Science.gov

Sample records for lps-induced pro-inflammatory signaling

  1. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway. PMID:27066978

  2. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  3. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4.

    PubMed

    Wang, Yiren; Cui, Yuting; Cao, Fayang; Qin, Yiyang; Li, Wenjing; Zhang, Jinghai

    2015-09-01

    Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway. PMID:26054879

  4. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    PubMed

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. PMID:25433435

  5. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice

    PubMed Central

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of

  6. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  7. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  8. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease

    PubMed Central

    Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-01-01

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH). We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH. In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH. PMID:26573228

  9. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  10. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  11. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis.

    PubMed

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  12. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation.

    PubMed

    Kalaiyarasu, Semmannan; Bhatia, Sandeep; Mishra, Niranjan; Sood, Richa; Kumar, Manoj; SenthilKumar, D; Bhat, Sushant; Dass Prakash, M

    2016-09-01

    The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes. PMID:27344111

  13. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  14. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response.

    PubMed

    Zhong, Li; Chen, Xiao-Fen; Zhang, Zhen-Lian; Wang, Zhe; Shi, Xin-Zhen; Xu, Kai; Zhang, Yun-Wu; Xu, Huaxi; Bu, Guojun

    2015-06-19

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a DAP12-associated receptor expressed in microglia, macrophages, and other myeloid-derived cells. Previous studies have suggested that TREM2/DAP12 signaling pathway reduces inflammatory responses and promotes phagocytosis of apoptotic neurons. Recently, TREM2 has been identified as a risk gene for Alzheimer disease (AD). Here, we show that DAP12 stabilizes the C-terminal fragment of TREM2 (TREM2-CTF), a substrate for γ-secretase. Co-expression of DAP12 with TREM2 selectively increased the level of TREM2-CTF with little effects on that of full-length TREM2. The interaction between DAP12 and TREM2 is essential for TREM2-CTF stabilization as a mutant form of DAP12 with disrupted interaction with TREM2 failed to exhibit such an effect. Silencing of either Trem2 or Dap12 gene significantly exacerbated pro-inflammatory responses induced by lipopolysaccharides (LPS). Importantly, overexpression of either full-length TREM2 or TREM2-CTF reduced LPS-induced inflammatory responses. Taken together, our results support a role of DAP12 in stabilizing TREM2-CTF, thereby protecting against excessive pro-inflammatory responses. PMID:25957402

  15. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice.

    PubMed

    Imam, Faisal; Al-Harbi, Naif O; Al-Harbi, Mohammed M; Ansari, Mushtaq Ahmad; Zoheir, Khairy M A; Iqbal, Muzaffar; Anwer, Md Khalid; Al Hoshani, Ali R; Attia, Sabry M; Ahmad, Sheikh Fayaz

    2015-12-01

    Diosmin, a natural flavonoid glycoside present abundantly in the pericarp of various citrus fruits. Because of its anti-inflammatory and antioxidant properties, it can be used in many diseases. In this study, we investigated the possible protective mechanisms of the diosmin on LPS-induced lung injury through inhibition of T cell receptors, pro-inflammatory cytokines and NF-κB activation. Animals were pretreated with diosmin (50 and 100mg/kg, p.o.) for seven days prior to lipopolysaccharides (LPS) treatment. LPS administration increased neutrophils, monocytes, lymphocytes, total leukocyte count (TLC) and platelets which were decreased by diosmin. We observed that mice exposed to LPS showed increased malondialdehyde level and MPO activity whereas marked decrease in glutathione content. These changes were significantly reversed by treatment with diosmin in a dose dependent manner. Diosmin treatment showed a substantial reduction in T cell (CD4(+) and CD8(+)) receptors and pro-inflammatory (IL-2(+) and IL-17(+)) cytokines in whole blood. In addition, RT-PCR analysis revealed increased mRNA expression of IL-6, IL-17, TNF-α, and NF-κB in the LPS group, while reduced by treatment with diosmin. Western blot analysis confirmed the increased protein expression of IL-1β, TNF-α and NF-κB p65 in the LPS group and treatment of animals with diosmin reversed these effects. The levels of cytoplasmic p-IκB-α and p-NF-κB p65 expression also were mitigated by diosmin. The histological examinations revealed protective effect of diosmin while LPS group aggravated lung injury. These results support the potential for diosmin to be investigated as a potential agent for the treatment of lung injury and inflammatory diseases. PMID:26361726

  16. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. PMID:23583806

  17. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917453

  18. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents. PMID:25817687

  19. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction.

    PubMed

    Hermanns, Heike M; Wohlfahrt, Julia; Mais, Christine; Hergovits, Sabine; Jahn, Daniel; Geier, Andreas

    2016-08-01

    The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction. PMID:27071147

  20. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis

    PubMed Central

    Kuriakose, Shiby M.; Singh, Rani; Uzonna, Jude E.

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  1. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis.

    PubMed

    Kuriakose, Shiby M; Singh, Rani; Uzonna, Jude E

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  2. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-Juan; Jiang, Juan-Xia; Ren, Qian-Qian; Jia, Yong-Liang; Shen, Jian; Shen, Hui-Juan; Lin, Xi-Xi; Lu, Hong; Xie, Qiang-Min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5mg/ml was comparable to that of ambroxol at 20mg/ml i.v. and dexamethasone at 0.5mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. PMID:26872986

  3. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  4. Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

    PubMed Central

    Yang, Dongki

    2015-01-01

    Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing α2 adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce Ca2+ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced Ca2+ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger Ca2+ peak or increase in the presence or absence of external Ca2+. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced [Ca2+]i signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced Ca2+ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect. PMID:26330753

  5. Heme oxygenase-1 signals are involved in preferential inhibition of pro-inflammatory cytokine release by surfactin in cells activated with Porphyromonas gingivalis lipopolysaccharide.

    PubMed

    Park, Sun Young; Kim, Young Hun; Kim, Eun-Kyoung; Ryu, Eun Yeon; Lee, Sang-Joon

    2010-12-01

    Porphyromonas gingivalis is considered the major pathogen of periodontal disease, which leads to chronic inflammation in oral tissues. P. gingivalis-produced lipopolysaccharide (LPS) is a key factor in the development of periodontitis. It is established that surfactin produced by Bacillus subtilis confers anti-inflammatory properties. However, the underlying mechanisms responsible for surfactin-induced anti-inflammatory actions in the context of periodontitis are poorly understood. In this study, we investigated whether surfactin affected P. gingivalis LPS-induced pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-12, and determined that it significantly inhibited their production. Surfactin-mediated inhibition was mainly due to blocked activation of P. gingivalis LPS-triggered nuclear factor-κB. We also examined whether the regulatory effect of surfactin on P. gingivalis LPS-stimulated human THP-1 macrophages was mediated by the induction of heme oxygenase-1 (HO-1) signals, and determined that surfactin also induced HO-1 mRNA and protein expression via activation of Nrf-2. Additionally, we found that small interfering RNA-mediated knock-down of Nrf-2 significantly inhibited surfactin-induced HO-1 expression. Furthermore, inhibition of phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) significantly decreased surfactin-induced HO-1 expression, which is consistent with the suggestion that surfactin-induced HO-1 expression occurs via PI3K/Akt, ERK, and Nrf-2. Treatment with a selective inhibitor of HO-1 reversed the surfactin-mediated inhibition of pro-inflammatory cytokines, suggesting that surfactin induces anti-inflammatory effects by activating Nrf-2-mediated HO-1 induction via PI3K/Akt and ERK signaling. Collectively, these observations support the potential of surfactin as a candidate in strategies to prevent caries, periodontitis, or other inflammatory diseases. PMID:20833156

  6. Ulinastatin attenuates LPS-induced human endothelial cells oxidative damage through suppressing JNK/c-Jun signaling pathway.

    PubMed

    Li, Chunping; Ma, Dandan; Chen, Man; Zhang, Linlin; Zhang, Lin; Zhang, Jicheng; Qu, Xin; Wang, Chunting

    2016-06-01

    Lipopolysaccharide (LPS)-induced oxidative stress is a main feature observed in the sepsis by increasing endothelial oxidative damage. Many studies have demonstrated that Ulinastatin (UTI) can inhibit pro-inflammatory proteases, decrease inflammatory cytokine levels and suppress oxidative stress. However, the potential molecular mechanism underlying UTI which exerts its antioxidant effect is not well understood. In this study, we aimed to investigate the effects of UTI on the LPS-induced oxidative stress and the underlying mechanisms using human umbilical vein endothelial cells (HUVECs). After oxidative stress induced By LPS in HUVECs, the cell viability and reactive oxygen species (ROS) in cytoplasm were measured. In addition, superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. We found that LPS resulted in a profound elevation of ROS production and MDA levels. The decrease in Cu/Zn-SOD protein and increased in Mn-SOD protein were observed in a time- and dose-dependent manner. These responses were suppressed by an addition of UTI. The increase in c-Jun N-terminal kinases (JNK) phosphorylation by LPS in HUVECs was markedly blocked by UTI or JNK inhibitor SP600125. Our results suggest that UTI exerts its anti-oxidant effects by decreasing overproduction of ROS induced by LPS via suppressing JNK/c-Jun phosphorylation. Therefore UTI may play a protective role in vascular endothelial injury induced by oxidative stress such as sepsis. This study may provide insight into a possible molecular mechanism by which Ulinastatin inhibits LPS-induced oxidative stress. PMID:27109479

  7. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways.

    PubMed

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  8. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

    PubMed Central

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  9. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases. PMID:27064545

  10. Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling

    PubMed Central

    Guo, Junping; Wang, Lijun; Wang, Linyao; Qian, Senmi; Fang, Jie

    2016-01-01

    Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases. PMID:27478481

  11. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. PMID:27421105

  12. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  13. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway.

    PubMed

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer's disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  14. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells.

    PubMed

    Wang, Tingyu; Wu, Feihua; Jin, Zhigui; Zhai, Zanjing; Wang, Yugang; Tu, Bing; Yan, Wei; Tang, Tingting

    2014-02-01

    Plumbagin (PL) has been reported to exhibit anti-carcinogenic, anti-inflammatory and analgesic activities, but little is known about its mechanism. In this study, we investigated the anti-inflammatory property of PL and its mechanism of action. Although no significant cytotoxicity of PL was observed over the concentration range tested, PL (2.5-7.5 μM) significantly and dose-dependently suppressed the secretion of pro-inflammatory mediators and inhibited the expression of TNF-α, IL-1β, IL-6 and iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, PL consistently suppressed the activity of iNOS in LPS-induced RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of PL, we assessed the effects of PL on the MAPK pathway and the activity and expression of NF-κB. These experiments demonstrated that PL significantly reduced the luciferase activity of an NF-κB promoter reporter and p65 nuclear translocation. The LPS-induced phosphorylation of MAP kinases was also attenuated by PL; significant changes were observed in the levels of phosphorylated ERK1/2, JNK and p38 MAPK. Additionally, MAPK inhibitors confirmed the inhibitory effect of PL on the MAPK pathway. Taken together, these data suggest that PL exerts its anti-inflammatory effects by down-regulating the expression of pro-inflammatory mediators through inhibition of NF-κB and MAPK signaling in LPS-stimulated RAW 264.7 cells. PMID:24296134

  15. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis. PMID:26426600

  16. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells.

    PubMed

    Wehmeier, Kent; Onstead-Haas, Luisa M; Wong, Norman C W; Mooradian, Arshag D; Haas, Michael J

    2016-08-01

    The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function. PMID:27234962

  17. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx.

    PubMed

    Kong, Guiqing; Huang, Xiao; Wang, Lipeng; Li, Yan; Sun, Ting; Han, Shasha; Zhu, Weiwei; Ma, Mingming; Xu, Haixiao; Li, Jiankui; Zhang, Xiaohua; Liu, Xiangyong; Wang, Xiaozhi

    2016-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx. PMID:27111514

  18. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    PubMed

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom. PMID:26394068

  19. Differential pro-inflammatory responses of TNF-α receptors (TNFR1 and TNFR2) on LOX-1 signalling.

    PubMed

    Arjuman, Albina; Chandra, Nimai C

    2015-06-01

    TNF-α potently induces LOX-1 expression in THP-1 macrophages at concentrations between 1.25-50 ng/mL. The interplay between the two TNF receptors (TNFR1 and TNFR2) was apparent in the expression pattern of LOX-1 in response to TNF-α. Interestingly, R1 signal abrogation depleted both TNFR2 as well as LOX-1 transcript expression, suggesting that TNFR1 holds priority in the relative signaling mechanism between TNFR1 and TNFR2. TNF-α was also found to abrogate the oxidized-LDL (ox-LDL) mediated increase in intracellular pool of NO, a known downstream intermediate of LOX-1 pro-inflammatory signaling cascade. At the level of ox-LDL clearance, TNF-α inhibited the uptake (scavenging) of ox-LDL via LOX-1. Our study demonstrates the ability of TNF-α to enhance the signaling propensity of LOX-1 by increasing its expression and inhibiting its scavenging property. PMID:25416967

  20. Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock.

    PubMed

    Li, Weifeng; Zhang, Hailin; Niu, Xiaofeng; Wang, Xiumei; Wang, Yu; He, Zehong; Yao, Huan

    2016-08-15

    LPS sensitized mice are usually considered as an experimental model of endotoxin shock. The present study aims to evaluate effects of cavidine on LPS-induced endotoxin shock. Mice were intraperitoneally administrated with cavidine (1, 3 and 10mg/kg) or DEX (5mg/kg) at 1 and 12h before injecting LPS (30mg/kg) intraperitoneally. Blood samples, liver, lung and kidney tissues were harvested after LPS injection. The study demonstrated that pretreatment with cavidine reduced the mortality of mice during 72h after endotoxin injection. In addition, cavidine administration significantly attenuated histological pathophysiology features of LPS-induced injury in lung, liver and kidney. Furthermore, cavidine administration inhibited endotoxin-induced production of pro-inflammatory cytokines including TNF-α, IL-6 and HMGB1. Moreover, cavidine pretreatment attenuated the phosphorylation of mitogen-activated protein kinase primed by LPS. In summary, cavidine protects mice against LPS-induced endotoxic shock via inhibiting early pro-inflammatory cytokine TNF-α, IL-6 and late-phase cytokine HMGB1, and the modulation of HMGB1 may be related with MAPK signal pathway. PMID:27260672

  1. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis

    PubMed Central

    Ip, Margaret; Chu, Yi Jun; Yung, Irene M. H.; Cheung, Catherine S. K.; Zheng, Lin; Lam, Judy S. Y.; Wong, Ka Tak; Sin, Winnie W. Y.; Choi, Kin Wing; Lee, Nelson

    2016-01-01

    Background We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB). Methods A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals (tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients’ PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo. Results In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6–15.1) vs 3.6(3.6–3.6) pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02–1.23 per unit increase, P = 0.021) and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08–1.87, P = 0.012) concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2−2.8 fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α) when combined with lipoarabinomannan. Conclusion In patients with active PTB, HMGB1/RAGE

  2. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways.

    PubMed

    Zong, Xin; Song, Deguang; Wang, Tenghao; Xia, Xi; Hu, Wangyang; Han, Feifei; Wang, Yizhen

    2015-10-01

    LFP-20 is one of the 20 amino acid anti-microbial peptides identified in the N terminus of porcine lactoferrin. Apart from its extensively studied direct anti-bacterial activity, its potential as an activator of immune-related cellular functions is unknown. Therefore, this study investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated pig alveolar macrophages in vitro and systemic inflammation in an in vivo mouse model. We found that the inhibitory effects of LFP-20 on production of pro-inflammatory cytokines were independent of its LPS-binding activity. However, they were associated with NF-κB and MAPK-dependent signaling. Furthermore, LFP-20 might directly influence MyD88 levels to block its interaction with NF-κB and MAPK-dependent signaling molecules that might alter LPS-mediated inflammatory responses in activated macrophages. Taken together, our data indicated that LFP-20 prevents the LPS-induced inflammatory response by inhibiting MyD88/NF-κB and MyD88/MAPK signaling pathways, and sheds light on the potential use of LFP-20 in the therapy of LPS-mediated sepsis. PMID:26003437

  3. Extracellular poly(ADP-ribose) is a pro-inflammatory signal for macrophages

    PubMed Central

    Krukenberg, Kristin A.; Kim, Sujeong; Tan, Edwin S.; Maliga, Zoltan; Mitchison, Timothy J.

    2015-01-01

    Summary Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR), an essential post-translational modification whose function is important in many cellular processes including DNA damage signalling, cell death, and inflammation. All known PAR biology is intracellular, but we suspected it might also play a role in cell-to-cell communication during inflammation. We found that PAR activated cytokine release in human and mouse macrophages, a hallmark of innate immune activation, and determined structure-activity relationships. PAR was rapidly internalized by murine macrophages, while the monomer, ADP-ribose, was not. Inhibitors of TLR2 and TLR4 signaling blocked macrophage responses to PAR, and PAR induced TLR2 and TLR4 signaling in reporter cell lines suggesting it was recognized by these TLRs, much like bacterial pathogens. We propose that PAR acts as an extracellular “Damage Associated Molecular Pattern” (DAMP) that drives inflammatory signaling. PMID:25865309

  4. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2.

    PubMed

    Płóciennikowska, Agnieszka; Zdioruk, Mykola I; Traczyk, Gabriela; Świątkowska, Anna; Kwiatkowska, Katarzyna

    2015-11-15

    Bacterial lipopolysaccharide (LPS) induces strong pro-inflammatory reactions after sequential binding to CD14 protein and TLR4 receptor. Here, we show that CD14 controls generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in response to LPS binding. In J774 cells and HEK293 cells expressing CD14 exposed to 10-100 ng/ml LPS, the level of PI(4,5)P2 rose in a biphasic manner with peaks at 5-10 min and 60 min. After 5-10 min of LPS stimulation, CD14 underwent prominent clustering in the plasma membrane, accompanied by accumulation of PI(4,5)P2 and type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms Iα and Iγ (encoded by Pip5k1a and Pip5k1c, respectively) in the CD14 region. Clustering of CD14 with antibodies, without LPS and TLR4 participation, was sufficient to trigger PI(4,5)P2 elevation. The newly generated PI(4,5)P2 accumulated in rafts, which also accommodated CD14 and a large portion of PIP5K Iα and PIP5K Iγ. Silencing of PIP5K Iα and PIP5K Iγ, or application of drugs interfering with PI(4,5)P2 synthesis and availability, abolished the LPS-induced PI(4,5)P2 elevation and inhibited downstream pro-inflammatory reactions. Taken together, these data indicate that LPS induces clustering of CD14, which triggers PI(4,5)P2 generation in rafts that is required for maximal pro-inflammatory signaling of TLR4. PMID:26446256

  5. Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    PubMed

    Kang, Sukyung; Lee, Jae Sung; Lee, Hai Chon; Petriello, Michael C; Kim, Bae Yong; Do, Jeong Tae; Lim, Dae-Seog; Lee, Hong Gu; Han, Sung Gu

    2016-03-28

    Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPSinduced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells. PMID:26608166

  6. A novel MyD-1 (SIRP-1alpha) signaling pathway that inhibits LPS-induced TNFalpha production by monocytes.

    PubMed

    Smith, Rosemary E; Patel, Vanshree; Seatter, Sandra D; Deehan, Maureen R; Brown, Marion H; Brooke, Gareth P; Goodridge, Helen S; Howard, Christopher J; Rigley, Kevin P; Harnett, William; Harnett, Margaret M

    2003-10-01

    MyD-1 (CD172) is a member of the family of signal regulatory phosphatase (SIRP) binding proteins, which is expressed on human CD14+ monocytes and dendritic cells. We now show a novel role for MyD-1 in the regulation of the innate immune system by pathogen products such as lipopolysaccharide (LPS), purified protein derivative (PPD), and Zymosan. Specifically, we demonstrate that ligation of MyD-1 on peripheral blood mononuclear cells (PBMCs) inhibits tumor necrosis factor alpha (TNFalpha) secretion but has no effect on other cytokines induced in response to each of these products. In an attempt to understand the molecular mechanisms underlying this surprisingly selective effect we investigated signal transduction pathways coupled to MyD-1. Ligation of the SIRP was found to recruit the tyrosine phosphatase SHP-2 and promote sequential activation of phosphatidylinositol (PI) 3-kinase, phospholipase D, and sphingosine kinase. Inhibition of LPS-induced TNFalpha secretion by MyD-1 appears to be mediated by this pathway, as the PI 3-kinase inhibitor wortmannin restores normal LPS-driven TNFalpha secretion. MyD-1-coupling to this PI 3-kinase-dependent signaling pathway may therefore present a novel target for the development of therapeutic strategies for combating TNFalpha production and consequent inflammatory disease. PMID:12805067

  7. Pro-inflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury

    PubMed Central

    Ghosh, Mousumi; Garcia-Castillo, Daniela; Aguirre, Vladimir; Golshani, Roozbeh; Atkins, Coleen M.; Bramlett, Helen M.; Dietrich, W. Dalton; Pearse, Damien D.

    2015-01-01

    Cyclic AMP suppresses immune cell activation and inflammation. The positive feedback loop of pro-inflammatory cytokine production and immune activation implies that cytokines may not only be regulated by cyclic AMP but conversely regulate cyclic AMP. This study examined the effects of TNF-α and IL-1β on cyclic AMP-phosphodiesterase (PDE) signaling in microglia in vitro and after spinal cord or traumatic brain injury (SCI, TBI). TNF-α or IL-1β stimulation produced a profound reduction (>90%) of cyclic AMP within EOC2 microglia from 30min that then recovered after IL-1β but remained suppressed with TNF-α through 24h. Cyclic AMP was also reduced in TNF-α-stimulated primary microglia, albeit to a lesser extent. Accompanying TNF-α-induced cyclic AMP reductions, but not IL-1β, was increased cyclic AMP-PDE activity. The role of PDE4 activity in cyclic AMP reductions was confirmed by using Rolipram. Examination of pde4 mRNA revealed an immediate, persistent increase in pde4b with TNF-α; IL-1β increased all pde4 mRNAs. Immunoblotting for PDE4 showed that both cytokines increased PDE4A1, but only TNF-α increased PDE4B2. Immunocytochemistry revealed PDE4B nuclear translocation with TNF-α but not IL-1β. Acutely after SCI/TBI, where cyclic AMP levels are reduced, PDE4B was localized to activated OX-42+ microglia; PDE4B was absent in OX-42+ cells in uninjured spinal cord/cortex or inactive microglia. Immunoblotting showed PDE4B2 up-regulation from 24h to 1wk post-SCI, the peak of microglia activation. These studies show that TNF-α and IL-1β differentially affect cyclic AMP-PDE signaling in microglia. Targeting PDE4B2 may be a putative therapeutic direction for reducing microglia activation in CNS injury and neurodegenerative diseases. PMID:22865690

  8. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases. PMID:27138362

  9. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  10. TRAF6 Mediates IL-1β/LPS-Induced Suppression of TGF-β Signaling through Its Interaction with the Type III TGF-β Receptor

    PubMed Central

    Lim, Seunghwan; Bae, Eunjin; Kim, Hae-Suk; Kim, Tae-Aug; Byun, Kyunghee; Kim, Byungchul; Hong, Suntaek; Im, Jong Pil; Yun, Chohee; Lee, Bona; Lee, Bonghee; Park, Seok Hee; Letterio, John; Kim, Seong-Jin

    2012-01-01

    Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-βsignaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression. PMID:22427868

  11. LPS-induced chorioamnionitis and antenatal corticosteroids modulate Shh signaling in the ovine fetal lung.

    PubMed

    Collins, Jennifer J P; Kuypers, Elke; Nitsos, Ilias; Jane Pillow, J; Polglase, Graeme R; Kemp, Matthew W; Newnham, John P; Cleutjens, Jack P; Frints, Suzanna G M; Kallapur, Suhas G; Jobe, Alan H; Kramer, Boris W

    2012-11-01

    Chorioamnionitis and antenatal corticosteroids mature the fetal lung functionally but disrupt late-gestation lung development. Because Sonic Hedgehog (Shh) signaling is a major pathway directing lung development, we hypothesized that chorioamnionitis and antenatal corticosteroids modulated Shh signaling, resulting in an altered fetal lung structure. Time-mated ewes with singleton ovine fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) and/or maternal intramuscular betamethasone 7 and/or 14 days before delivery at 120 days gestational age (GA) (term = 150 days GA). Intra-amniotic LPS exposure decreased Shh mRNA levels and Gli1 protein expression, which was counteracted by both betamethasone pre- or posttreatment. mRNA and protein levels of fibroblast growth factor 10 and bone morphogenetic protein 4, which are important mediators of lung development, increased 2-fold and 3.5-fold, respectively, 14 days after LPS exposure. Both 7-day and 14-day exposure to LPS changed the mRNA levels of elastin (ELN) and collagen type I alpha 1 (Col1A1) and 2 (Col1A2), which resulted in fewer elastin foci and increased collagen type I deposition in the alveolar septa. Corticosteroid posttreatment prevented the decrease in ELN mRNA and increased elastin foci and decreased collagen type I deposition in the fetal lung. In conclusion, fetal lung exposure to LPS was accompanied by changes in key modulators of lung development resulting in abnormal lung structure. Betamethasone treatment partially prevented the changes in developmental processes and lung structure. This study provides new insights into clinically relevant prenatal exposures and fetal lung development. PMID:22962010

  12. LPS-induced chorioamnionitis and antenatal corticosteroids modulate Shh signaling in the ovine fetal lung

    PubMed Central

    Collins, Jennifer J. P.; Kuypers, Elke; Nitsos, Ilias; Jane Pillow, J.; Polglase, Graeme R.; Kemp, Matthew W.; Newnham, John P.; Cleutjens, Jack P.; Frints, Suzanna G. M.; Kallapur, Suhas G.; Jobe, Alan H.

    2012-01-01

    Chorioamnionitis and antenatal corticosteroids mature the fetal lung functionally but disrupt late-gestation lung development. Because Sonic Hedgehog (Shh) signaling is a major pathway directing lung development, we hypothesized that chorioamnionitis and antenatal corticosteroids modulated Shh signaling, resulting in an altered fetal lung structure. Time-mated ewes with singleton ovine fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) and/or maternal intramuscular betamethasone 7 and/or 14 days before delivery at 120 days gestational age (GA) (term = 150 days GA). Intra-amniotic LPS exposure decreased Shh mRNA levels and Gli1 protein expression, which was counteracted by both betamethasone pre- or posttreatment. mRNA and protein levels of fibroblast growth factor 10 and bone morphogenetic protein 4, which are important mediators of lung development, increased 2-fold and 3.5-fold, respectively, 14 days after LPS exposure. Both 7-day and 14-day exposure to LPS changed the mRNA levels of elastin (ELN) and collagen type I alpha 1 (Col1A1) and 2 (Col1A2), which resulted in fewer elastin foci and increased collagen type I deposition in the alveolar septa. Corticosteroid posttreatment prevented the decrease in ELN mRNA and increased elastin foci and decreased collagen type I deposition in the fetal lung. In conclusion, fetal lung exposure to LPS was accompanied by changes in key modulators of lung development resulting in abnormal lung structure. Betamethasone treatment partially prevented the changes in developmental processes and lung structure. This study provides new insights into clinically relevant prenatal exposures and fetal lung development. PMID:22962010

  13. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    PubMed Central

    Kissner, Teri L.; Ruthel, Gordon; Alam, Shahabuddin; Mann, Enrique; Ajami, Dariush; Rebek, Mitra; Larkin, Eileen; Fernandez, Stefan; Ulrich, Robert G.; Ping, Sun; Waugh, David S.; Rebek, Julius; Saikh, Kamal U.

    2012-01-01

    Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response that often leads to toxic shock syndrome (TSS) associated with organ failure and death. MyD88 mediates pro-inflammatory cytokine signaling induced by SEB exposure and MyD88−/− mice are resistant to SEB intoxication, suggesting that MyD88 may be a potential target for therapeutic intervention. We targeted the BB loop region of the Toll/IL-1 receptor (TIR) domain of MyD88 to develop small-molecule therapeutics. Here, we report that a synthetic compound (EM-163), mimic to dimeric form of BB-loop of MyD88 attenuated tumor necrosis factor (TNF)- α, interferon (IFN)-γ, interleukin (IL)-1β, IL-2 and IL-6 production in human primary cells, whether administered pre- or post-SEB exposure. Results from a direct binding assay, and from MyD88 co-transfection/co-immunoprecipitation experiments, suggest that EM-163 inhibits TIR-TIR domain interaction. Additional results indicate that EM-163 prevents MyD88 from mediating downstream signaling. In an NF-kB-driven reporter assay of lipopolysaccharide-stimulated MyD88 signaling, EM-163 demonstrated a dose-dependent inhibition of reporter activity as well as TNF-α and IL-1β production. Importantly, administration of EM-163 pre- or post exposure to a lethal dose of SEB abrogated pro-inflammatory cytokine responses and protected mice from toxic shock-induced death. Taken together, our results suggest that EM-163 exhibits a potential for therapeutic use against SEB intoxication. PMID:22848400

  14. Suppressing LPS-induced early signal transduction in macrophages by a polyphenol degradation product: a critical role of MKP-1.

    PubMed

    Tucsek, Zsuzsanna; Radnai, Balazs; Racz, Boglarka; Debreceni, Balazs; Priber, Janos K; Dolowschiak, Tamas; Palkovics, Tamas; Gallyas, Ferenc; Sumegi, Balazs; Veres, Balazs

    2011-01-01

    Macrophages represent the first defense line against bacterial infection and therefore, play a crucial role in early inflammatory response. In this study, we investigated the role of MAPKs and MKP-1 activation in regulation of an early inflammatory response in RAW 264.7 macrophage cells. We induced the inflammatory response by treating the macrophages with LPS and inhibited an early inflammatory response by using ferulaldehyde, a water-soluble end-product of dietary polyphenol degradation that we found previously to exert its beneficial anti-inflammatory effects during the early phase of in vivo inflammation. We found that LPS-induced ROS and nitrogen species formations were reduced by ferulaldehyde in a concentration-dependent manner, and ferulaldehyde protected mitochondria against LPS-induced rapid and massive membrane depolarization. LPS induced early suppression of MKP-1, which was accompanied by activation of JNK, ERK, and p38 MAPK. By reversing LPS-induced early suppression of MKP-1, ferulaldehyde diminished MAPK activation, thereby inhibiting NF-κB activation, mitochondrial depolarization, and ROS production. Taken together, our data suggest that ferulaldehyde exerts its early anti-inflammatory effect by preserving the mitochondrial membrane integrity and shifting the expression of MKP-1 forward in time in macrophages. PMID:20884647

  15. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    PubMed

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients. PMID:25907862

  16. Effects of Differences in Lipid A Structure on TLR4 Pro-Inflammatory Signaling and Inflammasome Activation

    PubMed Central

    Chilton, Paula M.; Embry, Chelsea A.; Mitchell, Thomas C.

    2012-01-01

    The vertebrate immune system exists in equilibrium with the microbial world. The innate immune system recognizes pathogen-associated molecular patterns via a family of Toll-like receptors (TLR) that activate cells upon detection of potential pathogens. Because some microbes benefit their hosts, mobilizing the appropriate response, and then controlling that response is critical in the maintenance of health. TLR4 recognizes the various forms of lipid A produced by Gram-negative bacteria. Depending on the structural form of the eliciting lipid A molecule, TLR4 responses range from a highly inflammatory endotoxic response involving inflammasome and other pro-inflammatory mediators, to an inhibitory, protective response. Mounting the correct response against an offending microbe is key to maintaining health when exposed to various bacterial species. Further study of lipid A variants may pave the way to understanding how TLR4 responses are generally able to avoid chronic inflammatory damage. PMID:22707952

  17. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  18. Geniposide suppresses LPS-induced nitric oxide, PGE2 and inflammatory cytokine by downregulating NF-κB, MAPK and AP-1 signaling pathways in macrophages.

    PubMed

    Shi, Qinghai; Cao, Jinjun; Fang, Li; Zhao, Hongyan; Liu, Zhengxiang; Ran, Jihua; Zheng, Xinchuan; Li, Xiaoling; Zhou, Yu; Ge, Di; Zhang, Hongming; Wang, Li; Ran, Ying; Fu, Jianfeng

    2014-06-01

    Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases. PMID:24735815

  19. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease. PMID:26190278

  20. LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels

    PubMed Central

    Qin, Lan-hui; Huang, Wen; Mo, Xue-an; Chen, Yan-lan; Wu, Xiang-hong

    2015-01-01

    Disrupted blood-brain barrier (BBB) integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS-) induced dysregulation of tight junction (TJ) proteins. Human cerebral microvascular endothelial cells (hCMEC/D3) were exposed to LPS, SB203580 (p38MAPK inhibitor), or SP600125 (JNK inhibitor), and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO-) 1) were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR), and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA). LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor) and SB-3CT (a specific MMP-2 inhibitor) partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK. PMID:26290681

  1. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line

    PubMed Central

    Pesce, Mirko; Franceschelli, Sara; Ferrone, Alessio; De Lutiis, Maria Anna; Patruno, Antonia; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2015-01-01

    Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases. PMID:25807993

  2. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts.

    PubMed

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. PMID:27515000

  3. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  4. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages

    PubMed Central

    Choi, Hye-young; Choi, Bo-hyun; Kim, Sang-Tae; Heo, Tae-Hwe; Lee, Joo Young; Park, Pil-Hoon; Kwak, Mi-Kyoung

    2015-01-01

    Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells

  5. Constitutive and LPS-Induced Expression of MCP-1 and IL-8 by Human Uveal Melanocytes In Vitro and Relevant Signal Pathways

    PubMed Central

    Hu, Dan-Ning; Bi, Mingchao; Zhang, David Y.; Ye, Fei; McCormick, Steven A.; Chan, Chi-Chao

    2014-01-01

    Purpose. Melanocytes are one of the major cellular components in the uvea. Interleukin-8/CXCL8 and monocyte chemoattractant protein-1 (MCP-1/CCL2) are the two most important proinflammatory chemokines. We studied the constitutive and lipopolysaccharide (LPS)-induced expression of IL-8 and MCP-1 in cultured human uveal melanocytes (UM) and explored the relevant signal pathways. Methods. Conditioned media and cells were collected from UM cultured in medium with and without stimulation of LPS. Interleukin-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Nuclear factor (NF)-κB in nuclear extracts and phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases1/2 (ERK1/2), and c-Jun N-terminal kinase1/2 (JNK1/2) in cells cultured with and without LPS were measured by ELISA kits. Inhibitors of p38 (SB203580), ERK1/2 (UO1026), JNK1/2 (SP600125), and NF-κB (BAY11-7082) were added to the cultures to evaluate their effects. Results. Low levels of IL-8 and MCP-1 proteins were detected in the conditioned media in UM cultured without serum. Lipopolysaccharide (0.01–1 μg/mL) increased IL-8 and MCP-1 mRNAs and proteins levels in a dose- and time-dependent manner, accompanied by a significant increase of phosphorylated JNK1/2 in cell lysates and NF-κB in nuclear extracts. Nuclear factor–κB and JNK1/2 inhibitors significantly blocked LPS-induced expression of IL-8 and MCP-1. Conclusions. This is the first report on the expression and secretion of chemokines by UM. The data suggest that UM may play a role in the pathogenesis of ocular inflammatory diseases. PMID:25125602

  6. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway.

    PubMed

    Peddireddy, Vidyullatha; Doddam, Sankara Narayana; Qureshi, Insaf A; Yerra, Priyadarshini; Ahmed, Niyaz

    2016-01-01

    Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κβ. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas. PMID:27094446

  7. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway

    PubMed Central

    Peddireddy, Vidyullatha; Doddam, Sankara Narayana; Qureshi, Insaf A.; Yerra, Priyadarshini; Ahmed, Niyaz

    2016-01-01

    Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κβ. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas. PMID:27094446

  8. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish.

    PubMed

    Ryu, Su-Jung; Choi, Hyeon-Son; Yoon, Kye-Yoon; Lee, Ok-Hwan; Kim, Kui-Jin; Lee, Boo-Yong

    2015-02-25

    Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macrophages was supported by the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, our enzyme immunoassay showed that oleuropein suppressed the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oleuropein inhibited the translocation of p65 by suppressing phosphorylation of inhibitory kappa B-α (IκB-α). Oleuropein also decreased activation of ERK1/2 and JNK, which are associated with LPS-induced inflammation, and its downstream gene of AP-1. Furthermore, oleuropein inhibited LPS-stimulated NO generation in a zebrafish model. Taken together, our results demonstrated that oleuropein could reduce inflammatory responses by inhibiting TLR and MAPK signaling, and may be used as an anti-inflammatory agent. PMID:25613688

  9. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis. PMID:25913072

  10. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  11. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  12. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling.

    PubMed

    Kim, Sung Hye; MacIntyre, David A; Hanyaloglu, Aylin C; Blanks, Andrew M; Thornton, Steven; Bennett, Phillip R; Terzidou, Vasso

    2016-01-15

    Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways. PMID:26586210

  13. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line.

    PubMed

    Holmes, Shaletha; Singh, Meharvan; Su, Chang; Cunningham, Rebecca L

    2016-07-01

    Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress-induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress-induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women. PMID:27167771

  14. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury.

    PubMed

    Lee, Jae-Won; Park, Ji-Won; Shin, Na-Rae; Park, So-Yeon; Kwon, Ok-Kyoung; Park, Hyun Ah; Lim, Yourim; Ryu, Hyung Won; Yuk, Heung Joo; Kim, Jung Hee; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2016-09-01

    Picrasma quassiodes (D.Don) Benn. (PQ) is a medicinal herb belonging to the family Simaroubaceae and is used as a traditional herbal remedy for various diseases. In this study, we evaluated the effects of PQ on airway inflammation using a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and LPS-stimulated raw 264.7 cells. ALI was induced in C57BL/6 mice by the intranasal administration of LPS, and PQ was administered orally 3 days prior to exposure to LPS. Treatment with PQ significantly attenuated the infiltration of inflammatory cells in the bronchoalveolar lavage fluid (BALF). PQ also decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. In addition, PQ inhibited airway inflammation by reducing the expression of inducible nitric oxide synthase (iNOS) and by increasing the expression of heme oxygenase-1 (HO-1) in the lungs. Furthermore, we demonstrated that PQ blocked the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the lungs of mice with LPS-induced ALI. In the LPS-stimulated RAW 264.7 cells, PQ inhibited the release of pro-inflammatory cytokines and increased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1). Treatment with PQ decreased the translocation of nuclear factor (NF)-κB to the nucleus, and increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of HO-1. PQ also inhibited the activation of p38 in the LPS-stimulated RAW 264.7 cells. Taken together, our findings demonstrate that PQ exerts anti-inflammatory effects against LPS-induced ALI, and that these effects are associated with the modulation of iNOS, HO-1, NF-κB and MAPK signaling. Therefore, we suggest that PQ has therapeutic potential for use in the treatment of ALI. PMID:27431288

  15. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  16. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.

    PubMed

    Jones, Jane T; Qian, Xi; van der Velden, Jos L J; Chia, Shi Biao; McMillan, David H; Flemer, Stevenson; Hoffman, Sidra M; Lahue, Karolyn G; Schneider, Robert W; Nolin, James D; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M; Tew, Kenneth D; Janssen-Heininger, Yvonne M W

    2016-08-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  17. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  18. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells.

    PubMed

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  19. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice.

    PubMed

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2(-/-) mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2(-/-) mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  20. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  1. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4

    PubMed Central

    Bastos, Leandro F. S.; Godin, Adriana M.; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C. S.; Machado, Renes R.; Maier, Steven F.; Konishi, Yasuo; de Freitas, Rossimiriam P.; Fiebich, Bernd L.; Watkins, Linda R.; Coelho, Márcio M.; Moraes, Márcio F. D.

    2013-01-01

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline’s positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline’s antibiotic actions and divalent cation (Ca2+; Mg2+) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100 mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75, 47.50 or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  2. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Márcio M; Moraes, Márcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  3. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    PubMed

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc. PMID:26931732

  4. Suppression of LPS-induced epithelial-mesenchymal transition by aqueous extracts of Prunella vulgaris through inhibition of the NF-κB/Snail signaling pathway and regulation of EMT-related protein expression.

    PubMed

    Cho, In-Hye; Jang, Eun Hyang; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-11-01

    Epithelial-mesenchymal transition (EMT) is a pivotal event in the invasion and metastasis of cancer cells. Prunella vulgaris (PV) inhibits the proliferation of various cancer cells; however, its possible role in EMT has not been demonstrated. In the present study, we explored the effect of PV aqueous extract (PVAE), a typical medicine for decoction, on EMT. Lipopolysaccharide (LPS) induced EMT-like phenotype changes in cancer cell lines that enhanced cell migration and invasion. PVAE markedly inhibited these effects and produced accompanying changes in the expression of EMT markers, including decreased expression of N-cadherin and vimentin, and increased expression of β-catenin. We found that PVAE effects on LPS-induced EMT were mediated by inhibition of the NF-κB/Snail signaling pathway. Our findings provide new evidence that PVAE suppresses cancer invasion and migration by inhibiting EMT. Therefore, we suggest that PVAE is an effective dietary chemopreventive agent with antimetastatic activity against malignant tumors. PMID:26324883

  5. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion. PMID:26750400

  6. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice.

    PubMed

    Zhu, Lingpeng; Nang, Chen; Luo, Fen; Pan, Hong; Zhang, Kai; Liu, Jingyan; Zhou, Rui; Gao, Jin; Chang, Xiayun; He, He; Qiu, Yue; Wang, Jinglei; Long, Hongyan; Liu, Yu; Yan, Tianhua

    2016-09-01

    Esculetin is one of the major bioactive compounds of Cichorium intybus L. The main purpose of the present study was to investigate the effects and possible underlying mechanism of esculetin (Esc) on lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Mice were pretreatment with esculetin (Esc, 20, 40mg/kg, intragastric administration) and a positive control drug fluoxetine (Flu, 20mg/kg, intragastric administration) once daily for 7 consecutive days. At the 7th day, LPS (0.83mg/kg) was intraperitoneal injection 30min after drug administration. Higher dose (40mg/kg) of esculetin and fluoxetine significantly decreased immobility time in TST and FST. There was no significant effect on locomotor activity in mice by the drugs. Esculetin significantly reduced LPS-induced elevated levels of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum and hippocampus. Esculetin attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression by inhibiting nuclear factor-κB (NF-κB) pathway in hippocampus. In addition, neuroprotection of esculetin was attributed to the upregulations of Brain derived neurotrophic factor (BDNF) and phosphorylated tyrosine kinase B (p-TrkB) protein expression in hippocampus. The obtained results demonstrated that esculetin exhibited antidepressant-like effects which might be related to the inhibition of NF-κB pathway and the activation of BDNF/TrkB signaling. PMID:27133730

  7. Toona sinensis Inhibits LPS-Induced Inflammation and Migration in Vascular Smooth Muscle Cells via Suppression of Reactive Oxygen Species and NF-κB Signaling Pathway

    PubMed Central

    Yang, Hsin-Ling; Huang, Pei-Jane; Liu, Yi-Ru; Kumar, K. J. Senthil; Hsu, Li-Sung; Lu, Te-Ling; Chia, Yi-Chen; Takajo, Tokuko; Kazunori, Anzai; Hseu, You-Cheng

    2014-01-01

    Toona sinensis is one of the most popular vegetarian cuisines in Taiwan and it has been shown to possess antioxidant, antiangiogenic, and anticancer properties. In this study, we investigated the antiatherosclerotic potential of aqueous leaf extracts from Toona sinensis (TS; 25–100 μg/mL) and its major bioactive compound, gallic acid (GA; 5 μg/mL), in LPS-treated rat aortic smooth muscle (A7r5) cells. We found that pretreatment with noncytotoxic concentrations of TS and GA significantly inhibited inflammatory NO and PGE2 production by downregulating their precursors, iNOS and COX-2, respectively, in LPS-treated A7r5 cells. Furthermore, TS and GA inhibited LPS-induced intracellular ROS and their corresponding mediator, p47phox. Notably, TS and GA pretreatment significantly inhibited LPS-induced migration in transwell assays. Gelatin zymography and western blotting demonstrated that treatment with TS and GA suppressed the activity or expression of MMP-9, MMP-2, and t-PA. Additionally, TS and GA significantly inhibited LPS-induced VEGF, PDGF, and VCAM-1 expression. Further investigation revealed that the inhibition of iNOS/COX-2, MMPs, growth factors, and adhesion molecules was associated with the suppression of NF-κB activation and MAPK (ERK1/2, JNK1/2, and p38) phosphorylation. Thus, Toona sinensis may be useful for the prevention of atherosclerosis. PMID:24723997

  8. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production

    PubMed Central

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-01-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374

  9. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  10. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  11. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  12. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50-1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  13. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  14. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway

    PubMed Central

    Xiang, Nan-lin; Liu, Jun; Liao, Yun-jian; Huang, You-wei; Wu, Zheng; Bai, Zhi-quan; Lin, Xi; Zhang, Jian-hua

    2016-01-01

    This study investigated the function of a chloride channel blocker, DIDS. Both in vitro and in vivo studies found that DIDS significantly inhibits lipopolysaccharide (LPS)-induced release of proin flammatory cytokines. Here, we show that DIDS inhibits LPS-induced inflammation, as shown by downregulation of inflammatory cytokines via inhibition of the TLR4/NF-κB pathway. Furthermore, we show that ClC-3siRNA transfection reduces LPS-induced pro-inflammation in Raw264.7 cells, indicating that ClC-3 is involved in the inhibitory effect of DIDS during LPS-induced cytokines release. In vivo, DIDS reduced LPS-induced mortality, decreased LPS-induced organic damage, and down-regulated LPS-induced expression of inflammatory cytokines. In sum, we demonstrate that ClC-3 is a pro-inflammatory factor and that inhibition of ClC-3 inhibits inflammatory induction both in vitro and in vivo, suggesting that ClC-3 is a potential anti-inflammatory target. PMID:27363391

  15. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes.

    PubMed

    Wang, Yue; Huang, Zhouqing; Wang, Liansheng; Meng, Shu; Fan, Yuqi; Chen, Ting; Cao, Jiatian; Jiang, Rujia; Wang, Changqian

    2011-02-01

    Several kinds of sesquiterpene lactones have been proven to inhibit NF-κB and to retard atherosclerosis by reducing lesion size and changing plaque composition. The anti-malarial artemisinin (Art) is a pure sesquiterpene lactone extracted from the Chinese herb Artemisia annua (qinghao, sweet wormwood). In the present study, we demonstrate that artemisinin inhibits the secretion and the mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 human monocytes. We also found that the NF-κB specific inhibitor, Bay 11-7082, inhibited the expression of these pro-inflammatory cytokines, suggesting that the NF-κB pathway may be involved in the decreased cytokine release. At all time-points (1-6 h), artemisinin impeded the phosphorylation of IKKα/ß, the phosphorylation and degradation of IκBα and the nuclear translocation of the NF-κB p65 subunit. Additionally, artemisinin inhibited the translocation of the NF-κB p65 subunit as demonstrated by confocal laser scanning microscopic analysis and by NF-κB binding assays. Our data indicate that artemisinin exerts an anti-inflammatory effect on PMA-induced THP-1 monocytes, suggesting the potential role of artemisinin in preventing the inflammatory progression of atherosclerosis. PMID:21165548

  16. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats.

    PubMed

    Ganesan, Ramamoorthi; Doss, Hari Madhuri; Rasool, Mahaboobkhan

    2016-08-01

    Fibroblast-like synoviocytes (FLS) are inhabitant mesenchymal cells of synovial joints and have been recognized to play an imperative role in the immunopathogenesis of rheumatoid arthritis (RA). Blocking these pathological roles of FLS provides a potentially important therapeutic strategy for the treatment for RA. A recent study had confirmed that majoon ushba (MU), a polyherbal unani compound, possesses anti-arthritic effects in in vivo. Toward this direction, an effort has been made to understand the effect of MU on FLS derived from adjuvant-induced arthritis (AIA) rats. Here, we observed that MU administration (100-300 µg/ml) significantly inhibited the expression and phosphorylation of NFкB-p65 protein similar to that of the Bay 11-7082 (NFкB inhibitor) in NFкB signaling pathway and suppressed the protein expression of ERK1/2 and JNK1/2 in MAPKs signaling pathway in AIA-FLS. In addition, the protein expression of TNF-α, IL-17, RANKL, and iNOS was also found reduced. MU treatment significantly inhibited the mRNA expression of pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1, IL-17, iNOS, and COX-2), transcription factors (NFкB-p65 and AP-1), and RANKL and attenuated the overproduction of TNF-α, IL-1β, IL-6, and MCP-1 (ELISA) in AIA-FLS. Furthermore, MU treatment significantly inhibited the level of lipid peroxidation, lysosomal enzymes release, and glycoproteins and increased antioxidant status (superoxide dismutase and catalase) in AIA-FLS. In conclusion, the results of this study provide evidence that MU possesses anti-inflammatory effect against AIA-FLS through the decrease in pro-inflammatory mediators expression by suppressing NFкB and MAPKs signaling pathways. PMID:27067226

  17. Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells.

    PubMed

    Seo, Yun-Ji; Jeong, Miran; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye

    2016-09-01

    The rhizomes of Cyperus rotundus (cyperaceae) have been used in Korean traditional medicines for treating diverse inflammatory diseases. However, little is known about the biological activities of isocyperol, a sesquiterpene isolated from C. rotundus, and their associated molecular mechanisms. In this study, we found that isocyperol significantly inhibited lipopolysaccharide (LPS)-induced production of nitrite oxide (NO) and prostaglandin E2 (PGE2) and suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in RAW 264.7 macrophages. In addition, isocyperol downregulated the LPS-induced expression of several proinflammatory cytokines, such as interleukin-1beta (IL-1β), IL-6, and monocyte chemotactic protein-1 (MCP-1). Isocyperol treatment suppressed the LPS-induced nuclear translocation and transcriptional activation of nuclear factor-kappaB (NF-κB) in macrophages. Moreover, the activation of STAT3, another proinflammatory signal, was suppressed by isocyperol in LPS-stimulated RAW 264.7 cells. Isocyperol pretreatment also induced heme oxygenase-1 (HO-1) expression and reduced LPS-stimulated reactive oxygen species (ROS) accumulation in macrophages. Furthermore, isocyperol significantly increased the survival rate and attenuated serum levels of NO, PGE2, and IL-6 in LPS-induced septic shock mouse model. Taken together, these data indicate that isocyperol suppress septic shock through negative regulation of pro-inflammatory factors through inhibition of the NF-κB and STAT3 pathways and ROS. To our knowledge, this is the first report on the biological activity of isocyperol and its molecular mechanism of action. PMID:27240136

  18. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs. PMID:23458198

  19. Flavonoid Fraction of Bergamot Juice Reduces LPS-Induced Inflammatory Response through SIRT1-Mediated NF-κB Inhibition in THP-1 Monocytes

    PubMed Central

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB–mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046

  20. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046

  1. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    PubMed Central

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  2. The Pro-inflammatory Effects of Glucocorticoids in the Brain.

    PubMed

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein-protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  3. Lack of LCAT reduces the LPS-neutralizing capacity of HDL and enhances LPS-induced inflammation in mice.

    PubMed

    Petropoulou, Peristera-Ioanna; Berbée, Jimmy F P; Theodoropoulos, Vassilios; Hatziri, Aikaterini; Stamou, Panagiota; Karavia, Eleni A; Spyridonidis, Alexandros; Karagiannides, Iordanes; Kypreos, Kyriakos E

    2015-10-01

    HDL has important immunomodulatory properties, including the attenuation of lipopolysaccharide (LPS)-induced inflammatory response. As lecithin-cholesterol acyltransferase (LCAT) is a critical enzyme in the maturation of HDL we investigated whether LCAT-deficient (Lcat(-/-)) mice present an increased LPS-induced inflammatory response. LPS (100μg/kg body weight)-induced cytokine response in Lcat(-/-) mice was markedly enhanced and prolonged compared to wild-type mice. Importantly, reintroducing LCAT expression using adenovirus-mediated gene transfer reverted their phenotype to that of wild-type mice. Ex vivo stimulation of whole blood with LPS (1-100ng/mL) showed a similar enhanced pro-inflammatory phenotype. Further characterization in RAW 264.7 macrophages in vitro showed that serum and HDL, but not chylomicrons, VLDL or the lipid-free protein fraction of Lcat(-/-) mice, had a reduced capacity to attenuate the LPS-induced TNFα response. Analysis of apolipoprotein composition revealed that LCAT-deficient HDL lacks significant amounts of ApoA-I and ApoA-II and is primarily composed of ApoE, while HDL from Apoa1(-/-) mice is highly enriched in ApoE and ApoA-II. ApoA-I-deficiency did not affect the capacity of HDL to neutralize LPS, though Apoa1(-/-) mice showed a pronounced LPS-induced cytokine response. Additional immunophenotyping showed that Lcat(-/-) , but not Apoa1(-/-) mice, have markedly increased circulating monocyte numbers as a result of increased Cd11b(+)Ly6C(med) monocytes, whereas 'pro-inflammatory' Cd11b(+)Ly6C(hi) monocytes were reduced. In line with this observation, peritoneal macrophages of Lcat(-/-) mice showed a markedly dampened LPS-induced TNFα response. We conclude that LCAT-deficiency increases LPS-induced inflammation in mice due to reduced LPS-neutralizing capacity of immature discoidal HDL and increased monocyte number. PMID:26170061

  4. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice.

    PubMed

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-09-01

    The incidence of colonic toxicity has been epidemiologically linked to the consumption of foods contaminated with benzo(a)pyrene (B[a]P). The present study investigated the effects of B[a]P on biomarkers of oxidative stress, inflammation and wnt-signaling in colon of BALB/c mice following exposure to 62.5, 125 and 250 mg/kg of B[a]P for 7 days by oral gavage. Exposure to B[a]P significantly decreased the colonic antioxidant enzymes activities and glutathione level with concomitant significant increase in myeloperoxidase activity, nitric oxide and lipid peroxidation levels. Colon histopathology results showed treatment-related lesions characterized by atrophy, mucosal ulceration and gland erosion in the B[a]P-treated mice. Immunohistochemistry analysis showed that B[a]P treatment increased the protein expression of nuclear factor kappa B, pro-inflammatory cytokines namely tumor necrosis factor alpha and interleukin-1β, as well as cyclooxygenase-2 and inducible nitric oxide synthase in the mice colon. Altered canonical wnt-signaling was confirmed by strong diaminobenzidine staining for p38 mitogen activated protein kinase, β-catenin expression and absence of adenomatous polyposis coli following B[a]P administration. The present data highlight that exposure to B[a]P induces colon injury via induction of oxidative and nitrosative stress, inflammatory biomarkers and dsyregulation wnt/β-catenin signaling, thus confirming the role of B[a]P in the pathogenesis of colonic toxicity. PMID:27338711

  5. Ginger extract inhibits LPS induced macrophage activation and function

    PubMed Central

    2008-01-01

    Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines) and RANTES, MCP-1 (pro inflammatory chemokines) production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation. PMID:18173849

  6. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1. PMID:26977531

  7. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines

    PubMed Central

    Sun, Yang; Li, Qi; Gui, Huan; Xu, Dong-Ping; Yang, Yi-Li; Su, Ding-Feng; Liu, Xia

    2013-01-01

    The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. PMID:23979021

  8. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. PMID:23827939

  9. Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation.

    PubMed

    Gao, Li-Na; Feng, Qi-Shuai; Zhang, Xin-Fang; Wang, Qiang-Song; Cui, Yuan-Lu

    2016-09-01

    Targeting activated macrophages using anti-inflammatory phytopharmaceuticals has been proposed as general therapeutic approaches for rheumatic diseases. Besides macrophages, chondrocytes are another promising target of anti-inflammatory agents. Tetrandrine is a major bisbenzylisoquinoline alkaloid isolated from Stephania tetrandrae S. Moore which has been used for 2,000 years as an antirheumatic herbal drug in China. Although, the anti-inflammatory effect of tetrandrine has been demonstrated, the mechanism has not been clearly clarified. In this study, we designed a comprehensive anti-inflammatory evaluation system for tetrandrine, including complete Freund's adjuvant (CFA)-induced arthritis rat, LPS-induced macrophage RAW 264.7 cells, and chondrogenic ATDC5 cells. The results showed that tetrandrine alleviated CFA-induced foot swelling, synovial inflammation, and pro-inflammatory cytokines secretion. Tetrandrine could inhibit IL-6, IL-1β, and TNF-α expression via blocking the nuclear translocation of nuclear factor (NF)-κB p65 in LPS-induced RAW 264.7 cells. Moreover, ATDC5 cells well responded to LPS induced pro-inflammatory mediators secretion and tissue degradation, and tetrandrine could also inhibit the production of nitric oxide and prostaglandin E2 , as well as the expression of matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 via inhibiting IκBα phosphorylation and degradation. In conclusion, the results showed that one of the anti-inflammatory mechanisms of tetrandrine was inhibiting IκBα and NF-κB p65 phosphorylation in LPS-induced macrophage RAW 264.7 cells and chondrogenic ATDC5 cells. Moreover, we introduce a vigorous in vitro cell screening system, LPS-induced murine macrophage RAW 264.7 cells coupling chondrogenic ADTC5 cells, for screening anti-rheumatic drugs. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1557-1568, 2016. PMID:26748661

  10. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  11. WIN-34B May Have Analgesic and Anti-Inflammatory Effects by Reducing the Production of Pro-Inflammatory Mediators in Cells via Inhibition of IκB Signaling Pathways

    PubMed Central

    Kim, Kyoung Soo; Choi, Hyun Mi; Yang, Hyung-In; Yoo, Myung Chul

    2012-01-01

    WIN-34B showed analgesic and anti-inflammatory effects in various animal models of pain and osteoarthritis. However, the molecular mechanism by which WIN-34B inhibits pain and inflammation in vivo remains to be elucidated. We investigated the molecular mechanisms of the actions of WIN-34B using various in vitro models using fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA FLSs), RAW264.7 cells and peritoneal macrophages. WIN-34B inhibited the level of IL-6, PGE2, and MMP-13 in IL-1β-stimulated RA FLSs in a dose-dependent manner. The mRNA levels were also inhibited by WIN-34B. The level of PGE2, NO, IL-1β, and TNF-α were inhibited by WIN-34B at different concentrations in LPS-stimulated RAW264.7 cells. The production of NO and PGE2 was inhibited by WIN-34B in a dose-dependent manner in LPS-stimulated peritoneal macrophages. All of these effects were comparable to the positive control, celecoxib or indomethacin. IκB signaling pathways were inhibited by WIN-34B, and the migration of NF-κB into the nucleus was inhibited, which is consistent with the degradation of IκB-α. Taken together, the results suggest that WIN-34B has potential as a therapeutic drug to reduce pain and inflammation by inhibiting the production of pro-inflammatory mediators. PMID:24116274

  12. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages.

    PubMed

    Yeh, J L; Hsu, J H; Hong, Y S; Wu, J R; Liang, J C; Wu, B N; Chen, I J; Liou, S F

    2011-01-01

    Eugenol and isoeugenol, two components of clover oil, have been reported to possess several biomedical properties, such as anti-inflammatory, antimicrobial and antioxidant effects. This study aims to examine the anti-inflammatory effects of eugenol, isoeugenol and four of their derivatives on expression of inducible nitric oxide synthase (iNOS) activated by lipopolysaccharide (LPS) in mouse macrophages (RAW 264.7), and to investigate molecular mechanisms underlying these effects. We found that two derivatives, eugenolol and glyceryl-isoeugenol, had potent inhibitory effects on LPS-induced upregulation of nitrite levels, iNOS protein and iNOS mRNA. In addition, they both suppressed the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced by LPS. Moreover, they both attenuated the DNA binding of NF-kB and AP-1, phosphorylation of inhibitory kB-alpha (IkB-alpha), and nuclear translocation of p65 protein induced by LPS. Finally, we demonstrated that glyceryl-isoeugenol suppressed the phosphorylation of ERK1/2, JNK and p38 MAPK, whereas eugenolol suppressed the phosphorylation of ERK1/2 and p38 MAPK. Taken together, these results suggest that that eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kB and AP-1 through inhibition of MAPKs and Akt/IkB-alpha signaling pathways. Thus, this study implies that eugenolol and glyceryl-isoeugenol may provide therapeutic benefits for inflammatory diseases. PMID:21658309

  13. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    PubMed Central

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  14. Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway.

    PubMed

    Zhang, Li; Li, Yuanyuan; Gu, Zhiwen; Wang, Yuyue; Shi, Mei; Ji, Yun; Sun, Jing; Xu, Xiaopeng; Zhang, Lirong; Jiang, Jingtin; Shi, Weifeng

    2015-01-01

    Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection. PMID:25692777

  15. Resveratrol Inhibits Enterovirus 71 Replication and Pro-Inflammatory Cytokine Secretion in Rhabdosarcoma Cells through Blocking IKKs/NF-κB Signaling Pathway

    PubMed Central

    Zhang, Li; Li, Yuanyuan; Gu, Zhiwen; Wang, Yuyue; Shi, Mei; Ji, Yun; Sun, Jing; Xu, Xiaopeng; Zhang, Lirong; Jiang, Jingtin; Shi, Weifeng

    2015-01-01

    Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection. PMID:25692777

  16. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

    PubMed Central

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-01-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973

  17. AAL exacerbates pro-inflammatory response in macrophages by regulating Mincle/Syk/Card9 signaling along with the Nlrp3 inflammasome assembly.

    PubMed

    Zhang, Zhijun; He, Long; Hu, Shuang; Wang, Yi; Lai, Qiaohong; Yang, Ping; Yu, Qilin; Zhang, Shu; Xiong, Fei; Simsekyilmaz, Sakine; Ning, Qin; Li, Jinxiu; Zhang, Dongshan; Zhang, Hongliang; Xiang, Xudong; Zhou, Zhiguang; Sun, Hui; Wang, Cong-Yi

    2015-01-01

    Previously, we demonstrated that Agrocybe aegerita lectin (AAL), a galectin isolated from edible mushroom Agrocybe aegerita, exerts potent anti-tumor activity, while the mechanisms by which AAL suppresses tumor growth are yet to be elucidated. Here, we conducted studies with focus for its impact on the cecal ligation and puncture (CLP)-induced innate immune response. Administration of AAL significantly exacerbated the severity of CLP-induced septic shock as manifested the increased lethality. AAL promoted inflammatory cytokine production by preferentially regulating macrophage activation and recruitment. Mechanistic studies revealed that AAL likely targets macrophages through receptor Mincle to activate Syk/Card9 signaling, which then couples to the Nlrp3 inflammasome assembly. It was further noted that AAL markedly promotes H3K4 di- and trimethylation, by which it enhances Hmgb1 expression. Specifically, AAL induced macrophages secretion of copious amount of Hmgb1 as manifested the Hmgb1 cytoplasmic translocation along with the detection of extracellular Hmgb1. AAL also stimulated a significant increase for nuclear Hmgb1, which then formed a complex with RelA, and thereby enhancing NF-κB transcriptional activity. Together, our data suggest that AAL may possess important pharmaceutical properties in the regulation of innate immune response. PMID:26692926

  18. IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K.

    PubMed

    Guo, Xiaoqin; Jiang, Xingwei; Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-α-induced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  19. Silica nanoparticles activate purinergic signaling via P2X7 receptor in dendritic cells, leading to production of pro-inflammatory cytokines.

    PubMed

    Nakanishi, Kana; Tsukimoto, Mitsutoshi; Tanuma, Sei-Ichi; Takeda, Ken; Kojima, Shuji

    2016-09-01

    We examined the mechanism of SNP-mediated stimulation of IL-1β and IL-18 production via P2R-mediated pathways in mouse bone marrow dendritic cells (mBMDCs). Examination of uptake of SNPs with diameters of 30, 70, and 300nm (SNP30, SNP70, and SNP300, respectively) by lipopolysaccharide-matured mBMDCs revealed that significant uptake of SNP30 occurred within as short a time as 1h. Production of IL-1β and IL-18 by cells exposed to SNPs increased dose-dependently, and was highest in cells exposed to SNP30. The SNP30-induced cytokine production was significantly inhibited by ATPase (apyrase) and by P2X7 receptor antagonist (A438079). ATP release was also highest in SNP30-exposed cells. Treatment of mBMDCs with exogenous ATP induced release of high levels of IL-1β and IL-18, and this release was also significantly inhibited by apyrase and A438079. The order of effectiveness of the three SNPs for inducing intracellular reactive oxygen species (ROS) production accorded well with those of cytokine production and ATP release. ROS production was inhibited by diphenyleneiodonium chloride (DPI). SNPs, especially SNP30, activate purinergic signaling in matured mBMDCs by inducing ATP release via P2X7 receptor. ATP induces ROS production via NADPH oxidase, and ROS activate inflammasomes, leading to caspase-1-dependent processing of pro-cytokines and release of IL-1β and IL-18. PMID:27311643

  20. Allograft Inflammatory Factor 1 Functions as a Pro-Inflammatory Cytokine in the Oyster, Crassostrea ariakensis

    PubMed Central

    Xu, Ting; Liu, Xiao; Wu, Xinzhong

    2014-01-01

    The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation. PMID:24759987

  1. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  2. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    PubMed Central

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  3. Acylcarnitines activate pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incomplete beta-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM) and the resulting metabolic by-products, medium- and long-chain acylcarnitines are shown to be elevated. In preliminary studies, mixed isomers of C12- or C14-carnitine act...

  4. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  5. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade. PMID:25839778

  6. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  7. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  8. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages. PMID:26920260

  9. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-κB Signaling and Increased Arginase-1 Expression.

    PubMed

    Ando, Yusuke; Oku, Teruaki; Tsuji, Tsutomu

    2016-01-01

    We previously reported that mouse bone marrow-derived macrophages (BMDMs) that had been co-cultured with platelets exhibited lower susceptibility to bacterial lipopolysaccharide (LPS) and produced lower levels of nitric oxide (NO) and inflammatory cytokines including TNF-α and IL-6. The suppression of macrophage responses was mediated, at least in part, by platelet supernatant. In the present study, we assessed phenotypic changes of BMDMs induced by incubation with the supernatant from thrombin-activated platelets (PLT-sup) and found that BMDMs cultured with PLT-sup (PLT-BMDMs) expressed a lower level of inducible NO synthase (iNOS) and a higher level of arginase-1, both of which are involved in the L-arginine metabolism, upon stimulation with LPS or zymosan. We also examined possible modulation of the NF-κB signaling pathway and observed suppression of IκBα phosphorylation and a decrease of NF-κB p65 expression in LPS-stimulated PLT-BMDMs. These results suggest that PLT-sup suppresses inflammatory responses of BMDMs via negative regulation of NF-κB signaling leading to lowered expression of iNOS and enhanced L-arginine catabolism by arginase-1. PMID:27588757

  10. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  11. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway

    PubMed Central

    Zhang, Jin-Hua; Shangguan, Zhao-Shui; Chen, Chao; Zhang, Hui-Jie; Lin, Yi

    2016-01-01

    The present study was aimed to investigate the effects of guggulsterone (GS) on proinflammatory responses as well as the underlying molecular mechanisms in macrophage upon lipopolysaccharide (LPS) stimulation. Effects of GS on viability of Raw264.7 cells were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (PCR) was employed to examine the mRNA expression of cytokines, including interleukin 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS). Phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), and inhibitor of nuclear factor kappaB (IκB) were determined using immunoblotting. The results revealed that GS was not toxic to Raw264.7 cells at designated concentrations. We demonstrated that GS significantly suppressed the elevated mRNA expression of proinflammatory cytokines, including IL-1β, TNF-α, and iNOS in a dose-dependent manner. GS treatment reduced the level of IκB phosphorylation in LPS-stimulated macrophages in a dose-dependent manner. Use of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-κB), led to significantly suppressing effects on IL-1β and TNF-α expression similar as that of GS-treated cells. Our findings suggest that GS possesses anti-inflammatory activity, which may be attributed to downregulation of iNOS and inhibition of NF-κB activity in LPS-stimulated Raw264.7 cells. PMID:27330276

  12. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation. PMID:22710392

  13. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production.

    PubMed

    Diao, Ying; Xin, Yinqiang; Zhou, Yi; Li, Na; Pan, Xiaolong; Qi, Shimei; Qi, Zhilin; Xu, Yimiao; Luo, Lan; Wan, Honggui; Lan, Lei; Yin, Zhimin

    2014-01-01

    Extracellular polysaccharides (EPSs) are high-molecular weight sugar-based polymers that are synthesized and secreted by many microorganisms. Recently, EPSs have attracted particular attention due to their multiple biological functions including anti-inflammation. However, studies rarely reported the molecular mechanisms underlying their functions. We previously purified an EPS from an oligotrophic bacteria (Bacillus sp. LBP32) found in Lop Nur Desert, which possesses a potent antioxidant activity, while the anti-inflammatory effects of EPS and signaling mechanisms underlying its action have not been clarified. In this study, we demonstrated that EPS significantly inhibited the LPS-induced release of pro-inflammatory mediators, such as nitric oxide (NO), IL-6 and TNF-α, without any significant cytotoxicity. EPS also downregulated the expression of nitric oxide synthase (iNOS) induced by LPS. Furthermore, activation of nuclear factor κB (NF-κB) was abrogated by EPS through inhibited the phosphorylation of IκB kinase (IKK). Activations of Mitogen-activated protein kinases (MAPKs), including p38 MAPK and c-Jun N-terminal kinase (JNK), were also found to be inhibited by EPS. In addition, the level of intracellular reactive oxygen species (ROS) was also significantly decreased with the treatment of EPS. In vivo experiments were conducted and showed that EPS could greatly improve the outcome of mice with LPS-induced endotoxic shock. Taken together, our data indicate that EPS prevents LPS-induced inflammatory response by inhibiting NF-κB and MAPKs activation and ROS production. PMID:24201081

  14. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses. PMID:26049170

  15. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation

    PubMed Central

    Erdoğan, Özgün; Xie, Ling; Wang, Li; Wu, Bing; Kong, Qing; Wan, Yisong; Chen, Xian

    2016-01-01

    Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, ‘tolerizable’ proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity. PMID:27112199

  16. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  17. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  18. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway

    PubMed Central

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway. PMID:25806027

  19. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  20. Geraniin Inhibits LPS-Induced THP-1 Macrophages Switching to M1 Phenotype via SOCS1/NF-κB Pathway.

    PubMed

    Liu, Xinxin; Li, Ji; Peng, Xiaohong; Lv, Bo; Wang, Peng; Zhao, Xiaoming; Yu, Bo

    2016-08-01

    M1 macrophage polarization is proved to promote inflammation in atherosclerosis process. In this study, we evaluated the inhibitory effect of geraniin, a bioactive polyphenolic compound, on the LPS-induced switch of THP-1 macrophages to M1 phenotype, and we propose a molecular basis for its action. Flow cytometry analysis indicated that geraniin significantly inhibited LPS-induced M1 macrophage polarization. Geraniin downregulated the protein and the mRNA level of typical cytokines of M1 macrophage, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), indicating that geraniin can suppress typical mediators of M1 macrophage at the transcriptional level. Moreover, geraniin inhibited LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) activity, in THP-1 macrophages. Furthermore, western blot analysis indicated that geraniin decreased both LPS-induced phosphorylation of NF-κB-p65 and NF-κB-p65 expression without affecting the level of IκB-α. This suggested that geraniin inhibited NF-κB, a transcription factor pivotal in the LPS-induced expression of pro-inflammatory genes and an important player in M1 macrophage polarization. Moreover, an electrophoretic mobility shift assay (EMSA) demonstrated that geraniin blocked the LPS-induced translocation of NF-κB to the nucleus. Moreover, we found that geraniin up-regulated the expression of SOCS1, an upstream regulator of NF-κB activation that can directly bind to NF-κB-p65 and downregulate it, thus inhibiting NF-κB activation. In conclusion, geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype through SOCS1/NF-κB pathway. PMID:27290719

  1. With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFα-convertase-dependent release of TNFα contribute to haemophilic arthropathy?

    PubMed

    Haxaire, C; Blobel, C P

    2014-05-01

    One of the main complications of haemophilia A is haemophilic arthropathy (HA), a debilitating disease with a significant negative impact on motility and quality of life. Despite major advances in the treatment of haemophilia A, many patients still suffer from HA. We wish to develop new treatments for HA, but must first better understand its causes. Our laboratory studies molecular scissors that release the pro-inflammatory cytokine tumour necrosis factor alpha (TNFα) from cells. TNFα is considered the 'fire alarm' of the body - it helps to fight infections, but can also cause diseases such as inflammatory arthritis. We know that the molecular scissors, called TNFα convertase (TACE), and its newly discovered regulator termed iRhom2 can be rapidly activated by small amounts of cytokines, growth factors, and pro-inflammatory mediators present in the blood. We hypothesize that the rapid activation of TACE could help explain one of the unsolved mysteries regarding the development of HA, which is how even small amounts of blood can provoke a persistent inflammatory response. We propose that once blood enters the joint, iRhom2 and TACE are activated to release TNFα and that this could promote the development of HA in a similar manner to that in which it promotes rheumatoid arthritis (RA). We are currently using immune cells stimulated with blood degradation products, and mouse models of HA, to test this hypothesis. If successful, our study could provide the rationale for testing anti-TNF antibodies, which are already used to treat RA, for the treatment of HA. In addition, they might uncover iRhom2 and TACE as attractive new candidate targets for the treatment of HA. PMID:24762269

  2. Induction of L-arginine transport and nitric oxide synthase in vascular smooth muscle cells: synergistic actions of pro-inflammatory cytokines and bacterial lipopolysaccharide.

    PubMed Central

    Wileman, S. M.; Mann, G. E.; Baydoun, A. R.

    1995-01-01

    1. The interactions between pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) on L-arginine transporter and inducible nitric oxide synthase (iNOS) activities were examined in rat cultured aortic smooth muscle cells. 2. LPS induced a concentration (0.01-100 micrograms ml-1) and time (8-24 h)-dependent stimulation of nitrite production which was accompanied by a parallel increase in L-arginine transport. 3. Unlike LPS, activation of smooth muscle cells with either interferon-gamma (IFN-gamma, 100 u ml-1), tumour necrosis factor-alpha (TNF-alpha, 300 u ml-1) or interleukin-1 alpha (IL-1 alpha, 100 u ml-1) failed to stimulate L-arginine transport or increase nitrite accumulation. 4. When applied in combination with LPS (100 micrograms ml-1) both IFN-gamma and TNF-alpha, but not IL-1 alpha, enhanced the effects observed with LPS alone. Furthermore, activation of cells with LPS and IFN-gamma had no effect on uptake of the neutral amino acid L-citrulline but selectively increased the Vmax for L-arginine transport 2.8 fold and nitrite levels from 24 +/- 7 to 188 +/- 14 pmol micrograms-1 protein 24 h-1. 5. The substrate specificity, Na- and pH-independence of saturable L-arginine transport in both unactivated (K(m) = 44 microM, Vmax = 3 pmol micrograms-1 protein min-1) and activated (K(m) = 75 microM, Vmax = 8.3 pmol micrograms-1 protein min-1) smooth muscle cells were characteristic of the cationic amino acid transport system y+. 6. Cycloheximide (1 microM) abolished induction of L-arginine transport and nitrite accumulation in response to LPS and IFN-gamma. In contrast, the glucocorticoid dexamethasone (10 microM, 24 h) selectively inhibited nitrite production. 7. Our results demonstrate that pro-inflammatory mediators selectively enhance transport of L-arginine under conditions of sustained NO synthesis by vascular smooth muscle cells. In addition, the differential inhibition of iNOS and L-arginine transporter activity by dexamethasone suggests that

  3. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  4. Regulation of autoimmune inflammation by pro-inflammatory cytokines

    PubMed Central

    Kim, Eugene Y.; Moudgil, Kamal D.

    2008-01-01

    The pro-inflammatory cytokines play a critical role in the initiation and propagation of autoimmune arthritis and many other disorders resulting from a dysregulated self-directed immune response. These cytokines influence the interplay among the cellular, immunological and biochemical mediators of inflammation at multiple levels. Regulation of the pro-inflammatory activity of these cytokines is generally perceived to be mediated by the anti-inflammatory and immunosuppressive cytokines such as IL-4, IL-10, or TGF-β. However, increasing evidence is accumulating in support of the regulatory attributes of the pro-inflammatory cytokines themselves, in studies conducted in animal models of diabetes, multiple sclerosis, uveitis, and lupus. The results of our recent studies have shown that the pro-inflammatory cytokines, TNF-α and IFN-γ, can suppress arthritic inflammation in rats, and also contribute to resistance against arthritis. These results are of paramount significance not only in fully understanding the pathogenesis of autoimmune arthritis, but also in anticipating the full ramifications of the in vivo neutralization of the pro-inflammatory cytokines, including that for therapeutic purposes. PMID:18694783

  5. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  6. Phlorofucofuroeckol A suppresses expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines via inhibition of nuclear factor-κB, c-Jun NH2-terminal kinases, and Akt in microglial cells.

    PubMed

    Kim, A-Reum; Lee, Min-Sup; Choi, Ji-Woong; Utsuki, Tadanobu; Kim, Jae-Il; Jang, Byeong-Churl; Kim, Hyeung-Rak

    2013-04-01

    Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol A isolated from Ecklonia stolonifera Okamura on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. Pre-treatment of phlorofucofuroeckol A attenuated the productions of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in LPS-stimulated microglia. Profoundly, phlorofucofuroeckol A treatment showed inactivation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α and the nuclear translocation of p65 NF-κB subunit. Moreover, phlorofucofuroeckol A inhibited the activation of c-Jun NH2-terminal kinases (JNKs), p38 mitogen-activated protein kinase (MAPK), and Akt, but not that of extracellular signal-regulated kinase. These results indicate that phlorofucofuroeckol A inhibits the LPS-induced expression of inflammatory mediators through inactivation of NF-κB, JNKs, p38 MAPK, and Akt pathways. These findings suggest that phlorofucofuroeckol A can be considered as a nutraceutical candidate for the treatment of neuroinflammation in neurodegenerative diseases. PMID:22993079

  7. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways.

    PubMed

    Limtrakul, Pornngarm; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2015-01-01

    Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro- inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-α and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer. PMID:26028086

  8. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration. PMID:22828991

  9. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  10. Protective Effect of SAHA against LPS-induced Liver Damage in Rodents

    PubMed Central

    Zhao, Yili; Zhou, Peter; Liu, Baoling; Bambakidis, Ted; Mazitschek, Ralph; Alam, Hasan B.; Li, Yongqing

    2014-01-01

    BACKGROUND Lipopolysaccharide (LPS) has a deleterious effect on several organs including the liver and eventually leads to endotoxic shock and death. LPS-induced hepatotoxicity is characterized by disturbed intracellular redox balance and excessive reactive oxygen species (ROS) accumulation, leading to liver injury. We have shown that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), improves survival in a murine model of LPS-induced shock, but the protective effect of SAHA against liver damage remains unknown. The goal of this study was to investigate the mechanism underlying SAHA action in murine livers. METHOD Male C57BL/6J mice (6-8 weeks) weighing 20-25 g were randomly divided into three groups: (A) a sham group was given isotonic sodium chloride solution (10 μL/g body weight, intraperitoneal, i.p.) with DMSO (1 μl/g body weight, i.p.); (B) a LPS group was challenged with LPS (20 mg/kg, i.p.) dissolved in isotonic sodium chloride solution with DMSO; (C) a LPS plus SAHA group was treated with SAHA (50 mg/kg, i.p.) dissolved in DMSO immediately after injection of LPS (20 mg/kg, i.p.). Mice were anesthetized, and their livers were harvested 6 or 24 hours after injection to analyze whether SAHA affected production of reactive oxygen species (ROS) and activation of apoptotic proteins in the liver cells of challenged mice. RESULTS SAHA counteracted LPS-induced production of ROS (thiobarbituric acid reactive substances (TBARS) and nitrite) and reversed an LPS-induced decrease in antioxidant enzyme, glutathione (GSH). SAHA also attenuated LPS-induced hepatic apoptosis. Moreover, SAHA inhibited activation of the redox-sensitive kinase, apoptosis signal-regulating kinase-1 (ASK1), and the mitogen-activated protein kinases (MAPKs) p38 and Jun N-terminal kinase (JNK). CONCLUSION Our data indicates, for the first time, that SAHA is capable of alleviating LPS-induced hepatotoxicity and suggests that a blockade of the upstream

  11. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice

    PubMed Central

    XU, LULU; XUE, TAO; ZHANG, JING; QU, JIEMING

    2016-01-01

    The versican family is important in the modulation of inflammation, however, the role of versican V1 (V1) in lipo-polysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms remain to be elucidated. To investigate this, the present study performed experiments in male C57BL/6J mice, which were randomly divided into a normal control group (control; n=6), an LPS-stimulated ALI group (LPS; n=6), a scramble small interfering (si)RNA group (scramble; n=6), a V1-siRNA group (V1-siRNA; n=6), a scramble siRNA and LPS-stimulated group (scramble+LPS; n=6) and a V1-siRNA and LPS-stimulated group (V1-siRNA+LPS; n=6). On day 1, the mice were anesthetized, and 5 nmol scramble siRNA or V1-siRNA were administered intratracheally. On day 3, LPS (1 mg/kg) or phosphate-buffered saline (50 µl per mouse) were injected intratracheally. All the mice were anesthetized and sacrificed on day 4, and samples were collected and analyzed. The mRNA and protein expression levels were examined using reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemical staining and western blot analysis. ALI was evaluated based on lung injury scores, cell counts and total protein concentrations in the bronchoalveolar lavage fluid (BALF). Inflammatory mediators were detected using an enzyme-linked immunosorbend assay. V1 was increased by LPS in the mouse ALI model, whereas specific V1 knockdown induced higher lung injury scores, and higher total cell counts and protein concentrations in the BALF. Tumor necrosis factor-α (TNF)-α was upregulated, and interleukin-6 exhibited an increasing trend. The expression of toll-like receptor 2 (TLR2), but not TLR4, increased, and the nuclear factor (NF)-κB pathway subunit, P65, was phosphorylated. Taken together, the expression of V1 was upregulated by LPS, and V1 inhibition resulted in the aggravation of LPS-induced ALI via the activation of TLR2-NF-κB and release of TNF-α. PMID:27109786

  12. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract. PMID:24117072

  13. HMGB in Mollusk Crassostrea ariakensis Gould: Structure, Pro-Inflammatory Cytokine Function Characterization and Anti-Infection Role of Its Antibody

    PubMed Central

    Xu, Ting; Ye, Shigen; Luo, Ming; Zhu, Zewen; Wu, Xinzhong

    2012-01-01

    Background Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB’s antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB’s antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation. Methodology/Principal Findings Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4–12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4–12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. Conclusions/Significance Ca-HMGB can be released extracellularly and its subcellular localization varies

  14. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  15. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression.

    PubMed

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  16. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  17. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury.

    PubMed

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation. PMID:26617279

  18. LPS-induced NFκB enhanceosome requires TonEBP/NFAT5 without DNA binding.

    PubMed

    Lee, Hwan Hee; Sanada, Satoru; An, Seung Min; Ye, Byeong Jin; Lee, Jun Ho; Seo, Young-Kyo; Lee, Changwook; Lee-Kwon, Whaseon; Küper, Christoph; Neuhofer, Wolfgang; Choi, Soo Youn; Kwon, Hyug Moo

    2016-01-01

    NFκB is a central mediator of inflammation. Present inhibitors of NFκB are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NFκB enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NFκB activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NFκB. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NFκB itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NFκB enhanceosome offers a promising target for useful anti-inflammatory agents. PMID:27118681

  19. LPS-induced NFκB enhanceosome requires TonEBP/NFAT5 without DNA binding

    PubMed Central

    Lee, Hwan Hee; Sanada, Satoru; An, Seung Min; Ye, Byeong Jin; Lee, Jun Ho; Seo, Young-Kyo; Lee, Changwook; Lee-Kwon, Whaseon; Küper, Christoph; Neuhofer, Wolfgang; Choi, Soo Youn; Kwon, Hyug Moo

    2016-01-01

    NFκB is a central mediator of inflammation. Present inhibitors of NFκB are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NFκB enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NFκB activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NFκB. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NFκB itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NFκB enhanceosome offers a promising target for useful anti-inflammatory agents. PMID:27118681

  20. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  1. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2015-11-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  2. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10.

    PubMed

    Olgun, Nicole S; Hanna, Nazeeh; Reznik, Sandra E

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11-12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ETA receptor. We have previously shown that antagonism of the ETA receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS+BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12h. We discovered that BQ-123, when administered 10h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ETA receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ETA receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. PMID:25230003

  3. Roxatidine suppresses inflammatory responses via inhibition of NF-κB and p38 MAPK activation in LPS-induced RAW 264.7 macrophages.

    PubMed

    Cho, Eu-Jin; An, Hyo-Jin; Shin, Ji-Sun; Choi, Hye-Eun; Ko, Jane; Cho, Young-Wuk; Kim, Hyung-Min; Choi, Jung-Hye; Lee, Kyung-Tae

    2011-12-01

    Roxatidine is a novel, specific, competitive H(2) -receptor antagonist that is used to treat gastric and duodenal ulcers, and which is known to suppress the growth of several tumors by reducing vascular endothelial growth factor (VEGF) expression. Nevertheless, it remains unclear whether roxatidine has anti-inflammatory effects. In this study, we the authors investigated the anti-inflammatory effect of roxatidine in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. It was found that roxatidine dose-dependently inhibited the productions of prostaglandin E(2) (PGE(2)), nitric oxide (NO), and histamine, and the protein and mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and histidine decarboxylase (HDC). In addition, roxatidine reduced the productions and expressions of VEGF-1 and pro-inflammatory cytokines, including those of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that treatment with roxatidine attenuated the LPS-induced DNA-binding and transcriptional activity of nuclear factor kappa B (NF-κB). In addition, it was found that pretreatment with roxatidine significantly inhibited the nuclear translocations of the p65 and p50 subunits of NF-κB, and these inhibitions were not found to be associated with decreases in the phosphorylation or degradation of inhibitory kappa B-α (IκBα). Furthermore, roxatidine suppressed the phosphorylation of p38 MAP kinase, but not of IκB kinase-α/β (IKKα/β), c-Jun NH(2) -terminal kinase (JNK), or extracellular signal-regulated kinase (ERK). Taken together, these results indicate that the anti-inflammatory properties of roxatidine in LPS-treated RAW 264.7 macrophages are mediated by the inhibition of NF-κB transcriptional activity and the p38 MAP kinase pathway. PMID:21809375

  4. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  5. Knockdown of versican V1 induces a severe inflammatory response in LPS-induced acute lung injury via the TLR2-NF-κB signaling pathway in C57BL/6J mice.

    PubMed

    Xu, Lulu; Xue, Tao; Zhang, Jing; Qu, Jieming

    2016-06-01

    The versican family is important in the modulation of inflammation, however, the role of versican V1 (V1) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms remain to be elucidated. To investigate this, the present study performed experiments in male C57BL/6J mice, which were randomly divided into a normal control group (control; n=6), an LPS‑stimulated ALI group (LPS; n=6), a scramble small interfering (si)RNA group (scramble; n=6), a V1‑siRNA group (V1‑siRNA; n=6), a scramble siRNA and LPS‑stimulated group (scramble+LPS; n=6) and a V1‑siRNA and LPS‑stimulated group (V1‑siRNA+LPS; n=6). On day 1, the mice were anesthetized, and 5 nmol scramble siRNA or V1‑siRNA were administered intratracheally. On day 3, LPS (1 mg/kg) or phosphate‑buffered saline (50 µl per mouse) were injected intratracheally. All the mice were anesthetized and sacrificed on day 4, and samples were collected and analyzed. The mRNA and protein expression levels were examined using reverse transcription‑quantitative polymerase chain reaction analysis, immunohistochemical staining and western blot analysis. ALI was evaluated based on lung injury scores, cell counts and total protein concentrations in the bronchoalveolar lavage fluid (BALF). Inflammatory mediators were detected using an enzyme-linked immunosorbend assay. V1 was increased by LPS in the mouse ALI model, whereas specific V1 knockdown induced higher lung injury scores, and higher total cell counts and protein concentrations in the BALF. Tumor necrosis factor‑α (TNF)‑α was upregulated, and interleukin‑6 exhibited an increasing trend. The expression of toll-like receptor 2 (TLR2), but not TLR4, increased, and the nuclear factor (NF)‑κB pathway subunit, P65, was phosphorylated. Taken together, the expression of V1 was upregulated by LPS, and V1 inhibition resulted in the aggravation of LPS‑induced ALI via the activation of TLR2-NF-κB and release of TNF

  6. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    PubMed Central

    Kang, So Mang; Lee, Kyoung Min

    2015-01-01

    Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs). Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO) production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases. PMID:25705693

  7. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)

    PubMed Central

    Trussoni, Christy E.; Tabibian, James H.; Splinter, Patrick L.; O’Hara, Steven P.

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes. PMID:25915403

  8. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    PubMed

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes. PMID:25915403

  9. Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IκB-α-NF-κB signals.

    PubMed

    Huang, Chao; Wang, Jili; Lu, Xu; Hu, Wenfeng; Wu, Feng; Jiang, Bo; Ling, Yong; Yang, Rongrong; Zhang, Wei

    2016-04-21

    Induction of pro-inflammatory factors is one of the characteristics of microglial activation and can be regulated by numerous active agents extracted from plants. Suppression of pro-inflammatory factors is beneficial to alleviate neuroinflammation. Z-guggulsterone, a compound extracted from the gum resin of the tree commiphora mukul, exhibits numerous anti-inflammatory effects. However, the role and mechanism of Z-guggulsterone in pro-inflammatory responses in microglia remains unclear. This study addressed this issue in in vitro murine microglia and in vivo neuroinflammation models. Results showed that Z-guggulsterone reduced inducible nitric oxide (iNOS) protein expression as well as nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in LPS-stimulated BV-2 cells. Z-guggulsterone also reduced the mRNA level of iNOS, TNF-α, and IL-6. Mechanistic studies revealed that Z-guggulsterone attenuated the LPS-induced degradation of inhibitor κ B-α (IκB-α) as well as the LPS-induced nuclear translocation of nuclear factor-κB (NF-κB). Z-guggulsterone, however, failed to reduce the LPS-induced increase in NF-κB phosphorylation level. These major findings were ascertained in primary microglia where the LPS-induced increases in iNOS expression, NO content, and IκB-α degradation were diminished by Z-guggulsterone treatment. In a mouse model of neuroinflammation, Z-guggulsterone exhibited significant anti-inflammatory effects, which were exemplified by the attenuation of microglial activation and neuroinflammation-induced behavioral abnormalities in Z-guggulsterone-treated mice. Taken together, these studies demonstrate that Z-guggulsterone attenuates the LPS-mediated induction of pro-inflammatory factors in microglia via inhibition of IκB-α-NF-κB signals, providing evidence to uncover the potential role of Z-guggulsterone in neuroinflammation-associated disorder therapies. PMID:26879835

  10. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    SciTech Connect

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  11. Host Transcription Factors in the Immediate Pro-Inflammatory Response to the Parasitic Mite Psoroptes ovis

    PubMed Central

    Burgess, Stewart T. G.; McNeilly, Tom N.; Watkins, Craig A.; Nisbet, Alasdair J.; Huntley, John F.

    2011-01-01

    Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen. PMID:21915322

  12. Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo.

    PubMed

    Lee, Wonhwa; Yoo, Hayoung; Kim, Jeong Ah; Lee, Sangkyu; Jee, Jun-Goo; Lee, Min Young; Lee, You-Mie; Bae, Jong-Sup

    2013-08-01

    Piperlonguminine (PL), an important component of Piper longum fruits, is well known to possess potent anti-hyperlipidemic, anti-platelet and anti-melanogenesis activities. In this study, we first investigated the possible barrier protective effects of piperlonguminine against proinflammatory responses induced by lipopolysaccharide (LPS) and the associated signaling pathways in vitro and in vivo. The barrier protective activities of PL were determined by measuring permeability, monocytes adhesion and migration, and activation of proinflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and in mice. We found that PL inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of monocytes to human endothelial cells. PL also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Further studies revealed that PL suppressed the production of tumor necrosis factor-α (TNF-α) or Interleukin (IL)-6 and activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with PL resulted in reduced LPS-induced septic mortality. Collectively, these results suggest that PL protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. PMID:23619565

  13. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-kappaB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection.

    PubMed

    Wessler, Silja; Muenzner, Petra; Meyer, Thomas F; Naumann, Michael

    2005-05-01

    Neisseria gonorrhoeae (Ngo) is a Gram-negative pathogenic bacterium responsible for an array of diseases ranging from urethritis to disseminated gonococcal infections. Early events in the establishment of infection involve interactions between Ngo and the mucosal epithelium, which induce a local inflammatory response. Here we analyzed the molecular mechanism involved in the Ngo-induced induction of the proinflammatory cytokines tumor necrosis factor alpha (TNFalpha), interleukin-6 (IL-6), and IL-8. We identified the immediate early response transcription factor nuclear factor kappaB (NF-kappaB) as a key molecule for the induction of cytokine release. Ngo-induced activation of direct upstream signaling molecules was demonstrated for IkappaB kinase alpha and beta (IKKalpha and IKKbeta) by phosphorylation of IkappaBalpha as a substrate and IKK autophosphorylation. Using dominant negative cDNAs encoding kinase-dead IKKalpha, IKKbeta, and NF-kappaB-inducing kinase (NIK), Ngo-induced NF-kappaB activity was significantly inhibited. Curcumin, the yellow pigment derived from Curcuma longa, inhibited IKKalpha, IKKbeta and NIK, indicating its strong potential to block NF-kappaB-mediated cytokine release and the innate immune response. In addition to the inhibition of Ngo-induced signaling, curcumin treatment of cells completely abolished the adherence of bacteria to cells in late infection, underlining the high potential of curcumin as an anti-microbial compound without cytotoxic side effects. PMID:15927892

  14. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  15. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  16. BAT3 negatively regulates lipopolysaccharide-induced NF-κB signaling through TRAF6.

    PubMed

    Lee, Yeojin; Lee, In Young; Yun, Hee Jae; Lee, Woo Sang; Kang, Seongman; Cho, Ssang-Goo; Lee, Ji Eun; Choi, Eui-Ju

    2016-09-16

    TNF receptor-associated factor 6 (TRAF6) plays a critical role in NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, both of which mediate macrophage activation in response to pathogen-associated molecular patterns such as bacterial endotoxin, lipopolysaccharides (LPS). In this study, we investigated whether HLA-B associated transcript-3 (BAT3) regulates LPS-induced macrophage activation. BAT3 physically interacted with TRAF6 in macrophages, and this interaction was enhanced in the cells after LPS treatment. Furthermore, BAT3 inhibited the homo-oligomerization of TRAF6 as well as the interaction between TRAF6 and its downstream kinase transforming growth factor beta-activated kinase 1 (TAK1), thereby suppressing TRAF6-mediated signaling events. Intriguingly, TRAF6 mediated ubiquitination of BAT3 and this ubiquitination was crucial for its inhibitory effect on TRAF6-mediated signaling. Depletion of BAT3 by RNA interference resulted in enhancement of LPS-induced activation of the NF-κB signaling with increasing expression levels of pro-inflammatory cytokines. These findings suggest that BAT3 functions as the negative regulator of LPS-induced macrophage activation. PMID:27501752

  17. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  18. Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-κB and MAPK pathways.

    PubMed

    Lee, Jangho; Ha, Su Jeong; Lee, Hye Jin; Kim, Min Jung; Kim, Jin Hee; Kim, Yun Tai; Song, Kyung-Mo; Kim, Young-Jun; Kim, Hyun Ku; Jung, Sung Keun

    2016-07-13

    Tremella fuciformis Berk (TFB) has long been used as a traditional medicine in Asia. Although TFB exhibits antioxidant and anti-inflammatory effects, the mechanisms of action responsible have remained unknown. We confirmed the anti-inflammatory effects of Tremella fuciformis Berk extract (TFE) in RAW 264.7 cells and observed significantly suppressed LPS-induced iNOS/NO and COX-2/PGE2 production. TFE also suppressed LPS-induced IKK, IkB, and p65 phosphorylation, as well as LPS-induced translocation of p65 from the cytosol. Additionally, TFE inhibited LPS-induced phosphorylation of MAPKs. In an acute inflammation study, oral administration of TFE significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production and iNOS and COX-2 expression. The major bioactive compounds from TFB extract were identified as gentisic acid, protocatechuic acid, 4-hydroxybenzoic acid, and coumaric acid. Among these compounds, protocatechuic acid showed the strongest inhibitory effects on LPS-induced NO production in RAW 264.7 cells. Overall, these results suggest that TFE is a promising anti-inflammatory agent that suppresses iNOS/NO and COX-2/PGE2 expression, as well as the NF-κB and MAPK signaling pathways. PMID:27334265

  19. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. PMID:26188187

  20. LPS-Induced Lung Inflammation in Marmoset Monkeys – An Acute Model for Anti-Inflammatory Drug Testing

    PubMed Central

    Seehase, Sophie; Lauenstein, Hans-Dieter; Schlumbohm, Christina; Switalla, Simone; Neuhaus, Vanessa; Förster, Christine; Fieguth, Hans-Gerd; Pfennig, Olaf; Fuchs, Eberhard; Kaup, Franz-Josef; Bleyer, Martina; Hohlfeld, Jens M.; Braun, Armin

    2012-01-01

    Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC50). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs. PMID:22952743

  1. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  2. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines and miR-187.

    PubMed

    Wang, Yi; Zhang, Jiao-Jiao; Yang, Wei-Rong; Luo, Hong-Yan; Zhang, Jia-Hua; Wang, Xian-Zhong

    2015-11-01

    Lipopolysaccharide (LPS) induces germ cell apoptosis, but its mechanism of action is not clear. One possibility is that LPS regulates the expression of FAS ligand (FASLG) in Sertoli cells, which will then influence germ cell apoptosis. In this study, LPS reduced the viability of cultured, immature boar Sertoli cells in a time- and dose-dependent manner; enhanced the production of pro-inflammatory cytokines including tumor necrosis factor α (TNFA), interleukin-1β (IL1B), nitric oxide (NO), and transforming growth factor-β (TGFB); and increased the expression of FASLG in a dose-dependent manner. While 10 μg/ml LPS enhanced the expression of FASLG, reduced cell cycle progression, and impaired the ultrastructure of Sertoli cells, this dose did not induce apoptosis. LPS also had no effect on the activity or expression of matrix metalloproteinases 2 or 9 (MMP2 or MMP9). In contrast, the expression of ssc-miR-187 increased following LPS challenge, and inhibition of ssc-miR-187 blocked LPS-induced expression of FASLG. Our results therefore suggest that LPS reduces the viability of and enhances FASLG expression in cultured, immature boar Sertoli cells through elevated secretion of TNFA, IL1B, NO, and TGFB as well as through the regulation of ssc-miR-187 potency. PMID:26256020

  3. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  4. Galectin-8 elicits pro-inflammatory activities in the endothelium.

    PubMed

    Cattaneo, Valentina; Tribulatti, María Virginia; Carabelli, Julieta; Carestia, Agostina; Schattner, Mirta; Campetella, Oscar

    2014-10-01

    Galectins (Gals), a family of mammalian lectins, play diverse roles under physiological and pathological conditions. Here, we analyzed the tandem-repeat Gal-8 synthesis, secretion and effects on the endothelium physiology. Gal-8M and Gal-8L isoforms were secreted under basal conditions by human microvascular endothelial cells (HMEC-1). However, expression and secretion of the Gal-8M isoform, but not Gal-8L, were increased in response to bacterial lipopolysaccharide (LPS) stimulus and returned to control values after LPS removal. Similarly, cell surface Gal-8 exposure was increased after stimulation with LPS. To evaluate Gal-8 effects on the endothelium physiology, HMEC-1 cells were incubated in the presence of recombinant Gal-8M. Pretreated HMEC-1 cells became proadhesive to human normal platelets, indicating that Gal-8 actually activates endothelial cells. This effect was specific for lectin activity as it was prevented by the simultaneous addition of lactose, but not by sucrose. Endothelial cells also increased their exposition of von Willebrand factor after Gal-8 treatment, which constitutes another feature of cell activation that could be, in turn, responsible for the observed platelet adhesion. Several pro-inflammatory molecules were abundantly produced by Gal-8 stimulated endothelial cells: CXCL1 (GRO-α), GM-CSF, IL-6 and CCL5 (RANTES), and in a lower degree CCL2 (MCP-1), CXCL3 (GRO-γ) and CXCL8 (IL-8). In agreement, Gal-8M induced nuclear factor kappa B phosphorylation. Altogether, these results not only confirm the pro-inflammatory role we have already proposed for Gal-8 in other cellular systems but also suggest that this lectin is orchestrating the interaction between leukocytes, platelets and endothelial cells. PMID:24957054

  5. Human oral isolate Lactobacillus fermentum AGR1487 induces a pro-inflammatory response in germ-free rat colons

    PubMed Central

    Anderson, Rachel C.; Ulluwishewa, Dulantha; Young, Wayne; Ryan, Leigh J.; Henderson, Gemma; Meijerink, Marjolein; Maier, Eva; Wells, Jerry M.; Roy, Nicole C.

    2016-01-01

    Lactobacilli are thought to be beneficial for human health, with lactobacilli-associated infections being confined to immune-compromised individuals. However, Lactobacillus fermentum AGR1487 negatively affects barrier integrity in vitro so we hypothesized that it caused a pro-inflammatory response in the host. We compared germ-free rats inoculated with AGR1487 to those inoculated with another L. fermentum strain, AGR1485, which does not affect in vitro barrier integrity. We showed that rats inoculated with AGR1487 had more inflammatory cells in their colon, higher levels of inflammatory biomarkers, and increased colonic gene expression of pro-inflammatory pathways. In addition, our in vitro studies showed that AGR1487 had a greater capacity to activate TLR signaling and induce pro-inflammatory cytokines in immune cells. This study indicates the potential of strains of the same species to differentially elicit inflammatory responses in the host and highlights the importance of strain characterization in probiotic approaches to treat inflammatory disorders. PMID:26843130

  6. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. PMID:27428429

  7. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells. PMID:26910236

  8. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    SciTech Connect

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  9. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  10. Epoxyeicosatrienoic Acids Regulate Macrophage Polarization and Prevent LPS-Induced Cardiac Dysfunction

    PubMed Central

    Dai, Meiyan; Wu, Lujin; He, Zuowen; Zhang, Shasha; Chen, Chen; Xu, Xizhen; Wang, Peihua; Gruzdev, Artiom; Zeldin, Darryl C.; Wang, Dao Wen

    2015-01-01

    Macrophages, owning tremendous phenotypic plasticity and diverse functions, were becoming the target cells in various inflammatory, metabolic and immune diseases. Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to form epoxyeicosatrienoic acids (EETs), which possess various beneficial effects on cardiovascular system. In the present study, we evaluated the effects of EETs treatment on macrophage polarization and recombinant adeno-associated virus (rAAV)-mediated CYP2J2 expression on lipopolysaccharide (LPS)-induced cardiac dysfunction, and sought to investigate the underlying mechanisms. In vitro studies showed that EETs (1μmol/L) significantly inhibited LPS-induced M1 macrophage polarization and diminished the proinflammatory cytokines at transcriptional and post-transcriptional level; meanwhile it preserved M2 macrophage related molecules expression and upregulated antiinflammatory cytokine IL-10. Furthermore, EETs down-regulated NF-κB activation and up-regulated peroxisome proliferator-activated receptors (PPARα/γ) and heme oxygenase 1 (HO-1) expression, which play important roles in regulating M1 and M2 polarization. In addition, LPS treatment in mice induced cardiac dysfunction, heart tissue damage and infiltration of M1 macrophages, as well as the increase of inflammatory cytokines in serum and heart tissue, but rAAV-mediated CYP2J2 expression increased EETs generation in heart and significantly attenuated the LPS-induced harmful effects, which mechanisms were similar as the in vitro study. Taken together, the results indicate that CYP2J2/EETs regulates macrophage polarization by attenuating NF-κB signaling pathway via PPARα/γ and HO-1 activation and its potential use in treatment of inflammatory diseases. PMID:25626689

  11. General Anesthetics Inhibit LPS-Induced IL-1β Expression in Glial Cells

    PubMed Central

    Tanaka, Tomoharu; Kai, Shinichi; Matsuyama, Tomonori; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2013-01-01

    Background Glial cells, including microglia and astrocytes, are considered the primary source of proinflammatory cytokines in the brain. Immune insults stimulate glial cells to secrete proinflammatory cytokines that modulate the acute systemic response, which includes fever, behavioral changes, and hypothalamic-pituitary-adrenal (HPA) axis activation. We investigated the effect of general anesthetics on proinflammatory cytokine expression in the primary cultured glial cells, the microglial cell line BV-2, the astrocytic cell line A-1 and mouse brain. Methodology/Principal Findings Primary cultured glial cells were exposed to lipopolysaccharide (LPS) in combination with general anesthetics including isoflurane, pentobarbital, midazolam, ketamine, and propofol. Following this treatment, we examined glial cell expression of the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). LPS-induced expression of IL-1β mRNA and protein were significantly reduced by all the anesthetics tested, whereas IL-6 and TNF-α mRNA expression was unaffected. The anesthetics suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation, but did not affect nuclear factor-kappaB and activator protein-1 activation. The same effect was observed with BV-2, but not with A-1 cells. In the mouse experiments, LPS was injected intraperitoneally, and isoflurane suppressed IL-1β in the brain and adrenocorticotropic hormone in plasma, but not IL-1β in plasma. Conclusions/Significance Taken together, our results indicate that general anesthetics inhibit LPS-induced IL-1β upregulation in glial cells, particularly microglia, and affects HPA axis participation in the stress response. PMID:24349401

  12. Active hexose correlated compound modulates LPS-induced hypotension and gut injury in rats.

    PubMed

    Doursout, Marie-Francoise; Liang, Yangyan; Sundaresan, Alamelu; Wakame, Koji; Fujii, Hajime; Takanari, Jun; Devakottai, Sundar; Kulkarni, Anil

    2016-10-01

    We hypothesized that AHCC; (Amino UP Chemical Co., Ltd., Sapporo, Japan), a mushroom mycelium extract obtained from liquid culture of Lentinula edodes, restores immune function in LPS-induced inflammation in the gut, especially when the nitric oxide signaling pathway is impaired. This is the first inter-disciplinary proposal to identify molecular mechanisms involved in LPS-induced immune dysfunction in the gut in conscious animals treated or non-treated with AHCC, a promoter of immune support. Specifically, we have tested the effects of AHCC on LPS-induced deleterious effects on blood pressure and gut injury in conscious rats. The time course of biological markers of innate/acquired immune responses, and inflammation/oxidative stress is fully described in the present manuscript. Rats were randomly assigned into 3 groups (N=6 per group). Group 1 received 10% of AHCC in drinking water for 5days; Group 2 received lipopolysaccharide (LPS; Escherichia coli 0111:B4 purchased from Sigma) only at 20mg/kg IV; Group 3 received combined treatments (AHCC + LPS). LPS was administered at 20mg/kg IV, 5days following AHCC treatment. We have demonstrated that AHCC decreased the LPS-deleterious effects of blood pressure and also decreased inflammatory markers e.g., cytokines, nitric oxide and edema formation. Finally, AHCC diminished lymphocyte infiltration, restoring gut architecture. Because AHCC was administered prior to LPS, our results indicate the potential impact of AHCC's prophylactic effects on LPS inflammation. Consequently, additional experiments are warrant to assess its therapeutic effects in sepsis-induced inflammation. PMID:27500458

  13. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?

    PubMed Central

    Kheder, Ramiar K.; Hobkirk, James; Stover, Cordula M.

    2016-01-01

    Low grade endotoxemia is a feature of obesity which is linked to development of steatohepatitis in non-alcoholic fatty liver disease. In this study, macrophages (J774) and hepatocytes (HepG2) were stimulated with lipopolysaccharide (LPS) from E. coli 0111: B4 and analyzed for modulation of this response when preconditioned or stimulated subsequent to LPS, with different doses of Vitamin D3 or docosahexaenoic acid (DHA) over a time period of 1 and 5 days. Pro-inflammatory TNFα and pro-fibrotic TGFβ released into the supernatants were measured by ELISA; qPCR was performed for Srebp-1c and PPARα mRNA (genes for products involved in fatty acid synthesis and catabolism, respectively). Vitamin D3 and DHA exerted a consistent, dose dependent anti-inflammatory effect, and increased PPARα relative to Srebp-1c in both cell types. By contrast, addition of free fatty acids (FFA, oleic acid/palmitic acid 2:1) caused aggravation of LPS-induced inflammatory reaction and an increase of Srebp-1c relative to PPARα. Our results argue in favor of dietary supplementation of Vitamin D3 or DHA (and avoidance of monounsaturated/saturated fatty acids) to alleviate development of fatty liver disease. PMID:27446914

  14. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Salvatore, Rosaria; Panaro, Maria Antonietta

    2016-07-01

    Microglia are resident macrophages in the central nervous system (CNS) deputed to defend against pathogens. Persistent or acute inflammation of microglia leads to CNS disorders, so regulation of pro-inflammatory responses of microglial cells is thought to be a promising therapeutic strategy to attenuate abnormal inflammatory responses observed in neurodegenerative disease. We hypothesized that curcumin supplementation could reduce the inflammatory responses of activated microglial cells modulating PI3K/Akt pathway. Different curcumin concentrations were administered as BV-2 microglia pre-treatment 1h prior to LPS stimulation. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression were determined by Griess reagent and western blotting, respectively. Inflammatory cytokines release was evaluated by ELISA and qRT-PCR. PI3K/Akt expression was analyzed by western blotting analysis. Curcumin significantly attenuated, in a dose-dependent manner, LPS-induced release of NO and pro-inflammatory cytokines, as well as iNOS expression. Interestingly, curcumin was able to reduce, again in a dose-dependent manner, PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated microglial cells. Overall these results suggest that curcumin plays an important role in the attenuation of LPS-induced inflammatory responses in microglial cells and that the mechanisms involve down-regulation of the PI3K/Akt signalling. PMID:27208432

  15. Hypericum triquetrifolium—Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells

    PubMed Central

    Saad, Bashar; AbouAtta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL−1) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions. PMID:18955363

  16. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation.

    PubMed

    Yang, Seung Bo; Lee, Sang Min; Park, Ji-Hae; Lee, Tae Hoon; Baek, Nam-In; Park, Hi-Joon; Lee, Hyejung; Kim, Jiyoung

    2014-01-01

    Cynanchum wilfordii is one of most widely used medicinal plants in Oriental medicine for the treatment of various conditions. In the present study, we isolated cynandione A (CA) from an extract of Cynanchum wilfordii roots (CWE) and investigated the effects of CA on the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced BV-2 microglial cells. CWE and CA significantly decreased LPS-induced nitric oxide production and the expression of iNOS in a concentration-dependent manner, while they (CWE up to 500 µg/mL and CA up to 80 µM) did not exhibit cytotoxic activity. Results from reverse transcription-polymerase chain reaction (RT-PCR) analysis and enzyme-linked immunosorbent assay (ELISA) showed that CA significantly attenuated the expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in LPS-stimulated BV-2 cells. Furthermore, CA inhibited the phosphorylation of inhibitor kappa B-alpha (IκB-α) and translocation of nuclear factor-kappa B (NF-κB) to the BV-2 cell nucleus, indicating that CWE and CA may have effective anti-inflammatory activities via NF-κB inactivation in stimulated microglial cells. PMID:25087960

  17. Propofol attenuates LPS-induced tumor necrosis factor-α, interleukin-6 and nitric oxide expression in canine peripheral blood mononuclear cells possibly through down-regulation of nuclear factor (NF)-κB activation.

    PubMed

    Pei, Zengyang; Wang, Jinqiu

    2015-02-01

    Sepsis is a major cause of mortality in intensive care medicine. Propofol, an intravenous general anesthetic, has been suggested to have anti-inflammatory properties and able to prevent sepsis induced by Gram-positive and Gram-negative bacteria by down-regulating the gene expression of pro-inflammatory cytokines. However, propofol's anti-inflammatory effects upon canine peripheral blood mononuclear cells (PBMCs) have not yet been clarified. Here, we isolate canine PBMCs and investigate the effects of propofol on the gene expressions of both lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α and upon the production of nitric oxide (NO). Through real-time quantitative PCR and the Griess reagent system, we found that non-cytotoxic levels of propofol significantly inhibited the release of NO and IL-6 and TNF-α gene expression in LPS-induced canine PBMCs. Western blotting revealed that LPS does significantly increase the expression of inducible NO synthase (iNOS) protein in canine PBMCs, while pretreatment with propofol significantly decreases the LPS-induced iNOS protein expression. Propofol, at concentration of 25 µM and 50 µM, also significantly inhibited the LPS-induced nuclear translocation of nuclear factor (NF)-κB p65 protein in canine PBMCs. This diminished TNF-α, IL-6 and iNOS expression, and NO production was in parallel to the respective decreased NF-κB p65 protein nuclear translocation in the LPS-activated canine PBMCs pretreated with 25 µM and 50 µM propofol. This suggests that non-cytotoxic levels of propofol pretreatment can down-regulate LPS-induced inflammatory responses in canine PBMCs, possibly by inhibiting the nuclear translocation of the NF-κB p65 protein. PMID:25312048

  18. Characterization of two regulators of the TNF-α signaling pathway in Apostichopus japonicus: LPS-induced TNF-α factor and baculoviral inhibitor of apoptosis repeat-containing 2.

    PubMed

    Zhang, Xiumei; Zhang, Pengjuan; Li, Chenghua; Li, Ye; Jin, Chunhua; Zhang, Weiwei

    2015-01-01

    The TNF-α signaling cascade is involved in the regulation of a variety of biological processes, including cell proliferation, differentiation, apoptosis and the immune response in vertebrates. Here, two regulatory genes, lipopolysaccharide-induced tumor necrosis factor α factor (LITAF) and baculoviral inhibitor of apoptosis repeat-containing 2 (BIRC2), were identified in coelomocytes from the sea cucumber Apostichopus japonicus by RNA-seq and RACE (denoted as AjLITAF and AjBIRC2, respectively). The full-length cDNA of AjLITAF was 1417 bp, with a 5' untranslated region (UTR) of 189 bp, a 3' UTR of 637 bp with one cytokine RNA instability motif (ATTTA) and an open reading frame (ORF) of 591 bp encoding a polypeptide of 196 amino acid residues and a predicted molecular weight of 22.1 kDa. The partial AjBIRC2 cDNA was 2324 bp with a 5' UTR of 145 bp, a 3' UTR of 469 bp and a complete ORF of 1710 bp encoding a polypeptide of 569 amino acid residues. Analysis of the deduced amino acid sequences revealed that both genes shared a remarkably high degree of structural conservation with their mammalian orthologs, including a highly conserved LITAF domain in AjLITAF and three types of BIR domains in AjBIRC2. Spatial expression analysis revealed that AjLITAF and AjBIRC2 were expressed at a slightly lower level in the intestine and tentacle tissues compared with the other four tissues examined. After challenging the sea cucumbers with Vibrio splendidus, the expression levels of AjLITAF and AjBIRC2 in coelomocytes were increased by 2.65-fold at 6 h and 1.76-fold at 24 h compared with the control group. In primary cultured coelomocytes, a significant increase in the expression of AjLITAF and AjBIRC2 was detected after 6 h of exposure to 1 µg mL(-1) LPS. Together, these results suggest that AjLITAF and AjBIRC2 might be involved in the sea cucumber immune response during the course of a pathogenic infection or exposure to pathogen-associated molecular

  19. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    PubMed

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. PMID:24877713

  20. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  1. Amelioration of LPS-Induced Inflammation Response in Microglia by AMPK Activation

    PubMed Central

    Chen, Chin-Chen; Lin, Jiun-Tsai; Cheng, Yi-Fang; Kuo, Cheng-Yi; Huang, Chun-Fang; Kao, Shao-Hsuan; Liang, Yao-Jen; Cheng, Ching-Yi; Chen, Han-Min

    2014-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis via modulating metabolism of glucose, lipid, and protein. In addition to energy modulation, AMPK has been demonstrated to associate with several important cellular events including inflammation. The results showed that ENERGI-F704 identified from bamboo shoot extract was nontoxic in concentrations up to 80 μM and dose-dependently induced phosphorylation of AMPK (Thr-172) in microglia BV2 cells. Our findings also showed that the treatment of BV2 with ENERGI-F704 ameliorated the LPS-induced elevation of IL-6 and TNF-α production. In addition, ENERGI-F704 reduced increased production of nitric oxide (NO) and prostaglandin E2 (PGE2) via downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. Moreover, ENERGI-F704 decreased activated nuclear translocation and protein level of NF-κB. Inhibition of AMPK with compound C restored decreased NF-κB translocation by ENERGI-F704. In conclusion, ENERGI-F704 exerts inhibitory activity on LPS-induced inflammation through manipulating AMPK signaling and exhibits a potential therapeutic agent for neuroinflammatory disease. PMID:25025067

  2. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  3. Lipidomics of Mesenchymal Stromal Cells: Understanding the Adaptation of Phospholipid Profile in Response to Pro-Inflammatory Cytokines.

    PubMed

    Campos, Ana Margarida; Maciel, Elisabete; Moreira, Ana S P; Sousa, Bebiana; Melo, Tânia; Domingues, Pedro; Curado, Liliana; Antunes, Brígida; Domingues, M Rosário M; Santos, Francisco

    2016-05-01

    Mesenchymal stromal cells (MSCs) present anti-inflammatory properties and are being used with great success as treatment for inflammatory and autoimmune diseases. In clinical applications MSCs are subjected to a strong pro-inflammatory environment, essential to their immunosuppressive action. Despite the wide clinical use of these cells, how MSCs exert their effect remains unclear. Several lipids are known to be involved in cell's signaling and modulation of cellular functions. The aim of this paper is to examine the variation in lipid profile of MSCs under pro-inflammatory environment, induced by the presence of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), using the most modern lipidomic approach. Major changes in lipid molecular profile of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), lysoPC (LPC), and sphingomyelin (SM) classes were found. No changes were observed in the phosphatidylinositol (PI) profile. The levels of PC species with shorter fatty acids (FAs), mainly C16:0, decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of LPC(18:0), which is known to be an anti-inflammatory LPC, observed in MSCs subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN-γ also enhanced the levels of PE(40:6) and decreased the levels of PE(O-38:6). Higher expression of PS(36:1) and SM(34:0) along with a decrease in PS(38:6) levels were observed. These results indicate that lipid metabolism and signaling are modulated during MSCs activation, which suggests that lipids may be involved in MSCs functional and anti-inflammatory activities. PMID:26363509

  4. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  5. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling.

    PubMed

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  6. Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling

    PubMed Central

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  7. Nitric oxide decreases the sensitivity of pulmonary endothelial cells to LPS-induced apoptosis in a zinc-dependent fashion.

    PubMed

    Tang, Zi-Lue; Wasserloos, Karla J; Liu, Xianghong; Stitt, Molly S; Reynolds, Ian J; Pitt, Bruce R; St Croix, Claudette M

    2002-01-01

    We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 microM). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium. PMID:12162436

  8. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  9. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background Phosphatidylcholine (PC) is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT)-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs). Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC induces a prolonged

  10. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes.

    PubMed

    Dong, Daoyin; Zhong, Wei; Sun, Qian; Zhang, Wenliang; Sun, Xinguo; Zhou, Zhanxiang

    2016-09-01

    Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability. PMID:27314544

  11. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    PubMed Central

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  12. MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability

    PubMed Central

    Sun, Yang; Qin, Zhen; Li, Qi; Wan, Jing-jing; Cheng, Ming-he; Wang, Peng-yuan; Su, Ding-feng; Yu, Jian-guang; Liu, Xia

    2016-01-01

    Aim: MicroRNAs play pivotal roles in regulation of both innate and adaptive immune responses. In the present study, we investigated the effects of microRNA-124 (miR-124) on production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-treated mouse macrophages. Methods: Mouse macrophage cell line RAW264.7 was stimulated with LPS (100 ng/mL). The levels of miR-124 and TNF-α mRNA were evaluated using q-PCR. ELISA and Western blotting were used to detect TNF-α protein level in cell supernatants and cells, respectively. 3′-UTR luciferase reporter assays were used to analyze the targets of miR-124. For in vivo experiments, mice were injected with LPS (30 mg/kg, ip). Results: LPS stimulation significantly increased the mRNA level of miR-124 in RAW264.7 macrophages in vitro and mice in vivo. In RAW264.7 macrophages, knockdown of miR-124 with miR-124 inhibitor dose-dependently increased LPS-stimulated production of TNF-α protein and prolonged the half-life of TNF-α protein, but did not change TNF-α mRNA levels, whereas overexpression of miR-124 with miR-124 mimic produced the opposite effects. Furthermore, miR-124 was found to directly target two components of deubiquitinating enzymes: ubiquitin-specific proteases (USP) 2 and 14. Knockdown of USP2 or USP14 accelerated protein degradation of TNF-α, and abolished the effect of miR-124 on TNF-α protein stability. Conclusion: miR-124, targeting USP2 and USP14, negatively regulates LPS-induced TNF-α production in mouse macrophages, suggesting miR-124 as a new therapeutic target in inflammation-related diseases. PMID:27063215

  13. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    PubMed

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade. PMID:24142066

  14. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice.

    PubMed

    Glasser, Stephan W; Maxfield, Melissa D; Ruetschilling, Teah L; Akinbi, Henry T; Baatz, John E; Kitzmiller, Joseph A; Page, Kristen; Xu, Yan; Bao, Erik L; Korfhagen, Thomas R

    2013-11-01

    Pulmonary surfactant protein-C (SP-C) gene-targeted mice (Sftpc(-/-)) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc(+/+) and Sftpc(-/-) mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc(-/-) mice at 3 and 5 days after the final dose. Compared with Sftpc(+/+)mice, inflammatory injury persisted in the lungs of Sftpc(-/-) mice 30 days after the final LPS challenge. Sftpc(-/-) mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc(-/-) type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc(+/+) cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C-containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation. PMID:23795648

  15. Tissue damage negatively regulates LPS-induced macrophage necroptosis.

    PubMed

    Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J

    2016-09-01

    Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules. PMID:26943325

  16. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  17. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  18. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages.

    PubMed

    Appel, Kurt; Meiser, Peter; Millán, Estrella; Collado, Juan Antonio; Rose, Thorsten; Gras, Claudia C; Carle, Reinhold; Muñoz, Eduardo

    2015-09-01

    Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients. PMID:26079445

  19. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  20. Ethyl pyruvate and ethyl lactate down-regulate the production of pro-inflammatory cytokines and modulate expression of immune receptors.

    PubMed

    Hollenbach, Marcus; Hintersdorf, Anja; Huse, Klaus; Sack, Ulrich; Bigl, Marina; Groth, Marco; Santel, Thore; Buchold, Martin; Lindner, Inge; Otto, Andreas; Sicker, Dieter; Schellenberger, Wolfgang; Almendinger, Johannes; Pustowoit, Barbara; Birkemeyer, Claudia; Platzer, Mathias; Oerlecke, Ilka; Hemdan, Nasr; Birkenmeier, Gerd

    2008-09-01

    Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression. PMID:18625205

  1. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis

    PubMed Central

    Hodge, G.; Upham, J. W.; Chang, A. B.; Baines, K. J.; Yerkovich, S. T.; Pizzutto, S. J.; Hodge, S.

    2015-01-01

    Objective Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE. Methods Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry. Results There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL. Conclusions Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities. PMID:26258716

  2. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways

    PubMed Central

    Kim, Byung-Wook; More, Sandeep Vasant; Yun, Yo-Sep; Ko, Hyun-Myung; Kwak, Jae-Hwan; Lee, Heesoon; Suk, Kyoungho; Kim, In-Su; Choi, Dong-Kug

    2016-01-01

    Aim: To investigate the anti-neuroinflammatory activity of a novel synthetic compound, 7-methylchroman-2-carboxylic acid N-(2-trifluoromethyl) phenylamide (MCAP) against LPS-induced microglial activation in vitro. Methods: Primary mouse microglia and BV2 microglia cells were exposed to LPS (50 or 100 ng/mL). The expression of iNOS and COX-2, proinflammatory cytokines, NF-κB and p38 MAPK signaling molecules were analyzed by RT-PCR, Western blot and ELISA. The morphological changes of microglia and nuclear translocation of NF-ĸB were visualized using phase contrast and fluorescence microscopy, respectively. Results: Pretreatment with MCAP (0.1, 1, 10 μmol/L) dose-dependently inhibited LPS-induced expression of iNOS and COX-2 in BV2 microglia cells. Similar results were obtained in primary microglia pretreated with MCAP (0.1, 0.5 μmol/L). MCAP dose-dependently abated LPS-induced release of TNF-α, IL-6 and IL-1β, and mitigated LPS-induced activation of NF-κB by reducing the phosphorylation of IκBα in BV2 microglia cells. Moreover, MCAP attenuated LPS-induced phosphorylation of p38 MAPK, whereas SB203580, a p38 MAPK inhibitor, significantly potentiated MCAP-caused inhibition on the expression of MEF-2 (a transcription factor downstream of p38 MAPK). Conclusion: MCAP exerts anti-inflammatory effects in murine microglia in vitro by inhibiting the p38 MAPK and NF-κB signaling pathways and proinflammatory responses. MCAP may be developed as a novel agent for treating diseases involving activated microglial cells. PMID:26838070

  3. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  4. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival

    PubMed Central

    St-Pierre, Stéphanie; Jiang, Wei; Roy, Patrick; Champigny, Camille; LeBlanc, Éric; Morley, Barbara J.; Hao, Junwei; Simard, Alain R.

    2016-01-01

    It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1β and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers. PMID:26925951

  5. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    PubMed Central

    Keane, Michael P; Strieter, Robert M

    2002-01-01

    The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance. PMID:11806840

  6. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    SciTech Connect

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  7. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  8. Protective effect of carbon monoxide pre-conditioning on LPS-induced endothelial cell stress

    PubMed Central

    Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

    2009-01-01

    Increasing evidence indicates that carbon monoxide (CO) may protect against several diseases including sepsis. The ability of CO pre-treatment to provide good pre-conditioning against lipopolysaccharide (LPS)-induced injury was tested using an in vitro model of primary culture of porcine aortic endothelial cells (pAEC). pAEC were exposed to CO (250 ppm) or air for 1 h prior to the addition of LPS (10 μg/ml). Hsp70, HO-1, and Egr-1 protein levels were determined as well as vascular endothelial growth factor (VEGF) secretion after 4, 7, and 15 h. The effect of CO on LPS-induced apoptosis was also detected at 15 h. CO pre-treatment before the addition of LPS, significantly reduced LPS-induced apoptosis. LPS induced an increase in the level of VEGF in culture media after 7 and 15 h, and a larger increase was detected in CO pre-treated cells. In addition, CO pre-treatment reduced LPS-induced Hsp70, HO-1, and Egr-1 protein expression. In conclusion, CO treatment seems to provide a good pre-conditioning for the prevention of LPS-induced endothelial injury. PMID:19693705

  9. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue.

    PubMed

    Amengual-Cladera, E; Lladó, I; Proenza, A M; Gianotti, M

    2013-02-14

    Obesity has been related to a chronic pro-inflammatory state affecting white adipose tissue (WAT), which has a great impact on carbohydrate, lipid and energy metabolism. In turn, the dysregulation of adipokine secretion derived from the accumulation of excess lipids in adipocytes further contributes to the development of insulin resistance and can be associated with mitochondrial dysfunction. The aim of the present study was to determine whether sexual dimorphism found in the systemic insulin sensitivity profile is related to sex differences in a high-fat diet (HFD) response of gonadal WAT at mitochondrial function and inflammatory profile levels. Wistar rats (10 weeks old) of both sexes were fed a control pelleted diet (3 % (w/w) fat; n 8 for each sex) or a HFD (24 % (w/w) fat; n 8 for each sex). Serum insulin sensitivity markers, mRNA expression levels of inflammatory factors and the protein content of insulin and adiponectin signalling pathways were analysed, as well as the levels of the main markers of mitochondrial biogenesis, antioxidant defence and oxidative damage. In the present study, the periovarian depot exhibits a greater expandability capacity, along with a lower hypoxic and pro-inflammatory state, without signs of mitochondrial dysfunction or changes in its dynamics. In contrast, epididymal fat has a much more pronounced pro-inflammatory, hypoxic and insulin-resistant profile accompanied by changes in mitochondrial dynamics, probably associated with HFD-induced mitochondrial dysfunction. Thus, this explains the worse serum insulin sensitivity profile of male rats. PMID:22717037

  10. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages.

    PubMed

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development and progression of many chronic diseases. PMID:23872113

  11. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  12. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases.

    PubMed

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria E; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-02-15

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  13. Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-κB and Nrf2 pathways in RAW 264.7 cells.

    PubMed

    Wang, Peng; Qiao, Qi; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2016-06-25

    Geraniin, a major polyphenolic compound of Geranium sibiricum L, has long been used as an important Chinese herbal medicine for the treatment of a variety of inflammatory pathologies. However, the underlying anti-inflammatory molecular mechanisms of this compound are not clear. The aim of the present study was to investigate the anti-inflammatory activities of geraniin and elucidate the underlying mechanisms. The anti-inflammatory effects of geraniin were studied by using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Geraniin suppressed the inducible nitric oxide synthase (iNOS) expression, and inhibited reactive oxygen species (ROS) production. Subsequent studies demonstrated that geraniin effectively reduced production of NO and pro-inflammatory cytokines. These effects were mediated by impaired translocation of nuclear factor (NF)-κB and inhibition of the phosphorylation of Akt in LPS-stimulated RAW 264.7 cells. Furthermore, geraniin induced heme oxygenase-1 (HO-1) expression via activation of transcription factor Nrf2. This study gives scientific evidence that geraniin inhibits the LPS-induced expression of inflammatory mediators via suppression of Akt-mediated NF-κB pathway as well as up-regulation of Nrf2/HO-1 pathway, indicating that geraniin has a potential application in inflammatory conditions. PMID:27181634

  14. Protective Role of Flavonoids and Lipophilic Compounds from Jatropha platyphylla on the Suppression of Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Ambriz-Pérez, Dulce L; Bang, Woo Young; Nair, Vimal; Angulo-Escalante, Miguel A; Cisneros-Zevallos, Luis; Heredia, J Basilio

    2016-03-01

    Seventeen polyphenols (e.g, apigenin, genistein, and luteolin glycosides) and 11 lipophilic compounds (e.g., fatty acids, sterols, and terpenes) were detected by LC-MS/MS-ESI and GC-MS, respectively, in Jatropha platyphylla. Extracts from pulp, kernel, and leaves and fractions were studied to know their effect on some pro-inflammatory mediators. Phenolic and lipophilic extracts showed significant inhibitory effects on ROS and NO production while not affecting mitochondrial activity or superoxide generation rate in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. In addition, NO production was also diminished by lipophilic leaf fractions F1 and F2 with the latter fraction showing a greater effect and composed mainly of sterols and terpene. Furthermore, total extracts showed nonselective inhibitions against cyclooxygenase COX-1 and COX-2 activities. All together, these results suggest that J. platyphylla extracts have potential in treating inflammatory diseases and their activity is mediated by flavonoids and lipophilic compounds. PMID:26872073

  15. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    PubMed

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells. PMID:26120869

  16. Apigenin-7-Glycoside Prevents LPS-Induced Acute Lung Injury via Downregulation of Oxidative Enzyme Expression and Protein Activation through Inhibition of MAPK Phosphorylation

    PubMed Central

    Li, Kun-Cheng; Ho, Yu-Ling; Hsieh, Wen-Tsong; Huang, Shyh-Shyun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2015-01-01

    Apigenin-7-glycoside (AP7Glu) with multiple biological activities is a flavonoid that is currently prescribed to treat inflammatory diseases such as upper respiratory infections. Recently, several studies have shown that its anti-inflammatory activities have been strongly linked to the inhibition of secretion of pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOs) and cyclooxygenase-2 (COX-2) induced through phosphorylation nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) pathways. Additionally, inflammation, which can decrease the activities of antioxidative enzymes (AOEs) is also observed in these studies. At the same time, flavonoids are reported to promote the activities of heme oxygenase-1 (HO-1) decreased by LPS. The purpose of this study was to assess these theories in a series of experiments on the suppressive effects of AP7Glu based on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and acute lung injury in mice in vivo. After six hours of lipopolysaccharide (LPS) stimulation, pulmonary pathological, myeloperoxidase (MPO) activity, total polymorphonuclear leukocytes (PMN) cells, cytokines in bronchoalveolar lavage fluid (BALF) and AOEs, are all affected and changed. Meanwhile, our data revealed that AP7Glu not only did significantly inhibit the LPS-enhanced inflammatory activity in lung, but also exhibited anti-inflammatory effect through the MAPK and inhibitor NF-κB (IκB) pathways. PMID:25590301

  17. Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice.

    PubMed

    Lee, Seung-Jun; Shin, Ji-Sun; Choi, Hye-Eun; Lee, Kyoung-Goo; Cho, Young-Wuk; An, Hyo-Jin; Jang, Dae Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; Lee, Kyung-Tae

    2014-01-01

    In this study, the authors investigated the molecular mechanism underlying the antiinflammatory effects of the chloroform fraction of the peel of 'Jayoung' (CFPJ), a color-fleshed potato, on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in mice with dextran sulfate sodium (DSS)-induced colitis. CFPJ inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcription level, and attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB depending on degradation of inhibitory κB-α (IκB-α). Furthermore, CFPJ attenuated the phosphorylations of mitogen-activated protein kinase kinases3/6 (MKK3/6) and of p38. In colitis model, CFPJ significantly reduced the severity of colitis and the productions and protein levels of pro-inflammatory mediators in colonic tissue. These results suggest that the anti-inflammatory effects of CFPJ are associated with the suppression of NF-κB and p38 activation in macrophages, and support its possible therapeutic role for the treatment of colitis. PMID:24184733

  18. Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells.

    PubMed

    So, Yangkang; Lee, Seung Young; Han, Ah-Reum; Kim, Jin-Baek; Jeong, Hye Gwang; Jin, Chang Hyun

    2016-01-01

    In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. PMID:27548124

  19. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species

    PubMed Central

    Rebiger, Lars; Lenzen, Sigurd; Mehmeti, Ilir

    2016-01-01

    Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress. PMID:26795216

  20. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke.

    PubMed

    Milnerowicz, Halina; Ściskalska, Milena; Dul, Magdalena

    2015-01-01

    Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups. PMID:24916792

  1. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.

    PubMed

    Chiou, Yi-Shiou; Huang, Qingrong; Ho, Chi-Tang; Wang, Ying-Jan; Pan, Min-Hsiung

    2016-05-01

    Disruption of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) interaction has emerged as a promising strategy to reduce oxidative stress-induced inflammation. However, its roles in regulating downstream events, including the cross talk between Nrf2 and nuclear factor-kappa B (NF-κB), are not well defined. The objective of this study was to elucidate the mechanistic connection between Keap1-Nrf2 signaling and the transcription factor NF-κB and to investigate the function of (-)-epicatechin-3-gallate (ECG) in the repression of multiple inflammatory mediators. ECG attenuated lipopolysaccharide (LPS)-induced inflammatory mediator expression and intracellular reactive oxygen species (ROS) generation through the induction of Nrf2/antioxidant response element (ARE)-driven glutathione (GSH) and hemeoxygenase-1 (HO-1) levels, interference with NF-κB and Nfr2/ARE transcriptional activities, and suppression of the MAPKs (JNK1/2 and p38) and PI3K/Akt signaling pathways. Importantly, anti-inflammatory effects of ECG partly require activation of ERK1/2 signaling to mediate HO-1 expression and Nrf2/ARE signaling activation. Furthermore, ECG may directly interact intracellularly with the Kelch repeat domains of Keap1 and bind to extracellular LPS, thereby promoting the nuclear accumulation of the Nrf2 protein and blockading the activation of LPS-induced downstream target signaling pathways. Consistent with in vitro studies, ECG attenuates pathological syndromes of LPS-induced sepsis and systemic inflammation. Our results identified ECG as a novel Keap1-Nrf2 interaction disruptor and LPS-induced TLR4 activation inhibitor, thereby providing an innovative strategy to prevent or treat immune, oxidative stress and inflammatory-related diseases. PMID:26878775

  2. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  3. p52-independent nuclear translocation of RelB promotes LPS-induced attachment

    SciTech Connect

    Saito, T.; Sasaki, C.Y.; Rezanka, L.J.; Ghosh, P.; Longo, D.L.

    2010-01-01

    The NF-{kappa}B signaling pathways have a critical role in the development and progression of various cancers. In this study, we demonstrated that the small cell lung cancer cell line (SCLC) H69 expressed a unique NF-{kappa}B profile as compared to other cancer cell lines. The p105/p50, p100/p52, c-Rel, and RelB protein and mRNA transcripts were absent in H69 cells but these cells expressed RelA/p65. The activation of H69 cells by lipopolysaccharide (LPS) resulted in the induction of RelB and p100 expression. The treatment also induced the nuclear translocation of RelB without the processing of p100 to p52. Furthermore, LPS-induced {beta}1 integrin expression and cellular attachment through an NF-{kappa}B-dependent mechanism. Blocking RelB expression prevented the increase in the expression of {beta}1 integrin and the attachment of H69. Taken together, the results suggest that RelB was responsible for the LPS-mediated attachment and may play an important role in the progression of some cancers.

  4. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes.

    PubMed

    Wensink, Annette C; Kemp, Vera; Fermie, Job; García Laorden, M Isabel; van der Poll, Tom; Hack, C Erik; Bovenschen, Niels

    2014-04-22

    Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS-CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS-TLR4 signaling during the antimicrobial innate immune response. PMID:24711407

  5. Methionine Sulfoxide Reductase A Negatively Controls Microglia-Mediated Neuroinflammation via Inhibiting ROS/MAPKs/NF-κB Signaling Pathways Through a Catalytic Antioxidant Function

    PubMed Central

    Fan, Hua; Wu, Peng-Fei; Zhang, Ling; Hu, Zhuang-Li; Wang, Wen; Guan, Xin-Lei; Luo, Han; Ni, Ming; Yang, Jing-Wen; Li, Ming-Xing

    2015-01-01

    Abstract Aims: Oxidative burst is one of the earliest biochemical events in the inflammatory activation of microglia. Here, we investigated the potential role of methionine sulfoxide reductase A (MsrA), a key antioxidant enzyme, in the control of microglia-mediated neuroinflammation. Results: MsrA was detected in rat microglia and its expression was upregulated on microglial activation. Silencing of MsrA exacerbated lipopolysaccharide (LPS)-induced activation of microglia and the production of inflammatory markers, indicating that MsrA may function as an endogenous protective mechanism for limiting uncontrolled neuroinflammation. Application of exogenous MsrA by transducing Tat-rMsrA fusion protein into microglia attenuated LPS-induced neuroinflammatory events, which was indicated by an increased Iba1 (a specific microglial marker) expression and the secretion of pro-inflammatory cytokines, and this attenuation was accompanied by inhibiting multiple signaling pathways such as p38 and ERK mitogen-activated protein kinases (MAPKs) and nuclear factor kappaB (NF-κB). These effects were due to MsrA-mediated reactive oxygen species (ROS) elimination, which may be derived from a catalytic effect of MsrA on the reaction of methionine with ROS. Furthermore, the transduction of Tat-rMsrA fusion protein suppressed the activation of microglia and the expression of pro-inflammatory factors in a rat model of neuroinflammation in vivo. Innovation: This study provides the first direct evidence for the biological significance of MsrA in microglia-mediated neuroinflammation. Conclusion: Our data provide a profound insight into the role of endogenous antioxidative defense systems such as MsrA in the control of microglial function. Antioxid. Redox Signal. 22, 832–847. PMID:25602783

  6. Enforced expression of miR-125b attenuates LPS-induced acute lung injury.

    PubMed

    Guo, Zhongliang; Gu, Yutong; Wang, Chunhong; Zhang, Jie; Shan, Shan; Gu, Xia; Wang, Kailing; Han, Yang; Ren, Tao

    2014-11-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Recent evidence implicated a potential role of miR-125b in development of ALI. Here we evaluated the miR-125b-based strategy in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We found that up-regulation of miR-125b expression maintained the body weight and survival of ALI mice, and significantly reduced LPS-induced pulmonary inflammation as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Further, enforced expression of miR-125b resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin and IgM in BAL fluid, and ameliorated the histopathology changes of lung in LPS-induced ALI mice. Of interest, serum miR-125b expression was also decreased and inversely correlated with the disease severity in patients with ARDS. Our findings strongly demonstrated that enforced expression of miR-125b could effectively ameliorate the LPS-induced ALI, suggesting a potential application for miR-125b-based therapy to treat clinical ARDS. PMID:25004393

  7. Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts

    PubMed Central

    Villacorta, Luis; Chang, Lin; Salvatore, Sonia R.; Ichikawa, Tomonaga; Zhang, Jifeng; Petrovic-Djergovic, Danica; Jia, Lingyun; Carlsen, Harald; Schopfer, Francisco J.; Freeman, Bruce A.; Chen, Y. Eugene

    2013-01-01

    Aims Electrophilic fatty acid nitroalkene derivatives, products of unsaturated fatty acid nitration, exert long-term cardiovascular protection in experimental models of metabolic and cardiovascular diseases. The goal of this study is to examine the effects of nitro-fatty acids in the regulation of upstream signalling events in nuclear factor-κB (NF-κB) activation and determine whether low-dose acute administration of nitro-fatty acids reduces vascular inflammation in vivo. Methods and results Using NF-κB-luciferase transgenic mice, it was determined that pre-emptive treatment with nitro-oleic acid (OA-NO2), but not oleic acid (OA) inhibits lipopolysaccharide (LPS)-induced NF-κB activation both in vivo and in isolated macrophages. Acute intravenous administration of OA-NO2 was equally effective to inhibit leukocyte recruitment to the vascular endothelium assessed by intravital microscopy and significantly reduces aortic expression of adhesion molecules. An acute treatment with OA-NO2 in vivo yielding nanomolar concentrations in plasma, is sufficient to inhibit LPS-induced Toll-like receptor 4 (TLR4)-induced cell surface expression in leukocytes and NF-κB activation. In vitro experiments reveal that OA-NO2 suppresses LPS-induced TLR4 signalling, inhibitor of κB (IκBα) phosphorylation and ubiquitination, phosphorylation of the IκB kinase (IKK), impairing the recruitment of the TLR4 and TNF receptor associated factor 6 (TRAF6) to the lipid rafts compartments. Conclusion These studies demonstrate that acute administration of nitro-fatty acids is effective to reduce vascular inflammation in vivo. These findings reveal a direct role of nitro-fatty acids in the disruption of the TLR4 signalling complex in lipid rafts, upstream events of the NF-κB pathway, leading to resolution of pro-inflammatory activation of NF-κB in the vasculature. PMID:23334216

  8. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases.

    PubMed

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    2015-01-01

    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds. PMID:26053397

  9. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases

    PubMed Central

    Korbecki, Jan; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Chlubek, Dariusz

    2015-01-01

    This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds. PMID:26053397

  10. Pharmacological Inactivation of Src Family Kinases Inhibits LPS-Induced TNF-α Production in PBMC of Patients with Behçet's Disease

    PubMed Central

    Pektanc, Gulsum; Akkurt, Zeynep M.; Bozkurt, Mehtap; Turkcu, Fatih M.; Kalkanli-Tas, Sevgi

    2016-01-01

    Behçet's disease (BD) is a multisystemic chronic inflammatory disease characterized by relapsing oral and genital ulcers, uveitis, and skin lesions. The pathogenesis of BD is still unknown. Aberrant production of some cytokines/chemokines plays an important role in the pathogenesis of various inflammatory diseases. Revealing a key signaling regulatory mechanism involved in proinflammatory cytokines/chemokines production is critical for understanding of the pathogenesis of BD. The aim of this study was to determine the role of Src family kinases (SFKs) in production of some LPS-induced proinflammatory cytokines/chemokines in peripheral blood mononuclear cells (PBMC) of active BD patients. Chemical inhibition of SFKs activity impaired LPS-induced TNF-α production in PBMC of active BD patients, suggesting that modulating SFKs activity may be a potential target for BD treatment. PMID:27445436

  11. Oenothein B Suppresses Lipopolysaccharide (LPS)-Induced Inflammation in the Mouse Brain

    PubMed Central

    Okuyama, Satoshi; Makihata, Nahomi; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2013-01-01

    Oenothein B has been recently evaluated for its ability to affect inflammatory responses in peripheral tissues. In this study, we examined its effect on the damage to the central nervous system due to systemic inflammation. For this purpose, ICR mice were injected with an intraperitoneal (i.p.) dose of lipopolysaccharide (LPS; 1 mg/kg mouse). When oenothein B was administered per os (p.o.), it suppressed (1) LPS-induced abnormal behavior in open field; (2) LPS-induced microglial activation in the hippocampus and striatum; and (3) LPS-induced cyclooxygenase (COX)-2 production in the hippocampus and striatum of these mice. These results suggest that oenothein B had the ability to reduce neuroinflammation in the brain during systemic inflammation. PMID:23652834

  12. Oenothein B suppresses lipopolysaccharide (LPS)-induced inflammation in the mouse brain.

    PubMed

    Okuyama, Satoshi; Makihata, Nahomi; Yoshimura, Morio; Amakura, Yoshiaki; Yoshida, Takashi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2013-01-01

    Oenothein B has been recently evaluated for its ability to affect inflammatory responses in peripheral tissues. In this study, we examined its effect on the damage to the central nervous system due to systemic inflammation. For this purpose, ICR mice were injected with an intraperitoneal (i.p.) dose of lipopolysaccharide (LPS; 1 mg/kg mouse). When oenothein B was administered per os (p.o.), it suppressed (1) LPS-induced abnormal behavior in open field; (2) LPS-induced microglial activation in the hippocampus and striatum; and (3) LPS-induced cyclooxygenase (COX)-2 production in the hippocampus and striatum of these mice. These results suggest that oenothein B had the ability to reduce neuroinflammation in the brain during systemic inflammation. PMID:23652834

  13. GSK2656157, a PERK inhibitor, reduced LPS-induced IL-1β production through inhibiting Caspase 1 activation in macrophage-like J774.1 cells.

    PubMed

    Ando, Takashi; Komatsu, Takayuki; Naiki, Yoshikazu; Takahashi, Kazuko; Yokochi, Takashi; Watanabe, Daisuke; Koide, Naoki

    2016-08-01

    IL-1β is one of the inflammatory cytokines and is cleaved from pro-IL-1β proteolytically by activated Caspase 1. For the activation of Caspase 1, inflammasome was formed by two signals, what is called, priming and triggering signals. In this study, it was found that mouse macrophage J774.1 cells, when treated by single large amount of lipopolysaccharide (LPS), produced a significant amount of IL-1β. On the other hand, IL-1β production was not detected when treated by a single, small amount of LPS. Then, focusing on endoplasmic reticulum (ER) stress response among stress responses induced by a large amount of LPS, when GSK2656157, a PERK inhibitor, was used for inhibition of ER stress, GSK2656157 reduced IL-1β production dose-dependently. Next, when Thapsigargin, an ER stress reagent, was added with LPS, IL-1β production increased more than by LPS alone. Thus, these results suggested that ER stress was involved in LPS-induced IL-1β production. When the activation of Caspase 1 was examined by fluorescence activated cell sorter analysis, it was found that GSK2656157 inhibited LPS-induced Caspase 1 activation. Further, it was confirmed that GSK2656157 did not affect LPS-induced TNF-α production and activation of NF-κB and specifically inhibited the PERK/eIF-2α pathway. Therefore, it was found that GSK2656157 specifically inhibited ER stress induced by large amount of LPS and reduced LPS-induced IL-1β production through inhibition of Caspase 1 activation. PMID:27251848

  14. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis

    PubMed Central

    Mirantes, Cristina; Passegué, Emmanuelle; Pietras, Eric M.

    2014-01-01

    Hematopoiesis is the hierarchical process in which all lineages of blood cells are produced by self-renewing hematopoietic stem cells (HSCs) in the bone marrow (BM). While the regulatory factors that maintain proper HSC function and lineage output under normal conditions are well understood, significantly less is known about how HSC fate is regulated in response to inflammation or disease. As many blood disorders are associated with overproduction of pro-inflammatory cytokines, significant interest has emerged in understanding the impact of these factors on HSC function. In this review we highlight key advances demonstrating the impact of pro-inflammatory cytokines on the biology of HSCs and the BM niche, and address ongoing questions regarding their role in normal and pathogenic hematopoiesis. PMID:25149680

  15. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms

    PubMed Central

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  16. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms.

    PubMed

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents' peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients' PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  17. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  18. Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis.

    PubMed

    Swaggerty, Christina L; Pevzner, Igal Y; Kogut, Michael H

    2014-03-01

    Salmonella is a leading cause of foodborne illness and can be transmitted through consumption of contaminated poultry; therefore, increasing a flock's natural resistance to Salmonella could improve food safety. Previously, we characterized the heterophil-mediated innate immune response of 2 parental broiler lines and F1 reciprocal crosses and showed that increased heterophil function and expression of pro-inflammatory mediators corresponds with increased resistance against diverse pathogens. A preliminary selection trial showed that individual sires had varying inherent levels of pro-inflammatory mediators and selection based on a high or low phenotype was passed onto progeny. Based on these results, we hypothesized selection of broilers for higher levels of the pro-inflammatory mediators IL-6, CXCLi2, and CCLi2 would produce progeny with increased resistance against Salmonella Enteritidis. Peripheral blood leukocytes were isolated from 75 commercial broiler sires, screened, and 10 naturally high and low expressing sires were selected and mated to randomly selected dams to produce the first generation of "high" and "low" progeny. The mRNA expression of CXCLi2 and CCLi2 were significantly (P ≤ 0.02) higher in the high progeny and were more resistant to liver and spleen organ invasion by Salmonella Enteritidis compared with low progeny. Production of the second generation yielded progeny that had differences (P ≤ 0.03) in all 3 mediators and further improved resistance against Salmonella Enteritidis. Feed conversion ratio and percent breast meat yield were calculated and were equal, whereas the high birds weighed slightly, but significantly, less than the low birds. These data clearly demonstrate that selection based on a higher phenotype of key pro-inflammatory mediators is a novel means to produce broilers that are naturally more resistant to Salmonella, one of the most important foodborne pathogens affecting the poultry industry. PMID:24604845

  19. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis

    PubMed Central

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-01-01

    Objective Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Design Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Results Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. Conclusions This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. PMID:25134787

  20. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells

    PubMed Central

    Pandiyan, Pushpa; Zhu, Jinfang

    2016-01-01

    CD4+CD25+Foxp3+ regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3+ regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs. PMID:26165923

  1. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells.

    PubMed

    Pandiyan, Pushpa; Zhu, Jinfang

    2015-11-01

    CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs. PMID:26165923

  2. Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines.

    PubMed

    Lee, S; Jin, G; Kim, D; Son, S; Lee, K; Lee, C

    2015-03-01

    Previously, we discovered a series of indole derivatives as a new class of hepatitis C virus (HCV) replication inhibitors by using a target-free chemical genetic strategy. Through a structure-activity relationship study, the compound 12e was identified as the most potent inhibitor of this class (EC50 = 1.1 μmol/l) with minimal cytotoxicity (CC50 = 61.8 μmol/l). In order to gain insight into its detailed antiviral mechanism of action, we performed PCR array analyses and found that 12e was able to activate transcription of a number of pro-inflammatory as well as antiviral cytokine genes including CXCL-8, IL-1α, TNF-α, IL-3, IRAK-1, and DDX58. Their induction by 12e was verified by individual RT-PCR analyses. In addition, 12e was found to stimulate secretion of soluble factors with anti-HCV replication activity. Among the 12e-induced pro-inflammatory cytokines, CXCL-8 showed a strong positive correlation between its transcriptional activation and antiviral potency. Interestingly, a recombinant CXCL-8 protein also reduced HCV replication, though only moderately. In conclusion, we found a novel mode of action of indole derivatives in inhibiting HCV replication, particularly the induction of pro-inflammatory cytokines. PMID:25790053

  3. New generation lipid emulsion protects against LPS-induced brain inflammation in pemature piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premature infants provided parenteral nutrition (PN) high in n-6 polyunsaturated fatty acids (PUFA) have increased risk of inflammatory disease, such as nosocomial sepsis. The pro-inflammatory insult can also contribute to injury and delayed neuronal growth in the perinatal brain. Provision of high ...

  4. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts.

    PubMed

    Xia, Xiaomin; Fu, Juanli; Song, Xiufang; Shi, Qiong; Su, Chuanyang; Song, Erqun; Song, Yang

    2015-12-01

    Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1h before stimulation with LPS (10 μg/ml) for 6h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent. PMID:26453923

  5. The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts

    PubMed Central

    Chi, Pei-Ling; Chuang, Yu-Chen; Chen, Yu-Wen; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-01-01

    BACKGROUND AND PURPOSE Infection with Gram-negative bacteria has been recognized as an initiator of rheumatoid arthritis, which is characterized by chronic inflammation and infiltration of immune cells. Carbon monoxide (CO) exhibits anti-inflammatory properties. Here we have investigated the detailed mechanisms of vascular cell adhesion molecule-1 (VCAM-1) expression induced by LPS and if CO inhibited LPS-induced leukocyte adhesion to synovial fibroblasts by suppressing VCAM-1 expression. EXPERIMENTAL APPROACH Human rheumatoid arthritis synovial fibroblasts (RASFs) were incubated with LPS and/or the CO-releasing compound CORM-2. Effects of LPS on VCAM-1 levels were determined by analysing mRNA expression, promoter activity, protein expression, and immunohistochemical staining. The molecular mechanisms were investigated by determining the expression, activation, and binding activity of transcriptional factors using target signal antagonists. KEY RESULTS CORM-2 significantly inhibited inflammatory responses in LPS-treated RASFs by down-regulating the expression of adhesion molecule VCAM-1 and leukocyte infiltration. The down-regulation of LPS-induced VCAM-1 expression involved inhibition of the expression of phosphorylated-NF-κB p65 and AP-1 (p-c-Jun, c-Jun and c-Fos mRNA levels). These results were confirmed by chromatin immunoprecipitation assay to detect NF-κB and AP-1 DNA binding activity. CONCLUSIONS AND IMPLICATIONS LPS-mediated formation of the TLR4/MyD88/TRAF6/c-Src complex regulated NF-κB and MAPKs/AP-1 activation leading to VCAM-1 expression and leukocyte adhesion. CORM-2, which liberates CO to elicit direct biological activities, attenuated LPS-induced VCAM-1 expression by interfering with NF-κB and AP-1 activation, and significantly reduced LPS-induced immune cell infiltration of the synovium. PMID:24628691

  6. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    PubMed

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases. PMID:24473904

  7. Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.

    PubMed

    Tian, Yuan-Yuan; An, Li-Jia; Jiang, Lan; Duan, Yan-Long; Chen, Jun; Jiang, Bo

    2006-12-23

    Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Microglia, the resident immune cells in the central nervous system, are pivotal in the inflammatory reaction. Activated microglia can induce expression of inducible nitric-oxide synthase (iNOS) and release significant amounts of nitric oxide (NO) and TNF-alpha, which can damage the dopaminergic neurons. Catalpol, an iridoid glycoside, contained richly in the roots of Rehmannia glutinosa, was found to be neuroprotective in gerbils subjected to transient global cerebral ischemia. But the effect of catalpol on inflammation-mediated neurodegeneration has not been examined. In this study, microglia in mesencephalic neuron-glia cultures were activated with lipopolysaccharide (LPS) and the aim of the study was to examine whether catalpol could protect dopaminergic neurons from LPS-induced neurotoxicity. The results showed that catalpol significantly reduced the release of reactive oxygen species (ROS), TNF-alpha and NO after LPS-induced microglial activation. Further, catalpol attenuated LPS-induced the expression of iNOS. As determined by immunocytochemical analysis, pretreatment by catalpol dose-dependently protected dopaminergic neurons against LPS-induced neurotoxicity. These results suggest that catalpol exerts its protective effect on dopaminergic neurons by inhibiting microglial activation and reducing the production of proinflammatory factors. Thus, catalpol may possess therapeutic potential against inflammation-related neurodegenerative diseases. PMID:17049947

  8. Dexamethasone and betamethasone protect against LPS-induced brain damage in the neonatal rats

    PubMed Central

    Pang, Yi; Fan, Lir-Wan; Zheng, Baoying; Campbell, Leigh R.; Cai, Zhengwei; Rhodes, Philip G.

    2013-01-01

    The aim of this study is to test whether dexamethasone (Dex) and betamethasone (Beta), two of the most commonly used corticosteroids, protect against lipopolysaccharide (LPS)-induced white matter damage and neurobehavioral dysfunction. LPS or sterile saline was injected into the brain white matter of rat pups at postnatal day 5 (P5) and Dex or Beta was given intraperitoneally to the rat pups 1 h before the LPS microinjection. Brain inflammatory response, brain damage, and myelination were examined at P6, P8 and P14. Neurobehavioral tests were performed from P3 through P22. Our results demonstrate that Dex and Beta markedly diminish the LPS-induced brain inflammatory response, restore myelin basic protein (MBP) expression and alleviate lateral ventricle dilation. Both corticosteroids demonstrate significant protection against most of LPS-induced behavioral deficits, including those in rearing, vibrissa-elicited forelimb-placing, beam walking, learning and elevated plus-maze test. Notably, only Beta improved the locomotion and stereotype dysfunction. In contrast to their beneficial effects, neither drug prevented LPS-induced delay in body weight gain from P6 through P21. Our study suggests that if their adverse effects are minimized, corticosteroids may be the potential candidate drugs to prevent brain damage in premature infants. PMID:22314662

  9. Low-level laser therapy attenuates LPS-induced rats mastitis by inhibiting polymorphonuclear neutrophil adhesion.

    PubMed

    Wang, Yueqiang; He, Xianjing; Hao, Dandan; Yu, Debin; Liang, Jianbin; Qu, Yanpeng; Sun, Dongbo; Yang, Bin; Yang, Keli; Wu, Rui; Wang, Jianfa

    2014-11-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a rat model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms. The rat model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. The results showed that LPS-induced secretion of IL-1β and IL-8 significantly decreased after LLLT (650 nm, 2.5 mW, 30 mW/cm(2)). LLLT also inhibited intercellular adhesion molecule-1 (ICAM-1) expression and attenuated the LPS-induced decrease of the expression of CD62L and increase of the expression of CD11b. Moreover, LLLT also suppressed LPS-induced polymorphonuclear neutrophils (PMNs) entering the alveoli of the mammary gland. The number of PMNs in the mammary alveolus and the myeloperoxidase (MPO) activity were decreased after LLLT. These results suggested that LLLT therapy is beneficial in decreasing the somatic cell count and improving milk nutritional quality in cows with an intramammary infection. PMID:25452258

  10. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF

    PubMed Central

    Tang, Xiaoren; Amar, Salomon

    2015-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF−/− and ERK2−/− cells. Therefore we reintroduced the ERK2 gene in ERK2−/− cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2−/− mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α. PMID:26918116

  11. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  12. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  13. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  14. Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1

    PubMed Central

    Birukova, Anna A.; Meng, Fanyong; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Quilliam, Lawrence A.; Birukov, Konstantin G.

    2015-01-01

    Protective effects of prostacyclin (PC) or its stable analog beraprost against agonist-induced lung vascular inflammation have been associated with elevation of intracellular cAMP and Rac GTPase signaling which inhibited the RhoA GTPase-dependent pathway of endothelial barrier dysfunction. This study investigated a distinct mechanism of PC-stimulated lung vascular endothelial (EC) barrier recovery and resolution of LPS-induced inflammation mediated by small GTPase Rap1. Efficient barrier recovery was observed in LPS-challenged pulmonary EC after prostacyslin administration even after 15 hrs of initial inflammatory insult and was accompanied by the significant attenuation of p38 MAP kinase and NFkB signaling and decreased production of IL-8 and soluble ICAM1. These effects were reproduced in cells post-treated with 8CPT, a small molecule activator of Rap1-specific nucleotide exchange factor Epac. By contrast, pharmacologic Epac inhibitor, Rap1 knockdown, or knockdown of cell junction-associated Rap1 effector afadin attenuated EC recovery caused by PC or 8CPT post-treatment. The key role of Rap1 in lung barrier restoration was further confirmed in the murine model of LPS-induced acute lung injury. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation and live imaging of vascular leak over 6 days using a fluorescent tracer. The data showed significant acceleration of lung recovery by PC and 8CPT post-treatment, which was abrogated in Rap1a−/− mice. These results suggest that post-treatment with PC triggers the Epac/Rap1/afadin-dependent mechanism of endothelial barrier restoration and downregulation of p38MAPK and NFkB inflammatory cascades, altogether leading to accelerated lung recovery. PMID:25545047

  15. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases. PMID:27331630

  16. Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers

    PubMed Central

    2012-01-01

    Background The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM. Methods PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4). Results Macrophage exposure to PM derived from dairy farms significantly activated expression of pro-inflammatory genes, including IL-8, cyclooxygenase 2 and Tumor necrosis factor-alpha, which are hallmarks of inflammation. Acute phase proteins, such as serum amyloid A and IL-6, were also significantly upregulated in macrophages treated with PM from dairies. Coarse PM fractions demonstrated more pro-inflammatory activity on an equal-dose basis than fine PM. Urban PM collected from the same region as the dairy farms was associated with a lower concentration of endotoxin and produced significantly less IL-8 expression compared to PM collected on the dairy farms. Conclusion The present study provides evidence that the endotoxin components of the particles collected on dairies play a major role in mediating an inflammatory response through activation of TLR4 and NF-κB signaling. PMID:22452745

  17. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  18. Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice.

    PubMed

    Martin, Stephen A; Pence, Brandt D; Greene, Ryan M; Johnson, Stephanie J; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A

    2013-03-01

    Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33 mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNFα, IL-1β, and IL-10 mRNA, and increased IL-1β and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33 mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals. PMID:23277090

  19. Pulmonary surfactant inhibits LPS-induced nitric oxide production by alveolar macrophages.

    PubMed

    Miles, P R; Bowman, L; Rao, K M; Baatz, J E; Huffman, L

    1999-01-01

    The objectives of this investigation were 1) to report that pulmonary surfactant inhibits lipopolysaccharide (LPS)-induced nitric oxide (. NO) production by rat alveolar macrophages, 2) to study possible mechanisms for this effect, and 3) to determine which surfactant component(s) is responsible. NO produced by the cells in response to LPS is due to an inducible. NO synthase (iNOS). Surfactant inhibits LPS-induced. NO formation in a concentration-dependent manner;. NO production is inhibited by approximately 50 and approximately 75% at surfactant levels of 100 and 200 microg phospholipid/ml, respectively. The inhibition is not due to surfactant interference with the interaction of LPS with the cells or to disruption of the formation of iNOS mRNA. Also, surfactant does not seem to reduce. NO formation by directly affecting iNOS activity or by acting as an antioxidant or radical scavenger. However, in the presence of surfactant, there is an approximately 80% reduction in the amount of LPS-induced iNOS protein in the cells. LPS-induced. NO production is inhibited by Survanta, a surfactant preparation used in replacement therapy, as well as by natural surfactant. NO formation is not affected by the major lipid components of surfactant or by two surfactant-associated proteins, surfactant protein (SP) A or SP-C. However, the hydrophobic SP-B inhibits. NO formation in a concentration-dependent manner;. NO production is inhibited by approximately 50 and approximately 90% at SP-B levels of 1-2 and 10 microgram/ml, respectively. These results show that lung surfactant inhibits LPS-induced. NO production by alveolar macrophages, that the effect is due to a reduction in iNOS protein levels, and that the surfactant component responsible for the reduction is SP-B. PMID:9887071

  20. p53 protects against LPS-induced lung endothelial barrier dysfunction

    PubMed Central

    Dimitropoulou, Christiana; Birmpas, Charalampos; Joshi, Atul; Thangjam, Gagan; Catravas, John D.

    2015-01-01

    New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro. PMID:25713322

  1. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.

    PubMed

    de Laat, M A; Clement, C K; McGowan, C M; Sillence, M N; Pollitt, C C; Lacombe, V A

    2014-01-15

    Equine laminitis, a disease of the lamellar structure of the horse's hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Toll-like receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a prolonged, euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged, glucose infusion (p-GI), which induced marked and moderate hyperinsulinaemia, respectively. Age-matched control horses were treated simultaneously with a balanced electrolyte solution. Treated horses developed clinical (p-EHC) or subclinical (p-GI) laminitis, whereas controls did not. Skeletal muscle and lamellar protein extracts were analysed by Western blotting for TLR4, IL-6, TNF-α and suppressor of cytokine signalling 3 (SOCS3) expression. Lamellar protein expression of TLR4 and TNF-α, but not IL-6, was increased by the p-EHC, compared to control horses. A significant positive correlation was found between lamellar TLR4 and SOCS3. Skeletal muscle protein expression of TLR4 signalling parameters did not differ between control and p-EHC-treated horses. Similarly, the p-GI did not result in up-regulation of lamellar protein expression of any parameter. The results suggest that insulin-sensitive tissues may not accurately reflect lamellar pathology during hyperinsulinaemia. While TLR4 is present in the lamellae, its activation appears unlikely to contribute significantly to the developmental pathogenesis of hyperinsulinaemic laminitis. However

  2. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks

    PubMed Central

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells. PMID:27594840

  3. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks.

    PubMed

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells. PMID:27594840

  4. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

    PubMed Central

    McGuire, Victoria A.; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H.; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V.; Weiβ, Anne; Houslay, Kirsty F.; Knebel, Axel; Meakin, Paul J.; Phair, Iain R.; Ashford, Michael L. J.; Trost, Matthias; Arthur, J. Simon C.

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  5. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation.

    PubMed

    McGuire, Victoria A; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V; Weiβ, Anne; Houslay, Kirsty F; Knebel, Axel; Meakin, Paul J; Phair, Iain R; Ashford, Michael L J; Trost, Matthias; Arthur, J Simon C

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  6. TARM1 is a novel LRC-encoded ITAM receptor that co-stimulates pro-inflammatory cytokine secretion by macrophages and neutrophils

    PubMed Central

    Radjabova, Valeria; Mastroeni, Piero; Skjødt, Karsten; Zaccone, Paola; de Bono, Bernard; Goodall, Jane C; Chilvers, Edwin R; Juss, Jatinder K; Jones, Des C; Trowsdale, John; Barrow, Alexander David

    2015-01-01

    We identified a novel, evolutionarily conserved receptor encoded within the human Leukocyte Receptor Complex (LRC) and syntenic region of mouse chromosome 7, named T cell-interacting, activating receptor on myeloid cells-1 (TARM1). The transmembrane region of TARM1 contained a conserved arginine residue, consistent with association with a signaling adaptor. TARM1 associated with the ITAM adaptor Fc receptor common γ chain but not with DAP10 or DAP12. In healthy mice, TARM1 is constitutively expressed on the cell-surface of mature and immature CD11b+ Gr-1+ neutrophils within the bone marrow. Following intraperitoneal lipopolysaccharide (LPS) treatment or systemic bacterial challenge TARM1 expression was upregulated by neutrophils and inflammatory monocytes and TARM1+ cells were rapidly recruited to sites of inflammation. TARM1 expression was also upregulated by bone marrow-derived macrophages and dendritic cells following stimulation with TLR agonists in vitro. Ligation of TARM1 receptor in the presence of TLR ligands, such as LPS, enhanced the secretion of pro-inflammatory cytokines by macrophages and primary mouse neutrophils, whereas TARM1 stimulation alone had no effect. Finally, an immobilized TARM1-Fc fusion protein suppressed CD4+ T cell activation and proliferation in vitro. These results suggest that a putative T cell ligand can interact with TARM1 receptor resulting in bi-directional signaling, raising the T cell activation threshold whilst co-stimulating the release of pro-inflammatory cytokines by macrophages and neutrophils. PMID:26311901

  7. Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine expression

    PubMed Central

    JIN, SHENG-JUAN; LIU, YAN; DENG, SHI-HUA; LIAO, LI-HONG; LIN, TU-LIAN; NING, QIN; LUO, XIAO-PING

    2015-01-01

    Maternal intrauterine inflammation or infection is an important risk factor for neonatal cerebral white matter injury (WMI) and future neurological deficits. Activated protein C (APC), a natural anticoagulant, has been shown to exhibit anti-inflammatory, anti-apoptotic, profibrinolytic and cytoprotective activities. Recent studies have demonstrated that the novel prothrombinase, fibrinogen-like protein 2 (fgl2), contributes to the pathogenesis of a number of inflammatory diseases through the generation of fibrin. Thus, we hypothesized that APC may regulate coagulant and inflammatory processes and improve brain injury in an experimental rat model of intrauterine inflammation-induced WMI. The animal model was established by the administration of an intraperitoneal injection of lipopolysaccharide (LPS) to pregnant Sprague-Dawley rats on embryonic day (E)17 and E18. APC was administered intraperitoneally 30 min after the second LPS injection. The expression of fgl2 and the pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β expression in the placentas and fetal brains was determined on E19. Nerve cell death, the brain water content and protease-activated receptor 1 (PAR1) and nuclear factor κB (NF-κB) p65 expression was detected in the fetal brains. WMI in the neonatal rat brains was evaluated by hematoxylin and eosin (H&E) staining and immunohistochemistry for myelin basic protein (MBP). The results revealed that APC markedly reduced the LPS-induced increase in fgl2 expression and fibrin deposition, as well as the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, in the placentas and fetal brains. In addition, APC attenuated cerebral apoptosis and brain edema, downregulated PAR1 and NF-κB p65 expression in the fetal brains, and improved hypomyelination and structural disturbances in the periventricular area of the neonatal rat brains. Our observations provide evidence that APC attenuates fetal

  8. A novel macromolecular extract screened from satsuma with pro-inflammatory effect.

    PubMed

    Yan, Huiqing; Ji, Qun; Chen, Doudou; Wu, Jinlong; Peng, Shu'ang; Ma, Zhaocheng; Deng, Xiuxin

    2014-02-01

    Excessive consumption of horticultural fruit is a double-edged sword with both positive and negative effects. In Eastern countries, a large number of people have suffered from shang huo as a result of excessive consumption of "heating" foods, such as lychee, longan, mandarin orange, mango and civet durian. The present study adopted a step by step strategy screened the compositions with pro-inflammatory effect in satsuma fruits. The pro-inflammatory effects of all fractions were evaluated in RAW 264.7 cell lines by enzyme-linked immunosorbent assay (ELISA) and RT-PCR tests. The soluble water extract (SWE) from satsuma increased the production of prostaglandin E2 (PGE2) and promoted the expression level of cyclooxygenase-2 (COX-2) mRNA. SWE and high molecular weight molecules extracted from soluble water extract (HSWE) were respectively fractionated by dialysis bags and gel filtration chromatography. The macromolecular fraction named F1 was further obtained from HSWE, and could increase the production of inflammatory mediators. Finally F1 was resolved by SDS-PAGE and six proteins were identified by mass spectrometry. Compared with other detected proteins, polygalacturonase inhibitor (PGIP) and chitinase were the most likely candidate pro-inflammatory proteins according to molecular mass, and both of them were Citrus unshiu species. cDNA sequences of PGIP and chitinase were cloned and their functions were predicted as defensive proteins by SMART analysis. Excessive intake of these defensive proteins may result in adverse food reactions in human beings, such as shang huo and other immune responses. PMID:24336758

  9. Pro-inflammatory endothelial cell dysfunction is associated with intersectin-1s down-regulation

    PubMed Central

    2011-01-01

    Background The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-XL rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction. Methods and Results Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-XL and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression. Conclusion Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS. PMID:21486462

  10. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells

    PubMed Central

    Nahomi, Rooban B.; Palmer, Allison; Roth, Katelyn E.; Fort, Patrice E.; Nagaraj, Ram H.

    2013-01-01

    The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25 mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells. PMID:24252613

  11. NAC Attenuates LPS-Induced Toxicity in Aspirin-Sensitized Mouse Macrophages via Suppression of Oxidative Stress and Mitochondrial Dysfunction

    PubMed Central

    Raza, Haider; John, Annie; Shafarin, Jasmin

    2014-01-01

    Bacterial endotoxin lipopolysaccharide (LPS) induces the production of inflammatory cytokines and reactive oxygen species (ROS) under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin) is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC), an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects. PMID:25075522

  12. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  13. Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: Implications for neuropathic pain.

    PubMed

    Coronel, María F; Raggio, María C; Adler, Natalia S; De Nicola, Alejandro F; Labombarda, Florencia; González, Susana L

    2016-03-15

    Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. Glial cell activation and cytokine production contribute to the pathology of central neuropathic syndromes. In this study we evaluated the effects of progesterone, a neuroactive steroid, on pain development and the spinal expression of IL-1β, its receptors (IL-1RI and IL-1RII) and antagonist (IL-1ra), IL-6 and TNFα, and NR1 subunit of NMDAR. Our results show that progesterone, by modulating the expression of pro-inflammatory cytokines and neuronal IL-1RI/NR1 colocalization, emerges as a promising agent to prevent chronic pain after SCI. PMID:26943964

  14. Borrelia burgdorferi lipoprotein BmpA activates pro-inflammatory responses in human synovial cells through a protein moiety

    PubMed Central

    Yang, Xiuli; Izadi, Hooman; Coleman, Adam S.; Wang, Penghua; Ma, Yongsheng; Fikrig, Erol; Anguita, Juan; Pal, Utpal

    2008-01-01

    Borrelia burgdorferi invasion of mammalian joints results in genesis of Lyme arthritis. Other than spirochete lipids, existence of protein antigens, which are abundant in joints and participate in B. burgdorferi-induced host inflammatory response, is unknown. Here, we report that major products of the B. burgdorferi basic membrane protein (bmp) A/B operon that are induced in murine and human joints, possess inflammatory properties. Compared to the wild type B. burgdorferi, an isogenic bmpA/B mutant induced significantly lower levels of pro-inflammatory cytokines TNF-α and IL-1β in cultured human synovial cells, which could be restored using bmpA/B-complemented mutants, and more directly, upon addition of recombinant BmpA, but not BmpB or control spirochete proteins. Non-lipidated and lipidated versions of BmpA induced similar levels of cytokines, and remained unaffected by treatment with lipopolysaccharide inhibitor, polymyxin B. The bmpA/B mutant was also impaired in the induction of NF-κB and p38 MAP kinase signaling pathways in synovial cells, which were activated by non-lipidated BmpA. These results show that a protein moiety of BmpA can induce cytokine responses in synovial cells via activation of the NF-κB and p38 MAP kinase pathways and thus, could potentially contribute to the genesis of Lyme arthritis. PMID:18725314

  15. In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection.

    PubMed

    Thapa, S; Nagy, E; Abdul-Careem, M F

    2015-04-15

    Toll-like receptor (TLR) ligands are pathogen associated molecular patterns (PAMPs) recognized by the TLRs resulting in induction of host innate immune responses. One of the PAMPs that binds to TLR2 and cluster of differentiation (CD) 14 is lipotechoic acid (LTA), which activates downstream signals culminating in the release of pro-inflammatory cytokines. In this study, we investigated whether in ovo LTA delivery leads to the induction of antiviral responses against post-hatch infectious laryngotracheitis virus (ILTV) infection. We first delivered the LTA into embryo day (ED)18 eggs via in ovo route so that the compound is available at the respiratory mucosa. Then the LTA treated and control ED18 eggs were allowed to hatch and the hatched chicken was infected with ILTV intratracheally on the day of hatch. We found that in ovo delivered LTA reduces ILTV infection post-hatch. We also found that in ovo delivery of LTA significantly increases mRNA expression of pro-inflammatory mediators in pre-hatch embryo lungs as well as mononuclear cell infiltration, predominantly macrophages, in lung of post-hatch chickens. Altogether, the data suggest that in ovo delivered LTA could be used to reduce ILTV infection in newly hatched chickens. PMID:25764942

  16. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    PubMed

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP. PMID:27318790

  17. Pro-inflammatory cytokines for evaluation of inflammatory status in endometriosis

    PubMed Central

    Malutan, Andrei M.; Costin, Nicolae; Ciortea, Razvan; Bucuri, Carmen; Rada, Maria P.; Mihu, Dan

    2015-01-01

    The aim of the study The aim of the study was to investigate the serum pro-inflammatory cytokine profile in patients with diagnosed endometriosis. Material and methods The study included 160 women, who were divided in two study groups (Group I – endometriosis; Group 2 – healthy). We evaluated the serum levels of interleukin (IL)-1β, IL-5, IL-6, IL-7, and IL-12, and of tumour necrosis factor α (TNF-α) with the use of Human Multiplex Cytokine Panels. Results The serum level of IL-1β, IL-6, and TNF-α is significantly higher in women with endometriosis compared to women free of disease, from the control group (mean 10.777, 183.027, and 131.326, respectively, compared to 3.039, 70.043, and 75.285, respectively; p = 0.002, p < 0.001, and p = 0.015, respectively). No significant differences in the serum levels of IL-5 and IL-12 were observed between the studied groups, and IL-7 had a very low detection rate. Conclusions Women with endometriosis have elevated levels of key pro-inflammatory cytokines, i.e. IL-1β, IL-6, and TNF-α. At the same time, IL-1β and IL-6 could be used as predictors for endometriosis. PMID:26155190

  18. Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella.

    PubMed

    Swaggerty, C L; Pevzner, I Y; Kogut, M H

    2015-01-01

    We recently developed a novel selection method based on identification and selection of chickens with an inherently high and low phenotype of pro-inflammatory mediators, including interleukin (IL)-6, CXCLi2, and CCLi2. The resultant high line of chickens is more resistant to Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) compared to the low line. In the current study, we sought to determine if the high line birds were also more resistant to the protozoan parasite Eimeria tenella. In three separate experiments, 14-day-old chickens from the high and low lines were challenged orally with 10×10(3) to 45×10(3) E. tenella oocysts. Birds were sacrificed 6 d postchallenge and the caeca was removed and scored for lesions and body weight gain compared to mock-infected controls. The high line birds were more resistant to intestinal pathology as demonstrated by lower lesion scores (P≤0.04) compared to the low line. There were no differences in body weight gain between the lines. The results from this study showed that in addition to enhanced resistance against Salmonella Enteritidis, high line chickens are also more resistant to the pathology associated with coccidial infections compared to the low line birds. Taken together with our initial study utilizing the high and low lines, selection based on increased pro-inflammatory mediator expression produces chickens that are more resistant to both foodborne and poultry pathogens, including cecal pathology associated with costly coccidial infections. PMID:25577794

  19. Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes.

    PubMed

    Murphy, A; Casey, A; Byrne, G; Chambers, G; Howe, O

    2016-10-01

    A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with the detection of pro-IL-1β which is a key mediator of the inflammasome complex. The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP in circulation. Furthermore, a role for the inflammasome in AgNP response was indicated by pro-IL-1β cleavage and release. These results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with respect to the potential harm that exposure may cause. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26968431

  20. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    PubMed

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance. PMID:26854212

  1. Polyphosphate Is a Novel Pro-inflammatory Regulator of Mast Cells and Is Located in Acidocalcisomes*

    PubMed Central

    Moreno-Sanchez, David; Hernandez-Ruiz, Laura; Ruiz, Felix A.; Docampo, Roberto

    2012-01-01

    Polyphosphate (polyP) is a pro-inflammatory agent and a potent modulator of the human blood-clotting system. The presence of polyP of 60 phosphate units was identified in rat basophilic leukemia (RBL-2H3) mast cells using specific enzymatic assays, urea-polyacrylamide gel electrophoresis of cell extracts, and staining of cells with 4,6-diamidino-2-phenylindole (DAPI), and the polyP-binding domain of Escherichia coli exopolyphosphatase. PolyP co-localizes with serotonin- but not with histamine-containing granules. PolyP levels greatly decreased in mast cells stimulated to degranulate by IgE. Mast cell granules were isolated and found to be acidic and decrease their polyP content upon alkalinization. In agreement with these results, when RBL-2H3 mast cells were loaded with the fluorescent calcium indicator fura-2 acetoxymethyl ester to measure their intracellular Ca2+ concentration ([Ca2+]i), they were shown to possess a significant amount of Ca2+ stored in an acidic compartment different from lysosomes. PolyP derived from RBL-2H3 mast cells stimulated bradykinin formation, and it was also detected in human basophils. All of these characteristics of mast cell granules, together with their known elemental composition, and high density, are similar to those of acidocalcisomes. The results suggest that mast cells polyP could be an important mediator of their pro-inflammatory and pro-coagulant activities. PMID:22761438

  2. Genetic architecture of the pro-inflammatory state in an extended twin-family design.

    PubMed

    Neijts, Melanie; van Dongen, Jenny; Kluft, Cornelis; Boomsma, Dorret I; Willemsen, Gonneke; de Geus, Eco J C

    2013-10-01

    In this study we examined the genetic architecture of variation in the pro-inflammatory state, using an extended twin-family design. Within the Netherlands Twin Register Biobank, fasting Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP), and fibrinogen levels were available for 3,534 twins, 1,568 of their non-twin siblings, and 2,227 parents from 3,095 families. Heritability analyses took into account the effects of current and recent illness, anti-inflammatory medication, female sex hormone status, age, sex, body mass index, smoking status, month of data collection, and batch processing. Moderate broad-sense heritability was found for all inflammatory parameters (39%, 21%, 45%, and 46% for TNF-α, IL-6, CRP and fibrinogen, respectively). For all parameters, the remaining variance was explained by unique environmental influences and not by environment shared by family members. There was no resemblance between spouses for any of the inflammatory parameters, except for fibrinogen. Also, there was no evidence for twin-specific effects. A considerable part of genetic variation was explained by non-additive genetic effects for TNF-α, CRP, and fibrinogen. For IL-6, all genetic variance was additive. This study may have implications for future genome-wide association studies by setting a clear numerical target for genome-wide screens that aim to find genetic variants regulating the levels of these pro-inflammatory markers. PMID:23953347

  3. LPS-Induced Formation of Immunoproteasomes: TNF-α and Nitric Oxide Production are Regulated by Altered Composition of Proteasome-Active Sites

    PubMed Central

    Reis, Julia; Guan, Xiu Qin; Kisselev, Alexei F.; Papasian, Christopher J.; Qureshi, Asaf A.; Morrison, David C.; Van Way, Charles W.; Vogel, Stefanie N.

    2011-01-01

    Stimulation of mouse macrophages with LPS leads to tumor necrosis factor (TNF-α) secretion and nitric oxide (NO) release at different times through independent signaling pathways. While the precise regulatory mechanisms responsible for these distinct phenotypic responses have not been fully delineated, results of our recent studies strongly implicate the cellular cytoplasmic ubiquitin–proteasome pathway as a key regulator of LPS-induced macrophage inflammatory responses. Our objective in this study was to define the relative contribution of specific proteasomal active-sites in induction of TNF-α and NO after LPS treatment of RAW 264.7 macrophages using selective inhibitors of these active sites. Our data provide evidence that LPS stimulation of mouse macrophages triggers a selective increase in the levels of gene and protein expression of the immunoproteasomes, resulting in a modulation of specific functional activities of the proteasome and a corresponding increase in NO production as compared to untreated controls. These findings suggest the LPS-dependent induction of immunoproteasome. In contrast, we also demonstrate that TNF-α expression is primarily dependent on both the chymotrypsin- and the trypsin-like activities of X, Y, Z subunits of the proteasome. Proteasome-associated post-acidic activity alone also contributes to LPS-induced expression of TNF-α. Taken together; our results indicate that LPS-induced TNF-α in macrophages is differentially regulated by each of the three proteasome activities. Since addition of proteasome inhibitors to mouse macrophages profoundly affects the degradation of proteins involved in signal transduction, we conclude that proteasome-specific degradation of several signaling proteins is likely involved in differential regulation of LPS-dependent secretion of proinflammatory mediators. PMID:21455682

  4. Absent in Melanoma 2 (AIM2) limits pro-inflammatory cytokine transcription in cardiomyocytes by inhibiting STAT1 phosphorylation.

    PubMed

    Furrer, Antonia; Hottiger, Michael O; Valaperti, Alan

    2016-06-01

    Interferon (IFN)-γ is highly upregulated during heart inflammation and enhances the production of pro-inflammatory cytokines. Absent in Melanoma 2 (AIM2) is an IFN-inducible protein implicated as a component of the inflammasome. Here we seek to determine the role of AIM2 during inflammation in cardiac cells. We found that the presence of AIM2, but not of the other inflammasome components Nod-like receptor (NLR) NLRP3 or NLRC4, specifically limited the transcription of the pro-inflammatory cytokines interleukin (IL)-6, IP-10, and tumor necrosis factor (TNF)-α in HL-1 mouse cardiomyocytes stimulated with IFN-γ and lipopolysaccharides (LPS). Similarly, AIM2 reduced pro-inflammatory cytokine transcription in primary mouse neonatal cardiomyocytes (MNC), but not in primary mouse neonatal cardiac fibroblasts (MNF). Interestingly, AIM2-dependent reduction of pro-inflammatory cytokines in cardiomyocytes was independent of Caspase-1. Mechanistically, AIM2 reduced pro-inflammatory cytokine transcription in cardiomyocytes by interacting with and inhibiting the phosphorylation of STAT1. In AIM2-depleted cardiomyocytes, increased STAT1 phosphorylation enhanced the NF-κB pathway by promoting NF-κB p65 phosphorylation and acetylation. These results show for the first time that AIM2 plays an important anti-inflammatory, yet inflammasome-independent function in cardiomyocytes. Our findings will help to further understand how the various heart cell types differently react to inflammatory stimuli. PMID:27148820

  5. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression.

    PubMed

    Kim, Yong-Ku; Na, Kyoung-Sae; Myint, Aye-Mu; Leonard, Brian E

    2016-01-01

    Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation. PMID:26111720

  6. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  7. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc.

    PubMed

    Li, Yan; Li, Kang; Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing; Zhao, Jie

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  8. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  9. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS.

    PubMed

    Wang, Lipeng; Huang, Xiao; Kong, Guiqing; Xu, Haixiao; Li, Jiankui; Hao, Dong; Wang, Tao; Han, Shasha; Han, Chunlei; Sun, Yeying; Liu, Xiangyong; Wang, Xiaozhi

    2016-09-16

    Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure characterized by major pathologic mechanisms of increased microvascular permeability and inflammation. The glycocalyx lines on the endothelial surface, which determines the vascular permeability, and heparanase play pivotal roles in the degradation of heparan sulfate (HS). HS is the major component of the glycocalyx. The aim of this study is to examine the effects of Ulinastatin (UTI) on vascular permeability and pulmonary endothelial glycocalyx dysfunction induced by lipopolysaccharide (LPS). In our study, C57BL/6 mice and human umbilical vein endothelial cells were stimulated with LPS to induce injury models. After 6 h of LPS stimulation, pulmonary pathological changes, pulmonary edema, and vascular permeability were notably attenuated by UTI. UTI inhibited LPS-induced endothelial glycocalyx destruction and significantly decreased the production of HS as determined by ELISA and immunofluorescence. UTI also reduced the active form of heparanase (50 kDa) expression and heparanase activity. Moreover, lysosome pH was investigated because heparanase (65 kDa) can be reduced easily in its active form at 50 kDa in a low pH environment within lysosome. Results showed that UTI could inhibit LPS-induced pH elevation in lysosome. In conclusion, UTI protects pulmonary endothelial glycocalyx integrity and inhibits heparanase activity during LPS-induced ARDS. PMID:27498004

  10. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption.

    PubMed

    Ozaki, Yukio; Ukai, Takashi; Yamaguchi, Masayuki; Yokoyama, Miho; Haro, Esperanza R Ayón; Yoshimoto, Mayumi; Kaneko, Takashi; Yoshinaga, Miho; Nakamura, Hirotaka; Shiraishi, Chiaki; Hara, Yoshitaka

    2009-06-01

    T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha. PMID:19437611

  11. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

    PubMed

    Darehgazani, Reyhaneh; Peymani, Maryam; Hashemi, Motahare-Sadat; Omrani, Mir Davood; Movafagh, Abolfazl; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-08-01

    TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation. PMID:26224481

  12. Control of pro-inflammatory cytokine release from human monocytes with the use of an interleukin-10 monoclonal antibody.

    PubMed

    Patel, Hardik; Davidson, Dennis

    2014-01-01

    The monocytes (MONOs) can be considered as "double-edge swords"; they have both important pro-inflammatory and anti-inflammatory functions manifested in part by cytokine production and release. Although MONOs are circulating cells, they are the major precursors of a variety of tissue-specific immune cells such as the alveolar macrophage, dendritic cells, microglial cells, and Kupffer cells. Unlike the polymorphonuclear leukocyte, which produces no or very little interleukin-10 (IL-10), the monocyte can produce this potent anti-inflammatory cytokine to control inflammation. IL-10, on an equimolar basis, is a more potent inhibitor of pro-inflammatory cytokines produced by monocytes than many anti-inflammatory glucocorticoids which are used clinically. This chapter describes how to isolate monocytes from human blood and the use of IL-10 monoclonal antibody to determine the effect and timing of endogenous IL-10 release on the production and release of pro-inflammatory cytokines. PMID:24908297

  13. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    PubMed

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  14. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis

    PubMed Central

    Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  15. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    SciTech Connect

    Itoi, Saori; Terao, Mika Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  16. Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires.

    PubMed

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Huang, Yinxi; Chen, Peng

    2011-01-15

    Nanotechnology, such as nanoelectronic biosensors, is bringing new opportunities and tools to the studies of cell biology, clinical applications, and drug discovery. In this study, crystalline silicon nanowire based field-effect transistors fabricated using top-down approach were employed to parallelly detect pro-inflammatory cytokines in the complex biological fluids (cell culture medium and blood samples) with high specificity and femtomolar sensitivity. Using this technique, the dynamic secretion of TNF-alpha and IL6 was revealed during the immune response of macrophages and rats to the stimulation of bacteria endotoxin. This technique could provide a unique platform to examine the profile of complex immune responses for fundamental studies and diagnosis. PMID:20977978

  17. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  18. Microencapsulated drug delivery: a new approach to pro-inflammatory cytokine inhibition

    PubMed Central

    Oettinger, Carl W.; D'Souza, Martin J.

    2012-01-01

    Context: This article reviews the use of albumin microcapsules 3–4 mm in size containing cytokine inhibiting drugs which include neutralizing antibodies to TNF and IL1, CNI-1493, antisense oligonucleotides to TNF and NF-kappaB, and the antioxidant catalase. Objective: Describe the effects, cellular uptake and distribution of microencapsulated drugs and the effect in both a peritonitis model of infection and a model of adjuvant-induced arthritis. Methods: The studies performed by our group are reviewed, the only such studies available. Results: Microencapsulation of these compounds produced high intracellular drug concentrations due to rapid uptake by phagocytic cells, including endothelial cells, without toxicity. All compounds produced excellent inhibition of TNF and IL1 resulting in improved animal survival in a peritonitis model of septic shock and inflammation in an arthritis model. Conclusion: Albumin microencapsulated pro-inflammatory cytokine inhibiting compounds are superior to equivalent concentration of these compounds administered in solution form. PMID:22348221

  19. Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy.

    PubMed

    Beyar-Katz, Ofrat; Magidey, Ksenia; Ben-Tsedek, Neta; Alishekevitz, Dror; Timaner, Michael; Miller, Valeria; Lindzen, Moshit; Yarden, Yosef; Avivi, Irit; Shaked, Yuval

    2016-07-01

    Multiple myeloma (MM) is a chronic progressive malignancy of plasma cells. Although treatment with the novel proteasome inhibitor, bortezomib, significantly improves patient survival, some patients fail to respond due to the development of de novo resistance. We have previously shown that cytotoxic drugs can induce pro-tumorigenic host-mediated effects which contribute to tumour re-growth and metastasis, and thus limit anti-tumour efficacy. However, such effects and their impact on tumour cell aggressiveness have not been investigated using cytostatic agents such as bortezomib. Here we show that plasma from bortezomib-treated mice significantly increases migration, viability and proliferation of MM cells in vitro, compared to plasma from vehicle treated mice. In vivo, bortezomib induces the mobilization of pro-angiogenic bone marrow cells. Furthermore, mice treated with bortezomib and subsequently were used as recipients for an injection of MM cells succumb to MM earlier than mice treated with the vehicle. We show that bortezomib promotes pro-inflammatory macrophages which account for MM cell aggressiveness, an effect which is partially mediated by interleukin-16. Accordingly, co-inoculation of MM cells with pro-inflammatory macrophages from bortezomib-treated mice accelerates MM disease progression. Taken together, our results suggest that, in addition to the known effective anti-tumour activity of bortezomib, host-driven pro-tumorigenic effects generated in response to treatment can promote MM aggressiveness, and thus may contribute to the overall limited efficacy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27037906

  20. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  1. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells.

    PubMed

    Gray, Andrea; Marrero-Berrios, Ileana; Weinberg, Jonathan; Manchikalapati, Devasena; SchianodiCola, Joseph; Schloss, Rene S; Yarmush, Joel

    2016-04-01

    Administering local anesthetics (LAs) peri- and post-operatively aims to prevent or mitigate pain in surgical procedures and after tissue injury in cases of osteoarthritis (OA) and other degenerative diseases. Innovative tissue protective and reparative therapeutic interventions such as mesenchymal stromal cells (MSCs) are likely to be exposed to co-administered drugs such as LAs. Therefore, it is important to determine how this exposure affects the therapeutic functions of MSCs and other cells in their target microenvironment. In these studies, we measured the effect of LAs, lidocaine and bupivacaine, on macrophage viability and pro-inflammatory secretion. We also examined their effect on modulation of the macrophage pro-inflammatory phenotype in an in vitro co-culture system with MSCs, by quantifying macrophage tumor necrosis factor (TNF)-α secretion and MSC prostaglandin E2 (PGE2) production. Our studies indicate that both LAs directly attenuated macrophage TNF-α secretion, without significantly affecting viability, in a concentration- and potency-dependent manner. LA-mediated attenuation of macrophage TNF-α was sustained in co-culture with MSCs, but MSCs did not further enhance this anti-inflammatory effect. Concentration- and potency-dependent reductions in macrophage TNF-α were concurrent with decreased PGE2 levels in the co-cultures further indicating MSC-independent macrophage attenuation. MSC functional recovery from LA exposure was assessed by pre-treating MSCs with LAs prior to co-culture with macrophages. Both MSC attenuation of TNF-α and PGE2 secretion were impaired by pre-exposure to the more potent bupivacaine and high dose of lidocaine in a concentration-dependent manner. Therefore, LAs can affect anti-inflammatory function by both directly attenuating macrophage inflammation and MSC secretion and possibly by altering the local microenvironment which can secondarily reduce MSC function. Furthermore, the LA effect on MSC function may persist

  2. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes.

    PubMed

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10(-13) M cortisol, whereas 1 × 10(-5) M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs. PMID:24055708

  3. Pro-Inflammatory Effects of Cook Stove Emissions on Human Bronchial Epithelial Cells

    PubMed Central

    Hawley, Brie; Volckens, John

    2012-01-01

    Approximately half the world’s population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many ‘improved’ stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial (NHBE) cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 hours following exposure. Cells exposed to emissions from the cleaner burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional, three stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. PMID:22672519

  4. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    PubMed

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. PMID:24118337

  5. Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients.

    PubMed

    Reale, Marcella; Di Bari, Maria; Di Nicola, Marta; D'Angelo, Chiara; De Angelis, Federica; Velluto, Lucia; Tata, Ada Maria

    2015-11-01

    Acetylcholine (ACh) and its receptors of muscarinic and nicotinic types are involved in the modulation of immune and inflammatory responses. In present work we have characterized the nicotinic receptors expression in PBMC of RR-MS patients and healthy donors (HD) and their ability to modulate pro-inflammatory cytokines. Here we report that the IL-1β e IL-17 levels are significantly increased in serum of RR-MS patients in respect to HD and that the PBMC stimulation with PHA caused a significant increase in pro-inflammatory cytokine levels both in RR-MS and HD subjects, with higher increase of protein release in RR-MS patients than in HD. The PBMC treatment with PHA plus nicotine produced a significant decrease of IL-1β e IL-17 both as transcript and as protein, confirming that the PBMC of the patients respond to the cholinergic stimulation more than PBMC of HD. By real time PCR and western blot analysis we have also demonstrated that in particular α7 receptor subtype appeared expressed at comparable levels both in RR-MS patients and HD. The PHA stimulation results to inhibit the α7 subunit expression while the nicotine causes a significant increase in α7 transcripts but only in MS patients. The data obtained highlight the role of α7 receptor subtype in the modulation of anti-inflammatory cytokines also in MS. Moreover the ability of nicotine to up-regulate the expression of α7 receptor subtype in RR-MS patients, indicates that nicotinic receptor stimulation may contribute to down-modulate the inflammation occurred in MS by a positive feedback control of its expression. PMID:26209886

  6. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling.

    PubMed

    Sakharwade, Sanica C; Mukhopadhaya, Arunika

    2015-12-01

    Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway. PMID:26454478

  7. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  8. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  9. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway.

    PubMed

    Huang, Yujie; Luo, Xuwei; Li, Xiaorui; Song, Xiuming; Wei, Libin; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2015-09-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor. PMID:25956732

  10. Molecular Hydrogen Reduces LPS-Induced Neuroinflammation and Promotes Recovery from Sickness Behaviour in Mice

    PubMed Central

    Spulber, Stefan; Edoff, Karin; Hong, Lie; Morisawa, Shinkatsu; Shirahata, Sanetaka; Ceccatelli, Sandra

    2012-01-01

    Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW) improves the outcome of lipopolysaccharide (LPS)-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p.) or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10). In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line), suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen. PMID:22860058

  11. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  12. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  13. Blockade of Interplay between IL-17A and Endoplasmic Reticulum Stress Attenuates LPS-Induced Lung Injury

    PubMed Central

    Kim, So Ri; Kim, Hee Jung; Kim, Dong Im; Lee, Kyung Bae; Park, Hae Jin; Jeong, Jae Seok; Cho, Seong Ho; Lee, Yong Chul

    2015-01-01

    IL-17 is a cytokine mainly from IL-17-producing T cells, which are one of subsets of CD4+ T cells and play a role in adaptive immune system. Recent studies have demonstrated that IL-17A can act rapidly as an innate immune responder during infection before the onset of its classic adaptive immune response. This role of IL-17A in innate immune response is implicated in lipopolysaccharide (LPS)-induced lung inflammation. Very recently, we have reported that endoplasmic reticulum (ER) stress is involved in LPS-induced lung inflammation in vivo and in vitro. This study aimed to elucidate the role of IL-17A in LPS-induced lung injury, focusing on the link with ER stress. We treated a murine model of LPS-induced lung injury with IL-17A neutralizing antibody and 4-phenylbutyrate (4-PBA), a representative ER stress inhibitor. In addition, we evaluated the effects of IL-17A on ER stress in LPS-stimulated bronchial epithelial cells. Our results showed that inhibition of IL-17A decreased LPS-induced pulmonary neutrophilia, vascular leakage, nuclear translocation of nuclear factor-κB (NF-κB), infiltration of dendritic cells, increased expression of Toll-like receptor 4 (TLR4), activation of NLRP3 inflammasome, and increased ER stress in the lung. 4-PBA or TAK-242, a TLR4 inhibitor attenuated expression of IL-17A thereby improving LPS-induced lung inflammation. Intriguingly, we observed that stimulation with LPS increased expression of IL-17A in airway epithelial cells and co-stimulation with IL-17A further increased ER stress and NF-κB activation. This study indicates that the interrelationship between IL-17A and ER stress plays an important role in LPS-induced injury showing a positive feedback in airway epithelial cells and suggests that targeting their interaction can be a potential therapeutic approach to overcome one of severe refractory pulmonary disorders. PMID:26516372

  14. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans.

    PubMed

    Hayes, James B; Sircy, Linda M; Heusinkveld, Lauren E; Ding, Wandi; Leander, Rachel N; McClelland, Erin E; Nelson, David E

    2016-07-22

    Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection. PMID:27231343

  15. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    PubMed

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. PMID:27288632

  16. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  17. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target.

    PubMed

    Ciesielska, Anna; Kwiatkowska, Katarzyna

    2015-07-01

    You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract. PMID:25966354

  18. Sophocarpine displays anti-inflammatory effect via inhibiting TLR4 and TLR4 downstream pathways on LPS-induced mastitis in the mammary gland of mice.

    PubMed

    Wang, Dehai; Xu, Niannian; Zhang, Zhenbiao; Yang, Shijin; Qiu, Changwei; Li, Chengye; Deng, Ganzhen; Guo, Mengyao

    2016-06-01

    Mastitis is defined as the inflammation of the mammary gland. LPS, which is widely used to induce mastitis models for the study of this disease, triggers similar inflammation as Escherichia coli. Sophocarpine, isolated from Sophora alopecuroides L., exhibits multiple biological properties. The aim of the present study was to determine the anti-inflammatory effect and mechanism of action of sophocarpine on mastitis within an LPS-induced mouse model. ELISA and western blotting were performed to detect protein levels. The qPCR was performed to detect mRNA levels. The ELISA and qRT-PCR results showed that sophocarpine inhibited the expression of TNF-α, IL-1β and IL-6 in a dose-dependent manner. However, sophocarpine suppressed TLR4 expression. Further study showed that sophocarpine could suppress the phosphorylation of IκBα, p65 and p38. These results confirm that sophocarpine played an anti-inflammatory role in LPS-induced mastitis by regulating TLR4 and the NF-κB and MAPK signaling pathways in mammary gland tissues. Therefore, sophocarpine may be a potential therapeutic drug for the treatment of mastitis. PMID:27039209

  19. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  20. Lung mechanics are both dose and tidal volume dependant in LPS-induced lung injury.

    PubMed

    Dixon, Dani-Louise; De Smet, Hilde R; Bersten, Andrew D

    2009-07-31

    Endotoxin stimulus plays a significant role in various forms of acute lung injury (ALI) which may be exacerbated by mechanical ventilation. Here, we identify the temporal pathophysiologic sequence following inhaled lipopolysaccharide (LPS) and subsequently examine both LPS dose and V(T) relationships. Rats received intratracheal LPS (3, 9 or 15 mg/kg) prior to mechanical ventilation (V(T)=6, 9 or 12 ml/kg) and measurement of forced impedance mechanics for up to 4h. LPS-induced lung injury was achieved within the 15 min of LPS instillation with a 78% decrease in PaO(2) promptly followed by approximately 30% deterioration in tissue elastance. Despite a 41% increase in total surfactant, the active disaturated phospholipid fraction decreased 3-7% with decreasing PaO(2) and tissue mechanics and with increases in total lung lavage protein (150%) and wet-to-dry lung weight ratio (10%). V(T)=12 ml/kg resulted in an additional deterioration in tissue resistance (130%) and elastance (63%). These results suggest that LPS-induced lung injury is both LPS dose and V(T) sensitive, supporting a 'two hit' model of ALI. PMID:19539791

  1. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation. PMID:23122161

  2. Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages

    PubMed Central

    Liang, Xueya; Lin, Tian; Sun, Guangjie; Beasley-Topliffe, Laura; Cavaillon, Jean-Marc; Warren, H. Shaw

    2009-01-01

    Detection of LPS in tissues is an integral component of innate immunity that acts to protect against invasion by Gram-negative bacteria. Plasma down-regulates LPS-induced cytokine production from macrophages, thereby limiting systemic inflammation in blood and distant tissues. To identify the protein(s) involved in this process, we used classical biochemical chromatographic techniques to identify fractions of mouse sera that suppress LPS-induced TNF from bone marrow-derived macrophages (BMDMs). Fractionation yielded microgram quantities of a protein that was identified by MS to be hemopexin (Hx). Mouse Hx purified on hemin-agarose beads and rhHx decreased the production of cytokines from BMDMs and peritoneal macrophages induced by LPS. Preincubation of LPS with Hx did not affect the activity of LPS on LAL, whereas preincubation of Hx with macrophages followed by washing resulted in decreased activity of these cells in response to LPS, suggesting that Hx acts on macrophages rather than LPS. Heme-free Hx did not stimulate HO-1 in the macrophages. Purified Hx also decreased TNF and IL-6 from macrophages induced by the synthetic TLR2 agonist Pam3Cys. Our data suggest that Hx, which is an acute-phase protein that increases during inflammation, limits TLR4 and TLR2 agonist-induced macrophage cytokine production directly through a mechanism distinct from HO-1. PMID:19395472

  3. Effect of anti-dementia drugs on LPS induced neuroinflammation in mice.

    PubMed

    Tyagi, Ethika; Agrawal, Rahul; Nath, Chandishwar; Shukla, Rakesh

    2007-05-01

    Inflammation has been recently implicated in pathogenesis of dementia disorders. Effect of anti-dementia (Acetylcholinesterase inhibitor) drugs tacrine, rivastigmine and donepezil were studied on neuroinflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) in mice. Interleukin-2 (IL-2) and isoforms of acetylcholinesterase (AChE) were estimated in different brain areas as marker for neuroinflammation and cholinergic activity respectively. LPS significantly increased the level of IL-2 in all the brain areas while enhancement of AChE activity varied in brain areas. It was found that administration of tacrine, rivastigmine and donepezil in mice significantly attenuated the LPS induced increased levels of IL-2 along with the significant reduction of AChE activity predominantly in salt soluble (SS) fraction as compared to the detergent soluble (DS) fraction in a dose dependent manner. In vitro effect of LPS was also studied in different brain areas. LPS significantly increased the AChE activity in SS fractions but the significant increase was not found in DS fractions. The present study indicate that cholinesterase inhibitor anti-dementia drugs are effective against LPS induced neuroinflammation that may be linked to enhanced cholinergic activity. PMID:17395211

  4. Effects of matrix metalloproteinase inhibitor on LPS-induced goblet cell metaplasia.

    PubMed

    Kim, Je Hyeong; Lee, Sung Yong; Bak, Sang Myeon; Suh, In Bum; Lee, Sang Yeub; Shin, Chol; Shim, Jae Jeong; In, Kwang Ho; Kang, Kyung Ho; Yoo, Se Hwa

    2004-07-01

    Bacterial infections of the lung are known to induce inflammatory responses, which lead to mucus hypersecretion. Moreover, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and its activation. Furthermore, matrix metalloproteinases (MMPs), especially MMP-9, have been reported to promote the transmigration of activated neutrophils. In this study, we investigated the associations between lipopolysaccharide (LPS)-induced goblet cell (GC) metaplasia and EGFR expression and the effects of MMP inhibitor (MMPI). Various concentrations of LPS were instilled into the tracheas of pathogen-free Sprague-Dawley rats, and airways were examined at different times after LPS instillation. To examine the role of MMP-9, we treated rats 3 days before LPS instillation and daily thereafter with MMPI. Neutrophilic infiltration, Alcian blue/periodic acid-Schiff (AB/PAS) staining, and immunohistochemical staining for MUC5AC, EGFR, and MMP-9 were performed. The instillation of LPS increased AB/PAS and MUC5AC staining in time- and dose-dependent manners, and treatment with MMPI significantly prevented GC metaplasia. The instillation of LPS into the trachea also induced neutrophilic infiltration and EGFR and MMP-9 expression in the airway epithelium, and MMPI was found to significantly prevent neutrophil recruitment, GC metaplasia, and EGFR and MMP-9 expression. This study demonstrates that the MMP-9 and EGFR cascades are associated with LPS-induced mucus hypersecretion. PMID:15020297

  5. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response.

    PubMed

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Lai, Dengming; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli; Shu, Qiang; Xu, Jianguo

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  6. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood.

    PubMed

    Ahmad, Syahida; Israf, Daud A; Lajis, Nordin Hj; Shaari, Khozirah; Mohamed, Habsah; Wahab, Afiza A; Ariffin, Khaizurin T; Hoo, Wei Yee; Aziz, Nasaruddin A; Kadir, Arifah A; Sulaiman, Mohamad R; Somchit, Muhammad N

    2006-05-24

    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on

  7. Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study

    PubMed Central

    2012-01-01

    Background Pro-inflammatory cytokines play a key role in bone remodeling. Inflammation is highly prevalent in CKD-5D patients, but the relationship between pro-inflammatory cytokines and fractures in CKD-5D patients is unclear. We studied the relationship between inflammatory cytokines and incident bone fractures in a cohort of CKD-5D patients. Methods In 100 CKD-5D patients (66 on HD, 34 on CAPD; males:63, females:37; mean age: 61 ± 15; median dialysis vintage: 43 months) belonging to a single renal Unit, we measured at enrolment bone metabolic parameters (intact PTH, bone and total alkaline phosphatase, calcium, phosphate) and inflammatory cytokines (TNF-α, IL-6, CRP). Patients were followed-up until the first non traumatic fracture. Results During follow-up (median: 74 months; range 0.5 -84.0) 18 patients experienced fractures. On categorical analysis these patients compared to those without fractures had significantly higher intact PTH (median: 319 pg/ml IQ range: 95–741 vs 135 pg/ml IQ: 53–346; p = 0.04) and TNF-α levels (median: 12 pg/ml IQ: 6.4-13.4 vs 7.8 pg/ml IQ: 4.6-11; p = 0.02). Both TNF-α (HR for 5 pg/ml increase in TNF-α: 1.62 95% CI: 1.05-2.50; p = 0.03) and intact PTH (HR for 100 pg/ml increase in PTH: 1.15 95% CI: 1.04-1.27; p = 0.005) predicted bone fractures on univariate Cox’s regression analysis. In restricted (bivariate) models adjusting for previous fractures, age, sex and other risk factors both PTH and TNF-α maintained an independent association with incident fractures. Conclusions In our bivariate analyses TNF-α was significantly associated with incident fractures. Analyses in larger cohorts and with adequate number of events are needed to firmly establish the TNF α -fracture link emerged in the present study. PMID:23043229

  8. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells.

    PubMed

    Xu, Jing; Qi, Yang; Xu, Wei-Heng; Liu, Ying; Qiu, Lie; Wang, Ke-Qi; Hu, Hong-Gang; He, Zhi-Gao; Zhang, Jun-Ping

    2016-07-01

    Dendritic cell (DC) maturation process is a crucial step for the development of T cell immune responses and immune tolerance. In this study, we evaluated MASM, a novel derivative of the natural compound matrine that possesses a significant anti-inflammatory and immune-regulating property, for its efficacy to inhibit lipopolysaccharides (LPS)-induced maturation of murine bone marrow-derived dendritic cells. Here we show that MASM profoundly suppresses LPS-induced phenotypic and functional DC maturation. MASM inhibited LPS-induced expression of costimulatory molecules CD80 and CD86 in a concentration-dependent manner. MASM also attenuated LPS-induced IL-12p70, TNF-α, IL-6 and NO release of DCs. The MASM-treated DCs were highly efficient at antigen capture via mannose receptor-mediated endocytosis but showed weak stimulatory capacity for allogeneic T cell proliferation. Furthermore, MASM inhibited LPS-induced PI3K/Akt, MAPK and NF-κB pathways. These novel findings provide new insight into the immunopharmacological role of MASM in impacting on the DCs. PMID:27107799

  9. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  10. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions. PMID:27473957

  11. Temporal expression of pro-inflammatory cytokines and inducible nitric oxide synthase in experimental acute Chagasic cardiomyopathy.

    PubMed Central

    Chandrasekar, B.; Melby, P. C.; Troyer, D. A.; Colston, J. T.; Freeman, G. L.

    1998-01-01

    To characterize the kinetics of myocardial cytokine and inducible nitric oxide synthase (iNOS) expression in acute Chagasic cardiomyopathy, we studied a rat model of acute Trypanosoma cruzi infection. Rats were euthanized 36 hours and 5, 10, and 15 days after infection, and hearts were collected for histology, mRNA, and protein analyses. Histological analysis of myocardium showed a progressive increase in the number of amastigotes and mononuclear inflammatory cells. Organisms were first detected 5 days after intraperitoneal inoculation as isolated nests and became numerous by day 15. Northern blot analysis of total RNA revealed no signal for interleukin (IL)-1beta or tumor necrosis factor (TNF)-alpha and a weak signal for IL-6 in control hearts. High levels of expression for the three genes were detected in the infected animals at 36 hours after infection. Although IL-1beta and IL-6 levels increased steadily up to 10 days, TNF-alpha levels were the highest at 5 days, remained high at 10 days, and declined thereafter. Western blot analysis showed similar results to that of mRNA expression. No signal was detected for iNOS in the controls, but both its mRNA and protein were found in the infected animals, with levels being highest at 15 days after infection. Immunohistochemistry revealed no iNOS immunoreactivity in uninfected animals, but intense iNOS staining was detected in blood vessels of infected animals, which decreased progressively with period of infection. Positive staining for iNOS in cardiomyocytes was first detected at 36 hours after infection (at a time when there was no histological inflammatory reaction), which steadily increased, being the highest at 15 days after infection. These results indicate that, in addition to mechanical damage by T. cruzi, substantial pro-inflammatory cytokine production within the myocardium is likely to participate in the pathophysiology of acute Chagasic cardiomyopathy. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 7

  12. Multi-analyte profiling in human carotid atherosclerosis uncovers pro-inflammatory macrophage programming in plaques.

    PubMed

    Shalhoub, Joseph; Viiri, Leena E; Cross, Amanda J; Gregan, Scott M; Allin, David M; Astola, Nagore; Franklin, Ian J; Davies, Alun H; Monaco, Claudia

    2016-05-01

    Molecular characterisation of vulnerable atherosclerosis is necessary for targeting functional imaging and plaque-stabilising therapeutics. Inflammation has been linked to atherogenesis and the development of high-risk plaques. We set to quantify cytokine, chemokine and matrix metalloproteinase (MMP) protein production in cells derived from carotid plaques to map the inflammatory milieu responsible for instability. Carotid endarterectomies from carefully characterised symptomatic (n=35) and asymptomatic (n=32) patients were enzymatically dissociated producing mixed cell type atheroma cell suspensions which were cultured for 24 hours. Supernatants were interrogated for 45 analytes using the Luminex 100 platform. Twenty-nine of the 45 analytes were reproducibly detectable in the majority of donors. The in vitro production of a specific network of mediators was found to be significantly higher in symptomatic than asymptomatic plaques, including: tumour necrosis factor α, interleukin (IL) 1β, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), CCL5, CCL20, CXCL9, matrix metalloproteinase (MMP)-3 and MMP-9. Ingenuity pathway analysis of differentially expressed analytes between symptomatic and asymptomatic patients identified a number of key biological pathways (p< 10(-25)). In conclusion, the carotid artery plaque culprit of ischaemic neurological symptoms is characterised by an inflammatory milieu favouring inflammatory cell recruitment and pro-inflammatory macrophage polarisation. PMID:26763091

  13. Pro-inflammatory effects of a litchi protein extract in murine RAW264.7 macrophages

    PubMed Central

    Wang, Xiaoli; Hu, Xiaorong; Yan, Huiqing; Ma, Zhaocheng; Deng, Xiuxin

    2016-01-01

    It has been observed that the consumption of litchi often causes symptoms characterized by itching or sore throat, gum swelling, oral cavity ulcers and even fever and inflammation, which significantly impair the quality of life of a large population. Using the RAW264.7 cell line, a step-by-step strategy was used to screen for the components in litchi fruits that elicited adverse reactions. The adverse reaction fractions were identified by mass spectrometry and analyzed using the SMART program, and a sequence alignment of the homologous proteins was performed. MTT tests were used to determine the cytotoxicity of a litchi protein extract in RAW264.7 macrophages, and real-time PCR was applied to analyze the expression of inflammatory genes in the RAW264.7 cells treated with lipopolysaccharide or the litchi protein extract. The results showed that the litchi water-soluble protein extract could increase the production of the pro-inflammatory mediators IL-1β, iNOS and COX-2, and the anti-inflammatory mediator HO-1 in the RAW264.7 cell line. The 14-3-3-like proteins GF14 lambda, GF14 omega and GF14 upsilon were likely the candidate proteins that caused the adverse effects. PMID:27195125

  14. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes

    PubMed Central

    Seo, Won Yong; Youn, Gi Soo; Choi, Soo Young; Park, Jinseu

    2015-01-01

    Up-regulation of cell adhesion molecules and proinflammatory cytokines contributes to enhanced monocyte adhesiveness and infiltration into the skin, during the pathogenesis of various inflammatory skin diseases, including atopic dermatitis. In this study, we examined the anti-inflammatory effects of butein, a tetrahydroxychalcone, and its action mechanisms using TNF-α-stimulated keratinocytes. Butein significantly inhibited TNF-α-induced ICAM-I expression and monocyte adhesion in human keratinocyte cell line HaCaT. Butein also decreased TNF-α-induced pro-inflammatory mediators, such as IL-6, IP-10 and MCP-1, in HaCaT cells. Butein decreased TNF-α-induced ROS generation in a dose-dependent manner in HaCaT cells. In addition, treatment of HaCaT cells with butein suppressed TNF-α-induced MAPK activation. Furthermore, butein suppressed TNF-α-induced NF-kappaB activation. Overall, our results indicate that butein has immunomodulatory activities by inhibiting expression of proinflammatory mediators in keratinocytes. Therefore, butein may be used as a therapeutic agent for the treatment of inflammatory skin diseases. [BMB Reports 2015; 48(9): 495-500] PMID:25541056

  15. Altered Expression of Pro-inflammatory Cytokines in Ovarian Follicles of Cows with Cystic Ovarian Disease.

    PubMed

    Baravalle, M E; Stassi, A F; Velázquez, M M L; Belotti, E M; Rodríguez, F M; Ortega, H H; Salvetti, N R

    2015-01-01

    A growing body of evidence suggests that ovulation shares many of the features of an inflammatory reaction and that cytokines play many diverse and important roles in reproductive biology. The aim of this study was to examine the expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6 and tumour necrosis factor (TNF)-α in ovarian cells from cows with cystic ovarian disease (COD) as compared with that in ovarian structures from regularly cycling cows. Expression of genes encoding IL-1α, IL-6 and TNF-α was detected by real-time polymerase chain reaction in follicular cells from ovaries from healthy cows and cows with COD with no significant differences. However, immunohistochemistry showed increased expression of IL-1α, IL-6 and TNF-α in cystic follicles, suggesting that this expression may be related to the persistence of follicular cysts. The effect of COD was evident for IL-1α and TNF-α, and a follicular structure-disease interaction was observed in the expression of all the cytokines evaluated. Thus, altered expression of these proinflammatory cytokines may be related to ovulation failure and development of follicular cysts. PMID:26065705

  16. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation.

    PubMed

    Maurya, Anil K; Singh, Monika; Dubey, Vijaya; Srivastava, Suchita; Luqman, Suaib; Bawankule, Dnyaneshwar U

    2014-01-01

    α-(-)-bisabolol is a natural monocyclic sesquiterpene present in the essential oil has generated considerable interest in the chemical and pharmaceutical industries and currently in use in various formulations, mainly in cosmetics. This study was undertaken to evaluate its therapeutic profile against skin inflammation using in-vitro, in-vivo and in-silico assays. Lipopolysachharide (LPS) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced production of proinflammatory cytokines (TNF-α and IL-6) in macrophage cells as well as in TPA-induced skin inflammation in mice was significantly inhibited by α-(-)-bisabolol. TPA-induced ear thickness, ear weight and lipid peroxidation and histopathological damage in the ear tissue were also significantly inhibited by topical application of α-(-)-bisabolol in a dose dependent manner. In-vitro and in-vivo toxicity profiles indicate that it is safe for topical application on skin. Molecular docking study also revealed its strong binding affinity to the active site of the pro-inflammatory proteins. These findings suggested that α-(-)-bisabolol may be a useful therapeutic candidate for the treatment of skin inflammation. PMID:24894548

  17. Potent Inhibitors of Pro-Inflammatory Cytokine Production Produced by a Marine-Derived Bacterium

    PubMed Central

    Strangman, Wendy K.; Kwon, Hak Cheol; Broide, David; Jensen, Paul R.; Fenical, William

    2009-01-01

    Cytokines produced through the Antigen Presenting Cell (APC)–T-cell interaction play a key role in the activation of the allergic asthmatic response. Evaluating small molecules that inhibit the production of these pro-inflammatory proteins is therefore important for the discovery of novel chemical structures with potential anti-asthma activity. We adapted a mouse splenocyte cytokine assay to screen a library of 2,500 marine microbial extracts for their ability to inhibit TH2 cytokine release and identified potent activity in a marine-derived strain CNQ431, identified as a Streptomyces species. Bioactivity guided fractionation of the organic extract of this strain led to the isolation of ten new 9-membered bis-lactones, splenocins A-J (1–10). The new compounds display potent biological activities, comparable to that of the corticosteroid dexamethasone, with IC50 values from 2–50 nanomolar in the splenocyte cytokine assay. This study provides the foundation for the optimization of these potent anti-inflammatory compounds for development in the treatment of asthma. PMID:19323483

  18. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors

    PubMed Central

    Panagos, PG; Vishwanathan, R; Penfield-Cyr, A; Matthan, NR; Shivappa, N; Wirth, MD; Hebert, JR; Sen, S

    2016-01-01

    OBJECTIVE To determine the impact of maternal obesity on breastmilk composition. STUDY DESIGN Breastmilk and food records from 21 lean and 21 obese women who delivered full-term infants were analyzed at 2 months post-partum. Infant growth and adiposity were measured at birth and 2 months of age. RESULT Breastmilk from obese mothers had higher omega-6 to omega-3 fatty acid ratio and lower concentrations of docosahexaenoic acid, eicosapentaenoic acid, docasapentaenoic acid and lutein compared with lean mothers (P < 0.05), which were strongly associated with maternal body mass index. Breastmilk saturated fatty acid and monounsaturated fatty acid concentrations were positively associated with maternal dietary inflammation, as measured by dietary inflammatory index. There were no differences in infant growth measurements. CONCLUSION Breastmilk from obese mothers has a pro-inflammatory fatty acid profile and decreased concentrations of fatty acids and carotenoids that have been shown to have a critical role in early visual and neurodevelopment. Studies are needed to determine the link between these early-life influences and subsequent cardiometabolic and neurodevelopmental outcomes. PMID:26741571

  19. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response

    PubMed Central

    Santiago, Felix W.; Halsey, Eric S.; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A.; Ramal, Cesar; Ampuero, Julia S.; Aguilar, Patricia V.

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  20. Metabolic dysfunction drives a mechanistically distinct pro-inflammatory phenotype in adipose tissue macrophages

    PubMed Central

    Kratz, Mario; Coats, Brittney R.; Hisert, Katherine B.; Hagman, Derek; Mutskov, Vesco; Peris, Eduard; Schoenfelt, Kelly Q.; Kuzma, Jessica N.; Larson, Ilona; Billing, Peter S.; Landerholm, Robert W.; Crouthamel, Matthew; Gozal, David; Hwang, Seungmin; Singh, Pradeep; Becker, Lev

    2014-01-01

    Adipose tissue macrophage (ATM)-driven inflammation plays a key role in insulin resistance; however, factors activating ATMs are poorly understood. Using a proteomics approach, we show that markers of classical activation are absent on ATMs from obese humans, but readily detectable on airway macrophages of patients with cystic fibrosis, a disease of chronic bacterial infection. Moreover, treating macrophages with glucose, insulin, and palmitate – conditions characteristic of the metabolic syndrome – produces a ‘metabolically-activated’ phenotype distinct from classical activation. Markers of metabolic activation are expressed by pro-inflammatory ATMs in obese humans/mice and are positively correlated with adiposity. Metabolic activation is driven by independent pro- and anti-inflammatory pathways, which regulate balance between cytokine production and lipid metabolism. We identify PPARγ and p62/SQSTM1 as two key proteins that promote lipid metabolism and limit inflammation in metabolically-activated macrophages. Collectively, our data provide important mechanistic insights into pathways that drive the metabolic disease-specific phenotype of macrophages. PMID:25242226

  1. Regulation of autoimmune arthritis by the pro-inflammatory cytokine interferon-γ

    PubMed Central

    Kim, Eugene Y.; Chi, Howard H.; Bouziane, Mohammed; Gaur, Amitabh; Moudgil, Kamal D.

    2008-01-01

    The pathogenesis of T cell-mediated diseases like rheumatoid arthritis (RA) has typically been explained in the context of the Th1-Th2 paradigm: the initiation/propagation by pro-inflammatory cytokines, and downregulation by Th2 cytokines. However, in our study based on the adjuvant-induced arthritis (AA) model of RA, we observed that Lewis (LEW) (RT.1l) rats at the recovery phase of AA showed the highest level of IFN-γ in recall response to mycobacterial heat-shock protein 65 (Bhsp65), whereas AA-resistant Wistar-Kyoto (WKY) (RT.1l) rats secreted high levels of IFN-γ much earlier following disease induction. However, no significant secretion of IL-10 or TGF-β was observed in either strain. Furthermore, pre-treatment of LEW rats with a peptide of self (rat) hsp65 (R465), which induced T cells secreting predominantly IFN-γ, afforded protection against AA and decreased IL-17 expression by the arthritogenic epitope-restimulated T cells. These results provide a novel perspective on the pathogenesis of autoimmune arthritis. PMID:18276192

  2. Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice.

    PubMed

    Sabilallah, Mounira; Fontanaud, Pierre; Linck, Nathalie; Boussadia, Badreddine; Peyroutou, Ronan; Lasgouzes, Thibault; Rassendren, François A; Marchi, Nicola; Hirbec, Helene E

    2016-01-01

    Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered. PMID:26963100

  3. Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice

    PubMed Central

    Sabilallah, Mounira; Fontanaud, Pierre; Linck, Nathalie; Boussadia, Badreddine; Peyroutou, Ronan; Lasgouzes, Thibault; Rassendren, François A.

    2016-01-01

    Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered. PMID:26963100

  4. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts.

    PubMed

    Cuevas-Rodríguez, Edith O; Dia, Vermont P; Yousef, Gad G; García-Saucedo, Pedro A; López-Medina, José; Paredes-López, Octavio; Gonzalez de Mejia, Elvira; Lila, Mary Ann

    2010-09-01

    Total polyphenolic and anthocyanin- and proanthocyanidin-rich fractions from wild blackberry genotypes (WB-3, WB-7, WB-10, and WB-11), a domesticated noncommercial breeding line (UM-601), and a commercial cultivar (Tupy) were evaluated for inhibition of pro-inflammatory responses [nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and prostaglandin E2 (PGE2)] in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). At 50 microM [cyanidin-3-O-glucoside (C3G) or catechin equivalent], most fractions significantly (P<0.05) inhibited all markers. The anthocyanin-rich fraction from WB-10 and the proanthocyanidin-rich fraction from UM-601 exhibited the highest NO inhibitory activities (IC50=16.1 and 15.1 microM, respectively). Proanthocyanidin-rich fractions from the wild WB-10 showed the highest inhibition of iNOS expression (IC50=8.3 microM). Polyphenolic-rich fractions from WB-7 and UM-601 were potent inhibitors of COX-2 expression (IC50=19.1 and 19.3 microM C3G equivalent, respectively). For most of the extracts, antioxidant capacity was significantly correlated with NO inhibition. Wild genotypes of Mexican blackberries, as rich sources of polyphenolics that have both antioxidant and anti-inflammatory properties, showed particular promise for inclusion in plant improvement programs designed to develop new varieties with nutraceutical potential. PMID:20715775

  5. Comparative evaluation of pro-inflammatory cytokine levels in pulpotomized primary molars.

    PubMed

    Ozdemir, Yasemin; Kutukculer, Necil; Topaloglu-Ak, Asli; Kose, Timur; Eronat, Cemal

    2015-06-01

    The present in vivo study was performed to investigate the levels of the pro-inflammatory cytokines, interleukin (IL)-1α, IL-6, and IL-8, in primary molars for which pulpotomy was clinically indicated, and to evaluate the success rates of three different pulpotomy agents employed for cariously (CExp) or mechanically exposed (MExp) primary molars. Forty-seven primary molars were classified as MExp or CExp according to the type of pulpal exposure. Pulp tissue was harvested and analyzed using enzyme-linked immunosorbent assay (ELISA). Subsequently, three pulpotomy agents-calcium hydroxide (CH), mineral trioxide aggregate (MTA), and formocresol (FC)-were applied randomly, and the outcome was observed radiographically for 18 months. Levels of IL-6 and IL-8 were significantly higher in CExp pulp than in MExp pulp (P < 0.05). In the CH pulpotomy group, MExp teeth showed a higher success rate than CExp teeth. There was no significant difference in success rate between MExp and CExp teeth in both the FC and MTA groups. The levels of IL-6 and IL-8 have the potential to become indicators of pulp status and can be monitored by researchers to make the prognosis of vital pulp therapies less uncertain. As MTA and FC yielded higher rates of success than CH in CExp teeth, the choice of pulpotomy agent appears to be important in this context. PMID:26062864

  6. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    PubMed

    Santiago, Felix W; Halsey, Eric S; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A; Ramal, Cesar; Ampuero, Julia S; Aguilar, Patricia V

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  7. Heparin and LPS-induced COX-2 expression in airway cells: a link between its anti-inflammatory effects and GAG sulfation

    PubMed Central

    Yi, Na Young; Newman, Donna R.; Zhang, Huiying; Johansson, Helena Morales; Sannes, Philip L.

    2016-01-01

    Purpose/Aim Previous studies have indicated that the sulfated polysaccharide heparin has anti-inflammatory effects. However, the mechanistic basis for these effects has not been fully elucidated. Materials and Methods NCI-H292 (mucoepidermoid) and HBE-1 (normal) human bronchial epithelial cells were treated with LPS alone or in the presence of high-molecular-weight (HMW) fully-sulfated heparin or desulfated HMW heparin. Cells were harvested to examine the phosphorylation levels of ERK1/2, p38, and NF-κB p65 and COX-2 protein expression by Western blot and gene expression of both COX-2 and CXCL-8 by TaqMan qRT-PCR. Results Heparin is known to exert an influence on receptor-mediated signaling through its ability to both potentiate and inhibit the receptor-ligand interaction, depending upon its concentration. In H292 cells, fully-sulfated HMW heparin significantly reduced LPS-induced gene expression of both COX-2 and CXCL-8 for up to 48 hours, while desulfated heparin had little to no significant suppressive effect on signaling or on COX-2 gene or protein expression. Desulfated heparin, initially effective at preventing LPS-induced CXCL8 up-regulation, reduced CXCL8 transcription at 24 hours. In contrast, in normal HBE-1 cells, fully-sulfated heparin significantly suppressed only ERK signaling, COX-2 gene expression at 12 hours, and CXCL-8 gene expression at 6 and 12 hours, while desulfated heparin had no significant effects on LPS-stimulated signaling or on gene or protein expression. Sulfation determines heparin’s influence and may reflect the moderating role of GAG sulfation in lung injury and health. Conclusions Heparin’s anti-inflammatory effects result from its non-specific suppression of signaling and gene expression and are determined by its sulfation. PMID:26495958

  8. Total flavonoids of Hedyotis diffusa Willd inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κB and MAPK signaling pathways

    PubMed Central

    CHEN, YUNLONG; LIN, YANYAN; LI, YACHAN; LI, CANDONG

    2016-01-01

    Nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways play a central role in inflammatory responses. Total flavonoids of Hedyotis diffusa Willd (TFHDW) are active compounds derived from Hedyotis diffusa Willd, which has been long used in Chinese traditional medicine for the treatment of various inflammatory diseases, including ulcerative colitis and bronchitis; however, the precise mechanisms underlying the effects of TFHDW are largely unknown. In the present study, the anti-inflammatory effect of TFHDW was evaluated and the underlying molecular mechanisms were investigated in an in vitro inflammatory model comprising lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The results indicated that TFHDW inhibited the inflammatory response as it significantly reduced the LPS-induced expression of pro-inflammatory nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in a concentration-dependent manner, without causing cytotoxicity. In addition, the mRNA expression of inducible nitric oxide synthase, TNF-α, IL-6 and IL-1β was suppressed by treatment with TFHDW in LPS-stimulated RAW 264.7 cells. Moreover, TFHDW treatment significantly inhibited the LPS-induced activation of NF-κB via the suppression of inhibitor of κB (IκB) phosphorylation, and reduced the phosphorylation of MAPK signaling molecules (p38, c-Jun N-terminal protein kinase and extracellular signal-regulated kinase 1/2), which resulted in the inhibition of cytokine expression. These findings suggest that TFHDW exerted anti-inflammatory activity via suppression of the NF-κB and MAPK signaling pathways. PMID:26998046

  9. P2Y12 receptor inhibition and LPS-induced coagulation.

    PubMed

    Essex, David W; Rao, A Koneti

    2016-03-01

    Platelets play a major role in the complex interactions involved in blood coagulation via multiple mechanisms. As reported in this issue, Schoergenhofer et al. tested the hypothesis that platelet inhibition by prasugrel, a potent platelet P2Y12 ADP receptor antagonist, attenuates the effect of lipopolysaccharide (LPS) on the blood coagulation system in healthy human subjects. LPS, a bacterial product with potent pro-inflammatory and pro-thrombotic effects, plays a central role in sepsis. It activates monocytes and endothelial cells via Toll-like receptor (TLR) 4 and other TLRs to stimulate production of TF and other pro-coagulant molecules, chemokines and cytokines. Treatment with prasugrel did not decrease biomarkers of coagulaion. A better understanding of the relative roles of platelet and coagulation mechanisms in triggering the pro-thrombotic state may lead to more effective antithrombotic strategies. PMID:26846581

  10. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  11. Recombinant human brain natriuretic peptide attenuates LPS-induced cellular injury in human fetal lung fibroblasts via inhibiting MAPK and NF-κB pathway activation.

    PubMed

    Song, Zhi; Zhao, Xiu; Liu, Martin; Jin, Hongxu; Cui, Yan; Hou, Mingxiao; Gao, Yan

    2016-08-01

    Inflammatory responses are vital in lung injury diseases, particularly acute respiratory distress syndrome (ARDS). Recombinant human brain natriuretic peptide (rhBNP) has been shown to exhibit anti‑inflammatory effects in vivo in our previous studies. The present study aimed to investigate the mechanisms underlying the anti‑inflammatory effects of rhBNP on lipopolysaccharide (LPS)-induced human fetal lung fibroblasts (HFL-1). The results showed that LPS induced a significant increase in the leakage of lactate dehydrogenase and the secretion of interleukin (IL)‑1β. Activation of p38, extracellular-signal regulated kinase (ERK) 1/2, c‑Jun NH2-terminal kinase (JNK) mitogen‑activated protein kinases (MAPK)s, and nuclear factor (NF)‑κB in HFL‑1 cells was also observed following treatment with LPS. Treatment with rhBNP (0.1 µM) reduced the production of IL‑1β at the protein and mRNA levels. Moreover, rhBNP decreased the phosphorylation of p38, ERK1/2 and JNK induced by LPS. However, the JNK inhibitor, SP600125, significantly inhibited LPS‑induced IL‑1β production. These results indicate that the inhibition of IL‑1β by may dependent upon the JNK signaling pathway. The LPS‑induced NF‑κB activation was also suppressed by rhBNP, and IL‑1β production was inhibited by the NF‑κB inhibitor. Furthermore, NF‑κB activation was attenuated by the JNK inhibitor, indicating that NF‑κB activation was dependent on the JNK signaling pathway. The present study suggests that rhBNP exhibits an anti‑inflammatory effect on LPS‑induced HFL‑1 cell injury via the inhibition of MAPK and NF‑κB signaling pathways and may exhibit therapeutic potential for acute lung injury and ARDS. PMID:27314600

  12. Cranberries (Oxycoccus quadripetalus) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna

    2016-04-01

    Oxidative stress and inflammation are involved in the development of obesity, type 2 diabetes and vascular complications. Systemic inflammation, as seen in obesity, is associated with high plasmatic levels of pro-inflammatory, pro-atherogenic and pro-thrombotic adipokines. Here we studied the effects of lyophilized cranberries (LCB) on the secretion and expression of PAI-1, IL-6, MCP-1 and leptin in mature 3T3-L1 adipocytes under baseline conditions and excessive inflammatory response elicitation by stimulation with H2O2. Our data demonstrated that LCB significantly reduced the expression and secretion of IL-6, MCP-1 and leptin, as well as suppressed the overexpression of PAI-1 induced by H2O2. Our findings suggested that LCB counteracted the stimulatory effect of H2O2 on secretion and expression of pro-inflammatory adipokines, implying a potential anti-inflammatory effect during the inflammatory process induced via oxidative stress in adipose tissue. PMID:26593599

  13. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages

    PubMed Central

    Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis. PMID:26785354

  14. Three diketopiperazines from marine-derived bacteria inhibit LPS-induced endothelial inflammatory responses.

    PubMed

    Kang, Hyejin; Ku, Sae-Kwang; Choi, Hyukjae; Bae, Jong-Sup

    2016-04-15

    Diketopiperazine is a natural products found from bacteria, fungi, marine sponges, gorgonian and red algae. They are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, three (1-3) of diketopiperazines were isolated from two strains of marine-derived bacteria. The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses in vitro and in vivo. From 1μM, 1-3 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer and in mice in a dose-dependent manner suggesting that 1-3 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. PMID:26988307

  15. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. PMID:27091601

  16. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43°C) and divided into three groups. They were then allowed to recover in a room at 24°C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1β instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNFα increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  17. Niacin Modulates Pro-inflammatory Cytokine Secretion. A Potential Mechanism Involved in its Anti-atherosclerotic Effect

    PubMed Central

    Lipszyc, Pedro Saul; Cremaschi, Graciela Alicia; Zubilete, María Zorrilla; Bertolino, Maria Laura Aón; Capani, Francisco; Genaro, Ana Maria; Wald, Miriam Ruth

    2013-01-01

    The pathogenesis of atherosclerosis includes the assignment of a critical role to cells of the monocyte/macrophage lineage and to pro-inflammatory cytokines. Niacin is known to improve lipid metabolism and to produce beneficial modification of cardiovascular risk factors. The aim of this work was to investigate if Niacin is able to modulate pro-inflammatory cytokine production in macrophages in a murine model of atherosclerosis. For this purpose C57Bl/6J mice fed with atherogenic diet (AGD) or with conventional chow diet were used. The AGD group showed an increase in body weight and in total plasma cholesterol, with no differences in triglyceride or HDL levels. Lesions in arterial walls were observed. The characterization of Niacin receptor showed an increase in the receptor number of macrophages from the AGD group. Macrophages from control and AGD animals treated in vitro with an inflammatory stimulus showed elevated levels of IL-6, IL-1 and TNF-α, that were even higher in macrophages from AGD mice. Niacin was able to decrease the production of pro-inflammatory cytokines in stimulated macrophages. Similar effect of Niacin was observed in an in vivo model of inflammation. These results show an attenuating inflammatory mechanism for this therapeutic agent and would point out its potential action in plaque stabilization and in the prevention of atherosclerosis progression. Furthermore, the present results provide the basis for future studies on the potential contribution of Niacin to anti-inflammatory therapies. PMID:24155799

  18. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury.

    PubMed

    Papa, Simonetta; Caron, Ilaria; Erba, Eugenio; Panini, Nicolò; De Paola, Massimiliano; Mariani, Alessandro; Colombo, Claudio; Ferrari, Raffaele; Pozzer, Diego; Zanier, Elisa R; Pischiutta, Francesca; Lucchetti, Jacopo; Bassi, Andrea; Valentini, Gianluca; Simonutti, Giulio; Rossi, Filippo; Moscatelli, Davide; Forloni, Gianluigi; Veglianese, Pietro

    2016-01-01

    Many efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ. A delivery nanovector tool (poly-ε-caprolactone-based nanoparticles) able to selectively treat/target microglia has been developed and used here to clarify the temporal and spatial involvement of the pro-inflammatory response associated to microglial cells in SCI. We show that a treatment with nanoparticles loaded with minocycline, the latter a well-known anti-inflammatory drug, when administered acutely in a SCI mouse model is able to efficiently modulate the resident microglial cells reducing the pro-inflammatory response, maintaining a pro-regenerative milieu and ameliorating the behavioral outcome up to 63 days post injury. Furthermore, by using this selective delivery tool we demonstrate a mechanistic link between early microglia activation and M1 macrophages recruitment to the injured site via CCL2 chemokine, revealing a detrimental contribution of pro-inflammatory macrophages to injury progression after SCI. PMID:26474039

  19. Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner.

    PubMed

    Kawano, Yoshinaga; Nakae, Jun; Watanabe, Nobuyuki; Kikuchi, Tetsuhiro; Tateya, Sanshiro; Tamori, Yoshikazu; Kaneko, Mari; Abe, Takaya; Onodera, Masafumi; Itoh, Hiroshi

    2016-08-01

    High-fat diet (HFD) induces low-grade chronic inflammation and insulin resistance. However, little is known about the mechanism underlying HFD-induced chronic inflammation in peripheral insulin-responsive tissues. Here, we show that colonic pro-inflammatory macrophages regulate insulin sensitivity under HFD conditions. To investigate the pathophysiological role of colonic macrophages, we generated macrophage-specific chemokine (C-C Motif) receptor 2 (Ccr2) knockout (M-Ccr2KO) and intestinal epithelial cell-specific tamoxifen-inducible Ccl2 knockout (Vil-Ccl2KO) mice. Both strains exhibited similar body weight to control under HFD. However, they exhibited decreased infiltration of colonic pro-inflammatory macrophages, decreased intestinal permeability, and inactivation of the colonic inflammasome. Interestingly, they showed significantly improved glucose tolerance and insulin sensitivity with decreased chronic inflammation of adipose tissue. Therefore, inhibition of pro-inflammatory macrophage infiltration prevents HFD-induced insulin resistance and could be a novel therapeutic approach for type 2 diabetes. PMID:27508875

  20. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria

    PubMed Central

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia

    2013-01-01

    Objective. Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. Methods. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Results. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. Conclusion. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis. PMID:23704321

  1. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    PubMed

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  2. Loss of Protein Kinase C-δ Protects against LPS-Induced Osteolysis Owing to an Intrinsic Defect in Osteoclastic Bone Resorption

    PubMed Central

    Khor, Ee Cheng; Abel, Tamara; Tickner, Jennifer; Chim, Shek Man; Wang, Cathy; Cheng, Taksum; Ng, Benjamin; Ng, Pei Ying; Teguh, Dian Astari; Kenny, Jacob; Yang, Xiaohong; Chen, Honghui; Nakayama, Keiichi I.; Nakayama, Keiko; Pavlos, Nathan; Zheng, Ming H.; Xu, Jiake

    2013-01-01

    Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (−α, −β and −γ), novel PKCs (−δ, −ε, −η and −θ) and atypical PKCs (−ι/λ and −ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC −α, −γ and −ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis. PMID:23951014

  3. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis

    PubMed Central

    Goddard, Amelia; Leisewitz, Andrew L.; Kjelgaard-Hansen, Mads; Kristensen, Annemarie T.; Schoeman, Johan P.

    2016-01-01

    Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior to any treatment. Cytokine concentrations were assessed using a canine-specific multiplex assay on an automated analyser. Serum concentrations of interleukin (IL)-2, IL-6, IL-8, IL-10, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF) and monocyte chemotactic protein-1 (MCP-1) were measured. Twelve of the Babesia-infected dogs died (12%) and 85 survived (88%). Babesia-infected dogs were also divided into those that presented within 48 hours from displaying clinical signs, and those that presented more than 48 hours after displaying clinical signs. Cytokine concentrations were compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared to the controls. Concentrations of IL-6 and MCP-1 were significantly increased in the non-survivors compared to the survivors. Concentrations for IL-2, IL-6, IL-18 and GM-CSF were significantly higher in those cases that presented during the more acute stage of the disease. These findings suggest that a mixed cytokine response is present in dogs with babesiosis caused by B. rossi, and that an excessive pro-inflammatory response may result in a poor outcome. PMID:26953797

  4. Original inhibition method of excessive synthesis of pro-inflammatory cytokine of tumour necrosis factor α

    PubMed Central

    Zinchuk, AleXander; Holubovska, Olga; Shkurba, Andrij; Hrytsko, Roman; Vorozhbyt, Olga; Richniak, Mykhailo

    2015-01-01

    Influence on pro- and anti-inflammatory cytokines of an ill person is an urgent aspect of treatment of many diseases. For inhibition of synthesis of a high level of pro-inflammatory cytokines, medications which are recombinant monoclonal antibodies, especially to tumour necrosis factor α (TNF-α), are used. However, these methods of treatment require further improvement by elaborating new approaches with a wider spectrum of influence on the immune system. A completely new method of reduction in high activity of TN F-α with the method of intradermal autoleukocyte immunization is presented in the article. Investigation was performed in a group of patients with psoriasis (24) with a high level of TNF-α in the blood (over 30 pg/ml). Simultaneously such investigation was performed on patients with psoriasis (9) without TNF-α detected (0 pg/ml). As a result of immunization, a significant reduction in TNF-α occurred in all patients with its high level, in 16 (66.7%) from 24 patients – to 0-5 pg/ml. The level of reduction and duration of the achieved effect was of an individual character and requires further investigation. However, the achieved results prove the expediency of administration of this immunization method for patients requiring reduction of TNF-α synthesis. However, the content of TNF-α in blood serum could not be detected in most patients with a low level of cytokine (in 6 from 9) after immunization (as well as before immunization), but an increase in its level from 0 to 5-8 pg/ml was observed in 3 patients. On the basis of the conducted research, the authors suggest that the influence of immunization on cytokine synthesis depends on the condition of immune cells and correlation of pro- and anti-inflammatory cytokines in a patient's skin. PMID:26648779

  5. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation.

    PubMed

    Lv, Bochang; Huo, Fuquan; Zhu, Zhongqiao; Xu, Zhiguo; Dang, Xiaojie; Chen, Tao; Zhang, Ting; Yang, Xinguang

    2016-08-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling. PMID:27084772

  6. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    PubMed

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-01

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. PMID:26924657

  7. AUTOTAXIN DOWNREGULATES LPS – INDUCED MICROGLIA ACTIVATION AND PRO-INFLAMMATORY CYTOKINES PRODUCTION

    PubMed Central

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G. Jean; d’Hellencourt, Christian Lefebvre

    2014-01-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A+) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1 and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1 and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. PMID:25053164

  8. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRα in human umbilical vein endothelial cells.

    PubMed

    Li, Yong; Zhang, Xiao-Shi; Yu, Jin-Long

    2016-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effect of acanthoic acid on vascular inflammation has not been investigated. The aim of this study was to investigate the anti-inflammatory effects of acanthoic acid on lipopolysaccharide (LPS)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs). The production of cytokines TNF-α and IL-8 was detected by ELISA. The expression of VCAM-1, ICAM-1, E-selectin, NF-κB and LXRα were detected by Western blotting. Adhesion of monocytes to HUVECs was detected by monocytic cell adhesion assay. The results showed that acanthoic acid dose-dependently inhibited LPS-induced TNF-α and IL-8 production. Acanthoic acid also inhibited TNF-α-induced IL-8 and IL-6 production. LPS-induced endothelial cell adhesion molecules, VCAM-1 and ICAM-1 were also inhibited by acanthoic acid. Acanthoic acid inhibited LPS-induced NF-κB activation. Furthermore, acanthoic acid dose-dependently up-regulated the expression of LXRα. In addition, our results showed that the anti-inflammatory effect of acanthoic acid was attenuated by transfection with LXRα siRNA. In conclusion, the anti-inflammatory effect of acanthoic acid is due to its ability to activate LXRα. Acanthoic acid may be a therapeutic agent for inflammatory cardiovascular disease. PMID:26803523

  9. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration

    PubMed Central

    Li, Yan; Huang, Jie; Foley, Niamh M.; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H. Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  10. CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages.

    PubMed

    Wang, Shuai; Sun, Zewei; Zhao, Wenting; Wang, Zhen; Wu, Mingjie; Pan, Yanyun; Yan, Hui; Zhu, Jianhua

    2016-01-01

    CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation. PMID:26997758

  11. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration.

    PubMed

    Li, Yan; Huang, Jie; Foley, Niamh M; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  12. CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages

    PubMed Central

    Wang, Shuai; Sun, Zewei; Zhao, Wenting; Wang, Zhen; Wu, Mingjie; Pan, Yanyun; Yan, Hui; Zhu, Jianhua

    2016-01-01

    CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation. PMID:26997758

  13. LXRα represses LPS-induced inflammatory responses by competing with IRF3 for GRIP1 in Kupffer cells.

    PubMed

    Miao, Chun-Mu; He, Kun; Li, Pei-Zhi; Liu, Zuo-Jin; Zhu, Xi-Wen; Ou, Zhi-Bing; Ruan, Xiong-Zhong; Gong, Jian-Ping; Liu, Chang-An

    2016-06-01

    Liver X receptors (LXRs) in the nucleus play important roles in lipid metabolism and inflammation. The mechanism of LXR regulation of the LPS-induced Toll-like receptor 4 (TLR4) inflammatory signaling pathway remains to be elucidated. C57/BL6 mice were randomly divided into four groups: control, T0901317 (a LXRs agonist), LPS and T0901317+LPS. Additionally, Kupffer cells isolated from male C57/BL6 mice were divided into the same four groups. A decreased amount of inflammatory cells infiltrated the portal areas and the hepatic sinusoids in the livers of mice in the T0901317+LPS group than in those of mice in the LPS group. In the T0901317+LPS group, the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor alpha (TNF-α) were lower, while the serum level of interleukin-10 (IL-10) was higher. In vitro, Kupffer cells pretreated with T0901317 for 24h presented reduced TNF-α, interferon-beta (IFN-β) and interleukin-1 beta (IL-1β) levels, while the IL-10 level increased; however, the mRNA and protein expression levels of interferon regulatory factor 3 (IRF3) and glucocorticoid receptor-interacting protein 1 (GRIP1) were not significantly reduced. The co-IP data illustrated that LXRα bound to GRIP1 specifically in the T0901317+LPS group, while less IRF3 was bound to GRIP1 in the T0901317+LPS group than in the LPS group. Furthermore, the DNA-binding activity of NF-κB was decreased by pretreating Kupffer cells with T0901317 for 24h. These results suggest that activated LXRα competes with IRF3 for GRIP1 binding, thus repressing IRF3 and NF-κB transcriptional activity and inhibiting the inflammatory response initiated by LPS in Kupffer cells. PMID:27085678

  14. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway.

    PubMed

    Cheng, Zhiqiang; Li, Li

    2016-05-01

    Ginsenoside Rg3 (GRg3), one of the major active saponins isolated from ginseng (the root of Panax ginseng C.A. Meyer, Araliaceae), has been reported with many health benefits. Currently, the protective effect of GRg3 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice was investigated. The results indicated that GRg3 treatment could greatly attenuate LPS-induced histopathological alterations in the lung in a concentration-dependent manner. LPS-induced increase of lung wet-to-dry weight ratio (W/D ratio) was also dose-dependently reduced by GRg3 treatment. LPS-induced increases of the total cells, neutrophils and macrophages in the bronchoalveolar lavage fluids (BALFs) were significantly inhibited by GRg3 treatment in a dose-dependent fashion. The levels of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 in BALFs increased after LPS-induced ALI, which was inhibited by GRg3. Western blot results showed that during ALI LPS activated NF-κB pathway in the lung tissues by upregulating NF-κB p65 phosphorylation and its downstream COX-2 expression; however, these effects of LPS were inhibited by GRg3 treatment. Taken together, these findings in present study suggested that GRg3 provided protective effects against LPS-induced ALI in animal model and might harbor the potential to be considered as drug for the treatment of ALI in clinic. PMID:26921732

  15. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  16. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  17. Recombinant rat CC16 protein inhibits LPS-induced MMP-9 expression via NF-κB pathway in rat tracheal epithelial cells.

    PubMed

    Pang, Min; Wang, Hailong; Bai, Ji-Zhong; Cao, Dawei; Jiang, Yi; Zhang, Caiping; Liu, Zhihong; Zhang, Xinri; Hu, Xiaoyun; Xu, Jianying; Du, Yongcheng

    2015-10-01

    Clara cell protein (CC16) is a well-known anti-inflammatory protein secreted by the epithelial Clara cells of the airways. It is involved in the development of airway inflammatory diseases such as chronic obstructive pulmonary disease and asthma. Previous studies suggest that CC16 gene transfer suppresses expression of interleukin (IL)-8 in bronchial epithelial cells. However, its role in the function of these cells during inflammation is not well understood. In this study, we evaluated the effect of CC16 on the expression of matrix metalloproteinase (MMP)-9 in lipopolysaccharide (LPS)-stimulated rat tracheal epithelial cells and its underlying molecular mechanisms. We generated recombinant rat CC16 protein (rCC16) which was bioactive in inhibiting the activity of phospholipase A2. rCC16 inhibited LPS-induced MMP-9 expression at both mRNA and protein levels in a concentration-dependent (0-2 µg/mL) manner, as demonstrated by real time RT-PCR, ELISA, and zymography assays. Gene transcription and DNA binding studies demonstrated that rCC16 suppressed LPS-induced NF-κB activation and its binding of gene promoters as identified by luciferase reporter and gel mobility shift assays, respectively. Western blotting and immunofluorescence staining analyses further revealed that rCC16 concentration dependently inhibited the effects of LPS on nuclear increase and cytosol reduction of NF-κB, on the phosphorylation and reduction of NF-κB inhibitory IκBα, and on p38 MAPK-dependent NF-κB activation by phosphorylation at Ser276 of its p65 subunit. These data indicate that inhibition of LPS-mediated NF-κB activation by rCC16 involves both translocation- and phosphorylation-dependent signaling pathways. When the tracheal epithelial cells were pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, cellular uptake of rCC16 and its inhibition of LPS-induced NF-κB nuclear translocation and also MMP-9 production were significantly abolished. Taken

  18. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells.

    PubMed

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-10-01

    Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases. PMID:22960171

  19. Anti-inflammatory effects of egg white combined with chalcanthite in lipopolysaccharide-stimulated BV2 microglia through the inhibition of NF-κB, MAPK and PI3K/Akt signaling pathways.

    PubMed

    Choi, Eun A; Park, Hye Young; Yoo, Hwa-Seung; Choi, Yung Hyun

    2013-01-01

    Egg white-chalcanthite (EWCC) is a mixture of egg white and chalcanthite prepared by roasting chalcanthite (which is a natural mineral mainly composed of CuSO4•5H2O) to the point of dehydration, pulverizing the dehydrated chalcanthite and then mixing the pulverized chalcanthite to react with egg white to trigger a reaction. When egg white-chalcanthite is prepared in this manner, the toxicity of chalcanthite is neutralized by the egg white, so that the toxicity is reduced or removed and the pharmaceutical properties are increased. However, the cellular and molecular mechanisms underlying the pharmacological activity of EWCC remain poorly understood. In this study, we investigated the inhibitory effects of EWCC on the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators in BV2 microglia. Our data indicated that the EWCC treatment significantly inhibited the excessive production of nitric oxide and prostaglandin E2 in LPS-stimulated BV2 microglia in a concentration-dependent manner without causing cytotoxicity. It also attenuated the expression of inducible nitric oxide synthase, cyclooxygenase-2 and pro-inflammatory cytokines, including interleukin-1β and tumor necrosis factor-α. Moreover, EWCC exhibited anti-inflammatory properties by the suppression of nuclear factor‑κB (NF-κB) activation by blocking IκB-α degradation, downregulation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Our results indicate that the inhibitory effects of EWCC on LPS-stimulated inflammatory mediator production in BV2 microglia are associated with the suppression of the NF-κB, MAPK and PI3K/Akt signaling pathways. These findings suggest that EWCC may offer a substantial therapeutic potential for the treatment of neurodegenerative diseases that are accompanied by microglial activation. PMID:23128312

  20. Induction of pro-inflammatory gene expression by Escherichia coli and mycotoxin zearalenone contamination and protection by a Lactobacillus mixture in porcine IPEC-1 cells.

    PubMed

    Taranu, Ionelia; Marin, Daniela Eliza; Pistol, Gina Cecilia; Motiu, Monica; Pelinescu, Diana

    2015-04-01

    This work investigated the effect of Escherichia coli K88 and zearalenone contamination on pro-inflammatory gene expression (Toll like receptors, cytokines) and signalling molecules and the protective activity of a mixture of Lactobacilli sp. (Lactobacillus plantarum, Lactobacillus acidofilus and Lactobacillus paracasei) in porcine intestinal epithelial cells as part of the local immune system. IPEC-1 cell monolayer was exposed for 1 h to the individual or combined action of E. coli, zearalenone and lactobacilli mixture. Our results showed that TLRs (1-10) and cytokine (IL-1,-6,-8,-10, TNF-α, IFN-γ) genes expressed early (after 1 h of culture) in IPEC-1 cells. E. coli alone increased the TLRs mRNA expression, especially TLR4 and the inflammatory cytokines while ZEA alone showed either no effect or a marginally effect on TLRs, cytokines, and signalling genes when compared to untreated cells. The combined actions of the two contaminants lead to a synergistically up-regulation of key cytokines (IFN-γ, IL-10 and TNF-α) and TLRs (-2,-3,-4,-6, and -10). The live lactobacilli mixture was able to attenuate the pathogen and mycotoxin-induced response by downregulated the majority of inflammatory related genes suggesting that this mixture has an immunomodulatory potential and may be used to lower the inflammatory response. PMID:25640651

  1. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  2. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression.

    PubMed

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-02-19

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  3. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*

    PubMed Central

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C.; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-01-01

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  4. Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes.

    PubMed

    Ford, Christopher T; Richardson, Siân; McArdle, Francis; Lotito, Silvina B; Crozier, Alan; McArdle, Anne; Jackson, Malcolm J

    2016-05-28

    Diets rich in fruits and vegetables (FV), which contain (poly)phenols, protect against age-related inflammation and chronic diseases. T-lymphocytes contribute to systemic cytokine production and are modulated by FV intake. Little is known about the relative potency of different (poly)phenols in modulating cytokine release by lymphocytes. We compared thirty-one (poly)phenols and six (poly)phenol mixtures for effects on pro-inflammatory cytokine release by Jurkat T-lymphocytes. Test compounds were incubated with Jurkat cells for 48 h at 1 and 30 µm, with or without phorbol ester treatment at 24 h to induce cytokine release. Three test compounds that reduced cytokine release were further incubated with primary lymphocytes at 0·2 and 1 µm for 24 h, with lipopolysaccharide added at 5 h. Cytokine release was measured, and generation of H2O2 by test compounds was determined to assess any potential correlations with cytokine release. A number of (poly)phenols significantly altered cytokine release from Jurkat cells (P<0·05), but H2O2 generation did not correlate with cytokine release. Resveratrol, isorhamnetin, curcumin, vanillic acid and specific (poly)phenol mixtures reduced pro-inflammatory cytokine release from T-lymphocytes, and there was evidence for interaction between (poly)phenols to further modulate cytokine release. The release of interferon-γ induced protein 10 by primary lymphocytes was significantly reduced following treatment with 1 µm isorhamnetin (P<0·05). These results suggest that (poly)phenols derived from onions, turmeric, red grapes, green tea and açai berries may help reduce the release of pro-inflammatory mediators in people at risk of chronic inflammation. PMID:26984113

  5. The Relationship of Plasma Volume, Sympathetic Tone and Pro-Inflammatory Cytokines in Young Healthy Nonpregnant Women

    PubMed Central

    Berntein, Ira M; Damron, Dana; Schonberg, Adrienne L.; Shapiro, Robert

    2010-01-01

    Objective Preeclampsia has been associated with elevated pro-inflammatory markers, increased sympathetic activity and decreased plasma volume. We hypothesized that these associations would be identified in women prior to a first pregnancy. Methods We studied 76 healthy nulligravid subjects measuring the pro-inflammatory markers C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha. Plasma volume (PV) was measured in supine position and corrected for body mass index (BMI). We examined supine plasma levels of epinephrine and norepinephrine and blood pressure response to Valsalva’s maneuver to quantify sympathetic activation. We then examined the association of plasma volume and sympathetic activity with pro-inflammatory cytokines with P < 0.05 accepted for significance. Results CRP was significantly increased in subjects with lowest PV/BMI quartile when compared to middle two quartiles and highest quartile (ANOVA, p = 0.037). We found no significant association of PV/BMI with either interleukin 6 or tumor necrosis factor alpha. Both plasma epinephrine concentration (r = 0.29, P = 0.02) and the phase II_L blood pressure response to Valsalva’s maneuver (r = 0.44, P < 0.0001) were associated with serum IL-6 concentrations. Conclusions Low plasma volume is associated with increased CRP levels and increased sympathetic tone is linked to elevated IL-6 concentration in young non-pregnant women. These findings represent elements of a non-pregnancy phenotype that parallels the findings observed in preeclampsia and in women at risk for ischemic cardiovascular disease. This suggests that the relationships observed during preeclampsia, which have been associated with placental pathology, may predate pregnancy and be independent of placental activity. PMID:19531800

  6. Expression of pathogen recognition receptors and pro-inflammatory cytokine transcripts in clinical and sub-clinical endometritis cows.

    PubMed

    Loyi, Tumnyak; Kumar, Harendra; Nandi, Sukdeb; Patra, Manas Kumar

    2015-01-01

    The present study was carried out to examine the expression profile of pathogen recognition receptors (CD14 and toll-like receptor 4) and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNFα) in endometrial tissue of cows with endometritis at different stages of estrous cycle. Genital tracts were collected from 60 cows at slaughter from the killing village. The genitalia were examined for clinical endometritis (CE) and subclinical endometritis (SCE) through physical examination, white side test of cervico-vaginal mucus, endometrial cytology and histopathology. The stage of estrous cycle for each genitalia was determined by visual examination of both the ovaries and classified as either follicular (F) or luteal (L). Depending on the degree of inflammation and stage of estrous cycle, the genitalia were categorized in four groups i.e., FCE, FSCE, LCE, and LSCE with six genitalia in each group. Furthermore, 12 healthy genitalia comprise of six each of follicular (FN) and luteal (LN) were included as control. Endometrial tissue scrapings were collected ex vivo from all the genitalia. Total RNA was extracted and cDNA was transcribed for each sample and relative quantification of mRNA of target genes was done by real-time PCR. The results revealed a significant up-regulation of CD14 (11 fold) and IL-8 (13 fold) in follicular stage and IL-6 (8 fold) and TNFα (29 fold) in luteal stages in SCE cows. However, the majority of pro-inflammatory cytokine and pathogen recognition receptors expressed at significant higher level in both follicular and luteal stages in cows with CE. Thus, it is concluded that the endometrial transcripts of pathogen recognition receptors and pro-inflammatory cytokines expressed differentially in cows with endometritis, whereas the fold change is dependent on the severity of inflammation and the stage of cyclicity. Therefore, endometrial transcript profile with a defined threshold level could be used as a possible diagnostic marker in cows with

  7. Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, PPARγ and Pro-inflammatory Adipokines

    PubMed Central

    Guo, Christine; Ricchiuti, Vincent; Lian, Bill Q.; Yao, Tham M.; Coutinho, Patricia; Romero, José R.; Li, Jianmin; Williams, Gordon H.; Adler, Gail K.

    2009-01-01

    Background In obesity, decreases in adiponectin and increases in pro-inflammatory adipokines are associated with heart disease. Since adipocytes express mineralocorticoid receptor (MR) and MR blockade reduces cardiovascular inflammation and injury, we tested the hypothesis that MR blockade reduces inflammation and expression of pro-inflammatory cytokines in adipose tissue and increases adiponectin expression in adipose tissue and hearts of obese mice. Methods and Results We determined the effect of MR blockade (eplerenone, 100 mg/kg/day for 16 weeks) on gene expression in retroperitoneal adipose and heart tissue from obese, diabetic db/db mice (n=8) as compared with untreated obese, diabetic db/db mice (n=10) and lean, non-diabetic db/+ littermates (n=11). There was increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor type-1 (PAI-1) and macrophage protein CD68 and decreased expression of adiponectin and peroxisome proliferator-activated receptor-γ (PPARγ) in retroperitoneal adipose tissue from obese versus lean mice. Also, adiponectin expression in heart was reduced in obese versus lean mice. MR blockade prevented these obesity-related changes in gene expression. Further, treatment of undifferentiated preadipocytes with aldosterone (10−8 M for 24 h) increased mRNA levels of TNF-α and MCP-1, and reduced mRNA and protein levels of PPARγ and adiponectin, supporting a direct aldosterone effect on gene expression. Conclusions MR blockade reduced expression of pro-inflammatory and pro-thrombotic factors in adipose tissue and increased expression of adiponectin in heart and adipose tissue of obese, diabetic mice. These effects on adiponectin and adipokine gene expression may represent a novel mechanism for the cardioprotective effects of MR blockade. PMID:18427128

  8. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation.

    PubMed

    Li, Li; Liu, Yuan; Chen, Hang-zi; Li, Feng-wei; Wu, Jian-feng; Zhang, Hong-kui; He, Jian-ping; Xing, Yong-zhen; Chen, Yan; Wang, Wei-jia; Tian, Xu-yang; Li, An-zhong; Zhang, Qian; Huang, Pei-qiang; Han, Jiahuai; Lin, Tianwei; Wu, Qiao

    2015-05-01

    Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions. PMID:25822914

  9. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge

    PubMed Central

    Qin, Xiangyang; Jiang, Xinru; Jiang, Xin; Wang, Yuli; Miao, Zhulei; He, Weigang; Yang, Guizhen; Lv, Zhenhui; Yu, Yizhi; Zheng, Yuejuan

    2016-01-01

    Sepsis is the principal cause of fatality in the intensive care units worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Micheliolide (MCL), a sesquiterpene lactone, was reported to inhibit dextran sodium sulphate (DSS)-induced inflammatory intestinal disease, colitis-associated cancer and rheumatic arthritis. Nevertheless, the role of MCL in microbial infection and sepsis is unclear. We demonstrated that MCL decreased lipopolysaccharide (LPS, the main cell wall component of Gram-negative bacteria)-mediated production of cytokines (IL-6, TNF-α, MCP-1, etc) in Raw264.7 cells, primary macrophages, dendritic cells and human monocytes. MCL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB and PI3K/Akt/p70S6K pathways. It has negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. In the acute peritonitis mouse model, MCL reduced the secretion of IL-6, TNF-α, IL-1β, MCP-1, IFN-β and IL-10 in sera, and ameliorated lung and liver damage. MCL down-regulated the high mortality rate caused by lethal LPS challenge. Collectively, our data illustrated that MCL enabled maintenance of immune equilibrium may represent a potentially new anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock. PMID:26984741

  10. Methanolic Extract of Asterina pectinifera inhibits LPS-Induced Inflammatory Mediators in Murine Macrophage

    PubMed Central

    Jo, Wol-Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Nam, Byung Hyouk; Lee, Gye An; Seo, Su Yeong; Lee, Sang Wha

    2010-01-01

    This study aimed to elucidate anti-inflammatory activities from extracts of Asterina pectinifera on nitric oxide (NO) production, TNF-α and IL-6 release in lipopolysaccharide (LPS) -stimulated murine macrophage cell, RAW264.7. We prepared the methanolic extracts (60-MAP, 70-MAP, 80-MAP and 90-MAP) , aqueous extract (W-AP) and functional bioactive compound fraction (He-AP and EA-AP) from Asterina pectinifera according to extract method. The 60-MAP, 70-MAP, 80-MAP, 90-MAP and W-AP were significantly suppressed LPS-induced production NO, TNF-α and IL-6 secretion in a concentration-dependent manner (P < 0.05) . Especially, 80-MAP by extracted 80% methanol had the strongest activity in reduction of inflammatory mediators among these extracts. Indeed, to identify active fraction, which contained potential bioactive compounds, from 80-MAP of Asterina pectinifera, we tested anti-inflammatory activity of the He-AP or the EA-AP. The He-AP was next extracted from 80-MAP and the EA-AP were extracted from the other methanol layer except the He-AP. The EA-AP demonstrated a strong anti-inflammatory effect through its ability to reduce NO production and it also inhibited the production of proinflammatory cytokines such as IL-6 and TNF-α at low concentration. These results suggested that the methanolic extract from Asterina pectinifera had the potential inhibitory effects on the production of these inflammatory mediators. PMID:24278504

  11. Social management of LPS-induced inflammation in Formica polyctena ants.

    PubMed

    Aubert, A; Richard, F-J

    2008-08-01

    Invertebrates, and especially insects, constitute valuable and convenient models for the study of the evolutionary roots of immune-related behaviors. With stable conditions in the nest, high population densities, and frequent interactions, social insects such as ants provide an excellent system for examining the spread of pathogens. The evolutionary success of these species raises questions about the behavioral responses of social insects to an infected nestmate. In this experiment, we tested the behavioral changes of the red wood ant Formica polyctena toward an immune-stimulated nestmate. We used bacterial endotoxin (lipopolysaccharides, LPS) to active the innate immune system of individual worker ants without biasing our observation with possible cues or host-manipulation from a living pathogen. We show that LPS-induced immune activation in ants triggers behavioral changes in nestmates. Contrary to what would be expected, we did not find removal strategies (e.g. agonistic behaviors) or avoidance of the pathogenic source, but rather a balance between a limitation of pathogen dissemination (i.e. decreased trophallaxis and locomotion of the LPS-treated ant), and what could constitute the behavioral basis for a "social vaccination" (i.e. increased grooming). This supports the importance of social interactions in resistance to disease in social insects, and perhaps social animals in general. PMID:18331785

  12. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo.

    PubMed

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  13. Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice.

    PubMed

    Zhang, Xuemei; Xiong, Huanzhang; Li, Hongyu; Cheng, Yao

    2014-02-01

    Taraxasterol, a pentacyclic-triterpene, was isolated from the Chinese medicinal herb Taraxacum officinale. In the present study, we investigated the protective effect of taraxasterol on murine model of endotoxic shock and the mechanism of its action. Mice were treated with 2.5, 5 and 10 mg/kg of taraxasterol prior to a lethal dose of lipopolysaccharide (LPS) challenge. Survival of mice was monitored twice a day for 7 days. To further understand the mechanism, the serum levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6) and mediator nitric oxide (NO), prostaglandin E₂ (PGE₂) as well as histology of lungs were examined. The results showed that taraxasterol significantly improved mouse survival and attenuated tissue injury of the lungs in LPS-induced endotoxemic mice. Further studies revealed that taraxasterol significantly reduced TNF-α, IFN-γ, IL-1β, IL-6, NO and PGE₂ levels in sera from mice with endotoxic shock. These results indicate that taraxasterol has a protective effect on murine endotoxic shock induced by LPS through modulating inflammatory cytokine and mediator secretion. This finding might provide a new strategy for the treatment of endotoxic shock and associated inflammation. PMID:24286370

  14. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo

    PubMed Central

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  15. Effects of kramecyne on LPS induced chronic inflammation and gastric ulcers.

    PubMed

    Alonso-Castro, Angel Josabad; Pérez-Ramos, Julia; Sánchez-Mendoza, Ernesto; Pérez-González, Cuauhtemoc; Pérez-Gutiérrez, Salud

    2015-06-01

    Preclinical Research Krameria cytisoides is used for the treatment of inflammation, stomach pain, and gastric ulcers. The active ingredient from this plant is a peroxide, kramecyne (KACY) which has anti-inflammatory effects. The aim of the present study was to evaluate the anti-inflammatory activities of KACY in lipopolysaccharide (LPS)-induced systemic chronic inflammation in mice for 60 days, using dexamethasone (DEX) as the positive control, vehicle (the LPS group) as the negative control and the control group (mice without inflammation). KACY did not affect survival, body weight or relative organ weight in mice but it: decreased nitric oxide (NO) production by 68%; prostaglandin E2 (PGE2 ) by 67%; increased release of anti-inflammatory cytokine IL-10 (2.0-fold), and reduced production of the proinflammatory cytokines, IL-6 (2.0-fold), IL-1β (2.4-fold), and TNF-α (2.0-fold). Furthermore, the gastroprotective effects of KACY in mice were evaluated in an ethanol-induced gastric ulcer model. The results showed that KACY at 50 and 100 mg/kg exerted gastroprotective effects with similar activity to 50 mg/kg ranitidine. In gastric tissues, KACY decreased the level of malondialdehyde (MDA) but increased the catalase (CAT) activity. KACY have potential for the treatment of chronic inflammatory diseases due its similar activity to that of DEX. It also has gastroprotective effects. PMID:26109468

  16. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene. PMID:17995901

  17. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    PubMed

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  18. miR-709 modulates LPS-induced inflammatory response through targeting GSK-3β.

    PubMed

    Li, Ming; Chen, Hu; Chen, Luxi; Chen, Yaosheng; Liu, Xiaohong; Mo, Delin

    2016-07-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs which modulate gene expression at the post-transcriptional level by either translational inhibition or mRNA degradation. MicroRNAs play important roles in both innate and adaptive immune response, including TLR-triggered immune response. In this study, we found that the expression of miR-709 was up-regulated in primary macrophage and RAW264.7 cells during the stimulation of LPS. Overexpression of miR-709 in RAW264.7 cells led to reduced production and gene expression of inflammatory cytokines (IL-6, TNF-α, IL-1β) during activation by LPS, whereas knockdown of miR-709 had completely opposite effects. We used bioinformatics and experimental techniques to demonstrate that GSK-3β is a direct target of miR-709. miR-709 mimics decreased GSK-3β protein but not mRNA level. We also found that miR-709 regulated the LPS-induced inflammatory response by targeting GSK-3β and elevating β-catenin. In conclusion, our data revealed a novel role for miR-709 in regulation of inflammatory response by targeting GSK-3β. PMID:27232654

  19. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability.

    PubMed

    Safdari, B K; Sia, T C; Wattchow, D A; Smid, S D

    2016-07-01

    Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF2α) or their corresponding ethanolamides (PGE2-EA or PGF2α-EA) over 48h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10(-5)M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10(-4)M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24h, while LPS (10μg/ml) increased permeability over 24-48h. These findings indicate that cholinergic

  20. The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines

    PubMed Central

    Eizirik, Décio L.; Sammeth, Michael; Bouckenooghe, Thomas; Bottu, Guy; Sisino, Giorgia; Igoillo-Esteve, Mariana; Ortis, Fernanda; Santin, Izortze; Colli, Maikel L.; Barthson, Jenny; Bouwens, Luc; Hughes, Linda; Gregory, Lorna; Lunter, Gerton; Marselli, Lorella; Marchetti, Piero; McCarthy, Mark I.; Cnop, Miriam

    2012-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA–seq) to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the immune system and

  1. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  2. Isoflurane attenuates LPS-induced acute lung injury by targeting miR-155-HIF1-alpha.

    PubMed

    Hu, Rong; Zhang, Ying; Yang, Xiaohua; Yan, Jia; Sun, Yu; Chen, Zhifeng; Jiang, Hong

    2015-01-01

    Isoflurane alleviates the inflammatory response in endotoxin-induced acute lung injury (ALI). In this study, we investigated the protective mechanism of isoflurane postconditioning in lipopolysaccharide (LPS)induced ALI. Exposure to isoflurane decreased miR-155 and upregulated HIF-1 alpha and HO-1 mRNA and protein. The effects of isoflurane on HIF-1 alpha mRNA and protein could be inhibited by overexpression of miR-155. Furthermore, mice overexpressing miR-155 had higher levels of TNF-alpha and IL-1 beta in BALF when exposed to isoflurane after LPS challenge.Conversely, downregulation of miR-155 promoted isoflurane effects on HIF-1 alpha expression. These results suggest that isoflurane posttreatment hr alleviates LPS-induced ALI and cell injury by triggering miR-155-HIF-1 alpha pathway, leading to upregulation of HO-1. PMID:25553444

  3. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages.

    PubMed

    Pucca, Manuela B; Peigneur, Steve; Cologna, Camila T; Cerni, Felipe A; Zoccal, Karina F; Bordon, Karla de C F; Faccioli, Lucia H; Tytgat, Jan; Arantes, Eliane C

    2015-08-01

    Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation. PMID:25906692

  4. Apoptosis in Hemocytes Induces a Shift in Effector Mechanisms in the Drosophila Immune System and Leads to a Pro-Inflammatory State

    PubMed Central

    Arefin, Badrul; Kucerova, Lucie; Krautz, Robert; Kranenburg, Holger; Parvin, Farjana; Theopold, Ulrich

    2015-01-01

    Apart from their role in cellular immunity via phagocytosis and encapsulation, Drosophila hemocytes release soluble factors such as antimicrobial peptides, and cytokines to induce humoral responses. In addition, they participate in coagulation and wounding, and in development. To assess their role during infection with entomopathogenic nematodes, we depleted plasmatocytes and crystal cells, the two classes of hemocytes present in naïve larvae by expressing proapoptotic proteins in order to produce hemocyte-free (Hml-apo, originally called Hemoless) larvae. Surprisingly, we found that Hml-apo larvae are still resistant to nematode infections. When further elucidating the immune status of Hml-apo larvae, we observe a shift in immune effector pathways including massive lamellocyte differentiation and induction of Toll- as well as repression of imd signaling. This leads to a pro-inflammatory state, characterized by the appearance of melanotic nodules in the hemolymph and to strong developmental defects including pupal lethality and leg defects in escapers. Further analysis suggests that most of the phenotypes we observe in Hml-apo larvae are alleviated by administration of antibiotics and by changing the food source indicating that they are mediated through the microbiota. Biochemical evidence identifies nitric oxide as a key phylogenetically conserved regulator in this process. Finally we show that the nitric oxide donor L-arginine similarly modifies the response against an early stage of tumor development in fly larvae. PMID:26322507

  5. Fas (CD95) Induces Macrophage Pro-Inflammatory Chemokine Production via a MyD88-dependent, Caspase-independent Pathway

    PubMed Central

    Altemeier, William A.; Zhu, Xiaodong; Berrington, William R.; Harlan, John M.; Liles, W. Conrad

    2015-01-01

    Activation of the prototypical death receptor, Fas (CD95), can induce both caspase-dependent cell death and production of pro-inflammatory chemokines, leading to neutrophil recruitment and end-organ injury. The precise mechanism(s), by which Fas upregulates chemokine production and release, is currently unclear. We hypothesized that Fas-induced chemokine release by macrophages is dependent on the MyD88 adapter molecule and independent of caspase activity. To test this hypothesis, we measured chemokine response to Fas activation both in RAW 264.7 cells with RNAi-attenuated MyD88 expression and in MyD88-deficient primary macrophages. We found that Fas-induced chemokine release was abrogated in the absence of MyD88. In vivo, MyD88−/− mice had impaired CXCL1/KC release and polymorphonuclear cell recruitment in response to intratracheal treatment with the Fas-activating monoclonal antibody, Jo-2. Furthermore, Fas-induced chemokine release was not dependent on either IL-1 receptor signaling or on caspase activity. We conclude that MyD88 plays an integral role in Fas-induced macrophage-mediated inflammation. PMID:17576821

  6. The Pro-Inflammatory Cytokine IL-22 Up-Regulates Keratin 17 Expression in Keratinocytes via STAT3 and ERK1/2

    PubMed Central

    Shi, Xiaowei; Jin, Liang; Feng, Zhenzhen; Hu, Lei; Wu, Yan; Wang, Gang

    2012-01-01

    Background To investigate the regulation of K17 expression by the pro-inflammatory cytokine IL-22 in keratinocytes and its important role in our previously hypothesized “K17/T cell/cytokine autoimmune loop” in psoriasis. Materials and Methods K17 expression was examined in the IL-22-treated keratinocytes by real-time quantitative PCR, ELISA, Western blot and Immunofluorescence. In addition, the signaling pathways involved in K17 regulation were investigated with related inhibitors and siRNAs. In addition, K17 expression was examined in the epidermis of IL-22-injected mouse skin. Results IL-22-induced K17 expression was confirmed in keratinocytes and the epidermis of IL-22-injected mouse skin at both mRNA and protein levels, which is an important complement to the autoimmune loop. We further investigated the regulatory mechanisms and found that both STAT3 and ERK1/2 were involved in the up-regulation of K17 expression induced by IL-22. Conclusion IL-22 up-regulates K17 expression in keratinocytes in a dose-dependent manner through STAT3- and ERK1/2-dependent mechanisms. These findings indicated that IL-22 was also involved in the K17/T cell/cytokine autoimmune loop and may play an important role in the progression of psoriasis. PMID:22808266

  7. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. PMID:25791017

  8. IL-10 Inhibits the NF-κB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by Up-Regulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    PubMed Central

    Siffo, Sofía; Mirkin, Gerardo A.; Goren, Nora B.

    2013-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease. PMID:24260222

  9. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells.

    PubMed

    Alayli, Farah; Scholle, Frank

    2016-09-01

    Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs. PMID:27348054

  10. Pro-inflammatory potential of Escherichia coli strains K12 and Nissle 1917 in a murine model of acute ileitis.

    PubMed

    Bereswill, S; Fischer, A; Dunay, I R; Kühl, A A; Göbel, U B; Liesenfeld, O; Heimesaat, M M

    2013-06-01

    Non-pathogenic Escherichia coli (Ec) strains K12 (EcK12) and Nissle 1917 (EcN) are used for gene technology and probiotic treatment of intestinal inflammation, respectively. We investigated intestinal colonization and potential pro-inflammatory properties of EcK12, EcN, and commensal E. coli (EcCo) strains in Toxoplasma (T.) gondii-induced acute ileitis. Whereas gnotobiotic animals generated by quintuple antibiotic treatment were protected from ileitis, mice replenished with conventional microbiota suffered from small intestinal necrosis 7 days post-T. gondii infection (p.i.). Irrespective of the Ec strain, recolonized mice revealed mild to moderate histopathological changes in their ileal mucosa. Upon stable recolonization with EcK12, EcN, or EcCo, development of inflammation was accompanied by pro-inflammatory responses at day 7 p.i., including increased ileal T lymphocyte and apoptotic cell numbers compared to T. gondii-infected gnotobiotic controls. Strikingly, either Ec strain was capable to translocate to extra-intestinal locations, such as MLN, spleen, and liver. Taken together, Ec strains used in gene technology and probiotic treatment are able to exert inflammatory responses in a murine model of small intestinal inflammation. In conclusion, the therapeutic use of Ec strains in patients with broad-spectrum antibiotic treatment and/or intestinal inflammation should be considered with caution. PMID:24265929

  11. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    PubMed Central

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  12. Pro-inflammatory cytokines and soluble receptors in response to acute psychosocial stress: differential reactivity in bipolar disorder.

    PubMed

    Wieck, Andrea; Grassi-Oliveira, Rodrigo; do Prado, Carine Hartmann; Rizzo, Lucas Bortolotto; de Oliveira, Agatha Schommer; Kommers-Molina, Júlia; Viola, Thiago Wendt; Marciano Vieira, Erica Leandro; Teixeira, Antônio Lúcio; Bauer, Moisés Evandro

    2014-09-19

    Mounting evidence suggests a chronic pro-inflammatory state in individuals with bipolar disorder (BD). Stress exposure is known to exacerbate several inflammatory conditions as well as psychiatric disorders. Here, we analyzed plasma levels of pro-inflammatory cytokines and their soluble receptors to realistic acute psychosocial stress challenge in BD. Thirteen euthymic type 1 BD patients and 15 matched controls underwent the Trier Social Stress Test protocol (TSST). Blood samples were collected before and after TSST and plasma cytokines interleukin IL-2, IL-6, IL-33, and tumor necrosis factor alpha (TNF-α) were measured. In addition TNF-α soluble receptors TNFR1 and TNFR2, and IL-33 soluble receptor sST2 were assessed. Increased IL-33 and reduced sST2 levels were observed in BD subjects as compared to controls, independently of stress exposure. Following TSST, there were higher levels of IL-2 and reduced levels of sTNFR1 in both groups. However, the magnitude change for both cytokines was found higher in controls than BD subjects. Our data suggest that BD patients have differential stress reactivity as compared to controls, possibly related to an immunologic imbalance and failure of regulatory mechanisms. PMID:25092610

  13. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium

    PubMed Central

    Kiani-Esfahani, Abbas; Kazemi Sheykhshabani, Sedigheh; Peymani, Maryam; Hashemi, Motahare-Sadat; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions. PMID:27540524

  14. Red wine extract decreases pro-inflammatory markers, nuclear factor-κB and inducible NOS, in experimental metabolic syndrome.

    PubMed

    Janega, Pavol; Klimentová, Jana; Barta, Andrej; Kovácsová, Mária; Vranková, Stanislava; Cebová, Martina; Čierna, Zuzana; Matúsková, Zuzana; Jakovljevic, Vladimir; Pechánová, Olga

    2014-09-01

    We aimed to analyse the effects of alcohol-free Alibernet red wine extract (AWE) on nitric oxide synthase (NOS) activity and pro-inflammatory markers such as nuclear factor-κB (NFκB) and inducible NOS (iNOS) protein expression in experimental metabolic syndrome. Young 6 week-old male Wistar Kyoto (WKY) and obese, spontaneously hypertensive rats (SHR/N-cp) were divided into control groups and groups treated with AWE (24.2 mg per kg per day) for 3 weeks (n = 6 in each group). Total NOS activity and endothelial NOS (eNOS), iNOS and NFκB (p65) protein expressions were determined in the heart left ventricle and aorta by Western blot and immunohistochemical analysis. All parameters investigated significantly increased in the aorta of SHR/N-cp rats. Pro-inflammatory markers such as NFκB and iNOS were increased in the left ventricle as well. AWE treatment did not affect total NOS activity and eNOS expression in the aorta; however, it was able to decrease NFκB and iNOS protein expression in both the left ventricle and aorta. In conclusion, in the cardiovascular system, Alibernet red wine extract decreased NFκB and iNOS protein expressions elevated as a consequence of developed metabolic syndrome. This effect may represent one of the protective, anti-inflammatory properties of Alibernet red wine polyphenols on cardiovascular risk factors related to metabolic syndrome. PMID:25051230

  15. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment

    PubMed Central

    Riesenberg, Stefanie; Groetchen, Angela; Siddaway, Robert; Bald, Tobias; Reinhardt, Julia; Smorra, Denise; Kohlmeyer, Judith; Renn, Marcel; Phung, Bengt; Aymans, Pia; Schmidt, Tobias; Hornung, Veit; Davidson, Irwin; Goding, Colin R.; Jönsson, Göran; Landsberg, Jennifer; Tüting, Thomas; Hölzel, Michael

    2015-01-01

    Inflammation promotes phenotypic plasticity in melanoma, a source of non-genetic heterogeneity, but the molecular framework is poorly understood. Here we use functional genomic approaches and identify a reciprocal antagonism between the melanocyte lineage transcription factor MITF and c-Jun, which interconnects inflammation-induced dedifferentiation with pro-inflammatory cytokine responsiveness of melanoma cells favouring myeloid cell recruitment. We show that pro-inflammatory cytokines such as TNF-α instigate gradual suppression of MITF expression through c-Jun. MITF itself binds to the c-Jun regulatory genomic region and its reduction increases c-Jun expression that in turn amplifies TNF-stimulated cytokine expression with further MITF suppression. This feed-forward mechanism turns poor peak-like transcriptional responses to TNF-α into progressive and persistent cytokine and chemokine induction. Consistently, inflammatory MITFlow/c-Junhigh syngeneic mouse melanomas recruit myeloid immune cells into the tumour microenvironment as recapitulated by their human counterparts. Our study suggests myeloid cell-directed therapies may be useful for MITFlow/c-Junhigh melanomas to counteract their growth-promoting and immunosuppressive functions. PMID:26530832

  16. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages.

    PubMed

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  17. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response.

    PubMed

    Garza-Cuartero, L; O'Sullivan, J; Blanco, A; McNair, J; Welsh, M; Flynn, R J; Williams, D; Diggle, P; Cassidy, J; Mulcahy, G

    2016-07-01

    Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long-standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co-infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis-specific Th1 immune response. We hypothesized that these changes in co-infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co-infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyt