(2)Cl(2) extracts by high performance liquid chromatography (HPLC). Furthermore using pure ursolic acid as standard and by HPLC, AFW and CH(2)Cl(2) extracts was found to contain 1.58 mg/g and 1.75 mg/g, respectively. Moreover, we tested the potential application of AFW extracts as a cosmetic material by performing human skin primary irritation tests. In these tests, AFW extracts did not induce any adverse reactions. Based on these results, we suggest that AFW extracts be considered possible anti-inflammatory candidates for topical application. PMID:20368786

  11. Diterpenoids from the Roots of Euphorbia fischeriana with Inhibitory Effects on Nitric Oxide Production.

    PubMed

    Lee, Jin Woo; Lee, Chul; Jin, Qinghao; Jang, Hari; Lee, Dongho; Lee, Ha-Jin; Shin, Jong Won; Han, Sang Bae; Hong, Jin Tae; Kim, Youngsoo; Lee, Mi Kyeong; Hwang, Bang Yeon

    2016-01-22

    Bioactivity-guided isolation of a methanolic extract of Euphorbia fischeriana led to the isolation of four new abietane-type diterpenoids, fischeriolides A-D (1-4), together with 11 known diterpenoids. Their structures were elucidated based on the interpretation of 1D and 2D NMR spectroscopic and HRESIMS data. The absolute configuration of compound 3 was determined by single-crystal X-ray diffraction analysis and electronic circular dichroism methods. Compounds 5-9 exhibited inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values in the range 4.9-12.6 ?M. PMID:26702644

  12. Malabaricone C suppresses lipopolysaccharide-induced inflammatory responses via inhibiting ROS-mediated Akt/IKK/NF-κB signaling in murine macrophages.

    PubMed

    Kang, Jungwon; Tae, Nara; Min, Byung Sun; Choe, Jongseon; Lee, Jeong-Hyung

    2012-11-01

    Malabaricone C (MLB-C), isolated from nutmeg, is a phenolic diarylnonanoid that is known to exert a variety of pharmacological activities. In the present study, we investigated the molecular actions of MLB-C against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells and murine peritoneal macrophages. MLB-C inhibited the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-6 (IL-6), and interferon-γ (INF-γ) in a dose-dependent manner. Consistent with NO and PGE(2) inhibition, MLB-C suppressed LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression as well as the promoter activities of COX-2 and iNOS. MLB-C pretreatment prevented LPS-induced nuclear factor-kappa B (NF-κB) activation through the inhibition of phosphorylation of IκB kinase (IKK), phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB. In addition, MLB-C blocked LPS-induced serine 536 phosphorylation and transcriptional activity of RelA/p65 subunit of NF-κB. Further study demonstrated that MLB-C inhibited LPS-induced Akt phosphorylation, which is an upstream activator of NF-κB, by reducing reactive oxygen species (ROS) accumulation, without affecting phosphorylation of mitogen-activated protein kinases (MAPKs). These findings indicate that MLB-C exerts an anti-inflammatory effect through the inhibition of NF-κB activation by inhibiting interconnected ROS/Akt/IKK/NF-κB signaling pathways. PMID:22917708

  13. Implication of nitric oxide synthase in carcinogenesis: analysis of the human inducible nitric oxide synthase gene.

    PubMed

    Esumi, H; Ogura, T; Kurashima, Y; Adachi, H; Hokari, A; Weisz, A

    1995-01-01

    Nitric oxide (NO) is a newly identified, multifunctional biological mediator. However, it also has deleterious effects on biological materials. For instance, nucleic acids, proteins, and some prosthetic groups of enzymes can be modified by NO or its reaction products with other reactive oxygen species. Endogenous nitrosamine formation through the reaction of NO or its oxidized products with amines might be involved in carcinogenesis. These deleterious effects of NO are often associated with inflammatory processes both in experimental animals and human. We analyzed the molecular mechanism of control of expression of the inducible nitric oxide synthase (NOS) gene in mouse cells by cloning its putative promoter region. This promoter responded to various cytokines and endotoxin similarly to the endogenous NOS gene in mouse cells. No appreciable induction of NOS was observed in human peripheral blood cells, but induction was detected in a human glioblastoma cell line A-172. Therefore, the human inducible NOS cDNA was cloned from A-172 cells and its cDNA-deduced amino acid sequence found to have about 80% similarity to those of both mouse and rat inducible NOSs. The effects of various cytokines on the induction of the gene were somewhat different from those observed in mouse cells, but the mouse promoter responded to these cytokines similarly to the endogenous NOS gene in human cells, indicating functional similarity of cis-elements of the genes encoding both human and mouse inducible NOS. Structural analysis of the human inducible NOS gene by Southern blot analysis revealed putative genetic restriction fragment length polymorphism in intron 5.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7581489

  14. Design and Synthesis of 2-Amino-4-methylpyridine Analogues as Inhibitors for Inducible Nitric Oxide Synthase and in vivo Evaluation of [18F]6-(2-Fluoropropyl)-4-methyl-pyridin-2-amine as a Potential PET Tracer for Inducible Nitric Oxide Synthase

    PubMed Central

    Zhou, Dong; Lee, Hsiaoju; Rothfuss, Justin M.; Chen, Delphine L.; Ponde, Datta E.; Welch, Michael J.; Mach, Robert H.

    2009-01-01

    A series of position-6 substituted 2-amino-4-methylpyridine analogues was synthesized and compounds 9, 18, and 20 were identified as the inhibitors with the greatest potential to serve as PET tracers for imaging inducible nitric oxide synthase (iNOS). [18F]9 was synthesized and evaluated in a mouse model of lipopolysaccharide (LPS)-induced iNOS activation. In vivo biodistribution studies of [18F]9 indicate higher tracer uptake in the lungs of the LPS-treated mice when compared to control mice. Tracer uptake at 60 min post-injection was reduced in a blocking study using a known inhibitor of iNOS. The expression of iNOS was confirmed by Western blot analysis of lung samples from the LPS-treated mice. MicroPET studies also demonstrated accumulation of radiotracer in the lungs of the LPS-treated mice. Taken collectively, these data suggest that [18F]9 shows favorable properties as a PET tracer to image iNOS activation with PET. PMID:19323559

  15. Effect of Ixeris dentata Nakai Extract on Nitric Oxide Production and Prostaglandin E2 Generation in LPS-stimulated RAW264.7 Cells

    PubMed Central

    Jung, Yu Yeon; Hong, Jin Tae; Han, Sang Bae; Son, Dong Ju

    2015-01-01

    Inflammation is the basis of severe acute and chronic diseases. This study investigated the anti-inflammatory property of a crude methanol extract (MeOH-ex) and the solvent fractions of Ixeris dentata Nakai (IDN) in LPS-stimulated murine macrophage-like cell line RAW264.7. Here, we showed that the ethyl acetate fraction (EtOAc-fr) had the most potent inhibitory activity on LPS-induced nitric oxide (NO) production among the tested samples, i.e., IDN MeOH-ex and the three different solvent fractions (chloroform, n-hexane, and EtOAc). We further found that the EtOAc-fr significantly inhibited LPS-induced prostaglandin PGE2 (PGE2) generation in RAW264.7 cells. Furthermore, the treatment with EtOAc-fr effectively suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). These results suggest that the EtOAc-fr of IDN MeOH-ex exhibits an anti-inflammatory activity in vitro by inhibiting LPS-induced NO production and PGE2 generation via suppression of iNOS and COX-2 expression. PMID:26770187

  16. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride alters lipopolysaccharide-induced proinflammatory cytokines and neuronal morphology in mouse fetal brain.

    PubMed

    Kim, Eun-A; Cho, Chang Hun; Choi, Soo Young; Ahn, Jee-Yin; Yang, Seung-Ju; Cho, Sung-Woo

    2016-03-01

    It is well documented that a maternal immune response to infection during pregnancy can cause neurodevelopmental damage. We demonstrate in our current study that maternally administered 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (KHG26377), a novel thiazole derivative, prevents fetal malformations and neurodevelopmental deficits in offspring by blocking lipopolysaccharide (LPS)-induced inflammation. Administration of KHG26377 effectively regulated LPS-induced inflammatory markers and mediators such as soluble intercellular adhesion molecule-1, se-Selectin, macrophage chemoattractant protein-1, and cytokine-induced neutrophil chemoattractant-1 in the maternal serum. Furthermore, maternally administered KHG26377 showed an inhibitory effect on the LPS-induced developmental toxicity by selectively suppressing the TNF-? level in maternal serum, amniotic fluid, placenta, fetal liver, and fetal brain as well as by suppression of LPS-induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and myelin basic protein (MBP) levels in the fetal brain. In addition, pretreatment of neuronal cells with KHG26377 effectively reestablished the cell body morphology and microtubule-associated protein 2 (MAP2) staining compared to the LPS-treated group in cortex primary neuronal cultures. Although the clinical relevance of our findings remains to be determined, our results provide novel insights into KHG26377 as a possible therapeutic agent to protect fetuses against various inflammatory responses. PMID:26522435

  17. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells

    PubMed Central

    Lin, Wen-Hung; Kuo, Heng-Hung; Ho, Li-Hsing; Tseng, Ming-Lang; Siao, An-Ci; Hung, Chang-Tsen; Jeng, Kee-Ching; Hou, Chien-Wei

    2015-01-01

    Objective(s): Gardenia jasminoides Ellis (GJ, Cape Jasmine Fruit, Zhi Zi) has been traditionally used for the treatment of infectious hepatitis, aphthous ulcer, and trauma; however, the direct evidence is lacking. Materials and Methods: We investigated the effect of the GJ extract (GJ) and gallic acid (GA) on lipopolysaccharide (LPS) induced inflammation of BV-2 microglial cells and acute liver injury in Sprague-Dawley (SD) rats. Results: Our results showed that the GJ extract and GA reduced LPS-induced nitric oxide (NO), interleukin (IL)-1, IL-6, reactive oxygen species (ROS), and prostaglandin (PGE2) production in BV-2 cells. The GJ extract and GA significantly decreased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in LPS-treated rats. Furthermore, the water extract, but not the ethanol extract, of the GJ dose-dependently inhibited LPS-induced JNK2/1 and slightly p38 mitogen-activated protein kinases (MAPK), and cyclooxygenase-2 (COX-2) expression in BV-2 cells. Conclusion: Taken together, these results indicate that the protective mechanism of the GJ extract involves an antioxidant effect and inhibition of JNK2/1 MAP kinase and COX-2 expressions in LPS-induced inflammation of BV-2 cells. PMID:26221479

  18. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes.

    PubMed

    Kjeldsen, T H; Rivier, C; Lee, S; Hansen, E W; Christensen, J D; Moesby, L

    2003-03-01

    This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete interleukin (IL)-6 upon stimulation with LPS, this parameter was also investigated. Cultured pituicytes, from 4-week-old male mice, were stimulated with LPS for 6 h or 24 h. At 24 h, there was a significant increase in accumulated nitrite indicating NO formation. In contrast, IL-6 release was already significantly higher 6 h after stimulation and further increased at 24 h. The correlation between accumulated nitrite and secreted IL-6 was 0.84 after 24 h of incubation with LPS. The expression of inducible NOS (iNOS) mRNA in the pituicytes was significantly higher than the control level after 6 h and 24 h of exposure to LPS, with levels at 6 h being significantly higher than those at 24 h. There was no detected expression of endothelial NOS or neuronal NOS mRNA. Cultured pituicytes were also subjected to immunocytochemistry for iNOS protein at 6, 12, and 24 h after stimulation with LPS. Most cells were positive for iNOS, but there were no observable differences with the time points that we used. Collectively, these results show that pituicytes are able to produce NO, and that the inducible form of NOS is responsible for this production. Furthermore, there is a weak correlation between NO and IL-6 released from pituicytes after 24 h of stimulation with LPS. PMID:12588513

  19. Yu Ping Feng San, an Ancient Chinese Herbal Decoction, Regulates the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 and the Activity of Intestinal Alkaline Phosphatase in Cultures

    PubMed Central

    Du, Crystal Y. Q.; Choi, Roy C. Y.; Dong, Tina T. X.; Lau, David T. W.; Tsim, Karl W. K.

    2014-01-01

    Yu Ping Feng San (YPFS), a Chinese herbal decoction comprising Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu), and Saposhnikoviae Radix (SR; Fangfeng), has been used clinically to treat inflammatory bowel diseases (IBD). Previously, we demonstrated a dual role of YPFS in regulating cytokine release in cultured macrophages. In this study, we elucidated the anti-inflammatory effect of YPFS that is mediated through modulating the expression of three key enzymes involved in IBD: inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intestinal alkaline phosphatase (IALP). In a lipopolysaccharide (LPS)-induced chronic-inflammation model of cultured murine macrophages, YPFS treatment suppressed the activation of iNOS and COX-2 expression in a dose-dependent manner. Conversely, application of YPFS in cultured small intestinal enterocytes markedly induced the expression of IALP in a time-dependent manner, which might strengthen the intestinal detoxification system. A duality of YPFS in modulating the expression of iNOS and COX-2 was determined here. The expression of iNOS and COX-2 in macrophages was induced by YPFS, and this activation was partially blocked by the NF-?B-specific inhibitor BAY 11-7082, indicating a role of NF-?B signaling. These YPFS-induced changes in gene regulation strongly suggest that the anti-inflammatory effects of YPFS are mediated through the regulation of inflammatory enzymes. PMID:24967898

  20. Inducible nitric oxide synthase and nitric oxide production in Leishmania infantum-infected human macrophages stimulated with interferon-gamma and bacterial lipopolysaccharide.

    PubMed

    Panaro, M A; Acquafredda, A; Lisi, S; Lofrumento, D D; Trotta, T; Satalino, R; Saccia, M; Mitolo, V; Brandonisio, O

    1999-01-01

    Nitric oxide produced by an inducible nitric oxide synthase constitutes one of the main microbicidal mechanisms of murine macrophages and its importance is now being recognized for human macrophages. In this study we evaluated inducible nitric oxide synthase expression, nitric oxide release, and parasitocidal ability of Leishmania infantum-infected monocyte-derived human macrophages. The inducible nitric oxide synthase was detected by immunofluorescence and western blotting and nitric oxide production was measured by the Griess reaction for nitrites. Parasite killing was microscopically evaluated by fluorescent dyes. Experiments were performed on macrophages with or without previous stimulation with recombinant human interferon-gamma and bacterial lipopolysaccharide. Inducible nitric oxide synthase expression and nitric oxide release were higher in Leishmania-infected stimulated macrophages than in uninfected cells or infected cells without previous stimulation. Nitric oxide production and parasitocidal activity against Leishmania infantum were reduced in macrophages treated with the nitric oxide synthase inhibitor L-N(G) monomethylarginine. These results suggest a microbicidal role for nitric oxide in human leishmaniasis, with the possible practical application of immunological or pharmacological regulation of nitric oxide synthesis in the treatment of this infection. PMID:10592110

  1. Acanthopanax trifoliatus inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo.

    PubMed

    Chien, Tzu-Mei; Hsieh, Po-Chow; Huang, Shyh-Shyun; Deng, Jeng-Shyan; Ho, Yu-Ling; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2015-10-01

    Acanthopanax trifoliatus is a well-known herb that is used for the treatment of bruising, neuralgia, impotence, and gout in Taiwan. This herb exhibits multifunctional activities, including anticancer, anti-inflammation, and antioxidant effects. This paper investigated the in vitro and in vivo anti-inflammatory effect of A. trifoliatus. High-performance liquid chromatography analysis established the fingerprint chromatogram of the ethyl acetate fraction of A. trifoliatus (EAAT). The anti-inflammatory effect of EAAT was detected using lipopolysaccharide (LPS) stimulation of the mouse macrophage cell line RAW264.7 in vitro and LPS-induced lung injury in vivo. The effects of EAAT on LPS-induced production of inflammatory mediators in RAW264.7 murine macrophages and the mouse model were measured using enzyme-linked immunosorbent assay and Western blot. EAAT attenuated the production of LPS-induced nitric oxide (NO), tumor necrosis factor-alpha, interleukin-1β (IL-1β), and IL-6 in vitro and in vivo. Pretreatment with EAAT markedly reduced LPS-induced histological alterations in lung tissues. Furthermore, EAAT significantly reduced the number of total cells and protein concentration levels in the bronchoalveolar lavage fluid. Western blotting test results revealed that EAAT blocked protein expression of inducible NO synthase, cyclooxygenase-2, phosphorylation of Nuclear factor-kappa-B Inhibitor alpha (IκB-α) protein, and mitogen-activated protein kinases in LPS-stimulated RAW264.7 cells as well as LPS-induced lung injury. This study suggests that A. trifoliatus may be a potential therapeutic candidate for the treatment of inflammatory diseases. PMID:26520688

  2. Synthesis of new heterocyclic lupeol derivatives as nitric oxide and pro-inflammatory cytokine inhibitors.

    PubMed

    Bhandari, Pamita; Patel, Neeraj Kumar; Bhutani, Kamlesh Kumar

    2014-08-01

    A series of heterocyclic derivatives including indoles, pyrazines along with oximes and esters were synthesized from lupeol and evaluated for anti-inflammatory activity through inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 and J774A.1 cells. All the synthesized molecules of lupeol were found to be more active in inhibiting NO production with an IC50 of 18.4-48.7 ?M in both the cell lines when compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50=69.21 and 73.18 ?M on RAW 264.7 and J774A.1 cells, respectively). The halogen substitution at phenyl ring of indole moiety leads to potent inhibition of NO production with half maximal concentration ranging from 18.4 to 41.7 ?M. Furthermore, alkyl (11, 12) and p-bromo/iodo (15, 16) substituted compounds at a concentration of 20 ?g/mL exhibited mild inhibition (29-42%) of LPS-induced tumor necrosis factor alpha (TNF-?) and weak inhibition (10-22%) towards interleukin 1-beta (IL-1?) production in both the cell lines. All the derivatives were found to be non-cytotoxic when tested at their IC50 (?M). These findings suggest that the derivatives of lupeol could be a lead to potent inhibitors of NO. PMID:24909081

  3. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the Nrf2/ARE pathway.

    PubMed

    Qi, Tianjie; Xu, Fei; Yan, Xixin; Li, Shuai; Li, Haitao

    2016-01-01

    Sulforaphane (1-isothiocyanate-4-methyl sulfonyl butane) is a plant extract (obtained from cruciferous vegetables, such as broccoli and cabbage) and is known to exert anticancer, antioxidant and anti-inflammatory effects. It stimulates the generation of human or animal cells, which is beneficial to the body. The aim of the current study was to determine whether sulforaphane protects against lipopolysaccharide(LPS)?induced acute lung injury(ALI) through its anti-inflammatory effects, and to investigate the signaling pathways involved. For this purpose, male BALB/c mice were treated with sulforaphane(50mg/kg) and 3days later, ALI was induced by the administration of LPS(5mg/kg) and we thus established the model of ALI. Our results revealed that sulforaphane significantly decreased lactate dehydrogenase(LDH) activity (as shown by LDH assay), the wet-to-dry ratio of the lungs and the serum levels of interleukin-6(IL-6) and tumor necrosis factor-?(TNF-?) (measured by ELISA), as well as nuclear factor-?B protein expression in mice with LPS-induced ALI. Moreover, treatment with sulforaphane significantly inhibited prostaglandinE2(PGE2) production, and cyclooxygenase-2(COX-2), matrix metalloproteinase-9(MMP-9) protein expression (as shown by western blot analysis), as well as inducible nitric oxide synthase(iNOS) activity in mice with LPS-induced ALI. Lastly, we noted that pre-treatment with sulforaphane activated the nuclear factor-E2-related factor2(Nrf2)/antioxidant response element(ARE) pathway in the mice with LPS-induced ALI. These findings demonstrate that sulforaphane exerts protective effects against LPS-induced ALI through the Nrf2/ARE pathway. Thus, sulforaphane may be a potential a candidate for use in the treatment of ALI. PMID:26531002

  4. Piperine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Modulating NF-?B Signaling Pathways.

    PubMed

    Lu, Ying; Liu, Jingyao; Li, Hongyan; Gu, Lina

    2016-02-01

    Piperine, one of the active components of black pepper, has been reported to have antioxidant and anti-inflammatory activities. However, the effects of piperine on lipolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. Thus, the protective effects of piperine against LPS-induced ALI were investigated in this study. LPS-induced lung injury was assessed by histological study, myeloperoxidase (MPO) activity, and inflammatory cytokine production. Our results demonstrated that piperine attenuated LPS-induced MPO activity, lung edema, and inflammatory cytokines TNF-?, IL-6, and IL-1? production. Histological studies showed that piperine obviously attenuated LPS-induced lung injury. In addition, piperine significantly inhibited LPS-induced NF-?B activation. In conclusion, our results demonstrated that piperine had a protective effect on LPS-induced ALI. The anti-inflammatory mechanism of piperine is through inhibition of NF-?B activation. Piperine may be a potential therapeutic agent for ALI. PMID:26410851

  5. ?-Lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice.

    PubMed

    Hiller, Sylvia; DeKroon, Robert; Xu, Longquan; Robinette, Jennifer; Winnik, Witold; Alzate, Oscar; Simington, Stephen; Maeda, Nobuyo; Yi, Xianwen

    2014-06-01

    Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanism and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production leads to a reduction in energy production in wild-type mice. However, mice lacking inducible nitric oxide synthase did not suffer from LPS-induced hypothermia, suggesting that hypothermia is associated with excess NO production during sepsis. This observation is supported by the treatment of wild-type mice with ?-lipoic acid (LA) in that it effectively attenuates LPS-induced hypothermia with decreased NO production. We also found that LA partially restored ATP production, and activities of the mitochondrial enzymes involved in energy metabolism, which were inhibited during sepsis. These data suggest that hypothermia is related to mitochondrial dysfunction, which is probably compromised by excess NO production and that LA administration attenuates hypothermia mainly by protecting mitochondrial enzymes from NO damage. PMID:24675228

  6. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  7. Functional link between TNF biosynthesis and CaM-dependent activation of inducible nitric oxide synthase in RAW 264.7 macrophages

    SciTech Connect

    Weber, Thomas J; Smallwood, Heather S; Kathmann, Loel E; Markillie, Lye MENG; Squier, Thomas C; Thrall, Brian D

    2006-01-18

    Inflammatory responses stimulated by bacterial endotoxin (lipopolysaccharide, LPS) involve calcium-mediated signaling, yet the cellular sensors that determine cell fate in response to LPS remain poorly understood. We report that exposure of RAW 264.7 macrophage-like cells to LPS induces a rapid increase in calmodulin (CaM) abundance, which is associated with the modulation of the inflammatory response. Increases in CaM abundance precedes nuclear localization of key transcription factors (i.e., NF?B p65 subunit, phospho-c-Jun, and Sp1) and subsequent increases in the pro-inflammatory cytokine tumor necrosis factor ? (TNF) and inducible nitric oxide synthase (iNOS). Cellular apoptosis following LPS challenge is blocked following inhibition of iNOS activity, whether accomplished using the pharmacological inhibitor 1400W, through gene silencing of TNF?, or by increasing the level of cellular CaM by stable transfection. Increasing CaM expression also results in reductions in the cellular release of TNF? and iNOS, and activation of their transcriptional regulators, indicating the level of available CaM plays a key role in determining the expression of the pro-inflammatory and pro-apoptotic cascade during cellular activation by LPS. These results indicate a previously unrecognized central role for CaM in maintaining cellular homeostasis in response to LPS, such that under resting conditions cellular concentrations of CaM are sufficient to inhibit the biosynthesis of proinflammatory mediators associated with macrophage activation. Although CaM and iNOS protein levels are coordinately increased as part of the oxidative burst, limiting cellular concentrations of CaM due to association with iNOS (and other high-affinity binders) commit the cell to an unchecked inflammatory cascade leading to apoptosis.

  8. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra.

    PubMed

    Sun, Xian-Chang; Ren, Xiao-Fan; Chen, Lei; Gao, Xian-Qi; Xie, Jun-Xia; Chen, Wen-Fang

    2016-01-01

    Accumulating clinical and experimental evidence suggests that chronic neuroinflammation is associated with dopaminergic neuronal death in Parkinson's disease (PD). Ginsenoside Rg1, the most active components of ginseng, possesses a variety of biological effects on the central nervous system, cardiovascular system and immune system. The present study aimed to evaluate the protective effects of ginsenoside Rg1 on lipopolysaccharide (LPS)-induced microglia activation and dopaminergic neuronal degeneration in rat substantia nigra (SN) and its potential mechanisms. Treatment with Rg1 could ameliorate the apomorphine-induced rotational behavior in LPS-lesioned rats. GR antagonist RU486 partly abolished the protective effect of Rg1. Rg1 treatment significantly attenuated LPS-induced loss of tyrosin hydroxlase (TH) positive neurons in substantial nigra par compacta (SNpc) and decreased content of dopamine (DA) and its metabolites in striatum of the lesioned side. Meanwhile, Rg1 significantly inhibited LPS-induced microglial activation and production of tumor necrosis factor-alpha (TNF-?), interleukin-1 beta (IL-1?) and nitric oxide (NO). These effects were abolished by co-treatment with RU486. In addition, Rg1 treatment significantly inhibited the LPS-induced phosphorylation of I?B, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) in the lesioned side of substantial nigra. These effect could be also partly blocked by RU486. Taken together, these data indicate that Rg1 has protective effects on mesencephalic dopaminergic neurons from LPS-induced microglia inflammation. GR signaling pathway might be involved in the anti-inflammatory effect of Rg1. PMID:26455404

  9. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study

    PubMed Central

    2011-01-01

    Background The phytocannabinoid cannabidiol (CBD) exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS). Methods Vascular responses of pial vessels were analyzed by intravital microscopy and inflammatory parameters measured by qRT-PCR. Results CBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD. Conclusions These data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid. PMID:21244691

  10. Endoplasmic reticulum stress mediates nitric oxide-induced chondrocyte apoptosis

    PubMed Central

    TAKADA, KOJI; HIROSE, JUN; YAMABE, SOICHIRO; UEHARA, YUSHUKE; MIZUTA, HIROSHI

    2013-01-01

    Nitric oxide (NO) is one of the most important mediators of chondrocyte apoptosis, which is a notable feature of cartilage degeneration. While apoptosis of chondrocytes is induced by p53, NO can also induce endoplasmic reticulum (ER) stress, which may be involved in the process of NO-induced chondrocyte apoptosis. The aims of this study were to determine whether NO-induced ER stress (ERS) leads to apoptosis of chondrocytes and to investigate the temporal relationship between the expression of C/EBP-homologous protein (CHOP), an ERS-associated apoptotic molecule, and the expression of p53 during apoptosis in NO-stimulated chondrocytes. Rat chondrocytes were stimulated by sodium nitroprusside (SNP), a NO donor. Real-time polymerase chain reaction (PCR) was performed to analyze the mRNA expression of CHOP, glucose-regulated protein (GRP78) and p53. Apoptosis of chondrocytes was quantified using an enzyme-linked immunosorbent assay (ELISA). SNP-treated chondrocytes showed an increase in CHOP and GRP78 mRNA expression and underwent apoptosis. Sodium 4-phenylbutyrate (PBA), an ERS inhibitor, reduced CHOP and GRP78, as well as SNP-stimulated apoptosis of chondrocytes, without affecting the SNP-dependent generation of NO. In addition, the blockade of CHOP following siRNA transfection reduced SNP-induced apoptosis of chondrocytes. The CHOP expression increased after apoptosis was detected in the SNP-treated chondrocytes, whereas the p53 expression increased prior to apoptosis. These data demonstrated that NO-induced ERS leads chondrocytes to apoptosis, although this effect appears to be limited to persistent impairment of NO stimulation. These findings may provide insight into the pathology of cartilage degeneration. PMID:24648941

  11. Extracellular Signal-regulated Kinase Mediates Expression of Arginase II but Not Inducible Nitric-oxide Synthase in Lipopolysaccharide-stimulated Macrophages*

    PubMed Central

    Jin, Yi; Liu, Yusen; Nelin, Leif D.

    2015-01-01

    The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ?4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype. PMID:25451938

  12. The effect of inhaled nitric oxide on the carrageenan-induced paw edema.

    PubMed

    Coelho, Carly Faria; Vieira, Rodolfo P; Lopes-Martins, Patrcia Sardinha Leonardo; Teixeira, Simone Aparecida; Borbely, Alexandre Urban; Gouvea, Irene Maria; Frigo, Lucio; Lopes-Martins, Rodrigo lvaro Brando

    2015-01-01

    Inhaled nitric oxide therapy reaches not only pulmonary vessels, but also other vasculatures, presenting anti-inflammatory effects. Therefore, this study investigated the effects of inhaled nitric oxide on a mice model of carrageenan-induced paw edema. Paw edema was induced in male Swiss mice (20-30 g) by subplantar injection of carrageenan (0.05 ml of a 1% suspension in 0.9% saline). The evaluation of time-course edema (mililiter) was measured by plethysmometry until 12 h following carrageenan administration. Thirty minutes after carrageenan injection, some groups received inhaled nitric oxide (300 ppm at variable doses and times) or Indometacin (INDO 5 mg/Kg, v.o), while others received sildenafil (1 mg/Kg, i.p) or rolipram (3 mg/Kg, i.p.) with or without inhaled nitric oxide. Paws were assessed for edema levels by plethysmometry, mieloperoxidase activity and histological analysis. Inhaled nitric oxide significantly reduced carrageenan-induced paw edema, mieloperoxidase activity and inflammatory infiltrate, although similar results were also observed in sildenafil and rolipram treated groups. In addition, significant effects between inhaled nitric oxide with pharmacological therapy was observed. Inhaled nitric oxide presents anti-inflammatory effects on carrageenan-induce paw edema, as observed through reduced edema, mieloperoxidase activity and neutrophil infiltration, indicating that inhaled nitric oxide therapy goes beyond lung vascular effects. PMID:25070733

  13. alpha-lipoic acid inhibits endotoxin-stimulated expression of iNOS and nitric oxide independent of the heat shock response in RAW 264.7 cells.

    PubMed

    Demarco, Vincent G; Scumpia, Philip O; Bosanquet, James P; Skimming, Jeffrey W

    2004-07-01

    The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-kappaB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-kappaB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-kappaB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response. PMID:15453632

  14. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS?+?DMSO, and LPS?+?Arctigenin. Mice in the LPS?+?Arctigenin group were injected intraperitoneally with 50mg/kg of arctigenin 1h before an intratracheal administration of LPS (5mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  15. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  16. Role of nitric oxide synthases in elastase-induced emphysema.

    PubMed

    Boyer, Laurent; Plantier, Laurent; Dagouassat, Maylis; Lanone, Sophie; Goven, Delphine; Caramelle, Philippe; Berrehar, Franois; Kerbrat, Stephane; Dinh-Xuan, Anh-Tuan; Crestani, Bruno; Le Gouvello, Sabine; Boczkowski, Jorge

    2011-03-01

    Nitric oxide (NO) in combination with superoxide produces peroxynitrites and induces protein nitration, which participates in a number of chronic degenerative diseases. NO is produced at high levels in the human emphysematous lung, but its role in this disease is unknown. The aim of this study was to determine whether the NO synthases contribute to the development of elastase-induced emphysema in mice. nNOS, iNOS, and eNOS were quantified and immunolocalized in the lung after a tracheal instillation of elastase in mice. To determine whether eNOS or iNOS had a role in the development of emphysema, mice bearing a germline deletion of the eNOS and iNOS genes and mice treated with a pharmacological iNOS inhibitor were exposed to elastase. Protein nitration was determined by immunofluorescence, protein oxidation was determined by ELISA. Inflammation and MMP activity were quantified by cell counts, RT-PCR and zymography in bronchoalveolar lavage fluid. Cell proliferation was determined by Ki67 immunostaining. Emphysema was quantified morphometrically. iNOS and eNOS were diffusely upregulated in the lung of elastase-treated mice and a 12-fold increase in the number of 3-nitrotyrosine-expressing cells was observed. Over 80% of these cells were alveolar type 2 cells. In elastase-instilled mice, iNOS inactivation reduced protein nitration and increased protein oxidation but had no effect on inflammation, MMP activity, cell proliferation or the subsequent development of emphysema. eNOS inactivation had no effect. In conclusion, in the elastase-injured lung, iNOS mediates protein nitration in alveolar type 2 cells and alleviates oxidative injury. Neither eNOS nor iNOS are required for the development of elastase-induced emphysema. PMID:20956973

  17. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase

    PubMed Central

    Chakravarti, Ritu; Aulak, Kulwant S.; Fox, Paul L.; Stuehr, Dennis J.

    2010-01-01

    Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process. PMID:20921417

  18. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  19. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    El-Agamy, Dina S

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10mg/kg) by oral gavage twice daily for 1week prior to exposure to aerosolized LPS. At 24h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO(2)(-)/NO(3)(-)) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-? (TNF-?), transforming growth factor-?(1) (TGF-?(1)) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO(2)(-)/NO(3)(-) levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-?, TGF-?(1) and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects. PMID:21473879

  20. Methanol extract of Antrodia camphorata protects against lipopolysaccharide-induced acute lung injury by suppressing NF-κB and MAPK pathways in mice.

    PubMed

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Chen, Chin-Chu; Huang, Ching-Jang; Sung, Ping-Jyun; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung

    2014-06-11

    Antrodia camphorata (AC) has been used as a herbal medicine for drug intoxication for the treatment of inflammation syndromes and liver-related diseases in Taiwan. This study demonstrates the protective effect of the methanol extract of AC (MAC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Mice were treated with MAC 1 h before the intratracheal (I.T.) instillation of LPS challenge model. Lung injury was evaluated 6 h after LPS induction. Pretreatment with MAC markedly improved LPS-induced histological alterations and edema in lung tissues. Moreover, MAC also inhibited the release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 at 6 h in the bronchoalveolar lavage fluid (BALF) during LPS-induced lung injury. Furthermore, MAC reduced total cell number and protein concentrations in the BALF the pulmonary wet/dry weight (W/D) ratio, and myeloperoxidase activity and enhanced superoxide dismutase (SOD) activity in lung tissues. MAC also efficiently blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited the degradation of nuclear factor-kappa B (NF-κB) and IκBα. This is the first investigation in which MAC inhibited acute lung edema effectively, which may provide a potential target for treating ALI. MAC may utilize the NF-κB and MAPKs pathways and the regulation of SOD activity to attenuate LPS-induced nonspecific pulmonary inflammation. PMID:24849405

  1. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock.

    PubMed

    Szab, C; Mitchell, J A; Thiemermann, C; Vane, J R

    1993-03-01

    1. The role of an enhanced formation of nitric oxide (NO) and the relative importance of the constitutive and inducible NO synthase (NOS) for the development of immediate (within 60 min) and delayed (at 180 min) vascular hyporeactivity to noradrenaline was investigated in a model of circulatory shock induced by endotoxin (lipopolysaccharide; LPS) in the rat. 2. Male Wistar rats were anaesthetized and instrumented for the measurement of mean arterial blood pressure (MAP) and heart rate. In addition, the calcium-dependent and calcium-independent NOS activity was measured ex vivo by the conversion of [3H]-arginine to [3H]-citrulline in homogenates from several organs obtained from vehicle- and LPS-treated rats. 3. E. coli LPS (10 mg kg-1, i.v. bolus) caused a rapid (within 5 min) and sustained fall in MAP. At 30 and 60 min after LPS, pressor responses to noradrenaline (0.3, 1 or 3 micrograms kg-1, i.v.) were significantly reduced. The pressor responses were restored by NG-nitro-L-arginine methyl ester (L-NAME, 1 mg kg-1, i.v. at 60 min), a potent inhibitor of NO synthesis. In contrast, L-NAME did not potentiate the noradrenaline-induced pressor responses in control animals. 4. Dexamethasone (3 mg kg-1, i.v., 60 min prior to LPS), a potent inhibitor of the induction of NOS, did not alter initial MAP or pressor responses to noradrenaline in control rats, but significantly attenuated the LPS-induced fall in MAP at 15 to 60 min after LPS. Dexamethasone did not influence the development of the LPS-induced immediate (within 60 min) hyporeactivity to noradrenaline. However,dexamethasone pretreatment prevented the hypotension and vascular hyporeactivity at 180 min.5. At 60 min after LPS a moderate increase in the activity of a calcium-independent (inducible) NOS activity was detected in the aorta, but not in any of the other tissues studied. However, at 180 min after LPS, a significant NOS induction was observed in the lung, liver, spleen, mesentery, heart and aorta.This NOS induction was substantially prevented by pretreatment with dexamethasone.6. These results suggest that the immediate hypotension and vascular hyporeactivity to noradrenaline in endotoxin shock is caused by an enhanced formation of NO due to activation of the constitutive enzyme. The delayed hypotension and vascular hyporeactivity, however, is due to enhanced NO formation by the LPS-induced enzyme. PMID:7682137

  2. Deferoxamine attenuates lipopolysaccharide-induced inflammatory responses and protects against endotoxic shock in mice.

    PubMed

    Wang, Shengnan; Liu, Caizhi; Pan, Shuhong; Miao, Qing; Xue, Jianqi; Xun, Jingna; Zhang, Yuling; Gao, Yanhong; Duan, Xianglin; Fan, Yumei

    2015-09-18

    To examine the role of the intracellular labile iron pool (LIP) in the induction of inflammatory responses, we investigated the anti-inflammatory effect of the iron chelator deferoxamine (DFO) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophage cells and endotoxic shock in mice in the present study. Our data showed that DFO significantly decreased LPS-induced LIP and ROS upregulation. We then found that DFO inhibited phosphorylation of MAP kinases such as ERK and p38 and also inhibited the activation of NF-?B induced by LPS. Furthermore, the production of tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), nitric oxide (NO) and prostaglandin E2 (PGE2) induced by LPS was inhibited by DFO in RAW264.7 macrophages. Administration of DFO significantly decreased the mortality and improved the survival of septic mice with lethal endotoxemia in LPS-injected mice. These results demonstrate that iron plays a pivotal role in the induction of inflammatory responses and against septic shock. DFO has effective inhibitory effect on the production of inflammatory mediators via suppressing activation of MAPKs and NF-?B signaling pathways; it also has a protective effect on LPS-induced endotoxic shock in mice. Our findings open doors to further studies directed at exploring a new class of drugs against septic shock or other inflammatory diseases by modulating cellular chelatable iron. PMID:26277391

  3. Dried Ginger (Zingiber officinalis) Inhibits Inflammation in a Lipopolysaccharide-Induced Mouse Model

    PubMed Central

    Choi, You Yeon; Kim, Mi Hye; Hong, Jongki; Kim, Sung-Hoon

    2013-01-01

    Objectives. Ginger rhizomes have a long history of human use, especially with regards to their anti-inflammatory properties. However, the mechanisms by which ginger acts on lipopolysaccharide-(LPS-)induced inflammation have not yet been identified. We investigated the anti-inflammatory effects of dried Zingiber officinalis (DZO) on LPS-induced hepatic injury. Methods. ICR mice were given a DZO water extract (100, 1000?mg/kg) orally for three consecutive days. On the third day, they were administered by LPS intraperitoneally. To investigate the anti-inflammatory effects of DZO, histological, cytokine expression, and protein factor analyses were performed. Results. Oral administration of DZO significantly reduced pathological changes in the liver and proinflammatory cytokines including interferon-(IFN-)? and interleukin-(IL-)6 in the serum. In addition, DZO inhibited LPS-induced NF-?B activation by preventing degradation of the I?B-?, as well as the phosphorylation of ERK1/2, SAPK/JNK, and p38 MAPKs. These were associated with a decrease in the expression of inducible nitric oxide synthase (iNOS) and cyclooxyenase-2 (COX-2). Conclusions. Our data provide evidence for the hepatoprotective mechanisms of DZO as an anti-inflammatory effect. Furthermore, use of DZO to treat could provide therapeutic benefits in clinical settings. PMID:23935687

  4. Imaging Pulmonary Inducible Nitric Oxide Synthase Expression with PET

    PubMed Central

    Huang, Howard J.; Isakow, Warren; Byers, Derek E.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Kemp, Debra; Brody, Steven L.; Gropler, Robert J.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Pierce, Richard A.; Castro, Mario; Mach, Robert H.; Chen, Delphine L.

    2015-01-01

    Inducible nitric oxide synthase (iNOS) activity increases in acute and chronic inflammatory lung diseases. Imaging iNOS expression may be useful as an inflammation biomarker for monitoring lung disease activity. We developed a novel tracer for PET that binds to iNOS in vivo, 18F-NOS. In this study, we tested whether 18F-NOS could quantify iNOS expression from endotoxin-induced lung inflammation in healthy volunteers. Methods Healthy volunteers were screened to exclude cardiopulmonary disease. Qualifying volunteers underwent a baseline, 1-h dynamic 18F-NOS PET/CT scan. Endotoxin (4 ng/kg) was then instilled bronchoscopically in the right middle lobe. 18F-NOS imaging was performed again approximately 16 h after endotoxin instillation. Radiolabeled metabolites were determined from blood samples. Cells recovered by bronchoalveolar lavage (BAL) after imaging were stained immunohistochemically for iNOS. 18F-NOS uptake was quantified as the distribution volume ratio (DVR) determined by Logan plot graphical analysis in volumes of interest placed over the area of endotoxin instillation and in an equivalent lung region on the left. The mean Hounsfield units (HUs) were also computed using the same volumes of interest to measure density changes. Results Seven healthy volunteers with normal pulmonary function completed the study with evaluable data. The DVR increased by approximately 30%, from a baseline mean of 0.42 0.07 to 0.54 0.12, and the mean HUs by 11% after endotoxin in 6 volunteers who had positive iNOS staining in BAL cells. The DVR did not change in the left lung after endotoxin. In 1 volunteer with low-level iNOS staining in BAL cells, the mean HUs increased by 7% without an increase in DVR. Metabolism was rapid, with approximately 50% of the parent compound at 5 min and 17% at 60 min after injection. Conclusion 18F-NOS can be used to image iNOS activity in acute lung inflammation in humans and may be a useful PET tracer for imaging iNOS expression in inflammatory lung disease. PMID:25525182

  5. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  6. Sesamin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibition of TLR4 Signaling Pathways.

    PubMed

    Qiang, Li; Yuan, Jiang; Shouyin, Jiang; Yulin, Li; Libing, Jiang; Jian-An, Wang

    2016-02-01

    Recent studies suggested that TLR4 signaling pathways played an important role in the development of LPS-induced acute lung injury (ALI). Sesamin, a sesame lignan exacted from sesame seeds, has been shown to exhibit significant anti-inflammatory activity. The purpose of this study was to investigate the anti-inflammatory effects of sesamin on LPS-induced ALI in mice. Mice ALI model was induced by intratracheal instillation of LPS. Sesamin was given 1h after LPS challenge. Our results showed that sesamin inhibited LPS-induced lung pathological change, edema, and myeloperoxidase (MPO) activity. Sesamin suppressed LPS-induced inflammatory cytokines TNF-?, IL-6, and IL-1? production. Furthermore, sesamin inhibited LPS-induced TLR4 expression and NF-?B activation. In conclusion, the results of this study indicated that sesamin protected against LPS-induced ALI by inhibition of TLR4 signaling pathways. PMID:26468152

  7. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    SciTech Connect

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.

  8. Functional Inducible Nitric Oxide Synthase Gene Variants Associate With Hypertension

    PubMed Central

    Nikkari, Seppo T.; Mtt, Kirsi M.; Kunnas, Tarja A.

    2015-01-01

    Abstract Increased inducible nitric oxide synthase (iNOS) activity and expression has been associated with hypertension, but less is known whether the 2 known functional polymorphic sites in the iNOS gene (g.1026 C/A (rs2779249), g.2087 G/A (rs2297518)) affect susceptibility to hypertension. The objective of this study was to investigate the association between the genetic variants of iNOS and diagnosed hypertension in a Finnish cohort. This study included 320 hypertensive cases and 439 healthy controls. All participants were 50-year-old men and women and the data were collected from the Tampere adult population cardiovascular risk study (TAMRISK). DNA was extracted from buccal swabs and iNOS single nucleotide polymorphisms (SNPs) were analyzed using KASP genotyping PCR. Data analysis was done by logistic regression. At the age of 50 years, the SNP rs2779249 (C/A) associated significantly with hypertension (P?=?0.009); specifically, subjects carrying the A-allele had higher risk of hypertension compared to those carrying the CC genotype (OR?=?1.47; CI?=?1.082.01; P?=?0.015). In addition, a 15-year follow-up period (35, 40, and 45 years) of the same individuals showed that carriers of the A-allele had more often hypertension in all of the studied age-groups. The highest risk for developing hypertension was obtained among 35-year-old subjects (odds ratio [OR] 3.83; confidence interval [CI]?=?1.2012.27; P?=?0.024). Those carrying variant A had also significantly higher readings of both systolic (P?=?0.047) and diastolic (P?=?0.048) blood pressure during the follow-up. No significant associations between rs2297518 (G/A) variants alone and hypertension were found. However, haplotype analysis of rs2779249 and rs2297518 revealed that individuals having haplotype H3 which combines both A alleles (CAGA, 19.7% of individuals) was more commonly found in the hypertensive group than in the normotensive group (OR?=?2.01; CI?=?1.293.12; P?=?0.002). In conclusion, there was a significant association between iNOS genetic variant (rs2779249) and hypertension in the genetically homogenous Finnish population. Those who carried the rare A-allele of the gene had higher risk for hypertension already at the age of 35 years. PMID:26579803

  9. Benzylamine and methylamine, substrates of semicarbazide-sensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide.

    PubMed

    Lin, Zhexuan; Li, Hui; Luo, Hongjun; Zhang, Yuan; Luo, Wenhong

    2011-08-01

    Current evidence indicates that semicarbazide-sensitive amine oxidase (SSAO) substrates possess insulin-mimic effect, which was thought to play an anti-inflammatory role. The purpose of the present study was to determine whether SSAO substrates benzylamine (BZA) and methylamine (MA) attenuate inflammatory response induced by lipopolysaccharide (LPS). BALB/c mice peritoneal macrophages (PMs) that express SSAO and RAW264.7 mouse macrophages that do not express SSAO were used in vitro studies. Experimental mice were given BZA or MA through intraperitoneal injection before LPS challenge. The results showed that BZA or MA treatment significantly reduced LPS-induced pro-inflammatory mediators (nitric oxide, TNF-?) production, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and glucose consumption in murine PMs, but not in RAW264.7 cell line. The metabolites of BZA or MA catalyzed by SSAO, hydrogen peroxide, formaldehyde, and benzaldehyde could also significantly decrease LPS-induced nitric oxide and TNF-? production, iNOS and COX-2 expression, and glucose consumption in vitro. In addition, BZA or MA administration could significantly decrease plasma pro-inflammatory mediators and the expression of iNOS and COX-2 in liver and lung, and could also attenuate LPS-induced transient hyperglycemia and chronic hypoglycemia. These findings indicated that substrates of SSAO might be involved in the anti-inflammatory effects. The metabolites of BZA and MA catalyzed by SSAO might be responsible for the anti-inflammatory effects. Moreover, BZA or MA administration could be useful for normalization of glucose disposal during endotoxemia. PMID:21414430

  10. Regulation of prostaglandin production by nitric oxide; an in vivo analysis.

    PubMed Central

    Salvemini, D; Settle, S L; Masferrer, J L; Seibert, K; Currie, M G; Needleman, P

    1995-01-01

    1. Endotoxin E. Coli lipopolysaccharide (LPS)-treatment in conscious, restrained rats increased plasma and urinary prostaglandin (PG) and nitric oxide (NO) production. Inducible cyclo-oxygenase (COX-2) and nitric oxide synthase (iNOS) expression accounted for the LPS-induced PG and NO release since the glucocorticoid, dexamethasone inhibited both effects. Thus, LPS (4 mg kg-1) increased the plasma levels of nitrite/nitrate from 14 +/- 1 to 84 +/- 7 microM within 3 h and this rise was inhibited to 35 +/- 1 microM by dexamethasone. Levels of 6-keto PGF1 alpha in the plasma were below the detection limit of the assay (< 0.2 ng ml-1). However, 3 h after the injection of LPS these levels rose to 2.6 +/- 0.2 ng ml-1 and to 0.7 +/- 0.01 ng ml-1 after LPS in rats that received dexamethasone. 2. The induced enzymes were inhibited in vivo with selective COX and NOS inhibitors. Furthermore, NOS inhibitors, that did not affect COX activity in vitro markedly suppressed PG production in the LPS-treated animals. For instance, the LPS-induced increased in plasma nitrite/nitrate and 6-keto PGF1 alpha at 3 h was decreased to 18 +/- 2 microM and 0.5 +/- 0.02 ng ml-1, 23 +/- 1 microM and 0.7 +/- 0.01 ng ml-1, 29 +/- 2 microM and 1 +/- 0.01 ng ml-1 in rats treated with LPS in the presence of the NOS inhibitors NG-monomethyl-L-arginine, NG-nitro arginine methyl ester and aminoguanidine, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7542531

  11. Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide.

    PubMed

    Householder, T C; Fozo, E M; Cardinale, J A; Clark, V L

    2000-09-01

    The gene encoding a nitric oxide reductase has been identified in Neisseria gonorrhoeae. The norB gene product shares significant identity with the nitric oxide reductases in Ralstonia eutropha and Synechocystis sp. and, like those organisms, the gonococcus lacks a norC homolog. The gonococcal norB gene was found to be required for anaerobic growth, but the absence of norB did not dramatically decrease anaerobic survival. In a wild-type background, induction of norB expression was seen anaerobically in the presence of nitrite but not anaerobically without nitrite or aerobically. norB expression is not regulated by FNR or NarP, but a functional aniA gene (which encodes an anaerobically induced outer membrane nitrite reductase) is necessary for expression. When aniA is constitutively expressed, norB expression can be induced both anaerobically and aerobically, but only in the presence of nitrite, suggesting that nitric oxide, which is likely to be produced by AniA as a product of nitrite reduction, is the inducing agent. This was confirmed with the use of the nitric oxide donor, spermine-nitric oxide complex, in an aniA null background both anaerobically and aerobically. NorB is important for gonococcal adaptation to an anaerobic environment, a physiologically relevant state during gonococcal infection. The presence of this enzyme, which is induced by nitric oxide, may also have implications in immune evasion and immunomodulation in the human host. PMID:10948150

  12. AURANOFIN, AS AN ANTI-RHEUMATIC GOLD COMPOUND SUPPRESSES LPS-INDUCED HOMODIMERIZATION OF TLR4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a we...

  13. Rationally Designed Macrocyclic Peptides as Synergistic Agonists of LPS-Induced Inflammatory Response

    PubMed Central

    Tamura, Ryo; Jin, Jialin; Schueler-Furman, Ora; Yin, Hang

    2014-01-01

    Toll-like receptor 4 (TLR4) plays an important role in the regulation of the innate and adaptive immune response. Both agonists and antagonists of TLR4 are of considerable interest as drug leads for various disease indications. We herein report the rational design of two myeloid differentiation factor 2 (MD2)-derived macrocyclic peptides as TLR4 modulators, using the Rosetta Macromolecular Modeling software. The designed cyclic peptides, but not their linear counterparts, displayed synergistic activation of TLR signaling when co-administered with lipopolysaccharide (LPS). Although the understanding of the mechanism of action of these peptides remains elusive; these results underscore the utility of peptide cyclization for the discovery of biologically active agents, and also lead to valuable tools for the investigation of TLR4 signaling. PMID:25400297

  14. Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...

  15. AFFYMETRIX GENECHIP-BASED ANALYSIS OF THE GENOMIC RESPONSE TO ACUTE LPS-INDUCED BOVINE MASTITIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic response of the bovine mammary gland was profiled four hours after an intramammary challenge with E. coli endotoxin (LPS). Three mid-lactation cows were challenged in one quarter with 1 ug of LPS while contralateral quarters received saline and served as within animal controls. RNA from ...

  16. New generation lipid emulsion protects against LPS-induced brain inflammation in pemature piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premature infants provided parenteral nutrition (PN) high in n-6 polyunsaturated fatty acids (PUFA) have increased risk of inflammatory disease, such as nosocomial sepsis. The pro-inflammatory insult can also contribute to injury and delayed neuronal growth in the perinatal brain. Provision of high ...

  17. Hypothermia down-regulates the LPS-induced norepinephrine (NE) release in ischaemic human heart cells.

    PubMed

    Szelnyi, Mikls; Lszl, Zoltn; Szab, Zoltn; Kromplk, Zsanett; Tischler, Erika; Lakatos, Marcell; Szkely, Lszl

    2012-01-01

    Hypothermia has been widely acknowledged as the fundamental component of myocardial protection during cardiac operations. In this work, we studied in human atrial tissue the effect of the common hypothermic protection used in cardiac surgery, and we assessed this effect by comparing catecholamine release among normoxic, ischaemic, and inflammatory conditions. Our results provide the first evidence that lipopolysaccharide treatment results in an extremely dramatic and significant increase in the resting norepinephrine release under ischaemic conditions that can be normalised by hypothermia. These findings demonstrate that inflammatory conditions increase the temperature sensitivity of the norepinephrine transporter in human cardiac tissue. When the possible pharmacological interventions are taken into consideration, the results presented here provide new insight into the protection against ischaemia/reperfusion injury during cardiac surgery. PMID:21963948

  18. Roquefort cheese proteins inhibit Chlamydia pneumoniae propagation and LPS-induced leukocyte migration.

    PubMed

    Petyaev, Ivan M; Zigangirova, Naylia A; Kobets, Natalie V; Tsibezov, Valery; Kapotina, Lydia N; Fedina, Elena D; Bashmakov, Yuriy K

    2013-01-01

    Inflammation in atherosclerosis, which could be associated with some subclinical infections such as C. pneumoniae, is one of the key factors responsible for the development of clinical complications of this disease. We report that a proprietary protein extract isolated from Roquefort cheese inhibits the propagation of C. pneumoniae in a human HL cell line in a dose-dependent manner, as revealed by the immunofluorescence analysis. These changes were accompanied by a significant reduction in the infective progeny formation over the protein extract range of 0.12-0.5 μg/mL. Moreover, short term feeding of mice with Roquefort cheese (twice, 10 mg per mouse with an interval of 24 hours) led to the inhibition of the migration of peritoneal leukocytes caused by intraperitoneal injection of E. coli lipopolysaccharide. These changes were complemented by a reduction in neutrophil count and a relative increase in peritoneal macrophages, suggesting that ingestion of Roquefort could promote regenerative processes at the site of inflammation. The ability of this protein to inhibit propagation of Chlamydia infection, as well as the anti-inflammatory and proregenerative effects of Roquefort itself, may contribute to the low prevalence of cardiovascular mortality in France where consumption of fungal fermented cheeses is the highest in the world. PMID:23737705

  19. The inhibitory effect of environmental ammonia on Danio rerio LPS induced acute phase response.

    PubMed

    Gonalves, A F; Pscoa, I; Neves, J V; Coimbra, J; Vijayan, M M; Rodrigues, P; Wilson, J M

    2012-02-01

    Ammonia is a toxic by-product of amino acid catabolism and a common environmental pollutant that has been associated with increased disease susceptibility in fish although the mechanism is not well understood. We addressed the hypothesis that elevated environmental ammonia acts by impairing the acute phase response (APR). Specifically, we determined the impact of sub-lethal acute (24 h) and chronic (14 d) ammonia exposure on acute phase protein gene expression in zebrafish (Danio rerio) in response to a challenge with bacterial lipopolysaccharide (LPS: i.p. 10 ?g/g after 24h). A panel of LPS-responsive genes (SAA, HAMP, LECT2, Hp and IL1?) were identified and evaluated by real-time quantitative PCR. Ammonia was found to impair induction of SAA, HAMP and LECT2 by 50-90%. Both short (15 min, 1h and 24h) and long-term (14 days) exposure to high environmental ammonia concentrations significantly elevated whole-body cortisol levels compared with control fish. Our results reveal for the first time that exposure to high environmental levels of ammonia suppresses the innate immune response in fish. We hypothesize that high environmental ammonia-mediated elevation of cortisol levels in zebrafish may be playing a key role in this immunosuppression, while the mechanisms involved remains to be elucidated. PMID:21641930

  20. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  1. INHIBITION OF LPS-INDUCED SPLENOCYTE PROLIFERATION BY ORTHO-SUBSTITUTED POLYCHLORINATED BIPHENYL CONGENERS. (R826687)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Gelam Honey Has a Protective Effect against Lipopolysaccharide (LPS)-Induced Organ Failure

    PubMed Central

    Kassim, Mustafa; Mansor, Marzida; Al-Abd, Nazeh; Yusoff, Kamaruddin Mohd

    2012-01-01

    Gelam honey exerts anti-inflammatory and antioxidant activities and is thought to have potent effects in reducing infections and healing wounds. The aim of this study was to investigate the effects of intravenously-injected Gelam honey in protecting organs from lethal doses of lipopolysaccharide (LPS). Six groups of rabbits (N = 6) were used in this study. Two groups acted as controls and received only saline and no LPS injections. For the test groups, 1 mL honey (500 mg/kg in saline) was intravenously injected into two groups (treated), while saline (1 mL) was injected into the other two groups (untreated); after 1 h, all four test groups were intravenously-injected with LPS (0.5 mg/kg). Eight hours after the LPS injection, blood and organs were collected from three groups (one from each treatment stream) and blood parameters were measured and biochemical tests, histopathology, and myeloperoxidase assessment were performed. For survival rate tests, rabbits from the remaining three groups were monitored over a 2-week period. Treatment with honey showed protective effects on organs through the improvement of organ blood parameters, reduced infiltration of neutrophils, and decreased myeloperoxidase activity. Honey-treated rabbits also showed reduced mortality after LPS injection compared with untreated rabbits. Honey may have a therapeutic effect in protecting organs during inflammatory diseases. PMID:22754370

  3. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation.

    PubMed

    Fukushima, Shohei; Nishikawa, Kazunori; Furube, Eriko; Muneoka, Shiori; Ono, Katsuhiko; Takebayashi, Hirohide; Miyata, Seiji

    2015-11-19

    Evidence have been accumulated that continuous oligodendrogenesis occurs in the adult mammalian brain. The fornix, projection and commissure pathway of hippocampal neurons, carries signals from the hippocampus to other parts of the brain and has critical role in memory and learning. However, basic characterization of adult oligodendrogenesis in this brain region is not well understood. In the present study, therefore, we aimed to examine the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) and the effect of acute inflammatory stimulation on oligodendrogenesis in the fornix of adult mouse. We demonstrated the proliferation of OPCs and a new generation of mature oligodendrocytes by using bromodeoxyuridine and Ki67 immunohistochemistry. Oligodendrogenesis of adult fornix was also demonstrated by using oligodendrocyte transcription factor 2 transgenic mouse. A single systemic administration of lipopolysaccharide (LPS) attenuated proliferation of OPCs in the fornix together with reduced proliferation of hippocampal neural stem/progenitor cells. Time course analysis showed that a single administration of LPS attenuated the proliferation of OPCs during 24-48 h. On the other hand, consecutive administration of LPS did not suppress proliferation of OPCs. The treatment of LPS did not affect differentiation of OPCs into mature oligodendrocytes. Treatment of a microglia inhibitor minocycline significantly attenuated basal proliferation of OPCs under normal condition. In conclusion, the present study indicates that continuous oligodendrogenesis occurs and a single administration of LPS transiently attenuates proliferation of OPCs without changing differentiation in the fornix of the adult mouse brains. PMID:26385416

  4. Isoflavone-free soy protein diet inhibits LPS-induced inflammatory responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we showed reduced atherosclerotic lesions in a hyperlipidemic mouse model fed isoflavone-free soy protein diet (SPI) compared to casein (CAS)-fed mice, despite unchanged serum lipid levels. However, the molecular mechanisms contributing to the atheroprotective effect of soy-based diets is...

  5. P2Y12 receptor inhibition and LPS-induced coagulation.

    PubMed

    Essex, David W; Rao, A Koneti

    2016-03-01

    Platelets play a major role in the complex interactions involved in blood coagulation via multiple mechanisms. As reported in this issue, Schoergenhofer et al. tested the hypothesis that platelet inhibition by prasugrel, a potent platelet P2Y12 ADP receptor antagonist, attenuates the effect of lipopolysaccharide (LPS) on the blood coagulation system in healthy human subjects. LPS, a bacterial product with potent pro-inflammatory and pro-thrombotic effects, plays a central role in sepsis. It activates monocytes and endothelial cells via Toll-like receptor (TLR) 4 and other TLRs to stimulate production of TF and other pro-coagulant molecules, chemokines and cytokines. Treatment with prasugrel did not decrease biomarkers of coagulaion. A better understanding of the relative roles of platelet and coagulation mechanisms in triggering the pro-thrombotic state may lead to more effective antithrombotic strategies. PMID:26846581

  6. Walnut extracts protect cultured microglia against LPS-induced neurotoxicity via modulation of intracellular calcium concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Walnuts are rich in omega-3 fatty acids, alpha-linolenic acid (ALA) and linoleic acid (LA), as compared to other edible plants. Previously, our laboratory had demonstrated that dietary walnut supplementation in aged animals enhanced protective signaling pathways, altered membrane microstructures, an...

  7. LPS-Induced Genes in Intestinal Tissue of the Sea Cucumber Holothuria glaberrima

    PubMed Central

    Ramírez-Gómez, Francisco; Ortiz-Pineda, Pablo A.; Rivera-Cardona, Gabriela; García-Arrarás, José E.

    2009-01-01

    Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS). The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50) unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7) of these sequences represented homologues of known proteins, while the remaining (43) had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin), metabolic enzymes (GAPDH, Ahcy and Gnmt), metal ion transport/metabolism (major yolk protein) and defense/recognition (fibrinogen-like protein). The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response. PMID:19584914

  8. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    SciTech Connect

    Miyatake, Katsutoshi; Inoue, Hiroshi . E-mail: hinoue@genome.tokushima-u.ac.jp; Hashimoto, Kahoko; Takaku, Hiroshi; Takata, Yoichiro; Nakano, Shunji; Yasui, Natsuo; Itakura, Mitsuo

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated through its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.

  9. Protective effects of Rabdosia japonica var. glaucocalyx extract on lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Xu, Nai-Yu; Chu, Chun-Jun; Xia, Long; Zhang, Jian; Chen, Dao-Feng

    2015-10-01

    The present study was designed to evaluate the protective effects of ethanol extracts of Rabdosia japonica var. glaucocalyx (Maxim.) Hara (RJ) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. The mice were orally administrated with RJ extract (16, 32 or 64 mg(kg(-1)) daily for consecutive7 days before LPS challenge. The ung specimens and the bronchoalveolar lavage fluid (BALF) were collected for histopathological examinations and biochemical analyses. Pretreatment with RJ significantly enhanced superoxide dismutase (SOD) activity and reduced the wet-to-dry weight (W/D) ratio, the levels of nitric oxide (NO) and protein leakage, and myeloperoxidase (MPO) activity in mice with ALI, in a dose-dependent manner. RJ reduced complement deposition and significantly attenuated LPS-induced ALI by reducing productions of inflammatory mediators, such as tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), and interleukin-1? (IL-1?). The results demonstrated that RJ may attenuate LPS-induced ALI via reducing the production of pro-inflammatory mediators, and reducing complement deposition and radicals. PMID:26481377

  10. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl ?-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl ?-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1? and TNF-?. In addition, CG significantly suppressed LPS-induced degradation of I?B. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  11. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases.

    PubMed Central

    Koprowski, H; Zheng, Y M; Heber-Katz, E; Fraser, N; Rorke, L; Fu, Z F; Hanlon, C; Dietzschold, B

    1993-01-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7681993

  12. Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

    PubMed Central

    Ju, Tae-Jin; Dan, Jin-Myoung; Cho, Young-Je

    2011-01-01

    The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-? and interleukin (IL)-1? and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-?, and IL-1? were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation. PMID:22359474

  13. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production.

    PubMed

    Xia, Guiyang; Zhou, Li; Ma, Jianghao; Wang, Ying; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Three new sesquiterpenes including a new elemane-type sesquiterpene, 5βH-elem-1,3,7,8-tetraen-8,12-olide (1), and two new carabrane-type sesquiterpenes, 7α,11-epoxy-6α-methoxy-carabrane-4,8-dione (2) and 8,11-epidioxy-8-hydroxy-4-oxo-6-carabren (3), together with eight known sesquiterpenes (4-11) were isolated from Curcuma wenyujin Y. H. Chen et C. Ling. Their structures were elucidated based on extensive spectroscopic analyses. A possible biogenetic scheme for the related compounds was postulated. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Meanwhile, preliminary structure-activity relationships for these compounds are discussed. PMID:25819782

  14. P2X7 receptor activation contributes to an initial upstream mechanism of lipopolysaccharide-induced vascular dysfunction

    PubMed Central

    Chiao, Chin-Wei; da Silva-Santos, J. Eduardo; Giachini, Fernanda R.; Tostes, Rita C.; Su, Ming-Jai; Webb, R. Clinton

    2014-01-01

    Pro-inflammatory cytokines, chemokines and the reactive oxygen species are excessively produced in endotoxemia. However, attempting to inhibit all of these inflammatory signaling pathways at the same time in order to prevent endotoxemia is difficult. In a previous study we observed that activation of P2X7 receptors elicited the release of interleukin (IL)-1? from lipopolysaccharide (LPS)-incubated vessels. In the present study we hypothesize that P2X7 receptor activation is the initial event leading to vascular dysfunction following LPS treatment. LPS-induced decreases in mean arterial blood pressure and pressor responses to norepinephrine were attenuated in P2X7 knockout (P2X7KO) mice. Hypo-reactivity to phenylephrine in isolated mesenteric arteries by LPS treatment was also observed in C57BL/6 (wild type, WT) mice, which was prevented by IL-1 receptor antagonist (IL1ra), L-NAME and indomethacin, and in P2X7KO mice. Additionally, treatment with IL1ra plus L-NAME produced an additive inhibition of LPS-induced vascular hypo-reactivity, suggesting different signaling pathways between IL-1? and nitric oxide synthase (NOS). LPS-induced plasma levels of IL-1?, tumor necrosis factor (TNF)-?, IL-10, vascular eNOS and cyclooxygenase (COX)2 protein expression, as determined by ELISA and western blot, observed in WT mice were inhibited by IL1ra and in P2X7KO mice. These results suggest that P2X7 receptor activation involves an initial upstream mechanism of LPS-induced vascular dysfunction, which is associated with IL-1?-mediated eNOS, COX2 activation and TNF-? release. PMID:23469860

  15. Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues.

    PubMed Central

    Panagiotidis, G; Akesson, B; Rydell, E L; Lundquist, I

    1995-01-01

    1. Recent studies have suggested that the generation of nitric oxide (NO) and hydrogen peroxide (H2O2) by islet NO synthase and monoamine oxidase, respectively, may have a regulatory influence on insulin secretory processes. We have investigated the pattern of insulin release from isolated islets of Langerhans in the presence of various pharmacological agents known to perturb the intracellular levels of NO and the oxidation state of SH-groups. 2. The NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) dose-dependently increased L-arginine-induced insulin release. D-Arginine did not influence L-arginine-induced insulin secretion. However, D-NAME which reportedly has no inhibitory action on NO synthase, modestly increased L-arginine-induced insulin release, but was less effective than L-NAME. High concentrations (10 mM) of D-arginine as well as L-NAME and D-NAME could enhance basal insulin release. 3. The intracellular NO donor, hydroxylamine, dose-dependently inhibited insulin secretion induced by L-arginine and L-arginine+L-NAME. 4. Glucose-induced insulin release was increased by NO synthase inhibition (L-NAME) and inhibited by the intracellular NO donor, hydroxylamine. Sydnonimine-1 (SIN-1), an extracellular donor of NO and superoxide, induced a modest suppression of glucose-stimulated insulin release. SIN-1 did not influence insulin secretion induced by L-arginine or the adenylate cyclase activator, forskolin. 5. The intracellular 'hydroperoxide donor' tert-butylhydroperoxide in the concentration range of 0.03-3 mM inhibited insulin release stimulated by the nutrient secretagogues glucose and L-arginine. Low concentrations (0.03-30 microM) of tert-butylhydroperoxide, however enhanced insulin secretion induced by the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7533613

  16. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects. - Research highlights: > The protective effects of nilotinib against LPS-induced ALI in rats were studied. > Nilotinib showed potent anti-inflammatory activity as it attenuated PMN infiltration and hence ROS generation. > In addition, nilotinib caused down-regulation of proinflammatory cytokine production.

  17. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis.

    PubMed

    Saijo, Hiroki; Tatsumi, Norifumi; Arihiro, Seiji; Kato, Tomohiro; Okabe, Masataka; Tajiri, Hisao; Hashimoto, Hisashi

    2015-07-01

    Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening. PMID:25938626

  18. Anmindenols A and B, inducible nitric oxide synthase inhibitors from a marine-derived Streptomyces sp.

    PubMed

    Lee, Jihye; Kim, Hiyoung; Lee, Tae Gu; Yang, Inho; Won, Dong Hwan; Choi, Hyukjae; Nam, Sang-Jip; Kang, Heonjoong

    2014-06-27

    Anmindenols A (1) and B (2), inhibitors of inducible nitric oxide synthase (iNOS), were isolated from a marine-derived bacterium Streptomyces sp. Their chemical structures were elucidated by interpreting various spectroscopic data, including IR, MS, and NMR. Anmindenols A and B are sesquiterpenoids possessing an indene moiety with five- and six-membered rings derived from isoprenyl units. The absolute configuration of C-4 in anmindenol B was determined by electronic circular dichroism (ECD) of a dimolybdenum complex. Anmindenols A (1) and B (2) inhibited nitric oxide production in stimulated RAW 264.7 macrophage cells with IC50 values of 23 and 19 μM, respectively. PMID:24878306

  19. Inhaled nitric oxide induces cerebrovascular effects in anesthetized pigs.

    PubMed

    Kuebler, W M; Kisch-Wedel, H; Kemming, G I; Meisner, F; Bruhn, S; Koehler, C; Flondor, M; Messmer, K; Zwissler, B

    2003-09-11

    Although inhaled nitric oxide (NO(i)) is considered to act selectively on pulmonary vessels, EEG abnormalities and even occasional neurotoxic effects of NO(i) have been proposed. Here, we investigated cerebrovascular effects of increasing concentrations of 5, 10 and 50 ppm NO(i) in seven anesthetized pigs. Cerebral hemodynamics were assessed non-invasively by use of near-infared spectroscopy and indicator dilution techniques. NO(i) increased cerebral blood volume significantly and reversibly. This effect was not attributable to changes of macrohemodynamic parameters or arterial blood gases. Simultaneously, cerebral transit time increased while cerebral blood flow remained unchanged. These data demonstrate a vasodilatory action of NO(i) in the cerebral vasculature, which may occur preferentially in the venous compartment. PMID:12902024

  20. Potential use of fucose-appended dendrimer/?-cyclodextrin conjugates as NF-?B decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

    PubMed

    Akao, Chiho; Tanaka, Takahiro; Onodera, Risako; Ohyama, Ayumu; Sato, Nana; Motoyama, Keiichi; Higashi, Taishi; Arima, Hidetoshi

    2014-11-10

    The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-?B decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with ?-cyclodextrin (Fuc-S-?-CDE (G2)). Fuc-S-?-CDE (G2, average degree of substitution of fucose (DSF2))/NF-?B decoy complex significantly suppressed nitric oxide and tumor necrosis factor-? (TNF-?) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-?-CDE (G2, DSF2)/NF-?B decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-?-CDE (G2, DSF2)/NF-?B decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-?B decoy alone. Furthermore, the liver accumulation of Fuc-S-?-CDE (G2, DSF2)/NF-?B decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-? levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-?-CDE (G2, DSF2)/NF-?B decoy complex, compared with naked NF-?B decoy alone. Taken together, these results suggest that Fuc-S-?-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-?B decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice. PMID:25020038

  1. Nitric oxide, derived from inducible nitric oxide synthase, decreases hypoxia inducible factor-1? in macrophages during aspirin-induced mesenteric inflammation

    PubMed Central

    Dez, I; Calatayud, S; Hernndez, C; Quintana, E; O'Connor, JE; Esplugues, JV; Barrachina, MD

    2010-01-01

    Background and purpose: Nitric oxide (NO) modulates expression of hypoxia inducible factor-1 (HIF-1), a transcription factor regulating function of myeloid cells. Here, we have assessed the role played by NO, formed by inducible NOS (iNOS), in the inflammation induced by aspirin in the gut, by modulating HIF-1 activity. Experimental approach: The role of iNOS-derived NO on leucocyteendothelial interactions induced by aspirin was evaluated by intravital microscopy in mesenteric venules of rats pretreated with selective iNOS inhibitors, 1400W or l-N6-(1-iminoethyl)-lysine. NO was localized by fluorescence microscopy, using DAF-FM. iNOS, HIF-1? and CD36 were localized by immunohistochemistry. Key results: Leucocyteendothelial interactions increased at 6 h and returned to normal levels 24 h after aspirin administration. Numbers of migrated leucocytes were similar between 6 and 24 h after aspirin. iNOS expression and iNOS-derived NO synthesis were observed in leucocytes of the mesentery of aspirin-treated rats. Blockade of iNOS activity in aspirin-treated rats: (i) did not modify leucocyte infiltration at 6 h, but reduced the number of polymorphonuclear leucocyte and increased that of macrophages at 24 h; (ii) increased HIF-1? immunostaining in macrophages of the mesentery; and (iii) prevented the decrease in CD36 immunostaining induced by aspirin in these cells. Conclusions and implications: NO, associated with acute gut inflammation induced by aspirin, diminished HIF-1? stabilization in macrophages. Early inhibition of iNOS-derived NO synthesis, by increasing the activity of HIF-1 in these cells, may accelerate the clearance of leucocytes. PMID:20233223

  2. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.

    PubMed

    Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang

    2015-11-01

    Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages. PMID:26327113

  3. Roles of inducible nitric oxide synthase in the development and healing of experimentally induced gastric ulcers

    PubMed Central

    Tatemichi, Masayuki; Ogura, Tsutomu; Sakurazawa, Nobuyuki; Nagata, Hiroshi; Sugita, Minoru; Esumi, Hiroyasu

    2003-01-01

    The roles of inducible nitric oxide synthase (iNOS) in the development and healing of gastric ulcers have not been fully characterized. We characterized iNOS expression in experimentally induced ulcers in rat and mouse stomachs and investigated the roles of iNOS using iNOS gene-deficient (iNOS/) mice and wildtype mice. Gastric ulcers were induced in rats and mice by the application of acetic acid and cryoinjury, respectively. iNOS expression was detected on days 17 and peaked 3 days after ulcer induction in the rat. iNOS-positive cells were distributed mainly among the infiltrating cells and fibroblasts in the ulcer bed. The almost similar courses of healing and iNOS expression were observed in the ulcers of mice. During the course of healing, the iNOS gene status did not affect cell proliferation in the healing zone or vessel formation in the ulcer bed. iNOS deficiency, however, caused larger ulcers and severer inflammation during ulcer healing; the clearance of inflammatory cells in the ulcer bed by apoptosis was also delayed when the ulcer was re-epithelialized in the iNOS-deficient mice. These results indicate that iNOS is expressed in the ulcer bed and that iNOS activity may play beneficial roles in the ulcer repair process, possibly by regulating inflammation. PMID:14690480

  4. Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages

    PubMed Central

    Kwon, Seok J; Lee, Geun T; Lee, Jae-Ho; Kim, Wun J; Kim, Isaac Y

    2009-01-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-? (TGF-?) superfamily. In the present study, we investigated the effect of BMPs on the production of inducible nitric oxide synthase (iNOS) in the murine macrophage cell line, RAW 264.7, and in mouse peritoneal macrophages. Among the BMPs, only BMP-6 induced iNOS expression in a time-dependent and dose-dependent manner in both cell types. Induction of iNOS was inhibited by both cycloheximide and actinomycin D, indicating that the induction of iNOS expression by BMP-6 requires new protein synthesis. Mechanistic studies revealed that the BMP-6-induced iNOS expression requires both Smads and nuclear factor-kappa B (NF-?B) signalling pathways. Furthermore, induction of interleukin-1? (IL-1?) was necessary for iNOS induction by BMP-6. These observations suggest that BMP-6 stimulates macrophages to produce iNOS through IL-1? via Smad and NF-?B signalling pathways and that BMP-6 may be an important regulator of macrophages. PMID:19740337

  5. Traumatic Brain Injury Disrupts Cerebrovascular Tone Through Endothelial Inducible Nitric Oxide Synthase Expression and Nitric Oxide Gain of Function

    PubMed Central

    Villalba, Nuria; Sonkusare, Swapnil K.; Longden, Thomas A.; Tran, Tram L.; Sackheim, Adrian M.; Nelson, Mark T.; Wellman, George C.; Freeman, Kalev

    2014-01-01

    Background Traumatic brain injury (TBI) has been reported to increase the concentration of nitric oxide (NO) in the brain and can lead to loss of cerebrovascular tone; however, the sources, amounts, and consequences of excess NO on the cerebral vasculature are unknown. Our objective was to elucidate the mechanism of decreased cerebral artery tone after TBI. Methods and Results Cerebral arteries were isolated from rats 24 hours after moderate fluid‐percussion TBI. Pressure‐induced increases in vasoconstriction (myogenic tone) and smooth muscle Ca2+ were severely blunted in cerebral arteries after TBI. However, myogenic tone and smooth muscle Ca2+ were restored by inhibition of NO synthesis or endothelium removal, suggesting that TBI increased endothelial NO levels. Live native cell NO, indexed by 4,5‐diaminofluorescein (DAF‐2 DA) fluorescence, was increased in endothelium and smooth muscle of cerebral arteries after TBI. Clamped concentrations of 20 to 30 nmol/L NO were required to simulate the loss of myogenic tone and increased (DAF‐2T) fluorescence observed following TBI. In comparison, basal NO in control arteries was estimated as 0.4 nmol/L. Consistent with TBI causing enhanced NO‐mediated vasodilation, inhibitors of guanylyl cyclase, protein kinase G, and large‐conductance Ca2+‐activated potassium (BK) channel restored function of arteries from animals with TBI. Expression of the inducible isoform of NO synthase was upregulated in cerebral arteries isolated from animals with TBI, and the inducible isoform of NO synthase inhibitor 1400W restored myogenic responses following TBI. Conclusions The mechanism of profound cerebral artery vasodilation after TBI is a gain of function in vascular NO production by 60‐fold over controls, resulting from upregulation of the inducible isoform of NO synthase in the endothelium. PMID:25527626

  6. Inducible nitric oxide synthase demonstrated in allergic and irritant contact dermatitis.

    PubMed

    Ormerod, A D; Dwyer, C M; Reid, A; Copeland, P; Thompson, W D

    1997-11-01

    Eight allergic patch test reactions, eight irritant skin reactions induced by 3% sodium lauryl sulphate and six normal controls were biopsied. Biopsies were immunohistochemically stained with a mouse monoclonal antibody to inducible nitric oxide synthase (iNOS), and staining was quantified by computerised image analysis. Human chondrocytes induced to express iNOS were used as a positive control. A significant increase in iNOS was found in both irritant and allergic contact dermatitis. There were no differences in the distribution of expression of iNOS. The antibody used was confirmed by Western blotting not to cross-react with the endothelial isoform of nitric oxide synthase (NOS) but did cross-react with a 150 kDa protein, which may be neuronal NOS or an isoform of neuronal NOS. PMID:9394976

  7. Induction of cell proliferation and collagen synthesis in human small intestinal lamina propria fibroblasts by lipopolysaccharide: possible involvement of nitric oxide.

    PubMed

    Chakravortty, D; Kumar, K S

    1997-11-17

    Recent studies suggest that tissue specific fibroblasts respond to inflammatory stimuli leading to the onset of inflammatory disorders. In the present study, we investigated cell kinetics, collagen synthesis, and nitric oxide (NO) level in cultured human small intestinal lamina propria fibroblasts (HSILPF, n = 45) in response to LPS of enteropathogenic E. coli. LPS treatment enhanced the 3[H] TdR uptake, increased the percentage of 'S' phase cells as early as 4 hrs, and decreased the population doubling time of HSILPF in a dose and time dependent manner. Collagen synthesis in HSILPF was also elevated by LPS. The LPS induced cell proliferation and collagen synthesis were inhibited by polymyxin B (10 micrograms/ml). LPS was found to suppress the NO production in these cells, whereas combination of LPS (10 micrograms/ml) and IFN gamma (100 U/ml) enhanced NO output and concurrently decreased the cell proliferation and collagen production in HSILPF. Inhibitors of NO, L-NG-monomethyl L-arginine, and aminoguanidine partially restored cell proliferation and collagen synthesis in cells exposed to LPS and IFN gamma. These findings suggest that LPS induces increased cell proliferation and collagen synthesis in HSILPF and these could be related to the suppression of NO production. PMID:9388501

  8. New ambuic acid derivatives from the solid culture of Pestalotiopsis neglecta and their nitric oxide inhibitory activity

    PubMed Central

    Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei

    2015-01-01

    Four new ambuic acid derivatives (1–4), and four known derivatives (5–8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively. PMID:25989228

  9. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans

    PubMed Central

    Tack, J; Demedts, I; Meulemans, A; Schuurkes, J; Janssens, J

    2002-01-01

    Aims: In humans, impaired gastric accommodation is associated with early satiety and weight loss. In animals, accommodation involves activation of gastric nitrergic neurones. Our aim was to study involvement of nitric oxide in gastric accommodation and in meal induced satiety in humans. Methods: The effect of NG-monomethyl-l-arginine (l-NMMA) 4 mg/kg/h and 8 mg/kg/h on gastric compliance, on sensitivity to distension, and on gastric accommodation was studied with a barostat in double blind, randomised, placebo controlled studies. The effect of l-NMMA 8 mg/kg/h on meal induced satiety was studied using a drinking test. Results: l-NMMA had no significant effect on fasting compliance and sensitivity. Ingestion of a meal induced a relaxation of 274 (15) ml which was significantly smaller after l-NMMA 4 mg/kg/h (132 (45) ml; p=0.03) or l-NMMA 8 mg/kg/h (82 (72) ml; p=0.03). l-NMMA 8 mg/kg/h significantly decreased the amount of food ingested at maximum satiety from 1058 (67) to 892 (73) kcal (p<0.01). Conclusion: In humans, fasting gastric tone and sensitivity to distension are not influenced by nitric oxide synthase inhibition, but the gastric accommodation reflex involves activation of nitrergic neurones. Inhibition of nitric oxide synthase impairs accommodation and enhances meal induced satiety. PMID:12117883

  10. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment

    PubMed Central

    2014-01-01

    Background Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Methods Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Results Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Conclusions Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection. PMID:24886300

  11. Alpha-lipoic acid prevents endotoxic shock and multiple organ dysfunction syndrome induced by endotoxemia in rats.

    PubMed

    Shen, Hsin-Hsueh; Lam, Kwok-Keung; Cheng, Pao-Yun; Kung, Ching-Wen; Chen, Shu-Ying; Lin, Pei-Chiang; Chung, Ming-Ting; Lee, Yen-Mei

    2015-04-01

    Alpha-lipoic acid (ALA), a naturally occurring disulfide derivative of octanoic acid, serves as a strong antioxidant and has been reported to possess anti-inflammatory effects. The aim of the present study is to investigate the preventive and therapeutic effects of ALA on multiple organ dysfunction syndrome (MODS) caused by endotoxemia in rats. Male Wistar rats were intravenously infused with lipopolysaccharide (LPS) (10 mg/kg) to induce endotoxemia. Alpha-lipoic acid 10, 20, or 40 mg/kg was administered intravenously 60 min before (pretreatment) LPS challenge, and ALA 40 mg/kg was administered intravenously 30 min after (posttreatment) LPS challenge. Pretreatment and posttreatment with ALA significantly improved the deleterious hemodynamic changes 8 h after LPS challenge, including hypotension and bradycardia. Alpha-lipoic acid reduced the plasma levels of glutamic pyruvic transaminase, blood urea nitrogen, lactate dehydrogenase, tumor necrosis factor-?, nitric oxide metabolites, and thrombin-antithrombin complex, which increased markedly after LPS challenge. The induction of inducible nitric oxide synthase both in the liver and the lung and vascular superoxide anion production were also significantly suppressed by ALA. Moreover, ALA significantly attenuated LPS-induced caspase-3 activation in cardiomyocytes and improved survival rate. In conclusion, ALA effectively attenuated LPS-induced acute inflammatory response and improved MODS. The antioxidant and anti-inflammatory effects of ALA may contribute to these beneficial effects. Alpha-lipoic acid might be considered as a novel therapeutic strategy in the prevention of sepsis-induced MODS and inflammatory vascular diseases. PMID:25514429

  12. Lipopolysaccharides of Brucella abortus and Brucella melitensis Induce Nitric Oxide Synthesis in Rat Peritoneal Macrophages

    PubMed Central

    Lpez-Urrutia, Luis; Alonso, Andrs; Nieto, Maria Luisa; Bayn, Yolanda; Ordua, Antonio; Snchez Crespo, Mariano

    2000-01-01

    Smooth lipopolysaccharide (S-LPS) and lipid A of Brucella abortus and Brucella melitensis induced the production of nitric oxide (NO) by rat adherent peritoneal cells, but they induced lower levels of production of NO than Escherichia coli LPS. The participation of the inducible isoform of NO synthase (iNOS) was confirmed by the finding of an increased expression of both iNOS mRNA and iNOS protein. These observations might help to explain (i) the acute outcome of Brucella infection in rodents, (ii) the low frequency of septic shock in human brucellosis, and (iii) the prolonged intracellular survival of Brucella in humans. PMID:10679001

  13. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress.

    PubMed

    Maur, Damian G; Pascuan, Cecilia G; Genaro, Ana M; Zorrilla-Zubilete, Maria A

    2015-01-01

    Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed. PMID:25287536

  14. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.

    PubMed

    Hong, Sung Hwa; Park, Sook Kyung; Cho, Yang-Sun; Lee, Hyun-Seok; Kim, Ki Ryung; Kim, Myung Gu; Chung, Won-Ho

    2006-01-01

    Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction. PMID:16289993

  15. Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors.

    PubMed

    León-Mateos, L; Mosquera, J; Antón Aparicio, L

    2015-12-01

    Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are overexpressed in the majority of renal cell carcinomas. This characteristic has supported the rationale of targeting VEGF-driven tumour vascularization, especially in clear cell RCC. VEGF-inhibiting strategies include the use of tyrosine kinase inhibitors (sunitinib, axitinib, pazopanib, and sorafenib) and neutralizing antibodies such as bevacizumab. Hypertension (HTN) is one of the most common adverse effects of angiogenesis inhibitors. HTN observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of HTN. Although the exact mechanism by tyrosine kinase inhibitors induce HTN has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS) and nitric oxide (NO) production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction) occurs upon VEGF signaling inhibition. NO donors could be successfully used not only for the treatment of developed angiogenesis-inhibitor-induced hypertension but also for preventive effects. PMID:26386874

  16. Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors☆

    PubMed Central

    León-Mateos, L.; Mosquera, J.; Antón Aparicio, L.

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are overexpressed in the majority of renal cell carcinomas. This characteristic has supported the rationale of targeting VEGF-driven tumour vascularization, especially in clear cell RCC. VEGF-inhibiting strategies include the use of tyrosine kinase inhibitors (sunitinib, axitinib, pazopanib, and sorafenib) and neutralizing antibodies such as bevacizumab. Hypertension (HTN) is one of the most common adverse effects of angiogenesis inhibitors. HTN observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of HTN. Although the exact mechanism by tyrosine kinase inhibitors induce HTN has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS) and nitric oxide (NO) production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction) occurs upon VEGF signaling inhibition. NO donors could be successfully used not only for the treatment of developed angiogenesis-inhibitor-induced hypertension but also for preventive effects. PMID:26386874

  17. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses. PMID:26590117

  18. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 ?g/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-?B) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-?, interleukin (IL)-1? and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects. PMID:24177262

  19. Neostigmine-induced contraction and nitric oxide-induced relaxation of isolated ileum from STZ diabetic guinea pigs

    PubMed Central

    Cellini, Joseph; Jukic, Anne Marie Zaura; LePard, Kathy J.

    2011-01-01

    Both delayed gastrointestinal transit and autonomic neuropathy have been documented in patients with diabetes mellitus. The mechanism of neostigmine, an agent that mimics release of acetylcholine from autonomic neurons by prokinetic agents, to contract smooth muscle, despite dysfunctional enteric neural pathways, was determined using isolated ilea from STZ-treated and control guinea pigs. Both bethanechol- and neostigmine-induced contractions were stronger in diabetic ileum. Bethanechol-induced contractions of control but not diabetic ileum were increased by low dose scopolamine suggesting reduced activation of presynaptic muscarinic autoreceptors in diabetic ileum. The muscarinic receptor antagonist 4-DAMP strongly, but the nicotinic receptor antagonist hexamethonium only weakly, reduced neostigmine-induced contractions of control and diabetic ilea. The amount of acetylcholine, inferred from tissue choline content, was increased in diabetic ileum. Nicotinic neural and noncholinergic postjunctional smooth muscle receptors contributed more strongly to neostigmine-induced contractions in diabetic than control ileum. Relaxation of diabetic ileum by exogenous nitric oxide generated from sodium nitroprusside was comparable to control ileum, but smooth muscle relaxation by L-arginine using neuronal nitric oxide synthase to generate nitric oxide was weaker in diabetic ileum with evidence for a role for inducible nitric oxide synthase. Despite autonomic neuropathy, neostigmine strongly contracted ileum from diabetic animals but by a different mechanism including stronger activation of postjunctional muscarinic receptors, greater synaptic acetylcholine, stronger activation of noncholinergic excitatory pathways, and weaker activation of inhibitory pathways. A selective medication targeting a specific neural pathway may more effectively treat disordered gastrointestinal transit in patients with diabetes mellitus. PMID:21880552

  20. Endothelial Nitric-oxide Synthase Activation Generates an Inducible Nitric-oxide Synthase-like Output of Nitric Oxide in Inflamed Endothelium*

    PubMed Central

    Lowry, Jessica L.; Brovkovych, Viktor; Zhang, Yongkang; Skidgel, Randal A.

    2013-01-01

    High levels of NO generated in the vasculature under inflammatory conditions are usually attributed to inducible nitric-oxide synthase (iNOS), but the role of the constitutively expressed endothelial NOS (eNOS) is unclear. In normal human lung microvascular endothelial cells (HLMVEC), bradykinin (BK) activates kinin B2 receptor (B2R) signaling that results in Ca2+-dependent activation of eNOS and transient NO. In inflamed HLMVEC (pretreated with interleukin-1β and interferon-γ), we found enhanced binding of eNOS to calcium-calmodulin at basal Ca2+ levels, thereby increasing its basal activity that was dependent on extracellular l-Arg. Furthermore, B2R stimulation generated prolonged high output eNOS-derived NO that is independent of increased intracellular Ca2+ and is mediated by a novel Gαi-, MEK1/2-, and JNK1/2-dependent pathway. This high output NO stimulated with BK was blocked with a B2R antagonist, eNOS siRNA, or eNOS inhibitor but not iNOS inhibitor. Moreover, B2R-mediated NO production and JNK phosphorylation were inhibited with MEK1/2 and JNK inhibitors or MEK1/2 and JNK1/2 siRNA but not with ERK1/2 inhibitor. BK induced Ca2+-dependent eNOS phosphorylation at Ser1177, Thr495, and Ser114 in cytokine-treated HLMVEC, but these modifications were not dependent on JNK1/2 activation and were not responsible for prolonged NO output. Cytokine treatment did not alter the expression of B2R, Gαq/11, Gαi1,2, JNK, or eNOS. B2R activation in control endothelial cells enhanced migration, but in cytokine-treated HLMVEC it reduced migration. Both responses were NO-dependent. Understanding how JNK regulates prolonged eNOS-derived NO may provide new therapeutic targets for the treatment of disorders involving vascular inflammation. PMID:23255592

  1. The Endogenous Nitric Oxide Mediates Selenium-Induced Phytotoxicity by Promoting ROS Generation in Brassica rapa

    PubMed Central

    Hu, Liang-Bin; Li, You-Qin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants. PMID:25333984

  2. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    PubMed

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. PMID:25681740

  3. Hypoxia and Nitric Oxide Induce a Rapid, Reversible Cell Cycle Arrest of the Drosophila Syncytial Divisions*

    PubMed Central

    DiGregorio, Paul J.; Ubersax, Jeffrey A.; O'Farrell, Patrick H.

    2009-01-01

    Cells can respond to reductions in oxygen (hypoxia) by metabolic adaptations, quiescence or cell death (1). The nuclear division cycles of syncytial stage Drosophila melanogaster embryos reversibly arrest upon hypoxia. We examined this rapid arrest in real time using a fusion of green fluorescent protein and histone 2A. In addition to an interphase arrest, mitosis was specifically blocked in metaphase, much like a checkpoint arrest. Nitric oxide, recently proposed as a hypoxia signal in Drosophila, induced a reversible arrest of the nuclear divisions comparable with that induced by hypoxia. Syncytial stage embryos die during prolonged hypoxia, whereas post-gastrulation embryos (cellularized) survive (2, 3). We examined ATP levels and morphology of syncytial and cellularized embryos arrested by hypoxia, nitric oxide, or cyanide. Upon oxygen deprivation, the ATP levels declined only slightly in cellularized embryos and more substantially in syncytial embryos. Reversal of hypoxia restored ATP levels and relieved the cell cycle and developmental arrests. However, morphological abnormalities suggested that syncytial embryos suffered irreversible disruption of developmental programs. Our results suggest that nitric oxide plays a role in the response of the syncytial embryo to hypoxia but that it is not the sole mediator of these responses. PMID:11054409

  4. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B.

    2015-01-01

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. PMID:26608817

  5. The Role of Photolabile Dermal Nitric Oxide Derivates in Ultraviolet Radiation (UVR)-Induced Cell Death

    PubMed Central

    Oplnder, Christian; Suschek, Christoph V.

    2013-01-01

    Human skin is exposed to solar ultraviolet radiation comprising UVB (280315 nm) and UVA (315400 nm) on a daily basis. Within the last two decades, the molecular and cellular response to UVA/UVB and the possible effects on human health have been investigated extensively. It is generally accepted that the mutagenic and carcinogenic properties of UVB is due to the direct interaction with DNA. On the other hand, by interaction with non-DNA chromophores as endogenous photosensitizers, UVA induces formation of reactive oxygen species (ROS), which play a pivotal role as mediators of UVA-induced injuries in human skin. This review gives a short overview about relevant findings concerning the molecular mechanisms underlying UVA/UVB-induced cell death. Furthermore, we will highlight the potential role of cutaneous antioxidants and photolabile nitric oxide derivates (NODs) in skin physiology. UVA-induced decomposition of the NODs, like nitrite, leads not only to non-enzymatic formation of nitric oxide (NO), but also to toxic reactive nitrogen species (RNS), like peroxynitrite. Whereas under antioxidative conditions the generation of protective amounts of NO is favored, under oxidative conditions, less injurious reactive nitrogen species are generated, which may enhance UVA-induced cell death. PMID:23344028

  6. Effect of Nitric Oxide on the Anticancer Activity of the Topoisomerase-Active Drugs Etoposide and Adriamycin in Human Melanoma Cells

    PubMed Central

    Kumar, Ashutosh; Bhattacharjee, Suchandra; Espey, Michael G.; Mason, Ronald P.

    2013-01-01

    Nitric oxide (⋅NO) was originally identified as an innate cytotoxin. However, in tumors it can enhance resistance to chemotherapy and exacerbate cancer progression. Our previous studies indicated that ⋅NO/⋅NO-derived species react with etoposide (VP-16) in vitro and form products that show significantly reduced activity toward HL60 cells and lipopolysaccharide (LPS)-induced macrophages. Here, we further confirm the hypothesis that ÷NO generation contributes to VP-16 resistance by examining interactions of ⋅NO with VP-16 in inducible nitric-oxide synthase (iNOS)–expressing human melanoma A375 cells. Inhibition of iNOS catalysis by N6-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL) in human melanoma A375 cells reversed VP-16 resistance, leading to increased DNA damage and apoptosis. Furthermore, we found that coculturing A375 melanoma cells with LPS-induced macrophage RAW cells also significantly reduced VP-16 cytotoxicity and DNA damage in A375 cells. We also examined the interactions of ⋅NO with another topoisomerase active drug, Adriamycin, in A375 cells. In contrast, to VP-16, ⋅NO caused no significant modulation of cytotoxicity or Adriamycin-dependent apoptosis, suggesting that ⋅NO does not interact with Adriamycin. Our studies support the hypothesis that ⋅NO oxidative chemistry can detoxify VP-16 through direct nitrogen oxide radical attack. Our results provide insights into the pharmacology and anticancer mechanisms of VP-16 that may ultimately contribute to increased resistance, treatment failure, and induction of secondary leukemia in VP-16–treated patients. PMID:24049059

  7. Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats

    PubMed Central

    Farrokhfall, Khadije; Hashtroudi, Mehri Seyed; Ghasemi, Asghar; Mehrani, Hossein

    2015-01-01

    Objective(s): Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging and also optimized procedure for islet NOS assay was investigated. Materials and Methods: Male Wistar rats were randomly divided in two experimental groups: A: adult rats; were 4 month old and B: old rats; were 12 month old. In all groups, plasma glucose, insulin and NOX (nitrite + nitrate = NOX) were measured, and also insulin secretion in isolated pancreatic islet with or without L-NAME was investigated. Furthermore, the inducible NOS activity with L-citrulline measurement in islets was measured. Results: L-citrulline was quantified using one step HPLC column. Aging induced hyperglycemia (P<0.05) and excess plasma NOX (17.74 1.664 and 26.25 2.166 ?mol/l in A and B groups respectively, P<0.05) with unaltered plasma insulin. Islet insulin secretion was significantly reduced in aging rats. L-NAME induced islet insulin secretion especially in aging rats (P=0.003). Inducible NOS activity in islets of aging rats was significantly higher than adult rats (1.082 0.084 and 6.277 0.475 pmol/min per mg protein in adult and aging rats, respectively, P<0.001). Conclusion: These findings show that decreased in islet insulin secretion may be related to increase in iNOS activity in islets, which follows impaired carbohydrate metabolism in aging. PMID:25810884

  8. 14-3-3? Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-?B and MAPKs and Up-Regulating mTOR Signaling

    PubMed Central

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3? has been the subject of recent research. Nevertheless, whether 14-3-3? can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3? in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3? overexpression significantly inhibited the mRNA expression of tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), interleukin-1? (IL-1?) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3? overexpression also suppressed the production of TNF-? and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3? overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3? overexpression promoted the secretion of triglycerides and lactose and the synthesis of ?-casein. Furthermore, the expression of genes relevant to nuclear factor-?B (NF-?B) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3? overexpression inactivated the NF-?B and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-?B (I?B) phosphorylation levels, as well as by inhibiting NF-?B translocation. Meanwhile, 14-3-3? overexpression enhanced the expression levels of ?-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPAR?). These results suggest that 14-3-3? was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-?B and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury. PMID:26204835

  9. 14-3-3? Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-?B and MAPKs and Up-Regulating mTOR Signaling.

    PubMed

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3? has been the subject of recent research. Nevertheless, whether 14-3-3? can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3? in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3? overexpression significantly inhibited the mRNA expression of tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), interleukin-1? (IL-1?) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3? overexpression also suppressed the production of TNF-? and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3? overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3? overexpression promoted the secretion of triglycerides and lactose and the synthesis of ?-casein. Furthermore, the expression of genes relevant to nuclear factor-?B (NF-?B) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3? overexpression inactivated the NF-?B and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-?B (I?B) phosphorylation levels, as well as by inhibiting NF-?B translocation. Meanwhile, 14-3-3? overexpression enhanced the expression levels of ?-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPAR?). These results suggest that 14-3-3? was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-?B and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury. PMID:26204835

  10. p53 mediates nitric oxide-induced apoptosis in murine neural progenitor cells.

    PubMed

    Hung, Amos C; Porter, Alan G

    2009-12-31

    Studies have shown that nitric oxide (NO)-induced apoptosis is mediated by a variety of cellular signaling pathways. However, the information is relatively limited to neural progenitor cells (NPCs). In this study, the role of p53 in the NO-induced apoptosis was examined in an in vitro model of NPCs. Comparisons were made between NPCs derived from either wild type or p53 knockout mice brain stimulated by diethylenetriamine/nitric oxide adduct (DETA/NO), an established NO donor that constantly releases NO through its known first order pharmacological kinetics and prolonged half-life. We found that treatment by DETA/NO both time- and dose-dependently induced a significant increase of apoptosis in wild type NPCs, while p53 knockout NPCs were resistant to the DETA/NO challenge. In addition, the DETA/NO-triggered alteration of mitochondrial membrane permeability, cleavage of caspase-9/3, and expression of pro-apoptotic Bcl-2 family members noxa and puma occurred in wild type NPCs but not in p53 knockout NPCs. Our current results suggest a central role of p53 in the NO-induced apoptotic pathway in NPCs, which may hence provide new insights into the regulation of cell death in NPCs that respond to overproduction of NO in injured brain. PMID:19853019

  11. Nitric oxide: Mediator of nonadrenergic noncholinergic nerve-induced responses of opossum esophageal muscle

    SciTech Connect

    Murray, J.; Du, C.; Conklin, J.L.; Ledlow, A.; Bates, J.N. )

    1991-03-15

    Nonadrenergic noncholinergic (NANC) nerves of the opossum esophagus mediate relaxation of circular muscle from the lower esophageal sphincter (LES) and the off contraction of circular esophageal muscle. The latencies between the end of the stimulus and the off contraction describe a gradient such that the latency is longest in muscle from the caudad esophagus. N{sup G}-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, and nitric oxide were used to test the hypothesis that NO is a mediator of these nerve-induced responses. Both electrical field stimulation (EFS) of intrinsic esophageal nerves and exogenous NO relaxed LES muscle. Only EFS-induced relaxation was inhibited by L-NNA. L-arginine, the substrate for NO synthase, antagonized the inhibitory effect of L-NNA. Exogenous NO neither relaxed nor contracted circular esophageal muscle. Both the amplitude and the latency of the off contraction were diminished by L-NNA. L-arginine antagonized the action of L-NNA. N{sup G}-nitro-L-arginine also attenuated the gradient in the latency of the off response by shortening latencies in muscle form the caudad esophagus. It had no effect on cholinergic nerve-induced contraction of longitudinal esophageal muscle. These data support the hypothesis that NO or an NO-containing compound mediates NANC nerve-induced responses of the esophagus and LES.

  12. Inducible nitric oxide synthase (iNOS): role in asthma pathogenesis.

    PubMed

    Batra, Jyotsna; Chatterjee, Rajshekhar; Ghosh, Balaram

    2007-10-01

    Asthma is one of the most common chronic inflammatory disorder of the airways of the lungs, affecting more than 300 million people all over the world. <