Science.gov

Sample records for lrfd designed steel

  1. Threaded connection limit state equations for use in LRFD tubular design

    SciTech Connect

    Schwind, B.E.; Chappell, J.F.; Katsounas, A.T.

    1995-12-31

    The purpose of the study was to identify and evaluate the variables that determine the leak resistance limit state functions of API 8-round and buttress connections. This work will be incorporated into Load and Resistance Factor Design (LRFD) equations. Connectors are an integral part any well design program. Therefore, it is vital that they be included in the LRFD design approach. Makeup, tension, internal pressure and dimensional data were among the variables in the evaluation, which was based on finite element analysis, testing and structural mechanics. The leak resistance limit state for round thread connections is defined by contact pressure, stab flank engaged length and coupling yield, while for buttress is defined by contact pressure, stab flank clearance and coupling yield. Leak pressure, as defined by API Bul. 5C3, is a function of makeup and dimensional data independent of thread type, tension, and pipe inside diameter and valid only in the elastic regime. Tension is detrimental in the leak resistance of 8-round connections, but does not compromise buttress leak resistance. Regression analysis was performed on structural mechanics results to produce the highest correlation to finite element results to account for end effects on round thread connections. It was determined by testing that stab flank contact over a minimum length of engagement is not sufficient to prevent 8-round leak, despite sufficient contact pressure level. Teflon impregnated thread compound should be the choice for API buttress. The indications are that optimized makeup should be considered in the leak resistance capacity of API connections.

  2. Probability based earthquake load and resistance factor design criteria for offshore platforms

    SciTech Connect

    Bea, R.G.

    1996-12-31

    This paper describes a probability reliability based formulation to determine earthquake Load and Resistance Factor Design (LRFD) parameters for conventional, steel, pile supported, tubular membered platforms that is proposed as a basis for earthquake design criteria and guidelines for offshore platforms that are intended to have worldwide applicability. The formulation is illustrated with application to platforms located in five areas: offshore California, Venezuela (Rio Caribe), the East Coast of Canada, in the Caspian Sea (Azeri), and the Norwegian sector of the North Sea.

  3. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  4. Steel monoleg design tries for concrete advantages

    SciTech Connect

    Not Available

    1984-11-01

    The conceptual design of a fixed steel monoleg structure designed for North Sea water depths of 80-250 meters is described. The design was commissioned by the Dutch Ministry of Economic Affairs and funded in part by the European Economic Community. The design aims to give a steel structure some of the advantages of concrete condeeps. Maintenance should be minimized by enclosing the risers inside a monopod. The single-shell, variable geometry of the column structure should also serve to equalize stresses, unlike a conventional space frame where stresses tend to concentrate around the nodes. Construction and installation could be vertical, as in condeep style, or horizontal, as in steel jackets. Thus the fixed steel platform could be either barge-towed and upended with ballast tanks or floated out vertically as built and towed, like a condeep, to a mating with an integrated deck before final tow and installation by simple ballasting.

  5. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  6. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  7. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  8. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  9. 49 CFR 192.105 - Design formula for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe...

  10. Systems design of advanced gear steels

    NASA Astrophysics Data System (ADS)

    Wise, John Patrick

    A new generation of Ni-Co secondary hardening gear steels has been developed using a systems approach. These high toughness ultrahigh-strength martensitic steels show great promise for demanding gear applications. Quantitative science-based modeling was used to create prototype alloys of superior strength and fatigue resistance over conventional steels. Carburizing and strengthening models were developed to relate processing parameters to microstructure and microstructure to strength. The failure of the DICTRA software to accurately predict the carburizing behavior of Ni-Co steels led to a series of experiments to refine its kinetic database. New carbon diffusivities were calculated from the concentration gradients of carburized model alloys, resulting in a significant improvement of simulation accuracy. A structure/property model was created to equate the strength of a secondary hardening steel to the sum of the effects of solid solution, precipitates, dislocation density, and the substructure of the lath martensite matrix. The strengthening model was subsequently combined with the carburizing simulations to predict the hardness gradient in a case-hardened alloy based upon initial carburizing conditions. In addition, existing precipitation theory was used in conjunction with the microstructure/strength relationship to simulate the evolution of material hardness during secondary hardening. The creation of three prototype gear steels began with the use of the strengthening model to establish the carbon and alloying element contents required to reach the core and case hardness objectives of 50 and 70 HRC respectively. The design approach also included the establishment of proper transformation and solution temperatures and the maximization of the efficiency of the Msb2C carbide strengthening dispersion. The core hardnesses of the C3-A and B prototypes significantly exceeded the design goal. A reduction in core carbon content from 0.16 to 0.12 weight percent was

  11. Surface design methodology - challenge the steel

    NASA Astrophysics Data System (ADS)

    Bergman, M.; Rosen, B.-G.; Eriksson, L.; Anderberg, C.

    2014-03-01

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or "feeling" for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA.

  12. Design and analysis of prestressed composite steel beams

    SciTech Connect

    Thammasila, D.

    1992-01-01

    This study experimentally and analytically examined the behavior of prestressed composite steel beams. Methods for analysis and design of the prestressed composite steel beams with constant and variable eccentricities based on the load and resistance factor design and the working stress design were formulated. Three specimens were tested under static and cyclic loadings to verify the proposed design methods. The results from the cyclic loadings were used to test the feasibility of the prestressed composite steel beams under actual loading conditions. Finite element models were developed to study the behavior of the prestressed composite steel beams and to ensure the validity of the proposed design methods. The modes of failure of the three specimens tested were crushing of concrete slabs and yielding of steel beams and prestressing tendons. The cyclic loads reduced the ultimate strength of the specimens tested by 7.8 percent. Overall, the proposed design methods for the load and resistance factor design and the working stress design adequately predicted the behavior of the prestressed composite steel beams.

  13. Design of tough ferritic steels for cryogenic use

    SciTech Connect

    Morris, J.W. Jr.

    1985-10-01

    This paper describes the design of ferritic steels and weldments that combine strength and toughness at cryogenic temperatures. The alloy must have a ductile-brittle transition temperature below the intended service temperature and a high fracture toughness in the ductile mode. Its systematic design uses the microstructure-property relations that govern the transition temperature and fracture toughness to identify a suitable microstructure, and then employs the microstructure-processing relations that govern its thermal response to manipulate the microstructure into the appropriate form. The procedure is illustrated by describing the heat treatments, microstructures and properties of a variety of laboratory and commercial alloys, including conventional ''9Ni'' steel, the low-Ni and Fe-Mn ferritic steels that have been developed as an alternative to 9Ni, the 12Ni steels that are promising for use at 4K, and the welding procedures and ferritic filler metals that are useful for ferritic cryogenic steels.

  14. Microstructural design in low alloy steels

    NASA Technical Reports Server (NTRS)

    Honeycombe, R. W. K.

    1982-01-01

    The evolution of microalloyed steels from plain carbon steels is examined with emphasis on grain size control by use of Nb, Ti and V additions and by the application of controlled rolling. The structural changes during controlled rolling are described as well as the influence of alloying elements on these changes, and on the final microstructure. The achievement of high strength and toughness is discussed including the role of inclusions.

  15. Packaging Design Criteria for the Steel Waste Package

    SciTech Connect

    BOEHNKE, W.M.

    2000-10-19

    This packaging design criteria provides the criteria for the design, fabrication, safety evaluation, and use of the steel waste package (SWP) to transport remote-handled waste and special-case waste from the 324 facility to Central Waste Complex (CWC) for interim storage.

  16. Designing high-temperature steels via surface science and thermodynamics

    NASA Astrophysics Data System (ADS)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  17. Balance Fatigue Design of Cast Steel Nodes in Tubular Steel Structures

    PubMed Central

    Wang, Libin; Jin, Hui; Li, Jing

    2013-01-01

    Cast steel nodes are being increasingly popular in steel structure joint application as their advanced mechanical performances and flexible forms. This kind of joints improves the structural antifatigue capability observably and is expected to be widely used in the structures with fatigue loadings. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different; the experiment results showed very clearly that the fatigue behavior was governed by the welds in all tested configurations. This paper focuses on the balance fatigue design of these two parts in a cast steel node joint using fracture mechanics and FEM. The defects in castings are simulated by cracks conservatively. The final crack size is decided by the minimum of 90% of the wall thickness and the value deduced by fracture toughness. The allowable initial crack size could be obtained through the integral of Paris equation when the crack propagation life is considered equal to the weld fatigue life; therefore, the two parts in a cast steel node joint will have a balance fatigue life. PMID:24163621

  18. Balance fatigue design of cast steel nodes in tubular steel structures.

    PubMed

    Wang, Libin; Jin, Hui; Dong, Haiwei; Li, Jing

    2013-01-01

    Cast steel nodes are being increasingly popular in steel structure joint application as their advanced mechanical performances and flexible forms. This kind of joints improves the structural antifatigue capability observably and is expected to be widely used in the structures with fatigue loadings. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different; the experiment results showed very clearly that the fatigue behavior was governed by the welds in all tested configurations. This paper focuses on the balance fatigue design of these two parts in a cast steel node joint using fracture mechanics and FEM. The defects in castings are simulated by cracks conservatively. The final crack size is decided by the minimum of 90% of the wall thickness and the value deduced by fracture toughness. The allowable initial crack size could be obtained through the integral of Paris equation when the crack propagation life is considered equal to the weld fatigue life; therefore, the two parts in a cast steel node joint will have a balance fatigue life. PMID:24163621

  19. Characterization and design of steel fiber reinforced shotcrete in tunnelling

    SciTech Connect

    Casanova, P.A.; Rossi, P.C.

    1995-12-31

    A design procedure of steel fiber reinforced shotcrete tunnel linings is proposed. It is based on the analysis of a cracked section. The tensile behavior of shotcrete after cracking is obtained by a uniaxial tension test on cored notched samples. As for usual reinforced concrete structures an interaction diagram (moment-axial load) is determined.

  20. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Additional design requirements for steel pipe...: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.112 Additional design requirements for steel pipe using... for the steel pipe (1) The plate, skelp, or coil used for the pipe must be micro-alloyed, fine...

  1. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Additional design requirements for steel pipe...: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.112 Additional design requirements for steel pipe using... for the steel pipe (1) The plate, skelp, or coil used for the pipe must be micro-alloyed, fine...

  2. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Additional design requirements for steel pipe...: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.112 Additional design requirements for steel pipe using... for the steel pipe (1) The plate, skelp, or coil used for the pipe must be micro-alloyed, fine...

  3. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Additional design requirements for steel pipe...: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.112 Additional design requirements for steel pipe using... for the steel pipe (1) The plate, skelp, or coil used for the pipe must be micro-alloyed, fine...

  4. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  5. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  6. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  7. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  8. 49 CFR 192.111 - Design factor (F) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Design factor (F) for steel pipe. 192.111 Section...) for steel pipe. (a) Except as otherwise provided in paragraphs (b), (c), and (d) of this section, the... less must be used in the design formula in § 192.105 for steel pipe in Class 1 locations that:...

  9. Designing of Sub-entry Nozzle for Casting Defect-free Steel

    NASA Astrophysics Data System (ADS)

    Sen, Anupal; Prasad, B.; Sahu, J. K.; Tiwari, J. N.

    2015-02-01

    Production of defect-free steel is a continuous demand for each & every steel maker. The design of refractories used in steel making process has a vital role on this. Manufacturing of cleaner steel is mostly attributed to the continuous casting process of the steel plant. Defects in steel mainly come from the non-metallic inclusions present in steel that are incorporated during various steel making process. During continuous casting, the main focus is to remove these inclusions to cast defect free steel. The flow pattern of molten steel in the mould plays a vital role in the removal of these impurities. The turbulence of the flowing steel in the mould should be such that more and more impurities will be floated at the meniscus of the mould and they will be captured by the casting powder. But, this turbulence should not be higher enough to capture the particles of casting powder inside the molten steel. So, in order to optimize the turbulent intensity and to get uniform distribution of temperature and velocity in the mould, the design of Sub-entry nozzle (SEN) is very crucial. SEN is used to guide the flow of steel from tundish to mould during continuous casting. The bore configuration and outlet design of SEN along with its immersed depth in the mould determine the flow pattern of steel inside the mould, which is the key factor to produce cleaner steel. This paper focuses on the different designing aspects of SEN to get an optimized and uniform flow of steel in the mould. The designing parameters include bore diameter, bore configuration, port shape, port angle, port dimension, number of ports and immersed depth of SEN inside the mould. Design optimization is done to improve the steel quality by removing the impurities.

  10. Probabilistic life design of refractories for steel casting

    SciTech Connect

    Wereszczak, A.A.; Smith, J.D.; Moore, R.E.

    1998-02-01

    The failure probability of magnesia-graphite components was predicted using an established probabilistic life prediction design algorithm. The described algorithm is commonly employed in the design of load-bearing structural ceramics components; however, interest existed for the present study to demonstrate its use and applicability in the design (or failure probability analysis) of arbitrary refractory components. Two components were examined: (1) a 25.4 x 25.4 x 152 mm (1 x 1 by 6 in.) magnesia-graphite prismatic bar subjected to three-point flexure using a 101.6 mm (4 in.) span, and (2) a vertically suspended magnesia-graphite nozzle whose dimensions were 203 O.D. x 101.6 I.D. x 1,524 mm length (8 O.D. x 4 I.D. x 60 in. length). Magnesia-graphite strength data were combined with finite element analysis of the components and an appropriate multiaxial ceramic failure criterion to predict the failure probabilities of each. The latter exercise illustrated how laboratory-generated strength distributions may be used to predict the failure probability of a representative refractory component used in steel casting, while the former provided useful information of strength-dependence on size between two commonly used specimen geometries used for refractory strength tests. The results indicated an approach of probabilistic life design is applicable to refractory component design for the steel casting industry.

  11. Systems design of high-performance stainless steels

    NASA Astrophysics Data System (ADS)

    Campbell, Carelyn Elizabeth

    A systems approach has been applied to the design of high performance stainless steels. Quantitative property objectives were addressed integrating processing/structure/property relations with mechanistic models. Martensitic transformation behavior was described using the Olson-Cohen model for heterogeneous nucleation and the Ghosh-Olson solid-solution strengthening model for interfacial mobility, and incorporating an improved description of Fe-Co-Cr thermodynamic interaction. Coherent Msb2C precipitation in a BCC matrix was described, taking into account initial paraequilibrium with cementite. Using available SANS data, a composition dependent strain energy was calibrated and a composition independent interfacial energy was evaluated to predict the critical particle size versus the fraction of the reaction completed as input to strengthening theory. Multicomponent Pourbaix diagrams provided an effective tool for evaluating oxide stability; constrained equilibrium calculations correlated oxide stability to Cr enrichment in the oxide film to allow more efficient use of alloy Cr content. Multicomponent solidification simulations provided composition constraints to improve castability. Using the Thermo-Calc and DICTRA software packages, the models were integrated to design a carburizing, secondary-hardening martensitic stainless steel. Initial characterization of the prototype showed good agreement with the design models and achievement of the desired property objectives. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing response, achieving a case hardness of Rsb{c} 64 in the secondary-hardened condition without case primary carbides. Decarburization experiments suggest that the design core toughness objective (Ksb{IC} = 65 MPasurdm) can be achieved by reducing the core carbon level to 0.05 weight percent. To achieve the core toughness objective at high core strength levels requires further analysis of an

  12. Documentation of Stainless Steel Lithium Circuit Test Section Design

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  13. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  14. A modular steel freeway bridge: design concept and earthquake resistance.

    PubMed

    Wattenburg, W H; McCallen, D B; Murray, R C

    1995-04-14

    A modular multilane steel freeway bridge has been constructed from surplus railroad flatcar decks. It can be erected on-site in a few days' time. It has been built and static-load tested for emergency freeway bridge repair. This inexpensive modular bridge may also have broad application around the world for low-cost bridges in areas where funds are limited. On the basis of static-load testing performed by the California Department of Transportation and computer dynamic analysis, this simple modular-design concept has the potential of providing a strong bridge that can withstand the severe aftershocks expected immediately after a major earthquake. PMID:17814794

  15. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  16. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoding; Latourte, Felix; Feinberg, Zack; Olson, Gregory; Espinosa, Horacio; Micro; Nanomechanics Laboratory Team; Olson Group Team

    2011-06-01

    To characterize the performance of naval structures, underwater blast experiments have been developed. Martensitic and austenitic steel alloys were designed to optimize the performance of structures subjected to impulsive loads. The deformation and fracture characteristics of the designed steel alloys were investigated experimentally and computationally. The experiments were based on an instrumented fluid structure interaction apparatus, in which deflection profiles were recorded. The computational study was based on a modified Gurson damage model able to accurately describe ductile failure under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed to maximize strength and fracture toughness while the austenitic steel (TRIP-120) was designed to maximize uniform ductility. The combined experimental-computational approach provided insight into the relationships between material properties and blast resistance of structures.

  17. Designation of alloy composition of reduced-activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kayano, H.; Misawa, T.; Matsui, H.

    1994-09-01

    An alloy composition of reduced-activation martensitic steel for fusion reactor is designed on the basis of the experimental results of postirradiation microstructure, mechanical properties, such as creep, fracture toughness and tensile properties, hydrogen effects and corrosion. At present, a desired composition of the steel is 0.1C-0.05Si-0.5Mn-9Cr-2W-0.25V-0.02Ti-0.05Ta- < 0.002S- < 0.002P by weight percent. Effects of the other minor elements such as Al, Zr and B are also inspected. An addition of 0.05 wt% Ta increases the high temperature strength but reduces the fracture toughness. Susceptibility to hydrogen-induced cracking is reduced by an addition of 0.03 wt% Al, though it results in a severe degradation of the fracture toughness. An addition of 30 wppm B together with the addition of 0.02 wt% Ti increases the fracture toughness. Void nucleation at grain boundaries, however, is enhanced by the B addition under the FFTF irradiation at 638 K in 10 dpa.

  18. Designing strength, toughness, and hydrogen resistance: Quantum steel

    NASA Astrophysics Data System (ADS)

    Kantner, Christopher David

    Two ultra-high strength, Co-Ni steels have been designed incorporating quantum mechanical predictions for enhancement of grain boundary cohesion. The prior quantum mechanical calculations identified tungsten, rhenium, and molybdenum as highly effective cohesion enhancers, predicting both their cohesion enhancement potencies and boundary segregation energies. These predicted quantities were employed in thermodynamic and kinetic models for control of desired grain boundary composition, and integrated with models for transformation and solution temperatures, strengthening, toughening. Detailed modeling of co-precipitation of carbides and austenite particles for transformation toughening revealed an incompatibility of precipitated austenite with desired boundary composition. Thus, transformation toughening was eliminated from the designs. Motivated by specific goals for strength, toughness, and intergranular stress-corrosion resistance, an economically-viable alloy designated QSW employed boundary segregation of tungsten at solution temperatures and molybdenum and boron at tempering temperatures, while an experimental alloy QSRe investigated the effectiveness of combined rhenium and tungsten segregation at solution temperatures. Experimental heat treatment optimization of the two prototype alloys validated predicted transformation and solution temperatures as well as predicted alloy carbide strengthening response. The QSW alloy achieved a fracture toughness of KIC = 47 ksi√in with an ultimate tensile strength of 330 ksi corresponding to a hardness level of HRc 58. Analytical electron microscopy confirmed the desired segregation of rhenium and tungsten to prior-austenite grain boundaries in alloy QSRe, but the measured boundary site fractions indicate boundary segregation energies significantly less than the quantum mechanical estimates. Results of the prototype evaluations were incorporated in the redesign of two new alloys, a higher toughness modification of the QSW

  19. Euler Teaches a Class in Structural Steel Design

    ERIC Educational Resources Information Center

    Boyajian, David M.

    2009-01-01

    Even before steel was a topic of formal study for structural engineers, the brilliant eighteenth century Swiss mathematician and physicist, Leonhard Euler (1707-1783), investigated the theory governing the elastic behaviour of columns, the results of which are incorporated into the American Institute of Steel Construction's (AISC's) Bible: the…

  20. Design of a low-alloy high-strength and high-toughness martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-jun; Ren, Xue-ping; Yang, Wen-chao; Zang, Yue

    2013-08-01

    To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500°C and 700°C, M7C3 exits below 720°C, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280°C, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.

  1. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    SciTech Connect

    JAKA, O.M.

    2000-07-27

    The design for the steel cover plates to replace concrete cover blocks for U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pits: 241-U-105. 241-I-103, 241-Ax-101. 241-A-101, 241-SX-105, 241-S-A, 241-S-C, 241-SX-A.

  2. A New Paradigm for Designing High-Fracture-Energy Steels

    NASA Astrophysics Data System (ADS)

    Fine, M. E.; Vaynman, S.; Isheim, D.; Chung, Y.-W.; Bhat, S. P.; Hahin, C. H.

    2010-12-01

    The steels used for structural and other applications ideally should have both high strength and high toughness. Most high-strength steels contain substantial carbon content that gives poor weldability and toughness. A theoretical study is presented that was inspired by the early work of Weertman on the effect that single or clusters of solute atoms with slightly different atom sizes have on dislocation configurations in metals. This is of particular interest for metals with high Peierls stress. Misfit centers that are coherent and coplanar in body-centered cubic (bcc) metals can provide sufficient twisting of nearby screw dislocations to reduce the Peierls stress locally and to give improved dislocation mobility and hence better toughness at low temperatures. Therefore, the theory predicts that such nanoscale misfit centers in low-carbon steels can give both precipitation hardening and improved ductility and fracture toughness. To explore the validity of this theory, we measured the Charpy impact fracture energy as a function of temperature for a series of low-carbon Cu-precipitation-strengthened steels. Results show that an addition of 0.94 to 1.49 wt pct Cu and other accompanying elements results in steels with high Charpy impact energies down to cryogenic temperatures (198 K [-75 °C]) with no distinct ductile-to-brittle transition. The addition of 0.1 wt pct Ti results in an additional increase in impact toughness, with Charpy impact fracture energies ranging from 358 J (machine limit) at 248 K (-25 °C) to almost 200 J at 198 K (-75 °C). Extending this concept of using coherent and coplanar misfit centers to decrease the Peierls stress locally to other than bcc iron-based systems suggests an intriguing possibility of developing ductile hexagonal close-packed alloys and intermetallics.

  3. Performance-based plastic design method for steel concentric braced frames

    NASA Astrophysics Data System (ADS)

    Banihashemi, M. R.; Mirzagoltabar, A. R.; Tavakoli, H. R.

    2015-09-01

    This paper presents a performance-based plastic design (PBPD) methodology for the design of steel concentric braced frames. The design base shear is obtained based on energy-work balance equation using pre-selected target drift and yield mechanism. To achieve the intended yield mechanism and behavior, plastic design is applied to detail the frame members. For validity, three baseline frames (3, 6, 9-story) are designed according to AISC (Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, 2005) seismic provisions (baseline frames). Then, the frames are redesigned based on the PBPD method. These frames are subjected to extensive nonlinear dynamic time-history analyses. The results show that the PBPD frames meet all the intended performance objectives in terms of yield mechanisms and target drifts, whereas the baseline frames show very poor response due to premature brace fractures leading to unacceptably large drifts and instability.

  4. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  5. COMPUTATIONAL DESIGN OF CORROSION RESISTANT STEELS FOR STRUCTURAL APPLICATIONS IN AIRCRAFT

    EPA Science Inventory

    A secondary hardening stainless steel has been designed using computational materials design methods with the goal to provide a mechanical equivalent to 300M that eliminates the requirement for cadmium coating, and with it eliminates the primary failure mechanisms for today's lan...

  6. Engineering safety evaluation for 22 ton steel disposal box lifting bail design

    SciTech Connect

    BOEHNKE, W.M.

    1999-11-23

    The objective of this analysis is to design and analyze the lifting bail of the 22 Ton Steel Waste Disposal Box (SWDB). The new design takes the original lifting bail and adds a hinge allowing the top portion of the bail to fold over towards the lid.

  7. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  8. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    PubMed Central

    Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E.; Terán-Gilmore, Amador

    2014-01-01

    Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions. PMID:25089288

  9. Estimation of cyclic interstory drift capacity of steel framed structures and future applications for seismic design.

    PubMed

    Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E; Terán-Gilmore, Amador

    2014-01-01

    Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions. PMID:25089288

  10. 75 FR 13543 - Decision To Evaluate a Petition To Designate a Class of Employees for the Simonds Saw and Steel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES Decision To Evaluate a Petition To Designate a Class of Employees for the Simonds Saw and... designate a class of employees for Simonds Saw and Steel Co., Lockport, New York, to be included in the... evaluation, is as follows: Facility: Simonds Saw and Steel Co. Location: Lockport, New York. Job Titles...

  11. Phase transformation theory: A powerful tool for the design of advanced steels

    NASA Astrophysics Data System (ADS)

    Caballero, F. G.; Miller, M. K.; Garcia-Mateo, C.; Capdevila, C.; Garcia de Andrés, C.

    2008-12-01

    An innovative design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite, retained austenite, and some martensite. An increase in the amount of bainitic ferrite is needed in order to avoid the presence of large regions of untransformed austenite, which under stress decompose to brittle martensite. The design procedure addresses this diffi culty by adjusting the T'o curve to greater carbon concentrations with the use of substitutional solutes such as manganese and chromium. The concepts of bainite transformation theory can be exploited even further to design steels with strength in excess of 2.5 GPa and considerable toughness.

  12. Design of a W/steel functionally graded material for plasma facing components of DEMO

    NASA Astrophysics Data System (ADS)

    Missiaen, J. M.; Raharijaona, J. J.; Antoni, A.; Pascal, C.; Richou, M.; Magaud, P.

    2011-09-01

    The design of a graded transition between tungsten and steel for plasma facing components of a nuclear fusion reactor is proposed and the interest of such a transition is demonstrated by FEM calculations of the thermo-mechanical behaviour in the operating conditions of the DEMO reactor. The transition consists in stacked layers of W-WC and WC-Fe between W and Eurofer steel. The maximum surface temperature of the structural component could be maintained below 1300 °C for a very simple multilayer geometry, from FEM calculations. The maximum strains and equivalent elastic stresses could be reduced by a factor of about 3 as compared to a direct W/steel joint. Considerations about processing techniques of such a component are discussed, based on the literature background and a few preliminary tests.

  13. Study, Development, and Design of Replaceable Shear Yielding Steel Panel Damper

    SciTech Connect

    Murakami, Katsuhide; Keii, Michio

    2008-07-08

    For middle-high rise buildings, vibration controlled structures to reduce the damage of main frames are recently becoming general in Japan. A steel material damper is low price and excellent in the energy absorption efficiency at a large earthquake. Though the exchange of the dampers are necessary when an excessive accumulation of plasticity deformation occurs, a steel material damping system, which received an excessive accumulation of plasticity deformation after a large earthquake, can recover a seismic-proof performance and property value of the building after the replacement. In the paper, shear yielding steel panel dampers installed in the web of a beam connected with high tension bolt joint is introduced. This damper is made of low-yield point steel, and the advantages of this system are low cost, easy-production and easy-replacement. For this steel panel damper, the finite element method (FEM) analysis using the shell element model adjusted to 1/2 of 6.4 m beam span is executed to make the design most effective. Yielding property of the beam installing this damper, shape of the splice plate and the bolt orientation for the connecting are examined in this analysis. As a result, we found that the plastic strain extends uniformly to the entire damping panel when making the splice plate a trapezoidal shape. The basic performance confirmation examination was also done using the real scale examination model besides the FEM analysis, and the performance of the system was confirmed. In addition, design of a high rise building in which the steel shear-yielding panel dampers and oil dampers were adopted without disturbing an architectural plan is also introduced.

  14. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  15. Failure Behavior of Three-Steel Sheets Resistance Spot Welds: Effect of Joint Design

    NASA Astrophysics Data System (ADS)

    Pouranvari, M.; Marashi, S. P. H.

    2012-08-01

    There is a lack of comprehensive understanding concerning failure characteristics of three-steel sheet resistance spot welds. In this article, macro/microstructural characteristics and failure behavior of 1.25/1.25/1.25 mm three-sheet low carbon steel resistance spot welds are investigated. To evaluate the mechanical properties of the joint, the tensile-shear test was performed in three different joint designs. Mechanical performance of the joint was described in terms of peak load, energy absorption, and failure mode. The critical weld nugget size required to insure pullout failure mode was obtained for each joint design. It was found that the joint design significantly affects the mechanical properties and the tendency to fail in the interfacial failure mode. It was also observed that stiffer joint types exhibit higher critical weld size. Fusion zone size along sheet/sheet interface proved to be the most important controlling factor of spot weld peak load and energy absorption.

  16. Enabling lightweight designs by a new laser based approach for joining aluminum to steel

    NASA Astrophysics Data System (ADS)

    Brockmann, Rüdiger; Kaufmann, Sebastian; Kirchhoff, Marc; Candel-Ruiz, Antonio; Müllerschön, Oliver; Havrilla, David

    2015-03-01

    As sustainability is an essential requirement, lightweight design becomes more and more important, especially for mobility. Reduced weight ensures more efficient vehicles and enables better environmental impact. Besides the design, new materials and material combinations are one major trend to achieve the required weight savings. The use of Carbon Fiber Reinforced Plastics (abbr. CFRP) is widely discussed, but so far high volume applications are rarely to be found. This is mainly due to the fact that parts made of CFRP are much more expensive than conventional parts. Furthermore, the proper technologies for high volume production are not yet ready. Another material with a large potential for lightweight design is aluminum. In comparison to CFRP, aluminum alloys are generally more affordable. As aluminum is a metallic material, production technologies for high volume standard cutting or joining applications are already developed. In addition, bending and deep-drawing can be applied. In automotive engineering, hybrid structures such as combining high-strength steels with lightweight aluminum alloys retain significant weight reduction but also have an advantage over monolithic aluminum - enhanced behavior in case of crash. Therefore, since the use of steel for applications requiring high mechanical properties is unavoidable, methods for joining aluminum with steel parts have to be further developed. Former studies showed that the use of a laser beam can be a possibility to join aluminum to steel parts. In this sense, the laser welding process represents a major challenge, since both materials have different thermal expansion coefficients and properties related to the behavior in corrosive media. Additionally, brittle intermetallic phases are formed during welding. A promising approach to welding aluminum to steel is based on the use of Laser Metal Deposition (abbr. LMD) with deposit materials in the form of powders. Within the present work, the advantages of this

  17. Design of Pressure Relief Valves for Protection of Steel-Lined Pressure Shafts and Tunnels Against Buckling During Emptying

    NASA Astrophysics Data System (ADS)

    Schleiss, Anton J.; Manso, Pedro A.

    2012-01-01

    Using high-strength steels for pressure shafts and tunnel liners and taking into account significant rock mass participation allows the design of comparatively thin steel liners in hydropower projects. Nevertheless, during emptying of waterways, these steel linings may be endangered by buckling. Compared with traditional measures such as increased steel liner thickness and stiffeners, pressure relief valves are a very economical solution for protection of steel liners against critical external pressure and therefore buckling during emptying. A calculation procedure has been developed for the design of the required number and arrangement of pressure relief valves, and this has been used successfully in practice. Systematic model tests enabled the assumptions of the design method to be verified.

  18. Local Laser Strengthening of Steel Sheets for Load Adapted Component Design in Car Body Structures

    NASA Astrophysics Data System (ADS)

    Jahn, Axel; Heitmanek, Marco; Standfuss, Jens; Brenner, Berndt; Wunderlich, Gerd; Donat, Bernd

    The current trend in car body construction concerning light weight design and car safety improvement increasingly requires an adaption of the local material properties on the component load. Martensitic hardenable steels, which are typically used in car body components, show a significant hardening effect, for instance in laser welded seams. This effect can be purposefully used as a local strengthening method. For several steel grades the local strengthening, resulting from a laser remelting process was investigated. The strength in the treated zone was determined at crash relevant strain rates. A load adapted design of complex reinforcement structures was developed for compression and bending loaded tube samples, using numerical simulation of the deformation behavior. Especially for bending loaded parts, the crash energy absorption can be increased significantly by local laser strengthening.

  19. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. PMID:25637292

  20. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  1. Cathodic protection system design for steel pilings of a wharf structure

    SciTech Connect

    Nikolakakos, S.

    1999-07-01

    Corrosion of steel pilings in sea and brackish water is mostly due to the establishment of localized corrosion cells and the effects of the tidal changes. The most frequently used corrosion protection systems are coatings and/or cathodic protection. These protective systems when properly designed, installed and operated are very effective in preventing corrosion problems. The design of a cathodic protection system, in order to be effective and reliable, must take into consideration all technical design criteria, the type of materials used, the geometric shape of the structure, environmental conditions, site restrictions, and any outside interferences. These design considerations, as well as the use of design data and an overall design methodology for a cathodic protection system for pipe and sheet piling used in a wharf structure, are discussed in this paper.

  2. Experimental Design and Data collection of a finishing end milling operation of AISI 1045 steel

    PubMed Central

    Dias Lopes, Luiz Gustavo; de Brito, Tarcísio Gonçalves; de Paiva, Anderson Paulo; Peruchi, Rogério Santana; Balestrassi, Pedro Paulo

    2016-01-01

    In this Data in Brief paper, a central composite experimental design was planned to collect the surface roughness of an end milling operation of AISI 1045 steel. The surface roughness values are supposed to suffer some kind of variation due to the action of several factors. The main objective here was to present a multivariate experimental design and data collection including control factors, noise factors, and two correlated responses, capable of achieving a reduced surface roughness with minimal variance. Lopes et al. (2016) [1], for example, explores the influence of noise factors on the process performance. PMID:26909374

  3. Design and fabrication considerations for stainless steel liquid helium jackets surrounding SCRF cavities

    NASA Astrophysics Data System (ADS)

    Bonnema, E. C.; Cunningham, E. K.; Rumel, J. D.

    2014-01-01

    The Department of Energy requires its subcontractors to meet 10 CFR 851 Appendix A Part 4 for all new pressure vessels and pressure piping. The stainless steel pressure vessel boundaries surrounding SCRF cavities fall under this requirement. Methods for meeting this requirement include design and fabrication of the pressure vessels to meet the requirements of the ASME Boiler & Pressure Vessel Code Section VIII Division 1 or Division 2. Design considerations include determining whether the configuration of the SCRF cavity can be accommodated under the rules of Division 1 or must be analyzed under Division 2 Part 4 Design by Rule Requirements or Part 5 Design by Analysis Requirements. Regardless of the Division or Part choice, designers will find the rules of the ASME Code require thicker pressure boundary members, larger welds, and additional non-destructive testing and quality assurance requirements. These challenges must be met and overcome by the fabricator through the development of robust, detailed, and repeatable manufacturing processes. In this paper we discuss the considerations for stainless steel pressure vessels that must meet the ASME Code and illustrate the discussion with examples from direct experience fabricating such vessels.

  4. Alloy Design, Combinatorial Synthesis, and Microstructure-Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Raabe, D.; Springer, H.; Gutierrez-Urrutia, I.; Roters, F.; Bausch, M.; Seol, J.-B.; Koyama, M.; Choi, P.-P.; Tsuzaki, K.

    2014-09-01

    We present recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system. Here, two steel types are addressed. The first one is a class of low-density twinning-induced plasticity or single phase austenitic TWIP (SIMPLEX) steels with 25-30 wt.% Mn and <4-5 wt.% Al or even <8 wt.% Al when naturally aged. The second one is a class of κ-carbide strengthened austenitic steels with even higher Al content. Here, κ-carbides form either at 500-600°C or even during quenching for >10 wt.% Al. Three topics are addressed in more detail, namely, the combinatorial bulk high-throughput design of a wide range of corresponding alloy variants, the development of microstructure-property relations for such steels, and their susceptibility to hydrogen embrittlement.

  5. Metallurgical Design of High-Performance GMAW Electrodes for Joining HSLA-65 Steel

    NASA Astrophysics Data System (ADS)

    Sampath, V.; Kehl, J.; Vizza, C.; Varadan, R.; Sampath, K.

    2008-12-01

    A C++ algorithm was used to metallurgically design high-performance GMAW electrodes for joining HSLA-65 steel. The electrode design was based on: (1) a carbon content ≤0.06 wt.% for improved weldability, (2) a 5-15% lower Ar3 transformation temperature than HSLA-65 steel for enhanced strength and toughness, and (3) a desirable range of carbon equivalent number (CEN) for consistently overmatching the minimum specified tensile strength of HSLA-65 steel. The algorithm utilized a set of boundary conditions that included calculated Ar3, BS, BF, and MS transformation temperatures besides CEN. Numerical ranges for boundary conditions were derived from chemical compositions of commercial HSLA-65 steel, substituting thermomechanical effects with weld solidification effects. The boundary conditions were applied in evaluating chemical composition ranges of the following three prospective welding electrode specification groups that offered to provide ≤0.06 wt.% carbon, a minimum transverse-weld tensile strength of 552 MPa (80 ksi), and a minimum CVN impact toughness of 27 J at -29 °C through -51 °C (20 ft lbf at -20 °F through -60 °F) in the as-welded condition: (1) ER80S-Ni1, (2) E90C-K3, and (3) E80C-W2. At ≤0.06 wt.% carbon, the algorithm returned over 3100 results for E90C-K3 that satisfied the boundary conditions, but returned no acceptable results for other two electrode specification groups. Results revealed that welding electrode designs based on an Fe-C-Mn-Ni-Mo system, containing 0.06 wt.% C, 1.6 wt.% Mn, 0.8 wt.% Ni, and 0.3 wt.% Mo that provide weld metals characterized by an Ar3 of 690 °C, a CEN of 0.29, and a (BF - MS) of 30 °C are expected to consistently overmatch the minimum specified tensile strength of HSLA-65 steel while offering a minimum CVN impact toughness of 41 J at -40 °C (30 ft lbf at -40 °F).

  6. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    SciTech Connect

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-17

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO{sub 2} slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 {mu}m and 150 {mu}m. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 {mu}m. The maximum hardness achieved was between 728 and 905 HV{sub 0.1}. These findings are significant to modern development of hard coatings for wear resistant applications.

  7. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  8. Systems design of transformation toughened blast-resistant naval hull steels

    NASA Astrophysics Data System (ADS)

    Saha, Arup

    A systems approach to computational materials design has demonstrated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (Cv > 85 ft-lbs (115 J) corresponding to KId > 200 ksi.in1/2 (220 MPa.m1/2)) at strength levels of 150--180 ksi (1034--1241 MPa) yield strength in weldable, formable plate steels. A theoretical design concept was explored integrating the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ˜3nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability. Hardness and tensile tests conducted on the designed prototype confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 60% in Charpy

  9. Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-05-01

    The concepts of phase transformation theory can be exploited to design nanostructured steels that transform to bainite at temperatures as low as 150°C. The microstructure obtained is so refined that it is possible to achieve strength in excess of 2.5 GPa in a material that has considerable toughness (40 MPam1/2). Such a combination of properties has never been achieved before with bainite. A description of the characteristics and significance of this remarkable microstructure in the context of the mechanism of transformation is provided.

  10. [Design and fabrication of the nickel-free stainless steel coronary stent].

    PubMed

    Teng, Yingxue; Zheng, Fen; Zhang, Bingchun; YangKe

    2012-09-01

    A kind of coronary stent was made from Nickel-free stainless steel, and the technological process of the stent was studied. A preferable flexible and support force stent was simulated by a commercial finite element code ANSYS with laser cutting, pickling and vacuum annealing. This kind of coronary stent has more superiority. It was also presented that a self designed automatic stent electro-polishing device, which greatly improve efficiency and quality, and the optimization electro-polishing process was put forward. PMID:23289341

  11. Design of an electrochemical probe for monitoring susceptibility of steel in pickling to hydrogen-induced cracking

    SciTech Connect

    Cheng, Y.F.; Du, Y.L. . Corrosion Science Lab.)

    1993-09-01

    The relationship between the measured signals (hydrogen [H] permeating rate) of an electrochemical H sensor and the strength/embrittlement of plain carbon steel in acid solution as defined by slow strain rate tensile tests and scanning electron microscopy was studied. Critical parameters and criteria for hydrogen-induced cracking (HIC) reported may be useful in software design of an electrochemical probe for inspecting and monitoring the HIC susceptibility of steel in pickling.

  12. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  13. German guidelines for steel fiber reinforced shotcrete in tunnels with special consideration of design and statical aspects

    SciTech Connect

    Schmidt-Schleicher, H.

    1995-12-31

    Steel fiber reinforced concrete can undoubtedly absorb tensile forces. The utilization of this characteristic for the design and specifications of support structures for underground tunnels is regulated by the new Guidelines from the German Concrete Association. Recommendations are given in these guidelines for construction design and for construction itself. The required tests for classification, suitability and quality monitoring are presented.

  14. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Technical Reports Server (NTRS)

    Eggert, W. S.

    1982-01-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  15. Optimization as a support for design of hot rolling technology of dual phase steel strips

    NASA Astrophysics Data System (ADS)

    Szeliga, Danuta; Sztangret, Łukasz; Kusiak, Jan; Pietrzyk, Maciej

    2013-05-01

    The objective of the paper was performing of the sensitivity analysis of the model used for design of manufacturing technology for auto body parts made of the Advanced High Strength Steels (AHSS). Dual phase steel was considered as an example. The sensitivity analysis was performed to evaluate the importance of all variables as far as their influence on the finishing rolling temperature and grain size. The phase composition after cooling was also considered. An arbitrary hot rolling process characterized only by a number of passes and cooling conditions between passes, as well as by laminar cooling parameters, was selected for the analysis. Metamodel of the rolling cycle was developed to decrease the computing costs for the optimization task. Modified Avrami equation was used for modelling phase transformations during cooling. Such process parameters as the initial temperature, interpass times, heat exchange coefficients and rolling velocities were selected as optimization variables for the rolling process. Parameters of the thermal cycles were selected as the optimization variables for the laminar cooling process. Achieving the required phase composition of product was the optimization objective function. Optimization was performed using various techniques, including methods inspired by nature optimization.

  16. Microstructure design of low alloy transformation-induced plasticity assisted steels

    NASA Astrophysics Data System (ADS)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  17. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    SciTech Connect

    Lucas, G.E.; Billone, M.; Pawel, J.E.; Hamilton, M.L.

    1995-12-31

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (e{sub u}) is well defined in terms of a plastic instability criterion, e{sub u} is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs.

  18. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  19. Heat-affected zone toughness of a TMCP steel designed for low-temperature applications

    SciTech Connect

    Gianetto, J.A.; Braid, J.E.M.; Bowker, J.T.; Tyson, W.R.

    1997-05-01

    The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results form both Charpy-vee notch (CVN) and crack-tip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KAW-L and KAW-H) did not meet the targeted requirement of {delta} = 0.07 mm at {minus}50 C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being samples, which was {approximately} 55% for the bottom compared to 25--30% for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.

  20. Performance optimization and computational design of ultra-high strength gear steels

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin Lee

    Rising power density requirements in transmission gear applications are swiftly outpacing gear redesign alone and will ultimately depend on better materials. Ni-Co secondary hardening steels show great promise for these applications due to their optimized combination of strength and toughness. The commercially available secondary hardening alloys GearMet RTM C61 and C67 have already demonstrated promising contact fatigue resistance, however bending fatigue is anticipated to be the primary failure mode limiting high power density gear applications. Single tooth bending fatigue testing was therefore completed on C61 and C67 spur gears to both assess the optimized performance of these alloys as well as identify defect populations currently limiting further advances. The resultant best-practice C61 spur gears in a shot peened and isotropic superfinished condition outperformed the top-ranking premium gear steel, demonstrating an approximate 15% improvement in bending fatigue endurance limit. Fatigue failures limiting further bending fatigue performance were identified to primarily initiate at three defect classes: shot peening-induced surface damage, subsurface inter-granular cleavage facets and Al2O3 and La2O2S inclusions. C67 spur gears did not show increased performance despite elevated surface hardness levels due to the inability of current shot peening practices to achieve maximum compressive stress in ultra-high hardness materials. In an effort to reduce the material cost of these alloys through minimization/elimination of cobalt alloying additions, BCC Cu precipitation was incorporated to offset ensuing losses in temper resistance by providing additional heterogeneous nucleation sites for the M2C strengthening dispersion. Fifty-pound experimental heats were made of four designed compositions. Peak hardness levels achieved during tempering fell on average 200 VHN short of the 900 VHN designed surface hardness. 3-dimensional local electrode atom probe (LEAP

  1. Design and Application of The Painting Material Supply System of The Painting Robot for Steel Products

    NASA Astrophysics Data System (ADS)

    Miyawaki, Kunio; Hisayasu, Azuma; Mori, Tsunehito; Miyazaki, Tatsuo; Nakashima, Yoshio

    With the increase of painting works and the decrease of skilled workers, the demand for robot painting of the large-scale steel product is rapidly increasing. But there are many technical problems in the development of the painting robot for this use. The collision between a robot and a work-piece is one of the most important problems, because the robot operates in a small space of a work-piece. Above all, the collision of the painting material supply hose with painted film on a work-piece is very serious. To avoid the hose collision, we propose an in-line type of paint supply mechanism using swivel joints. The key point in this system is the sealing performance and its durability, and we propose the piping system with compliance to strengthen the sealing performance. In this paper, the design method of this system is discussed on the basis of the analysis of the fluctuatinal elastic deformation of a O-ring in the swivel joint. We produced a prototype of the painting robot with the in-line system designed by this method. Application of this robot to the painting of ship-hull block is also discussed. Results from this application show the effectiveness of the in-line system.

  2. Design study of steel V-Belt CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Swain, J. C.; Klausing, T. A.; Wilcox, J. P.

    1980-01-01

    A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.

  3. Ergonomic design of crane cabins: a case study from a steel plant in India.

    PubMed

    Ray, Pradip Kumar; Tewari, V K

    2012-01-01

    The study, carried out at the Batch Annealing Furnace (BAF) shop of Cold Rolling Mill (CRM) at an integrated steel plant of India, concerns ergonomic evaluation and redesign of a manually-operated Electrical Overhead Travelling (EOT) crane cabin. The crane cabin is a complex worksystem consisting of the crane operator and twelve specific machine components embedded in a closed workspace. A crane operator has to perform various activities, such as loading and unloading of coils, setting and removal of convector plates, and routine maintenance work. Initially, an operator had to work in standing posture with bent back most of the time. Ergonomically poor design of the chair and the controls, awkward work postures, and insufficient vision angle resulting in musculoskeletal disorders (MSDs) are some of the critical problems observed.. The study, conceived as an industry-academia joint initiative, was undertaken by a design team, the members of which were drawn from both the company concerned and the institute. With the project executed successfully, a number of lessons, such as how to minimize the anthropometric mismatch, how to improve the layout of the components and controls within enclosed workspace, and how to improve work posture minimizing risk of MSDs have been learned. PMID:22317735

  4. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  5. Computational design and analysis of high strength austenitic TRIP steels for blast protection applications

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Padmanava

    Recent assessment of material property requirements for blast resistant applications, especially for the naval ship hulls, has defined the need to design steels with high stretch ductility and fragment penetration resistance, along with high strength and adequate toughness. Using a system based computational materials design approach, two series of austenitic (gamma) steels have been designed -- BA120 to exhibit high uniform ductility in tension (>20%) and SA120 to exhibit high tensile (>20%) and shear strains (>50%), with both alloys maintaining high levels of yield strength (120 ksi/827 MPa) at room temperature under Tensile and Shear stress states. BA120 is low chromium (4 wt %) high nickel (23.5 wt %) alloy while the SA120 is a high chromium design (10 wt %), both designed for non-magnetic behavior. The Thermo-Calc computational thermodynamics software in conjunction with a Ni-DATA 7 thermodynamic database has been used to model precipitation strengthening of the alloy, by quantifying the dependence of yield stress of austenitic steels on the mole fraction of the precipitated gamma' (Gamma Prime) Ni3(Ti, Al) phase. The required high strength has been achieved by the precipitation of spheroidal intermetallic gamma' -- phase of optimum diameter (15 nm) in equilibrium with the matrix at the standard aging temperature. Adequate Al and Ti with respect 5 to the Ni in the matrix ensure enough gamma' phase fraction and number density of precipitates to provide the necessary strength. The predicted gamma' precipitation strengthening to 120-130 ksi for both BA120 and SA120 has been validated through both microhardness as well as static and dynamic tensile and shear tests conducted at room temperature. 3-D LEAP analysis of the aged specimens has shown the expected size and distribution of gamma' -- precipitates with good compositional accuracy of predicted values from the thermodynamic models, for both matrix austenite and gamma'. Metastable austenitic steels have been

  6. Stress-corrosion cracking of steels in ammonia with consideration given to OTEC design: a survey

    SciTech Connect

    Teel, R.B.

    1980-03-01

    Carbon steel, alloy steel, and high-strength, quenched and tempered steel, when under applied or residual stress and especially when cold formed and/or welded without subsequent thermal stress relief, are subject to failure by stress-corrosion cracking (SCC) in air-contaminated dry ammonia. Water as well as hydrazine when present in small amounts have been shown to be effective inhibitors in an all steel system. Galvanic corrosion between dissimilar metals and/or accelerated failure by SCC of stressed steel as a result of galvanic coupling may be of concern. Where water has proven effective as an inhibitor of SCC in an all steel system, it may not be adequate in a mixed metal system. With aluminum tubes, the tube sheet will either have to be solid aluminum, aluminum clad steel or some nonconductive coating will be necessary to effectively remove the cathodic alloy from the galvanic circuit. Research is required to determine the severity of the coupling effect between dissimilar alloys in ammonia under OTEC conditions; especially the possibility of accelerated SCC failures of stressed steel where the presence of an inhibitor in the ammonia may not be sufficient to override the galvanic coupling effect.

  7. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    PubMed

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. PMID:24578147

  8. Probabilistic Assessment of the Design and Safety of HSLA-100 Steel Confinement Vessels

    SciTech Connect

    R.M. Dolin

    2003-03-03

    This probabilistic approach for assessing the design and safety of the HSLA-100 steel confinement vessel used for a DynEx test involved the probability of failure for several scenarios, in which a fragment may penetrate the vessel. The samples involve vessel thicknesses of 1 inch, 2 inches, and 5.25 inches--the combined thicknesses of the 2 inch containment vessel and the 3.25 inch safety vessel. Two simulation approaches were used for each scenario to assess the probability of failure. The Likelihood of Occurrence method simultaneously models all likely fragment events of a test, for which the net probability of failure is the sum of all the fragment events. The Stochastic Sampling method determines the probability of a fragment perforation on the basis of a logical model and takes the overall probability that an experiment results in failure as the maximum probability for any fragment event. With margin and safety assessments taken into account, it was concluded that the one and two inch thicknesses by themselves are inadequate for containing a DynEx test. The 5.25 inch thickness was determined to be safe by the Likelihood of Occurrence method and nearly adequate by the Stochastic Sampling simulation.

  9. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    SciTech Connect

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels.

  10. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  11. Steel Rack Connections: Identification of Most Influential Factors and a Comparison of Stiffness Design Methods.

    PubMed

    Shah, S N R; Sulong, N H Ramli; Shariati, Mahdi; Jumaat, M Z

    2015-01-01

    Steel pallet rack (SPR) beam-to-column connections (BCCs) are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ) behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods. PMID:26452047

  12. Steel Rack Connections: Identification of Most Influential Factors and a Comparison of Stiffness Design Methods

    PubMed Central

    Shah, S. N. R.; Sulong, N. H. Ramli; Shariati, Mahdi; Jumaat, M. Z.

    2015-01-01

    Steel pallet rack (SPR) beam-to-column connections (BCCs) are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ) behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods. PMID:26452047

  13. A Novel Martensitic Creep-Resistant Steel Strengthened by MX Carbonitrides with Extremely Low Coarsening Rates: Design and Characterization

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Ma, Wenjie; Yan, Wei; Yang, Ke; Toda, Yoshiaki; van der Zwaag, Sybrand; Xu, Wei

    2016-07-01

    A general computational alloy design approach, based on thermodynamics and thermokinetics and coupled with a genetic algorithm optimization routine, was applied to the design of novel creep martensitic resistant steels. The optimal alloy suggested by the model has a high density of barely coarsening MX carbonitride precipitates. The model yielded precise values for the concentrations of the 10 alloying elements considered. The model alloy was produced on a 10 kg lab scale. Samples of the new alloy of one of the best commercial martensitic steels on the market P92 were subjected to a high aging temperature of 923 K (650 °C) for times up to 1000 hours. The microstructure of the new alloy in the as-produced state as well as after 1000 hours exposure has all the intended features as predicted by the model. The coarsening rate of the MX rate carbonitrides was substantially lower than that of the precipitates in the P92 steel. The very low coarsening rate explains the superior hardness at very long exposure times.

  14. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: design theory and experimental validation.

    PubMed

    Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang

    2014-01-01

    An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation. PMID:25072348

  15. Smart Elasto-Magneto-Electric (EME) Sensors for Stress Monitoring of Steel Cables: Design Theory and Experimental Validation

    PubMed Central

    Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang

    2014-01-01

    An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation. PMID:25072348

  16. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    SciTech Connect

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    -Mo-V-Nb combination in COST CB2. To explore this question, nine more casting test blocks, four 3Cr steels and five 11Cr steels were purchased, and microstructure and mechanical properties studies similar to those described above for the first iteration of test blocks were conducted. Experimental results from the second iteration indicated that 11 Cr steels with excellent properties are possible. The 11Cr-1.5Mo-V-Nb steels were superior to 11Cr-2W-V-Ta steels, and it appears the former class of steels can be developed to have tensile and creep properties exceeding those of COST CB2. The W-Nb combination in an 11Cr-2W-V-Nb steel had tensile and short-time creep properties at 650 C better than the 11Cr-1.5Mo-V-Nb steels, although long-time low-stress properties may not be as good because of Laves phase formation. Based on the results, the next step in the development of improved casting steels involves acquisition of 11Cr-1.5Mo-V-Nb-N-B-C and 11Cr-2W-V-Nb-N-B-C steels on which long-term creep-rupture tests (>10,000 h) be conducted. For better oxidation and corrosion resistance, development of 11Cr steels, as opposed to a 9Cr steels, such as COST CB2, are important for future turbine designs that envision operating temperatures of 650 C.

  17. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  18. Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection

    NASA Astrophysics Data System (ADS)

    Feinberg, Zechariah Daniel

    In light of the pervasive nature of terrorist attacks, there is a pressing need for the design and optimization of next generation materials for blast and fragment protection applications. Sadhukhan used computational tools and a systems-based approach to design TRIP-120---a fully austenitic transformation-induced plasticity (TRIP) steel. Current work more completely evaluates the mechanical properties of the prototype, optimizes the processing for high performance in tension and shear, and builds models for more predictive power of the mechanical behavior and austenite stability. Under quasi-static and dynamic tension and shear, the design exhibits high strength and high uniform ductility as a result of a strain hardening effect that arises with martensitic transformation. Significantly more martensitic transformation occurred under quasi-static loading conditions (69% in tension and 52% in shear) compared to dynamic loading conditions (13% tension and 5% in shear). Nonetheless, significant transformation occurs at high-strain rates which increases strain hardening, delays the onset of necking instability, and increases total energy absorption under adiabatic conditions. Although TRIP-120 effectively utilizes a TRIP effect to delay necking instability, a common trend of abrupt failure with limited fracture ductility was observed in tension and shear at all strain rates. Further characterization of the structure of TRIP-120 showed that an undesired grain boundary cellular reaction (η phase formation) consumed the fine dispersion of the metastable gamma' phase and limited the fracture ductility. A warm working procedure was added to the processing of TRIP-120 in order to eliminate the grain boundary cellular reaction from the structure. By eliminating η formation at the grain boundaries, warm-worked TRIP-120 exhibits a drastic improvement in the mechanical properties in tension and shear. In quasi-static tension, the optimized warm-worked TRIP-120 with an Mssigma

  19. A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel-Slag Interface for Different Tundish Designs

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Ni, Peiyuan; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran

    2016-03-01

    This paper presents computational fluid dynamics (CFD) simulation results of inclusions macroscopic transport as well as dynamic removal in tundishes. A novel treatment was implemented using the deposition velocity calculated by a revised unified Eulerian deposition model to replace the widely used Stokes rising velocity in the boundary conditions for inclusions removal at the steel-slag interface in tundishes. In this study, the dynamic removal for different size groups of inclusions at different steel-slag interfaces (smooth or rough) with different absorption conditions at the interface (partially or fully absorbed) in two tundish designs was studied. The results showed that the dynamic removal ratios were higher for larger inclusions than for smaller inclusions. Besides, the dynamic removal ratio was higher for rough interfaces than for smooth interfaces. On the other hand, regarding the cases when inclusions are partially or fully absorbed at a smooth steel-slag interface, the removal ratio values are proportional to the absorption proportion of inclusions at the steel-slag interface. Furthermore, the removal of inclusions in two tundish designs, i.e., with and without a weir and a dam were compared. Specifically, the tundish with a weir and a dam exhibited a better performance with respect to the removal of bigger inclusions (radii of 5, 7, and 9 μm) than that of the case without weir and dam. That was found to be due to the strong paralleling flow near the middle part of the top surface. However, the tundish without weir and dam showed a higher removal ratio of smaller inclusions (radius of 1 μm). The reason could be the presence of a paralleling flow near the inlet zone, where the inclusions deposition velocities were much higher than in other parts.

  20. A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel-Slag Interface for Different Tundish Designs

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Ni, Peiyuan; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran

    2016-06-01

    This paper presents computational fluid dynamics (CFD) simulation results of inclusions macroscopic transport as well as dynamic removal in tundishes. A novel treatment was implemented using the deposition velocity calculated by a revised unified Eulerian deposition model to replace the widely used Stokes rising velocity in the boundary conditions for inclusions removal at the steel-slag interface in tundishes. In this study, the dynamic removal for different size groups of inclusions at different steel-slag interfaces (smooth or rough) with different absorption conditions at the interface (partially or fully absorbed) in two tundish designs was studied. The results showed that the dynamic removal ratios were higher for larger inclusions than for smaller inclusions. Besides, the dynamic removal ratio was higher for rough interfaces than for smooth interfaces. On the other hand, regarding the cases when inclusions are partially or fully absorbed at a smooth steel-slag interface, the removal ratio values are proportional to the absorption proportion of inclusions at the steel-slag interface. Furthermore, the removal of inclusions in two tundish designs, i.e., with and without a weir and a dam were compared. Specifically, the tundish with a weir and a dam exhibited a better performance with respect to the removal of bigger inclusions (radii of 5, 7, and 9 μm) than that of the case without weir and dam. That was found to be due to the strong paralleling flow near the middle part of the top surface. However, the tundish without weir and dam showed a higher removal ratio of smaller inclusions (radius of 1 μm). The reason could be the presence of a paralleling flow near the inlet zone, where the inclusions deposition velocities were much higher than in other parts.

  1. 49 CFR 192.112 - Additional design requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for any single test on each heat of steel; and (B) The results of the drop weight test prescribed in... from each heat plus one pipe from each welding line per day; and (ii) For each sample cross section, a minimum of 13 readings (three for each heat affected zone, three in the weld metal, and two in...

  2. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    NASA Astrophysics Data System (ADS)

    Lu, Qi; van der Zwaag, Sybrand; Xu, Wei

    2016-02-01

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0-10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  3. Ferritic-Martensitic steel Test Blanket Modules: Status and future needs for design criteria requirements and fabrication validation

    NASA Astrophysics Data System (ADS)

    Salavy, J.-F.; Aiello, G.; Aubert, P.; Boccaccini, L. V.; Daichendt, M.; De Dinechin, G.; Diegele, E.; Giancarli, L. M.; Lässer, R.; Neuberger, H.; Poitevin, Y.; Stephan, Y.; Rampal, G.; Rigal, E.

    2009-04-01

    The Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble Bed are the two breeding blankets concepts for the DEMO reactor which have been selected by EU to be tested in ITER in the framework of the Test Blanket Module projects. They both use a 9%CrWVTa Reduced Activation Ferritic-Martensitic steel, called EUROFER, as structural material and helium as coolant. This paper gives an overview of the status of the EUROFER qualification program and discusses the future needs for design criteria requirements and fabrication validation.

  4. Seismic design of steel structures with lead-extrusion dampers as knee braces

    SciTech Connect

    Monir, Habib Saeed; Naser, Ali

    2008-07-08

    One of the effective methods in decreasing the seismic response of structure against dynamic loads due to earthquake is using energy dissipating systems. Lead-extrusion dampers (LED) are one of these systems that dissipate energy in to one lead sleeve because of steel rod movement. Hysteresis loops of these dampers are approximately rectangular and acts independent from velocity in frequencies that are in the seismic frequency rang. In this paper lead dampers are considered as knee brace in steel frames and are studied in an economical view. Considering that lead dampers don't clog structural panels, so this characteristic can solve brace problems from architectural view. The behavior of these dampers is compared with the other kind of dampers such as XADAS and TADAS. The results indicate that lead dampers act properly in absorbing the induced energy due to earthquake and good function in controlling seismic movements of multi-story structures.

  5. Design of dual-phase Fe/Mn/C steel for low-temperature application

    SciTech Connect

    Kim, N.J.

    1981-09-01

    An investigation has been made to improve the impact properties of a dual phase Fe/1.5Mn/.06C steel for potential low temperature application. The research involved establishing the microstructure-property relationships, especially with regard to the morphology of the constituents. Dual phase processing was done in two ways, viz., controlled rolling and intercritical annealing of the as-hot-rolled structure.

  6. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-05-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  7. Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of P91 Steel Weld

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-07-01

    The martensitic creep-resistant steel designated as ASTM A335 for plate and as P91 for pipe is primarily used for high-temperature and high-pressure applications in steam power plants due to its excellent high-temperature properties such as high creep strength, high thermal conductivity, low thermal expansion, and so on. However, in the case of welded joints of such steels, the presence of an inter-critical heat-affected zone (IC-HAZ) can cause the joint to have lower creep strength than the base metal. In the present study, the effect of post-welding heat treatment (PWHT) and weld groove designs on the overall microstructure and mechanical properties of P91 steel pipe welds produced by the gas tungsten arc welding process was studied. Various regions of welded joints were characterized in detail for hardness and metallographic and tensile properties. Sub-size tensile samples were also tested to evaluate the mechanical properties of the weld metal and heat-affected zone (HAZ) with respect to PWHT. After PWHT, a homogenous microstructure was observed in the HAZ and tensile test fracture samples revealed shifting of the fracture location from the IC-HAZ to the fine-grained heat-affected zone. Before PWHT, the conventional V-grooved welded joints exhibited higher tensile strength compared to the narrow-grooved joints. However, after PWHT, both narrow- and V-grooved joints exhibited similar strength. Fractography of the samples indicates the presence of carbide precipitates such as Cr23C6, VC, and NbC on the fracture surface.

  8. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  9. Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline

    SciTech Connect

    Greenwood, Margaret S.

    2015-12-15

    To design an ultrasonic sensor to measure the attenuation and density of a slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ~12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of PZT5A epoxied to it. The Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 cm and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.

  10. Investigation of the Corrosion Inhibition of CTAB and SDS on Carbon Steel Using an Experimental Design Strategy

    NASA Astrophysics Data System (ADS)

    Arjmand, Farzin; Wang, Jiamei; Zhang, Lefu

    2016-03-01

    The corrosion inhibition performance of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) on carbon steel was investigated in sodium chloride solutions. Using an experimental design strategy pH, chloride concentration, SDS/CTAB concentrations, and temperature were optimized by conducting only 30 experiments. The optimum value of each factor was obtained from the designed matrix of the experiments based on the lowest log I corr value calculated for each experimental condition. The 3D surface plots of the electrochemical response (log I corr) against each factor were constructed. The optimum conditions in which the lowest log I corr can be achieved were found as follows: pH 12, [Cl-] ≈ 1 M, [SDS] ≈ 200 ppm, [CTAB] ≈ 20 ppm, and T ≈ 10 °C.

  11. Metallurgical design basis, qualification testing, and production history of 50 ksi and 60 ksi steel plate for the MARS TLP deck fabrication

    SciTech Connect

    Suzuki, Shuichi; Sueda, Kyosuke; Iki, Hiroshi; Smith, J.D.

    1995-12-31

    The MARS TLP fast-track deck construction project required rapid qualification and production of 50 ksi and 60 ksi steel plate. This paper describes the development of high-performance 4 in. (101.6mm) 50 ksi and 3 in. (76.2mm) 60 ksi steels of a modified API 2W composition and presents the production history for the MARS deck steel order. The same base composition was used for both grades via innovative proprietary TMCP practice. Utilization of the mono-chemistry steel allowed for production of a wide range of thicknesses and grades in a very short time frame via a simplified melting schedule and made it possible to minimize the number of new welding procedures to be developed by the deck fabricator. Extremely low carbon equivalent allowed the implementation of low fabrication preheats, with resultant cost and fabrication schedule savings. The chemical composition of the steel was specifically designed for this project and qualification testing in accordance with API RP 2Z verified high heat-affected zone CTOD toughness free of local brittle zones over a wide range of heat input and interpass temperature. Strict production process control resulted in very tight production property histograms with all steel being verified to have Charpy V-notch transition temperatures below {minus}80 C ({minus}112 F) at the plate mid-width, mid-thickness position. The success of the MARS deck steel rapid qualification, production and delivery was enabled by close teamwork between deck design engineers, construction fabrication contractor, and steelmaker for this steel.

  12. Fatigue-crack growth correlations for design and analysis of stainless steel components

    SciTech Connect

    James, L.A.

    1981-10-01

    A relatively large collection of fatigue-crack growth results for annealed Types 304 and 316 stainless steels over a wide range of temperature was processed and analyzed in a consistent way. Only data that satisfied the criteria of ASTM E647-82 was retained and used in the statistical treatments that followed. Linear least-squares regression equations and 95% confidence intervals were fitted through the results for each material/temperature set. The regression results (and their associated limits of validity) provide useful equations for the analysis of structural components. Overlap (or the lack of overlap) of the confidence intervals was employed as a criterion as to whether the results for Types 304 and 316 should be separated into discrete sets, and on this basis it was concluded that the two alloys should be treated separately. 38 references, 16 figures, 1 table.

  13. Comparing composite materials with structural steels in the design of the optical support structure of very large telescopes

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y.; Li, Robert K.

    1992-03-01

    The method of finite element analysis is used to study some candidate composite materials: carbon filter reinforced epoxy and glass fiber reinforced epoxy. These composites may have real applications in the design of the optical support structures of very large telescopes where stringent thermomechanical stability are needed. The lightweight property of these materials allows one to build very stiff members for the optical support to withstand the structural deflections due to wind, vibration, and gravity. We have run finite element models of these composites using ABAQUS on a VAX VMS computer. Simple beams with rectangular cross- sections were computed for the composites with structural steel as a comparison. The static properties of these beams were studied.

  14. The Optimization and Design of a Fully Austenitic, Gamma-Prime Strengthened TRIP Steel for Blast and Fragment Resistance

    NASA Astrophysics Data System (ADS)

    Wengrenovich, Nicholas J.

    Current analysis into the property requirements of materials designed for blast and fragment protection has led to the need for high tensile uniform ductility to withstand the pressure wave and high shear localization resistance to withstand fragment penetration. Additionally, it has been shown that steels with retained austenite are able to outperform standard martensitic steels when subjected to fragment simulating projectiles (FSP) in ballistic experiments. Using a systems based, computational materials design approach, a series of prototype precipitation strengthened, fully austenitic steels have been designed to obtain superior performance in blast and fragment protection. The most recent design, TRIP-180, explores optimized transformation induced plasticity (TRIP) to counteract strain softening and thus significantly increase uniform plastic deformation in both tension and shear at high strength (1241 MPa / 180 ksi). The transformation hardening delays the onset of localization, which in tension delays necking, and in shear delays plugging. Through precipitation heat treatment, the matrix composition can be varied to optimize the austenite stability, quantified by the Ms sigma temperature. Baseline data quantifying the martensitic transformation in shear was obtained through a series of quasi-static torsion experiments performed on TRIP-180. Analysis of the postmortem microstructures allowed for calibration of M_s. sigma(sh) temperatures with the transformation product morphologiesin the stress-assisted regime, where the plate martensite forms at the same locations as when quenching, and strain-induced regime, where the finely dispersed martensite forms at the intersections of shear bands. Dynamic testing (E = 104/s) identified the optimal austenite stability ( T -- Ms sigma(sh) = 60°C ) required to delay the shear localization instability at higher ultimate shear stress levels (1420 MPa) and larger plastic strains (0.103) than an existing Navy standard

  15. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W.

    1996-02-01

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  16. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    PubMed

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717

  17. Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm

    PubMed Central

    Veladi, H.

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717

  18. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.

    2004-01-01

    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful

  19. The Role of Continuous Cooling Transformation Diagrams in Materials Design for High Strength Oil and Gas Transmission LinePipe Steels

    SciTech Connect

    Stalheim, Mr. Douglas; Muralidharan, Govindarajan

    2006-01-01

    The economical movement of gas and oil to the marketplace requires transmission pipelines to be designed to operate at higher pressures with improved toughness over a variety of temperature ranges. To meet the higher strength and toughness specification requirements of these transmission pipelines, appropriate materials and processes must be used in their design and construction. This includes selection of appropriate alloy composition, processing routes, microstructure control, and cost. A continuous cooling transformation (CCT) diagram is a tool that can be used to select alloy composition and processing route in order to obtain a specific, desirable microstructure for transmission pipeline steels in a cost effective manner. In the past, CCT diagrams were developed experimentally under laboratory conditions and thus not practical for commercial pipeline design considerations. However, with the vast data available and improved computational tools, reasonably accurate computer generated CCT diagrams can be produced quickly. These computer generated diagrams can give a materials design engineer, a reasonable understanding of the effect of subjecting a given alloy to various processing routes and hence the resultant microstructures. Since final microstructure is a key variable in determining the final pipeline steel material properties, the chosen alloy/processing route and its effect on the final microstructure needs to be understood. This paper will discuss the role of CCT diagrams in the design of steels (cost, alloy, processing, and microstructure) for oil and gas transmission pipelines. Examples of computer generated CCT diagrams for various API alloy designs are included.

  20. Innovative Comparison of Transient Ignition Temperature at the Booster Interface, New Stainless Steel Pyrovalve Primer Chamber Assembly "V" (PCA) Design Versus the Current Aluminum "Y" PCA Design

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor L.; McDougle, Stephen H.; Garcia,Roberto; Johnson, Kenneth L.; Sipes, William; Rickman, Steven; Hosangadi, Ashvin

    2011-01-01

    An assessment of four spacecraft pyrovalve anomalies that occurred during ground testing was conducted by the NASA Engineering & Safety Center (NESC) in 2008. In all four cases, a common aluminum (Al) primer chamber assembly (PCA) was used with dual NASA Standard Initiators (NSIs) and the nearly simultaneous (separated by less than 80 microseconds) firing of both initiators failed to ignite the booster charge. The results of the assessment and associated test program were reported in AIAA Paper AIAA-2008-4798, NESC Independent Assessment of Pyrovalve Ground Test Anomalies. As a result of the four Al PCA anomalies, and the test results and findings of the NESC assessment, the Mars Science Laboratory (MSL) project team decided to make changes to the PCA. The material for the PCA body was changed from aluminum (Al) to stainless steel (SS) to avoid melting, distortion, and potential leakage of the NSI flow passages when the device functioned. The flow passages, which were interconnected in a Y-shaped configuration (Y-PCA) in the original design, were changed to a V-shaped configuration (V-PCA). The V-shape was used to more efficiently transfer energy from the NSIs to the booster. Development and qualification testing of the new design clearly demonstrated faster booster ignition times compared to the legacy AL Y-PCA design. However, the final NESC assessment report recommended that the SS V-PCA be experimentally characterized and quantitatively compared to the Al Y-PCA design. This data was deemed important for properly evaluating the design options for future NASA projects. This test program has successfully quantified the improvement of the SS V-PCA over the Al Y-PCA. A phase B of the project was also conducted and evaluated the effect of firing command skew and enlargement of flame channels to further assist spacecraft applications.

  1. Statistical complex fatigue data for SAE 4340 steel and its use in design by reliability

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Smith, J. L.

    1970-01-01

    A brief description of the complex fatigue machines used in the test program is presented. The data generated from these machines are given and discussed. Two methods of obtaining strength distributions from the data are also discussed. Then follows a discussion of the construction of statistical fatigue diagrams and their use in designing by reliability. Finally, some of the problems encountered in the test equipment and a corrective modification are presented.

  2. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  3. Investigation of a piezoelectric valveless micropump with an integrated stainless-steel diffuser/nozzle bulge-piece design

    NASA Astrophysics Data System (ADS)

    Tseng, Li-Yu; Yang, An-Shik; Lee, Chun-Ying; Cheng, Chiang-Ho

    2013-08-01

    To meet a growing need in biological and medical applications, innovative micro-electro-mechanical system (MEMS) technologies have realized important progress on the micropump as one of the essential fluid handling devices to deliver and control precise amounts of fluid flowing along a specific direction. This research proposes a piezoelectric (PZT) valveless micropump adopting an integrated diffuser/nozzle bulge-piece design. The pump mainly consisted of a stainless-steel structured chamber with dimensions of 8 mm in diameter and 70 μm in depth to enhance its long-term reliability, low-cost production, and maximized liquid compatibility. A PZT diaphragm was also used as a driving source to propel the liquid stream under actuation. As commonly used indices to describe pump operation, the delivered volumetric flow rates and pressures were determined at bulge-piece diameters of 2, 4 and 6 mm, with a driving voltage of 160 Vpp and frequency ranging from 50 to 550 Hz. Measurements and simulations have successfully shown that this micropump is capable of operating at a greater volumetric flow rate of up to 1.2 ml min-1 with a maximum back pressure of 5.3 kPa. In addition, the time-recurring flow behavior in the chamber and its relationship to the pumping performance were examined in detail.

  4. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  5. Preliminary Design, Feasibility and Cost Evaluation of 1- to 15-Kilometer Height Steel Towers

    NASA Technical Reports Server (NTRS)

    Shanker, Ajay

    2003-01-01

    Design and construction of tall towers is an on-going research program of NASA. The agency has already done preliminary review in this area and has determined that multi-kilometer height towers are technically and economically feasible. The proposed towers will provide high altitude launch platforms reaching above eighty percent of Earth's atmosphere and provide tremendous gains in the potential energy as well as substantial reduction in aerodynamic drag. NASA has also determined that a 15-KM tower will have many useful applications in: (i)Meteorology,(ii)Oceanography, (iii)Astronomy, (iv)High Altitude Launch, (v)Physics Drop Tower, (vi) Biosphere Research, (vii) Nanotechnology, (viii) Energy/Power, (ix)Broadband Wireless Technology, (x)Space Transportation and (xi)Space Tourism.

  6. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure

  7. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  8. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design

    NASA Astrophysics Data System (ADS)

    Tasan, C. C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M.; Tsuzaki, K.; Raabe, D.

    2015-07-01

    Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on (a) microstructure evolution during processing, (b) experimental characterization of micromechanical behavior, and (c) the simulation of mechanical behavior, to highlight the critical unresolved issues and to guide future research efforts.

  9. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    SciTech Connect

    Bellanger, G. )

    1993-11-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is [approximately] 5 kBq/cm[sup 2]. After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs.

  10. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  11. Primary and embedded steel imports to the U.S.: implications for the design of border tax adjustments.

    PubMed

    Izard, Catherine F; Weber, Christopher L; Matthews, H Scott

    2010-09-01

    Carbon Border Tax Adjustments (BTAs) are a politically popular strategy for avoiding competitive disadvantage problems when a country implements a unilateral climate change policy. A BTA taxes carbon embodied in imported goods in order to protect domestic industry and motivate other countries to implement climate change policy. To estimate the effectiveness of a BTA, is it is necessary to know which products are covered, where they were originally produced and ultimately exported from, and how the covered amount compares to total production in foreign countries. Using a scrap-adjusted, mixed-unit input-output model in conjunction with a multiregional input-output model, this analysis evaluates the effectiveness of BTAs for the case study of U.S. steel imports. Most imported steel by mass is embedded in finished products (60%), and 30% of that steel is produced in a different country than the one from which the final good is exported. Given the magnitudes involved and complexities of global supply chains, a BTA that protects domestic industry will be a challenge to implement. We propose a logistically feasible BTA structure that minimizes the information burden while still accounting for these complexities. However, the amount of steel imported to the U.S. is negligible (5%) compared to foreign production in BTA-eligible countries and is unlikely to motivate affected countries to impose an emissions reduction policy. PMID:20687541

  12. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  13. The Computational Design of W and Co-Containing Creep-Resistant Steels with Barely Coarsening Laves Phase and M23C6 as the Strengthening Precipitates

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Xu, Wei; van der Zwaag, Sybrand

    2014-09-01

    Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.

  14. Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Maltsev, D.; Frolov, A.; Zabusov, O.; Erak, D.; Zhurko, D.

    2015-01-01

    In this paper comprehensive studies of structure and properties of VVER-1000 RPV steels after the accelerated irradiation to fluences corresponding to extended lifetime up to 60 years or more as well as comparative studies of materials irradiated with different fluxes were carried out. The significant flux effect is confirmed for the weld metal (nickel concentration ⩾1.35%) which is mainly due to development of reversible temper brittleness. The rate of radiation embrittlement of VVER-1000 RPV steels under operation up to 60 years and more (based on the results of accelerated irradiation considering flux effect for weld metal) is expected not to differ significantly from the observed rate under irradiation within surveillance specimens.

  15. Thermally Sprayed Aluminum (TSA) Coatings for Extended Design Life of 22%Cr Duplex Stainless Steel in Marine Environments

    NASA Astrophysics Data System (ADS)

    Paul, S.; Shrestha, S.; Lee, C. M.; Harvey, M. D. F.

    2013-03-01

    In this article, evaluation of sealed and unsealed thermally sprayed aluminum (TSA) for the protection of 22%Cr duplex stainless steel (DSS) from corrosion in aerated, elevated temperature synthetic seawater is presented. The assessments involved general and pitting corrosion tests, external chloride stress corrosion cracking (SCC), and hydrogen-induced stress cracking (HISC). These tests indicated that DSS samples, which would otherwise fail on their own in a few days, did not show pitting or fail under chloride SCC and HISC conditions when coated with TSA (with or without a sealant). TSA-coated specimens failed only at very high stresses (>120% proof stress). In general, TSA offered protection to the underlying or exposed steel by cathodically polarizing it and forming a calcareous deposit in synthetic seawater. The morphology of the calcareous deposit was found to be temperature dependent and in general was of duplex nature. The free corrosion rate of TSA in synthetic seawater was measured to be ~5-8 μm/year at ~18 °C and ~6-7 μm/year at 80 °C.

  16. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  17. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  18. Activation response of martensitic steels

    SciTech Connect

    Forty, C.B.A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further. 26 refs., 1 fig., 2 tabs.

  19. Activation Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Forty, C. B. A.

    1997-09-01

    A hypothetical martensitic steel has been compositionally designed in order to optimize both metallurgical and reduced activation properties. When compared with two other martensitic steels, its activation characteristics are shown to be superior for all activation indices examined. However, these excellent properties are found to be due to the assumed absence of deleterious tramp impurities. When limiting impurity concentrations are determined for the hypothetical steel, they are found to be extremely stringent, and wholly unachievable using industrial scale production methods. It is concluded that only slight improvements can be made to currently available low activation martensitic steels to reduce residual activity responses further.

  20. Limit states and reliability-based pipeline design. Final report

    SciTech Connect

    Zimmerman, T.J.E.; Chen, Q.; Pandey, M.D.

    1997-06-01

    This report provides the results of a study to develop limit states design (LSD) procedures for pipelines. Limit states design, also known as load and resistance factor design (LRFD), provides a unified approach to dealing with all relevant failure modes combinations of concern. It explicitly accounts for the uncertainties that naturally occur in the determination of the loads which act on a pipeline and in the resistance of the pipe to failure. The load and resistance factors used are based on reliability considerations; however, the designer is not faced with carrying out probabilistic calculations. This work is done during development and periodic updating of the LSD document. This report provides background information concerning limits states and reliability-based design (Section 2), gives the limit states design procedures that were developed (Section 3) and provides results of the reliability analyses that were undertaken in order to partially calibrate the LSD method (Section 4). An appendix contains LSD design examples in order to demonstrate use of the method. Section 3, Limit States Design has been written in the format of a recommended practice. It has been structured so that, in future, it can easily be converted to a limit states design code format. Throughout the report, figures and tables are given at the end of each section, with the exception of Section 3, where to facilitate understanding of the LSD method, they have been included with the text.

  1. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials.

    PubMed

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2014-08-01

    This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 ± 0.0002, 0.0374 ± 0.0004, and 0.0239 ± 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Ω in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Ω), BES-GG (387.3 Ω), and BES-CB (193.8 Ω). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment. PMID:24926596

  2. Web-Based Interactive Steel Sculpture for the Google Generation

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed

    2009-01-01

    In almost all the civil engineering programs in the United States, a student is required to take at least one design course in either steel or reinforced concrete. One of the topics covered in an introductory steel design course is the design of connections. Steel connections play important roles in the integrity of a structure, and many…

  3. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  4. Design and Development of bcc-Copper- and B2 Nickel-Aluminium-Precipitation-Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Kapoor, Monica

    A series of high-strength low-carbon bcc-Cu- & B2-NiAl-precipitation-strengthened ferritic steels with Mn, Cu, Ni and Al were studied. The yield strength of these alloys increases with the amount of alloying elements. A maximum strength of 1600 MPa, with 12.40 at. % elements, is achieved which is about 30 % higher than the strength of previously reports NUCu (Northwestern Copper) alloys. All the alloys studied attain a maximum hardness within 1--2 h of aging at 500°C--550°C. Aging at a lower temperature and solution treating at a higher temperature can increase the hardness of all the alloys. The lower aging temperature is limited to 500°C by the slow precipitation kinetics observed at 400°C. The higher solution treatment temperature is limited to 1050°C by the adverse impact on toughness in dilute alloys. The primary strengthening contribution is due to combined precipitation of bcc Cu and NiAl-type intermetallic precipitates. The composition, structure and morphology evolution of the precipitates from the 1600 MPa alloy was studied using atom probe tomography and transmission electron microscopy, as a function of aging time at 550°C. Near the peak hardness, the equiaxed bcc Cu-alloyed precipitates have substantial amounts of Fe and are coherent with the Fe matrix. On subsequent aging, the Cu-alloyed precipitates are progressively enriched with Cu and elongate to transform to the 9R phase. The number density of the Cu-alloyed and NiAl-type precipitate is similar near peak hardness indicating that NiAl-type precipitates nucleate on Cu-alloyed precipitates. Almost all Cu-alloyed precipitates are enveloped on one side by ordered NiAl-type precipitates after aging from 2 h to 100 h. Cu-alloyed precipitates coarsen slower than NiAl-type precipitates because of three possible reasons: interfacial energy differences between the two types of precipitates, slower diffusion kinetics of Cu through the ordered B2 NiAl envelope around the bcc Cu-alloyed precipitate

  5. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  6. Design criteria for pultruded fiber-reinforced polymer composite columns

    NASA Astrophysics Data System (ADS)

    Choi, Yeol

    experimental strain measurements were analyzed using a theoretical model to predict time-dependent deformation and longitudinal elastic modulus of the pultruded FRP composite columns. The experimental data of pultruded FRP composite columns were examined to propose a compression resistance factor, phi c, which can be used in the load and resistance factor design (LRFD) of FRP composite columns. Finally, a LRFD approach for the columns is addressed and demonstrated through design examples.

  7. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  8. Design of Low-Melting Point Compositions Suitable for Transient Liquid Phase Sintering of PM Steels Based on a Thermodynamic and Kinetic Study

    NASA Astrophysics Data System (ADS)

    Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel

    2014-04-01

    The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.

  9. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Hwang, Il Soon; Kim, Ji Hyun

    2013-10-01

    Iron-chromium-aluminum alloys containing 15-20 wt.% Cr and 4-6 wt.% Al have shown excellent corrosion resistance in the temperature range up to 600 °C or higher in liquid lead and lead-bismuth eutectic environments by the formation of protective Al2O3 layers. However, the higher Cr and Al concentrations in ferritic alloys could be problematic because of severe embrittlement in the manufacturing process as well as in service, caused by the formation of brittle phases. For this reason, efforts worldwide have so far mainly focused on the development of aluminizing surface treatments. However, aluminizing surface treatments have major disadvantages of cost, processing difficulties and reliability issues. In this study, a new FeCrAl alloy is proposed for structural materials in lead and lead-bismuth cooled nuclear applications. The alloy design relied on corrosion experiments in high temperature lead and lead-bismuth eutectic environments and computational thermodynamic calculations using the commercial software, JMatPro. The design of new alloys has focused on the optimization of Cr and Al levels for the formation of an external Al2O3 layer which can provide excellent oxidation and corrosion resistance in liquid lead alloys in the temperature range 300-600 °C while still retaining workable mechanical properties.

  10. Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: influence on the dynamics of microbial populations and physical-chemical properties.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; de Almeida, Euziclei Gonzaga; da Silva Coelho, Irene; Schwan, Rosane Freitas

    2013-02-01

    Spontaneous cocoa bean fermentations carried out in a novel-design 40-kg-capacity stainless steel tank (SST) was studied in parallel to traditional Brazilian methods of fermentation in wooden boxes (40-kg-capacity wooden boxes (WB1) and 600-kg-capacity wooden boxes (WB2)) using a multiphasic approach that entailed culture-dependent and -independent microbiological analyses of fermenting cocoa bean pulp samples and target metabolite analyses of both cocoa pulp and cotyledons. Both microbiological approaches revealed that the dominant species of major physiological roles were the same for fermentations in SST, relative to boxes. These species consisted of Saccharomyces cerevisiae and Hanseniaspora sp. in the yeast group; Lactobacillus fermentum and L. plantarum in the lactic acid bacteria (LAB) group; Acetobacter tropicalis belonging to the acetic acid bacteria (AAB) group; and Bacillus subtilis in the Bacillaceae family. A greater diversity of bacteria and non-Saccharomyces yeasts was observed in box fermentations. Additionally, a potentially novel AAB belonging to the genus Asaia was isolated during fermentation in WB1. Cluster analysis of the rRNA genes-PCR-DGGE profiles revealed a more complex picture of the box samples, indicating that bacterial and yeast ecology were fermentation-specific processes (wooden boxes vs. SST). The profile of carbohydrate consumption and fermentation products in the pulp and beans showed similar trends during both fermentation processes. However, the yeast-AAB-mediated conversion of carbohydrates into ethanol, and subsequent conversion of ethanol into acetic acid, was achieved with greater efficiency in SST, while temperatures were generally higher during fermentation in wooden boxes. With further refinements, the SST model may be useful in designing novel bioreactors for the optimisation of cocoa fermentation with starter cultures. PMID:23279821

  11. Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

    2011-02-01

    PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

  12. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  13. Hydrogen embrittlement of structural steels.

    SciTech Connect

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  14. Ellie Mannette: Master of the Steel Drum.

    ERIC Educational Resources Information Center

    Svaline, J. Marc

    2001-01-01

    Presents an interview with Elliot ("Ellie") Mannette who has played a major role in the development and application of steel drums. States that he has spent most of his life designing and teaching the steel drums. Covers interview topics and background information on Mannette. (CMK)

  15. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Yuan-yuan; Liu, Li-gang; Zhang, Yue; Yang, Qing-xiang

    2014-07-01

    This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520°C, respectively.

  16. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specifications for Steel A Appendix A to Part 178.... 178, App. A Appendix A to Part 178—Specifications for Steel Table 1 Designation Chemical composition... ladle analysis may be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15...

  17. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  18. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  19. 49 CFR Appendix A to Part 178 - Specifications for Steel

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 Designation Chemical composition, percent-ladle analysis... be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15 percent phosphorus...

  20. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  1. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  2. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-05-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  3. A Virtual Steel Sculpture for Structural Engineering Education: Development and Initial Findings

    ERIC Educational Resources Information Center

    Dib, Hazar Nicholas; Adamo-Villani, Nicoletta

    2016-01-01

    We describe the development and evaluation of a virtual steel sculpture for engineering education. A good connection design requires the engineer to have a solid understanding of the mechanics and steel behavior. To help students better understand various connection types, many schools have acquired steel sculptures. A steel sculpture is a…

  4. Sealed source and device design safety testing. Volume 5: Technical report on the findings of Task 4, Investigation of failed radioactive stainless steel troxler gauges

    SciTech Connect

    Benac, D.J.; Schick, W.R.

    1995-10-01

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate failed radioactive stainless steel troxler gauges. SwRI`s task was to determine the cause of failure of the rods and the extent of the problem. SwRI concluded that the broken rod failed in a brittle manner due to a hard zone in the heat affected zone.

  5. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  6. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  7. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on a multifactor test design to investigate uniform corrosion of low-carbon steel

    SciTech Connect

    Paddock, R.A.; Lerman, A.; Ditmars, J.D.; Macdonald, D.D.; Peerenboom, J.P.; Was, G.S.; Harrison, W.

    1987-01-01

    This report documents Argonne National Laboratory's review of an internal technical memorandum prepared by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) entitled Multifactor Test Design to Investigate Uniform Corrosion of Low-Carbon Steel in a Nuclear Waste Salt Repository Environment. The several major areas of concern identified by peer review panelists are important to the credibility of the test design proposed in the memorandum and are to adequately addressed there. These areas of concern, along with specific recommendations to improve their treatment, are discussed in detail in Sec. 2 of this report. The twenty recommendations, which were abstracted from those discussions, are presented essentially in the order in which they are introduced in Sec. 2.

  8. Supporting steel

    SciTech Connect

    Badra, C.

    1995-10-01

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  9. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  10. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  11. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  12. Hybrid Laser-Arc Welding Tanks Steels

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O.

    2016-04-01

    The results investigate hybrid laser-arc welding of high strength steels using design responsible metallic construction and the highest strength body of vehicles. Welds from modern high strength steels grade Hardox 400, Hardox 450, Armox 600T and AB were created. High power fiber laser LS-15 with output 15 kW and arc rectifier VDU - 1500 DC were used in the experiment. Results of the metallographic research and mechanical tests are presented.

  13. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    NASA Astrophysics Data System (ADS)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2016-05-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  14. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  15. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-05-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness (Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  16. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-07-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  17. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age. PMID:23442209

  18. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  19. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  20. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  1. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  2. Recycling galvanized steel: Operating experience and benefits

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1993-08-01

    In response to the increase in consumption of galvanized steel for automobiles in the last decade and the problems associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant to continuously treat loose scrap, with a design capacity of 48,000 tonnes annually, has been in operation in East Chicago, Indiana since early in 1993. The first 450 t of scrap degalvanized in the pilot plant have residual zinc below 0.01% and sodium dragout below 0.01%. Use of degalvanized steel scrap decreases raw materials, environmental compliance, and opportunity costs to steel- and iron-makers. Availability of clean degalvanized scrap may enable integrated steel producers to recycle furnace dusts to the sinter plant and EAF shops to produce flat products without use of high quality scrap alternatives such as DRI, pig iron, or iron carbide. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap. The quantities of zinc available by the year 2000 from prompt and obsolete automotive scrap win approach 25% of zinc consumed in the major automotive production centers of the world. Zinc recycling from galvanized steel scrap, either before or after scrap melting, will have to be implemented.

  3. New insights into the chemical structure of Y2Ti2O7-δ nanoparticles in oxide dispersion-strengthened steels designed for sodium fast reactors by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Badjeck, V.; Walls, M. G.; Chaffron, L.; Malaplate, J.; March, K.

    2015-01-01

    In this paper we study by high resolution scanning transmission electron microscopy coupled with electron energy-loss spectroscopy (STEM-EELS) an oxide dispersion-strengthened (ODS) steel with the nominal composition Fe-14Cr-1W-0.3TiH2-0.3Y2O3 (wt.%) designed to withstand the extreme conditions met in Gen. IV nuclear reactors. After denoising via principal component analysis (PCA) the data are analyzed using independent component analysis (ICA) which is useful in the investigation of the physical properties and chemical structure of the material by separating the individual spectral responses. The Y-Ti-O nanoparticles are found to be homogeneously distributed in the ferritic matrix, sized from 1 to 20 nm and match a non-stoichiometric pyrochlore-Y2Ti2O7-δ structure for sizes greater than 5 nm. We show that they adopt a (Y-Ti-O)-Cr core-shell structure and that Cr also segregates at the matrix grain boundaries, which may slightly modify the corrosion properties of the steel. Using Ti-L2,3 and O-K fine structure (ELNES) the Ti oxidation state is shown to vary from the center of the nanoparticles to their periphery, from Ti4+ in distorted Oh symmetry to a valency often lower than 3+. The sensitivity of the Ti "white lines" ELNES to local symmetry distortions is also shown to be useful when investigating the strain induced in the nanoparticles by the surrounding matrix. The Cr-shell and the variation of the Ti valence state highlight a complex nanoparticle-matrix interface.

  4. Tool steels. 5. edition

    SciTech Connect

    Roberts, G.; Krauss, G.; Kennedy, R.

    1998-12-31

    The revision of this authoritative work contains a significant amount of new information from the past nearly two decades presented in an entirely new outline, making this a must have reference for engineers involved in tool-steel production, as well as in the selection and use of tool steels in metalworking and other materials manufacturing industries. The chapter on tool-steel manufacturing includes new production processes, such as electroslag refining, vacuum arc remelting, spray deposition processes (Osprey and centrifugal spray), and powder metal processing. The seven chapters covering tool-steel types in the 4th Edition have been expanded to 11 chapters covering nine main groups of tool steels as well as other types of ultrahigh strength steels sometimes used for tooling. Each chapter discusses in detail processing, composition, and applications specific to the particular group. In addition, two chapters have been added covering surface modification and trouble shooting production and performance problems.

  5. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  6. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  7. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  8. Tundish Technology for Casting Clean Steel: A Review

    NASA Astrophysics Data System (ADS)

    Sahai, Yogeshwar

    2016-03-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  9. Tundish Technology for Casting Clean Steel: A Review

    NASA Astrophysics Data System (ADS)

    Sahai, Yogeshwar

    2016-08-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  10. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  11. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2013-07-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  12. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  13. Development of Steel Foam Materials and Structures

    SciTech Connect

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  14. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  15. Modern Steel Framed Schools.

    ERIC Educational Resources Information Center

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  16. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  17. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  18. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  19. Designing Clothing for Coal Miners

    ERIC Educational Resources Information Center

    Watkins, Susan M.

    1977-01-01

    Describes procedures taken by apparel design students, working in an industrial setting, in designing functional clothing for coal miners as part of the Armco Steel Corporation's Student Design Program. (TA)

  20. Experimental Program on Composite Steel and Concrete Beams

    NASA Astrophysics Data System (ADS)

    Dubecky, Daniel

    2015-11-01

    Plate bridges with encased beams are suitable for building bridges of short and medium range. The paper presented focuses on the research into progressive bridges with encased filler beams of modified steel sections designed to minimize steel consumption without affecting essentially the overall structure resistance. This type of construction is suitable for bridges over short and middle spans as it offers a number of advantages, such as little headroom, quite clear static action of forces and a short construction period with no falsework required. Among some disadvantages is the economic inefficiency of steel I-sections, which are employed in the majority of bridges of this type. Therefore, there is an urgent need for the development of more economical design approaches and more purposeful arrangement and employment of steel beams. The paper presented brings some results from experimental tests on elements with encased steel filler-beams acting compositely under both short-term static and dynamic loads, and long-term load.

  1. Recycling zinc by dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1995-06-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the increased cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The designed ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana has designed in a continuous process mode 900 tonnes of loose stamping plant scrap; this scrap typically has residual zinc below 0.1% and sodium dragout below 0.001%. This paper reviews pilot plant performance and the economics of recycling galvanized steel and recovering zinc using a caustic process.

  2. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  3. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  4. Building Strength in Schools: Why Steel Makes Sense.

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2002-01-01

    Discusses the advantages of metal building and roofing systems, especially the use of steel. Considers such factors as installation ease and design flexibility, reliability and durability, and cost-effectiveness. (PKP)

  5. Steel Roofing Systems Have School Districts Looking Up.

    ERIC Educational Resources Information Center

    Werner, Michael F.

    2001-01-01

    Examines the leading benefits of choosing steel roofing for educational facilities. Benefits examined are durability, energy efficiency, aesthetics and design flexibility, and construction efficiency and low life cycle cost. (GR)

  6. Tests Of Materials For Repair Coating Of Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III

    1995-01-01

    Report describes tests of paints (primers and topcoats) for use in recoating rusted carbon steel for protection against further corrosion. Paints selected for evaluation all designated by manufacturers as suitable for application over tightly adhering rust.

  7. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  8. Modern steels at atomic and nanometre scales

    DOE PAGESBeta

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less

  9. Modern steels at atomic and nanometre scales

    SciTech Connect

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructure is provided here.

  10. Economic feasibility of radioactive scrap steel recycling

    SciTech Connect

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-12-31

    The goal of MSE`s Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less.

  11. Molds for electroslag casting systems. [2-1/4 Cr-1 Mo steel, 9 Cr-1 Mo steel

    SciTech Connect

    Bhat, G.K.

    1985-07-01

    This report describes the basic types of molds used for the manufacture of electroslag castings. The report also provides guidelines for the design of such molds based on heat generation and heat transfer considerations pertaining to the electroslag casting process. The designs of the two-step and three-step molds used for the manufacture of electroslag castings of 2-1/4 Cr-1 Mo steel, 316 stainless steel and 9 Cr-1 Mo steel are provided as examples of cost effective mold construction using cooled copper liners for metal-slag containment. 5 refs., 12 figs.

  12. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  13. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  14. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  15. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  16. Method of making steel strapping and strip

    SciTech Connect

    Robert D. Reilly

    2000-02-16

    The technical progress obtained for this time frame consisted of the awarding of two contracts for determination of metallurgical parameters for heat treatment of strapping and strip which are unavailable from current technology and/or published data in this field. The two contractors were Bricmont, Inc. and the Department of Materials Science and Engineering at the Technological Institute of Northwestern University, Evanston, IL. Phase 1 of the two stage contract with Bricmont, Inc. which provided a computer analysis of the cooling rates of a typical range of thickness' of strapping was completed. This study was developed for the purpose of determining the time parameters for quenching low carbon steels to a martensitic microstructure within the time frame of the design of the proposed process. It also provides design criteria for cooling to ambient for the total process. This data is required for Phase 2 of the Bricmont proposal which completes the design and specifications of the total heat treating and cooling system for the process. This becomes the basis for developing the cost and space requirements for this component of the production line. The authors do not intend to award Phase 2 until the work done at Northwestern University discussed hereafter is completed. On or about May 1, 1999 a contract for a project entitled ``Effects of Steel Composition and Quench Rate on Microstructure and Mechanical Properties of Strapping'' to be performed at the Department of Materials Science and Engineering was awarded. The delay in initiating this project was due to the legal interpretation and final agreement of the intellectual provisions of the award by the author's attorneys, Northwestern's attorneys and the legal representative in the Chicago office of the DOE. The work to date includes rapid quenching of a number of different steel compositions and microstructure on an existing drop quench test apparatus. It was initially assumed that this procedure would simulate

  17. EMPLACEMENT DRIFT INVERT-LOW STEEL EVALUATION

    SciTech Connect

    M. E. Taylor and D. H. Tang

    2000-09-29

    This technical report evaluates and develops options for reducing the amount of steel in the emplacement drift invert. Concepts developed in the ''Invert Configuration and Drip Shield Interface'' were evaluated to determine material properties required for the proposed invert concepts. Project requirements documents prescribe the use of a carbon steel frame for the invert with a granular material of crushed tuff as ballast. The ''Invert Configuration and Drip Shield Interface'' developed three concepts: (1) All-Ballast Invert; (2) Modified Steel Invert with Ballast; and (3) Steel Tie with Ballast Invert. Analysis of the steel frame members, runway beams, and guide beams, for the modified steel invert with ballast, decreased the quantity of steel in the emplacement drift invert, however a substantial steel support frame for the gantry and waste package/pallet assembly is still required. Use of one of the other two concepts appears to be an alternative to the steel frame and each of the concepts uses considerably less steel materials. Analysis of the steel tie with ballast invert shows that the bearing pressure on the ballast under the single steel tie, C 9 x 20, loaded with the waste package/pallet assembly, drip shield, and backfill exceeds the upper bound of the allowable bearing capacity for tuff used in this study. The single tie, C 10 x 20, will also fail for the same loading condition except for the tie length of 4.2 meters and longer. Analysis also shows that with two ties, C 9 or 10 x 20's, the average ballast pressure is less than the allowable bearing capacity. Distributing the waste package/pallet, drip shield, and backfill loads to two steel ties reduces the contact bearing pressure. Modifying the emplacement pallet end beams to a greater width, reducing the tie spacing, and increasing the width of the ties would ensure that the pallet beams are always supported by two steel ties. Further analysis is required to determine compatible tie size and spacing

  18. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  19. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  20. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  1. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  2. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the...

  3. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the...

  4. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the...

  5. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the...

  6. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... certification program for exterior insulated steel door systems. 200.949 Section 200.949 Housing and Urban... program for exterior insulated steel door systems. (a) Applicable standards. (1) All Exterior Insulated Steel Door Systems shall be designed, manufactured, and tested in compliance with the...

  7. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  8. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  9. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  10. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  11. Achieving ``zero-detectable`` soluble salt contamination on steel substrates

    SciTech Connect

    Hatle, L.L.; Cook, J.R.

    1994-12-31

    Soluble salt (ionic) contamination of steel substrates constitutes a major cause of coating failure. Cleanliness of a steel substrate is a key element in improving coating performance. This cleaning process achieves a ``zero detectable`` level of ionic contamination on steel substrates. Sodium bicarbonate-based blast media is applied to the substrate using equipment designed to impart increased kinetic energy to the soft abrasive. This soft abrasive blast is followed by a pressure rinse of 3,000--8,000 psig using deionized water. The result is an extremely clean substrate, free of detectable ionic contaminants.

  12. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  13. Alloyed steel wastes utilization

    SciTech Connect

    Sokol, I.V.

    1995-12-31

    Alloyed steel chips and swarf formed during metal processing are looked upon as additional raw materials in metallurgical production. This paper presents some new methods for steel waste chips and swarf cleaning. One of them is swarf and steel chips cleaning in tetrachloroethylene with ultrasonic assistance and solvent regeneration. Thermal cleaning of waste chips and swarf provides off gas products utilization. The catalyst influence of the metal surface on the thermal decomposition of liquid hydrocarbons during the cleaning process has been studied. It has been determined that the efficiency of this metal waste cleaning technique depends on the storage time of the swarf. The waste chips and swarf cleaning procedures have been proven to be economically advantageous and environmentally appropriate.

  14. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  15. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  16. New high temperature steels for steam power plants

    SciTech Connect

    Hald, J.; Nath, B.

    1998-07-01

    Development of high efficiency ultra supercritical (USC) steam power plant is based on the availability of improved high temperature steels for key components in the steam cycle i.e: Thick section boiler components and steam lines; turbine rotors, casings, valves and bolts; superheaters; furnace panels. New martensitic high creep strength 9--12%Cr steels like the P91, P92 and P122 allow increased steam parameters in steam headers and steam lines, and similar martensitic steels are used for rotors, casings and valves of advanced steam turbines. The development of these steels have included demonstration of fabricability like welding and bending, fabrication of demonstration components built into existing plants, and the validation of long term creep properties with testing times of more than 30,000 hours. The development work has been made in international projects like the EPRI RP1403, COST 501 and ECCC. The first use of the new steels have followed in USC plants in Europe and Japan, leading to plant efficiencies up to 47%. Superheater steels must have high corrosion and oxidation resistance, and a number of new austenitic steels have been developed for this purpose. Tests are currently running to obtain long term corrosion and oxidation data for design of superheaters in the new steels. Steels for furnace panels need to be welded without post weld heat treatment, and also for this purpose new ferritic and martensitic steels are available. With the materials development described above it is today possible to construct a USC plant with steam parameters 325bar/610 C/630 C/630 C and an efficiency approaching 50%. Future developments in the European THERMIE demonstration project ``Advanced (700 C) PF Power Plant'' will address the use of nickel or cobalt base superalloys for boilers, steam lines and turbines. This may lead to efficiencies in the range 52--55%.

  17. HSLA-100 steels: Influence of aging heat treatment on microstructure and properties

    SciTech Connect

    Mujahid, M.; Lis, A.K.; Garcia, C.I.; deArdo, A.J.

    1998-04-01

    The structural steels used in critical construction applications have traditionally been heat-treated low-alloy steels. These normalized and/or quenched and tempered steels derive strength from their carbon contents. Carbon is a very efficient and cost-effective element for increasing strength in ferrite-pearlite or tempered martensitic structures, but it is associated with poor notch toughness. Furthermore, it is well known that both the overall weldability and weldment toughness are inversely related to the carbon equivalent values, especially at high carbon contents. The stringent control needed for the welding of these traditional steels is one of the major causes of high fabrication costs. In order to reduce fabrication cost while simultaneously improving the quality of structural steels, a new family of high-strength low-alloy steels with copper additions (HSLA-100) has been developed. The alloy design philosophy of the new steels includes a reduction in the carbon content, which improves toughness and weldability.

  18. Audience Analysis for "The Making, Shaping and Treating of Steel": A Pilot Study. Final Report Presented to United States Steel and the Association of Iron and Steel Engineers. CDC Technical Report No. 10.

    ERIC Educational Resources Information Center

    Stein, Mark J.; And Others

    Prompted by the realization that a reference text presents special problems in audience address since there is typically a diverse set of users, a study was designed to provide preliminary data on the use of the reference text, "The Making, Shaping and Treating of Steel," a landmark book in the steel industry. Data on the use of the text were…

  19. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  20. Feasibility analysis of recycling radioactive scrap steel

    SciTech Connect

    Nichols, F.; Balhiser, B.; Cignetti, N.

    1995-09-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

  1. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  2. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  3. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  4. Computational Modeling Develops Ultra-Hard Steel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  5. Must we use ferritic steel in TBM?

    SciTech Connect

    Salavy, Jean-Francois; Boccaccini, Lorenzo V.; Chaudhuri, Paritosh; Cho, Seungyon; Enoeda, Mikio; Giancarli, Luciano; Kurtz, Richard J.; Luo, Tian Y.; Rao, K. Bhanu Sankara; Wong, Clement

    2010-12-13

    Mock-ups of DEMO breeding blankets, called Test Blanket Modules (TBMs), inserted and tested in ITER in dedicated equatorial ports directly facing the plasma, are expected to provide the first experimental answers on the necessary performance of the corresponding DEMO breeding blankets. Several DEMO breeding blanket designs have been studied and assessed in the last 20 years. At present, after considering various coolant and breeder combinations, all the TBM concepts proposed by the seven ITER Parties use Reduced-Activation Ferritic/Martensitic (RAFM) steel as the structural material. In order to perform valuable tests in ITER, the TBMs are expected to use the same structural material as corresponding DEMO blankets. However, due to the fact that this family of steels is ferromagnetic, their presence in the ITER vacuum vessel will create perturbations of the ITER magnetic fields that could reduce the quality of the plasma confinement during H-mode. As a consequence, a legitimate question has been raised on the necessity of using RAFM steel for TBMs structural material in ITER. By giving a short description of the main TBM testing objectives in ITER and assessing the consequences of not using such a material, this paper gives a comprehensive answer to this question. According to the working group author of the study, the use of RAFM steel as structural material for TBM is judged mandatory.

  6. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Grant, Glenn J; Frederick, D Alan; Dahl, Michael E

    2009-02-01

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  7. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  8. TMD-Based Structural Control of High Performance Steel Bridges

    NASA Astrophysics Data System (ADS)

    Kim, Tae Min; Kim, Gun; Kyum Kim, Moon

    2012-08-01

    The purpose of this study is to investigate the effectiveness of structural control using tuned mass damper (TMD) for suppressing excessive traffic induced vibration of high performance steel bridge. The study considered 1-span steel plate girder bridge and bridge-vehicle interaction using HS-24 truck model. A numerical model of steel plate girder, traffic load, and TMD is constructed and time history analysis is performed using commercial structural analysis program ABAQUS 6.10. Results from analyses show that high performance steel bridge has dynamic serviceability problem, compared to relatively low performance steel bridge. Therefore, the structural control using TMD is implemented in order to alleviate dynamic serviceability problems. TMD is applied to the bridge with high performance steel and then vertical vibration due to dynamic behavior is assessed again. In consequent, by using TMD, it is confirmed that the residual amplitude is appreciably reduced by 85% in steady-state vibration. Moreover, vibration serviceability assessment using 'Reiher-Meister Curve' is also remarkably improved. As a result, this paper provides the guideline for economical design of I-girder using high performance steel and evaluates the effectiveness of structural control using TMD, simultaneously.

  9. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  10. Special steel production on common carbon steel production line

    NASA Astrophysics Data System (ADS)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.