Sample records for lung cancer xenograft

  1. A Primary Xenograft Model of Small Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture In-Vitro

    PubMed Central

    Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil

    2009-01-01

    Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829

  2. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    PubMed

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  3. Activity of a new nitrosourea (TCNU) in human lung cancer xenografts.

    PubMed Central

    Fergusson, R. J.; Anderson, L. E.; Macpherson, J. S.; Robins, P.; Smyth, J. F.

    1988-01-01

    The activity of a new nitrosourea (TCNU) based on the endogenous amino acid taurine was assessed in three human lung cancer xenografts growing in immunodeficient mice. Moderate activity (specific growth delays of 0.63 and 1.13 compared with controls) was seen in two non-small cell tumours after a single oral administration of 20 mg-1kg. This dose was curative in a small cell xenograft. By using high performance liquid chromatography it was possible to detect parent drug in the tumours as well as the plasma and tissues after oral administration of TCNU. Drug sensitivity was correlated inversely with the amount of the DNA repair enzyme 0(6)-methylguanine-DNA methyltransferase assayed from extracts of the tumour cells but not with the levels of parent drug within the tumour. This compound appears to have unique pharmacokinetic properties compared with other chloroethylnitrosoureas. PMID:3390369

  4. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  5. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model.more » We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm{sup 2}) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients.« less

  6. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer

    PubMed Central

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William

    2017-01-01

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048

  7. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps.

    PubMed

    Ilie, Marius; Nunes, Manoel; Blot, Lydia; Hofman, Véronique; Long-Mira, Elodie; Butori, Catherine; Selva, Eric; Merino-Trigo, Ana; Vénissac, Nicolas; Mouroux, Jérôme; Vrignaud, Patricia; Hofman, Paul

    2015-02-01

    With the ongoing need to improve therapy for non-small cell lung cancer (NSCLC) there has been increasing interest in developing reliable preclinical models to test novel therapeutics. Patient-derived tumor xenografts (PDX) are considered to be interesting candidates. However, the establishment of such model systems requires highly specialized research facilities and introduces logistic challenges. We aimed to establish an extensive well-characterized panel of NSCLC xenograft models in the context of a long-distance research network after careful control of the preanalytical steps. One hundred fresh surgically resected NSCLC specimens were shipped in survival medium at room temperature from a hospital-integrated biobank to animal facilities. Within 24 h post-surgery, tumor fragments were subcutaneously xenografted into immunodeficient mice. PDX characterization was performed by histopathological, immunohistochemical, aCGH and next-generation sequencing approaches. For this model system, the tumor take rate was 35%, with higher rates for squamous carcinoma (60%) than for adenocarcinoma (13%). Patients for whom PDX tumors were obtained had a significantly shorter disease-free survival (DFS) compared to patients for whom no PDX tumors (P = 0.039) were obtained. We established a large panel of PDX NSCLC models with a high frequency of mutations (29%) in EGFR, KRAS, NRAS, MEK1, BRAF, PTEN, and PI3KCA genes and with gene amplification (20%) of c-MET and FGFR1. This new patient-derived NSCLC xenograft collection, established regardless of the considerable time required and the distance between the clinic and the animal facilities, recapitulated the histopathology and molecular diversity of NSCLC and provides stable and reliable preclinical models for human lung cancer research. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    PubMed

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  10. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice.

    PubMed

    Chen, Yu-Qin; Chen, Gang

    2015-01-01

    This work was aimed at studying the inhibitory activity of metformin combined with the commonly used chemotherapy drug cisplatin in human lung cancer xenografts in nude mice. We also examined the combined effects of these drugs on the molecular expression of survivin, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor-C (VEGF-C), and vascular endothelial growth factor receptor-3 (VEGFR-3) to determine the mechanism of action and to explore the potential applications of the new effective drug therapy in lung cancer. The nude mice model of lung cancer xenografts was established, and mice were randomly divided into the metformin group, the cisplatin group, the metformin + cisplatin group, and the control group. The animals were killed 42 days after drug administration, and the tumor tissues were then sampled to detect the messenger ribonucleic acid (mRNA) and protein expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the cisplatin group and the combined treatment group were lower than that in the control group (P < 0.05). In the metformin group, the expression of MMP-2 protein and mRNA was lower than that in the control group (P < 0.05). The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the combined treatment group were lower than that in the cisplatin group and the metformin group (P < 0.05). Metformin inhibited the expression of MMP-2, cisplatin and the combined treatment inhibited the expression of survivin, MMP-2, VEGF-C, and VEGFR-3, and the combined treatment of metformin with cisplatin resulted in enhanced anti-tumor efficacy.

  11. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.

  12. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  13. Patient-derived tumor xenografts of lung squamous cell carcinoma alter long non-coding RNA profile but not responsiveness to cisplatin.

    PubMed

    Lu, Dapeng; Luo, Peng; Zhang, Ju; Ye, Yuanyuan; Wang, Qi; Li, Ming; Zhou, Hangcheng; Xie, Mingran; Wang, Baolong

    2018-06-01

    Lung squamous cell carcinoma (LSCC), the second most common type of lung cancer, has received limited attention. Patient-derived tumor xenografts (PDTXs) are useful preclinical models to reproduce the diverse heterogeneity of cancer, but it is important to identify potential variations during their establishment. A total of 18 PDTXs were established from 37 the surgical specimens and 16 were serially passaged to third generation. Second- and third-generation xenografts had a faster growth rate in mice. The tumor implantation success rate was associated with poorer differentiation, larger tumor volume and higher expression of Ki-67. The xenografts largely retained histological and key immunophenotypic features (including p53, p63, cytokeratin5/6, and E-cadherin). However, increased Ki-67 expression was identified in partial xenografts. Long non-coding RNA (lncRNA) and mRNA expression in third-generation xenografts differed from that of matched primary tumors. Gene Ontology and pathway analysis showed that mRNAs involved in cell cycle, and metabolism regulation were generally upregulated in xenografts, while those associated with immune responses were typically downregulated. Furthermore, the responses of xenografts to cisplatin were consistent with clinical outcome. In the present study, PDTXs of SCC were successfully established, and closely resembled their original tumor regarding their immunophenotype and response to cisplatin. Overall, PDTXS of LSCC altered the lncRNA profile and increased the proliferative activity of cancer cells, whilst retaining responsiveness to cisplatin.

  14. THE HUMAN FETAL LUNG XENOGRAFT: VALIDATION AS MODEL OF MICROVASCULAR REMODELING IN THE POSTGLANDULAR LUNG

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu

    2012-01-01

    Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288

  15. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  16. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  18. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  19. Initiation and Characterization of Small Cell Lung Cancer Patient-Derived Xenografts from Ultrasound-Guided Transbronchial Needle Aspirates

    PubMed Central

    Anderson, Wade C.; Boyd, Michael B.; Aguilar, Jorge; Pickell, Brett; Laysang, Amy; Pysz, Marybeth A.; Bheddah, Sheila; Ramoth, Johanna; Slingerland, Brian C.; Dylla, Scott J.; Rubio, Edmundo R.

    2015-01-01

    Small cell lung cancer (SCLC) is a devastating disease with limited treatment options. Due to its early metastatic nature and rapid growth, surgical resection is rare. Standard of care treatment regimens remain largely unchanged since the 1980’s, and five-year survival lingers near 5%. Patient-derived xenograft (PDX) models have been established for other tumor types, amplifying material for research and serving as models for preclinical experimentation; however, limited availability of primary tissue has curtailed development of these models for SCLC. The objective of this study was to establish PDX models from commonly collected fine needle aspirate biopsies of primary SCLC tumors, and to assess their utility as research models of primary SCLC tumors. These transbronchial needle aspirates efficiently engrafted as xenografts, and tumor histomorphology was similar to primary tumors. Resulting tumors were further characterized by H&E and immunohistochemistry, cryopreserved, and used to propagate tumor-bearing mice for the evaluation of standard of care chemotherapy regimens, to assess their utility as models for tumors in SCLC patients. When treated with Cisplatin and Etoposide, tumor-bearing mice responded similarly to patients from whom the tumors originated. Here, we demonstrate that PDX tumor models can be efficiently established from primary SCLC transbronchial needle aspirates, even after overnight shipping, and that resulting xenograft tumors are similar to matched primary tumors in cancer patients by both histology and chemo-sensitivity. This method enables physicians at non-research institutions to collaboratively contribute to the rapid establishment of extensive PDX collections of SCLC, enabling experimentation with clinically relevant tissues and development of improved therapies for SCLC patients. PMID:25955027

  20. Targeted Imaging of the Atypical Chemokine Receptor 3 (ACKR3/CXCR7) in Human Cancer Xenografts.

    PubMed

    Behnam Azad, Babak; Lisok, Ala; Chatterjee, Samit; Poirier, John T; Pullambhatla, Mrudula; Luker, Gary D; Pomper, Martin G; Nimmagadda, Sridhar

    2016-06-01

    The atypical chemokine receptor ACKR3 (formerly CXCR7), overexpressed in various cancers compared with normal tissues, plays a pivotal role in adhesion, angiogenesis, tumorigenesis, metastasis, and tumor cell survival. ACKR3 modulates the tumor microenvironment and regulates tumor growth. The therapeutic potential of ACKR3 has also been demonstrated in various murine models of human cancer. Literature findings underscore the importance of ACKR3 in disease progression and suggest it as an important diagnostic marker for noninvasive imaging of ACKR3-overexpressing malignancies. There are currently no reports on direct receptor-specific detection of ACKR3 expression. Here we report the evaluation of a radiolabeled ACKR3-targeted monoclonal antibody (ACKR3-mAb) for the noninvasive in vivo nuclear imaging of ACKR3 expression in human breast, lung, and esophageal squamous cell carcinoma cancer xenografts. ACKR3 expression data were extracted from Cancer Cell Line Encyclopedia, The Cancer Genome Atlas, and the Clinical Lung Cancer Genome Project. (89)Zr-ACKR3-mAb was evaluated in vitro and subsequently in vivo by PET and ex vivo biodistribution studies in mice xenografted with breast (MDA-MB-231-ACKR3 [231-ACKR3], MDA-MB-231 [231], MCF7), lung (HCC95), or esophageal (KYSE520) cancer cells. In addition, ACKR3-mAb was radiolabeled with (125)I and evaluated by SPECT imaging and ex vivo biodistribution studies. ACKR3 transcript levels were highest in lung squamous cell carcinoma among the 21 cancer type data extracted from The Cancer Genome Atlas. Also, Clinical Lung Cancer Genome Project data showed that lung squamous cell carcinoma had the highest CXCR7 transcript levels compared with other lung cancer subtypes. The (89)Zr-ACKR3-mAb was produced in 80% ± 5% radiochemical yields with greater than 98% radiochemical purity. In vitro cell uptake of (89)Zr-ACKR3-mAb correlated with gradient levels of cell surface ACKR3 expression observed by flow cytometry. In vivo PET imaging

  1. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models.

    PubMed

    Lee, Ching-Hsiao; Yao, Ching-Fa; Huang, Sin-Ming; Ko, Shengkai; Tan, Yi-Hung; Lee-Chen, Guey-Jen; Wang, Yi-Ching

    2008-08-15

    The clinical responses to chemotherapy in lung cancer patients are unsatisfactory. Thus, the development of more effective anticancer drugs for lung cancer is urgently needed. A 2-step novel synthetic compound, referred to as 1,1,3-tri(3-indolyl)cyclohexane (3-indole), was generated in high purity and yield. 3-Indole was tested for its biologic activity in A549, H1299, H1435, CL1-1, and H1437 lung cancer cells. Animal studies were also performed. The data indicate that 3-indole induced apoptosis in various lung cancer cells. Increased cytochrome-c release from mitochondria to cytosol, decreased expression of antiapoptotic Bcl-2, and increased expression of proapoptotic Bax were observed. In addition, 3-indole stimulated caspases-3, -9, and to a lesser extent caspase-8 activities in cancer cells, suggesting that the intrinsic mitochondria pathway was the potential mechanism involved in 3-indole-induced apoptosis. 3-Indole-induced a concentration-dependent mitochondrial membrane potential dissipation and an increase in reactive oxygen species (ROS) production. Activation of c-Jun N-terminal kinase (JNK) and triggering of DNA damage were also apparent. Note that 3-indole-induced JNK activation and DNA damage can be partially suppressed by an ROS inhibitor. Apoptosis induced by 3-indole could be abrogated by ROS or JNK inhibitors, suggesting the importance of ROS and JNK stress-related pathways in 3-indole-induced apoptosis. Moreover, 3-indole showed in vivo antitumor activities against human xenografts in murine models. On the basis of its potent anticancer activity in cell and animal models, the data suggest that this 2-step synthetic 3-indole compound of high purity and yield is a potential candidate to be tested as a lead pharmaceutical compound for cancer treatment. 2008 American Cancer Society

  2. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  3. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  4. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.

    PubMed

    Sheng, Xiumei; Bowen, Nathan; Wang, Zhengxin

    2016-03-18

    GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.

  5. Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy

    DTIC Science & Technology

    2014-06-01

    B1, non-small cell lung cancer, glutamine metabolism, biguanides 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF...combination therapy (months 15-16) Task 5. In vivo testing of biguanide and glutamine metabolism inhibitors in xenograft models of LKB1-proficient and...combination therapies in xenograft mice (months 12-15) IACUC and ACURO approval have been granted for in vivo xenograft studies, which will commence in

  6. Xenograft tumors derived from malignant pleural effusion of the patients with non-small-cell lung cancer as models to explore drug resistance.

    PubMed

    Xu, Yunhua; Zhang, Feifei; Pan, Xiaoqing; Wang, Guan; Zhu, Lei; Zhang, Jie; Wen, Danyi; Lu, Shun

    2018-05-09

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) fusions show dramatic responses to specific tyrosine kinase inhibitors (TKIs); however, after 10-12 months, secondary mutations arise that confer resistance. We generated a murine xenograft model using patient-derived NSCLC cells isolated from the pleural fluid of two patients with NSCLC to investigate the mechanisms of resistance against the ALK- and EGFR-targeted TKIs crizotinib and osimertinib, respectively. Genotypes of patient biopsies and xenograft tumors were determined by whole exome sequencing (WES), and patients and xenograft-bearing mice received targeted treatment (crizotinib or osimertinib) accordingly. Xenograft mice were also treated for prolonged periods to identify whether the development of drug resistance and/or treatment responses were associated with tumor size. Finally, the pathology of patients biopsies and xenograft tumors were compared histologically. The histological characteristics and chemotherapy responses of xenograft tumors were similar to the actual patients. WES showed that the genotypes of the xenograft and patient tumors were similar (an echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) gene fusion (patient/xenograft: CTC15035 EML4-ALK ) and EGFR L858R and T790M mutations (patient/xenograft: CTC15063 EGFR L858R, T790M )). After continuous crizotinib or osimertinib treatment, WES data suggested that acquired ALK E1210K mutation conferred crizotinib resistance in the CTC15035 EML4-ALK xenograft, while decreased frequencies of EGFR L858R and T790M mutations plus the appearance of v-RAF murine sarcoma viral oncogene homolog B (BRAF) G7V mutations and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha (PIK3C2A) A86fs frame shift mutations led to osimertinib resistance in the CTC15063 EGFR L858R, T790M xenografts. We successfully developed a new method of generating

  7. Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics.

    PubMed

    Cheng, Ka-Wing; Wong, Chi C; Mattheolabakis, George; Xie, Gang; Huang, Liqun; Rigas, Basil

    2013-09-01

    Phospho-sulindac (PS) is a safe sulindac derivative with promising anticancer efficacy in colon cancer. We evaluated whether its combination with curcumin could enhance the efficacy in the treatment of lung cancer. Curcumin, the principal bioactive component in turmeric, has demonstrated versatile capabilities to modify the therapeutic efficacy of a wide range of anticancer agents. Here, we evaluated the effect of co-administration of curcumin on the anticancer activity of PS in a mouse xenograft model of human lung cancer. Curcumin enhanced the cellular uptake of PS in human lung and colon cancer cell lines. To assess the potential synergism between curcumin and PS in vivo, curcumin was suspended in 10% Tween-80 or formulated in micellar nanoparticles and given to mice by oral gavage prior to the administration of PS. Both formulations of curcumin significantly improved the pharmacokinetic profiles of PS, with the 10% Tween-80 suspension being much more effective than the nanoparticle formation. However, curcumin did not exhibit any significant modification of the metabolite profile of PS. Furthermore, in a mouse subcutaneous xenograft model of human lung cancer, PS (200 mg/kg) in combination with curcumin (500 mg/kg) suspended in 10% Tween-80 (51% inhibition, p<0.05) was significantly more efficacious than PS plus micelle curcumin (30%) or PS (25%) or curcumin alone (no effect). Consistent with the improved pharmacokinetics, the combination treatment group had higher levels of PS and its metabolites in the xenografts compared to PS alone. Our results show that curcumin substantially improves the pharmacokinetics of PS leading to synergistic inhibition of the growth of human lung cancer xenografts, representing a promising drug combination.

  8. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-06-22

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.

  9. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells

    PubMed Central

    Wu, Ching-Yuan; Cherng, Jong-Yuh; Yang, Yao-Hsu; Lin, Chun-Liang; Kuan, Feng-Che; Lin, Yin-Yin; Lin, Yu-Shih; Shu, Li-Hsin; Cheng, Yu-Ching; Liu, Hung Te; Lu, Ming-Chu; Lung, Jthau; Chen, Pau-Chung; Lin, Hui Kuan; Lee, Kuan-Der; Tsai, Ying-Huang

    2017-01-01

    In traditional Chinese medicine, Salvia miltiorrhiza Bunge (danshen) is widely used in the treatment of numerous cancers. However, its clinical effort and mechanism in the treatment of advanced lung cancer are unclear. In our study, the in vivo protective effort of danshen in patients with advanced lung cancer were validated using data from the National Health Insurance Research Database in Taiwan. We observed in vitro that dihydroisotanshinone I (DT), a bioactive compound in danshen, exerts anticancer effects through many pathways. First, 10 μM DT substantially inhibited the migration ability of lung cancer cells in both macrophage and macrophage/lung cancer direct mixed coculture media. Second, 10 μM DT repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), the protein expression of S-phase kinase associated protein-2 (Skp2), and the mRNA levels of STAT3-related genes, including chemokine (C–C motif) ligand 2 (CCL2). In addition, 10 μM DT suppressed the macrophage recruitment ability of lung cancer cells by reducing CCL2 secretion from both macrophages and lung cancer cells. Third, 20 μM DT induced apoptosis in lung cancer cells. Furthermore, DT treatment significantly inhibited the final tumor volume in a xenograft nude mouse model. In conclusion, danshen exerts protective efforts in patients with advanced lung cancer. These effects can be attributed to DT-mediated interruption of the cross talk between lung cancer cells and macrophages and blocking of lung cancer cell proliferation. PMID:29207614

  10. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model

    PubMed Central

    Bethge, Anja; Schumacher, Udo

    2017-01-01

    Background Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities. Methods The biological data gained during these experiments were fed into our previously developed computer model “Cancer and Treatment Simulation Tool” (CaTSiT) to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model. Results According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels’ geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor’s therapeutic susceptibility and its metastatic spreading behavior. Conclusion Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry

  11. Next generation patient-derived prostate cancer xenograft models

    PubMed Central

    Lin, Dong; Xue, Hui; Wang, Yuwei; Wu, Rebecca; Watahiki, Akira; Dong, Xin; Cheng, Hongwei; Wyatt, Alexander W; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2014-01-01

    There is a critical need for more effective therapeutic approaches for prostate cancer. Research in this area, however, has been seriously hampered by a lack of clinically relevant, experimental in vivo models of the disease. This review particularly focuses on the development of prostate cancer xenograft models based on subrenal capsule grafting of patients’ tumor tissue into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This technique allows successful development of transplantable, patient-derived cancer tissue xenograft lines not only from aggressive metastatic, but also from localized prostate cancer tissues. The xenografts have been found to retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, response to androgen ablation and metastatic ability. As such, they are highly clinically relevant and provide valuable tools for studies of prostate cancer progression at cellular and molecular levels, drug screening for personalized cancer therapy and preclinical drug efficacy testing; especially when a panel of models is used to cover a broader spectrum of the disease. These xenograft models could therefore be viewed as next-generation models of prostate cancer. PMID:24589467

  12. Experimental Lung Cancer Drug Shows Early Promise | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and

  13. Experimental Lung Cancer Drug Shows Early Promise | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and transgenic mice, as reported in the journal Cancer Discovery. It is now being evaluated for

  14. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai, E-mail: tomsyu@163.com; Huang, Liangqian; Qiao, Pengyun

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. Thesemore » findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.« less

  15. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. PPARGC1A is upregulated and facilitates lung cancer metastasis.

    PubMed

    Li, Jin-Dong; Feng, Qing-Chuan; Qi, Yu; Cui, Guanghui; Zhao, Song

    2017-10-15

    Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. Peroxisome proliferator-activated receptor gamma (PPARGC1A) was uniformly the topmost overexpressed gene in all three human non-small cell lung cancer (NSCLC) patient samples. Further evaluation in human normal lung and metastatic lung cancer cell lines revealed that the expression of PPARGC1A was upregulated in metastatic lung cancer cell lines. Metagenomic analysis revealed direct correlation among PPARGC1A, zinc-finger transcription factor snail homolog 1 (SNAI1), and metastatic lung disease. Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis. Copyright © 2017. Published by Elsevier Inc.

  17. EGFR and Ras regulate DDX59 during lung cancer development.

    PubMed

    Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong

    2018-02-05

    Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental Lung Cancer Drug Shows Early Promise | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and transgenic mice, as reported in the journal Cancer Discovery. It is now being evaluated for safety and efficacy in Phase I and II clinical trials.

  19. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth

    PubMed Central

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P.; Lu, Bo

    2018-01-01

    ABSTRACT Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth. PMID:29632720

  20. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

    PubMed

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P; Lu, Bo

    2018-01-01

    Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

  1. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  2. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models.

    PubMed

    Baker, Amanda F; Hanke, Neale T; Sands, Barbara J; Carbajal, Liliana; Anderl, Janet L; Garland, Linda L

    2014-12-31

    Carfilzomib (CFZ) is a proteasome inhibitor that selectively and irreversibly binds to its target and has been approved in the US for treatment of relapsed and refractory multiple myeloma. Phase 1B studies of CFZ reported signals of clinical activity in solid tumors, including small cell lung cancer (SCLC). The aim of this study was to investigate the activity of CFZ in lung cancer models. A diverse panel of human lung cancer cell lines and a SHP77 small cell lung cancer xenograft model were used to investigate the anti-tumor activity of CFZ. CFZ treatment inhibited both the constitutive proteasome and the immunoproteasome in lung cancer cell lines. CFZ had marked anti-proliferative activity in A549, H1993, H520, H460, and H1299 non-small cell lung cancer (NSCLC) cell lines, with IC50 values after 96 hour exposure from <1.0 nM to 36 nM. CFZ had more variable effects in the SHP77 and DMS114 SCLC cell lines, with IC50 values at 96 hours from <1 nM to 203 nM. Western blot analysis of CFZ-treated H1993 and SHP77 cells showed cleavage of poly ADP ribose polymerase (PARP) and caspase-3, indicative of apoptosis, and induction of microtubule-associated protein-1 light chain-3B (LC3B), indicative of autophagy. In SHP77 flank xenograft tumors, CFZ monotherapy inhibited tumor growth and prolonged survival, while no additive or synergistic anti-tumor efficacy was observed for CFZ + cisplatin (CDDP). CFZ demonstrated anti-proliferative activity in lung cancer cell lines in vitro and resulted in a significant survival advantage in mice with SHP77 SCLC xenografts, supporting further pre-clinical and clinical investigations of CFZ in NSCLC and SCLC.

  3. Small Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy

    PubMed Central

    Han, Bingshe; Park, Dongkyoo; Li, Rui; Xie, Maohua; Owonikoko, Taofeek K.; Zhang, Guojing; Sica, Gabriel L.; Ding, Chunyong; Zhou, Jia; Magis, Andrew T.; Chen, Zhuo G.; Shin, Dong M.; Ramalingam, Suresh S.; Khuri, Fadlo R.; Curran, Walter J.; Deng, Xingming

    2015-01-01

    SUMMARY The BH4 domain of Bcl2 is required for its antiapoptotic function, thus constituting a promising anticancer target. We identified a small molecule Bcl2-BH4 domain-antagonist (BDA-366) that binds BH4 with high affinity and selectivity. BDA-366-Bcl2 binding induces conformational change in Bcl2 that abrogates its antiapoptotic function, converting it from a survival to a cell death inducer. BDA-366 suppresses growth of lung cancer xenografts derived from cell lines and patient without significant normal tissue toxicity at effective doses. mTOR inhibition up-regulates Bcl2 in lung cancer cells and tumor tissues from clinical trial patients. Combined BDA-366 and RAD001 treatment exhibits strong synergy against lung cancer in vivo. Development of this Bcl2-BH4 antagonist may provide a strategy to improve lung cancer outcome. PMID:26004684

  4. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.

    PubMed

    Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen

    2009-09-01

    20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.

  5. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression

  6. Optimized S-Trityl-l-cysteine-Based Inhibitors of Kinesin Spindle Protein with Potent in Vivo Antitumor Activity in Lung Cancer Xenograft Models

    PubMed Central

    2013-01-01

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-l-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (Kiapp < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies. PMID:23394180

  7. Establishing prostate cancer patient derived xenografts: lessons learned from older studies.

    PubMed

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W C; Williams, Elizabeth D; Raghavan, Derek

    2015-05-01

    Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43-46, XY, dic(1;12)(p11;p11

  8. Establishing Prostate Cancer Patient Derived Xenografts: Lessons Learned From Older Studies

    PubMed Central

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W-C; Williams, Elizabeth D; Raghavan, Derek

    2015-01-01

    Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43

  9. A human lung xenograft mouse model of Nipah virus infection.

    PubMed

    Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya; Goez, Yenny; Rockx, Barry

    2014-04-01

    Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7) TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  10. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    PubMed

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis.

    PubMed

    Matsuo, Yo; Park, Jae-Hyun; Miyamoto, Takashi; Yamamoto, Shinji; Hisada, Shoji; Alachkar, Houda; Nakamura, Yusuke

    2014-10-22

    TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers. Copyright © 2014, American Association for the Advancement of Science.

  12. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  13. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    PubMed

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  14. Human pancreatic cancer xenografts recapitulate key aspects of cancer cachexia.

    PubMed

    Delitto, Daniel; Judge, Sarah M; Delitto, Andrea E; Nosacka, Rachel L; Rocha, Fernanda G; DiVita, Bayli B; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Wallet, Shannon M; Judge, Andrew R; Trevino, Jose G

    2017-01-03

    Cancer cachexia represents a debilitating syndrome that diminishes quality of life and augments the toxicities of conventional treatments. Cancer cachexia is particularly debilitating in patients with pancreatic cancer (PC). Mechanisms responsible for cancer cachexia are under investigation and are largely derived from observations in syngeneic murine models of cancer which are limited in PC. We evaluate the effect of human PC cells on both muscle wasting and the systemic inflammatory milieu potentially contributing to PC-associated cachexia. Specifically, human PC xenografts were generated by implantation of pancreatic cancer cells, L3.6pl and PANC-1, either in the flank or orthotopically within the pancreas. Mice bearing orthotopic xenografts demonstrated significant muscle wasting and atrophy-associated gene expression changes compared to controls. Further, despite the absence of adaptive immunity, splenic tissue from orthotopically engrafted mice demonstrated elevations in several pro-inflammatory cytokines associated with cancer cachexia, including TNFα, IL1β, IL6 and KC (murine IL8 homologue), when compared to controls. Therefore, data presented here support further investigation into the complexity of cancer cachexia in PC to identify potential targets for this debilitating syndrome.

  15. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  16. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  17. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.

    Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials: NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O{sub 2}) or hypoxic (1% O{sub 2}) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, dailymore » for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results: In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O{sub 2}). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions: Our data suggest that hypoxia potentiates the radiation-sensitizing effects

  18. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  19. An integrated nanotechnology-enabled transbronchial image-guided intervention strategy for peripheral lung cancer

    PubMed Central

    Jin, Cheng S.; Wada, Hironobu; Anayama, Takashi; McVeigh, Patrick Z; Hu, Hsin Pei; Hirohashi, Kentaro; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Hwang, David; Wilson, Brian C.; Zheng, Gang; Yasufuku, Kazuhiro

    2016-01-01

    Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current non-surgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically-administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460 and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon non-surgical treatment of early-stage peripheral lung cancer. PMID:27543602

  20. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  1. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  2. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    PubMed

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  3. Lung cancer

    MedlinePlus

    Cancer - lung ... lung cancer than of breast, colon, and prostate cancers combined. Lung cancer is more common in older adults. It ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung: non-small cell lung cancer and small cell ...

  4. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion

    PubMed Central

    Long, Weiwen; Foulds, Charles E.; Qin, Jun; Liu, Jian; Ding, Chen; Lonard, David M.; Solis, Luisa M.; Wistuba, Ignacio I.; Qin, Jun; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.

    2012-01-01

    In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer. PMID:22505454

  6. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    PubMed Central

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201’s cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  7. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201.

  8. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fan; Li, Pengcheng; Gong, Jianhua

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less

  9. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    PubMed

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    DOE PAGES

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; ...

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less

  11. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy.

    PubMed

    Tuscano, Joseph M; Kato, Jason; Pearson, David; Xiong, Chengyi; Newell, Laura; Ma, Yunpeng; Gandara, David R; O'Donnell, Robert T

    2012-11-01

    Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasis and extended overall survival. The finding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti-CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. ©2012 AACR.

  12. [Inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung cancer xenografts in nude mice].

    PubMed

    Wang, D C; Wang, L C; Wang, L J; Chen, G; Zhao, Y X; Zhao, Z F; Li, Y H

    2016-05-23

    To evaluate the inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung adenocarcinoma xenografts in nude mice, and to explore its possible mechanisms. Human lung cancer A549 cells were injected into Bal B/c nude mice subcutaneously. Twenty-eight healthy male nude mice were randomly divided into 4 groups: the control group, imrecoxib group, lobaplatin group and imrecoxib combined with lobaplatin group. Each group was treated with appropriate drugs and the tumor size was measured every five days. The expression of ezrin and E-cadherin protein was detected by immunohistochemistry and flow cytometry. Ezrin and E-cadherin mRNA were detected by real-time PCR. The tumor inhibition rates of imrecoxib group, lobaplatin group and combination group were 36.7%, 54.6% and 69.2%, respectively. The tumor volumes of imrecoxib group [(905.33±113.31) mm(3)] and combination group [(507.74±77.50) mm(3)] were significantly lower than that of the control group (1355.33±189.04) mm(3) (P<0.05), and the tumor weights were significantly reduced [(1.13±0.14) g, (0.63±0.10) g respectively] vs. (1.69±0.24) g (P<0.05). The expressions of ezrin protein and mRNA in the imrecoxib group and combined treatment group were significantly lower than that of the control group (136.53±35.52, 74.72±19.48 vs. 175.62±21.16 for protein expression level; 0.54±0.03, 0.36±0.03 vs. 1.02±0.02 for mRNA expression level, respectively, P<0.05 for both), while the expression of E-cadherin protein and mRNA in the imrecoxib group and combined treatment group was significantly higher than that of the control group (253.78±38.87, 308.94±24.67 vs. 213.66±30.31 for protein expression level; 2.19±0.02, 3.02±0.02 vs. 1.05±0.03 for mRNA expression level, respectively, P<0.05 for both). There was a significant negative correlation between ezrin protein and E-cadherin protein (r=-0.737, P<0.01), as well as between ezrin mRNA and E-cadherin mRNA (r=-0

  13. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer.

    PubMed

    Yu, Xiao; Lin, Hongyan; Wang, Yu; Lv, Wenwen; Zhang, Shuo; Qian, Ying; Deng, Xiaobei; Feng, Nannan; Yu, Herbert; Qian, Biyun

    2018-01-01

    d-limonene is a plant extract with widespread application, and it has been recently reported to have antiproliferative and proapoptotic effects on cancer cells. However, the mechanisms by which d-limonene achieves these effects, especially in lung cancer, are not entirely clear. Therefore, the goal of this study was to examine the effects of d-limonene on lung cancer and explore its mechanisms of action. We examined the therapeutic effects of d-limonene on lung cancer cells and in a xenograft animal model by characterizing its effects on the pathways of apoptosis and autophagy. Cell proliferation was measured using the Cell Counting Kit-8, and apoptosis was determined by flow cytometric analysis. Levels of LC3 puncta, an autophagy marker, were analyzed by laser scanning confocal microscopy. Autophagy and apoptosis-related gene expression were assessed by real-time quantitative polymerase chain reaction and Western blot. d-limonene inhibited the growth of lung cancer cells and suppressed the growth of transplanted tumors in nude mice. Expression of apoptosis and autophagy-related genes were increased in tumors after treatment with d-limonene. Furthermore, the use of chloroquine, an autophagy inhibitor, and knockdown of the atg5 gene, suppressed the apoptosis induced by d-limonene. d-limonene may have a therapeutic effect on lung cancer as it can induce apoptosis of lung cancer cells by promoting autophagy.

  14. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

    PubMed

    Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul

    2004-08-01

    Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis

  15. MiroRNA-188 Acts as Tumor Suppressor in Non-Small-Cell Lung Cancer by Targeting MAP3K3.

    PubMed

    Zhao, Lili; Ni, Xin; Zhao, Linlin; Zhang, Yao; Jin, Dan; Yin, Wei; Wang, Dandan; Zhang, Wei

    2018-04-02

    Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer. MicroRNAs have been increasingly implicated in NSCLC and may serve as novel therapeutic targets to combat cancer. Here we investigated the functional implication of miR-188 in NSCLC. We first analyzed miR-188 expression in both NSCLC clinical samples and cancer cell lines. Next we investigated its role in A549 and H2126 cells with cell proliferation, migration, and apoptosis assays. To extend the in vitro study, we employed both xenograft model and LSL- K-ras G12D lung cancer model to examine the role of miR-188 in tumorigenesis. Last we tested MAP3K3 as miR-188 target in NSCLC model. MiR-188 expression was significantly downregulated at the NSCLC tumor sites and lung cancer cells. In vitro transfection of miR-188 reduced cell proliferation and migration potential and promoted cell apoptosis. In xenograft model, miR-188 inhibited tumor growth derived from cancer cells. Intranasal miR-188 administration reduced tumor formation in NSCLC animal model. MAP3K3 was validated as direct target of miR-188. Knocking down MAP3K3 in mice also inhibited tumorigenesis in LSL- K-ras G12D model. Our results demonstrate that miR-188 and its downstream target MAP3K3 could be a potential therapeutic target for NSCLC.

  16. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT

    PubMed Central

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-01-01

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772

  17. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    PubMed

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  18. Immunohistochemical demonstration of epidermal growth factor in human gastric cancer xenografts of nude mice.

    PubMed

    Yoshiyuki, T; Shimizu, Y; Onda, M; Tokunaga, A; Kiyama, T; Nishi, K; Mizutani, T; Matsukura, N; Tanaka, N; Akimoto, M

    1990-02-15

    Thirty-two surgical specimens and three cell lines of human gastric cancers were used for subcutaneous transplantation into nude mice, resulting in the establishment of eight (25%) xenografts from the surgical specimens and two (67%) from the cell lines. The localization of epidermal growth factor (EGF) in the surgical specimens and cell lines of the gastric cancers and their xenografts in nude mice was then investigated immunohistochemically. Epidermal growth factor was stained in the cytoplasm of the cancer cells, being detected in 16 (50%) of the 32 surgical specimens and in all of the cell lines. Seven (44%) of the sixteen EGF-positive surgical specimens and one (6%) of the 16 EGF-negative ones were tumorigenic in nude mice. All of the xenografts in nude mice were positive for EGF. The tumorigenicity of human gastric cancer xenografts in nude mice may, therefore, be correlated with the presence of EGF in cancer cells.

  19. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    PubMed Central

    Zhu, Yin; Cheng, Ming; Yang, Zhen; Zeng, Chun-Yan; Chen, Jiang; Xie, Yong; Luo, Shi-Wen; Zhang, Kun-He; Zhou, Shu-Feng; Lu, Nong-Hua

    2014-01-01

    Mesenchymal stem cells (MSCs) have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met) which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP). Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS), MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in

  20. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    PubMed

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  1. Development of small RNA delivery systems for lung cancer therapy.

    PubMed

    Fujita, Yu; Kuwano, Kazuyoshi; Ochiya, Takahiro

    2015-03-06

    RNA interference (RNAi) has emerged as a powerful tool for studying target identification and holds promise for the development of therapeutic gene silencing. Recent advances in RNAi delivery and target selection provide remarkable opportunities for translational medical research. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), have a central function in RNAi technology. The success of RNAi-based therapeutic delivery may be dependent upon uncovering a delivery route, sophisticated delivery carriers, and nucleic acid modifications. Lung cancer is still the leading cause of cancer death worldwide, for which novel therapeutic strategies are critically needed. Recently, we have reported a novel platform (PnkRNA™ and nkRNA®) to promote naked RNAi approaches through inhalation without delivery vehicles in lung cancer xenograft models. We suggest that a new class of RNAi therapeutic agent and local drug delivery system could also offer a promising RNAi-based strategy for clinical applications in cancer therapy. In this article, we show recent strategies for an RNAi delivery system and suggest the possible clinical usefulness of RNAi-based therapeutics for lung cancer treatment.

  2. MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1.

    PubMed

    Li, Jindong; Feng, Qingchuan; Wei, Xudong; Yu, Yongkui

    2016-11-01

    Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence, it is imperative to determine reliable biomarkers of lung cancer prognosis. MicroRNA-490-3p has been previously reported to be a positive prognostic biomarker for hepatocellular cancer. However, its role in human lung cancer has not yet been elucidated. Here, we report that hsa-miR-490-3p expression is significantly higher in human lung cancer tissue specimens and cell line. Gain- and loss-of-function studies of hsa-miR-490-3p showed that it regulates cell proliferation and is required for induction of in vitro migration and invasion-the latter being a hallmark of epithelial to mesenchymal transition. In situ analysis revealed that hsa-miR-490-3p targets poly r(C)-binding protein 1 (PCBP1), which has been previously shown to be a negative regulator of lung cancer metastasis. Reporter assays confirmed PCBP1 as a bona fide target of miR-490-3p, and metagenomic analysis revealed an inverse relation between expression of miR-490-3p and PCBP1 in metastatic lung cancer patients. In fact, PCBP1 expression, as detected by immunohistochemistry, was undetectable in advanced stages of lung cancer patients' brain and lymph node tissues. Xenograft tail vein colonization assays proved that high expression of miR-490-3p is a prerequisite for metastatic progression of lung cancer. Our results suggest that hsa-miR-490-3p might be a potential biomarker for lung cancer prognosis. In addition, we can also conclude that the lung cancer cells have evolved refractory mechanisms to downregulate the expression of the metastatic inhibitor, PCBP1.

  3. γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer

    PubMed Central

    Mizugaki, H; Sakakibara-Konishi, J; Ikezawa, Y; Kikuchi, J; Kikuchi, E; Oizumi, S; Dang, T P; Nishimura, M

    2012-01-01

    Background: Notch receptor has an important role in both development and cancer. We previously reported that inhibition of the Notch3 by γ-secretase inhibitor (GSI) induces apoptosis and suppresses tumour proliferation in non-small-cell lung cancer. Although radiation is reported to induce Notch activation, little is known about the relationship between radiation and Notch pathway. Methods: We examined the effect of combining GSI and radiation at different dosing in three Notch expressing lung cancer cell lines. The cytotoxic effect of GSI and radiation was evaluated using MTT assay and clonogenic assay in vitro and xenograft models. Expressions of Notch pathway, mitogen-activated protein kinase (MAPK) pathway and Bcl-2 family proteins were investigated using western blot analysis. Results: We discovered that the antitumour effect of combining GSI and radiation was dependent on treatment schedule. γ-Secretase inhibitor administration after radiation had the greatest growth inhibition of lung cancer in vitro and in vivo. We showed that the combination induced apoptosis of lung cancer cell lines through the regulation of MAPK and Bcl-2 family proteins. Furthermore, activation of Notch after radiation was ameliorated by GSI administration, suggesting that treatment with GSI prevents Notch-induced radiation resistance. Conclusion: Notch has an important role in lung cancer. Treatment with GSI after radiation can significantly enhance radiation-mediated tumour cytotoxicity. PMID:22596234

  4. A Small Molecule Inhibitor of ETV1, YK-4-279, Prevents Prostate Cancer Growth and Metastasis in a Mouse Xenograft Model

    PubMed Central

    Rahim, Said; Minas, Tsion; Hong, Sung-Hyeok; Justvig, Sarah; Çelik, Haydar; Kont, Yasemin Saygideger; Han, Jenny; Kallarakal, Abraham T.; Kong, Yali; Rudek, Michelle A.; Brown, Milton L.; Kallakury, Bhaskar; Toretsky, Jeffrey A.; Üren, Aykut

    2014-01-01

    Background The erythroblastosis virus E26 transforming sequences (ETS) family of transcription factors consists of a highly conserved group of genes that play important roles in cellular proliferation, differentiation, migration and invasion. Chromosomal translocations fusing ETS factors to promoters of androgen responsive genes have been found in prostate cancers, including the most clinically aggressive forms. ERG and ETV1 are the most commonly translocated ETS proteins. Over-expression of these proteins in prostate cancer cells results in a more invasive phenotype. Inhibition of ETS activity by small molecule inhibitors may provide a novel method for the treatment of prostate cancer. Methods and Findings We recently demonstrated that the small molecule YK-4-279 inhibits biological activity of ETV1 in fusion-positive prostate cancer cells leading to decreased motility and invasion in-vitro. Here, we present data from an in-vivo mouse xenograft model. SCID-beige mice were subcutaneously implanted with fusion-positive LNCaP-luc-M6 and fusion-negative PC-3M-luc-C6 tumors. Animals were treated with YK-4-279, and its effects on primary tumor growth and lung metastasis were evaluated. YK-4-279 treatment resulted in decreased growth of the primary tumor only in LNCaP-luc-M6 cohort. When primary tumors were grown to comparable sizes, YK-4-279 inhibited tumor metastasis to the lungs. Expression of ETV1 target genes MMP7, FKBP10 and GLYATL2 were reduced in YK-4-279 treated animals. ETS fusion-negative PC-3M-luc-C6 xenografts were unresponsive to the compound. Furthermore, YK-4-279 is a chiral molecule that exists as a racemic mixture of R and S enantiomers. We established that (S)-YK-4-279 is the active enantiomer in prostate cancer cells. Conclusion Our results demonstrate that YK-4-279 is a potent inhibitor of ETV1 and inhibits both the primary tumor growth and metastasis of fusion positive prostate cancer xenografts. Therefore, YK-4-279 or similar compounds may be

  5. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    PubMed

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  6. In Vivo Activity and Pharmacokinetics of Nemorosone on Pancreatic Cancer Xenografts

    PubMed Central

    Wolf, Robert J.; Hilger, Ralf A.; Hoheisel, Jörg D.; Werner, Jens; Holtrup, Frank

    2013-01-01

    Pancreatic cancer is one of the leading cancer-related causes of death in the western world with an urgent need for new treatment strategies. Recently, hyperforin and nemorosone have been described as promising anti-cancer lead compounds. While hyperforin has been thoroughly investigated in vitro and in vivo, in vivo data for nemorosone are still missing. Thus, we investigated the growth-inhibitory potential of nemorosone on pancreatic cancer xenografts in NMRI nu/nu mice and determined basic pharmacokinetic parameters. Xenograft tumors were treated with nemorosone and gemcitabine, the current standard of care. Tumor sections were subjected to H&E as well as caspase 3 and Ki-67 staining. Nemorosone plasma kinetics were determined by HPLC and mass spectrometry. Induction of CYP3A4 and other metabolizing enzymes by nemorosone and hyperforin was tested on primary hepatocytes using qRT-PCR. At a dose of 50 mg/kg nemorosone per day, a significant growth-inhibitory effect was observed in pancreatic cancer xenografts. The compound was well tolerated and rapidly absorbed into the bloodstream with a half-life of approximately 30 min. Different metabolites were detected, possibly resembling CYP3A4-independent oxidation products. It is concluded that nemorosone is a potential anti-cancer lead compound with good bioavailability, little side-effects and promising growth-inhibitory effects, thus representing a valuable compound for a combination therapy approach. PMID:24040280

  7. Bmi-1 expression modulates non-small cell lung cancer progression

    PubMed Central

    Xiong, Dan; Ye, Yunlin; Fu, Yujie; Wang, Jinglong; Kuang, Bohua; Wang, Hongbo; Wang, Xiumin; Zu, Lidong; Xiao, Gang; Hao, Mingang; Wang, Jianhua

    2015-01-01

    Previous studies indicate that the role of B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is responsible for multiple cancer progression. However, Bmi-1 in controlling gene expression in non-small cell lung cancer (NSCLC) development is not well explored. Here we report that the Bmi-1 level is highly increased in primary NSCLC tissues compared to matched adjacent non-cancerous tissues and required for lung tumor growth in xenograft model. Furthermore, we also demonstrate that Bmi-1 level is lower in matched involved lymph node cancerous tissues than the respective primary NSCLC tissues. We find that Bmi-1 does not affect cell cycle and apoptosis in lung cancer cell lines as it does not affect the expression of p16/p19, Pten, AKT and P-AKT. Mechanistic analyses note that reduction of Bmi-1 expression inversely regulates invasion and metastasis of NSCLC cells in vitro and in vivo, followed by induction of epithelial-mesenchymal transition (EMT). Using genome microarray assays, we find that RNAi-mediated silence of Bmi-1 modulates some important molecular genetics or signaling pathways, potentially associated with NSCLC development. Taken together, our findings disclose for the first time that Bmi-1 level accumulates strongly in early stage and then declines in late stage, which is potentially important for NSCLC cell invasion and metastasis during progression. PMID:25880371

  8. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    PubMed Central

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  9. [The mechanism of inhibition effect of adenovirus-mediated ING4 on human lung adenocarcinoma xenografts in nude mice].

    PubMed

    Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua

    2014-02-01

    The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.

  10. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  11. Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors.

    PubMed

    Cho, Yong Beom; Hong, Hye Kyung; Choi, Yoon-La; Oh, Ensel; Joo, Kyeung Min; Jin, Juyoun; Nam, Do-Hyun; Ko, Young-Hyeh; Lee, Woo Yong

    2014-04-01

    Despite significant improvements in colon cancer outcomes over the past few decades, preclinical development of more effective therapeutic strategies is still limited by the availability of clinically relevant animal models. To meet those clinical unmet needs, we generated a well-characterized in vivo preclinical platform for colorectal cancer using fresh surgical samples. Primary and metastatic colorectal tumor tissues (1-2 mm(3)) that originate from surgery were implanted into the subcutaneous space of nude mice and serially passaged in vivo. Mutation status, hematoxylin and eosin staining, short tandem repeat profiling, and array comparative genomic hybridization were used to validate the similarity of molecular characteristics between the patient tumors and tumors obtained from xenografts. From surgical specimens of 143 patients, 97 xenograft models were obtained in immunodeficient mice (establish rate = 67%). Thirty-nine xenograft models were serially expanded further in mice with a mean time to reach a size of 1000-1500 mm(3) of 90 ± 20 d. Histologic and immunohistochemical analyses revealed a high degree of pathologic similarity including histologic architecture and expression of CEA, CK7, and CD20 between the patient and xenograft tumors. Molecular analysis showed that genetic mutations, genomic alterations, and gene expression patterns of each patient tumor were also well conserved in the corresponding xenograft tumor. Xenograft animal models derived from fresh surgical sample maintained the key characteristic features of the original tumors, suggesting that this in vivo platform can be useful for preclinical development of novel therapeutic approaches to colorectal cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Lung Cancer Screening

    MedlinePlus

    ... healthy people with a high risk of lung cancer. Lung cancer screening is recommended for older adults who ... last 15 years. What you can expect During lung cancer screening During an LDCT scan of the lungs, ...

  13. Zebrafish xenograft models of cancer and metastasis for drug discovery.

    PubMed

    Brown, Hannah K; Schiavone, Kristina; Tazzyman, Simon; Heymann, Dominique; Chico, Timothy Ja

    2017-04-01

    Patients with metastatic cancer suffer the highest rate of cancer-related death, but existing animal models of metastasis have disadvantages that limit our ability to understand this process. The zebrafish is increasingly used for cancer modelling, particularly xenografting of human cancer cell lines, and drug discovery, and may provide novel scientific and therapeutic insights. However, this model system remains underexploited. Areas covered: The authors discuss the advantages and disadvantages of the zebrafish xenograft model for the study of cancer, metastasis and drug discovery. They summarise previous work investigating the metastatic cascade, such as tumour-induced angiogenesis, intravasation, extravasation, dissemination and homing, invasion at secondary sites, assessing metastatic potential and evaluation of cancer stem cells in zebrafish. Expert opinion: The practical advantages of zebrafish for basic biological study and drug discovery are indisputable. However, their ability to sufficiently reproduce and predict the behaviour of human cancer and metastasis remains unproven. For this to be resolved, novel mechanisms must to be discovered in zebrafish that are subsequently validated in humans, and for therapeutic interventions that modulate cancer favourably in zebrafish to successfully translate to human clinical studies. In the meantime, more work is required to establish the most informative methods in zebrafish.

  14. What Is Lung Cancer?

    MedlinePlus

    ... Shareable Graphics Infographics “African-American Men and Lung Cancer” “Lung Cancer Is the Biggest Cancer Killer in Both ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ...

  15. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction.

    PubMed

    Shi, Bin; Wang, Li-Fang; Meng, Wen-Shu; Chen, Liang; Meng, Zi-Li

    2017-06-01

    Carnosic acid is a phenolic diterpene with anti-inflammation, anticancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, which is generated by many species from Lamiaceae family. Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally flavonoid is abundantly produced in different vegetables and fruits. Fisetin has been reported to have various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Lung cancer is reported as the most common neoplasm in human world-wide. In the present study, the possible benefits of carnosic acid combined with fisetin on lung cancer in vitro and in vivo was explored. Carnosic acid and fisetin combination led to apoptosis in lung cancer cells. Caspase-3 signaling pathway was promoted in carnosic acid and fisetin co-treatment, which was accompanied by anti-apoptotic proteins of Bcl-2 and Bcl-xl decreasing and pro-apoptotic signals of Bax and Bad increasing. The death receptor (DR) of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was enhanced in carnosic acid and fisetin combined treatment. Furthermore, the mouse xenograft model in vivo suggested that carnosic acid and fisetin combined treatment inhibited lung cancer growth in comparison to the carnosic acid or fisetin monotherapy. This study supplies a novel therapy to induce apoptosis to inhibit lung cancer through caspase-3 activation.

  16. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells

    PubMed Central

    Liu, Yan-rong; Liu, Hui-juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Wang, Jing; Sun, Bo; Dai, Ting-ting; Yang, Cheng; Sun, Tao; Zhou, Hong-gang

    2015-01-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients. PMID:26512779

  17. Orthotopic lung cancer murine model by nonoperative transbronchial approach.

    PubMed

    Nakajima, Takahiro; Anayama, Takashi; Matsuda, Yasushi; Hwang, David M; McVeigh, Patrick Z; Wilson, Brian C; Zheng, Gang; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2014-05-01

    The aim of this work was to establish a novel orthotopic human non-small cell lung cancer (NSCLC) murine xenograft model by a nonsurgical, transbronchial approach. Male athymic nude mice and human NSCLC cell lines, including A549, H460, and H520 were used. Under direct visualization of the vocal cords, a 23-gauge blunt-tip slightly curved metal catheter was introduced into the trachea to the bronchus, and 2.5×10(5) tumor cells mixed with Matrigel (BD Biosciences, Mississauga, Ontario, Canada) were administered into the lung. Mice were monitored using weekly microcomputed tomography scans for tumor formation. When the tumor size reached more than 4 mm in diameter, the animals were euthanized, and the tumor tissue was evaluated histopathologically. Of 37 mice studied, 34 were confirmed to have tumor formation: 29 developed solitary tumors and 5 had multifocal lesions. There was no evidence of extrapleural dissemination or effusion. Transbronchial delivery of tumor cells enabled the establishment of a novel orthotopic human NSCLC murine xenograft model. This clinically relevant preclinical model bearing a solitary nodule is of value for a variety of in vivo research studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of Angelica gigas Pyranocoumarins, in Mouse Models.

    PubMed

    Wu, Wei; Tang, Su-Ni; Zhang, Yong; Puppala, Manohar; Cooper, Timothy K; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2017-01-01

    We have previously shown that the ethanol extract of dried Angelica gigas Nakai (AGN) root exerts anticancer activity against androgen receptor (AR)-negative human DU145 and PC-3 prostate cancer xenografts and primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The major pyranocoumarin isomers decursin (D) and decursinol angelate (DA), when provided at equi-molar intake to that provided by AGN extract, accounted for the inhibitory efficacy against precancerous epithelial lesions in TRAMP mice. Since we and others have shown in rodents and humans that D and DA rapidly and extensively convert to decursinol, here we tested whether decursinol might be an in vivo active compound for suppressing xenograft growth of human prostate cancer cells expressing AR. In SCID-NSG mice carrying subcutaneously inoculated human LNCaP/AR-Luc cells overexpressing the wild type AR, we compared the efficacy of 4.5[Formula: see text]mg decursinol per mouse with equi-molar dose of 6[Formula: see text]mg D/DA per mouse. The result showed that decursinol decreased xenograft tumor growth by 75% and the lung metastasis, whereas D/DA exerted a much less effect. Measurement of plasma decursinol concentration, at 3[Formula: see text]h after the last dose of respective dosing regimen, showed higher circulating level in the decursinol-treated NSG mice than in the D/DA-treated mice. In a subsequent single-dose pharmacokinetic experiment, decursinol dosing led to 3.7-fold area under curve (AUC) of plasma decursinol over that achieved by equi-molar D/DA dosing. PK advantage notwithstanding, decursinol represents an active compound to exert in vivo prostate cancer growth and metastasis inhibitory activity in the preclinical model.

  19. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  20. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.

    PubMed

    Kim, Kyu-Tae; Lee, Hye Won; Lee, Hae-Ock; Kim, Sang Cheol; Seo, Yun Jee; Chung, Woosung; Eum, Hye Hyeon; Nam, Do-Hyun; Kim, Junhyong; Joo, Kyeung Min; Park, Woong-Yang

    2015-06-19

    Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments. We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score. Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.

  1. Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation

    PubMed Central

    Sellers, Katherine; Fox, Matthew P.; Bousamra, Michael; Slone, Stephen P.; Higashi, Richard M.; Miller, Donald M.; Wang, Yali; Yan, Jun; Yuneva, Mariia O.; Deshpande, Rahul; Lane, Andrew N.; Fan, Teresa W.-M.

    2015-01-01

    Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non–small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5,15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early-stage NSCLC is required for tumor survival and proliferation. PMID:25607840

  2. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  3. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  4. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  5. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ji; Huang, Yijiang; Gao, Yunsuo

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less

  6. Staging of Lung Cancer

    MedlinePlus

    ... LUNG CANCER MINI-SERIES #2 Staging of Lung Cancer Once your lung cancer is diagnosed, staging tells you and your health care provider about ... at it under a microscope. The stages of lung cancer are listed as I, II, III, and IV ...

  7. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition.

    PubMed

    Bi, Xiuli; Xia, Xichun; Mou, Teng; Jiang, Bowen; Fan, Dongdong; Wang, Peng; Liu, Yafei; Hou, Yue; Zhao, Yuqing

    2014-11-05

    Numerous compounds isolated from Ginseng have been shown to exhibit various biological activities, including antioxidant, anti-carcinogenic, anti-mutagenic, and anti-tumor activities. Recent research has focused on the potential values of these compounds in the prevention and treatment of human cancers. The anti-tumor activity of 25-hydroxyprotopanaxadiol (25-OH-PPD), a natural compound isolated from Panax ginseng, has been established in previous study. In the current study, we investigated the anti-tumor activity of three derivatives of 25-OH-PPD, namely xl, 1c, and 8b with respect to lung cancer. All three compounds significantly inhibited the growth of the human lung cancer cells A549 and H460. Oral administration of these compounds significantly inhibited the growth of xenograft tumors in mice without affecting body weight. Further mechanistic study demonstrated that these compounds could decrease the expression levels of β-catenin and its downstream targets Cyclin D1, CDK4, and c-myc in lung cancer cells. Taken together, the results suggested that the anti-growth activity exerted by these 25-OH-PPD derivatives against lung cancer cells probably involved β-catenin-mediated signaling pathway, a finding that could have important implication for chemotherapeutic strategy aiming at the treatment of lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Galactose conjugated platinum(II) complex targeting the Warburg effect for treatment of non-small cell lung cancer and colon cancer.

    PubMed

    Wu, Meng; Li, Hong; Liu, Ran; Gao, Xiangqian; Zhang, Menghua; Liu, Pengxing; Fu, Zheng; Yang, Jinna; Zhang-Negrerie, Daisy; Gao, Qingzhi

    2016-03-03

    Malignant neoplasms exhibit a higher rate of glycolysis than normal cells; this is known as the Warburg effect. To target it, a galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-chloromalonato-platinum(II) complex (Gal-Pt) was designed, synthesized, and evaluated in five human cancer cell lines and against two different xenograft tumour models. Gal-Pt exhibits much higher aqueous solubility (over 25 times) and improved cytotoxicity than oxaliplatin, especially in human colon (HT29) and lung (H460) cancer cell lines. The safety profile of Gal-Pt was investigated in vivo by exploring the maximum tolerated dose (MTD) and animal mortality rate. The ratios of the animal lethal dosage values to the cytotoxicity in HT29 (LD50/IC50) showed that Gal-Pt was associated with an increased therapeutic index by over 30-fold compared to cisplatin and oxaliplatin. We evaluated in vivo antitumor activity by single agent intravenous treatment comparison studies of Gal-Pt (50 mg/kg as 65% MTD) and cisplatin (3 mg/kg, as 80% MTD) in a H460 lung cancer xenograft model, and with oxaliplatin (7 mg/kg, as 90% MTD) in a HT29 colon cancer xenograft model. The results show that Gal-Pt was more efficacious against H460 than cisplatin, and had superior potency in HT29 cells compared to oxaliplatin under nontoxic dosage conditions. The dependency between cytotoxicity of Gal-Pt and glucose transporters (GLUTs) was investigated by using quercetin as an inhibitor of GLUTs in HT29 cells. The cytotoxic potency of Gal-Pt was highly reduced by the inhibitor, suggesting that the uptake of Gal-Pt was regulated by glucose transporters. The GLUT mediated transportability and cellular uptake of Gal-Pt was also demonstrated using a fluorescent glucose bioprobe in HT29 competition assay. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. CCDC106 promotes non-small cell lung cancer cell proliferation.

    PubMed

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  10. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice.

    PubMed

    Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R; Hyder, Salman M

    2010-01-01

    Previous studies have shown that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL), and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study because synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Estradiol-supplemented intact and ovariectomized immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted simultaneously with estradiol pellets either 2 days before tumor cell injection (ie, combined) or 5 days after tumor cell injections (ie, sequentially). Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice, and progestins stimulated vascular endothelial growth factor elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. These observations suggest that women who ingest progestins for hormone therapy or oral contraception could be more at risk for developing breast cancer because of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting.

  11. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.

  12. Cancer Genes in Lung Cancer

    PubMed Central

    El-Telbany, Ahmed

    2012-01-01

    Cancer is now known as a disease of genomic alterations. Mutational analysis and genomics profiling in recent years have advanced the field of lung cancer genetics/genomics significantly. It is becoming more accepted now that the identification of genomic alterations in lung cancer can impact therapeutics, especially when the alterations represent “oncogenic drivers” in the processes of tumorigenesis and progression. In this review, we will highlight the key driver oncogenic gene mutations and fusions identified in lung cancer. The review will summarize and report the available demographic and clinicopathological data as well as molecular details behind various lung cancer gene alterations in the context of race. We hope to shed some light into the disparities in the incidence of various genetic mutations among lung cancer patients of different racial backgrounds. As molecularly targeted therapy continues to advance in lung cancer, racial differences in specific genetic/genomic alterations can have an important impact in the choices of therapeutics and in our understanding of the drug sensitivity/resistance profile. The most relevant genes in lung cancer described in this review include the following: EGFR, KRAS, MET, LKB1, BRAF, PIK3CA, ALK, RET, and ROS1. Commonly identified genetic/genomic alterations such as missense or nonsense mutations, small insertions or deletions, alternative splicing, and chromosomal fusion rearrangements were discussed. Relevance in current targeted therapeutic drugs was mentioned when appropriate. We also highlighted various targeted therapeutics that are currently under clinical development, such as the MET inhibitors and antibodies. With the advent of next-generation sequencing, the landscape of genomic alterations in lung cancer is expected to be much transformed and detailed in upcoming years. These genomic landscape differences in the context of racial disparities should be emphasized both in tumorigenesis and in drug

  13. Interplay between the lung microbiome and lung cancer.

    PubMed

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Imaging Axl expression in pancreatic and prostate cancer xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmagadda, Sridhar, E-mail: snimmag1@jhmi.edu; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287; Pullambhatla, Mrudula

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeledmore » anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in

  15. American Cancer Society lung cancer screening guidelines.

    PubMed

    Wender, Richard; Fontham, Elizabeth T H; Barrera, Ermilo; Colditz, Graham A; Church, Timothy R; Ettinger, David S; Etzioni, Ruth; Flowers, Christopher R; Gazelle, G Scott; Kelsey, Douglas K; LaMonte, Samuel J; Michaelson, James S; Oeffinger, Kevin C; Shih, Ya-Chen Tina; Sullivan, Daniel C; Travis, William; Walter, Louise; Wolf, Andrew M D; Brawley, Otis W; Smith, Robert A

    2013-01-01

    Findings from the National Cancer Institute's National Lung Screening Trial established that lung cancer mortality in specific high-risk groups can be reduced by annual screening with low-dose computed tomography. These findings indicate that the adoption of lung cancer screening could save many lives. Based on the results of the National Lung Screening Trial, the American Cancer Society is issuing an initial guideline for lung cancer screening. This guideline recommends that clinicians with access to high-volume, high-quality lung cancer screening and treatment centers should initiate a discussion about screening with apparently healthy patients aged 55 years to 74 years who have at least a 30-pack-year smoking history and who currently smoke or have quit within the past 15 years. A process of informed and shared decision-making with a clinician related to the potential benefits, limitations, and harms associated with screening for lung cancer with low-dose computed tomography should occur before any decision is made to initiate lung cancer screening. Smoking cessation counseling remains a high priority for clinical attention in discussions with current smokers, who should be informed of their continuing risk of lung cancer. Screening should not be viewed as an alternative to smoking cessation. Copyright © 2013 American Cancer Society, Inc.

  16. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  17. Phenformin as prophylaxis and therapy in breast cancer xenografts

    PubMed Central

    Appleyard, M V C L; Murray, K E; Coates, P J; Wullschleger, S; Bray, S E; Kernohan, N M; Fleming, S; Alessi, D R; Thompson, A M

    2012-01-01

    Background: Observations that diabetics treated with biguanide drugs have a reduced risk of developing cancer have prompted an enthusiasm for these agents as anti-cancer therapies. We sought to determine the efficacy of the biguanide phenformin in the chemoprophylaxis and in the treatment of oestrogen receptor (ER)-positive MCF7 and receptor triple-negative MDAMB231 xenografts in immunocompromised mice. We also compared the efficacy of phenformin and metformin in the treatment of MDAMB231. Methods: Immunocompromised mice were divided into groups: (1) phenformin administered for 2 weeks prior to cell injection; (2) established tumours treated with phenformin; (3) established tumours treated with metformin (only for MDAMB231 tumours); (4) untreated controls. Post-treatment tumours, liver and spleen were harvested for further analysis. Results: Phenformin significantly inhibited both the development and growth of MCF7 and MDAMB231 tumours, and for MDAMB231 at greater efficacy than metformin without murine toxicity. The number of mitotic figures was significantly fewer in xenografts treated with phenformin compared with controls. Results suggested that the mechanism of action of phenformin in vivo is consistent with AMPK activation. Conclusion: Phenformin has clinical potential as an antineoplastic agent and should be considered for clinical trials both in ER-positive and triple-negative breast cancer. PMID:22361631

  18. Phenformin as prophylaxis and therapy in breast cancer xenografts.

    PubMed

    Appleyard, M V C L; Murray, K E; Coates, P J; Wullschleger, S; Bray, S E; Kernohan, N M; Fleming, S; Alessi, D R; Thompson, A M

    2012-03-13

    Observations that diabetics treated with biguanide drugs have a reduced risk of developing cancer have prompted an enthusiasm for these agents as anti-cancer therapies. We sought to determine the efficacy of the biguanide phenformin in the chemoprophylaxis and in the treatment of oestrogen receptor (ER)-positive MCF7 and receptor triple-negative MDAMB231 xenografts in immunocompromised mice. We also compared the efficacy of phenformin and metformin in the treatment of MDAMB231. Immunocompromised mice were divided into groups: (1) phenformin administered for 2 weeks prior to cell injection; (2) established tumours treated with phenformin; (3) established tumours treated with metformin (only for MDAMB231 tumours); (4) untreated controls. Post-treatment tumours, liver and spleen were harvested for further analysis. Phenformin significantly inhibited both the development and growth of MCF7 and MDAMB231 tumours, and for MDAMB231 at greater efficacy than metformin without murine toxicity. The number of mitotic figures was significantly fewer in xenografts treated with phenformin compared with controls. Results suggested that the mechanism of action of phenformin in vivo is consistent with AMPK activation. Phenformin has clinical potential as an antineoplastic agent and should be considered for clinical trials both in ER-positive and triple-negative breast cancer.

  19. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice

    PubMed Central

    Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R.; Hyder, Salman M

    2010-01-01

    Objective Previous studies showed that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL) and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study since synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Methods Estradiol-supplemented intact and ovariectomized Immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted either simultaneously with estradiol pellets 2-days prior to tumor cell injection (i.e. combined), or 5-days following tumor cell injections (i.e. sequentially). Results Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice and progestins stimulated VEGF elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. Conclusions These observations suggests that women who ingest progestins for HT or oral contraception could be more at risk for developing breast cancer as a result of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting. PMID:20461021

  20. American Cancer Society Lung Cancer Screening Guidelines

    PubMed Central

    Wender, Richard; Fontham, Elizabeth T. H.; Barrera, Ermilo; Colditz, Graham A.; Church, Timothy R.; Ettinger, David S.; Etzioni, Ruth; Flowers, Christopher R.; Gazelle, G. Scott; Kelsey, Douglas K.; LaMonte, Samuel J.; Michaelson, James S.; Oeffinger, Kevin C.; Shih, Ya-Chen Tina; Sullivan, Daniel C.; Travis, William; Walter, Louise; Wolf, Andrew M. D.; Brawley, Otis W.; Smith, Robert A.

    2013-01-01

    Findings from the National Cancer Institute’s National Lung Screening Trial established that lung cancer mortality in specific high-risk groups can be reduced by annual screening with low-dose computed tomography. These findings indicate that the adoption of lung cancer screening could save many lives. Based on the results of the National Lung Screening Trial, the American Cancer Society is issuing an initial guideline for lung cancer screening. This guideline recommends that clinicians with access to high-volume, high-quality lung cancer screening and treatment centers should initiate a discussion about screening with apparently healthy patients aged 55 years to 74 years who have at least a 30-pack-year smoking history and who currently smoke or have quit within the past 15 years. A process of informed and shared decision-making with a clinician related to the potential benefits, limitations, and harms associated with screening for lung cancer with low-dose computed tomography should occur before any decision is made to initiate lung cancer screening. Smoking cessation counseling remains a high priority for clinical attention in discussions with current smokers, who should be informed of their continuing risk of lung cancer. Screening should not be viewed as an alternative to smoking cessation. PMID:23315954

  1. Lung cancer in patients with lung transplants.

    PubMed

    Espinosa, D; Baamonde, C; Illana, J; Arango, E; Carrasco, G; Moreno, P; Algar, F J; Alvarez, A; Cerezo, F; Santos, F; Vaquero, J M; Redel, J; Salvatierra, A

    2012-09-01

    The aim of our study was to describe the incidence of lung cancer in patients after lung transplantation (LT). We performed an observational, retrospective, descriptive study based on data from 340 patients undergoing lung transplantation between October 1993 and December 2010. We collected data about the donors, recipients, intra- and postoperative periods, and survivals. We identified 9 (2.6%) patients who developed lung cancer after LT. Their average age was 56 ± 9.3 years (range, 18-63). All cases were men with 8/9 (88.8%) having received a single lung transplant. All cancers developed in the native lung. The indications for transplantation were: emphysema type chronic obstructive pulmonary disease (COPD; n = 5), idiopathic pulmonary fibrosis (n = 3), or cystic fibrosis (n = 1); 77% of them were former smokers. All of the COPD patient were affected. The interval from transplantation to diagnosis was 53.3 ± 12 months (range 24-86). Survival after cancer diagnosis was 49.3 ± 6.3 (range = 0-180) months. LT was associated with a relatively high incidence of lung cancer, particularly in the native lung. In our series, lung cancer was related more to patients with emphysema-type COPD and a history of smoking. We believe that these patients should be closely followed to establish the diagnosis and apply early treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells

    PubMed Central

    Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I.; Grasmann, Gabriele; Bertsch, Alexandra L.; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L.; Köfeler, Harald C.; Olschewski, Horst; Hrzenjak, Andelko

    2018-01-01

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M (PCK2), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M–dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. PMID:29844165

  3. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    PubMed

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  4. Frequent Infection of Human Cancer Xenografts with Murine Endogenous Retroviruses in Vivo

    PubMed Central

    Naseer, Asif; Terry, Anne; Gilroy, Kathryn; Kilbey, Anna; Watts, Ciorsdaidh; Mackay, Nancy; Bell, Margaret; Mason, Susan; Blyth, Karen; Cameron, Ewan; Neil, James C.

    2015-01-01

    Infection of human cancer xenografts in mice with murine leukemia viruses (MLVs) is a long-standing observation, but the likelihood of infection in vivo and its biological consequences are poorly understood. We therefore conducted a prospective study in commonly used xenograft recipient strains. From BALB/c nude mice engrafted with MCF7 human mammary carcinoma cells, we isolated a virus that was virtually identical to Bxv1, a locus encoding replication-competent xenotropic MLV (XMLV). XMLV was detected in 9/17 (53%) independently isolated explants. XMLV was not found in primary leukemias or in THP1 leukemia cells grown in Bxv1-negative NSG (NOD/SCID/γCnull) mice, although MCF7 explants harbored replication-defective MLV proviruses. To assess the significance of infection for xenograft behavior in vivo, we examined changes in growth and global transcription in MCF7 and the highly susceptible Raji Burkitt lymphoma cell line chronically infected with XMLV. Raji cells showed a stronger transcriptional response that included up-regulation of chemokines and effectors of innate antiviral immunity. In conclusion, the risk of de novo XMLV infection of xenografts is high in Bxv1 positive mice, while infection can have positive or negative effects on xenograft growth potential with significant consequences for interpretation of many xenograft studies. PMID:25912714

  5. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression inmore » lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.« less

  6. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells.

    PubMed

    Pearce, Martin C; Gamble, John T; Kopparapu, Prasad R; O'Donnell, Edmond F; Mueller, Monica J; Jang, Hyo Sang; Greenwood, Julie A; Satterthwait, Arnold C; Tanguay, Robert L; Zhang, Xiao-Kun; Kolluri, Siva Kumar

    2018-05-25

    Resistance to chemotherapy is a major cause of treatment failure and poor overall survival in patients with lung cancer. Identification of molecular targets present in resistant cancer cells is essential for addressing therapeutic resistance and prolonging lung cancer patient survival. Members of the B-cell lymphoma 2 (Bcl-2) family of proteins are associated with chemotherapeutic resistance. In this study, we found that pro-survival protein Bcl-2 is upregulated in paclitaxel resistant cells, potentially contributing to chemotherapy resistance. To exploit the increase in Bcl-2 expression for targeting therapy resistance, we investigated the effects of a peptide derived from the nuclear receptor Nur77 that converts Bcl-2 from an anti-apoptotic protein to a pro-apoptotic protein. The Nur77 derived peptide preferentially induced apoptosis in paclitaxel-resistant cancer cells with high expression of Bcl-2. This peptide also induced apoptosis of multidrug resistant H69AR lung cancer cells that express Bcl-2 and inhibited their growth in 3D spheroids. The Nur77 peptide strongly suppressed the growth of paclitaxel-resistant lung cancer cells in a zebrafish xenograft tumor model. Taken together, our data supports a new strategy for treating lung cancers that acquire resistance to chemotherapy through overexpression of Bcl-2.

  7. Lung cancer-A global perspective.

    PubMed

    McIntyre, Amanda; Ganti, Apar Kishor

    2017-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. While tobacco exposure is responsible for the majority of lung cancers, the incidence of lung cancer in never smokers, especially Asian women, is increasing. There is a global variation in lung cancer biology with EGFR mutations being more common in Asian patients, while Kras mutation is more common in Caucasians. This review will focus on the global variations in lung cancer and its treatment. © 2017 Wiley Periodicals, Inc.

  8. Comprehensive Molecular Profiling of African-American Prostate Cancer to Inform on Prognosis and Disease Biology

    DTIC Science & Technology

    2016-10-01

    prostate cancer through sequencing xenografts and tissue samples. Qualify novel drivers of AR- prostate cancer through in vitro models. Develop novel...ability of RNASEH2A to modulate radio-sensitivity in prostate cancer cell lines and xenograft models. 3: Investigate RNASEH2A as a marker of radio...lung cancer clinical management. List of the Specific Aims: Aim 1: To establish patient-derived xenografts (PDX) models of pre-neoplastic lesions

  9. [Inhibitory effect of nimesulide and oxaliplatin on tumor growth and lymphatic metastasis of transplanted human lung cancer in nude mice].

    PubMed

    Lang, Zhe; Chen, Gang; Wang, Dong-chang

    2012-10-01

    This study was designed to evaluate the inhibitory effect of nimesulide in combination with oxaliplatin on tumor growth, expression of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin, and lymphatic metastasis in lung cancer xenograft in nude mice, and to discuss the possible synergistic effect of nimesulide in combination with oxaliplatin. Human lung cancer A549 cells were injected into BALB/c nude mice subcutaneously. Thirty-three healthy male nude mice were randomly divided into 4 groups: the control group, nimesulide group, oxaliplatin group and nimesulide combined with oxaliplatin group. Transplanted tumor tissues were collected and the expressions of COX-2, VEGF-C, VEGFR-3, survivin, β-catenin protein were detected by immunohistochemistry, and RT-PCR assay was used to assess the expression of tumor COX-2, VEGF-C, VEGFR-3, survivin and β-catenin mRNA. SPSS 16.0 was used for statistical analysis. Data were present as (x(-) ± s), and the means were compared by analysis of variance test. Tumor inhibition rates of the nimesulide group, oxaliplatin group and nimesulide + oxaliplatin group were 39.73%, 48.04% and 65.94%, respectively. Immunohistochemical and RT-PCR analysis showed that compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide group were significantly reduced (all P < 0.05). Compared with the control group, statistical analysis of variance showed that the expression levels of COX-2, VEGF-C and VEGFR-3 of the oxaliplatin group were significantly increased (P < 0.05), the expression levels of survivin and β-catenin protein and mRNA of the oxaliplatin group were significantly reduced (P < 0.05). Compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide + oxaliplatin group were significantly reduced (all P < 0.05). Both nimesulide alone or in combination with oxaliplatin can significantly inhibit the growth of lung cancer

  10. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA.

    PubMed

    Lysov, Zakhar; Dwivedi, Dhruva J; Gould, Travis J; Liaw, Patricia C

    2017-01-01

    Lung cancer is the second leading type of cancer, with venous thromboembolism being the second leading cause of death. Studies have shown increased levels of microparticles and cell-free DNA (CFDNA) in cancer patients, which can activate coagulation through extrinsic and intrinsic pathways, respectively. However, the impact of lung cancer chemotherapy on microparticle and/or CFDNA generation is not completely understood. The aim of the study was to study the effects of platinum-based chemotherapeutic agents on generation of procoagulant microparticles and CFDNA in vitro and in vivo. Microparticles were isolated from chemotherapy-treated monocytes, human umbilical vein endothelial cells, or cancer cells. Tissue factor (TF) and phosphatidylserine levels were characterized and thrombin/factor Xa generation assays were used to determine microparticle procoagulant activity. CFDNA levels were isolated from cell supernatants and plasma. A murine xenograft model of human lung carcinoma was used to study the procoagulant effects of TF microparticles and CFDNA in vivo. In vitro, platinum-based chemotherapy induced TF/phosphatidylserine microparticle shedding from A549 and A427 lung cancers cells, which enhanced thrombin generation in plasma in a FVII-dependent manner. CFDNA levels were increased in supernatants of chemotherapy-treated neutrophils and plasma of chemotherapy-treated mice. TF microparticles were elevated in plasma of chemotherapy-treated tumour-bearing mice. Plasma CFDNA levels are increased in chemotherapy-treated tumour-free mice and correlate with increased thrombin generation. In tumour-bearing mice, chemotherapy increases plasma levels of CFDNA and TF/phosphatidylserine microparticles. Platinum-based chemotherapy induces the shedding of TF/phosphatidylserine microparticles from tumour cells and the release of CFDNA from host neutrophils.

  11. Lung cancer mimicking lung abscess formation on CT images.

    PubMed

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  12. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells.

    PubMed

    Leithner, Katharina; Triebl, Alexander; Trötzmüller, Martin; Hinteregger, Barbara; Leko, Petra; Wieser, Beatrix I; Grasmann, Gabriele; Bertsch, Alexandra L; Züllig, Thomas; Stacher, Elvira; Valli, Alessandro; Prassl, Ruth; Olschewski, Andrea; Harris, Adrian L; Köfeler, Harald C; Olschewski, Horst; Hrzenjak, Andelko

    2018-06-12

    Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic biosynthetic pathways. However, blood perfusion and consequently the supply with glucose are frequently inadequate in solid cancers. PEPCK-M ( PCK2 ), the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK), has been shown by us and others to be functionally expressed and to mediate gluconeogenesis, the reverse pathway of glycolysis, in different cancer cells. Serine and ribose synthesis have been identified as downstream pathways fed by PEPCK in cancer cells. Here, we report that PEPCK-M-dependent glycerol phosphate formation from noncarbohydrate precursors (glyceroneogenesis) occurs in starved lung cancer cells and supports de novo glycerophospholipid synthesis. Using stable isotope-labeled glutamine and lactate, we show that PEPCK-M generates phosphoenolpyruvate and 3-phosphoglycerate, which are at least partially converted to glycerol phosphate and incorporated into glycerophospholipids (GPL) under glucose and serum starvation. This pathway is required to maintain levels of GPL, especially phosphatidylethanolamine (PE), as shown by stable shRNA-mediated silencing of PEPCK-M in H23 lung cancer cells. PEPCK-M shRNA led to reduced colony formation after starvation, and the effect was partially reversed by the addition of dioleyl-PE. Furthermore, PEPCK-M silencing abrogated cancer growth in a lung cancer cell xenograft model. In conclusion, glycerol phosphate formation for de novo GPL synthesis via glyceroneogenesis is a newly characterized anabolic pathway in cancer cells mediated by PEPCK-M under conditions of severe nutrient deprivation. Copyright © 2018 the Author(s). Published by PNAS.

  13. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer.

    PubMed

    Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi

    2013-01-01

    Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.

  14. Lung Cancer Screening.

    PubMed

    Hoffman, Richard M; Sanchez, Rolando

    2017-07-01

    Lung cancer is the leading cause of cancer death in the United States. More than 80% of these deaths are attributed to tobacco use, and primary prevention can effectively reduce the cancer burden. The National Lung Screening Trial showed that low-dose computed tomography (LDCT) screening could reduce lung cancer mortality in high-risk patients by 20% compared with chest radiography. The US Preventive Services Task Force recommends annual LDCT screening for persons aged 55 to 80 years with a 30-pack-year smoking history, either currently smoking or having quit within 15 years. Published by Elsevier Inc.

  15. Lung Cancer and Lung Transplantation.

    PubMed

    Brand, Timothy; Haithcock, Benjamin

    2018-02-01

    Lung transplantation remains a viable option for patients with endstage pulmonary disease. Despite removing the affected organ and replacing both lungs, the risk of lung malignancies still exists. Regardless of the mode of entry, lung cancer affects the prognosis in these patients and diligence is required. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lung Cancer: Glossary

    MedlinePlus

    ... effects of radiation therapy Randomized Clinical Trial: Trial design in which participants are assigned by chance to ... effect caused by treatment. Small Cell Lung Cancer: One of the two main categories of lung cancer; ...

  17. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  18. Analysis of MUC4 expression in human pancreatic cancer xenografts in immunodeficient mice.

    PubMed

    Ansari, Daniel; Bauden, Monika P; Sasor, Agata; Gundewar, Chinmay; Andersson, Roland

    2014-08-01

    Mucin 4 (MUC4) is a cell surface glycoprotein that is overexpressed in most pancreatic tumors. The aim of the present study was to characterize MUC4 expression in experimental pancreatic cancer in order to clarify the correlation between MUC4 and pancreatic cancer histology in vivo. Pancreatic xenograft tumors were generated in immunodeficient mice (n=15) by subcutaneous injection of MUC4(+) human pancreatic cancer cell lines Capan-1, HPAF-II or CD18/HPAF. MUC4 immunoreactivity was compared between the cancer models. Alpha-smooth muscle actin (α-SMA) was used to identify cancer-associated fibroblasts and the amount of collagen fibers was quantified with sirius red. Tumor incidence was 100%. Tumor size showed no difference across groups (p=0.796). The median MUC4 count was highest in Capan-1 tumors (p=0.002). α-SMA and collagen extent were also highest in Capan-1 tumors (p=0.018). The Capan-1 xenograft model could serve as a valuable resource to test new therapeutic strategies targeting MUC4 in pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines.

    PubMed

    Guo, Sheng; Qian, Wubin; Cai, Jie; Zhang, Likun; Wery, Jean-Pierre; Li, Qi-Xiang

    2016-08-15

    The Cancer Genome Atlas (TCGA) project has generated abundant genomic data for human cancers of various histopathology types and enabled exploring cancer molecular pathology per big data approach. We developed a new algorithm based on most differentially expressed genes (DEG) per pairwise comparisons to calculate correlation coefficients to be used to quantify similarity within and between cancer types. We systematically compared TCGA cancers, demonstrating high correlation within types and low correlation between types, thus establishing molecular specificity of cancer types and an alternative diagnostic method largely equivalent to histopathology. Different coefficients for different cancers in study may reveal that the degree of the within-type homogeneity varies by cancer types. We also performed the same calculation using the TCGA-derived DEGs on patient-derived xenografts (PDX) of different histopathology types corresponding to the TCGA types, as well as on cancer cell lines. We, for the first time, demonstrated highly similar patterns for within- and between-type correlation between PDXs and patient samples in a systematic study, confirming the high relevance of PDXs as surrogate experimental models for human diseases. In contrast, cancer cell lines have drastically reduced expression similarity to both PDXs and patient samples. The studies also revealed high similarity between some types, for example, LUSC and HNSCC, but low similarity between certain subtypes, for example, LUAD and LUSC. Our newly developed algorithm seems to be a practical diagnostic method to classify and reclassify a disease, either human or xenograft, with better accuracy than traditional histopathology. Cancer Res; 76(16); 4619-26. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model.

    PubMed

    John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert

    2017-02-01

    The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.

  1. Targeted Drug and Gene Delivery Systems for Lung Cancer Therapy

    PubMed Central

    Sundaram, Sneha; Trivedi, Ruchit; Durairaj, Chandrasekar; Ramesh, Rajagopal; Ambati, Balamurali K.; Kompella, Uday B.

    2009-01-01

    Purpose To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, and its combination in-vivo with RGD peptide conjugated nanoparticles encapsulating an anti-angiogenic, anti-VEGF intraceptor (Flt23k) (RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. Experimental Design The in-vitro and in-vivo efficacy of the deslorelin-docetaxel conjugate (D-D) was evaluated in H1299 cells and xenografts in athymic nude mice. Co-administration of D-D and RGD-Flt23k-NP was tested in-vivo in mice. Tumor inhibition, apoptosis and VEGF inhibition were estimated in each of the treatment groups. Results The conjugate enhanced in-vitro docetaxel efficacy by 13-fold in H1299 cells compared to docetaxel at 24h, and this effect was inhibited following reduction of LHRH-receptor expression by an antisense oligonucleotide. Combination of the conjugate with the RGD-Flt23k-NP in-vivo resulted in an 82- and 15-fold tumor growth inhibition on day 39 following repeated weekly intravenous injections and a single intratumoral injection, respectively. These effects were significantly greater than individual targeted therapies or docetaxel alone. Similarly, apoptotic indices for the combination therapy were 14 and 10% in the intravenous and intratumoral groups, respectively, and higher than the individual therapies. Combination therapy groups exhibited greater VEGF inhibition in both the intravenous and intratumoral groups. Conclusions Docetaxel efficacy was enhanced by LHRH-receptor targeted deslorelin conjugate and further improved by combination with targeted anti-angiogenic nanoparticle gene therapy. Combination of novel targeted therapeutic approaches described here provides an attractive alternative to the current treatment options for lung cancer therapy. PMID:19920099

  2. Targeted radionuclide therapy for lung cancer with iodine-131-labeled peptide in a nude-mouse model.

    PubMed

    Chen, Zhenzhu; Gao, Hongyi; Li, Man; Fang, Shun; Li, Guiping; Guo, Linlang

    2017-06-01

    Integrin α3β1 has been shown to be a novel candidate target for the imaging and specific therapy of non-small-cell lung cancer. We have previously reported on a peptide containing a novel motif of NGXG that specifically binds to the integrin α3 receptor on lung cancer cells using a one-bead one-peptide combinatorial library. In this study, we developed the peptide cNGEGQQc-based therapeutic agent labeling with radionuclide iodine-131 (I) and evaluated its characteristics including stability, biodistribution, antitumor activity, and safety. The results showed that I-cNGEGQQc was stable in serum. Furthermore, the biodistribution of I-cNGEGQQc was determined in normal mice and rabbits. In-vivo biodistribution studies showed that radiolabeled peptide in the kidney was significantly higher than that in other organs. Nude mice bearing lung cancer cell xenografts (H1975 and L78) were used as an in-vivo model for tumor-inhibition efficacy studies with I-cNGEGQQc. The tumor growth decreased significantly in mice receiving I-labeled peptide compared with the controls and the effect of I-labeled peptide can be blocked by unlabeled cNGEGQQc. Safety studies showed that I-cNGEGQQc was relatively safe for animals without significant toxicity. Our data suggest that I-cNGEGQQc has potential as a targeted radiotherapeutic agent for non-small-cell lung cancer.

  3. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a

  4. Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer.

    PubMed

    Sharma, Sai Kiran; Pourat, Jacob; Abdel-Atti, Dalya; Carlin, Sean D; Piersigilli, Alessandra; Bankovich, Alexander J; Gardner, Eric E; Hamdy, Omar; Isse, Kumiko; Bheddah, Sheila; Sandoval, Joseph; Cunanan, Kristen M; Johansen, Eric B; Allaj, Viola; Sisodiya, Vikram; Liu, David; Zeglis, Brian M; Rudin, Charles M; Dylla, Scott J; Poirier, John T; Lewis, Jason S

    2017-07-15

    The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89 Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89 Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Mutational analysis of multiple lung cancers: Discrimination between primary and metastatic lung cancers by genomic profile.

    PubMed

    Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao

    2017-05-09

    In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.

  6. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models.

    PubMed

    Nascimento, Ana Vanessa; Gattacceca, Florence; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2016-04-01

    The present study focuses on biodistribution profile and pharmacokinetic parameters of EGFR-targeted chitosan nanoparticles (TG CS nanoparticles) for siRNA/cisplatin combination therapy of lung cancer. Mad2 siRNA was encapsulated in EGFR targeted and nontargeted (NTG) CS nanoparticles by electrostatic interaction. The biodistribution of the nanoparticles was assessed qualitatively and quantitatively in cisplatin (DDP) sensitive and resistant lung cancer xenograft model. TG nanoparticles showed a consistent and preferential tumor targeting ability with rapid clearance from the plasma to infiltrate and sustain within the tumor up to 96 h. They exhibit a sixfold higher tumor targeting efficiency compared with the NTG nanoparticles. TG nanoparticles present as an attractive drug delivery platform for RNAi therapeutics against NSCLC.

  7. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    PubMed Central

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  8. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer.

    PubMed

    Turner, Tia H; Alzubi, Mohammad A; Sohal, Sahib S; Olex, Amy L; Dozmorov, Mikhail G; Harrell, J Chuck

    2018-03-12

    Basal-like breast cancers are aggressive and often metastasize to vital organs. Treatment is largely limited to chemotherapy. This study aims to characterize the efficacy of cancer therapeutics in vitro and in vivo within the primary tumor and metastatic setting, using patient-derived xenograft (PDX) models. We employed two basal-like, triple-negative PDX models, WHIM2 and WHIM30. PDX cells, obtained from mammary tumors grown in mice, were treated with twelve cancer therapeutics to evaluate their cytotoxicity in vitro. Four of the effective drugs-carboplatin, cyclophosphamide, bortezomib, and dacarbazine-were tested in vivo for their efficacy in treating mammary tumors, and metastases generated by intracardiac injection of tumor cells. RNA sequencing showed that global gene expression of PDX cells grown in the mammary gland was similar to those tested in culture. In vitro, carboplatin was cytotoxic to WHIM30 but not WHIM2, whereas bortezomib, dacarbazine, and cyclophosphamide were cytotoxic to both lines. Yet, these drugs were ineffective in treating both primary and metastatic WHIM2 tumors in vivo. Carboplatin and cyclophosphamide were effective in treating WHIM30 mammary tumors and reducing metastatic burden in the brain, liver, and lungs. WHIM2 and WHIM30 metastases showed distinct patterns of cytokeratin and vimentin expression, regardless of treatment, suggesting that different tumor cell subpopulations may preferentially seed in different organs. This study highlights the utility of PDX models for studying the efficacy of therapeutics in reducing metastatic burden in specific organs. The differential treatment responses between two PDX models of the same intrinsic subtype, in both the primary and metastatic setting, recapitulates the challenges faced in treating cancer patients and highlights the need for combination therapies and predictive biomarkers.

  9. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in

  10. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells.

    PubMed

    Dong, Naiwei; Liu, Xin; Zhao, Tong; Wang, Lei; Li, Huimin; Zhang, Shuqian; Li, Xia; Bai, Xue; Zhang, Yong; Yang, Baofeng

    2018-05-29

    Apoptosis is an important biological phenomenon, which affects many diseases, such as cancer and Alzheimer's disease. In the present study, we observed that chalcone 9X, an aromatic ketone, induced apoptosis of human hepatic and lung cancer cells and inhibited cancer cell migration and invasion. This compound strongly suppressed the growth of tumor in a mouse model of xenograft tumors. The anticancer activity of chalcone 9X was equivalent to 5-fluorouracil (5-FU) as a positive control agent, whereas the toxic effect of chalcone 9X in non-cancer cells was weaker than 5-FU. Molecular docking results showed that chalcone 9X could act on the active sites of pro-apoptotic proteins capspases-3 and -8 to induce apoptotic death of cancer cells. Our findings suggest that chalcone 9X might be considered a candidate compound of novel anticancer drug in the future. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. | Office of Cancer Genomics

    Cancer.gov

    Mutations in the SMARCA4/BRG1 gene resulting in complete loss of its protein (BRG1) occur frequently in non-small cell lung cancer (NSCLC) cells. Currently, no single therapeutic agent has been identified as synthetically lethal with SMARCA4/BRG1 loss. We identify AURKA activity as essential in NSCLC cells lacking SMARCA4/BRG1. In these cells, RNAi-mediated depletion or chemical inhibition of AURKA induces apoptosis and cell death in vitro and in xenograft mouse models.

  12. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Deok Hyo; Lim, Mi-Hee; Lee, Yu Ran

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC{sub 50} of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation,more » sub-G{sub 0}/G{sub 1}-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was

  13. SOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition

    PubMed Central

    Chen, Xin; Fu, Yufei; Xu, Hongfei; Teng, Peng; Xie, Qiong; Zhang, Yiran; Yan, Caochong; Xu, Yiqiao; Li, Chunqi; Zhou, Jianying; Ni, Yiming; Li, Weidong

    2018-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients’ poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease. PMID:29541384

  14. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  15. FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway.

    PubMed

    Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun

    2016-03-22

    Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.

  16. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice

    PubMed Central

    ZHU, BINGYAN; SHANG, BOYANG; LI, YI; ZHEN, YONGSU

    2016-01-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe-derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl-H3 and acetyl-H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl-2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA-induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well-tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in cancer cells. As

  17. Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts.

    PubMed

    Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2013-03-01

    Smoking is an established risk factor for pancreatic cancer and nicotine replacement therapy (NRT) often accompanies chemotherapy. The current study has tested the hypothesis that chronic exposure to low dose nicotine reduces the responsiveness of pancreatic cancer to the leading therapeutic for this cancer, gemcitabine. The effects of chronic nicotine (1 μm/L) on two pancreatic cancer cell lines in vitro and in a xenograft model were assessed by immunoassays, Western blots and cell proliferation assays. Exposure in vitro to nicotine for 7 days inhibited the gemcitabine-induced reduction in viable cells, gemcitabine-induced apoptosis as indicated by reduced expression of cleaved caspase-3 while inducing the phosphorylation of signalling proteins extracellular signal-regulated kinase (ERK), v-akt thymoma viral oncogene homolog (protein kinase B, AKT) and Src. Nicotine (1 μm/L) in the drinking water for 4 weeks significantly reduced the therapeutic response of mouse xenografts to gemcitabine while reducing the induction of cleaved caspase-3 and the inhibition of phosphorylated forms of multiple signalling proteins by gemcitabine in xenograft tissues. Our experimental data suggest that continued moderate smoking and NRT may negatively impact therapeutic outcomes of gemcitabine on pancreatic cancer and that clinical studies in cancer patients are now warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Volume of Three-Dimensional Cultures of Cancer Cells InVitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors.

    PubMed

    Boghaert, Erwin R; Lu, Xin; Hessler, Paul E; McGonigal, Thomas P; Oleksijew, Anatol; Mitten, Michael J; Foster-Duke, Kelly; Hickson, Jonathan A; Santo, Vitor E; Brito, Catarina; Uziel, Tamar; Vaidya, Kedar S

    2017-09-01

    Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of

  19. Lung cancer: biology and treatment options

    PubMed Central

    Hassan, Omer; Yang, Yi-Wei; Buchanan, Petra

    2015-01-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLC) and non-small cell lung carcinomas (NSCLC). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  20. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.

  1. Lung cancer risk from radon in Ontario, Canada: how many lung cancers can we prevent?

    PubMed

    Peterson, Emily; Aker, Amira; Kim, JinHee; Li, Ye; Brand, Kevin; Copes, Ray

    2013-11-01

    To calculate the burden of lung cancer illness due to radon for all thirty-six health units in Ontario and determine the number of radon-attributable lung cancer deaths that could be prevented. We calculated the population attributable risk percent, excess life-time risk ratio, life-years lost, the number of lung cancer deaths due to radon, and the number of deaths that could be prevented if all homes above various cut-points were effectively reduced to background levels. It is estimated that 13.6 % (95 % CI 11.0, 16.7) of lung cancer deaths in Ontario are attributable to radon, corresponding to 847 (95 % CI 686, 1,039) lung cancer deaths each year, approximately 84 % of these in ever-smokers. If all homes above 200 Bq/m(3), the current Canadian guideline, were remediated to background levels, it is estimated that 91 lung cancer deaths could be prevented each year, 233 if remediation was performed at 100 Bq/m(3). There was important variation across health units. Radon is an important contributor to lung cancer deaths in Ontario. A large portion of radon-attributable lung cancer deaths are from exposures below the current Canadian guideline, suggesting interventions that install effective radon-preventive measures into buildings at build may be a good alternative population prevention strategy to testing and remediation. For some health units, testing and remediation may also prevent a portion of radon-related lung cancer deaths. Regional attributable risk estimates can help with local public health resource allocation and decision making.

  2. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging.

    PubMed

    Price, Dominique N; McBride, Amber A; Anton, Martina; Kusewitt, Donna F; Norenberg, Jeffrey P; MacKenzie, Debra A; Thompson, Todd A; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.

  3. Longitudinal Assessment of Lung Cancer Progression in Mice Using the Sodium Iodide Symporter Reporter Gene and SPECT/CT Imaging

    PubMed Central

    Anton, Martina; Kusewitt, Donna F.; Norenberg, Jeffrey P.; MacKenzie, Debra A.; Thompson, Todd A.; Muttil, Pavan

    2016-01-01

    Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models. PMID:28036366

  4. Lung cancer in younger patients.

    PubMed

    Abbasowa, Leda; Madsen, Poul Henning

    2016-07-01

    Lung cancer remains a leading cause of cancer-related death. The incidence increases with age and the occurrence in young patients is relatively low. The clinicopathological features of lung cancer in younger patients have not been fully explored previously. To assess the age differences in the clinical characteristics of lung cancer, we conducted a retrospective analysis comparing young patients ≤ 65 years of age with an elderly group > 65 years of age. Among 1,232 patients evaluated due to suspicion of lung cancer in our fast-track setting from January-December 2013, 312 newly diagnosed lung cancer patients were included. Patients ≤ 65 years had a significantly higher representation of females (p = 0.0021), more frequent familial cancer aggregation (p = 0.028) and a lower incidence of squamous cell carcinoma (p = 0.0133). When excluding pure carcinoid tumours, a significantly higher proportion of the younger patients presented with advanced stage disease (p = 0.0392). Combined modality therapy was more common in younger patients (p = 0.0009), while chemotherapy appeared less prevalent among the elderly (p = 0.0015). Lung cancer in younger patients comprises a distinct clinicopathological entity with more frequent advanced stage disease and a significantly greater proportion with a family history of cancer. Implementing genetic background assessments and considering lung cancer as a possible diagnosis in younger, symptomatic patients, is of paramount importance. none. The study was approved by the -Danish Data Protection Agency.

  5. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo.

    PubMed

    Cathcart, Mary-Clare; Useckaite, Zivile; Drakeford, Clive; Semik, Vikki; Lysaght, Joanne; Gately, Kathy; O'Byrne, Kenneth J; Pidgeon, Graham P

    2016-09-01

    Baicalein is a widely used Chinese herbal medicine derived from Scutellaria baicalenesis, which has been traditionally used as anti-inflammatory and anti-cancer therapy. In this study we examined the anti-tumour pathways activated following baicalein treatment in non-small cell lung cancer (NSCLC), both in-vitro and in-vivo. The effect of baicalein treatment on H-460 cells in-vitro was assessed using both BrdU assay (cell proliferation) and High Content Screening (multi-parameter apoptosis assay). A xenograft nude mouse model was subsequently established using these cells and the effect of baicalein on tumour growth and survival assessed in-vivo. Tumours were harvested from these mice and histological tissue analysis carried out. VEGF, 12-lipoxygenase and microvessel density (CD-31) were assessed by immunohistochemistry (IHC), while H and E staining was carried out to assess mitotic index. Gene expression profiling was carried out on corresponding RNA samples using Human Cancer Pathway Finder Arrays and qRT-PCR, with further gene expression analysis carried out using qRT-PCR. Baicalein significantly decreased lung cancer proliferation in H-460 cells in a dose dependent manner. At the functional level, a dose-dependent induction in apoptosis associated with decreased cellular f-actin content, an increase in nuclear condensation and an increase in mitochondrial mass potential was observed. Orthotopic treatment of experimental H-460 tumours in athymic nude mice with baicalein significantly (p < 0.05) reduced tumour growth and prolonged survival. Histological analysis of resulting tumour xenografts demonstrated reduced expression of both 12-lipoxygenase and VEGF proteins in baicalein-treated tumours, relative to untreated. A significant (p < 0.01) reduction in both mitotic index and micro-vessel density was observed following baicalein treatment. Gene expression profiling revealed a reduction (p < 0.01) in both VEGF and FGFR-2 following baicalein treatment

  6. Lung cancer in persons with HIV.

    PubMed

    Sigel, Keith; Makinson, Alain; Thaler, Jonathan

    2017-01-01

    Lung cancer is emerging as a leading cause of death in HIV-infected persons. This review will discuss the latest scientific evidence regarding the mechanisms driving lung cancer risk in HIV infection, the clinical presentation of lung cancer in HIV-infected persons and recent data regarding the outcomes, treatment and prevention of lung cancer in this group. Increased risk of lung cancer in HIV-infected persons is primarily due to higher smoking rates, but emerging evidence also implicates immunosuppression and inflammatory processes. Lung cancer outcomes may be worse in HIV-infected persons in the antiretroviral era, but this may stem, in part, from treatment disparities. Early detection of lung cancer using chest computed tomography (CT) is being increasingly adopted for smokers in the general population, and recent studies suggest that it may be safe and efficacious in HIV-infected smokers. Lung cancer is an important complication associated with chronic HIV infection. It is associated with unique HIV-related causal mechanisms, and may be associated with worse outcomes in some HIV-infected persons. Smoking cessation and early cancer detection with chest CT are likely to benefit HIV-infected smokers.

  7. Scientific Advances in Lung Cancer 2015.

    PubMed

    Tsao, Anne S; Scagliotti, Giorgio V; Bunn, Paul A; Carbone, David P; Warren, Graham W; Bai, Chunxue; de Koning, Harry J; Yousaf-Khan, A Uraujh; McWilliams, Annette; Tsao, Ming Sound; Adusumilli, Prasad S; Rami-Porta, Ramón; Asamura, Hisao; Van Schil, Paul E; Darling, Gail E; Ramalingam, Suresh S; Gomez, Daniel R; Rosenzweig, Kenneth E; Zimmermann, Stefan; Peters, Solange; Ignatius Ou, Sai-Hong; Reungwetwattana, Thanyanan; Jänne, Pasi A; Mok, Tony S; Wakelee, Heather A; Pirker, Robert; Mazières, Julien; Brahmer, Julie R; Zhou, Yang; Herbst, Roy S; Papadimitrakopoulou, Vassiliki A; Redman, Mary W; Wynes, Murry W; Gandara, David R; Kelly, Ronan J; Hirsch, Fred R; Pass, Harvey I

    2016-05-01

    Lung cancer continues to be a major global health problem; the disease is diagnosed in more than 1.6 million new patients each year. However, significant progress is underway in both the prevention and treatment of lung cancer. Lung cancer therapy has now emerged as a "role model" for precision cancer medicine, with several important therapeutic breakthroughs occurring during 2015. These advances have occurred primarily in the immunotherapy field and in treatments directed against tumors harboring specific oncogenic drivers. Our knowledge about molecular mechanisms for oncogene-driven tumors and about resistance to targeted therapies has increased quickly over the past year. As a result, several regulatory approvals of new agents that significantly improve survival and quality of life for patients with lung cancer who have advanced disease have occurred. The International Association for the Study of Lung Cancer has gathered experts in different areas of lung cancer research and management to summarize the most significant scientific advancements related to prevention and therapy of lung cancer during the past year. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model.

    PubMed

    Drabsch, Yvette; He, Shuning; Zhang, Long; Snaar-Jagalska, B Ewa; ten Dijke, Peter

    2013-11-07

    The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells. We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells. The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.

  9. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and

  10. Screening for Lung Cancer

    PubMed Central

    Mazzone, Peter J.; Naidich, David P.; Bach, Peter B.

    2013-01-01

    Background: Lung cancer is by far the major cause of cancer deaths largely because in the majority of patients it is at an advanced stage at the time it is discovered, when curative treatment is no longer feasible. This article examines the data regarding the ability of screening to decrease the number of lung cancer deaths. Methods: A systematic review was conducted of controlled studies that address the effectiveness of methods of screening for lung cancer. Results: Several large randomized controlled trials (RCTs), including a recent one, have demonstrated that screening for lung cancer using a chest radiograph does not reduce the number of deaths from lung cancer. One large RCT involving low-dose CT (LDCT) screening demonstrated a significant reduction in lung cancer deaths, with few harms to individuals at elevated risk when done in the context of a structured program of selection, screening, evaluation, and management of the relatively high number of benign abnormalities. Whether other RCTs involving LDCT screening are consistent is unclear because data are limited or not yet mature. Conclusions: Screening is a complex interplay of selection (a population with sufficient risk and few serious comorbidities), the value of the screening test, the interval between screening tests, the availability of effective treatment, the risk of complications or harms as a result of screening, and the degree with which the screened individuals comply with screening and treatment recommendations. Screening with LDCT of appropriate individuals in the context of a structured process is associated with a significant reduction in the number of lung cancer deaths in the screened population. Given the complex interplay of factors inherent in screening, many questions remain on how to effectively implement screening on a broader scale. PMID:23649455

  11. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism

    PubMed Central

    Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke

    2017-01-01

    Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory

  12. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis.

    PubMed

    Leconet, Wilhem; Chentouf, Myriam; du Manoir, Stanislas; Chevalier, Clément; Sirvent, Audrey; Aït-Arsa, Imade; Busson, Muriel; Jarlier, Marta; Radosevic-Robin, Nina; Theillet, Charles; Chalbos, Dany; Pasquet, Jean-Max; Pèlegrin, André; Larbouret, Christel; Robert, Bruno

    2017-06-01

    Purpose: AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC). Experimental Design: We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with AXL expression are enriched in EMT, migration, and invasion signaling pathways. Results: Treatment with 20G7-D9 inhibited tumor growth and bone metastasis formation in AXL-positive TNBC cell xenografts or PDX, but not in AXL-negative PDX, highlighting AXL role in cancer growth and invasion. In vitro stimulation of AXL-positive cancer cells by its ligand GAS6 induced the expression of several EMT-associated genes ( SNAIL, SLUG , and VIM ) through an intracellular signaling implicating the transcription factor FRA-1, important in cell invasion and plasticity, and increased their migration/invasion capacity. 20G7-D9 induced AXL degradation and inhibited all AXL/GAS6-dependent cell signaling implicated in EMT and in cell migration/invasion. Conclusions: The anti-AXL antibody 20G7-D9 represents a promising therapeutic strategy in TNBC with mesenchymal features by inhibiting AXL-dependent EMT, tumor growth, and metastasis formation. Clin Cancer Res; 23(11); 2806-16. ©2016 AACR . ©2016 American Association for Cancer Research.

  13. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.

    PubMed

    Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun

    2012-12-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.

  15. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3–72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis

    PubMed Central

    Khan, Muhammad Noman; Wang, Bing; Wei, Jing; Zhang, Yingqiu; Li, Qiang; Luan, Xuelin; Cheng, Jya-Wei; Gordon, John R.; Li, Fang; Liu, Han

    2015-01-01

    CXCR1 and CXCR2 together with cognate chemokines are significantly upregulated in a number of cancers, where they act as key regulators of tumor cell proliferation, metastasis, and angiogenesis. We have previously reported a mutant protein of CXCL8/Interleukin-8, CXCL8(3–72)K11R/G31P (G31P), which can act as a selective antagonist towards CXCR1/2 with therapeutic efficacy in both inflammatory diseases and malignancies. In this study, we investigated the effect of this ELR-CXC chemokine antagonist G31P on human non-small cell lung cancer cells and lung tumor progression in an orthotopic xenograft model. We report increased mRNA levels of CXCR1 and CXCR2 in human lung cancer tissues compared to normal counterparts. Expression levels of CXCR1/2 cognate ligands was determined by ELISA. CXCR1/2 receptor antagonism via G31P leads to decreased H460 and A549 cell proliferation and migration in a dose-dependent manner. G31P also enhanced apoptosis in lung cancer cells as determined by elevated levels of cleaved PARP, Caspase-8, and Bax, together with a reduced expression of the anti-apoptotic protein Bcl-2. In an in vivo orthotopic xenograft mouse model of human lung cancer, G31P treatment suppressed tumor growth, metastasis, and angiogenesis. At the molecular level, G31P treatment was correlated with decreased expression of VEGF and NFкB-p65, in addition to reduced phosphorylation of ERK1/2 and AKT. Our results suggest that G31P blockage of CXCR1 and CXCR2 can inhibit human lung cancer cell growth and metastasis, which offers potential therapeutic opportunities. PMID:26087179

  16. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  17. Meta-markers for the differential diagnosis of lung cancer and lung disease.

    PubMed

    Kim, Yong-In; Ahn, Jung-Mo; Sung, Hye-Jin; Na, Sang-Su; Hwang, Jaesung; Kim, Yongdai; Cho, Je-Yoel

    2016-10-04

    Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients. Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Pain management in lung cancer.

    PubMed

    Nurwidya, Fariz; Syahruddin, Elisna; Yunus, Faisal

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Not only burdened by the limited overall survival, lung cancer patient also suffer from various symptoms, such as pain, that implicated in the quality of life. Cancer pain is a complicated and transiently dynamic symptom that results from multiple mechanisms. This review will describe the pathophysiology of cancer pain and general approach in managing a patient with lung cancer pain. The use of opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), and adjuvant analgesia, as part of the pharmacology therapy along with interventional strategy, will also be discussed.

  19. Lung Cancer Trends

    MedlinePlus

    ... the Biggest Cancer Killer in Both Men and Women” Stay Informed Trends for Other Kinds of Cancer Breast Cervical Colorectal (Colon) Ovarian Prostate Skin Cancer Home Lung Cancer Trends Language: English Español (Spanish) Recommend ...

  20. Curbing the burden of lung cancer.

    PubMed

    Urman, Alexandra; Hosgood, H Dean

    2016-06-01

    Lung cancer contributes substantially to the global burden of disease and healthcare costs. New screening modalities using low-dose computerized tomography are promising tools for early detection leading to curative surgery. However, the screening and follow-up diagnostic procedures of these techniques may be costly. Focusing on prevention is an important factor to reduce the burden of screening, treatment, and lung cancer deaths. The International Agency for Research on Cancer has identified several lung carcinogens, which we believe can be considered actionable when developing prevention strategies. To curb the societal burden of lung cancer, healthcare resources need to be focused on early detection and screening and on mitigating exposure(s) of a person to known lung carcinogens, such as active tobacco smoking, household air pollution (HAP), and outdoor air pollution. Evidence has also suggested that these known lung carcinogens may be associated with genetic predispositions, supporting the hypothesis that lung cancers attributed to differing exposures may have developed from unique underlying genetic mechanisms attributed to the exposure of interest. For instance, smokingattributed lung cancer involves novel genetic markers of risk compared with HAP-attributed lung cancer. Therefore, genetic risk markers may be used in risk stratification to identify subpopulations that are at a higher risk for developing lung cancer attributed to a given exposure. Such targeted prevention strategies suggest that precision prevention strategies may be possible in the future; however, much work is needed to determine whether these strategies will be viable.

  1. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-28

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  2. [Current treatment concepts of lung cancer].

    PubMed

    Kaiser, F; Engelhardt, M; Rawluk, J; Mertelsmann, R; Passlick, B; Wäsch, R

    2011-09-01

    Lung cancer occurs with a median age of 69 years. The main cause is cigarette smoking. For both genders lung cancer is the third-most frequent tumor in Germany. While in an operable tumor stage 30-80% of the patients can reach long-term survival, the prognosis in the metastasised stage is unfavourable with a 5-year overall survival rate of 6% for small cell lung cancer (SCLC) and 18% for non-small cell lung cancer (NSCLC). Lung cancer is subject of intense research to improve the outcome. This article gives an overview of current treatment options. © Georg Thieme Verlag KG Stuttgart · New York.

  3. What You Need to Know about Lung Cancer

    MedlinePlus

    ... Publications Reports What You Need To Know About™ Lung Cancer This booklet is about lung cancer. Learning about medical care for your cancer can ... The anatomy of the lungs and basics about lung cancer Treatment for lung cancer, including taking part in ...

  4. Risk factors of Lung Cancer in nonsmoker.

    PubMed

    Akhtar, Nahid; Bansal, Jeena Gupta

    Generally, the cause of lung cancer is attributed to tobacco smoking. But many of the new lung cancer cases have been reported in nonsmokers. Apart from smoking; air pollution, environmental exposure, mutations, and single-nucleotide polymorphisms are known to be associated with lung cancer. Improper diet, alcohol consumption, marijuana smoking, estrogen, infections with human papillomavirus (HPV), HIV, and Epstein-Barr virus are suggested to be linked with lung cancer but clear evidences to ascertain their relation is not available. This article provides a comprehensive review of various risk factors and the underlying molecular mechanisms responsible for increasing the incidence of lung cancer. The pathologic, histologic, and genetic differences exist with lung cancer among smokers and nonsmokers. A better understanding of the risk factors, differences in pathology and molecular features of lung cancer in smokers and nonsmokers and the mode of action of various carcinogens will facilitate the prevention and management of lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Stages of Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  6. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma

    PubMed Central

    Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.

    2013-01-01

    Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212

  7. Customizing Therapies for Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the leading cause of cancer-related death in both men and women. Although there have been modest improvements in short-term survival over the last few decades, five-year survival rates for lung cancer remain low at only 16 percent. Treatment for lung cancer depends on the stage of the disease at diagnosis, but generally consists of some combination of surgery,

  8. The Impact of the Cancer Genome Atlas on Lung Cancer

    PubMed Central

    Chang, Jeremy Tzu-Huai; Lee, Yee-Ming; Huang, R. Stephanie

    2015-01-01

    The Cancer Genome Atlas (TCGA) has profiled over 10,000 samples derived from 33 types of cancer to date, with the goal of improving our understanding of the molecular basis of cancer and advancing our ability to diagnose, treat, and prevent cancer. This review focuses on lung cancer as it is the leading cause of cancer-related mortality worldwide in both men and women. Particularly, non-small cell lung cancers (including lung adenocarcinoma and lung squamous cell carcinoma) were evaluated. Our goal is to demonstrate the impact of TCGA on lung cancer research under four themes: namely, diagnostic markers, disease progression markers, novel therapeutic targets, and novel tools. Examples were given related to DNA mutation, copy number variation, mRNA, and microRNA expression along with methylation profiling. PMID:26318634

  9. Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA

    PubMed Central

    Henare, K; Wang, L; Wang, L-Cs; Thomsen, L; Tijono, S; Chen, C-Jj; Winkler, S; Dunbar, P R; Print, C; Ching, L-M

    2012-01-01

    Background: The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention. For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells, we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts. Methods: Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts. Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal cell-specific gene expression. Results: 5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in A375 melanoma xenografts. Conclusion: 5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma. The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other tumour models and anti-cancer agents. PMID:22415295

  10. Profile of lung cancer in kuwait.

    PubMed

    El-Basmy, Amani

    2013-01-01

    Lung cancer is the most frequent cancer in males and the fourth most frequent site in females, worldwide. This study is the first to explore the profile of lung cancer in Kuwait. Cases of primary lung cancer (Kuwaiti) in Kuwait cancer Registry (KCR) were grouped in 4 periods (10 years each) from 1970-2009. Epidemiological measures; age standardized incidence rate (ASIR) with 95% confidence intervals (CI), Standardized rate ratio (SRR) and Cumulative risk and Forecasting to year 2020-2029 used for analysis. Between years, 2000-2009 lung cancer ranked the 4th and the 9th most frequent cancer in males and females respectively. M:F ratio 1:3. Mean age at diagnosis (95%CI) was 65.2 (63.9-66.4) years. The estimated risk of developing lung cancer before the age of 75 years in males is 1.8% (1/56), and 0.6 (1/167) in females. The ASIR for male cases was 11.7, 17.1, 17.0, 14.0 cases/100,000 population in the seventies, eighties, nineties and in 2000-2009 respectively. Female ASIR was 2.3, 8.4, 5.1, 4.4 cases/100,000 population in the same duration. Lung cancer is the leading cause cancer death in males 168 (14.2%) and the fifth cause of death due to cancer in females accounting for 6.1% of all cancer deaths. The ASMR (95%CI) was 8.1 (6.6-10.0) deaths/100,000 population and 2.8 (1.3-4.3) deaths/100,000 population in males and females respectively. The estimated Mortality to incidence Ratio was 0.6. The incidence of lung cancer between years 2000-2009 is not different from that reported in the seventies. KCR is expecting the number of lung cancer cases to increase.

  11. Lung cancer and air pollution.

    PubMed

    Aoki, K; Shimizu, H

    1977-12-01

    The relationship between incidence of lung cancer and the volume of traffic as indicated by auto exhaust concentration was examined; the results, though suggestive, did not yield consistent evidence of the association between them. Traffic jams in Nagoya began 15 years ago, a period that may not be long enough to provide definitive data on the incidence of lung cancer. The high standardized mortality ratio (SMR) of lung cancer was observed in cities with a population of less than 1 million and guns (rural areas) along the coast, although those in the metropolitan areas with populations of more than 1 million were average. The SMR did not correlate with various socioeconomic conditions and industrial air pollution. Meteorologic or geologic conditions and ocean currents were not associated with SMR of lung cancer by city and gun. The population of a gun or of some cities was not large enough to be statistically significant, and the mortality rate of lung cancer was not always stable.

  12. Lung Cancer: One Disease or Many.

    PubMed

    O'Brien, Timothy D; Jia, Peilin; Aldrich, Melinda C; Zhao, Zhongming

    2018-06-05

    Lung cancer is classified as a single entity comprised of multiple histological subtypes. But how similar are these subtypes on a genetic level? This paper aims to address this question through a concise overview of germline and somatic differences between small cell lung cancer, lung adenocarcinoma, and lung squamous cell carcinoma. We reveal the weak overlap found between these 3 lung cancer subtypes using published data from one of the largest germline genetic studies on lung cancer to date and somatic mutation data from Catalogue of Somatic Mutations in Cancer (COSMIC). These data indicate that these 3 subtypes share very little with each other at the genetic level. At the germline SNP level, only 24 independent SNPs from 2 chromosomes were shared across all 3 subtypes. We also demonstrate that only 30 unique cancer-specific mutations overlap the 3 subtypes from COSMIC, and that this is fewer than overlapping mutations chosen at random. Finally, we show that only 3 somatic mutational signatures are shared between these 3 subtypes. This paper highlights that these 3 lung cancer subtypes may be distinct diseases at the genetic level. In the era of precision medicine, we feel that these genomic differences will be of utmost importance in the choice of lung cancer therapy in the future. © 2018 S. Karger AG, Basel.

  13. Bidi smoking and lung cancer.

    PubMed

    Prasad, Rajendra; Singhal, Sanjay; Garg, Rajiv

    2009-04-01

    This article discusses the role of bidi smoking as a risk factor for lung cancer. A review of the documented evidence is presented. The literature from Pubmed has been searched using the key words 'beedi smoking', 'bidi smoking' and 'lung cancer'. The bibliographies of all papers found were further searched for additional relevant articles. After this thorough search, eight studies were found. The evidence suggests that bidi smoking poses a higher risk for lung cancer than cigarette smoking and risk further increases with both the length of time and amount of bidi smoking. The focus of tobacco control programs should be expanded to all types of tobacco use, including bidis, to reduce the increasing problem of lung cancer.

  14. Long non-coding RNA PICART1 suppresses proliferation and promotes apoptosis in lung cancer cells by inhibiting JAK2/STAT3 signaling.

    PubMed

    Zhao, J M; Cheng, W; He, X G; Liu, Y L; Wang, F F; Gao, Y F

    2018-06-26

    Lung cancer remains the most common cause of tumor-related death worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in the development of various cancers, including lung cancer. This study aimed to investigate the effect and the molecular basis of lncRNA PICART1 on lung cancer. We first assessed the PICART1 expression in lung cancer in vitro and vivo by qRT-PCR. Then the expression of PICART1 in SPC-A-1 and NCI-H1975 cell lines was inhibited and overexpressed by transient transfections. Thereafter, cell viability, cell cycle, migration and apoptosis were respectively measured by MTT, Transwell and flow cytometry assay. Furthermore, qRT-PCR and western blot analysis were mainly performed to assess the expression levels of apoptosis- and migration-related proteins and JAK2/STAT3 pathway proteins. Tumor formation was measured by xenograft tumor model assay in vivo. PICART1 expression was down-regulated in human lung cancer tissues and cell lines. Knockdown of PICART1 increased cell viability of lung cancer cell lines. However, PICART1 overexpression inhibited cell cycle progression and promoted apoptosis in SPC-A-1 and NCI-H1975 cell lines. PICART1 overexpression also inhibited migration, as evidenced by up-regulation of E-cadherin, and down-regulation of Twist1, MMP2 and MMP9. Furthermore, we found PICART1 inhibition may regulate cell apoptosis and migration through activating JAK2/STAT3 pathway. In vivo experiments revealed that PICART1 knockdown significantly promoted tumor formation.This study demonstrates that PICART1 overexpression represents an anti-growth and anti-metastasis role in lung cancer cells. Additionally, PICART1 acts as a tumor suppressor may be via regulation of JAK2/STAT3 pathway.

  15. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  16. Current questions in HIV-associated lung cancer.

    PubMed

    Shcherba, Marina; Shuter, Jonathan; Haigentz, Missak

    2013-09-01

    In this review, we explore current questions regarding risk factors contributing to frequent and early onset of lung cancer among populations with HIV infection, treatment, and outcomes of lung cancer in HIV-infected patients as well as challenges in a newly evolving era of lung cancer screening. Lung cancer, seen in three-fold excess in HIV-infected populations, has become the most common non-AIDS defining malignancy in the highly active antiretroviral therapy era. HIV-associated lung cancer appears to be associated with young age at diagnosis, cigarette smoking, advanced stage at presentation, and a more aggressive clinical course. There is no unified explanation for these observations, and aside from traditional risk factors, HIV-related immunosuppression and biological differences might play a role. In addition to smoking cessation interventions, screening and early cancer detection in HIV-infected populations are of high clinical importance, although evidence supporting lung cancer screening in this particularly high-risk subset is currently lacking, as are prospective studies of lung cancer therapy. There is an urgent need for prospective clinical trials in HIV-associated lung cancer to improve understanding of lung cancer pathogenesis and to optimize patient care. Several clinical trials are in progress to address questions in cancer biology, screening, and treatment for this significant cause of mortality in persons with HIV infection.

  17. A novel patient-derived xenograft model for claudin-low triple-negative breast cancer.

    PubMed

    Matossian, Margarite D; Burks, Hope E; Bowles, Annie C; Elliott, Steven; Hoang, Van T; Sabol, Rachel A; Pashos, Nicholas C; O'Donnell, Benjamen; Miller, Kristin S; Wahba, Bahia M; Bunnell, Bruce A; Moroz, Krzysztof; Zea, Arnold H; Jones, Steven D; Ochoa, Augusto C; Al-Khami, Amir A; Hossain, Fokhrul; Riker, Adam I; Rhodes, Lyndsay V; Martin, Elizabeth C; Miele, Lucio; Burow, Matthew E; Collins-Burow, Bridgette M

    2018-06-01

    Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.

  18. Prostate cancer targeting motifs: expression of αν β3, neurotensin receptor 1, prostate specific membrane antigen, and prostate stem cell antigen in human prostate cancer cell lines and xenografts.

    PubMed

    Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O

    2012-04-01

    Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.

  19. Customizing Therapies for Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the leading cause of cancer-related death in both men and women. Although there have been modest improvements in short-term survival over the last few decades, five-year survival rates for lung cancer remain low at only 16 percent. Treatment for lung cancer depends on the stage of the disease at diagnosis, but generally consists of some combination of surgery, chemotherapy, and radiation therapy. Increasing attention has been paid in recent years to customizing therapies based on the molecular characteristics of patients’ tumors. Some of these targeted regimens have already been integrated into the treatment arsenal for lung cancer and others are still being studied in clinical trials, including several being conducted by researchers at NCI’s Center for Cancer Research.

  20. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  1. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  2. Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease.

    PubMed

    Go, Kristina L; Delitto, Daniel; Judge, Sarah M; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Judge, Andrew R; Trevino, Jose G

    2017-07-01

    Limitations associated with current animal models serve as a major obstacle to reliable preclinical evaluation of therapies in pancreatic cancer (PC). In an effort to develop more reliable preclinical models, we have recently established a subcutaneous patient-derived xenograft (PDX) model. However, critical aspects of PC responsible for its highly lethal nature, such as the development of distant metastasis and cancer cachexia, remain underrepresented in the flank PDX model. The purpose of this study was to evaluate the degree to which an orthotopic PDX model of PC recapitulates these aspects of the human disease. Human PDX-derived PC tumors were implanted directly into the pancreas of NOD.Cg-Prkdc Il2rg/SzJ mice. Tumor growth, metastasis, and muscle wasting were then evaluated. Orthotopically implanted PDX-derived tumors consistently incorporated into the murine pancreatic parenchyma, metastasized to both the liver and lungs and induced muscle wasting directly proportional to the size of the tumor, consistent of the cancer cachexia syndrome. Through the orthotopic implantation technique described, we demonstrate a highly reproducible model that recapitulates both local and systemic aspects of human PC.

  3. Repurposing of bisphosphonates for the prevention and therapy of nonsmall cell lung and breast cancer.

    PubMed

    Stachnik, Agnes; Yuen, Tony; Iqbal, Jameel; Sgobba, Miriam; Gupta, Yogesh; Lu, Ping; Colaianni, Graziana; Ji, Yaoting; Zhu, Ling-Ling; Kim, Se-Min; Li, Jianhua; Liu, Peng; Izadmehr, Sudeh; Sangodkar, Jaya; Scherer, Thomas; Mujtaba, Shiraz; Galsky, Matthew; Gomez, Jorge; Epstein, Solomon; Buettner, Christoph; Bian, Zhuan; Zallone, Alberta; Aggarwal, Aneel K; Haider, Shozeb; New, Maria I; Sun, Li; Narla, Goutham; Zaidi, Mone

    2014-12-16

    A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine kinase inhibitors (TKIs), namely gefitinib and erlotinib, and whether the drugs can target TKI-resistant NSCLCs. In silico docking, together with molecular dynamics and anisotropic network modeling, showed that bisphosphonates bind to TKIs within the HER1 kinase domain. As predicted from this combinatorial binding, bisphosphonates enhanced the effects of TKIs in reducing cell viability and driving tumor regression in mice. Impressively, the drugs also overcame erlotinib resistance acquired through the gatekeeper mutation T790M, thus offering an option for TKI-resistant NSCLCs. We suggest that bisphosphonates can potentially be repurposed for the prevention and adjunctive therapy of HER1-driven cancers.

  4. TG4010 and Nivolumab in Patients With Lung Cancer

    ClinicalTrials.gov

    2018-03-01

    Recurrent Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage II Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  5. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  6. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1.

    PubMed

    Ramer, Robert; Bublitz, Katharina; Freimuth, Nadine; Merkord, Jutta; Rohde, Helga; Haustein, Maria; Borchert, Philipp; Schmuhl, Ellen; Linnebacher, Michael; Hinz, Burkhard

    2012-04-01

    Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.

  7. Cannabis smoking and lung cancer risk: Pooled analysis in the International Lung Cancer Consortium

    PubMed Central

    Zhang, Li Rita; Morgenstern, Hal; Greenland, Sander; Chang, Shen-Chih; Lazarus, Philip; Teare, M. Dawn; Woll, Penella J.; Orlow, Irene; Cox, Brian; Brhane, Yonathan; Liu, Geoffrey; Hung, Rayjean J.

    2014-01-01

    To investigate the association between cannabis smoking and lung cancer risk, data on 2,159 lung cancer cases and 2,985 controls were pooled from 6 case-control studies in the US, Canada, UK, and New Zealand within the International Lung Cancer Consortium. Study-specific associations between cannabis smoking and lung cancer were estimated using unconditional logistic regression adjusting for sociodemographic factors, tobacco smoking status and pack-years; odds-ratio estimates were pooled using random effects models. Subgroup analyses were done for sex, histology and tobacco smoking status. The shapes of dose-response associations were examined using restricted cubic spline regression. The overall pooled OR for habitual versus nonhabitual or never users was 0.96 (95% CI: 0.66–1.38). Compared to nonhabitual or never users, the summary OR was 0.88 (95%CI: 0.63–1.24) for individuals who smoked 1 or more joint-equivalents of cannabis per day and 0.94 (95%CI: 0.67–1.32) for those consumed at least 10 joint-years. For adenocarcinoma cases the ORs were 1.73 (95%CI: 0.75–4.00) and 1.74 (95%CI: 0.85–3.55), respectively. However, no association was found for the squamous cell carcinoma based on small numbers. Weak associations between cannabis smoking and lung cancer were observed in never tobacco smokers. Spline modeling indicated a weak positive monotonic association between cumulative cannabis use and lung cancer, but precision was low at high exposure levels. Results from our pooled analyses provide little evidence for an increased risk of lung cancer among habitual or long-term cannabis smokers, although the possibility of potential adverse effect for heavy consumption cannot be excluded. PMID:24947688

  8. Racing Against Lung Cancer: Imaging Tools Help Patient in Cancer Fight

    MedlinePlus

    ... Against Lung Cancer Follow us Racing Against Lung Cancer Imaging tools help patient in cancer fight Photo: Courtesy of Ted Simon In early ... primary care doctor. The diagnosis? Stage 4 lung cancer—advanced cancer that had already spread to some ...

  9. Saudi lung cancer management guidelines 2017.

    PubMed

    Jazieh, Abdul Rahman; Al Kattan, Khaled; Bamousa, Ahmed; Al Olayan, Ashwaq; Abdelwarith, Ahmed; Ansari, Jawaher; Al Twairqi, Abdullah; Al Fayea, Turki; Al Saleh, Khalid; Al Husaini, Hamed; Abdelhafiez, Nafisa; Mahrous, Mervat; Faris, Medhat; Al Omair, Ameen; Hebshi, Adnan; Al Shehri, Salem; Al Dayel, Foad; Bamefleh, Hanaa; Khalbuss, Walid; Al Ghanem, Sarah; Loutfi, Shukri; Khankan, Azzam; Al Rujaib, Meshael; Al Ghamdi, Majed; Ibrahim, Nagwa; Swied, Abdulmonem; Al Kayait, Mohammad; Datario, Marie

    2017-01-01

    Lung cancer management is getting more complex due to the rapid advances in all aspects of diagnostic and therapeutic options. Developing guidelines is critical to help practitioners provide standard of care. The Saudi Lung Cancer Guidelines Committee (SLCGC) multidisciplinary members from different specialties and from various regions and healthcare sectors of the country reviewed and updated all lung cancer guidelines with appropriate labeling of level of evidence. Supporting documents to help healthcare professionals were developed. Detailed lung cancer management guidelines were finalized with appropriate resources for systemic therapy and short reviews highlighting important issues. Stage based disease management recommendation were included. A summary explanation for complex topics were included in addition to tables of approved systemic therapy. A multidisciplinary lung cancer guidelines was developed and will be disseminated across the country.

  10. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  11. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging.

    PubMed

    Stephen, Renu M; Pagel, Mark D; Brown, Kathy; Baker, Amanda F; Meuillet, Emmanuelle J; Gillies, Robert J

    2012-11-01

    Evaluations of tumor growth rates and molecular biomarkers are traditionally used to assess new mouse models of human breast cancers. This study investigated the utility of diffusion weighted (DW)-magnetic resonance imaging (MRI) for evaluating cellular proliferation of new tumor models of triple-negative breast cancer, which may augment traditional analysis methods. Eleven human breast cancer cell lines were used to develop xenograft tumors in severe combined immunodeficient mice, with two of these cell lines exhibiting sufficient growth to be serially passaged. DW-MRI was performed to measure the distributions of the apparent diffusion coefficient (ADC) in these two tumor xenograft models, which showed a correlation with tumor growth rates and doubling times during each passage. The distributions of the ADC values were also correlated with expression of Ki67, a biomarker of cell proliferation, and hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor receptor-2 (VEGFR2), which are essential proteins involved in regulating aerobic glycolysis and angiogenesis that support tumor cell proliferation. Although phosphatase and tensin homolog (PTEN) levels were different between the two xenograft models, AKT levels did not differ nor did they correlate with tumor growth. This last result demonstrates the complexity of signaling protein pathways and the difficulty in interpreting the effects of protein expression on tumor cell proliferation. In contrast, DW-MRI may be a more direct assessment of tumor growth and cancer cell proliferation.

  12. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    PubMed

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  13. Maternal lung cancer and testicular cancer risk in the offspring.

    PubMed

    Kaijser, Magnus; Akre, Olof; Cnattingius, Sven; Ekbom, Anders

    2003-07-01

    It has been hypothesized that smoking during pregnancy could increase the offspring's risk for testicular cancer. This hypothesis is indirectly supported by both ecological studies and studies of cancer aggregations within families. However, results from analytical epidemiological studies are not consistent, possibly due to methodological difficulties. To further study the association between smoking during pregnancy and testicular cancer, we did a population-based cohort study on cancer risk among offspring of women diagnosed with lung cancer. Through the use of the Swedish Cancer Register and the Swedish Second-Generation Register, we identified 8,430 women who developed lung cancer between 1958 and 1997 and delivered sons between 1941 and 1979. Cancer cases among the male offspring were then identified through the Swedish Cancer Register. Standardized incidence ratios were computed, using 95% confidence intervals. We identified 12,592 male offspring of mothers with a subsequent diagnosis of lung cancer, and there were 40 cases of testicular cancer (standardized incidence ratio, 1.90; 95% confidence interval, 1.35-2.58). The association was independent of maternal lung cancer subtype, and the risk of testicular cancer increased stepwise with decreasing time interval between birth and maternal lung cancer diagnosis. Our results support the hypothesis that exposure to cigarette smoking in utero increases the risk of testicular cancer.

  14. Lung Cancer Precision Medicine Trials

    Cancer.gov

    Patients with lung cancer are benefiting from the boom in targeted and immune-based therapies. With a series of precision medicine trials, NCI is keeping pace with the rapidly changing treatment landscape for lung cancer.

  15. Saudi lung cancer management guidelines 2017

    PubMed Central

    Jazieh, Abdul Rahman; Al Kattan, Khaled; Bamousa, Ahmed; Al Olayan, Ashwaq; Abdelwarith, Ahmed; Ansari, Jawaher; Al Twairqi, Abdullah; Al Fayea, Turki; Al Saleh, Khalid; Al Husaini, Hamed; Abdelhafiez, Nafisa; Mahrous, Mervat; Faris, Medhat; Al Omair, Ameen; Hebshi, Adnan; Al Shehri, Salem; Al Dayel, Foad; Bamefleh, Hanaa; Khalbuss, Walid; Al Ghanem, Sarah; Loutfi, Shukri; Khankan, Azzam; Al Rujaib, Meshael; Al Ghamdi, Majed; Ibrahim, Nagwa; Swied, Abdulmonem; Al Kayait, Mohammad; Datario, Marie

    2017-01-01

    BACKGROUND: Lung cancer management is getting more complex due to the rapid advances in all aspects of diagnostic and therapeutic options. Developing guidelines is critical to help practitioners provide standard of care. METHODS: The Saudi Lung Cancer Guidelines Committee (SLCGC) multidisciplinary members from different specialties and from various regions and healthcare sectors of the country reviewed and updated all lung cancer guidelines with appropriate labeling of level of evidence. Supporting documents to help healthcare professionals were developed. RESULTS: Detailed lung cancer management guidelines were finalized with appropriate resources for systemic therapy and short reviews highlighting important issues. Stage based disease management recommendation were included. A summary explanation for complex topics were included in addition to tables of approved systemic therapy. CONCLUSION: A multidisciplinary lung cancer guidelines was developed and will be disseminated across the country. PMID:29118855

  16. Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials.

    PubMed

    Zahra, Amir; Fath, Melissa A; Opat, Emyleigh; Mapuskar, Kranti A; Bhatia, Sudershan K; Ma, Daniel C; Rodman, Samuel N; Snyders, Travis P; Chenard, Catherine A; Eichenberger-Gilmore, Julie M; Bodeker, Kellie L; Ahmann, Logan; Smith, Brian J; Vollstedt, Sandy A; Brown, Heather A; Hejleh, Taher Abu; Clamon, Gerald H; Berg, Daniel J; Szweda, Luke I; Spitz, Douglas R; Buatti, John M; Allen, Bryan G

    2017-06-01

    Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of oxidative stress. Based on this and another previously published preclinical study, phase 1 clinical trials in locally advanced NSCLC and pancreatic cancer were initiated, combining standard radiation and chemotherapy with a ketogenic diet for six weeks (NSCLC) or five weeks (pancreatic cancer). The xenograft experiments demonstrated prolonged survival and increased 4HNE-modfied proteins in animals consuming a ketogenic diet combined with radiation compared to radiation alone. In the phase 1 clinical trial, over a period of three years, seven NSCLC patients enrolled in the study. Of these, four were unable to comply with the diet and withdrew, two completed the study and one was withdrawn due to a dose-limiting toxicity. Over the same time period, two pancreatic cancer patients enrolled in the trial. Of these, one completed the study and the other was withdrawn due to a dose-limiting toxicity. The preclinical experiments demonstrate that a ketogenic diet increases radiation sensitivity

  17. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  18. Role of natural killer cells in lung cancer.

    PubMed

    Aktaş, Ozge Nur; Öztürk, Ayşe Bilge; Erman, Baran; Erus, Suat; Tanju, Serhan; Dilege, Şükrü

    2018-06-01

    One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. The relevant literature from PubMed and Medline databases is reviewed in this article. The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.

  19. Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer

    PubMed Central

    Qu, Sifeng; Ci, Xinpei; Xue, Hui; Dong, Xin; Hao, Jun; Lin, Dong; Clermont, Pier-Luc; Wu, Rebecca; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2018-01-01

    Background: Docetaxel used for first-line treatment of advanced prostate cancer (PCa) is only marginally effective. We previously showed, using the LTL-313H subrenal capsule patient-derived metastatic PCa xenograft model, that docetaxel combined with Aneustat (OMN54), a multivalent plant-derived therapeutic, led to marked synergistic tumour growth inhibition. Here, we investigated the effect of docetaxel+Aneustat on metastasis. Methods: C4-2 cells were incubated with docetaxel, Aneustat and docetaxel+Aneustat to assess effects on cell migration. The LTL-313H model, similarly treated, was analysed for effects on lung micro-metastasis and kidney invasion. The LTL-313H gene expression profile was compared with profiles of PCa patients (obtained from Oncomine) and subjected to IPA to determine involvement of cancer driver genes. Results: Docetaxel+Aneustat markedly inhibited C4-2 cell migration and LTL-313H lung micro-metastasis/kidney invasion. Oncomine analysis indicated that treatment with docetaxel+Aneustat was associated with improved patient outcome. The drug combination markedly downregulated expression of cancer driver genes such as FOXM1 (and FOXM1-target genes). FOXM1 overexpression reduced the anti-metastatic activity of docetaxel+Aneustat. Conclusions: Docetaxel+Aneustat can inhibit PCa tissue invasion and metastasis. This activity appears to be based on reduced expression of cancer driver genes such as FOXM1. Use of docetaxel+Aneustat may provide a new, more effective regimen for therapy of metastatic PCa. PMID:29381682

  20. Molecular understanding of lung cancers-A review

    PubMed Central

    Singh, Chinnappan Ravinder; Kathiresan, Kandasamy

    2014-01-01

    Lung cancer is considered to be the most common cancer in the world. The purpose of this paper is to review scientific evidence, particularly epidemiologic evidence of overall lung cancer burden in the world. And molecular understanding of lung cancer at various levels by dominant and suppressor oncogenes. PMID:25183110

  1. The evolution of lung cancer screening.

    PubMed

    Wilkinson, Neal W; Loewen, Gregory M; Klippenstein, Donald L; Litwin, Alan M; Anderson, Timothy M

    2003-12-01

    In the 1970s, four trials failed to demonstrate any mortality reduction using a combination of chest X-ray (CXR) and/or sputum cytology. The recent early lung cancer action project (ELCAP) demonstrated that modern screening is capable of detecting Stage I lung cancers. Bronchial epithelial changes leading up to cancers are now being understood to include histologic changes and genetic alterations. Emerging molecular markers detected in sputum and serum show promise in the future of lung cancer screening.

  2. Metachronous Lung Cancer: Clinical Characteristics and Effects of Surgical Treatment.

    PubMed

    Rzechonek, Adam; Błasiak, Piotr; Muszczyńska-Bernhard, Beata; Pawełczyk, Konrad; Pniewski, Grzegorz; Ornat, Maciej; Grzegrzółka, Jędrzej; Brzecka, Anna

    2018-01-01

    The occurrence of a second lung tumor after surgical removal of lung cancer usually indicates a lung cancer metastasis, but sometimes a new lesion proves to be a new primary lung cancer, i.e., metachronous lung cancer. The goal of the present study was to conduct a clinical evaluation of patients with metachronous lung cancer and lung cancer metastasis, and to compare the early and distant outcomes of surgical treatment in both cancer types. There were 26 age-matched patients with lung cancer metastases and 23 patients with metachronous lung cancers, who underwent a second lung cancer resection. We evaluated the histological type of a resected cancer, the extent of thoracosurgery, the frequency of early postoperative complications, and the probability of 5-year survival after the second operation. The findings were that metachronous lung cancer was adenocarcinoma in 52% of patients, with a different histopathological pattern from that of the primary lung cancer in 74% of patients. In both cancer groups, mechanical resections were the most common surgery type (76% of all cases), with anatomical resections such as segmentectomy, lobectomy, or pneumectomy being much rarer conducted. The incidence of early postoperative complications in metachronous lung cancer and lung cancer metastasis (30% vs. 31%, respectively) and the probability of 5-year survival after resection of either cancer tumor (60.7% vs. 50.9%, respectively) were comparable. In conclusion, patients undergoing primary lung cancer surgery require a long-term follow-up due to the risk of metastatic or metachronous lung cancer. The likelihood of metachronous lung cancer and pulmonary lung cancer metastases, the incidence of postoperative complications, and the probability of 5-year survival after resection of metachronous lung cancer or lung cancer metastasis are similar.

  3. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells.

    PubMed

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2016-09-27

    The aim of this study was to investigate the potential role of PHRF1 in lung tumorigenesis. Western blot analysis was used to detect the expression of proteins. Quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, soft agar assay and tumor formation assay in nude mice were applied. Cell cycle distribution was analyzed by flow cytometry. The lower level of PHRF1 mRNA was observed in human lung cancer tissues than that in paracancerous tissues. The decreased expression of PHRF1 protein was observed in H1299 and H1650 cell lines than that in 16HBE and BEAS-2B cell lines. The decreased expression of PHRF1 protein was observed in malignant 16HBE cells compared to control cells. The reduced expression of PHRF1 protein was observed in mice lung tissues treated with BaP than that in control group. Overexpression of PHRF1 inhibited H1299 cell proliferation, colony formation in vitro and growth of tumor xenograft in vivo, and arrested cell cycle in G1 phase. The decreased expression of TGIF and c-Myc proteins and the increased expression of p21 protein were observed in H1299-PHRF1 cells compared with H1299-pvoid cells. In conclusion, our findings suggest that overexpression of PHRF1 attenuated the proliferation and tumorigenicity of non-small cell lung cancer cell line of H1299.

  4. Lung Cancer Screening (PDQ®)—Health Professional Version

    Cancer.gov

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Screening with chest x-ray or sputum cytology does not reduce lung cancer mortality. Get detailed information about lung cancer screening in this clinician summary.

  5. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models

    PubMed Central

    Yang, Cheng-Yu; Lin, Chih-Kung; Tsao, Chang-Huei; Hsieh, Cheng-Chih; Lin, Gu-Jiun; Ma, Kuo-Hsing; Shieh, Yi-Shing; Sytwu, Huey-Kang; Chen, Yuan-Wu

    2017-01-01

    Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro. PMID:28422711

  6. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.

    PubMed

    Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan

    2016-04-01

    The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool.

    PubMed

    Wertman, Jaime; Veinotte, Chansey J; Dellaire, Graham; Berman, Jason N

    2016-01-01

    Animal xenografts of human cancers represent a key preclinical tool in the field of cancer research. While mouse xenografts have long been the gold standard, investigators have begun to use zebrafish (Danio rerio) xenotransplantation as a relatively rapid, robust and cost-effective in vivo model of human cancers. There are several important methodological considerations in the design of an informative and efficient zebrafish xenotransplantation experiment. Various transgenic fish strains have been created that facilitate microscopic observation, ranging from the completely transparent casper fish to the Tg(fli1:eGFP) fish that expresses fluorescent GFP protein in its vascular tissue. While human cancer cell lines have been used extensively in zebrafish xenotransplantation studies, several reports have also used primary patient samples as the donor material. The zebrafish is ideally suited for transplanting primary patient material by virtue of the relatively low number of cells required for each embryo (between 50 and 300 cells), the absence of an adaptive immune system in the early zebrafish embryo, and the short experimental timeframe (5-7 days). Following xenotransplantation into the fish, cells can be tracked using in vivo or ex vivo measures of cell proliferation and migration, facilitated by fluorescence or human-specific protein expression. Importantly, assays have been developed that allow for the reliable detection of in vivo human cancer cell growth or inhibition following administration of drugs of interest. The zebrafish xenotransplantation model is a unique and effective tool for the study of cancer cell biology.

  8. Lung Cancer Screening (PDQ®)—Patient Version

    Cancer.gov

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Learn more about tests to detect lung cancer and their potential benefits and harms in this expert-reviewed summary.

  9. Parity and risk of lung cancer in women.

    PubMed

    Paulus, Jessica K; Asomaning, Kofi; Kraft, Peter; Johnson, Bruce E; Lin, Xihong; Christiani, David C

    2010-03-01

    Patterns of lung cancer incidence suggest that gender-associated factors may influence lung cancer risk. Given the association of parity with risk of some women's cancers, the authors hypothesized that childbearing history may also be associated with lung cancer. Women enrolled in the Lung Cancer Susceptibility Study at Massachusetts General Hospital (Boston, Massachusetts) between 1992 and 2004 (1,004 cases, 848 controls) were available for analysis of the association between parity and lung cancer risk. Multivariate logistic regression was used to estimate adjusted odds ratios and 95% confidence intervals. After results were controlled for age and smoking history, women with at least 1 child had 0.71 times the odds of lung cancer as women without children (odds ratio = 0.71, 95% confidence interval: 0.52, 0.97). A significant linear trend was found: Lung cancer risk decreased with increasing numbers of children (P < 0.001). This inverse association was stronger in never smokers (P = 0.12) and was limited to women over age 50 years at diagnosis (P = 0.17). Age at first birth was not associated with risk. The authors observed a protective association between childbearing and lung cancer, adding to existing evidence that reproductive factors may moderate lung cancer risk in women.

  10. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  11. Contralateral pulmonary metastases in lung cancer

    PubMed Central

    Onuigbo, Wilson I. B.

    1974-01-01

    Onuigbo, W. I. B. (1974).Thorax, 29, 132-133. Contralateral pulmonary metastases in lung cancer. It has long been known that lung cancer may attack many organs and yet spare the opposite lung. In 100 cases of this tumour studied at necropsy, only 22 showed contralateral pulmonary spread. Contralateral deposits are generally small and may be related to damaged tissues. Although tissue unsuitability is supposed to underlie the limitation of metastases in recipient organs, this does not apply to the contralateral lung. Since lung tissue is readily accessible to bloodborne cancer cells, research should be directed towards explaining the paradoxical paucity of the metastases. PMID:4825544

  12. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  13. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models

    PubMed Central

    Bisht, Savita; Karikari, Collins; Garrido-Laguna, Ignacio; Rasheed, Zeshaan; Ottenhof, Niki A; Dadon, Tikva; Alvarez, Hector; Fendrich, Volker; Rajeshkumar, NV; Matsui, William; Brossart, Peter; Hidalgo, Manuel; Bannerji, Rajat

    2011-01-01

    Pancreatic cancer is one of the most lethal of human malignancies, and potent therapeutic options are lacking. Inhibition of cell cycle progression through pharmacological blockade of cyclin-dependent kinases (CDK) has been suggested as a potential treatment option for human cancers with deregulated cell cycle control. Dinaciclib (SCH727965) is a novel small molecule multi-CDK inhibitor with low nanomolar potency against CDK1, CDK2, CDK5 and CDK9 that has shown favorable toxicity and efficacy in preliminary mouse experiments, and has been well tolerated in Phase I clinical trials. In the current study, the therapeutic efficacy of SCH727965 on human pancreatic cancer cells was tested using in vitro and in vivo model systems. Treatment with SCH727965 significantly reduced in vitro cell growth, motility and colony formation in soft agar of MIAPaCa-2 and Pa20C cells. These phenotypic changes were accompanied by marked reduction of phosphorylation of Retinoblastoma (Rb) and reduced activation of RalA. Single agent therapy with SCH727965 (40 mg/kg i.p. twice weekly) for 4 weeks significantly reduced subcutaneous tumor growth in 10/10 (100%) of tested low-passage human pancreatic cancer xenografts. Treatment of low passage pancreatic cancer xenografts with a combination of SCH727965 and gemcitabine was significantly more effective than either agent alone. Gene Set Enrichment Analysis identified overrepresentation of the Notch and Transforming Growth Factor-β (TGFβ) signaling pathways in the xenografts least responsive to SCH727965 treatment. Treatment with the cyclin-dependent kinase inhibitor SCH727965 alone or in combination is a highly promising novel experimental therapeutic strategy against pancreatic cancer. PMID:21768779

  14. Peptide hormones and lung cancer.

    PubMed

    Moody, T W

    2006-03-01

    Several peptide hormones have been identified which alter the proliferation of lung cancer. Small cell lung cancer (SCLC), which is a neuroendocrine cancer, produces and secretes gastrin releasing peptide (GRP), neurotensin (NT) and adrenomedullin (AM) as autocrine growth factors. GRP, NT and AM bind to G-protein coupled receptors causing phosphatidylinositol turnover or elevated cAMP in SCLC cells. Addition of GRP, NT or AM to SCLC cells causes altered expression of nuclear oncogenes, such as c-fos, and stimulation of growth. Antagonists have been developed for GRP, NT and AM receptors which function as cytostatic agents and inhibit SCLC growth. Growth factor antagonists, such as the NT1 receptor antagonist SR48692, facilitate the ability of chemotherapeutic drugs to kill lung cancer cells. It remains to be determined if GRP, NT and AM receptors will served as molecular targets, for development of new therapies for the treatment of SCLC patients. Non-small cell lung cancer (NSCLC) cells also have a high density of GRP, NT, AM and epidermal growth factor (EGF) receptors. Several NSCLC patients with EGF receptor mutations respond to gefitinib, a tyrosine kinase inhibitor. Gefitinib relieves NSCLC symptoms, maintaining stable disease in patients who are not eligible for systemic chemotherapy. It is important to develop new therapeutic approaches using translational research techniques for the treatment of lung cancer patients.

  15. [Development of the lung cancer diagnostic system].

    PubMed

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  16. Lung and Upper Aerodigestive Cancer | Division of Cancer Prevention

    Cancer.gov

    [[{"fid":"180","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Lung and Upper Aerodigestive Cancer Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Lung and Upper Aerodigestive Cancer Research Group Homepage Logo","field_folder[und]":"15"},"type":"media","attributes":{"alt":"Lung and Upper Aerodigestive

  17. Immunotherapy in lung cancer.

    PubMed Central

    Al-Moundhri, M.; O'Brien, M.; Souberbielle, B. E.

    1998-01-01

    More research and new treatment options are needed in all stages of lung cancer. To this end immunotherapy needs a revival in view of recent improved technologies and greater understanding of the underlying biology. In this review we discuss mechanisms of tumour immunotherapy, non-specific, specific and adoptive, with particular reference to a direct therapeutic action on all subtypes of lung cancer. PMID:9703271

  18. Lung Cancer in HIV Infection

    PubMed Central

    Mani, Deepthi; Haigentz, Missak; Aboulafia, David M

    2011-01-01

    Lung cancer is the most prevalent non-AIDS-defining malignancy in the HAART era. Smoking plays a significant role in the development of HIV-associated lung cancer, but the cancer risk is 2–4 times greater in HIV-infected persons than in the general population, even after adjusting for smoking intensity and duration. Lung cancer is typically diagnosed a decade or more earlier among HIV-infected persons (mean age, 46 years) compared to those without HIV infection. Adenocarcinoma is the commonest histological subtype, and the majority of patients are diagnosed with locally advanced or metastatic carcinoma. Since pulmonary infections are common among HIV-infected individuals, clinicians may not suspect lung cancer in this younger patient population. Surgery with curative intent remains the treatment of choice for early stage disease. Although there is increasing experience in using radiation and chemotherapy for HIV-infected patients who do not have surgical options, there is a need for prospective studies for this population frequently excluded from participating in cancer trials. Evidence-based treatments for smoking-cessation with demonstrated efficacy in the general population must be routinely incorporated into the care of HIV-positive smokers. PMID:21802373

  19. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance.

  20. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  1. Occupational lung cancer in US women, 1984-1998.

    PubMed

    Robinson, Cynthia F; Sullivan, Patricia A; Li, Jia; Walker, James T

    2011-02-01

    Lung cancer is the leading cause of cancer death in US women, accounting for 72,130 deaths in 2006. In addition to smoking cessation, further reduction of the burden of lung cancer mortality can be made by preventing exposure to occupational lung carcinogens. Data for occupational exposures and health outcomes of US working women are limited. Population-based mortality data for 4,570,711 women who died between 1984 and 1998 in 27 US States were used to evaluate lung cancer proportionate mortality over time by the usual occupation and industry reported on death certificates. Lung cancer proportionate mortality ratios were adjusted for smoking, using data from the National Health Interview Survey (NHIS) and the American Cancer Society's Cancer Prevention Study II. Analyses revealed that 194,382 white, 18,225 Black and 1,515 Hispanic women died 1984-1998 with lung cancer reported as the underlying cause of death. Following adjustment for smoking, significant excess proportionate lung cancer mortality was observed among US women working in the US manufacturing; transportation; retail trade; agriculture, forestry, and fishing; and nursing/personal care industries. Women employed in precision production, technical, managerial, professional specialty, and administrative occupations experienced some of the highest significantly excess proportionate lung cancer mortality during 1984-1998. The results of our study point to significantly elevated risks for lung cancer after adjustment for smoking among women in several occupations and industries. Because 6-17% of lung cancer in US males is attributable to known exposures to occupational carcinogens, and since synergistic interactions between cigarette smoke and other occupational lung carcinogens have been noted, it is important to continue research into the effects of occupational exposures on working men and women. Copyright © 2010 Wiley-Liss, Inc.

  2. Concerns About Lung Cancer Among Prisoners.

    PubMed

    Renault, Luc; Perrot, Emmanuel; Pradat, Eric; Bartoli, Christophe; Greillier, Laurent; Remacle-Bonnet, Anne; Telmon, Norbert; Mazières, Julien; Molinier, Laurent; Couraud, Sébastien

    2018-02-01

    Few studies have looked at lung cancer in prisoners, despite this population is possibly at increased risk of malignancy. In a previous study, we found an early onset of lung cancer in prisoners. Thus, the present CARCAN study was aimed at assessing the epidemiological characteristics, management, prognosis, and incidence of lung cancer in prisoners compared to a sample of non-prisoner patients. We performed a multi-center observational case-control study. Cases were prisoners diagnosed with lung cancer from 2005 to 2013. Controls were non-prisoner lung cancer patients selected from hospital databases and randomly matched to cases (targeted case-control ratio: 1:3). Incidence rates in both groups were calculated using national statistics. Seventy-two cases and 170 controls met inclusion criteria. Cases were mainly men (99%). Mean age at diagnosis was 52.9 (± 11.0) in cases and 64.3 (± 10.1) in controls (p < 0.0001). More case patients were current smokers compared to control patients (83% vs 53%; p < 0.0001). We found no significant differences between the two groups as concerns histologic types, TNM stages at diagnosis, initially-employed treatments, times to management or survival. Incidence rates (2008-2012) in male prisoners were higher than those in the general population in all concerned age groups. There is a shift of lung cancer toward young people in prisons. However, the presentation, management, and prognosis of lung cancer are similar between prisoners and non-prisoners. These finding could justify a specific screening policy for the incarcerated populations.

  3. Drug delivery and nanodetection in lung cancer.

    PubMed

    Badrzadeh, Fariba; Rahmati-Yamchi, Mohammad; Badrzadeh, Kazem; Valizadeh, Alireza; Zarghami, Nosratollah; Farkhani, Samad Mussa; Akbarzadeh, Abolfazl

    2016-01-01

    Lung carcinoma is the most widespread type of cancer worldwide, and is responsible for more deaths than other types of cancer. Lung cancer remains the chief cause of cancer-related deaths in both men and women worldwide, and is increasingly common in women. Each year, the number of deaths from lung cancer is greater than the number due to breast and colorectal cancer combined. Lung cancer accounted for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths in 2008. In Iran, lung cancer is one of the five leading tumors. Among females, it was the fourth most commonly diagnosed cancer, and the second leading cause of cancer death. Nanotechnology can be defined as the science and engineering involved in the design, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale, i.e. one billionth of a meter. It is an exciting multidisciplinary field that involves the design and engineering of nano objects or nanotools with diameters less than 500 nanometers (nm), and it is one of the most interesting fields of the 21st century. Nanotechnology also offers the ability to detect diseases, such as tumors, much earlier than ever imaginable. This article presents nano devices for lung cancer detection and drug delivery systems.

  4. Esculetin Attenuates the Growth of Lung Cancer by Downregulating Wnt Targeted Genes and Suppressing NF-κB.

    PubMed

    Zhu, Xiangyun; Gu, Jiaping; Qian, Hongxian

    2018-03-01

    Esculetin was identified to inhibit cell proliferation and induce apoptosis or cell cycle arrest in several cancer cell lines. However, the effect of esculetin on lung cancer remains elusive. The anti-proliferative role of esculetin in murine Lewis lung carcinoma (LLC) cells was evaluated by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and colony formation assays. BALB/c mice were subcutaneously injected with LLC cells to investigate the inhibitory effect of esculetin on the growth of lung cancer xenograft. Invasive ability was detected in esculetin treated and untreated LLC cells by transwell assay. The association between esculetin and Wnt/β-catenin signaling, as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), was confirmed by testing the expression of c-myc, Cyclin D1 and NF-κB using Western blot. Esculetin treatment in LLC cells led to significant decrease of cell proliferation in a time- and dose-dependent manner. After injection of LLC cells into mice, reduced size and weight of tumors were observed in esculetin treated mice compared to untreated mice. However, no difference in cell invasion was observed between the treated and untreated LLC cells. Notably decreased expression of c-myc, Cyclin D1 and NF-κB were observed in LLC cells with esculetin treatment compared to untreated cells. Esculetin plays an inhibitory role in the growth of lung cancer by down-regulating c-myc, Cyclin D1 and NF-κB. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. [Survey and analysis of awareness of lung cancer prevention and control in a LDCT lung cancer screening project in Tianjin Dagang Oilfield of China].

    PubMed

    Ren, Guanhua; Ye, Jianfei; Fan, Yaguang; Wang, Jing; Sun, Zhijuan; Jia, Hui; Du, Xinxin; Hou, Chaohua; Wang, Ying; Zhao, Yongcheng; Zhou, Qinghua

    2014-02-01

    It has been proven that increase of the awareness level of lung cancer prevention and control could enhance participation of lung cancer screening of lung cancer high risk group. The aim of this study is to investigate the awareness level of lung cancer prevention and control and the effect of individual characteristics on lung cancer awareness, and to provide evidence for comprehensive lung cancer prevention in high risk areas of lung cancer. Staffs of Tianjin Dagang Oil Field who participate low dose CT (LDCT) lung cancer screening by cluster sampling or according to voluntary principle were surveyed, data of lung cancer awareness were collected by questionnaire. A total of 1,633 valid questionnaires were collected. The average age of respondents was 60.08±6.58. Most participants were males (82.2%) while female only accounted for 17.8%. The proportions of awareness about lung cancer in China, risk factors, screening methods and the knowledge of health examination were 64.5%, 77.1%, 43.7%, 49.6% respectively. Result of multiple logistic regression analysis showed that education level, smoking (pack-year), age, prior tuberculosis were the influencing factors of lung cancer awareness with adjusted Ors for education and age level as of 0.567 (95%CI: 0.439-0.733) and 1.373 (95%CI: 1.084-1.739) respectively. 80.3% of the participants can accept health examination once a year, while the ability to pay the medical expenses was not high. The influencing factors of health examination willingness were gender, age, income, the knowledge of lung cancer. Education level and smoking affect the awareness of lung cancer prevention and control, health education for lung cancer should be conducted especially in population with low education level. Comprehensive lung cancer control in high risk areas should combined lung cancer screening, tobacco control and health education.

  6. Lung cancer among women in north-east China.

    PubMed Central

    Wu-Williams, A. H.; Dai, X. D.; Blot, W.; Xu, Z. Y.; Sun, X. W.; Xiao, H. P.; Stone, B. J.; Yu, S. F.; Feng, Y. P.; Ershow, A. G.

    1990-01-01

    A case-control study of lung cancer involving interviews with 965 female patients and 959 controls in Shenyang and Harbin, two industrial cities which have among the highest rates of lung cancer in China, revealed that cigarette smoking is the main causal factor and accounted for about 35% of the tumours among women. Although the amount smoked was low (the cases averaged eight cigarettes per day), the percentage of smokers among women over age 50 in these cities was nearly double the national average. Air pollution from coal burning stoves was implicated, as risks of lung cancer increased in proportion to years of exposure to 'Kang' and other heating devices indigenous to the region. In addition, the number of meals cooked by deep frying and the frequency of smokiness during cooking were associated with risk of lung cancer. More cases than controls reported workplace exposures to coal dust and to smoke from burning fuel. Elevated risks were observed for smelter workers and decreased risks for textile workers. Prior chronic bronchitis/emphysema, pneumonia, and recent tuberculosis contributed significantly to lung cancer risk, as did a history of tuberculosis and lung cancer in family members. Higher intake of carotene-rich vegetables was not protective against lung cancer in this population. The findings were qualitatively similar across the major cell types of lung cancer, except that the associations with smoking and previous lung diseases were stronger for squamous/oat cell cancers than for adenocarcinoma of the lung. PMID:2257230

  7. nm23-H1 gene driven by hTERT promoter induces inhibition of invasive phenotype and metastasis of lung cancer xenograft in mice.

    PubMed

    Fan, Yu; Yao, Yibing; Li, Lu; Wu, Zhihao; Xu, Feng; Hou, Mei; Wu, Heng; Shen, Yali; Wan, Haisu; Zhou, Qinghua

    2013-02-01

    Lung cancer is the leading cause of cancer death in both men and women worldwide. Tumor metastasis is an essential aspect of lung cancer progression and patient death. The nm23-H1 gene has been extensively investigated as a metastasis suppressor gene. Our previous studies have revealed: that a significant relationship exists between the low-level expression nm23-H1 in primary non-small cell lung cancer (NSCLC) with increased metastasis and a poor prognosis; that L9981-nm23-H1 cells (a nm23-H1 transfactant cell) exhibited lower cell proliferation rates, more G0/G1 phase growth, and an increase in apoptosis with a dramatic decrease in the tumor cells' ability to invade than L9981 cells did; and that L9981- nm23-H1 cells also demonstrated a significantly reduced lymph node and distant metastatic capacity in vivo than L9981 cells did in nude mice. In this study, we construct a plasmid containing the nm23-H1 gene, which was driven by the human telomerase reverse transcriptase (hTERT) promoter. We evaluated the anti-invasion and anti-metastatic effects of pGL3-hTP-nm23 on L9981, a human large cell lung cancer cell line with nm23-H1 negative expression, by transwell assay in vitro and bioluminescence in nude mice models. The toxicity of pGL3-hTP-nm23 and its effects on tumor growth were evaluated in nude mice models after gene therapy. The cell cycles, apoptosis, and proliferation of the nm23-H1 transfactant were also detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) and flow cytometry (FCM). The results showed that the hTERT-promoter dramatically drives nm23-H1 gene expression, and induces inhibition of cell growth and migration in L9981-luc cells and MRC-5 cells in vitro. nm23-H1 also significantly inhibited the tumorigenesis and distant metastasis of L9981-luc cell in vivo. Moreover, no obvious side effect was detected in normal mouse tissues after intratumoral injection of the vector. The treatment of the nm23-H1 gene driven by h

  8. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  9. Paraneoplastic syndromes associated with lung cancer

    PubMed Central

    Kanaji, Nobuhiro; Watanabe, Naoki; Kita, Nobuyuki; Bandoh, Shuji; Tadokoro, Akira; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    Paraneoplastic syndromes are signs or symptoms that occur as a result of organ or tissue damage at locations remote from the site of the primary tumor or metastases. Paraneoplastic syndromes associated with lung cancer can impair various organ functions and include neurologic, endocrine, dermatologic, rheumatologic, hematologic, and ophthalmological syndromes, as well as glomerulopathy and coagulopathy (Trousseau’s syndrome). The histological type of lung cancer is generally dependent on the associated syndrome, the two most common of which are humoral hypercalcemia of malignancy in squamous cell carcinoma and the syndrome of inappropriate antidiuretic hormone secretion in small cell lung cancer. The symptoms often precede the diagnosis of the associated lung cancer, especially when the symptoms are neurologic or dermatologic. The proposed mechanisms of paraneoplastic processes include the aberrant release of humoral mediators, such as hormones and hormone-like peptides, cytokines, and antibodies. Treating the underlying cancer is generally the most effective therapy for paraneoplastic syndromes, and treatment soon after symptom onset appears to offer the best potential for symptom improvement. In this article, we review the diagnosis, potential mechanisms, and treatments of a wide variety of paraneoplastic syndromes associated with lung cancer. PMID:25114839

  10. HIV Infection in the Etiology of Lung Cancer

    PubMed Central

    Kirk, Gregory D.; Merlo, Christian A.

    2011-01-01

    Persons infected with HIV have an elevated risk of lung cancer, but whether the increase simply reflects a higher smoking prevalence continues to be debated. This review summarizes existing data on the association of HIV infection and lung cancer, with particular attention to study design and adjustment for cigarette smoking. Potential mechanisms by which HIV infection may lead to lung cancer are discussed. Finally, irrespective of causality and mechanisms, lung cancer represents an important and growing problem confronting HIV-infected patients and their providers. Substantial efforts are needed to promote smoking cessation and to control lung cancer among HIV-infected populations. PMID:21653536

  11. Lung Cancer and Lung Injury: The Dual Role of Ceramide

    PubMed Central

    Goldkorn, Tzipora; Chung, Samuel; Filosto, Simone

    2015-01-01

    Sphingolipids play key roles in cancer, yet our current understanding of sphingolipid function in lung cancer is limited to a few key players. The best characterized of these are sphingosine-1-phoshate and ceramide which are described for their opposing roles in cell fate. However, because sphingolipids as a whole are readily interconverted by a complex enzymatic machinery, no single sphingolipid appears to have exactly one role. Instead, the roles of specific sphingolipids appear to be context specific as demonstrated by findings that ceramide-1-phosphate has both proliferative and apoptotic effects depending on its concentration. Therefore, we present herein several years of research on ceramide, a sphingolipid linked to apoptotic signaling, that is emerging in cancer research for its potential roles in proliferation and cell-to-cell communication via exosomes. Ceramide is a well-studied sphingolipid in both normal and pathological conditions ranging from skin development to lung cancer. Interestingly, several groups have previously reported its increased levels in emphysema patients who are smokers, a patient subpopulation greatly susceptible to lung cancer. However, the molecular mechanisms through which cigarette smoke (CS) and ceramide accumulation lead to lung cancer, non-small cell lung cancer (NSCLC) specifically, are unknown. Interestingly, recent studies clearly establish that two signaling pathways are activated during CS exposure in the lung airway. One centers on the activation of neutral sphingomyelinase2 (nSMase2), an enzyme that hydrolyzes sphingomyelin to ceramide. The other pathway focuses on the oncogenic EGF receptor (EGFR), which becomes aberrantly activated but not degraded, leading to prolonged proliferative signaling. Recent studies show that these two signaling pathways may actually converge and integrate. Specifically, Goldkorn et al. demonstrated that during CS exposure, EGFR is favorably co-localized in ceramide-enriched regions of the

  12. An updated review of case-control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer?

    PubMed

    Sheen, Seungsoo; Lee, Keu Sung; Chung, Wou Young; Nam, Saeil; Kang, Dae Ryong

    2016-01-01

    Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon ((222)Rn) is a natural gas produced from radium ((226)Ra) in the decay series of uranium ((238)U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers. Case-control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case-control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose-response relationship between indoor radon and lung cancer risk. Further refined case-control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case-control studies.

  13. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  14. Prevention and management of lung cancer in China.

    PubMed

    Hong, Qun-Ying; Wu, Guo-Ming; Qian, Gui-Sheng; Hu, Cheng-Ping; Zhou, Jian-Ying; Chen, Liang-An; Li, Wei-Min; Li, Shi-Yue; Wang, Kai; Wang, Qi; Zhang, Xiao-Ju; Li, Jing; Gong, Xin; Bai, Chun-Xue

    2015-09-01

    Lung cancer is the leading cause of cancer-related death worldwide. In China, the incidence of lung cancer has grown rapidly, resulting in a large social and economic burden. Several researchers have devoted their studies to lung cancer and have demonstrated that there are many risk factors for lung cancer in China, including tobacco use, environmental pollution, food, genetics, and chronic obstructive pulmonary disease. However, the lung cancer incidence is still growing rapidly in China, and there is an even higher incidence among the younger generation. One explanation may be the triple-neglect situation, in which medical policies that neglect prevention, diagnosis, and supportive care have increased patients' mortality and reduced their quality of life. Therefore, it is necessary to enhance the efficiency of prevention and early diagnosis not only by focusing more attention on treatment but also by drawing more attention to supportive care for patients with lung cancer. © 2015 American Cancer Society.

  15. Dilemmas in Lung Cancer Staging.

    PubMed

    Vlahos, Ioannis

    2018-05-01

    The advent of the 8th edition of the lung cancer staging system reflects a further meticulous evidence-based advance in the stratification of the survival of patients with lung cancer. Although addressing many limitations of earlier staging systems, several limitations in staging remain. This article reviews from a radiological perspective the limitations of the current staging system, highlighting the process of TNM restructuring, the residual issues with regards to the assignment of T, N, M descriptors, and their associated stage groupings and how these dilemmas impact guidance of multidisciplinary teams taking care of patients with lung cancer. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  16. Multilevel Opportunities to Address Lung Cancer Stigma across the Cancer Control Continuum.

    PubMed

    Hamann, Heidi A; Ver Hoeve, Elizabeth S; Carter-Harris, Lisa; Studts, Jamie L; Ostroff, Jamie S

    2018-05-22

    The public health imperative to reduce the burden of lung cancer has seen unprecedented progress in recent years. Realizing fully the advances in lung cancer treatment and control requires attention to potential barriers in their momentum and implementation. In this analysis, we present and evaluate the argument that stigma is a highly significant barrier to fulfilling the clinical promise of advanced care and reduced lung cancer burden. This evaluation of lung cancer stigma is based on a multilevel perspective that incorporates the individual, persons in their immediate environment, the healthcare system, and the larger societal structure which shapes perceptions and decisions. We also consider current interventions and interventional needs within and across aspects of the lung cancer continuum, including prevention, screening, diagnosis, treatment, and survivorship. Current evidence suggests that stigma detrimentally impacts psychosocial, communication, and behavioral outcomes over the entire lung cancer control continuum and across multiple levels. Interventional efforts to alleviate stigma in the context of lung cancer show promise, yet more work is needed to evaluate their impact. Understanding and addressing the multi-level role of stigma is a crucial area for future study in order to realize the full benefits offered by lung cancer prevention, control, and treatment. Coordinated, interdisciplinary, and well-conceptualized efforts have the potential to reduce the barrier of stigma in the context of lung cancer and facilitate demonstrable improvements in clinical care and quality of life. Copyright © 2018. Published by Elsevier Inc.

  17. Colossolactone H, a new Ganoderma triterpenoid exhibits cytotoxicity and potentiates drug efficacy of gefitinib in lung cancer.

    PubMed

    Chen, Su-Yu; Chang, Chao-Lin; Chen, Teng-Hai; Chang, Ya-Wen; Lin, Shwu-Bin

    2016-10-01

    Three pentacyclic triterpene dilactones were isolated from the fruiting bodies of Ganoderma colossum, a medicinal mushroom. Colossolactone H (colo H) as a new compound and the most cytotoxic among the isolates was studied for its anticancer mechanism and the potential use in cancer therapy. Gene expression profiling analysis indicated that treatment of lung cancer cells with colo H caused upregulation of 252 genes and downregulation of 398 genes. Gene ontology enrichment analysis indicated that the downregulated genes were the most significantly enriched in cell cycle progression, and the upregulated genes were significantly enriched in metabolic process, cellular response to stimulus, and oxidation reduction. Accordingly, colo H was found to halt cell growth and induce cell apoptosis via the elevation of cellular reactive oxygen species to cause DNA damage and the increase of tumor suppressor p53 protein. These events facilitate additive cytotoxicity of colo H and gefitinib for gefitinib-resistant H1650 lung cancer cells. Furthermore, combination of colo H and gefitinib effectively inhibited the growth of tumor xenografts in athymic mice. In addition to the efficacy in adjunctive cancer therapy, we have also demonstrated the isolation of colo H from cultivated G. colossum. Thus it is feasible to use colo H or Ganoderma colossum for cancer therapy. Copyright © 2016. Published by Elsevier B.V.

  18. Induction of E-cadherin in lung cancer and interaction with growth suppression by histone deacetylase inhibition.

    PubMed

    Kakihana, Masatoshi; Ohira, Tatsuo; Chan, Daniel; Webster, Robin B; Kato, Harubumi; Drabkin, Harry A; Gemmill, Robert M

    2009-12-01

    Loss of E-cadherin confers a poor prognosis in lung cancer patients and is associated with in vitro resistance to endothelial growth factor receptor inhibitors. Zinc finger E box-binding homeobox (ZEB)-1, the predominant transcriptional suppressor of E-cadherin in lung tumor lines, recruits histone deacetylases (HDACs) as co-repressors. NSCLC cell lines were treated with HDAC inhibitors and analyzed for E-cadherin induction, growth inhibition and apoptosis. National Cancer Institute-H157 cells expressing ectopic E-cadherin were tested for tumorigenicity in murine xenografts. We found that treatment with MS-275, compared to vorinostat (SAHA), valproic acid or trichostatin A, was most effective in E-cadherin up-regulation and persistence in non-small cell lung cancers. As with other tumor types and HDAC inhibitors, MS-275 inhibited growth and induced apoptosis. Importantly, blocking E-cadherin induction by short hairpin RNA resulted in less inhibition by MS-275, implicating the epithelial to mesenchymal phenotype process as a contributing factor. In contrast to H460 and H661, H157 cells were resistant to E-cadherin up-regulation by HDAC inhibitors. However, E-cadherin was restored, in a synergistic manner, by combined knockdown of ZEB-1 and ZEB-2. In addition, H157 cells stably transfected with E-cadherin were markedly attenuated in their tumor forming ability. Lastly, combining MS-275 with the microtubule stabilizing agent, paclitaxel, or 17-(allylamino)-17-demethoxygeldanamycin, a heat shock protein 90 inhibitor, resulted in synergistic growth inhibition. Since MS-275 has no reported activity against HDAC6, which regulates both microtubule and heat shock protein 90 functions, other mechanisms of synergy are anticipated. These results support the role of ZEB proteins and HDAC inhibitors in the pathogenesis and treatment of lung cancer.

  19. Exhaled breath analysis for lung cancer

    PubMed Central

    Sutedja, Tom G.; Zimmerman, Paul V.

    2013-01-01

    Early diagnosis of lung cancer results in improved survival compared to diagnosis with more advanced disease. Early disease is not reliably indicated by symptoms. Because investigations such as bronchoscopy and needle biopsy have associated risks and substantial costs, they are not suitable for population screening. Hence new easily applicable tests, which can be used to screen individuals at risk, are required. Biomarker testing in exhaled breath samples is a simple, relatively inexpensive, non-invasive approach. Exhaled breath contains volatile and non-volatile organic compounds produced as end-products of metabolic processes and the composition of such compounds varies between healthy subjects and subjects with lung cancer. Many studies have analysed the patterns of these compounds in exhaled breath. In addition studies have also reported that the exhaled breath condensate (EBC) can reveal gene mutations or DNA abnormalities in patients with lung cancer. This review has summarised the scientific evidence demonstrating that lung cancer has distinct chemical profiles in exhaled breath and characteristic genetic changes in EBC. It is not yet possible to accurately identify individuals with lung cancer in at risk populations by any of these techniques. However, analysis of both volatile organic compounds in exhaled breath and of EBC have great potential to become clinically useful diagnostic and screening tools for early stage lung cancer detection. PMID:24163746

  20. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO)

    PubMed Central

    Kim, Claire H; Lee, Yuan-Chin Amy; Hung, Rayjean J; McNallan, Sheila R; Cote, Michele L; Lim, Wei-Yen; Chang, Shen-Chih; Kim, Jin Hee; Ugolini, Donatella; Chen, Ying; Liloglou, Triantafillos; Andrew, Angeline S; Onega, Tracy; Duell, Eric J; Field, John K; Lazarus, Philip; Le Marchand, Loic; Neri, Monica; Vineis, Paolo; Kiyohara, Chikako; Hong, Yun-Chul; Morgenstern, Hal; Matsuo, Keitaro; Tajima, Kazuo; Christiani, David C; McLaughlin, John R; Bencko, Vladimir; Holcatova, Ivana; Boffetta, Paolo; Brennan, Paul; Fabianova, Eleonora; Foretova, Lenka; Janout, Vladimir; Lissowska, Jolanta; Mates, Dana; Rudnai, Peter; Szeszenia-Dabrowska, Neonila; Mukeria, Anush; Zaridze, David; Seow, Adeline; Schwartz, Ann G; Yang, Ping; Zhang, Zuo-Feng

    2014-01-01

    While the association between exposure to secondhand smoke and lung cancer risk is well established, few studies with sufficient power have examined the association by histological type. In this study, we evaluated the secondhand smoke-lung cancer relationship by histological type based on pooled data from 18 case-control studies in the International Lung Cancer Consortium (ILCCO), including 2,504 cases and 7,276 controls who were never smokers and 10,184 cases and 7,176 controls who were ever smokers. We used multivariable logistic regression, adjusting for age, sex, race/ethnicity, smoking status, pack-years of smoking, and study. Among never smokers, the odds ratios (OR) comparing those ever exposed to secondhand smoke with those never exposed were 1.31 (95% CI: 1.17–1.45) for all histological types combined, 1.26 (95% CI: 1.10–1.44) for adenocarcinoma, 1.41 (95% CI: 0.99–1.99) for squamous cell carcinoma, 1.48 (95% CI: 0.89–2.45) for large cell lung cancer, and 3.09 (95% CI: 1.62–5.89) for small cell lung cancer. The estimated association with secondhand smoke exposure was greater for small cell lung cancer than for non-small cell lung cancers (OR=2.11, 95% CI: 1.11–4.04). This analysis is the largest to date investigating the relation between exposure to secondhand smoke and lung cancer. Our study provides more precise estimates of the impact of secondhand smoke on the major histological types of lung cancer, indicates the association with secondhand smoke is stronger for small cell lung cancer than for the other histological types, and suggests the importance of intervention against exposure to secondhand smoke in lung cancer prevention. PMID:24615328

  1. Radon exposure and cancers other than lung cancer in Swedish iron miners.

    PubMed Central

    Darby, S C; Radford, E P; Whitley, E

    1995-01-01

    Data are presented on the risks of cancers other than lung cancer in a cohort of iron miners from northern Sweden occupationally exposed to elevated levels of the radioactive gas radon. Compared with rates for the four northernmost counties of Sweden, mortality was increased for all cancers other than lung cancer (ratio of observed to expected deaths 1.21, 95% confidence interval 1.03-1.41), stomach cancer (ratio of observed to expected deaths 1.45, 95% confidence interval 1.04-1.98), and rectal cancer (ratio of observed to expected deaths 1.94, 95% confidence interval 1.03-3.31). Despite these overall increases, mortality was not significantly associated with cumulative exposure to radon, either for all cancers other than lung cancer or for any site of cancer other than lung cancer individually. However, the data from this cohort on its own have limited power; and for several sites of cancer the data in this study would be consistent with a radon-related increase. Further study of cancers other than lung cancer in populations exposed to radon is required. PMID:7614946

  2. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  3. Regular aspirin use and lung cancer risk.

    PubMed

    Moysich, Kirsten B; Menezes, Ravi J; Ronsani, Adrienne; Swede, Helen; Reid, Mary E; Cummings, K Michael; Falkner, Karen L; Loewen, Gregory M; Bepler, Gerold

    2002-11-26

    Although a large number of epidemiological studies have examined the role of aspirin in the chemoprevention of colon cancer and other solid tumors, there is a limited body of research focusing on the association between aspirin and lung cancer risk. We conducted a hospital-based case-control study to evaluate the role of regular aspirin use in lung cancer etiology. Study participants included 868 cases with primary, incident lung cancer and 935 hospital controls with non-neoplastic conditions who completed a comprehensive epidemiological questionnaire. Participants were classified as regular aspirin users if they had taken the drug at least once a week for at least one year. Results indicated that lung cancer risk was significantly lower for aspirin users compared to non-users (adjusted OR = 0.57; 95% CI 0.41-0.78). Although there was no clear evidence of a dose-response relationship, we observed risk reductions associated with greater frequency of use. Similarly, prolonged duration of use and increasing tablet years (tablets per day x years of use) was associated with reduced lung cancer risk. Risk reductions were observed in both sexes, but significant dose response relationships were only seen among male participants. When the analyses were restricted to former and current smokers, participants with the lowest cigarette exposure tended to benefit most from the potential chemopreventive effect of aspirin. After stratification by histology, regular aspirin use was significantly associated with reduced risk of small cell lung cancer and non-small cell lung cancer. Overall, results from this hospital-based case-control study suggest that regular aspirin use may be associated with reduced risk of lung cancer.

  4. Regular aspirin use and lung cancer risk

    PubMed Central

    Moysich, Kirsten B; Menezes, Ravi J; Ronsani, Adrienne; Swede, Helen; Reid, Mary E; Cummings, K Michael; Falkner, Karen L; Loewen, Gregory M; Bepler, Gerold

    2002-01-01

    Background Although a large number of epidemiological studies have examined the role of aspirin in the chemoprevention of colon cancer and other solid tumors, there is a limited body of research focusing on the association between aspirin and lung cancer risk. Methods We conducted a hospital-based case-control study to evaluate the role of regular aspirin use in lung cancer etiology. Study participants included 868 cases with primary, incident lung cancer and 935 hospital controls with non-neoplastic conditions who completed a comprehensive epidemiological questionnaire. Participants were classified as regular aspirin users if they had taken the drug at least once a week for at least one year. Results Results indicated that lung cancer risk was significantly lower for aspirin users compared to non-users (adjusted OR = 0.57; 95% CI 0.41–0.78). Although there was no clear evidence of a dose-response relationship, we observed risk reductions associated with greater frequency of use. Similarly, prolonged duration of use and increasing tablet years (tablets per day × years of use) was associated with reduced lung cancer risk. Risk reductions were observed in both sexes, but significant dose response relationships were only seen among male participants. When the analyses were restricted to former and current smokers, participants with the lowest cigarette exposure tended to benefit most from the potential chemopreventive effect of aspirin. After stratification by histology, regular aspirin use was significantly associated with reduced risk of small cell lung cancer and non-small cell lung cancer. Conclusions Overall, results from this hospital-based case-control study suggest that regular aspirin use may be associated with reduced risk of lung cancer. PMID:12453317

  5. Lung cancer in HIV Infection.

    PubMed

    Mani, Deepthi; Haigentz, Missak; Aboulafia, David M

    2012-01-01

    Lung cancer is the most prevalent non-AIDS-defining malignancy in the highly active antiretroviral therapy era. Smoking plays a significant role in the development of HIV-associated lung cancer, but the cancer risk is two to four times greater in HIV-infected persons than in the general population, even after adjusting for smoking intensity and duration. Lung cancer is typically diagnosed a decade or more earlier among HIV-infected persons (mean age, 46 years) compared to those without HIV infection. Adenocarcinoma is the most common histological subtype, and the majority of patients are diagnosed with locally advanced or metastatic carcinoma. Because pulmonary infections are common among HIV-infected individuals, clinicians may not suspect lung cancer in this younger patient population. Surgery with curative intent remains the treatment of choice for early-stage disease. Although there is increasing experience in using radiation and chemotherapy for HIV-infected patients who do not have surgical options, there is a need for prospective studies because this population is frequently excluded from participating in cancer trials. Evidence-based treatments for smoking-cessation with demonstrated efficacy in the general population must be routinely incorporated into the care of HIV-positive smokers. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The liquid biopsy in lung cancer.

    PubMed

    Ansari, Junaid; Yun, Jungmi W; Kompelli, Anvesh R; Moufarrej, Youmna E; Alexander, Jonathan S; Herrera, Guillermo A; Shackelford, Rodney E

    2016-11-01

    The incidence of lung cancer has significantly increased over the last century, largely due to smoking, and remains the most common cause of cancer deaths worldwide. This is often due to lung cancer first presenting at late stages and a lack of curative therapeutic options at these later stages. Delayed diagnoses, inadequate tumor sampling, and lung cancer misdiagnoses are also not uncommon due to the limitations of the tissue biopsy. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done on circulating tumor markers, particularly circulating tumor DNA. Multiple liquid biopsy molecular methods are presently being examined to determine their efficacy as surrogates to the tumor tissue biopsy. This review will focus on new liquid biopsy technologies and how they may assist in lung cancer detection, diagnosis, and treatment.

  7. Lung cancer disparities and African-Americans.

    PubMed

    Sin, Mo-Kyung

    2017-07-01

    African-Americans, as historically disadvantaged minorities, have more advanced stages of cancer when diagnosed, lower survival rates, and lower rates of accessing timely care than do Caucasians. Lung cancer incidence and mortality, in particular, are high among African-Americans. The U.S. Preventive Services Task Force recently released an evidence-based lung cancer screening technology called low-dose computerized tomography. High-risk African-Americans might benefit greatly from such screening but not many are aware of this technology. Public health nurses can play a key role in increasing awareness of the technology among African-American communities and encouraging qualified African-Americans to obtain screening. This study discusses issues with lung cancer and smoking among African-Americans, a recently released evidence-based lung cancer screening technology, and implications for public health nurses to enhance uptake of the new screening technology among high-risk African-Americans. © 2017 Wiley Periodicals, Inc.

  8. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients.

    PubMed

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-12-01

    BACKGROUND.: Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. PATIENTS AND METHODS.: Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. RESULTS.: We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. CONCLUSION.: Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF.

  9. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients

    PubMed Central

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-01-01

    Background. Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. Patients and methods. Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. Results. We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. Conclusion. Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF. PMID:23412843

  10. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  11. Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma.

    PubMed

    Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng

    2018-01-01

    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.

  12. Survival in patients with metachronous second primary lung cancer.

    PubMed

    Ha, Duc; Choi, Humberto; Chevalier, Cory; Zell, Katrina; Wang, Xiao-Feng; Mazzone, Peter J

    2015-01-01

    Four to 10% of patients with non-small cell lung cancer subsequently develop a metachronous second primary lung cancer. The decision to perform surveillance or screening imaging for patients with potentially cured lung cancer must take into account the outcomes expected when detecting metachronous second primaries. To assess potential survival differences between patients with metachronous second primary lung cancer compared to matched patients with first primary lung cancer. We retrospectively reviewed patients diagnosed with lung cancer at the Cleveland Clinic (2006-2010). Metachronous second primary lung cancer was defined as lung cancer diagnosed after a 4-year, disease-free interval from the first lung cancer, or if there were two different histologic subtypes diagnosed at different times. Patients with first primary lung cancer diagnosed in the same time period served as control subjects. Propensity score matching was performed using age, sex, smoking history, histologic subtype, and collaborative stage, with a 1:3 case-control ratio. Survival analyses were performed by Cox proportional hazards modeling and Kaplan-Meier estimates. Forty-four patients met criteria for having a metachronous second primary lung cancer. There were no statistically significant differences between case subjects and control subjects in prognostic variables. The median survival time and 2-year overall survival rate for the metachronous second primary group, compared with control subjects, were as follows: 11.8 versus 18.4 months (P = 0.18) and 31.0 versus 40.9% (P = 0.28). The survival difference was largest in those with stage I metachronous second primaries (median survival time, 26.8 vs. 60.4 mo, P = 0.09; 2-year overall survival, 56.3 vs. 71.2%, P = 0.28). Patients with stage I metachronous second primary lung cancer may have worse survival than those who present with a first primary lung cancer. This could influence the benefit-risk balance of screening the high-risk cohort with

  13. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft.

    PubMed

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-16

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy.

  14. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft

    NASA Astrophysics Data System (ADS)

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-01

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy.

  15. Missed lung cancer: when, where, and why?

    PubMed Central

    del Ciello, Annemilia; Franchi, Paola; Contegiacomo, Andrea; Cicchetti, Giuseppe; Bonomo, Lorenzo; Larici, Anna Rita

    2017-01-01

    Missed lung cancer is a source of concern among radiologists and an important medicolegal challenge. In 90% of the cases, errors in diagnosis of lung cancer occur on chest radiographs. It may be challenging for radiologists to distinguish a lung lesion from bones, pulmonary vessels, mediastinal structures, and other complex anatomical structures on chest radiographs. Nevertheless, lung cancer can also be overlooked on computed tomography (CT) scans, regardless of the context, either if a clinical or radiologic suspect exists or for other reasons. Awareness of the possible causes of overlooking a pulmonary lesion can give radiologists a chance to reduce the occurrence of this eventuality. Various factors contribute to a misdiagnosis of lung cancer on chest radiographs and on CT, often very similar in nature to each other. Observer error is the most significant one and comprises scanning error, recognition error, decision-making error, and satisfaction of search. Tumor characteristics such as lesion size, conspicuity, and location are also crucial in this context. Even technical aspects can contribute to the probability of skipping lung cancer, including image quality and patient positioning and movement. Albeit it is hard to remove missed lung cancer completely, strategies to reduce observer error and methods to improve technique and automated detection may be valuable in reducing its likelihood. PMID:28206951

  16. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer.

    PubMed

    Tan, Jiunn-Liang; Yong, Zheng-Xin; Liam, Chong-Kin

    2016-10-01

    Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen ® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai's Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies.

  17. The Novel IκB Kinase β Inhibitor, IMD-0560, Has Potent Therapeutic Efficacy in Ovarian Cancer Xenograft Model Mice.

    PubMed

    Sawada, Ikuko; Hashimoto, Kae; Sawada, Kenjiro; Kinose, Yasuto; Nakamura, Koji; Toda, Aska; Nakatsuka, Erika; Yoshimura, Akihiko; Mabuchi, Seiji; Fujikawa, Tomoyuki; Itai, Akiko; Kimura, Tadashi

    2016-05-01

    Aberrant activation of nuclear factor-kappa β (NF-κB) signaling has been correlated with poor outcome among patients with ovarian cancer. Although the therapeutic potential of NF-κB pathway disruption in cancers has been extensively studied, most classical NF-κB inhibitors are poorly selective, exhibit off-target effects, and have failed to be applied in clinical use. IMD-0560, N-[2,5-bis (trifluoromethyl) phenyl]-5-bromo-2-hydroxybenzamide, is a novel low-molecular-weight compound that selectively inhibits the IκB kinase complex and works as an inhibitor of NF-κB signaling. The aim of this study was to assess the therapeutic potential of IMD-0560 against ovarian cancer in vitro and in vivo. NF-κB activity (phosphorylation) was determined in 9 ovarian cancer cell lines and the inhibitory effect of IMD-0560 on NF-κB activation was analyzed by Western blotting. Cell viability, cell cycle, vascular endothelial growth factor (VEGF) expression, and angiogenesis were assessed in vitro to evaluate the effect of IMD-0560 on ovarian cancer cells. In vivo efficacy of IMD-0560 was also investigated using an ovarian cancer xenograft mouse model. The NF-κB signaling pathway was constitutively activated in 8 of 9 ovarian cancer cell lines. IMD-0560 inhibited NF-κB activation and suppressed ovarian cancer cell proliferation by inducing G1 phase arrest. IMD-0560 decreased VEGF secretion from cancer cells and inhibited the tube formation of human umbilical vein endothelial cells. IMD-0560 significantly inhibited peritoneal metastasis and prolonged the survival in an ovarian cancer xenograft mice model. Immunohistochemical staining of excised tumors revealed that IMD-0560 suppressed VEGF expression, tumor angiogenesis, and cancer cell proliferation. IMD-0560 showed promising therapeutic efficacy against ovarian cancer xenograft mice by inducing cell cycle arrest and suppressing VEGF production from cancer cells. IMD-0560 may be a potential future option in regimens for the

  18. Icotinib enhances lung cancer cell radiosensitivity in vitro and in vivo by inhibiting MAPK/ERK and AKT activation.

    PubMed

    Fu, Yonghong; Zhang, Sen; Wang, Dongjie; Wang, Jing

    2018-05-16

    Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Lung cancer: diagnosis, treatment principles, and screening.

    PubMed

    Latimer, Kelly M; Mott, Timothy F

    2015-02-15

    Lung cancer is classified histologically into small cell and non-small cell lung cancers. The most common symptoms of lung cancer are cough, dyspnea, hemoptysis, and systemic symptoms such as weight loss and anorexia. High-risk patients who present with symptoms should undergo chest radiography. If a likely alternative diagnosis is not identified, computed tomography and possibly positron emission tomography should be performed. If suspicion for lung cancer is high, a diagnostic evaluation is warranted. The diagnostic evaluation has three simultaneous steps (tissue diagnosis, staging, and functional evaluation), all of which affect treatment planning and determination of prognosis. The least invasive method possible should be used. The diagnostic evaluation and treatment of a patient with lung cancer require a team of specialists, including a pulmonologist, medical oncologist, radiation oncologist, pathologist, radiologist, and thoracic surgeon. Non-small cell lung cancer specimens are tested for various mutations, which, if present, can be treated with new targeted molecular therapies. The family physician should remain involved in the patient's care to ensure that the values and wishes of the patient and family are considered and, if necessary, to coordinate end-of-life care. Early palliative care improves quality of life and may prolong survival. Family physicians should concentrate on early recognition of lung cancer, as well as prevention by encouraging tobacco cessation at every visit. The U.S. Preventive Services Task Force recommends lung cancer screening using low-dose computed tomography in high-risk patients. However, the American Academy of Family Physicians concludes that the evidence is insufficient to recommend for or against screening. Whether to screen high-risk patients should be a shared decision between the physician and patient.

  20. Immunotherapy for lung cancer: advances and prospects.

    PubMed

    Yang, Li; Wang, Liping; Zhang, Yi

    2016-01-01

    Lung cancer is the most commonly diagnosed cancer as well as the leading cause of cancer-related deaths worldwide. To date, surgery is the first choice treatment, but most clinically diagnosed cases are inoperable. While chemotherapy and/or radiotherapy are the next considered options for such cases, these treatment modalities have adverse effects and are sometimes lethal to patients. Thus, new effective strategies with minimal side effects are urgently needed. Cancer immunotherapy provides either active or passive immunity to target tumors. Multiple immunotherapy agents have been proposed and tested for potential therapeutic benefit against lung cancer, and some pose fewer side effects as compared to conventional chemotherapy and radiotherapy. In this article, we discuss studies focusing on interactions between lung cancer and the immune system, and we place an emphasis on outcome evidence in order to create a knowledge base well-grounded in clinical reality. Overall, this review highlights the need for new lung cancer treatment options, with much ground to be paved for future advances in the field. We believe that immunotherapy agents alone or with other forms of treatment can be recognized as next modality of lung cancer treatment.

  1. Fludeoxyglucose F-18-PET in Planning Lung Cancer Radiation Therapy

    ClinicalTrials.gov

    2018-04-19

    Stage I Lung Cancer; Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Lung Cancer; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7

  2. The European initiative for quality management in lung cancer care.

    PubMed

    Blum, Torsten G; Rich, Anna; Baldwin, David; Beckett, Paul; De Ruysscher, Dirk; Faivre-Finn, Corinne; Gaga, Mina; Gamarra, Fernando; Grigoriu, Bogdan; Hansen, Niels C G; Hubbard, Richard; Huber, Rudolf Maria; Jakobsen, Erik; Jovanovic, Dragana; Konsoulova, Assia; Kollmeier, Jens; Massard, Gilbert; McPhelim, John; Meert, Anne-Pascale; Milroy, Robert; Paesmans, Marianne; Peake, Mick; Putora, Paul-Martin; Scherpereel, Arnaud; Schönfeld, Nicolas; Sitter, Helmut; Skaug, Knut; Spiro, Stephen; Strand, Trond-Eirik; Taright, Samya; Thomas, Michael; van Schil, Paul E; Vansteenkiste, Johan F; Wiewrodt, Rainer; Sculier, Jean-Paul

    2014-05-01

    Lung cancer is the commonest cause of cancer-related death worldwide and poses a significant respiratory disease burden. Little is known about the provision of lung cancer care across Europe. The overall aim of the Task Force was to investigate current practice in lung cancer care across Europe. The Task Force undertook four projects: 1) a narrative literature search on quality management of lung cancer; 2) a survey of national and local infrastructure for lung cancer care in Europe; 3) a benchmarking project on the quality of (inter)national lung cancer guidelines in Europe; and 4) a feasibility study of prospective data collection in a pan-European setting. There is little peer-reviewed literature on quality management in lung cancer care. The survey revealed important differences in the infrastructure of lung cancer care in Europe. The European guidelines that were assessed displayed wide variation in content and scope, as well as methodological quality but at the same time there was relevant duplication. The feasibility study demonstrated that it is, in principle, feasible to collect prospective demographic and clinical data on patients with lung cancer. Legal obligations vary among countries. The European Initiative for Quality Management in Lung Cancer Care has provided the first comprehensive snapshot of lung cancer care in Europe.

  3. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  4. The ALCHEMIST Lung Cancer Trials

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trials that will examine tumor tissue from patients with certain types of early-stage, completely resected non-small cell lung cancer for gene mutations in the EGFR and ALK genes, and assign patients with these gene mutations to treatment trials testing post-surgical use of drugs targeted against these mutations.

  5. Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia

    PubMed Central

    NGUYEN, TRI-HUNG; WEBER, WILLIAM; HAVARI, EVIS; CONNORS, TIMOTHY; BAGLEY, REBECCA G.; McLAREN, RAJASHREE; NAMBIAR, PRASHANT R.; MADDEN, STEPHEN L.; TEICHER, BEVERLY A.; ROBERTS, BRUCE; KAPLAN, JOHANNE; SHANKARA, SRINIVAS

    2012-01-01

    Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the transcriptional level, TMPRSS4 message was significantly elevated in the majority of human squamous cell and adenocarcinomas compared with normal lung tissues. Staining of over 100 NSCLC primary tumor and normal specimens with rabbit polyclonal anti-TMPRSS4 antibodies confirmed expression at the protein level in both squamous cell and adenocarcinomas with little or no staining in normal lung tissues. Human lung tumor cell lines expressed varying levels of TMPRSS4 mRNA in vitro. Interestingly, tumor cell lines with high levels of TMPRSS4 mRNA failed to show detectable TMPRSS4 protein by either immunoblotting or flow cytometry. However, protein levels were increased under hypoxic culture conditions suggesting that hypoxia within the tumor microenvironment may upregulate TMPRSS4 protein expression in vivo. This was supported by the observation of TMPRSS4 protein in xenograft tumors derived from the cell lines. In addition, staining of human squamous cell carcinoma samples for carbonic anhydrase IX (CAIX), a hypoxia marker, showed TMPRSS4 positive cells adjacent to CAIX positive cells. Overall, these results indicate that the cancer-associated TMPRSS4 protein is overexpressed in NSCLC and may represent a potential therapeutic target. PMID:22692880

  6. Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis.

    PubMed

    Gao, Liuwei; Liu, Jun; Zhang, Bin; Zhang, Hua; Wang, Daowei; Zhang, Tiemei; Liu, Yang; Wang, Changli

    2014-02-01

    The mucin MUC4 is a high molecular weight membrane-bound transmembrane glycoprotein that is frequently detected in invasive and metastatic cancer. The overexpression of MUC4 is associated with increased risks for several types of cancer. However, the functional role of MUC4 is poorly understood in lung adenocarcinoma. Using antisense-MUC4-RNA transfected adenocarcinoma cells, we discovered that the loss of MUC4 expression results in epithelial-mesenchymal transition (EMT). We found morphological alterations and the repression of the epithelial marker E-cadherin in transfected cells. Additionally, the loss of MUC4 caused the upregulation of the mesenchymal marker vimentin compared to control cells. Using a MUC4-knockdown versus control LTEP xenograft mice model (129/sv mice), we also found that EMT happened in lung tissues of MUC4-knockdown-LTEP xenograft mice. Moreover, antisense-MUC4-RNA transfected cells had a significantly increased cellular migration ability in vitro. The loss of MUC4 also occurred in lung adenocarcinoma patients with lymph node metastases. We further investigated MUC4 and found that it plays a critical role in regulating EMT by modulating β-catenin. Taken together, our study reveals a novel role for MUC4 in suppressing EMT and suggests that the assessment of MUC4 may function as a prognostic biomarker and could be a potential therapeutic target for lung adenocarcinoma metastasis.

  7. Metabolic Signaling and Therapy of Lung Cancer

    DTIC Science & Technology

    2013-09-01

    this grant is to decipher molecular mechanisms by which glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) promotes lung cancer cell metabolism and...PGAM1 in regulation of lung cancer metabolism; molecular mechanisms underlying PGAM1 activation in lung cancer; PGAM1 inhibitor as novel therapy to...leukemia cells from human patients with minimal toxicity. Therefore, the current funded proposal focuses to decipher molecular mechanisms by which

  8. Inflammatory Gene Polymorphisms in Lung Cancer Susceptibility.

    PubMed

    Eaton, Keith D; Romine, Perrin E; Goodman, Gary E; Thornquist, Mark D; Barnett, Matt J; Petersdorf, Effie W

    2018-05-01

    Chronic inflammation has been implicated in carcinogenesis, with increasing evidence of its role in lung cancer. We aimed to evaluate the role of genetic polymorphisms in inflammation-related genes in the risk for development of lung cancer. A nested case-control study design was used, and 625 cases and 625 well-matched controls were selected from participants in the β-Carotene and Retinol Efficacy Trial, which is a large, prospective lung cancer chemoprevention trial. The association between lung cancer incidence and survival and 23 polymorphisms descriptive of 11 inflammation-related genes (interferon gamma gene [IFNG], interleukin 10 gene [IL10], interleukin 1 alpha gene [IL1A], interleukin 1 beta gene [IL1B], interleukin 2 gene [IL2], interleukin 4 receptor gene [IL4R], interleukin 4 gene [IL4], interleukin 6 gene [IL6], prostaglandin-endoperoxide synthase 2 gene [PTGS2] (also known as COX2), transforming growth factor beta 1 gene [TGFB1], and tumor necrosis factor alpha gene [TNFA]) was evaluated. Of the 23 polymorphisms, two were associated with risk for lung cancer. Compared with individuals with the wild-type (CC) variant, individuals carrying the minor allele variants of the IL-1β-511C>T promoter polymorphism (rs16944) (CT and TT) had decreased odds of lung cancer (OR = 0.74, [95% confidence interval (CI): 0.58-0.94] and OR = 0.71 [95% CI: 0.50-1.01], respectively, p = 0.03). Similar results were observed for the IL-1β-1464 C>G promoter polymorphism (rs1143623), with presence of the minor variants CG and CC having decreased odds of lung cancer (OR = 0.75 [95% CI: 0.59-0.95] and OR = 0.69 [95% CI: 0.46-1.03], respectively, p = 0.03). Survival was not influenced by genotype. This study provides further evidence that IL1B promoter polymorphisms may modulate the risk for development of lung cancer. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  9. Components Necessary for High-Quality Lung Cancer Screening

    PubMed Central

    Powell, Charles A.; Arenberg, Douglas; Detterbeck, Frank; Gould, Michael K.; Jaklitsch, Michael T.; Jett, James; Naidich, David; Vachani, Anil; Wiener, Renda Soylemez; Silvestri, Gerard

    2015-01-01

    Lung cancer screening with a low-dose chest CT scan can result in more benefit than harm when performed in settings committed to developing and maintaining high-quality programs. This project aimed to identify the components of screening that should be a part of all lung cancer screening programs. To do so, committees with expertise in lung cancer screening were assembled by the Thoracic Oncology Network of the American College of Chest Physicians (CHEST) and the Thoracic Oncology Assembly of the American Thoracic Society (ATS). Lung cancer program components were derived from evidence-based reviews of lung cancer screening and supplemented by expert opinion. This statement was developed and modified based on iterative feedback of the committees. Nine essential components of a lung cancer screening program were identified. Within these components 21 Policy Statements were developed and translated into criteria that could be used to assess the qualification of a program as a screening facility. Two additional Policy Statements related to the need for multisociety governance of lung cancer screening were developed. High-quality lung cancer screening programs can be developed within the presented framework of nine essential program components outlined by our committees. The statement was developed, reviewed, and formally approved by the leadership of CHEST and the ATS. It was subsequently endorsed by the American Association of Throacic Surgery, American Cancer Society, and the American Society of Preventive Oncology. PMID:25356819

  10. Thyroid function in lung cancer

    PubMed Central

    Ratcliffe, J G; Stack, B H R; Burt, R W; Ratcliffe, W A; Spilg, W G S; Cuthbert, J; Kennedy, R S

    1978-01-01

    Thyroid function was assessed at the time of initial diagnosis in 204 patients with lung cancer and compared with that of age and sex-matched patients with non-malignant lung disease. Abnormalities in thyroid function were found in 67 patients (33%). The most prevalent abnormality was a low T3 concentration; this was not associated with other clinical or biochemical evidence of hypothyroidism, but the short-term prognosis of these patients was worse than that of matched patients with lung cancer having normal T3 concentrations. Primary hypothyroidism occurred in three patients, low T4 concentrations and free thyroxine index (FTI) with normal thyrotrophin (TSH) concentrations in four patients, and moderately raised TSH with normal thyroid hormone concentrations in six patients; nine patients had a raised FTI with or without raised T4 concentration as the sole abnormality. Overall, the pattern of thyroid hormone metabolism in lung cancer was a tendency towards reduced T3 concentrations with significantly increased T4/T3 ratios and modestly increased 3,3′,5′-triiodothyronine (rT3) concentrations. The altered T4/T3 ratio was particularly noticeable in patients with anaplastic tumours of small (“oat cell”) and large cell types, but was not apparently related to detectable extrathoracic metastases. These data suggest that thyroid hormone metabolism is altered in patients with lung cancer by decreased 5′-monodeiodination of T4. The resulting low T3 concentrations and altered T4/T3 ratio may be partly responsible for the reduced ratio of androsterone to aetiocholanolone observed in lung cancer, which is known to be a poor prognostic sign. PMID:620266

  11. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  12. Primary lung cancer coexisting with active pulmonary tuberculosis.

    PubMed

    Varol, Y; Varol, U; Unlu, M; Kayaalp, I; Ayranci, A; Dereli, M S; Guclu, S Z

    2014-09-01

    Lung cancer and pulmonary tuberculosis (TB) comorbidity is a clinical problem that presents a challenge for the diagnosis and treatment of both diseases. To clarify the clinical and survival characteristics of cases with both lung cancer and active pulmonary TB. From 2008 to 2013, 3350 TB patients admitted to the TB Department of the Chest Diseases Hospital of Izmir, Turkey, were evaluated. In 38 (1.1%) male patients, lung cancer and TB were found to coexist. Almost all of the patients were diagnosed at Stage III (n = 14, 36.8%) or IV (n = 17, 44.7%) lung cancer, whereas four (10.6%) had Stage II and three (7.9%) had Stage I disease. Squamous cell lung cancer was the predominant histology (n = 23, 60.7%). The median overall survival among patients was 13.4 months (95%CI 8.09-18.8). One-year survival rates for patients with Stages I, II, III and IV were respectively 100%, 75%, 57% and 40%. The present study demonstrates that lung cancer combined with active pulmonary TB most frequently presents as squamous cell carcinoma, with a male predominance. The overall survival of lung cancer patients did not change even with concomitant active TB.

  13. Outcomes in Lung Cancer: 9-Year Experience From a Tertiary Cancer Center in India

    PubMed Central

    Murali, Aditya Navile; Ganesan, Trivadi S.; Rajendranath, Rejiv; Ganesan, Prasanth; Selvaluxmy, Ganesarajah; Swaminathan, Rajaraman; Sundersingh, Shirley; Krishnamurthy, Arvind; Sagar, Tenali Gnana

    2017-01-01

    Purpose Lung cancer is the most common cause of cancer mortality in the world. There are limited studies on survival outcomes of lung cancer in developing countries such as India. This study analyzed the outcomes of patients with lung cancer who underwent treatment at Cancer Institute (WIA), Chennai, India, between 2006 and 2015 to determine survival outcomes and identify prognostic factors. Patients and Methods In all, 678 patients with lung cancer underwent treatment. Median age was 58 years, and 91% of patients had non–small-cell lung cancer (NSCLC). Testing for epidermal growth factor receptor mutation was performed in 132 of 347 patients and 61 (46%) were positive. Results Median progression-free survival was 6.9 months and overall survival (OS) was 7.6 months for patients with NSCLC. Median progression-free survival was 6 months and OS was 7.2 months for patients with small-cell lung cancer. On multivariable analysis, the factors found to be significantly associated with inferior OS in NSCLC included nonadenocarcinoma histology, performance status more than 2, and stage. In small-cell lung cancer, younger age and earlier stage at presentation showed significantly better survival. Conclusion Our study highlights the challenges faced in treating lung cancer in India. Although median survival in advanced-stage lung cancer is still poor, strategies such as personalized medicine and use of second-line and maintenance chemotherapy may significantly improve the survival in patients with advanced-stage lung cancer in developing countries. PMID:29094084

  14. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  15. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model.

    PubMed

    Chen, Shanshan; Li, Xuechun; Chen, Rongming; Yin, Mingang; Zheng, Qiuhong

    2016-09-01

    Natural killer (NK) cells, discovered ~40 years ago, are believed to be the most effective cytotoxic lymphocytes to counteract cancer; however, adoptive NK cell therapy in vivo has encountered certain limitations, including a lack of specificity. The drug cetuximab can mediate antibody dependent cell mediated cytotoxicity (ADCC) activity through NK cells in vivo , and has been approved for the first-line treatment of epidermal growth factor receptor (EGFR)-positive metastatic colorectal cancer (CRC). However, the ADCC activity of adoptive NK cells, induced by cetuximab in a nude mouse CRC xenograft model, has not been previously reported. The aim of the present study was to explore the ADCC activity of cetuximab combined with adoptive NK cells in CRC xenograft models with various EGFR expressions. The nude mouse xenograft models were established by subcutaneously injecting LOVO or SW620 cells. The mice were then randomly divided into 6 groups: Phosphate-buffered saline, cetuximab, human immunoglobulin G (hIgG), NK cells, hIgG plus NK cells and cetuximab plus NK cells. The ADCC antitumor activity was evaluated in these CRC models. The results indicated that the cetuximab plus NK cells group showed the greatest tumor inhibition effect compared with the NK cells group in LOVO xenograft tumor models with positive EGFR expression. However, the combination of cetuximab and NK cells did not show a stronger tumor inhibitory effect against the SW620 xenograft tumor models compared with the efficiency of NK cells. In conclusion, cetuximab could intensify the ADCC antitumor activity of adoptive NK cells towards CRC with an increased EGFR expression. The combination of cetuximab and NK cells may be a potential immunotherapy for metastatic CRC patients with positive EGFR expression.

  16. Liquid biopsy for early detection of lung cancer.

    PubMed

    Hofman, Paul

    2017-01-01

    The possibility of complete recovery for a lung cancer patient depends on very early diagnosis, as it allows total surgical resection. Screening for this cancer in a high-risk population can be performed using a radiological approach, but this holds a certain number of limitations. Liquid biopsy could become an alternative and complementary screening approach to chest imaging for early diagnosis of lung cancer. Several circulating biomarkers indicative of lung cancer can be investigated in blood, such as circulating tumor cells, circulating free nucleic acids (RNA and DNA) and proteins. However, none of these biomarkers have yet been adopted in routine clinical practice and studies are ongoing to confirm or not the usefulness and practical interest in routine early diagnosis and screening for lung cancers. Several potential circulating biomarkers for the early detection of lung cancer exist. When coupled to thoracic imaging, these biomarkers must give diagnosis of a totally resectable lung cancer and potentially provide new recommendations for surveillance by imagery of high-risk populations without a detectable nodule. Optimization of the specificity and sensitivity of the detection methods as well as standardization of the techniques is essential before considering for daily practice a liquid biopsy as an early diagnostic tool, or possibly as a predictive test, of lung cancer.

  17. Involvement of MicroRNAs in Lung Cancer Biology and Therapy

    PubMed Central

    Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2011-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030

  18. Metformin Sensitizes Non-small Cell Lung Cancer Cells to an Epigallocatechin-3-Gallate (EGCG) Treatment by Suppressing the Nrf2/HO-1 Signaling Pathway.

    PubMed

    Yu, Chenxiao; Jiao, Yang; Xue, Jiao; Zhang, Qi; Yang, Hongying; Xing, Ligang; Chen, Guangxia; Wu, Jinchang; Zhang, Shuyu; Zhu, Wei; Cao, Jianping

    2017-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. (-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, is widely studied as a cancer chemopreventive agent with potential anti-cancer effects. The NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway is considered to mediate cellular resistance to EGCG. Metformin, a classical antidiabetic drug, has been shown to prevent cancer progression. Researchers have not reported whether metformin potentiates the anti-cancer efficacy of EGCG. In this study, metformin inhibited HO-1 expression and augmented the anti-tumor effect of EGCG. Metformin also enhanced ROS (reactive oxygen species) generation induced by EGCG (100 μM), subsequently resulting in apoptosis. Based on the results of the in vivo study, size of xenografts treated with the combination of metformin and EGCG was smaller than other groups. Mechanistically, metformin modulated the EGCG-activated Nrf2/HO-1 pathway through Sirtuin 1 (SIRT1)-dependent deacetylation of Nrf2. Moreover, metformin upregulated SIRT1 expression partially through the NF-kB pathway. Comparatively, the combination of EGCG and metformin showed little impact on normal lung epithelial BEAS-2B cells. Based on our findings, metformin sensitized NSCLC cells to the EGCG treatment by suppressing the Nrf2/HO-1 signaling pathway.

  19. Electrochemical treatment of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Y.L.; Xue, F.Z.; Ge, B.S.

    1997-03-01

    A pilot study of electrochemical treatment (ECT) as a therapy for 386 patients with nonsmall cell lung cancer was undertaken. There were 103 stage 2 cases, 89 stage 3a cases, 122 stage 3b cases, and 72 stage 4 cases. Two ECT methods were used. For peripherally located lung cancer, platinum electrodes were inserted transcutaneously into the tumor under x-ray or CT guidance. For central type lung cancer or for those inoperable during thoracotomy, electrodes were inserted intraoperatively directly into the cancer. Voltage was 6--8 V, current was 40--100 mA, and electric charge was 100 coulombs per cm of tumor diameter.more » The number of electrodes was determined from the size of cancer mass, because the diameter of effective area around each electrode is approximately 3 cm. The short-term (6 months after ECT) results of the 386 lung cancer cases were: complete response (CR), 25.6% (99/386); partial response (PR), 46.4% (179/386); no change (NC), 15.3% (59/386); and progressive disease (PD), 12.7% (49/386). The total effective rate (CR + PR) was 72% (278/386). The 1, 3, and 5 year overall survival rates were 86.3% (333/386), 58.8% (227/386), and 29.5% (114/386), respectively. The main complication was traumatic pneumothorax, with an incidence rate of 14.8% (57/386). These clinical results show that ECT is simple, safe, effective, and minimally traumatic. ECT provides an alternative method for treating lung cancers that are conventionally inoperable, that are not responsive to chemotherapy or radiotherapy, or that cannot be resected after thoracotomy. Long-term survival rates suggest that ECT warrants further investigation.« less

  20. Lung Cancer Risk Models for Screening (R package: lcrisks)

    Cancer.gov

    In both the absence and presence of screening, the R package lcrisks, calculates individual risks of lung cancer and lung cancer death based on covariates: age, education, sex, race, smoking intensity/duration/quit-years, Body Mass Index, family history of lung-cancer, and self-reported emphysema. In the presence of CT screening akin to the NLST (3 yearly screens, 5 years of follow-up), it uses the covariates to estimate risk of false-positive CT screen as well as the reduction in risk of lung cancer death and increase in risk of lung cancer screening.

  1. Is cancer history really an exclusion criterion for clinical trial of lung cancer? Influence of gastrointestinal tract cancer history on the outcomes of lung cancer surgery.

    PubMed

    Aokage, Keiju; Okada, Morihito; Suzuki, Kenji; Nomura, Shogo; Suzuki, Shigeki; Tsubokawa, Norifumi; Mimae, Takahiro; Hattori, Aritoshi; Hishida, Tomoyuki; Yoshida, Junji; Tsuboi, Masahiro

    2017-02-15

    Exclusion of patients with a history of other cancer treatment except in situ situation has been considered to be inevitable for clinical trials investigating survival outcome. However, there have been few reports confirming these influences on surgical outcome of lung cancer patients ever. Multi-institutional, individual data from patients with non–small cell lung cancer resected between 2000 and 2013 were collected. The patients were divided into two groups: those with a history of gastrointestinal tract cancer (GI group) and those without any history (non-GI group). We compared the outcomes with well-matched groups using propensity scoring to minimize bias related to the nonrandomness. The influence of gastrointestinal tract cancer stage, disease-free interval, and treatment method for gastrointestinal tract cancer on the surgical outcome of non–small cell lung cancer was examined. We analyzed 196 patients in the GI group and 3732 in the non-GI group. In unmatched cohort, multivariate analyses showed that a history of gastrointestinal tract cancer did not affect overall survival or recurrence-free survival. Independent predictors of poor prognosis included older age, male sex, high carcinoembryonic antigen levels and advanced clinical stage of non–small cell lung cancer. The two groups in the matched cohort demonstrated equivalent overall survival and recurrence-free survival, even in patients with clinical stage I. Gastrointestinal tract cancer stage, disease-free interval and treatment method for gastrointestinal tract cancer were not associated with outcomes. History of early gastrointestinal tract cancer completely resected is not always necessary for exclusion criteria in clinical trial of lung cancer.

  2. Factors affecting 30-month survival in lung cancer patients.

    PubMed

    Mahesh, P A; Archana, S; Jayaraj, B S; Patil, Shekar; Chaya, S K; Shashidhar, H P; Sunitha, B S; Prabhakar, A K

    2012-10-01

    Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients.

  3. Factors affecting 30-month survival in lung cancer patients

    PubMed Central

    Mahesh, P.A.; Archana, S.; Jayaraj, B.S.; Patil, Shekar; Chaya, S.K.; Shashidhar, H.P.; Sunitha, B.S.; Prabhakar, A.K.

    2012-01-01

    Background & objectives: Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Methods: Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. Results: A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Interpretation & conclusions: Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients. PMID:23168702

  4. ATM protein is deficient in over 40% of lung adenocarcinomas.

    PubMed

    Villaruz, Liza C; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F; Stabile, Laura P; Siegfried, Jill M; Conrads, Thomas P; Smith, Neil R; O'Connor, Mark J; Pierce, Andrew J; Bakkenist, Christopher J

    2016-09-06

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year.

  5. ATM protein is deficient in over 40% of lung adenocarcinomas

    PubMed Central

    Villaruz, Liza C.; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F.; Stabile, Laura P.; Siegfried, Jill M.; Conrads, Thomas P.; Smith, Neil R.; O'Connor, Mark J.; Pierce, Andrew J.; Bakkenist, Christopher J.

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year. PMID:27259260

  6. Lung Cancer Rates by State

    MedlinePlus

    ... the Biggest Cancer Killer in Both Men and Women” Stay Informed Rates by State for Other Kinds of Cancer All Cancers Combined Breast Cervical Colorectal (Colon) HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English (US) ...

  7. Overall environmental quality and lung cancer survival

    EPA Science Inventory

    Lung cancer is one of the most prevalent and lethal cancers in the United States. While individual environmental exposures have been associated with lung cancer incidence, the impact of cumulative environmental exposures on survival is not understood. We used the U.S. Environment...

  8. Mind-mapping for lung cancer: Towards a personalized therapeutics approach

    PubMed Central

    Mollberg, N; Surati, M; Demchuk, C; Fathi, R; Salama, AK; Husain, AN; Hensing, T; Salgia, R

    2011-01-01

    There will be over 220,000 people diagnosed with lung cancer and over 160,000 dying of lung cancer this year alone in the United States. In order to arrive at better control, prevention, diagnosis, and therapeutics for lung cancer, we must be able to personalize the approach towards lung cancer. Mind-mapping has existed for centuries for physicians to properly think about various “flows” of personalized medicine. We include here the epidemiology, diagnosis, histology, and treatment of lung cancer—specifically, non-small cell lung cancer. As we have new molecular signatures for lung cancer, this is further detailed. This review is not meant to be a comprehensive review, but rather its purpose is to highlight important aspects of lung cancer diagnosis, management, and personalized treatment options. PMID:21337123

  9. Current and Prospective Protein Biomarkers of Lung Cancer

    PubMed Central

    Zamay, Tatiana N.; Zamay, Galina S.; Kolovskaya, Olga S.; Zukov, Ruslan A.; Petrova, Marina M.; Gargaun, Ana; Berezovski, Maxim V.

    2017-01-01

    Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate. PMID:29137182

  10. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    PubMed

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  11. [Lung cancer and rheumatoid arthritis. An interdisciplinary challenge].

    PubMed

    Rubbert-Roth, A; Zander, T; Kneitz, C; Baerwald, C; Wirtz, H; Witt, C

    2016-02-01

    Lung cancer is a frequently occurring disease, particularly in the elderly; however, within the last 10 years the pharmaceutical treatment of lung cancer has been significantly improved. Due to a better understanding of the pathophysiological events and the identification of molecular subgroups of lung tumors, new therapeutic drugs have been developed that significantly prolong survival of patients with the respective molecular pattern. In particular immunotherapeutic agents, such as programmed death-ligand 1 (PD-L1) and programmed death 1 (PD1) antibodies have shown promising clinical results in a subgroup of lung cancer patients. Due to the high incidence of both lung cancer and rheumatic diseases they often occur together, which necessitates an interdisciplinary management. The success of improved therapy of lung cancer has led to a greater focus on the treatment of comorbidities; however, interventions into the immune system by immune checkpoint inhibitors can lead to new challenges when an autoimmune disease is simultaneously present. The possibility of an effective screening for lung cancer in the future also presents the prospect of an improvement in mortality, which raises the question of the optimal monitoring of patients with rheumatoid arthritis (RA) under immunosuppressive therapy. The aim of this review is to discuss the interaction between lung cancer and RA with respect to the currently available data.

  12. Lung cancer in patients with idiopathic pulmonary fibrosis.

    PubMed

    Karampitsakos, Theodoros; Tzilas, Vasilios; Tringidou, Rodoula; Steiropoulos, Paschalis; Aidinis, Vasilis; Papiris, Spyros A; Bouros, Demosthenes; Tzouvelekis, Argyris

    2017-08-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease of unknown etiology. With a gradually increasing worldwide prevalence and a mortality rate exceeding that of many cancers, IPF diagnosis and management are critically important and require a comprehensive multidisciplinary approach. This approach also involves assessment of comorbid conditions, such as lung cancer, that exerts a dramatic impact on disease survival. Emerging evidence suggests that progressive lung scarring in the context of IPF represents a risk factor for lung carcinogenesis. Both disease entities present with major similarities in terms of pathogenetic pathways, as well as potential causative factors, such as smoking and viral infections. Besides disease pathogenesis, anti-cancer agents, including nintedanib, have been successfully applied in the treatment of patients with IPF while an oncologic approach with a cocktail of several pleiotropic anti-fibrotic agents is currently in the therapeutic pipeline of IPF. Nevertheless, epidemiologic association between IPF and lung cancer does not prove causality. Currently there is significant lack of knowledge supporting a direct association between lung fibrosis and cancer reflecting to disappointing therapeutic algorithms. An optimal therapeutic strategy for patients with both IPF and lung cancer represents an amenable need. This review article synthesizes the current state of knowledge regarding pathogenetic commonalities between IPF and lung cancer and focuses on clinical and therapeutic data that involve both disease entities. Copyright © 2017. Published by Elsevier Ltd.

  13. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer

    PubMed Central

    Tan, Jiunn-Liang; Yong, Zheng-Xin

    2016-01-01

    Background Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. Methods In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Results Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai’s Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. Conclusions The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies. PMID:27867553

  14. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    ClinicalTrials.gov

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  15. Patient-derived tumour xenografts for breast cancer drug discovery.

    PubMed

    Cassidy, John W; Batra, Ankita S; Greenwood, Wendy; Bruna, Alejandra

    2016-12-01

    Despite remarkable advances in our understanding of the drivers of human malignancies, new targeted therapies often fail to show sufficient efficacy in clinical trials. Indeed, the cost of bringing a new agent to market has risen substantially in the last several decades, in part fuelled by extensive reliance on preclinical models that fail to accurately reflect tumour heterogeneity. To halt unsustainable rates of attrition in the drug discovery process, we must develop a new generation of preclinical models capable of reflecting the heterogeneity of varying degrees of complexity found in human cancers. Patient-derived tumour xenograft (PDTX) models prevail as arguably the most powerful in this regard because they capture cancer's heterogeneous nature. Herein, we review current breast cancer models and their use in the drug discovery process, before discussing best practices for developing a highly annotated cohort of PDTX models. We describe the importance of extensive multidimensional molecular and functional characterisation of models and combination drug-drug screens to identify complex biomarkers of drug resistance and response. We reflect on our own experiences and propose the use of a cost-effective intermediate pharmacogenomic platform (the PDTX-PDTC platform) for breast cancer drug and biomarker discovery. We discuss the limitations and unanswered questions of PDTX models; yet, still strongly envision that their use in basic and translational research will dramatically change our understanding of breast cancer biology and how to more effectively treat it. © 2016 The authors.

  16. Lung cancer in shipbuilding and related industries in Louisiana.

    PubMed

    Gottlieb, M S; Stedman, R B

    1979-09-01

    The relationship between shipbuilding and related industries and risk of fatal lung cancer (1960-1975) is described for selected Louisiana parishes. Deaths from lung cancer were matched to deaths not caused by cancer. Shipbuilders had a significantly increased risk (greater than twofold) of dying of lung cancer as compared with other causes. The risk of dying of lung cancer in related occupations (seamen and longshoremen) was also increased. Information on laterality of lung cancer was not supportive of particulate substances contributing to causality due to the large number of unspecified cases. The preponderance of deaths appears to be occurring in men with a greater number of years of exposure to this industry and in those aged 20 to 34 years in 1940. These common occupations in Louisiana could contribute to the high rate of lung cancer.

  17. Surgical and survival outcomes of lung cancer patients with intratumoral lung abscesses.

    PubMed

    Yamanashi, Keiji; Okumura, Norihito; Takahashi, Ayuko; Nakashima, Takashi; Matsuoka, Tomoaki

    2017-05-26

    Intratumoral lung abscess is a secondary lung abscess that is considered to be fatal. Therefore, surgical procedures, although high-risk, have sometimes been performed for intratumoral lung abscesses. However, no studies have examined the surgical outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. The aim of this study was to investigate the surgical and survival outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. Eleven consecutive non-small cell lung cancer patients with intratumoral lung abscesses, who had undergone pulmonary resection at our institution between January 2007 and December 2015, were retrospectively analysed. The post-operative prognoses were investigated and prognostic factors were evaluated. Ten of 11 patients were male and one patient was female. The median age was 64 (range, 52-80) years. Histopathologically, 4 patients had Stage IIA, 2 patients had Stage IIB, 2 patients had Stage IIIA, and 3 patients had Stage IV tumors. The median operative time was 346 min and the median amount of bleeding was 1327 mL. The post-operative morbidity and mortality rates were 63.6% and 0.0%, respectively. Recurrence of respiratory infections, including lung abscesses, was not observed in all patients. The median post-operative observation period was 16.1 (range, 1.3-114.5) months. The 5-year overall survival rate was 43.3%. No pre-operative, intra-operative, or post-operative prognostic factors were identified in the univariate analyses. Surgical procedures for advanced-stage non-small cell lung cancer patients with intratumoral lung abscesses, although high-risk, led to satisfactory post-operative mortality rates and acceptable prognoses.

  18. Relationships between lung cancer incidences and air pollutants.

    PubMed

    Yue, Shihong; Wang, Yaru; Wang, Jianpei; Chen, Jun

    2017-07-20

    Statistics on lung cancer incidences and air pollutants show a strong correlation between air pollutant concentrations and pulmonary diseases. And environmental effects on lung cancer incidences remain highly unknown and uncertain in China. This study aims to measure the relationships between different air pollutants and lung cancer incidences in Tianjin. One thusand five hundred patients across 27 districts in Tianjin were studied for lung cancer incidences. The patients had come into contact with various air pollutants such as PM2.5, PM10, SO2, NO2, CO, and O3. These pollutants were measured daily and were published via a Geographic Information System across the 27 districts of Tianjin. The air pollutant compositions of environments the patients lived in were determined using the nearest air monitoring station to the patient. And we used rough set theory to measure the relationships between different air pollutants and lung cancer incidences. Different air pollutants and combinations of pollutants impacted lung cancer incidences differently across different districts, sexes, and lung cancer types in Tianjin. Based on data analysis and interpretation, rough set theory provided data relationships that were objective and interpretable. The method is simple, general, and efficient, and lays the foundation for further applications in other cities.

  19. Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care.

    PubMed

    Sesen, M Berkan; Peake, Michael D; Banares-Alcantara, Rene; Tse, Donald; Kadir, Timor; Stanley, Roz; Gleeson, Fergus; Brady, Michael

    2014-09-06

    Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection decisions in the lung cancer MDTs. A novel feature of LCA is its ability to provide rule-based and probabilistic decision support within a single platform. The guideline-based CDS is based on clinical guideline rules, while the probabilistic CDS is based on a Bayesian network trained on the English Lung Cancer Audit Database (LUCADA). We assess rule-based and probabilistic recommendations based on their concordances with the treatments recorded in LUCADA. Our results reveal that the guideline rule-based recommendations perform well in simulating the recorded treatments with exact and partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the exact and partial concordance rates achieved with probabilistic results are relatively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils a complementary role in providing accurate survival estimations. Compared to recorded treatments, both CDS approaches promote higher resection rates and multimodality treatments.

  20. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-04-12

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  1. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  2. Interleukin-11 Receptor Is a Candidate Target for Ligand-Directed Therapy in Lung Cancer: Analysis of Clinical Samples and BMTP-11 Preclinical Activity.

    PubMed

    Cardó-Vila, Marina; Marchiò, Serena; Sato, Masanori; Staquicini, Fernanda I; Smith, Tracey L; Bronk, Julianna K; Yin, Guosheng; Zurita, Amado J; Sun, Menghong; Behrens, Carmen; Sidman, Richard L; Lee, J Jack; Hong, Waun K; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2016-08-01

    We previously isolated an IL-11-mimic motif (CGRRAGGSC) that binds to IL-11 receptor (IL-11R) in vitro and accumulates in IL-11R-expressing tumors in vivo. This synthetic peptide ligand was used as a tumor-targeting moiety in the rational design of BMTP-11, which is a drug candidate in clinical trials. Here, we investigated the specificity and accessibility of IL-11R as a target and the efficacy of BMTP-11 as a ligand-targeted drug in lung cancer. We observed high IL-11R expression levels in a large cohort of patients (n = 368). In matching surgical specimens (i.e., paired tumors and nonmalignant tissues), the cytoplasmic levels of IL-11R in tumor areas were significantly higher than in nonmalignant tissues (n = 36; P = 0.003). Notably, marked overexpression of IL-11R was observed in both tumor epithelial and vascular endothelial cell membranes (n = 301; P < 0.0001). BMTP-11 induced in vitro cell death in a representative panel of human lung cancer cell lines. BMTP-11 treatment attenuated the growth of subcutaneous xenografts and reduced the number of pulmonary tumors after tail vein injection of human lung cancer cells in mice. Our findings validate BMTP-11 as a pharmacologic candidate drug in preclinical models of lung cancer and patient-derived tumors. Moreover, the high expression level in patients with non-small cell lung cancer is a promising feature for potential translational applications. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...

  4. 28 CFR 79.45 - Proof of primary lung cancer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  5. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  6. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...

  7. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  8. 28 CFR 79.45 - Proof of primary lung cancer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  9. 28 CFR 79.45 - Proof of primary lung cancer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  10. 28 CFR 79.45 - Proof of primary lung cancer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  11. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...

  12. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  13. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  14. 28 CFR 79.45 - Proof of primary lung cancer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Proof of primary lung cancer. 79.45... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  15. 28 CFR 79.54 - Proof of primary lung cancer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.54... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... conclusion that a claimant developed primary lung cancer must be supported by medical documentation. To prove...

  16. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...

  17. 28 CFR 79.64 - Proof of primary lung cancer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Proof of primary lung cancer. 79.64... cancer. (a) In determining whether a claimant developed primary lung cancer following pertinent... claimant. A conclusion that a claimant developed primary lung cancer must be supported by medical...

  18. Lung Cancer Prevention (PDQ®)—Patient Version

    Cancer.gov

    Lung cancer prevention approaches include avoiding exposure to risk factors like tobacco smoke, radon, radiation, asbestos, and other substances. Learn more about preventing lung cancer in this expert-reviewed summary.

  19. Anatomical thoracoscopic segmentectomy for lung cancer.

    PubMed

    Ohtaki, Yoichi; Shimizu, Kimihiro

    2014-10-01

    Minimally invasive surgery for lung cancer has seen considerable progress. A segmentectomy is less invasive than a lobectomy as it preserves lung parenchyma. The preservation of pulmonary function can reduce complications. The combination of a thoracoscopic approach with a segmentectomy should be less invasive, and retrospective studies have shown that the thoracoscopic approach is safe and feasible due to the lower postoperative mortality and complication rates as compared to an open thoracotomy. The validity of a segmentectomy for ground-glass-opacity-type lung cancer has been demonstrated, and it has also been evaluated for small, predominantly solid, lung cancers. Two prospective studies of segmentectomy versus lobectomy for ≤2-cm non-small-cell lung cancer are now underway (CALGB 140503 and JCOG0802/WJTOG4607L) and should clarify the role of segmentectomy. Regarding thoracoscopic segmentectomy, few retrospective studies have reported the oncological outcome for lung cancer and there is inadequate evidence regarding the long-term oncological outcome, although the perioperative complication rate and duration of hospital stay seem to be non-inferior to those of an open approach. For preoperative simulation, three-dimensional multidetector computed tomography (3D-CT) is essential for performing an atypical thoracoscopic segmentectomy safely. Preoperative 3D-CT angiography and bronchography (3D-CTAB) enable accurate identification of the venous branches in the affected segment and the intersegmental vein. This review describes the surgical and oncological outcomes, utility of 3D-CTAB, and surgical techniques and procedure used for a thoracoscopic segmentectomy.

  20. Linking the generation of DNA adducts to lung cancer.

    PubMed

    Ceppi, Marcello; Munnia, Armelle; Cellai, Filippo; Bruzzone, Marco; Peluso, Marco E M

    2017-09-01

    Worldwide, lung cancer is the leading cause of cancer death. DNA adducts are considered a reliable biomarker that reflects carcinogen exposure to tobacco smoke, but the central question is what is the relationship of DNA adducts and cancer? Therefore, we investigated this relationship by a meta-analysis of twenty-two studies with bronchial adducts for a total of 1091 subjects, 887 lung cancer cases and 204 apparently healthy individuals with no evidence of lung cancer. Our study shows that these adducts are significantly associated to increase lung cancer risk. The value of Mean Ratio lung-cancer (MR) of bronchial adducts resulting from the random effects model was 2.64, 95% C.I. 2.00-3.50, in overall lung cancer cases as compared to controls. The significant difference, with lung cancer patients having significant higher levels of bronchial adducts than controls, persisted after stratification for smoking habits. The MR lung-cancer value between lung cancer patients and controls for smokers was 2.03, 95% C.I. 1.42-2.91, for ex-smokers 3.27, 95% C.I. 1.49-7.18, and for non-smokers was 3.81, 95% C.I. 1.85-7.85. Next, we found that the generation of bronchial adducts is significantly related to inhalation exposure to tobacco smoke carcinogens confirming its association with volatile carcinogens. The MR smoking estimate of bronchial adducts resulting from meta-regression was 2.28, 95% Confidence Interval (C.I.) 1.10-4.73, in overall smokers in respect to non-smokers. The present work provides strengthening of the hypothesis that bronchial adducts are not simply relate to exposure, but are a cause of chemical-induced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  2. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  3. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium.

    PubMed

    Coté, Michele L; Liu, Mei; Bonassi, Stefano; Neri, Monica; Schwartz, Ann G; Christiani, David C; Spitz, Margaret R; Muscat, Joshua E; Rennert, Gad; Aben, Katja K; Andrew, Angeline S; Bencko, Vladimir; Bickeböller, Heike; Boffetta, Paolo; Brennan, Paul; Brenner, Hermann; Duell, Eric J; Fabianova, Eleonora; Field, John K; Foretova, Lenka; Friis, Søren; Harris, Curtis C; Holcatova, Ivana; Hong, Yun-Chul; Isla, Dolores; Janout, Vladimir; Kiemeney, Lambertus A; Kiyohara, Chikako; Lan, Qing; Lazarus, Philip; Lissowska, Jolanta; Le Marchand, Loic; Mates, Dana; Matsuo, Keitaro; Mayordomo, Jose I; McLaughlin, John R; Morgenstern, Hal; Müeller, Heiko; Orlow, Irene; Park, Bernard J; Pinchev, Mila; Raji, Olaide Y; Rennert, Hedy S; Rudnai, Peter; Seow, Adeline; Stucker, Isabelle; Szeszenia-Dabrowska, Neonila; Dawn Teare, M; Tjønnelan, Anne; Ugolini, Donatella; van der Heijden, Henricus F M; Wichmann, Erich; Wiencke, John K; Woll, Penella J; Yang, Ping; Zaridze, David; Zhang, Zuo-Feng; Etzel, Carol J; Hung, Rayjean J

    2012-09-01

    Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analysed. Unconditional logistic regression models and generalised estimating equations were used to estimate odds ratios and 95% confidence intervals. Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in the risk of lung cancer, after adjustment for smoking and other potential confounders (95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (odds ratios (OR) = 1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR = 1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR = 1.44, 95% CI: 1.07, 1.93), after adjustment. The occurrence of lung cancer among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those risks associated with cigarette smoking. While the role of genetic variation in the aetiology of lung cancer remains to be fully characterised, family history assessment is immediately available and those with a positive history represent a higher risk group. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Preanalytics in lung cancer.

    PubMed

    Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko

    2015-01-01

    Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.

  5. Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression.

    PubMed

    Qin, Ying; Cui, He; Zhang, Hua

    2016-10-01

    Lung cancer is one of the most common causes of cancer-related deaths worldwide. Although great efforts and progressions have been made in the study of the lung cancer in the recent decades, the mechanism of lung cancer formation remains elusive. To establish effective therapeutic methods, new targets implied in lung cancer processes have to be identified. Tripartite motif-containing 25 has been associated with ovarian and breast cancer and is thought to positively promote cell growth by targeting the cell cycle. However, whether tripartite motif-containing 25 has a function in lung cancer development remains unknown. In this study, we found that tripartite motif-containing 25 was overexpressed in human lung cancer tissues. Expression of tripartite motif-containing 25 in lung cancer cells is important for cell proliferation and migration. Knockdown of tripartite motif-containing 25 markedly reduced proliferation of lung cancer cells both in vitro and in vivo and reduced migration of lung cancer cells in vitro Meanwhile, tripartite motif-containing 25 silencing also increased the sensitivity of doxorubicin and significantly increased death and apoptosis of lung cancer cells by doxorubicin were achieved with knockdown of tripartite motif-containing 25. We also observed that tripartite motif-containing 25 formed a complex with p53 and mouse double minute 2 homolog (MDM2) in both human lung cancer tissues and in lung cancer cells and tripartite motif-containing 25 silencing increased the expression of p53. These results provide evidence that tripartite motif-containing 25 contributes to the pathogenesis of lung cancer probably by promoting proliferation and migration of lung cancer cells. Therefore, targeting tripartite motif-containing 25 may provide a potential therapeutic intervention for lung cancer. © The Author(s) 2015.

  6. The regional association between bronchiectasis and lung cancer in chest CT.

    PubMed

    Kim, Yeon Wook; Lee, Chang-Hoon; Jin, Kwang-Nam; Lee, Jung-Kyu; Heo, Eun Young; Park, Sung Soo; Chung, Hee Soon; Kim, Deog Kyeom

    2016-11-15

    Limited studies have examined the association between lung cancer and bronchiectasis (BE). This study evaluated the regional association between BE and lung cancer by analyzing the lobar location of lung cancer in patients with underlying BE. This clustered multi-level study enrolled patients who had underlying BE and were newly diagnosed with lung cancer between January 1, 2010 and May 30, 2013 in two referral hospitals in South Korea. By analyzing the presence of lung cancer and underlying BE as event variables at the level of lung lobes on chest computed tomography (CT), we evaluated the association of BE and lung cancer by the locations of the diseases. Eighty-one patients with BE and combined lung cancer were enrolled. Within 486 lung lobes of the patients, combined BE and lung cancer in the same lobe was found in 11 lobes (2.3 %). Using the general estimating equation assuming BE as a risk factor of lung cancer, the results indicated that the prevalence of lung cancer was significantly lower in the lobes with pre-existing BE (β = -1.09, p-value = 0.001). Regionally, pre-existing BE was associated with a lower risk of the occurrence of lung cancer in the same lobe.

  7. Impact of Prior Cancer on Eligibility for Lung Cancer Clinical Trials

    PubMed Central

    Laccetti, Andrew L.; Xuan, Lei; Halm, Ethan A.; Pruitt, Sandi L.

    2014-01-01

    Background In oncology clinical trials, the assumption that a prior cancer diagnosis could interfere with study conduct or outcomes results in frequent exclusion of such patients. We determined the prevalence and characteristics of this practice in lung cancer clinical trials and estimated impact on trial accrual. Methods We reviewed lung cancer clinical trials sponsored or endorsed by the Eastern Oncology Cooperative Group for exclusion criteria related to a prior cancer diagnosis. We estimated prevalence of prior primary cancer diagnoses among lung cancer patients using Surveillance Epidemiology and End Results (SEER)-Medicare linked data. We assessed the association between trial characteristics and prior cancer exclusion using chi-square analysis. All statistical tests were two-sided. Results Fifty-one clinical trials (target enrollment 13072 patients) were included. Forty-one (80%) excluded patients with a prior cancer diagnosis as follows: any prior (14%), within five years (43%), within two or three years (7%), or active cancer (16%). In SEER-Medicare data (n = 210509), 56% of prior cancers were diagnosed within five years before the lung cancer diagnosis. Across trials, the estimated number and proportion of patients excluded because of prior cancer ranged from 0–207 and 0%-18%. Prior cancer was excluded in 94% of trials with survival primary endpoints and 73% of trials with nonsurvival primary endpoints (P = .06). Conclusions A substantial proportion of patients are reflexively excluded from lung cancer clinical trials because of prior cancer. This inclusion criterion is applied widely across studies, including more than two-thirds of trials with nonsurvival endpoints. More research is needed to understand the basis and ramifications of this exclusion policy. PMID:25253615

  8. Antitumor effect of Deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model.

    PubMed

    Khaled, Meyada; Belaaloui, Ghania; Jiang, Zhen-Zhou; Zhu, Xiong; Zhang, Lu-Yong

    2016-10-01

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, was found to be a potent antitumor and antiproliferative agent, in several tumor cells, in vitro. However, DPT has not been used clinically yet because of the lack of in vivo studies. This study is the first report demonstrating the antitumor effect of DPT on MDA-MB-231 human breast cancer xenografts in nude mice. DPT, significantly, inhibited the growth of MDA-MB-231 xenograft in BALB/c nude mice. The T/C value (the value of the relative tumor volume of treatment group compared to the control group) of groups treated with 5, 10, and 20 mg/kg of intravenous DPT-HP-β-CD was 42.87%, 34.04% and 9.63%, respectively, suggesting the positive antitumor activity of DPT. In addition, the antitumor effect of DPT-HP-β-CD (20 mg/kg) in human breast cancer MDA-MB-231 xenograft was more effective than etoposide (VP-16) (20 mg/kg) and docetaxel (20 mg/kg). These findings suggest that this drug is a promising chemotherapy candidate against human breast carcinoma. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Postoperative Management of Multiple Primary Cancers Associated with Non-small Cell Lung Cancer.

    PubMed

    Shoji, Fumihiro; Yamazaki, Koji; Miura, Naoko; Katsura, Masakazu; Oku, Yuka; Takeo, Sadanori; Maehara, Yoshihiko

    2018-06-01

    Modern treatment for primary cancers has improved survival. Therefore, increased numbers of patients with multiple primary cancers (MPC) associated with lung cancer may be expected. The aim of the present study was to report MPC associated with lung cancer and discuss patients' characteristics and postoperative management. Overall, 973 consecutive patients who underwent surgery for non-small cell lung cancer (NSCLC) were retrospectively studied. NSCLC with MPC was observed in 148 patients (15.2%). MPC comprised 24 synchronous (2.5%) and 124 metachronous (12.7%) diseases. Of the 124 metachronous patients, NSCLC was detected before cancers were detected in other organs (lung cancer first (LCF)) in 25 (20.2%) patients and subsequently in other organs after treatment (other organs, primary cancer-first (OCF)) in 99 (79.8%) patients. MPC was significantly associated with advanced age (p<0.0001) and chronic obstructive pulmonary disease (COPD) (p=0.0040). The leading sites of MPC in patients with synchronous tumors and those with OCF were the digestive organs. In contrast, the leading site of MPC in patients with LCF was the lung. In the latter, at least two primary lung cancers were detected within 5 years as well as 5 years after surgery for the treatment of the first detected lung cancer, while primary cancers of other organs were detected within 5 years. Advanced age and COPD may represent a high-risk of MPCs. Therefore, we recommend careful follow-up to detect MPC in the lung as well as the digestive organs beyond 5 years after treatment of the first cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  11. Lung cancer in railroad workers exposed to diesel exhaust.

    PubMed

    Garshick, Eric; Laden, Francine; Hart, Jaime E; Rosner, Bernard; Smith, Thomas J; Dockery, Douglas W; Speizer, Frank E

    2004-11-01

    Diesel exhaust has been suspected to be a lung carcinogen. The assessment of this lung cancer risk has been limited by lack of studies of exposed workers followed for many years. In this study, we assessed lung cancer mortality in 54,973 U.S. railroad workers between 1959 and 1996 (38 years). By 1959, the U.S. railroad industry had largely converted from coal-fired to diesel-powered locomotives. We obtained work histories from the U.S. Railroad Retirement Board, and ascertained mortality using Railroad Retirement Board, Social Security, and Health Care Financing Administration records. Cause of death was obtained from the National Death Index and death certificates. There were 43,593 total deaths including 4,351 lung cancer deaths. Adjusting for a healthy worker survivor effect and age, railroad workers in jobs associated with operating trains had a relative risk of lung cancer mortality of 1.40 (95% confidence interval, 1.30-1.51). Lung cancer mortality did not increase with increasing years of work in these jobs. Lung cancer mortality was elevated in jobs associated with work on trains powered by diesel locomotives. Although a contribution from exposure to coal combustion products before 1959 cannot be excluded, these results suggest that exposure to diesel exhaust contributed to lung cancer mortality in this cohort. Key words: diesel exhaust, lung cancer, occupational exposure.

  12. Prognostic impact of EGFR mutation in non-small-cell lung cancer patients with family history of lung cancer.

    PubMed

    Kim, Jung Soo; Cho, Min Seong; Nam, Jong Hyeon; Kim, Hyun-Jung; Choi, Kyeng-Won; Ryu, Jeong-Seon

    2017-01-01

    A family history can be a valuable tool in the era of precision medicine. Although a few studies have described an association of family history of lung cancer with EGFR activating mutation, their impact on survival of lung cancer patients is unclear. The study included consecutive 829 non-small-cell lung cancer patients who received analysis of EGFR mutation in a prospective lung cancer cohort. Family history of lung cancer was obtained by face-to-face interviews at the time of diagnosis. An association of EGFR activating mutation with a family history of lung cancer in first-degree relatives was evaluated with multivariate logistic regression analysis, and its association with survival was estimated with Cox's proportional hazards model. Seventy five (9.0%) patients had family history of lung cancer. The EGFR mutation was commonly observed in patients with positive family history compared to those with no family history (46.7% v 31.3%, χ2 p = 0.007). The family history was significantly associated with the EGFR mutation (aOR and 95% CI: 2.01 and 1.18-3.60, p = 0.011). Patients with the positive family history survived longer compared to those without (MST, 17.9 v 13.0 months, log-rank p = 0.037). The presence of the EGFR mutation was associated with better survival in patients without the family history (aHR and 95% CI: 0.72 and 0.57-0.90, p = 0.005). However, this prognostic impact was not observed in patients with the positive family history (aHR and 95% CI: 1.01 and 0.50-2.36, p = 0.832). In comparison to patients without the family history, EGFR activating mutation was common, and it did not affect prognosis in patients with positive family history.

  13. [Lung abscess which needed to be distinguished from lung cancer; report of a case].

    PubMed

    Kamiya, Kazunori; Yoshizu, Akira; Misumi, Yuki; Hida, Naoya; Okamoto, Hiroaki; Yoshida, Sachiko

    2011-12-01

    Differential diagnosis of lung abscess from lung cancer is sometimes difficult. In February 2009, a 57-year-old man consulted our hospital complaining of bloody sputum. Chest computed tomography (CT) demonstrated a 2.5 cm nodule with pleural indentation, spicula and vascular involvement in the right S(3). Bronchofiberscope could not establish a definitive diagnosis. Blood test showed no abnormality. Three months later, progression of the nodule to the adjacent middle lobe was demonstrated by follow-up CT, and F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) showed isotope accumulation in the nodule and hilar lymph node. A diagnosis of lung cancer was suspected and surgery was performed. The diagnosis of possible lung cancer was made by needle biopsy, and the patient underwent right upper lobectomy and partial resection of middle lobe with standard nodal dissection. The final pathological diagnosis was lung abscess. Lung abscess must be kept in mind as a possible differential diagnosis when abnormal shadow suspected of lung cancer is observed.

  14. Screening and Biosensor-Based Approaches for Lung Cancer Detection

    PubMed Central

    Wang, Lulu

    2017-01-01

    Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection. PMID:29065541

  15. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    PubMed

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  16. [Strategies for lung cancer with ischemic heart disease].

    PubMed

    Miyamoto, Nobuhiro; Kishimoto, Koji; Suehiro, Shouichi; Oda, Teiji; Tanabe, Kazuaki

    2015-04-01

    For lung cancer surgery which merged ischemic heart disease to need coronary artery treatments, the strategy is demanded on the timing of each treatment. Our department conforms to American College of Chest Physicians( ACCP) guideline and treatment strategies are decided as follows. 1) If right heart load has already occurred, we choose limited surgery for lung cancer. 2) Two-stage surgery is performed with principle. Coronary artery treatment is given priority to against left main trunk disease and unstable angina. 3) Simultaneous surgery is chosen for lung cancer more than stage II or lung cancer pressing neighboring organ and vessel not to be able to wait coronary artery treatments. Since 2007, we performed 4 simultaneous surgeries and experienced 3 pneumonia cases, 1 patient died in 5 months. We must decide a strategy in consideration of progress of the lung cancer and cardiac urgency.

  17. Historical Perspectives of the Causation of Lung Cancer

    PubMed Central

    2015-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Less-known forces are involved in the etiology of lung cancer and have relevant implications for providers in ameliorating care. The purpose of this article is to discuss theories of causation of lung cancer using historical analyses of the evolution of the disease and incorporating related explanations integrating the relationships of science, nursing, medicine, and society. Literature from 160 years was searched and Thagard’s model of causation networks was used to exhibit how nursing and medicine were significant influences in lung cancer causation theory. Disease causation interfaces with sociological norms of behavior to form habits and rates of health behavior. Historically, nursing was detrimentally manipulated by the tobacco industry, engaging in harmful smoking behaviors, thus negatively affecting patient care. Understanding the underlying history behind lung cancer causation may empower nurses to play an active role in a patient’s health. PMID:28462309

  18. Noninvasive detection of lung cancer using exhaled breath

    PubMed Central

    Fu, Xiao-An; Li, Mingxiao; Knipp, Ralph J; Nantz, Michael H; Bousamra, Michael

    2014-01-01

    Early detection of lung cancer is a key factor for increasing the survival rates of lung cancer patients. The analysis of exhaled breath is promising as a noninvasive diagnostic tool for diagnosis of lung cancer. We demonstrate the quantitative analysis of carbonyl volatile organic compounds (VOCs) and identification of lung cancer VOC markers in exhaled breath using unique silicon microreactor technology. The microreactor consists of thousands of micropillars coated with an ammonium aminooxy salt for capture of carbonyl VOCs in exhaled breath by means of oximation reactions. Captured aminooxy-VOC adducts are analyzed by nanoelectrospray Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The concentrations of 2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, and 4-hydroxyhexenal (4-HHE) in the exhaled breath of lung cancer patients (n = 97) were significantly higher than in the exhaled breath of healthy smoker and nonsmoker controls (n = 88) and patients with benign pulmonary nodules (n = 32). The concentration of 2-butanone in exhaled breath of patients (n = 51) with stages II though IV non–small cell lung cancer (NSCLC) was significantly higher than in exhaled breath of patients with stage I (n = 34). The carbonyl VOC profile in exhaled breath determined using this new silicon microreactor technology provides for the noninvasive detection of lung cancer. PMID:24402867

  19. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status

    PubMed Central

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G.; Wong, Kwok-Kin; Khuri, Fadlo R.; Zhou, Wei; Shin, Dong M.

    2017-01-01

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 (krasG12D/wt/p53-/-/lkb1wt/wt) and t2 (krasG12D/wt/p53-/-/lkb1-/-) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer. PMID:28938614

  20. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 ( kras G12D/wt /p53 -/- /lkb1 wt/wt ) and t2 ( kras G12D/wt /p53 -/- / lkb1 -/- ) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  1. [6]-shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2.

    PubMed

    Kim, Myoung Ok; Lee, Mee-Hyun; Oi, Naomi; Kim, Sung-Hyun; Bae, Ki Beom; Huang, Zunnan; Kim, Dong Joon; Reddy, Kanamata; Lee, Sung-Young; Park, Si Jun; Kim, Jae Young; Xie, Hua; Kundu, Joydeb Kumar; Ryoo, Zae Young; Bode, Ann M; Surh, Young-Joon; Dong, Zigang

    2014-03-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Despite progress in developing chemotherapeutics for the treatment of NSCLC, primary and secondary resistance limits therapeutic success. NSCLC cells exhibit multiple mutations in the epidermal growth factor receptor (EGFR), which cause aberrant activation of diverse cell signaling pathways. Therefore, suppression of the inappropriate amplification of EGFR downstream signaling cascades is considered to be a rational therapeutic and preventive strategy for the management of NSCLC. Our initial molecular target-oriented virtual screening revealed that the ginger components, including [6]-shogaol, [6]-paradol and [6]-gingerol, seem to be potential candidates for the prevention and treatment of NSCLC. Among the compounds, [6]-shogaol showed the greatest inhibitory effects on the NSCLC cell proliferation and anchorage-independent growth. [6]-Shogaol induced cell cycle arrest (G1 or G2/M) and apoptosis. Furthermore, [6]-shogaol inhibited Akt kinase activity, a downstream mediator of EGFR signaling, by binding with an allosteric site of Akt. In NCI-H1650 lung cancer cells, [6]-shogaol reduced the constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and decreased the expression of cyclin D1/3, which are target proteins in the Akt signaling pathway. The induction of apoptosis in NCI-H1650 cells by [6]-shogaol corresponded with the cleavage of caspase-3 and caspase-7. Moreover, intraperitoneal administration of [6]-shogaol inhibited the growth of NCI-H1650 cells as tumor xenografts in nude mice. [6]-Shogaol suppressed the expression of Ki-67, cyclin D1 and phosphorylated Akt and STAT3 and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positivity in xenograft tumors. The current study clearly indicates that [6]-shogaol can be exploited for the prevention and/or treatment of NSCLC.

  2. [6]-Shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2

    PubMed Central

    Kim, Myoung Ok; Lee, Mee-Hyun; Oi, Naomi; Kim, Sung-Hyun; Dong, Zigang

    2014-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Despite progress in developing chemotherapeutics for the treatment of NSCLC, primary and secondary resistance limits therapeutic success. NSCLC cells exhibit multiple mutations in the epidermal growth factor receptor (EGFR), which cause aberrant activation of diverse cell signaling pathways. Therefore, suppression of the inappropriate amplification of EGFR downstream signaling cascades is considered to be a rational therapeutic and preventive strategy for the management of NSCLC. Our initial molecular target–oriented virtual screening revealed that the ginger components, including [6]-shogaol, [6]-paradol and [6]-gingerol, seem to be potential candidates for the prevention and treatment of NSCLC. Among the compounds, [6]-shogaol showed the greatest inhibitory effects on the NSCLC cell proliferation and anchorage-independent growth. [6]-Shogaol induced cell cycle arrest (G1 or G2/M) and apoptosis. Furthermore, [6]-shogaol inhibited Akt kinase activity, a downstream mediator of EGFR signaling, by binding with an allosteric site of Akt. In NCI-H1650 lung cancer cells, [6]-shogaol reduced the constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and decreased the expression of cyclin D1/3, which are target proteins in the Akt signaling pathway. The induction of apoptosis in NCI-H1650 cells by [6]-shogaol corresponded with the cleavage of caspase-3 and caspase-7. Moreover, intraperitoneal administration of [6]-shogaol inhibited the growth of NCI-H1650 cells as tumor xenografts in nude mice. [6]-Shogaol suppressed the expression of Ki-67, cyclin D1 and phosphorylated Akt and STAT3 and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positivity in xenograft tumors. The current study clearly indicates that [6]-shogaol can be exploited for the prevention and/or treatment of NSCLC. PMID:24282290

  3. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    PubMed Central

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  4. Liquid biopsy for early stage lung cancer.

    PubMed

    Liang, Wenhua; Zhao, Yi; Huang, Weizhe; Liang, Hengrui; Zeng, Haikang; He, Jianxing

    2018-04-01

    Liquid biopsy, which analyzes biological fluids especially blood specimen to detect and quantify circulating cancer biomarkers, have been rapidly introduced and represents a promising potency in clinical practice of lung cancer diagnosis and prognosis. Unlike conventional tissue biopsy, liquid biopsy is non-invasive, safe, simple in procedure, and is not influenced by manipulators' skills. Notably, some circulating cancer biomarkers are already detectable in disease with low-burden, making liquid biopsy feasible in detecting early stage lung cancer. In this review, we described a landscape of different liquid biopsy methods by highlighting the rationale and advantages, accessing the value of various circulating biomarkers and discussing their possible future development in the detection of early lung cancer.

  5. Enhanced Quitline Intervention in Smoking Cessation for Patients With Non-Metastatic Lung Cancer

    ClinicalTrials.gov

    2017-05-25

    Limited Stage Small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Tobacco Use Disorder

  6. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer

    PubMed Central

    Tan, Bee-Jen; Liu, Yuanjie; Chang, Kai-Lun; Lim, Bennie KW; Chiu, Gigi NC

    2012-01-01

    Background Realizing the therapeutic benefits of quercetin is mostly hampered by its low water solubility and poor absorption. In light of the advantages of nanovehicles in the delivery of flavanoids, we aimed to deliver quercetin perorally with nanomicelles made from the diblock copolymer, polyethylene glycol (PEG)-derivatized phosphatidylethanolamine (PE). Methods Quercetin-loaded nanomicelles were prepared by using the film casting method, and were evaluated in terms of drug incorporation efficiency, micelle size, interaction with Caco-2 cells, and anticancer activity in the A549 lung cancer cell line and murine xenograft model. Results The incorporation efficiency into the nanomicelles was ≥88.9% when the content of quercetin was up to 4% w/w, with sizes of 15.4–18.5 nm and polydispersity indices of <0.250. Solubilization of quercetin by the nanomicelles increased its aqueous concentration by 110-fold. The quercetin nanomicelles were stable when tested in simulated gastric (pH 1.2) and intestinal (pH 7.4) fluids, and were non-toxic to the Caco-2 cells as reflected by reversible reduction in transepithelial electrical resistance and ≤25% lactose dehydrogenase release. The anticancer activity of quercetin could be significantly improved over the free drug through the nanomicellar formulation when tested using the A549 cancer cell line and murine xenograft model. The nanomicellar quercetin formulation was well tolerated by the tumor-bearing animals, with no significant weight loss observed at the end of the 10-week study period. Conclusion A stable PEG-PE nanomicellar formulation of quercetin was developed with enhanced peroral anticancer activity and no apparent toxicity to the intestinal epithelium. PMID:22334787

  7. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  8. EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk

    PubMed Central

    Wilson, Ian M.; Vucic, Emily A.; Enfield, Katey S.S.; Thu, Kelsie L.; Zhang, Yu-An; Chari, Raj; Lockwood, William W.; Radulovich, Niki; Starczynowski, Daniel T.; Banáth, Judit P.; Zhang, May; Pusic, Andrea; Fuller, Megan; Lonergan, Kim M.; Rowbotham, David; Yee, John; English, John C.; Buys, Timon P.H.; Selamat, Suhaida A.; Laird-Offringa, Ite A.; Liu, Pengyuan; Anderson, Marshall; You, Ming; Tsao, Ming-Sound; Brown, Carolyn J.; Bennewith, Kevin L.; MacAulay, Calum E.; Karsan, Aly; Gazdar, Adi F.; Lam, Stephen; Lam, Wan L.

    2015-01-01

    In an effort to identify novel biallelically inactivated tumor suppressor genes (TSG) in sporadic invasive and pre-invasive non-small cell lung cancer (NSCLC) genomes, we applied a comprehensive integrated multi-‘omics approach to investigate patient matched, paired NSCLC tumor and non-malignant parenchymal tissues. By surveying lung tumor genomes for genes concomitantly inactivated within individual tumors by multiple mechanisms, and by the frequency of disruption in tumors across multiple cohorts, we have identified a putative lung cancer TSG, Eyes Absent 4 (EYA4). EYA4 is frequently and concomitantly deleted, hypermethylated and underexpressed in multiple independent lung tumor data sets, in both major NSCLC subtypes, and in the earliest stages of lung cancer. We find not only that decreased EYA4 expression is associated with poor survival in sporadic lung cancers, but EYA4 SNPs are associated with increased familial cancer risk, consistent with EYA4’s proximity to the previously reported lung cancer susceptibility locus on 6q. Functionally, we find that EYA4 displays TSG-like properties with a role in modulating apoptosis and DNA repair. Cross examination of EYA4 expression across multiple tumor types suggests a cell type-specific tumorigenic role for EYA4, consistent with a tumor suppressor function in cancers of epithelial origin. This work shows a clear role for EYA4 as a putative TSG in NSCLC. PMID:24096489

  9. Detection of Baicalin Metabolites Baicalein and Oroxylin-A in Mouse Pancreas and Pancreatic Xenografts

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Moro, Aune; Chen, Monica C.; Harris, Diane M.; Eibl, Guido; Go, Vay-Liang W.

    2011-01-01

    Objectives Scutellaria baicalensis has been a subject of research interests due to its potential multiple therapeutic benefits. This study was to examine the distribution of baicalein, wogonin, oroxylin A and their glucuronide/sulfate conjugated metabolites in plasma, colon, small intestine, lung, liver, pancreas, kidney, and prostate tissues and in pancreatic tumor in a xenograft animal model. In addition, we examined metabolic stability of baicalin in these tissues. Methods A mouse xenograft model was prepared by injection of 3×106 human pancreatic cancer MiaPaCa-2 cells subcutaneously into nude mice. Mice were randomly allocated to control diet (AIN76A) and 1% SB diet (n=8 per group) for 13 weeks. Levels of baicalein, wogonin, oroxylin A, and their conjugates in mouce tissues were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Results A substantial amount of baicalin (34–63%) was methylated to oroxylin A and its conjugates in various organs during absorption. While plasma contained predominantly conjugates of baicalein, wogonin, and oroxylin A, both aglycones and conjugates were found in all other tissues investigated and in tumor. Conclusions Substantial accumulation of bioactive metabolites are found in target tissues, suggesting strong potential for SB use as a preventive or adjuvant supplement for pancreatic cancer. PMID:22158070

  10. Lung cancer epidemiology: contemporary and future challenges worldwide.

    PubMed

    Didkowska, Joanna; Wojciechowska, Urszula; Mańczuk, Marta; Łobaszewski, Jakub

    2016-04-01

    Over the last century, lung cancer from the rarest of diseases became the biggest cancer killer of men worldwide and in some parts of the world also of women (North America, East Asia, Northern Europe, Australia and New Zealand). In 2012 over 1.6 million of people died due to lung cancer. The cause-effect relationship between tobacco smoking and lung cancer occurrence has been proven in many studies, both ecological and clinical. In global perspective one can see the increasing tobacco consumption trend followed by ascending trends of lung cancer mortality, especially in developing countries. In some more developed countries, where the tobacco epidemics was on the rise since the beginning of the 20th century and peaked in its mid, in male population lung cancer incidence trend reversed or leveled off. Despite predicted further decline of incidence rates, the absolute number of deaths will continue to grow in these countries. In the remaining parts of the world the tobacco epidemics is still evolving what brings rapid increase of the number of new lung cancer cases and deaths. Number of lung cancer deaths worldwide is expected to grow up to 3 million until 2035. The figures will double both in men (from 1.1 million in 2012 to 2.1 million in 2035) and women (from 0.5 million in 2012 to 0.9 million in 2035) and the two-fold difference between sexes will persist. The most rapid increase is expected in Africa region (AFRO) and East Mediterranean region (EMRO). The increase of the absolute number of lung cancer deaths in more developed countries is caused mostly by population aging and in less developed countries predominantly by the evolving tobacco epidemic.

  11. Risk Profiling May Improve Lung Cancer Screening

    Cancer.gov

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  12. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  13. Radon and lung cancer: a cost-effectiveness analysis.

    PubMed Central

    Ford, E S; Kelly, A E; Teutsch, S M; Thacker, S B; Garbe, P L

    1999-01-01

    OBJECTIVES: This study examined the cost-effectiveness of general and targeted strategies for residential radon testing and mitigation in the United States. METHODS: A decision-tree model was used to perform a cost-effectiveness analysis of preventing radon-associated deaths from lung cancer. RESULTS: For a radon threshold of 4 pCi/L, the estimated costs to prevent 1 lung cancer death are about $3 million (154 lung cancer deaths prevented), or $480,000 per life-year saved, based on universal radon screening and mitigation, and about $2 million (104 lung cancer deaths prevented), or $330,000 per life-year saved, if testing and mitigation are confined to geographic areas at high risk for radon exposure. For mitigation undertaken after a single screening test and after a second confirmatory test, the estimated costs are about $920,000 and $520,000, respectively, to prevent a lung cancer death with universal screening and $130,000 and $80,000 per life-year for high risk screening. The numbers of preventable lung cancer deaths are 811 and 527 for universal and targeted approaches, respectively. CONCLUSIONS: These data suggest possible alternatives to current recommendations. PMID:10076484

  14. Testing lung cancer drugs and therapies in mice

    Cancer.gov

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  15. [CT-Screening for Lung Cancer - what is the Evidence?

    PubMed

    Watermann, Iris; Reck, Martin

    2018-04-01

    In patients with lung cancer treatment opportunities and prognosis are correlated to the stage of disease with a chance for curative treatment in patients with early stage disease. Therefore, early detection of lung cancer is of paramount importance for improving the prognosis of lung cancer patients.The National Lung Screening Trial (NLST) has already shown that low-dose CT increases the number of identified early stage lung cancer patients and reduces lung cancer related mortality. Critically considered in terms of CT-screening are false-positive results, overdiagnosis and unessential invasive clarification. Preliminary results of relatively small European trials haven´t yet confirmed the results of the NLST-study.Until now Lung Cancer Screening by low dose CT-scan or other methods is neither approved nor available in Germany.To improve the efficacy of CT-Screening and to introduce early detection of lung cancer in standard practice, additional, complementing methods should be further evaluated. One option might be the supplementary analysis of biomarkers in liquid biopsies or exhaled breath condensates. In addition, defining the high-risk population is of great relevance to identify candidates who might benefit of early detection programs. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Chemoprevention of Lung Cancer

    PubMed Central

    Szabo, Eva; Mao, Jenny T.; Lam, Stephen; Reid, Mary E.

    2013-01-01

    Background: Lung cancer is the most common cause of cancer death in men and women in the United States. Cigarette smoking is the main risk factor. Former smokers are at a substantially increased risk of developing lung cancer compared with lifetime never smokers. Chemoprevention refers to the use of specific agents to reverse, suppress, or prevent the process of carcinogenesis. This article reviews the major agents that have been studied for chemoprevention. Methods: Articles of primary, secondary, and tertiary prevention trials were reviewed and summarized to obtain recommendations. Results: None of the phase 3 trials with the agents β-carotene, retinol, 13-cis-retinoic acid, α-tocopherol, N-acetylcysteine, acetylsalicylic acid, or selenium has demonstrated beneficial and reproducible results. To facilitate the evaluation of promising agents and to lessen the need for a large sample size, extensive time commitment, and expense, surrogate end point biomarker trials are being conducted to assist in identifying the most promising agents for later-stage chemoprevention trials. With the understanding of important cellular signaling pathways and the expansion of potentially important targets, agents (many of which target inflammation and the arachidonic acid pathway) are being developed and tested which may prevent or reverse lung carcinogenesis. Conclusions: By integrating biologic knowledge, additional early-phase trials can be performed in a reasonable time frame. The future of lung cancer chemoprevention should entail the evaluation of single agents or combinations that target various pathways while working toward identification and validation of intermediate end points. PMID:23649449

  17. Frequency of breast cancer, lung cancer, and tobacco use articles in women's magazines from 1987 to 2003.

    PubMed

    Tobler, Kyle J; Wilson, Philip K; Napolitano, Peter G

    2009-01-01

    The objective of this study was to compare the frequency of articles in women's magazines that address breast cancer, lung cancer, and tobacco use from 1987-2003 and to ascertain whether the annual number of articles reflected corresponding cancer mortality rates from breast cancer and lung cancer and the number of female smokers throughout this time period. We reviewed 13 women's magazines published in the United States from 1987-2003 using the search terms breast cancer, lung cancer, smoking, and tobacco. We reviewed the abstracts or entire articles to determine relevance. A total of 1044 articles addressed breast cancer, lung cancer, or tobacco use: 681 articles related to breast cancer, 47 related to lung cancer, and 316 related to tobacco use. The greater number of breast cancer articles compared to lung cancer articles was statistically significant (P value < .0001). The greater number of breast cancer articles compared to lung cancer articles combined with tobacco use articles was also statistically significant (P = .0012). The annual number breast cancer articles compared to the breast cancer mortality rate demonstrated a negative relationship. The annual number of lung cancer articles compared to the lung cancer mortality rate demonstrated no relationship. The annual number of tobacco use articles compared to the annual number of female smokers demonstrated no relationship. Breast cancer was more frequently represented than lung cancer or tobacco use in women's magazines from 1987-2003 despite the increase in lung cancer mortality, a decrease in breast cancer mortality, and an insignificant change in the number of female smokers.

  18. Lung cancer risk of airborne particles for Italian population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, G., E-mail: buonanno@unicas.it; International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street 2, 4001 Brisbane, Qld.; Giovinco, G., E-mail: giovinco@unicas.it

    Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried outmore » on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter. - Highlights: • Lung cancer risk for non-smoking Italian population due to particle inhalation. • The average lung cancer risk for Italian population is equal to 1.90×10{sup −2}. • Ultrafine particle is the aerosol metric mostly contributing to lung cancer risk. • B(a)P is the main (particle-bounded) compound

  19. Fibronectin gene polymorphism in patients with lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Francuz, T; Syzdol, M; Polanska, D; Machalski, M; Brulinski, K; Magiera-Molendowska, H

    2001-01-01

    Fibronectin (FN) is a glycoprotein component of connective tissue. It is involved in cancer progression. FN plays a role in non-neoplasmatic lung pathology in which fibronectin gene polymorphisms (RFLPs) have been studied. The aim of our work was to evaluate the frequency of two of fibronectin RFLPs: genotypes AB, AA, BB (HaeIII) and CD, CC, DD (MspI) in patients with lung cancer. The studied group consisted of 63 patients with squamous cell lung cancer and 53 controls without any malignant or proliferative disease. There were no statistically significant differences in the distribution of studied genotypes between lung cancer patients and controls.

  20. Lung Cancer Prevention

    MedlinePlus

    ... is a risk factor for lung cancer. Atomic bomb radiation, radiation therapy , imaging tests , and radon are sources of radiation exposure: Atomic bomb radiation: Being exposed to radiation after an atomic ...

  1. Patient-derived Mammosphere and Xenograft Tumour Initiation Correlates with Progression to Metastasis.

    PubMed

    Eyre, Rachel; Alférez, Denis G; Spence, Kath; Kamal, Mohamed; Shaw, Frances L; Simões, Bruno M; Santiago-Gómez, Angélica; Sarmiento-Castro, Aida; Bramley, Maria; Absar, Mohammed; Saad, Zahida; Chatterjee, Sumohan; Kirwan, Cliona; Gandhi, Ashu; Armstrong, Anne C; Wardley, Andrew M; O'Brien, Ciara S; Farnie, Gillian; Howell, Sacha J; Clarke, Robert B

    2016-12-01

    Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.

  2. Deaths in Canada from lung cancer due to involuntary smoking.

    PubMed Central

    Wigle, D T; Collishaw, N E; Kirkbride, J; Mao, Y

    1987-01-01

    Recently published evidence indicates that involuntary smoking causes an increased risk of lung cancer among nonsmokers. Information was compiled on the proportion of people who had never smoked among victims of lung cancer, the risk of lung cancer for nonsmokers married to smokers and the prevalence of such exposure. On the basis of these data we estimate that 50 to 60 of the deaths from lung cancer in Canada in 1985 among people who had never smoked were caused by spousal smoking; about 90% occurred in women. The total number of deaths from lung cancer attributable to exposure to tobacco smoke from spouses and other sources (mainly the workplace) was derived by applying estimated age- and sex-specific rates of death from lung cancer attributable to such exposure to the population of Canadians who have never smoked; about 330 deaths from lung cancer annually are attributable to such exposure. PMID:3567810

  3. Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the International Lung Cancer Consortium

    PubMed Central

    Coté, Michele L.; Liu, Mei; Bonassi, Stefano; Neri, Monica; Schwartz, Ann G.; Christiani, David C.; Spitz, Margaret R.; Muscat, Joshua E.; Rennert, Gad; Aben, Katja K.; Andrew, Angeline S.; Bencko, Vladimir; Bickeböller, Heike; Boffetta, Paolo; Brennan, Paul; Brenner, Hermann; Duell, Eric J.; Fabianova, Eleonora; Field, John K.; Foretova, Lenka; Friis, Søren; Harris, Curtis C.; Holcatova, Ivana; Hong, Yun-Chul; Isla, Dolores; Janout, Vladimir; Kiemeney, Lambertus A.; Kiyohara, Chikako; Lan, Qing; Lazarus, Philip; Lissowska, Jolanta; Marchand, Loic Le; Mates, Dana; Matsuo, Keitaro; Mayordomo, Jose I.; McLaughlin, John R.; Morgenstern, Hal; Müeller, Heiko; Orlow, Irene; Park, Bernard J.; Pinchev, Mila; Raji, Olaide Y.; Rennert, Hedy S.; Rudnai, Peter; Seow, Adeline; Stucker, Isabelle; Szeszenia-Dabrowska, Neonila; Teare, M. Dawn; Tjønnelan, Anne; Ugolini, Donatella; van der Heijden, Henricus F.M.; Wichmann, Erich; Wiencke, John K.; Woll, Penella J.; Yang, Ping; Zaridze, David; Zhang, Zuo-Feng; Etzel, Carol J.; Hung, Rayjean J.

    2012-01-01

    Background and Methods Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analyzed. Unconditional logistic regression models and generalized estimating equations were used to estimate odds ratios and 95% confidence intervals. Results Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in risk of lung cancer, after adjustment for smoking and other potential confounders(95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (OR=1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR=1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR=1.44, 95% CI: 1.07, 1.93), after adjustment. Conclusions The increased risk among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those associated with cigarette smoking. While the role of genetic variation in the etiology of lung cancer remains to be fully characterized, family history assessment is immediately available and those with a positive history represent a higher risk group. PMID:22436981

  4. UK Lung Cancer RCT Pilot Screening Trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening

    PubMed Central

    Field, J K; Duffy, S W; Baldwin, D R; Whynes, D K; Devaraj, A; Brain, K E; Eisen, T; Gosney, J; Green, B A; Holemans, J A; Kavanagh, T; Kerr, K M; Ledson, M; Lifford, K J; McRonald, F E; Nair, A; Page, R D; Parmar, M K B; Rassl, D M; Rintoul, R C; Screaton, N J; Wald, N J; Weller, D; Williamson, P R; Yadegarfar, G; Hansell, D M

    2016-01-01

    Background Lung cancer screening using low-dose CT (LDCT) was shown to reduce lung cancer mortality by 20% in the National Lung Screening Trial. Methods The pilot UK Lung Cancer Screening (UKLS) is a randomised controlled trial of LDCT screening for lung cancer versus usual care. A population-based questionnaire was used to identify high-risk individuals. CT screen-detected nodules were managed by a pre-specified protocol. Cost effectiveness was modelled with reference to the National Lung Cancer Screening Trial mortality reduction. Results 247 354 individuals aged 50–75 years were approached; 30.7% expressed an interest, 8729 (11.5%) were eligible and 4055 were randomised, 2028 into the CT arm (1994 underwent a CT). Forty-two participants (2.1%) had confirmed lung cancer, 34 (1.7%) at baseline and 8 (0.4%) at the 12-month scan. 28/42 (66.7%) had stage I disease, 36/42 (85.7%) had stage I or II disease. 35/42 (83.3%) had surgical resection. 536 subjects had nodules greater than 50 mm3 or 5 mm diameter and 41/536 were found to have lung cancer. One further cancer was detected by follow-up of nodules between 15 and 50 mm3 at 12 months. The baseline estimate for the incremental cost-effectiveness ratio of once-only CT screening, under the UKLS protocol, was £8466 per quality adjusted life year gained (CI £5542 to £12 569). Conclusions The UKLS pilot trial demonstrated that it is possible to detect lung cancer at an early stage and deliver potentially curative treatment in over 80% of cases. Health economic analysis suggests that the intervention would be cost effective—this needs to be confirmed using data on observed lung cancer mortality reduction. Trial registration ISRCTN 78513845. PMID:26645413

  5. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells.

    PubMed

    Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R; St John, Lisa S; Federico, Lorenzo; Meraz, Ismail M; Roth, Jack A; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L; Heymach, John V; Swisher, Stephen G; Bernatchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J

    2017-04-01

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 319-29. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Antitumor Efficacy of Combination Therapy Consisting of S-1, Leucovorin, and Oxaliplatin against Human Gastric Cancer Xenografts.

    PubMed

    Nagase, Hideki; Nakagawa, Fumio; Uchida, Junji

    2018-01-01

    A phase 3 trial of S-1, leucovorin (LV), and oxaliplatin for treating gastric cancer is now underway. However, the antitumor efficacy of the combination has not yet been examined in an in vivo preclinical study. This study examined the antitumor efficacy of combination therapy consisting of S-1, LV, and oxaliplatin against 4 human gastric cancer xenografts: NUGC-4, St-40, SC-2, and SC-4. The antitumor efficacy was evaluated using human gastric cancer xenograft-bearing nude mice. S-1 and LV were administered orally once daily on days 1-7 at doses of 6.9 and 10 mg/kg, respectively. Oxaliplatin was administered intravenously at a dose of 8.3 mg/kg on day 1. The tumor volume was measured on day 15, and the relative tumor volume (RTV) was calculated. In all 4 xenograft models, S-1 alone and oxaliplatin alone, but not LV alone, had significant antitumor activities (p < 0.001). Combination therapy consisting of S-1 and LV resulted in a significantly smaller RTV than S-1 alone (p < 0.001). Combination therapy consisting of S-1 and oxaliplatin also resulted in a significantly smaller RTV than either S-1 alone (p < 0.001) or oxaliplatin alone (p < 0.001). Furthermore, combination therapy consisting of S-1, LV, and oxaliplatin resulted in the highest antitumor activity in these models (p < 0.001 vs. S-1 + LV; p < 0.001 or p = 0.003 vs. S-1 + oxaliplatin). Combination therapy consisting of S-1, LV, and oxaliplatin administered according to a 1-week-on/1-week-off schedule may be useful for the treatment of patients with gastric cancer. © 2018 S. Karger AG, Basel.

  7. Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial–mesenchymal transition is critical in conquering ALK-positive lung cancer

    PubMed Central

    Nakamichi, Shinji; Seike, Masahiro; Miyanaga, Akihiko; Chiba, Mika; Zou, Fenfei; Takahashi, Akiko; Ishikawa, Arimi; Kunugi, Shinobu; Noro, Rintaro; Kubota, Kaoru; Gemma, Akihiko

    2018-01-01

    Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) induce a dramatic response in non–small cell lung cancer (NSCLC) patients with the ALK fusion gene. However, acquired resistance to ALK-TKIs remains an inevitable problem. In this study, we aimed to discover novel therapeutic targets to conquer ALK-positive lung cancer. We established three types of ALK-TKI (crizotinib, alectinib and ceritinib)-resistant H2228 NSCLC cell lines by high exposure and stepwise methods. We found these cells showed a loss of ALK signaling, overexpressed AXL with epithelial-mesenchymal transition (EMT), and had cancer stem cell-like (CSC) properties, suggesting drug-tolerant cancer cell subpopulations. Similarly, we demonstrated that TGF-β1 treated H2228 cells also showed AXL overexpression with EMT features and ALK-TKI resistance. The AXL inhibitor, R428, or HSP90 inhibitor, ganetespib, were effective in reversing ALK-TKI resistance and EMT changes in both ALK-TKI-resistant and TGF-β1-exposed H2228 cells. Tumor volumes of xenograft mice implanted with established H2228-ceritinib-resistant (H2228-CER) cells were significantly reduced after treatment with ganetespib, or ganetespib in combination with ceritinib. Some ALK-positive NSCLC patients with AXL overexpression showed a poorer response to crizotinib therapy than patients with a low expression of AXL. ALK signaling-independent AXL overexpressed in drug-tolerant cancer cell subpopulations with EMT and CSC features may be commonly involved commonly involved in intrinsic and acquired resistance to ALK-TKIs. This suggests AXL and HSP90 inhibitors may be promising therapeutic drugs to overcome drug-tolerant cancer cell subpopulations in ALK-positive NSCLC patients for the reason that ALK-positive NSCLC cells do not live through ALK-TKI therapy. PMID:29930762

  8. Lung cancer risk among construction workers in California, 1988-2007.

    PubMed

    Calvert, Geoffrey M; Luckhaupt, Sara; Lee, Soo-Jeong; Cress, Rosemary; Schumacher, Pam; Shen, Rui; Tak, SangWoo; Deapen, Dennis

    2012-05-01

    Although lung cancer risks can vary by race/ethnicity and by construction occupation, these risks have not been examined extensively. This study analyzed 110,937 lung cancer cases identified from the California Cancer Registry between 1988 and 2007. Mean age at diagnosis, proportion diagnosed at an advanced stage, and proportion with 3-year survival were calculated for lung cancer cases employed in the construction industry. Case-control methodology was also used to assess the risk of lung cancer. Morbidity odds ratios (MORs) were estimated by conditional logistic regression. Construction workers were found to have a significantly elevated risk for all lung cancer combined (MOR = 1.57) and for each lung cancer histologic subtype examined. All construction occupations, except managers/engineers and supervisors, had a significantly elevated risk for all lung cancer combined. Roofers and welders had the highest risks for total lung cancer and for each of the histologic subtypes. Construction workers in each of the four race/ethnicity groups also had significantly increased lung cancer risks. Compared to non-construction workers, construction workers were diagnosed at an earlier age, at a more advanced stage, and had significantly lower 3-year survival, though differences were modest. These findings justify additional reductions in carcinogenic exposures in construction, and increased support for smoking cessation programs at construction sites. Copyright © 2012 Wiley Periodicals, Inc.

  9. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  10. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    PubMed

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  11. Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer

    PubMed Central

    Mao, Weimin; Chen, Bo; Yang, Shifeng; Ding, Xiaowen; Zou, Dehong; Mo, Wenju; He, Xiangming; Zhang, Xiping

    2017-01-01

    Long non-coding RNAs (lncRNAs) have been shown to play important regulatory role in certain type of cancers biology, including breast and lung cancers. However, the lncRNA expression in breast cancer combined with primary lung cancer remains unknown. In this study, databases of the Cancer Genome Atlas (TCGA) and the lncRNA profiler of contained candidate 192 lncRNAs were utilized. 11 lncRNAs were differentially expressed in breast cancer, 9 candidate lncRNAs were differentially expressed in lung cancer. In order to find the aberrant expression of lncRNAs in breast cancer combined with primary lung cancer, seven samples of primary breast cancer and lung cancer were studied for the expression of selected lncRNAs. The results showed that SNHG6 and NEAT1 were reversely expressed in breast cancer combined with primary lung cancer compared with primary breast or lung cancer. In addition, a significant correlation of lncRNAs was found in the patients whose age was above 56 in breast cancer. What's more, PVT1 expression was negatively correlated with the pathological stage, and the level of ER, PR, HER2, p53 in breast cancer. Furthermore, lncRNA expression did not have significant relationship with the 5-year survival of patients with breast cancer combined with primary lung cancer. The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer. Therefore, these lncRNAs are potential molecular indicators in the diagnosis and prognosis of cancer in the future. PMID:28938549

  12. PAXIP1 potentiates the combination of WEE1 inhibitor AZD1775 and platinum agents in lung cancer

    PubMed Central

    Jhuraney, Ankita; Woods, Nicholas T.; Wright, Gabriela; Rix, Lily; Kinose, Fumi; Kroeger, Jodi L.; Remily-Wood, Elizabeth; Cress, W. Douglas; Koomen, John M.; Brantley, Stephen G.; Gray, Jhanelle E.; Haura, Eric B.; Rix, Uwe; Monteiro, Alvaro N.

    2016-01-01

    The DNA damage response (DDR) involves a complex network of signaling events mediated by modular protein domains such as the BRCT (BRCA1 C-terminal) domain. Thus, proteins that interact with BRCT domains and are a part of the DDR constitute potential targets for sensitization to DNA damaging chemotherapy agents. We performed a pharmacological screen to evaluate seventeen kinases, identified in a BRCT-mediated interaction network as targets to enhance platinum-based chemotherapy in lung cancer. Inhibition of mitotic kinase WEE1 was found to have the most effective response in combination with platinum compounds in lung cancer cell lines. In the BRCT-mediated interaction network, WEE1 was found in complex with PAXIP1, a protein containing six BRCT domains involved in transcription and in the cellular response to DNA damage. We show that PAXIP1 BRCT domains regulate WEE1-mediated phosphorylation of CDK1. Further, ectopic expression of PAXIP1 promotes enhanced caspase 3-mediated apoptosis in cells treated with WEE1 inhibitor AZD1775 (formerly, MK-1775) and cisplatin compared with cells treated with AZD1775 alone. Cell lines and patient-derived xenograft models expressing both PAXIP1 and WEE1 exhibited synergistic effects of AZD1775 and cisplatin. In summary, PAXIP1 is involved in sensitizing lung cancer cells to the WEE1 inhibitor AZD1775 in combination with platinum-based treatment. We propose that WEE1 and PAXIP1 levels may be used as mechanism-based biomarkers of response when WEE1 inhibitor AZD1775 is combined with DNA damaging agents. PMID:27196765

  13. A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy.

    PubMed

    Su, Yujie; Hu, Yahui; Wang, Yu; Xu, Xiangting; Yuan, Yang; Li, Yunman; Wang, Zeyuan; Chen, Kerong; Zhang, Fangrong; Ding, Xuefang; Li, Min; Zhou, Jianping; Liu, Yuan; Wang, Wei

    2017-09-01

    Multi-walled carbon nanotube (MWNT) with its versatility has exhibited tremendous superiority in drug delivery. Despite plenty of researches on MWNT based delivery systems, precision-guided assistances to maximize their profitable properties are still lacking in substantive progress. We developed here a dual-targeting and co-delivery system based on MWNT for antiangiogenesis therapy in lung cancer which aimed at renin-angiotensin system (RAS) dysregulation by synergistically conducting angiotensin II type 1 receptor (AT 1 R) and type 2 receptor (AT 2 R) pathway. In this work, iRGD peptide connected to polyethyleneimine (PEI) was linked to MWNT skeleton, accompanying with candesartan (CD) conjugated to MWNT mediated by cystamine (SS). The functionalized MWNT is assembled with plasmid AT 2 (pAT 2 ) to form iRGD-PEI-MWNT-SS-CD/pAT 2 complexes. iRGD and CD act as pilots for complexes to dually target symbolic ανβ3-integrin and AT 1 R both overexpressed on tumor angiogenic endothelium and lung cancer cell. CD as chemotherapy showed synergistic downregulation of VEGF when combining of pAT 2 and efficiently inhibited angiogenesis. iRGD-PEI-MWNT-SS-CD/pAT 2 complexes greatly appreciated drug activities by changing drug distribution and exhibited remarkable tumor growth suppression in A549 xenograft nude mice. Our work presents that such dual-targeting strategy highly improves the delivery performance of MWNT and open a new avenue for RAS related lung cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Classification of Lung Cancer with Separate Tumor Nodules in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer.

    PubMed

    Detterbeck, Frank C; Bolejack, Vanessa; Arenberg, Douglas A; Crowley, John; Donington, Jessica S; Franklin, Wilbur A; Girard, Nicolas; Marom, Edith M; Mazzone, Peter J; Nicholson, Andrew G; Rusch, Valerie W; Tanoue, Lynn T; Travis, William D; Asamura, Hisao; Rami-Porta, Ramón

    2016-05-01

    Separate tumor nodules with the same histologic appearance occur in the lungs in a small proportion of patients with primary lung cancer. This article addresses how such tumors can be classified to inform the eighth edition of the anatomic classification of lung cancer. Separate tumor nodules should be distinguished from second primary lung cancer, multifocal ground glass/lepidic tumors, and pneumonic-type lung cancer, which are addressed in separate analyses. Survival of patients with separate tumor nodules in the International Association for the Study of Lung Cancer database were analyzed. This was compared with a systematic literature review. Survival of clinically staged patients decreased according to the location of the separate tumor nodule relative to the index tumor (same lobe > same side > other side) in N0 and N-any cohorts (all M0 except possible other-side nodules). However, there was also a decrease in the proportion of patients resected; among only surgically resected or among nonresected patients no survival differences were noted. There were no survival differences between patients with same-lobe nodules and those with other T3 tumors, between patients with same-side nodules and those with T4 tumors, and patients with other-side nodules and those with other M1a tumors. The data correlated with those identified in a literature review. Tumors with same-lobe separate tumor nodules (with the same histologic appearance) are recommended to be classified as T3, same-side nodules as T4, and other-side nodules as M1a. Thus, there is no recommended change between the seventh and eighth edition of the TNM classification of lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  15. The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and O6-alkylguanine-DNA-alkyltransferase of human tumour xenografts. EORTC SPG and PAMM Groups.

    PubMed

    D'Incalci, M; Bonfanti, M; Pifferi, A; Mascellani, E; Tagliabue, G; Berger, D; Fiebig, H H

    1998-10-01

    Twenty-three human xenografts, including five colon, five gastric, nine lung (three small cell lung cancer) and four breast carcinomas, were investigated for their sensitivity to nitrosoureas, dacarbazine (DTIC), cyclophosphamide (CTX) and cisplatin (DDP). In 12 cases, at least one of the drugs produced complete or partial remission, in 2, a minor regression was observed and in the other 9, treatment was ineffective. The level of sensitivity to each drug, using a score from 1 to 5, was correlated to three biochemical parameters reported to be involved in resistance to alkylating agents: glutathione (GSH), glutathione transferase (GST) and O6-alkylguanine-DNA-alkyltransferase (AGT). A wide variability was found in these parameters in the xenografts investigated. No correlation was found between any of the three parameters and sensitivity to the drugs used or between sensitivity to one drug and to any of the other drugs tested. These results illustrate the complexity of the question of resistance to alkylating agents and indicate that, at least in xenografts, the biochemical parameters examined are not predictive of response to alkylating agents.

  16. [Risk Factors of Lung Cancer in Xuanwei, Yunnan Province, China].

    PubMed

    Liu, Liqun; Wan, Xia; Chen, Gongbo; Ma, Xiangyun; Ning, Bofu; Yang, Gonghuan

    2017-08-20

    Since 1970s, Xuanwei in Yunnan province has been one of the towns with highest lung cancer mortality in China. Moreover, the characters of high female lung cancer mortality and sub-regional clustering high lung cancer mortality have not changed. In this study, we further described the exposure situation of risk factors of lung cancer in Xuanwei nowadays, in order to explore the trend of the distribution of lung cancer there. Firstly we divided the 26 towns of Xuanwei city to high-, median- and low- lung cancer areas by the lung cancer mortality in 2010-2012. We chose 2 towns within each area according to topography and orientation, and randomly picked 4 villages in each town to be our study area. We did a questionnaire about lung cancer related risk factors upon the sample population in the study area. We calculated the exposure percentages of each risk factor, in whole sample population and subgroups, for nowadays and for 10 years ago (only living environmental risk factors), and compared them between areas or time points using standardized rates and the statistical test of standardized rate comparison, or chi-square test. 65%-80% male in the study area has a history of smoking; 60%-90% non-smoker has been exposed to second hand smoke. These situations are worse in high and median lung cancer areas. 50% male in median lung cancer area have coal mining work experience, which is 2 times of the percentages in the other two areas; while 15%-25% people in high lung cancer area have other occupational exposure history to particulate air pollution, which is 3-5 times of the percentages in the other two areas. From ten years ago until nowadays, 80% families in median lung cancer area use 2 tons or more smoky coal per year; more than 90% families burn coal for household heating; more than 60% families suffer from smog in the kitchen during cook; 60% families most frequently use stove in the ground with chimney. Only 20% families in high lung cancer area now use 2 tons or

  17. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells

    PubMed Central

    Peters, Haley L.; Tripathi, Satyendra C.; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R.; St. John, Lisa S.; Federico, Lorenzo; Meraz, Ismail M.; Roth, Jack A.; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L.; Heymach, John V.; Swisher, Stephen G.; Bernantchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J.

    2017-01-01

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these re-invigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAM were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTL from healthy donors that had been expanded against select peptides. Finally, CTL specific for serine proteases–induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. PMID:28254787

  18. Significance of coexistent granulomatous inflammation and lung cancer

    PubMed Central

    Dagaonkar, Rucha S; Choong, Caroline V; Asmat, Atasha Binti; Ahmed, Dokeu Basheer A; Chopra, Akhil; Lim, Albert Y H; Tai, Dessmon Y H; Kor, Ai Ching; Goh, Soon Keng; Abisheganaden, John; Verma, Akash

    2017-01-01

    Aims Coexistence of lung cancer and granulomatous inflammation in the same patient confuses clinicians. We aimed to document the prevalence, clinicopathological features, treatment outcomes and prognosis in patients with coexisting granulomatous inflammation undergoing curative lung resection for lung cancer, in a tuberculosis (TB)-endemic country. Methods An observational cohort study of patients with lung cancer undergoing curative resection between 2012 and 2015 in a tertiary centre in Singapore. Results One hundred and twenty-seven patients underwent lung resection for cancer, out of which 19 (14.9%) had coexistent granulomatous inflammation in the resected specimen. Median age was 68 years and 58.2% were males. Overall median (range) survival was 451 (22–2452) days. Eighteen (14%) patients died at median duration of 271 days after surgery. The postsurgery median survival for those alive was 494 (29–2452) days in the whole group. Subgroup analysis did not reveal any differences in age, gender, location of cancer, radiological features, type of cancer, chemotherapy, history of TB or survival in patients with or without coexistent granulomatous inflammation. Conclusions Incidental detection of granulomatous inflammation in patients undergoing lung resection for cancer, even in a TB-endemic country, may not require any intervention. Such findings may be due to either mycobacterial infection in the past or ‘sarcoid reaction’ to cancer. Although all patients should have their resected specimen sent for acid-fast bacilli culture and followed up until the culture results are reported, the initiation of the management of such patients as per existing lung cancer management guidelines does not affect their outcome adversely. PMID:27646525

  19. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer.

    PubMed

    Wen, Zhong-Mei; Jie, Jing; Zhang, Yuan; Liu, Han; Peng, Li-Ping

    2017-12-02

    Lung cancer is a leading cause of cancer-associated mortality worldwide, which has a low survival rate. Multidrug resistance (MDR) is a major obstacle that hinders the treatment of lung cancer. Doxorubicin (DOX) is an anthracycline glycoside antibiotic, having a broad spectrum of anticancer activity against various solid tumors. Juglanin is a natural production, mainly extracted from green walnut husks of Juglans mandshurica, exhibiting various bioactivities. Here, we demonstrated that the combination of drug, gene and nanoparticle overcame MDR, inhibiting lung cancer progression. A novel nanoparticular pre-chemosensitizer was applied to develop a self-assembled nanoparticle formula of amphiphilic poly(juglanin (Jug) dithiodipropionic acid (DA))-b-poly(ethylene glycol) (PEG)-siRNA Kras with DOX in the core (DOX/PJAD-PEG-siRNA). The formed nanoparticles, appeared spherical shape, had mean particle size of 81.8 nm, and the zeta potential was -18.62 mV. The in vitro drug release results suggested that a sustained release was observed in DOX/PJAD-PEG-siRNA nanoparticles compared to the free DOX. Jug could improve the cytotoxicity of DOX to cancer cells with MDR. Oncogene, Kras, was dose-dependently reduced by treatment of DOX/PJAD-PEG-siRNA nanoparticles. Additionally, P-glycoprotein (MDR1) and c-Myc, contributing to tumor progression, were suppressed by the nanoparticles, while p53 was improved in drug-resistant cells. Colony formation analysis suggested that DOX/PJAD-PEG-siRNA nanoparticles showed the most effective role in reducing cancer cell proliferation. In vivo, DOX/PJAD-PEG-siRNA nanoparticles reduced tumor growth compared to the free DOX, accompanied with reduced KI-67 and enhanced TUNEL positive levels in drug-resistant xenografted nude mice. Thus, the findings above indicated that juglanin, as a chemosensitizer, potentiate the anti-cancer role of DOX in drug-resistant cancer cells. And the nanoparticles exhibited stronger antitumor efficiency

  20. Target engagement imaging of PARP inhibitors in small-cell lung cancer.

    PubMed

    Carney, Brandon; Kossatz, Susanne; Lok, Benjamin H; Schneeberger, Valentina; Gangangari, Kishore K; Pillarsetty, Naga Vara Kishore; Weber, Wolfgang A; Rudin, Charles M; Poirier, John T; Reiner, Thomas

    2018-01-12

    Insufficient chemotherapy response and rapid disease progression remain concerns for small-cell lung cancer (SCLC). Oncologists rely on serial CT scanning to guide treatment decisions, but this cannot assess in vivo target engagement of therapeutic agents. Biomarker assessments in biopsy material do not assess contemporaneous target expression, intratumoral drug exposure, or drug-target engagement. Here, we report the use of PARP1/2-targeted imaging to measure target engagement of PARP inhibitors in vivo. Using a panel of clinical PARP inhibitors, we show that PARP imaging can quantify target engagement of chemically diverse small molecule inhibitors in vitro and in vivo. We measure PARP1/2 inhibition over time to calculate effective doses for individual drugs. Using patient-derived xenografts, we demonstrate that different therapeutics achieve similar integrated inhibition efficiencies under different dosing regimens. This imaging approach to non-invasive, quantitative assessment of dynamic intratumoral target inhibition may improve patient care through real-time monitoring of drug delivery.

  1. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu - /nu - ) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  3. Lung Cancer Prognosis in Elderly Solid Organ Transplant Recipients

    PubMed Central

    Sigel, Keith; Veluswamy, Rajwanth; Krauskopf, Katherine; Mehrotra, Anita; Mhango, Grace; Sigel, Carlie; Wisnivesky, Juan

    2015-01-01

    Background Treatment-related immunosuppression in organ transplant recipients has been linked to increased incidence and risk of progression for several malignancies. Using a population-based cancer cohort, we evaluated whether organ transplantation was associated with worse prognosis in elderly patients with non-small cell lung cancer (NSCLC). Methods Using the Surveillance, Epidemiology and End Results registry linked to Medicare claims we identified 597 patients age ≥65 with NSCLC who had received organ transplants (kidney, liver, heart or lung) prior to cancer diagnosis. These cases were compared to 114,410 untransplanted NSCLC patients. We compared overall survival (OS) by transplant status using Kaplan-Meier methods and Cox regression. To account for an increased risk of non-lung cancer death (competing risks) in transplant recipients, we used conditional probability function (CPF) analyses. Multiple CPF regression was used to evaluate lung cancer prognosis in organ transplant recipients while adjusting for confounders. Results Transplant recipients presented with earlier stage lung cancer (p=0.002) and were more likely to have squamous cell carcinoma (p=0.02). Cox regression analyses showed that having received a non-lung organ transplant was associated with poorer OS (p<0.05) while lung transplantation was associated with no difference in prognosis. After accounting for competing risks of death using CPF regression, no differences in cancer-specific survival were noted between non-lung transplant recipients and non-transplant patients. Conclusions Non-lung solid organ transplant recipients who developed NSCLC had worse OS than non-transplant recipients due to competing risks of death. Lung cancer-specific survival analyses suggest that NSCLC tumor behavior may be similar in these two groups. PMID:25839704

  4. Ganoderma lucidum targeting lung cancer signaling: A review.

    PubMed

    Gill, Balraj Singh; Navgeet; Kumar, Sanjeev

    2017-06-01

    Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.

  5. Maturation of the developing human fetal prostate in a rodent xenograft model

    PubMed Central

    Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim

    2015-01-01

    Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131

  6. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

    PubMed

    Ramer, Robert; Heinemann, Katharina; Merkord, Jutta; Rohde, Helga; Salamon, Achim; Linnebacher, Michael; Hinz, Burkhard

    2013-01-01

    The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.

  7. Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.

    PubMed

    Merrill, Ray M; Frutos, Aaron

    2018-01-01

    Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.

  8. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  9. Spirometry: a predictor of lung cancer among asbestos workers.

    PubMed

    Świątkowska, Beata; Szeszenia-Dąbrowska, Neonila

    2017-01-01

    The significance of lung function as an independent risk factor for lung cancer remains unclear. The objective of the study is to answer the question if spirometry can identify patients at risk for lung cancer among people occupationally exposed to asbestos dust in the past. In order to identify a group of individuals with the highest risk of lung cancer incidence based on lung function levels of FEV 1 % predicted value, we examined 6882 subjects enrolled in the health surveillance program for asbestos related diseases over the years 2000-2014. We found a total of 110 cases confirmed as primary lung cancer. Using Cox's proportional hazards model after adjustment for age, gender, number of cigarettes, duration of smoking and cumulative asbestos exposure, we estimated that compared with the subjects with FEV 1 ≥90% pred, the HR of lung cancer was 1.40 (95%CI: 0.94-2.08) for the subjects with FEV 1 less than 90% and 1.95 (HR = 1.86; 95%CI: 1.12-3.08) for those with FEV 1 less than 70%. In addition, probability of the occurrence of lung cancer for FEV 1 <90% of the predicted value was HR = 2.19 (95%CI: 1.04-4.61) in the subjects whose time since spirometry and cancer diagnosis was three years or less. The results strongly support the hypothesis that spirometry can identify patients at a risk of lung cancer development. Regular spirometry should be offered to all patients with a history of asbestos exposure, at least once every three years.

  10. Lung cancer biology: a genetic and genomic perspective.

    PubMed

    Sánchez-Céspedes, M

    2009-05-01

    Lung cancer is the leading cause of death due to cancer in most western countries and, as tobacco consumption is not significantly decreasing worldwide, will remain so in the coming decades. Thus, in addition to preventing uptake and encouraging cessation of the smoking habit, it is important to invest in understanding the biology of this type of cancer. Of particular interest are the recent efforts directed towards characterising the entire set of gene alterations in lung cancer. The present review describes the catalogue of known genetic alterations in lung cancer, their biological role and their use in clinical management.

  11. Advances in immunotherapy for non-small cell lung cancer.

    PubMed

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy.

  12. COPD is commonly underdiagnosed in patients with lung cancer: results from the RECOIL study (retrospective study of COPD infradiagnosis in lung cancer).

    PubMed

    Parrón Collar, Dámaso; Pazos Guerra, Mario; Rodriguez, Paula; Gotera, Carolina; Mahíllo-Fernández, Ignacio; Peces-Barba, Germán; Seijo, Luis M

    2017-01-01

    Many patients with COPD are underdiagnosed, including patients with coexisting lung cancer. We conducted a retrospective study of COPD prevalence and outcomes among all patients diagnosed with lung cancer at our institution during a 2-year period. Patients with known COPD (group A) were compared with those who received a diagnosis of COPD at the time of their oncologic workup (group B). A total of 306 patients were diagnosed with lung cancer during the study period, including 87 with COPD (28.6%). Sixty percent of patients with coexisting lung cancer and COPD were unaware of their obstructive airways disease prior to the lung cancer diagnosis. Patients in group A were older (74+9 vs 69+9 years; P =0.03), had more severe obstruction (% of predicted forced expiratory volume in one second [FEV 1 %] 55+17 vs 71+13; P =0.04), more emphysema (91% vs 65%; P =0.02), and worse diffusing capacity of the lungs for carbon monoxide 59+19% vs 72+22%; P =0.01) than patients in group B, but the latter had more advanced lung cancer (27.3% vs 13.8% stage IV disease; P =0.01) and consumed more outpatient resources ( P =0.03). Overall mortality was similar (56% vs 58%). However, stage-adjusted mortality showed a trend toward greater mortality in group B patients (1.87 [0.91-3.85]; P =0.087). COPD infradiagnosis is common in patients with coexisting lung cancer and is associated with more advanced cancer stage, greater outpatient resource consumption, and may be associated with greater stage-adjusted mortality.

  13. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    NASA Astrophysics Data System (ADS)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  14. The role of LKB1 in lung cancer.

    PubMed

    Sanchez-Cespedes, Montse

    2011-09-01

    In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.

  15. Hsp27 Inhibition with OGX-427 Sensitizes Non-Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy.

    PubMed

    Lelj-Garolla, Barbara; Kumano, Masafumi; Beraldi, Eliana; Nappi, Lucia; Rocchi, Palma; Ionescu, Diana N; Fazli, Ladan; Zoubeidi, Amina; Gleave, Martin E

    2015-05-01

    Non-small cell lung cancer (NSCLC) is the most frequent cause of death from cancer worldwide. Despite the availability of active chemotherapy regimens and EGFR tyrosine kinase inhibitors, all advanced patients develop recurrent disease after first-line therapy. Although Hsp27 is a stress-induced chaperone that promotes acquired resistance in several cancers, its relationship to treatment resistance in NSCLC has not been defined. Understanding adaptive responses of acquired resistance will help guide new strategies to control NSCLC. Hsp27 levels were evaluated in an HCC827 erlotinib-resistant-derived cell line (HCC-827Resistant), and sensitivity to erlotinib was examined in Hsp27-overexpressing A549 cells. The role of Hsp27 in both erlotinib and cytotoxic treatment resistance was evaluated in HCC-827 and A549 NSCLC cells using the Hsp27 antisense drug OGX-427. The effect of OGX-427 in combination with erlotinib was also assessed in mice bearing A549 xenografts. Hsp27 is induced by erlotinib and protects NSCLC cells from treatment-induced apoptosis, whereas OGX-427 sensitizes NSCLC cells to erlotinib. Interestingly, increased resistance to erlotinib was observed when Hsp27 was increased either in HCC827 erlotinib-resistant or overexpressing A549 cells. Combining OGX-427 with erlotinib significantly enhanced antitumor effects in vitro and delayed A549 xenograft growth in vivo. OGX-427 also significantly enhanced the activity of cytotoxic drugs used for NSCLC. These data indicate that treatment-induced Hsp27 contributes to the development of resistance, and provides preclinical proof-of-principle that inhibition of stress adaptive pathways mediated by Hsp27 enhances the activity of erlotinib and chemotherapeutics. ©2015 American Association for Cancer Research.

  16. Lung cancer - non-small cell

    MedlinePlus

    ... do develop lung cancer. Research shows that smoking marijuana may help cancer cells grow. But there is no direct link ... LoCicero, MD, private practice specializing in Hematology and Medical Oncology, Longsteet Cancer Center, Gainesville, GA. Review provided by VeriMed Healthcare ...

  17. Cadmium and lung cancer mortality accounting for simultaneous arsenic exposure.

    PubMed

    Park, Robert M; Stayner, Leslie T; Petersen, Martin R; Finley-Couch, Melissa; Hornung, Richard; Rice, Carol

    2012-05-01

    Prior investigations identified an association between airborne cadmium and lung cancer but questions remain regarding confounding by arsenic, a well-established lung carcinogen. A cadmium smelter population exhibiting excess lung cancer was re-analysed using a retrospective exposure assessment for arsenic (As), updated mortality (1940-2002), a revised cadmium (Cd) exposure matrix and improved work history information. Cumulative exposure metrics for both cadmium and arsenic were strongly associated making estimation of their independent effects difficult. Standardised mortality ratios (SMRs) were modelled with Poisson regression with the contribution of arsenic to lung cancer risk constrained by exposure-response estimates previously reported. The results demonstrate (1) a statistically significant effect of Cd independent of As (SMR=3.2 for 10 mg-year/m(3) Cd, p=0.012), (2) a substantial healthy worker effect for lung cancer (for unexposed workers, SMR=0.69) and (3) a large deficit in lung cancer mortality among Hispanic workers (SMR=0.27, p=0.009), known to have low lung cancer rates. A supralinear dose-rate effect was observed (contribution to risk with increasing exposure intensity has declining positive slope). Lung cancer mortality was somewhat better predicted using a cadmium burden metric with a half-life of about 20-25 years. These findings support an independent effect for cadmium in risk of lung cancer mortality. 1/1000 excess lifetime risk of lung cancer death is predicted from an airborne exposure of about 2.4 μg/m(3) Cd.

  18. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  19. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization.

    PubMed

    Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun

    2017-01-01

    The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Two Cases of Lung Cancer in Foundry Workers

    PubMed Central

    2013-01-01

    Background Iron and steel foundry workers are exposed to various toxic and carcinogenic substances including crystalline silica, polycyclic aromatic hydrocarbons, and arsenic. Studies have been conducted on lung cancer in iron and steel founding workers and the concentration of crystalline silica in foundries; however, the concentration of crystalline silica and cases of lung cancer in a single foundry has never been reported in Korea. Therefore, the authors report two cases of lung cancer and concentration of crystalline silica by the X-ray diffraction method. Case presentation A 55-year-old blasting and grinding worker who worked in a foundry for 33 years was diagnosed with lung cancer. Another 64-year-old forklift driver who worked in foundries for 39 years was also diagnosed with lung cancer. Shot blast operatives were exposed to the highest level of respirable quartz (0.412 mg/m3), and a forklift driver was exposed to 0.223 mg/m3. Conclusions The lung cancer of the two workers is very likely due to occupationally related exposure given their occupational history, the level of exposure to crystalline silica, and epidemiologic evidence. Further studies on the concentration of crystalline silica in foundries and techniques to reduce the crystalline silica concentration are required. PMID:24472520

  1. Lung Cancer in Women with a Family History of Cancer: The Spanish Female-specific Database WORLD07.

    PubMed

    Isla, Dolores; Felip, Enriqueta; Viñolas, Nuria; Provencio, Mariano; Majem, Margarita; Artal, Angel; Bover, Isabel; Lianes, Pilar; DE Las Peñas, Ramón; Catot, Silvia; DE Castro, Javier; Blasco, Ana; Terrasa, Josefa; Gonzalez-Larriba, José Luis; Juan, Oscar; Dómine, Manuel; Bernabe, Reyes; Garrido, Pilar

    2016-12-01

    The WORLD07 project is a female-specific database to prospectively analyze the characteristics of Spanish women with lung cancer. We analyzed and compared lung cancer features in women with and without a family history of cancer/lung cancer. Two thousand and sixty women were included: 876 had a family history of cancer (lung cancer, 34%) and 886 did not, with no significant differences between groups, except for smoking status (p=0.036). We found statistically significant correlations between epidermal growth factor receptor (EGFR) mutation and smoking status in patients with a family history of cancer (r=-0.211; p<0.001) and lung cancer (r=-0.176; p<0.001). Longer median overall survival was observed in women with a family history of cancer and lung cancer. Among Spanish women with lung cancer, a greater proportion were current smokers in those with a family history of cancer/lung cancer. There was a significant correlation between the presence of EGFR mutation and smoking. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells.

    PubMed

    Xiong, Fei; Jiang, Miao; Huang, Zhenzhou; Chen, Meijuan; Chen, Kejun; Zhou, Jing; Yin, Lian; Tang, Yuping; Wang, Mingyan; Ye, Lihong; Zhan, Zhen; Duan, Jinao; Fu, Haian; Zhang, Xu

    2014-03-01

    In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic

  3. Tobacco Cessation May Improve Lung Cancer Patient Survival.

    PubMed

    Dobson Amato, Katharine A; Hyland, Andrew; Reed, Robert; Mahoney, Martin C; Marshall, James; Giovino, Gary; Bansal-Travers, Maansi; Ochs-Balcom, Heather M; Zevon, Michael A; Cummings, K Michael; Nwogu, Chukwumere; Singh, Anurag K; Chen, Hongbin; Warren, Graham W; Reid, Mary

    2015-07-01

    This study characterizes tobacco cessation patterns and the association of cessation with survival among lung cancer patients at Roswell Park Cancer Institute: an NCI Designated Comprehensive Cancer Center. Lung cancer patients presenting at this institution were screened with a standardized tobacco assessment, and those who had used tobacco within the past 30 days were automatically referred to a telephone-based cessation service. Demographic, clinical information, and self-reported tobacco use at last contact were obtained via electronic medical records and the Roswell Park Cancer Institute tumor registry for all lung cancer patients referred to the service between October 2010 and October 2012. Descriptive statistics and Cox proportional hazards models were used to assess whether tobacco cessation and other factors were associated with lung cancer survival through May 2014. Calls were attempted to 313 of 388 lung cancer patients referred to the cessation service. Eighty percent of patients (250 of 313) were successfully contacted and participated in at least one telephone-based cessation call; 40.8% (102 of 250) of persons contacted reported having quit at the last contact. After controlling for age, pack year history, sex, Eastern Cooperative Oncology Group performance status, time between diagnosis and last contact, tumor histology, and clinical stage, a statistically significant increase in survival was associated with quitting compared with continued tobacco use at last contact (HR = 1.79; 95% confidence interval: 1.14-2.82) with a median 9 month improvement in overall survival. Tobacco cessation among lung cancer patients after diagnosis may increase overall survival.

  4. Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    PubMed Central

    Ganapathy, Suthakar; Chen, Qinghe; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. Methodology/Principal Findings Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. Conclusions/Significance These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer. PMID:21209944

  5. Reduced lung-cancer mortality with low-dose computed tomographic screening.

    PubMed

    Aberle, Denise R; Adams, Amanda M; Berg, Christine D; Black, William C; Clapp, Jonathan D; Fagerstrom, Richard M; Gareen, Ilana F; Gatsonis, Constantine; Marcus, Pamela M; Sicks, JoRean D

    2011-08-04

    The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer

  6. Metachronous and Synchronous Presentation of Acute Myeloid Leukemia and Lung Cancer

    PubMed Central

    Varadarajan, Ramya; Ford, LaurieAnn; Sait, Sheila NJ; Block, AnneMarie W.; Barcos, Maurice; Wallace, Paul K.; Ramnath, Nithya; Wang, Eunice S.; Wetzler, Meir

    2009-01-01

    Smoking is associated with both acute myeloid leukemia (AML) and lung cancer. We therefore searched our database for concomitant presentation of AML and lung cancer. Among 775 AML cases and 5225 lung cancer cases presenting to Roswell Park Cancer Institute between the years January 1992 and May 2008 we found 12 (1.5% of AML cases; 0.23% of lung cancer cases) cases (seven metachronous and five synchronous) with AML and lung cancer. All but one patient were smokers. There were no unique characteristic of either AML or lung cancer in these patients. Nine patients succumbed to AML, one died from an unrelated cause while undergoing treatment for AML, one died of lung cancer and one patient is alive after allogeneic transplantation for AML. In summary, this study supports the need for effective smoking cessation programs. PMID:19181380

  7. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells

    PubMed Central

    Li, Hongyu; Hu, Jing; Wu, Shuhong; Wang, Li; Cao, Xiaobo; Zhang, Xiaoshan; Dai, Bingbing; Cao, Mengru; Shao, Ruping; Zhang, Ran; Majidi, Mourad; Ji, Lin; Heymach, John V.; Wang, Michael; Pan, Shiyang; Minna, John; Mehran, Reza J.; Swisher, Stephen G.; Roth, Jack A.; Fang, Bingliang

    2016-01-01

    Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer. PMID:26657290

  8. Inactivation of LLC1 gene in nonsmall cell lung cancer

    PubMed Central

    Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin

    2007-01-01

    Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513

  9. Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study.

    PubMed

    Tammemagi, Martin C; Schmidt, Heidi; Martel, Simon; McWilliams, Annette; Goffin, John R; Johnston, Michael R; Nicholas, Garth; Tremblay, Alain; Bhatia, Rick; Liu, Geoffrey; Soghrati, Kam; Yasufuku, Kazuhiro; Hwang, David M; Laberge, Francis; Gingras, Michel; Pasian, Sergio; Couture, Christian; Mayo, John R; Nasute Fauerbach, Paola V; Atkar-Khattra, Sukhinder; Peacock, Stuart J; Cressman, Sonya; Ionescu, Diana; English, John C; Finley, Richard J; Yee, John; Puksa, Serge; Stewart, Lori; Tsai, Scott; Haider, Ehsan; Boylan, Colm; Cutz, Jean-Claude; Manos, Daria; Xu, Zhaolin; Goss, Glenwood D; Seely, Jean M; Amjadi, Kayvan; Sekhon, Harmanjatinder S; Burrowes, Paul; MacEachern, Paul; Urbanski, Stefan; Sin, Don D; Tan, Wan C; Leighl, Natasha B; Shepherd, Frances A; Evans, William K; Tsao, Ming-Sound; Lam, Stephen

    2017-11-01

    Results from retrospective studies indicate that selecting individuals for low-dose CT lung cancer screening on the basis of a highly predictive risk model is superior to using criteria similar to those used in the National Lung Screening Trial (NLST; age, pack-year, and smoking quit-time). We designed the Pan-Canadian Early Detection of Lung Cancer (PanCan) study to assess the efficacy of a risk prediction model to select candidates for lung cancer screening, with the aim of determining whether this approach could better detect patients with early, potentially curable, lung cancer. We did this single-arm, prospective study in eight centres across Canada. We recruited participants aged 50-75 years, who had smoked at some point in their life (ever-smokers), and who did not have a self-reported history of lung cancer. Participants had at least a 2% 6-year risk of lung cancer as estimated by the PanCan model, a precursor to the validated PLCOm2012 model. Risk variables in the model were age, smoking duration, pack-years, family history of lung cancer, education level, body-mass index, chest x-ray in the past 3 years, and history of chronic obstructive pulmonary disease. Individuals were screened with low-dose CT at baseline (T0), and at 1 (T1) and 4 (T4) years post-baseline. The primary outcome of the study was incidence of lung cancer. This study is registered with ClinicalTrials.gov, number NCT00751660. 7059 queries came into the study coordinating centre and were screened for PanCan risk. 15 were duplicates, so 7044 participants were considered for enrolment. Between Sept 24, 2008, and Dec 17, 2010, we recruited and enrolled 2537 eligible ever-smokers. After a median follow-up of 5·5 years (IQR 3·2-6·1), 172 lung cancers were diagnosed in 164 individuals (cumulative incidence 0·065 [95% CI 0·055-0·075], incidence rate 138·1 per 10 000 person-years [117·8-160·9]). There were ten interval lung cancers (6% of lung cancers and 6% of individuals with cancer

  10. Attitudes towards Lung Cancer Screening in an Australian High-Risk Population

    PubMed Central

    Flynn, Alexandra E.; Peters, Matthew J.; Morgan, Lucy C.

    2013-01-01

    Objectives. To determine whether persons at high risk of lung cancer would participate in lung cancer screening test if available in Australia and to elicit general attitudes towards cancer screening and factors that might affect participation in a screening program. Methods. We developed a 20-item written questionnaire, based on two published telephone interview scripts, addressing attitudes towards cancer screening, perceived risk of lung cancer, and willingness to be screened for lung cancer and to undertake surgery if lung cancer were detected. The questionnaire was given to 102 current and former smokers attending the respiratory clinic and pulmonary rehabilitation programmes. Results. We gained 90 eligible responses (M:F, 69:21). Mean [SD] age was 63 [11] and smoking history was 32 [21] pack years. 95% of subjects would participate in a lung cancer screening test, and 91% of these would consider surgery if lung cancer was detected. 44% of subjects considered that they were at risk of lung cancer. This was lower in ex-smokers than in current smokers. Conclusions. There is high willingness for lung cancer screening and surgical treatment. There is underrecognition of risk among ex-smokers. This misperception could be a barrier to a successful screening or case-finding programme in Australia. PMID:26316943

  11. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  12. Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer.

    PubMed

    Landi, Maria Teresa; Consonni, Dario; Rotunno, Melissa; Bergen, Andrew W; Goldstein, Alisa M; Lubin, Jay H; Goldin, Lynn; Alavanja, Michael; Morgan, Glen; Subar, Amy F; Linnoila, Ilona; Previdi, Fabrizio; Corno, Massimo; Rubagotti, Maurizia; Marinelli, Barbara; Albetti, Benedetta; Colombi, Antonio; Tucker, Margaret; Wacholder, Sholom; Pesatori, Angela C; Caporaso, Neil E; Bertazzi, Pier Alberto

    2008-06-06

    Lung cancer is the leading cause of cancer mortality worldwide. Tobacco smoking is its primary cause, and yet the precise molecular alterations induced by smoking in lung tissue that lead to lung cancer and impact survival have remained obscure. A new framework of research is needed to address the challenges offered by this complex disease. We designed a large population-based case-control study that combines a traditional molecular epidemiology design with a more integrative approach to investigate the dynamic process that begins with smoking initiation, proceeds through dependency/smoking persistence, continues with lung cancer development and ends with progression to disseminated disease or response to therapy and survival. The study allows the integration of data from multiple sources in the same subjects (risk factors, germline variation, genomic alterations in tumors, and clinical endpoints) to tackle the disease etiology from different angles. Before beginning the study, we conducted a phone survey and pilot investigations to identify the best approach to ensure an acceptable participation in the study from cases and controls. Between 2002 and 2005, we enrolled 2101 incident primary lung cancer cases and 2120 population controls, with 86.6% and 72.4% participation rate, respectively, from a catchment area including 216 municipalities in the Lombardy region of Italy. Lung cancer cases were enrolled in 13 hospitals and population controls were randomly sampled from the area to match the cases by age, gender and residence. Detailed epidemiological information and biospecimens were collected from each participant, and clinical data and tissue specimens from the cases. Collection of follow-up data on treatment and survival is ongoing. EAGLE is a new population-based case-control study that explores the full spectrum of lung cancer etiology, from smoking addiction to lung cancer outcome, through examination of epidemiological, molecular, and clinical data. We have

  13. Incidence of lung cancer among subway drivers in Stockholm.

    PubMed

    Gustavsson, Per; Bigert, Carolina; Pollán, Marina

    2008-07-01

    Very high levels of airborne particles have been detected in the subway system in Stockholm. Subway particles are more toxic to DNA in cultured human lung cells than particles from ambient air. This cohort comprised all men in Stockholm County who were gainfully employed in 1970. They were followed for cancer incidence until 1989. Lung cancer cases were identified from the national cancer register. Subway drivers were identified from the census in 1970. The reference cohort comprised all transport and communication workers in Stockholm. There were nine cases of lung cancer among the subway drivers, giving a SIR of 0.82 (95% confidence interval 0.38-1.56). The lung cancer incidence was not increased among the subway drivers. The study gives some evidence against the hypothesis that subway particles would be more potent in inducing lung cancer than particles in ambient air. (c) 2008 Wiley-Liss, Inc.

  14. Study of Ponatinib in Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers

    ClinicalTrials.gov

    2018-01-17

    Adenocarcinoma of the Lung; Extensive Stage Small Cell Lung Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  15. Cancer-associated fibroblasts in a human HEp-2 established laryngeal xenografted tumor are not derived from cancer cells through epithelial-mesenchymal transition, phenotypically activated but karyotypically normal.

    PubMed

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  16. Cancer-Associated Fibroblasts in a Human HEp-2 Established Laryngeal Xenografted Tumor Are Not Derived from Cancer Cells through Epithelial-Mesenchymal Transition, Phenotypically Activated but Karyotypically Normal

    PubMed Central

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  17. Cadmium and lung cancer mortality accounting for simultaneous arsenic exposure

    PubMed Central

    Park, Robert M; Stayner, Leslie T; Petersen, Martin R; Finley-Couch, Melissa; Hornung, Richard; Rice, Carol

    2015-01-01

    Objectives Prior investigations identified an association between airborne cadmium and lung cancer but questions remain regarding confounding by arsenic, a well-established lung carcinogen. Methods A cadmium smelter population exhibiting excess lung cancer was re-analysed using a retrospective exposure assessment for arsenic (As), updated mortality (1940–2002), a revised cadmium (Cd) exposure matrix and improved work history information. Results Cumulative exposure metrics for both cadmium and arsenic were strongly associated making estimation of their independent effects difficult. Standardised mortality ratios (SMRs) were modelled with Poisson regression with the contribution of arsenic to lung cancer risk constrained by exposure–response estimates previously reported. The results demonstrate (1) a statistically significant effect of Cd independent of As (SMR=3.2 for 10 mg-year/m3 Cd, p=0.012), (2) a substantial healthy worker effect for lung cancer (for unexposed workers, SMR=0.69) and (3) a large deficit in lung cancer mortality among Hispanic workers (SMR=0.27, p=0.009), known to have low lung cancer rates. A supralinear dose-rate effect was observed (contribution to risk with increasing exposure intensity has declining positive slope). Lung cancer mortality was somewhat better predicted using a cadmium burden metric with a half-life of about 20–25 years. Conclusions These findings support an independent effect for cadmium in risk of lung cancer mortality. 1/1000 excess lifetime risk of lung cancer death is predicted from an airborne exposure of about 2.4 μg/m3 Cd. PMID:22271639

  18. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo.

    PubMed

    Zeng, Yuanyuan; Zhu, Jianjie; Shen, Dan; Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-An

    2017-05-09

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3'-untranslated region (3'-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3'-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment.

  19. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo

    PubMed Central

    Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-an

    2017-01-01

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3′-untranslated region (3′-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3′-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment. PMID:28199217

  20. Lung Cancer Prevention (PDQ®)—Health Professional Version

    Cancer.gov

    Lung cancer prevention strategies include quitting or avoiding exposure to smoking, occupational carcinogens, and radon. Get detailed information about risk factors and lung cancer prevention in this summary for clinicians.

  1. Drugs Approved for Lung Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for lung cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  2. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    PubMed

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (P<0.05). The apoptosis rate of A549/Lv-shCyPA (5.01% +/- 0.5%) was higher than control groups (0.35% +/- 0.17%) (P<0.05). Visible tumors were only detectable at 6th day after inoculated by A549/Lv-shCyPA. The xenograft tumors of A549/Lv-shCyPA remarkably delayed tumor growth and remained at a similarly small average size at 38th days after inoculation compared with the control group (P < 0.05). Lentiviral-vector-mediated siRNA technique effectively inhibits the expression of CyPA, induces the NSCLC cell apoptosis, inhibits the tumor growth. Elucidation of the precise role of CypA in these pathways may lead to new targeted

  3. Wolf in Sheep's Clothing: Primary Lung Cancer Mimicking Benign Entities.

    PubMed

    Snoeckx, Annemie; Dendooven, Amélie; Carp, Laurens; Desbuquoit, Damien; Spinhoven, Maarten J; Lauwers, Patrick; Van Schil, Paul E; van Meerbeeck, Jan P; Parizel, Paul M

    2017-10-01

    Lung cancer is the most common cancer worldwide. On imaging, it typically presents as mass or nodule. Recognition of these typical cases is often straightforward, whereas diagnosis of uncommon manifestations of primary lung cancer is far more challenging. Lung cancer can mimic a variety of benign entities, including pneumonia, lung abscess, postinfectious scarring, atelectasis, a mediastinal mass, emphysema and granulomatous diseases. Correlation with previous history, clinical and biochemical parameters is necessary in the assessment of these cases, but often aspecific and inconclusive. Whereas 18 F-fluorodeoxyglucose ( 18 F-FDG) Positron Emission Tomography is the cornerstone in staging of lung cancer, its role in diagnosis of these uncommon manifestations is less straightforward since benign entities can present with increased 18 F-FDG-uptake and, on the other hand, a number of these uncommon lung cancer manifestations do not exhibit increased uptake. Chest Computed Tomography (CT) is the imaging modality of choice for both lesion detection and characterization. In this pictorial review we present the wide imaging spectrum of CT-findings as well as radiologic-pathologic correlation of these uncommon lung cancer manifestations. Knowledge of the many faces of lung cancer is crucial for early diagnosis and subsequent treatment. A multidisciplinary approach in these cases is mandatory. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    NASA Astrophysics Data System (ADS)

    Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.

    2016-08-01

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.

  5. Nutrition habits, physical activity, and lung cancer: an authoritative review.

    PubMed

    Koutsokera, Alexandra; Kiagia, Maria; Saif, Muhammad W; Souliotis, Kyriakos; Syrigos, Kostas N

    2013-07-01

    Lung cancer is the leading cause of cancer death worldwide. Because of high incidence rates and low survival rates, it is important to study the risk factors that may help prevent the disease from developing. It has been well established that cigarette smoking is the most important risk factor for lung cancer. Nonetheless it is likely that there are other modifiable risk factors that would assist in the prevention of lung cancer. Research on factors such as nutrition and physical activity and their influence on lung cancer has been carried out for nearly 3 decades. A systematic review in the MEDLINE database of published studies was conducted, focusing on systematic reviews, meta-analyses, and large prospective studies. The association between physical activity and lung cancer has been conflicting. Among the researched studies, 10 showed an inverse association, whereas 11 reported no association. A meta-analysis that was conducted from 1996 to October 2003 showed that leisure physical activity (LPA) prevents lung cancer. Data from 11 cohort and case-control studies showed an inverse relationship between fruit and vegetable consumption and lung cancer. Evidence from case-control studies suggests a positive association between meat intake and risk of lung cancer, although several more recent studies have presented doubts about these findings. The possible association of physical activity, nutrition, and the risk of lung cancer development remains controversial. Further prospective studies should be conducted to determine the potential influence of these 2 risk factors. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Lung Cancer Clinical Trials: Advances in Immunotherapy

    Cancer.gov

    New treatments for lung cancer and aspects of joining a clinical trial are discussed in this 30-minute Facebook Live event, hosted by NCI’s Dr. Shakun Malik, head of thoracic oncology therapeutics, and Janet Freeman-Daily, lung cancer patient activist and founding member of #LCSM.

  7. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  8. Lung cancer: Incidence and survival in Rabat, Morocco.

    PubMed

    Lachgar, A; Tazi, M A; Afif, M; Er-Raki, A; Kebdani, T; Benjaafar, N

    2016-12-01

    Lung cancer is the most common cancer worldwide, but epidemiologic data from developing countries are lacking. This article reports lung cancer incidence and survival in Rabat, the capital of Morocco. All lung cancer cases diagnosed between 2005 and 2008 were analyzed using data provided by the Rabat Cancer Registry. The standardized rate was reported using age adjustment with respect to the world standard population, and the observed survival rates were calculated using the Kaplan-Meier method. Three hundred fifty-one cases were registered (314 males and 37 females), aged 27-90 years (median, 59 years). The most common pathological type was adenocarcinoma (40.2%) followed by squamous cell carcinoma (31.9%); the majority of cases were diagnosed at stage IV (52%). The age-standardized incidence rate was 25.1 and 2.7 per 100,000 for males and females, respectively, and the overall observed survival rates at 1 and 5 years were 31.7% and 3.4%, respectively. The clinical stage of disease was the only independent predictor of survival. The survival rate of lung cancer in Rabat is very poor. This finding explains the need for measures to reduce the prevalence of tobacco and to improve diagnostic and therapeutic facilities for lung cancer. Copyright © 2016. Published by Elsevier Masson SAS.

  9. Radiation-induced heart disease in lung cancer radiotherapy: A dosimetric update.

    PubMed

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-10-01

    Radiation-induced heart disease (RIHD), which affects the patients' prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy.

  10. [Small-cell lung cancer: epidemiology, diagnostics and therapy].

    PubMed

    Pešek, Miloš; Mužík, Jan

    Authors present actual overview of information on diagnostic and therapeutic procedures in small-cell lung cancer (SCLC). This highly aggressive type of lung cancer is diagnosed in 14.8 % of Czech lung cancer patients. Vast majority of those patients (87 %) suffer from advanced and metastatic disease in the time of diagnosis. In this issue are presented prognostic factors, staging diagnostic procedures and therapeutic recommendations. The backbone of actual SCLC treatment is combined chemotherapy and radiotherapy and less frequently, carefully in selected cases, surgical procedures. SCLC should be have as chemosensitive, chemoresistent or chemorefractory disease. Actual cytostatic combinations used in 1st line treatment, different schedules of chemoradiotherapy, drugs used in second line treatment and schedules and timing of prophylactic brain irradiation are presented. In near future, perspectively, there are some promissible data on antitumour immunotherapy based on anti CTLA-4 and anti PD-1/PE-L1 antibodies also in SCLC patients.Key words: cancer immunotherapy - concomitant chemoradiotherapy - chemotherapy - chest radiotherapy - lung resections - prophylactic brain irradiation - small cell lung cancer.

  11. About the Lung and Upper Aerodigestive Cancer Research Group | Division of Cancer Prevention

    Cancer.gov

    The Lung and Upper Aerodigestive Cancer Research Group conducts and supports research on the prevention and early detection of lung and head and neck cancers, as well as new approaches to clinical prevention studies including cancer immunoprevention.Phase 0/I/II Cancer Prevention Clinical Trials ProgramThe group jointly administers the Phase 0/I/II Cancer Prevention Clinical

  12. Tobacco Cessation May Improve Lung Cancer Patient Survival

    PubMed Central

    Dobson Amato, Katharine A.; Hyland, Andrew; Reed, Robert; Mahoney, Martin C.; Marshall, James; Giovino, Gary; Bansal-Travers, Maansi; Ochs-Balcom, Heather M.; Zevon, Michael A.; Cummings, K. Michael; Nwogu, Chukwumere; Singh, Anurag K.; Chen, Hongbin; Warren, Graham W.; Reid, Mary

    2015-01-01

    Introduction This study characterizes tobacco cessation patterns and the association of cessation with survival among lung cancer patients at Roswell Park Cancer Institute: an NCI Designated Comprehensive Cancer Center. Methods Lung cancer patients presenting at this institution were screened with a standardized tobacco assessment, and those who had used tobacco within the past 30 days were automatically referred to a telephone-based cessation service. Demographic, clinical information and self-reported tobacco use at last contact were obtained via electronic medical records and the RPCI tumor registry for all lung cancer patients referred to the service between October 2010 and October 2012. Descriptive statistics and Cox proportional hazards models were used to assess whether tobacco cessation and other factors were associated with lung cancer survival through May 2014. Results Calls were attempted to 313 of 388 lung cancer patients referred to the cessation service. Eighty percent of patients (250/313) were successfully contacted and participated in at least one telephone-based cessation call; 40.8% (102/250) of persons contacted reported having quit at the last contact. After controlling for age, pack year history, sex, ECOG performance status, time between diagnosis and last contact, tumor histology, and clinical stage, a statistically significant increase in survival was associated with quitting compared to continued tobacco use at last contact (HR=1.79; 95% CI: 1.14-2.82) with a median 9 month improvement in overall survival. Conclusions Tobacco cessation among lung cancer patients after diagnosis may increase overall survival. PMID:26102442

  13. Risk factors for disseminated intravascular coagulation in patients with lung cancer.

    PubMed

    Nakano, Kentaro; Sugiyama, Kumiya; Satoh, Hideyuki; Shiromori, Sadaaki; Sugitate, Kei; Arifuku, Hajime; Yoshida, Naruo; Watanabe, Hiroyoshi; Tokita, Shingo; Wakayama, Tomoshige; Tatewaki, Masamitsu; Souma, Ryosuke; Koyama, Kenya; Hirata, Hirokuni; Fukushima, Yasutsugu

    2018-05-31

    The mortality rate from disseminated intravascular coagulation (DIC) is higher in patients with lung cancer than in non-lung cancer patients. Moreover, the prevalence of DIC varies among the pathologic types of lung cancer. This study analyzed the relationship between coagulation factors and the pathologic types of lung cancer. Twenty-six patients with progressive, inoperable stage IIB or higher lung cancer (20 men, 6 women; mean age 71 years; 11 Adeno, 10 squamous cell carcinoma, and 5 small cell carcinoma) and five healthy volunteers without respiratory disease (3 men, 2 women; mean age 72 years) were enrolled in the study. Blood samples were collected at lung cancer diagnosis, before treatment. White blood cell count, platelet count, serum C-reactive protein, fibrin/fibrinogen degradation products, fibrinogen, thrombin-antithrombin complex, and D-dimer levels differed significantly between lung cancer patients and the control group, but not among the pathologic types of lung cancer. Thrombomodulin levels were significantly higher in patients with Adeno and squamous cell carcinoma than in those with small cell carcinoma (P < 0.05 and P < 0.01, respectively). Antithrombin levels were significantly lower in patients with squamous cell carcinoma than in those with Adeno (P < 0.05). Coagulation disorders may develop secondary to chronic inflammation in patients with progressive lung cancer. DIC in lung cancer may be attributed to changes in anticoagulation factors, such as thrombomodulin and antithrombin, but not in other coagulation factors. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  14. Microscopic FTIR studies of lung cancer cells in pleural fluid.

    PubMed

    Wang, H P; Wang, H C; Huang, Y J

    1997-10-01

    Structural changes associated with lung cancer and tuberculous cells in pleural fluid were studied by microscopic FTIR spectroscopy. Infrared spectra demonstrate significant spectral differences between normal, lung cancer and tuberculous cells. The ratio of the peak intensities of the 1030 and 1080 cm-1 bands (originated mainly in glycogen and phosphodiester groups of nucleic acids) differs greatly between normal and lung cancer samples. Such findings prompt the consideration that recording infrared spectra from lung cancer and tuberculous cells may be of diagnostic value. Since measurements of IR spectra of lung cancer cells in the pleural fluid can be a very rapid inexpensive process, our finding warrant exploration of this possibility in the investigation of the mechanism whereby the environmental pollution related cancers develop.

  15. Changing trends in diagnosis, staging, treatment and survival in lung cancer: comparison of three consecutive cohorts in an Australian lung cancer centre.

    PubMed

    Denton, E J; Hart, D; Wainer, Z; Wright, G; Russell, P A; Conron, M

    2016-08-01

    Lung cancer accounts for significant morbidity and mortality worldwide. The effect of recent changes in demographics and management on outcomes in Australia has not been clearly defined. To compare three consecutive lung cancer cohorts to evaluate emergent differences in diagnosis, management and mortality. For comparative analysis, 2119 lung cancer patients were divided into three successive cohorts. Current death data were sought from the Victorian Cancer Registry. Age at diagnosis, mode of presentation and pathology did not significantly differ between the groups. Significantly more females were diagnosed with lung cancer in the most recent cohort (P = 0.04). Amongst non-small-cell lung cancer patients, there were more adenocarcinomas and less large cell carcinomas in the latest cohort (P = <0.01). More patients from the most recent cohort were staged pathologically and via positron emission tomography and fewer were clinically staged (P = <0.01). The most recent cohort had a greater proportion of Stage IV disease (P = <0.01) and more curative surgical or combined modality radiotherapy and chemotherapy versus palliative radiotherapy or supportive care (P = <0.01). Overall 5-year survival improved significantly in the most recent cohort, even after adjustment for age, gender and stage (P = <0.01). Comparison of three lung cancer patient cohorts diagnosed between 2001 and 2013 highlights emergent changes in lung cancer demographics, management and outcomes. These include recent increases in proportion of females, pathological and positron emission tomography staging, and Stage IV disease, as well as improved survival despite later stage disease. © 2016 Royal Australasian College of Physicians.

  16. Pleiotropic Analysis of Lung Cancer and Blood Triglycerides.

    PubMed

    Zuber, Verena; Marconett, Crystal N; Shi, Jianxin; Hua, Xing; Wheeler, William; Yang, Chenchen; Song, Lei; Dale, Anders M; Laplana, Marina; Risch, Angela; Witoelar, Aree; Thompson, Wesley K; Schork, Andrew J; Bettella, Francesco; Wang, Yunpeng; Djurovic, Srdjan; Zhou, Beiyun; Borok, Zea; van der Heijden, Henricus F M; de Graaf, Jacqueline; Swinkels, Dorine; Aben, Katja K; McKay, James; Hung, Rayjean J; Bikeböller, Heike; Stevens, Victoria L; Albanes, Demetrius; Caporaso, Neil E; Han, Younghun; Wei, Yongyue; Panadero, Maria Angeles; Mayordomo, Jose I; Christiani, David C; Kiemeney, Lambertus; Andreassen, Ole A; Houlston, Richard; Amos, Christopher I; Chatterjee, Nilanjan; Laird-Offringa, Ite A; Mills, Ian G; Landi, Maria Teresa

    2016-12-01

    Epidemiologically related traits may share genetic risk factors, and pleiotropic analysis could identify individual loci associated with these traits. Because of their shared epidemiological associations, we conducted pleiotropic analysis of genome-wide association studies of lung cancer (12 160 lung cancer case patients and 16 838 control subjects) and cardiovascular disease risk factors (blood lipids from 188 577 subjects, type 2 diabetes from 148 821 subjects, body mass index from 123 865 subjects, and smoking phenotypes from 74 053 subjects). We found that 6p22.1 (rs6904596, ZNF184) was associated with both lung cancer (P = 5.50x10(-6)) and blood triglycerides (P = 1.39x10(-5)). We replicated the association in 6097 lung cancer case patients and 204 657 control subjects (P = 2.40 × 10(-4)) and in 71 113 subjects with triglycerides data (P = .01). rs6904596 reached genome-wide significance in lung cancer meta-analysis (odds ratio = 1.15, 95% confidence interval = 1.10 to 1.21 ,: Pcombined = 5.20x10(-9)). The large sample size provided by the lipid GWAS data and the shared genetic risk factors between the two traits contributed to the uncovering of a hitherto unidentified genetic locus for lung cancer. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.

  17. Cigarette smoke radioactivity and lung cancer risk.

    PubMed

    Karagueuzian, Hrayr S; White, Celia; Sayre, James; Norman, Amos

    2012-01-01

    To determine the tobacco industry's policy and action with respect to radioactive polonium 210 ((210)Po) in cigarette smoke and to assess the long-term risk of lung cancer caused by alpha particle deposits in the lungs of regular smokers. Analysis of major tobacco industries' internal secret documents on cigarette radioactivity made available online by the Master Settlement Agreement in 1998. The documents show that the industry was well aware of the presence of a radioactive substance in tobacco as early as 1959. Furthermore, the industry was not only cognizant of the potential "cancerous growth" in the lungs of regular smokers but also did quantitative radiobiological calculations to estimate the long-term (25 years) lung radiation absorption dose (rad) of ionizing alpha particles emitted from the cigarette smoke. Our own calculations of lung rad of alpha particles match closely the rad estimated by the industry. According to the Environmental Protection Agency, the industry's and our estimate of long-term lung rad of alpha particles causes 120-138 lung cancer deaths per year per 1,000 regular smokers. Acid wash was discovered in 1980 to be highly effectively in removing (210)Po from the tobacco leaves; however, the industry avoided its use for concerns that acid media would ionize nicotine converting it into a poorly absorbable form into the brain of smokers thus depriving them of the much sought after instant "nicotine kick" sensation. The evidence of lung cancer risk caused by cigarette smoke radioactivity is compelling enough to warrant its removal.

  18. Intratumoral delivery of docetaxel enhances antitumor activity of Ad-p53 in murine head and neck cancer xenograft model.

    PubMed

    Yoo, George H; Subramanian, Geetha; Ezzat, Waleed H; Tulunay, Ozlem E; Tran, Vivian R; Lonardo, Fulvio; Ensley, John F; Kim, Harold; Won, Joshua; Stevens, Timothy; Zumstein, Louis A; Lin, Ho-Sheng

    2010-01-01

    The aim of this study is to determine the ability of intratumorally delivered docetaxel to enhance the antitumor activity of adenovirus-mediated delivery of p53 (Ad-p53) in murine head and neck cancer xenograft model. A xenograft head and neck squamous cell carcinoma mouse model was used. Mice were randomized into 4 groups of 6 mice receiving 6 weeks of biweekly intratumoral injection of (a) diluent, (b) Ad-p53 (1 x 10(10) viral particles per injection), (c) docetaxel (1 mg/kg per injection), and (d) combination of Ad-p53 (1 x 10(10) viral particles per injection) and docetaxel (1 mg/kg per injection). Tumor size, weight, toxicity, and overall and disease-free survival rates were determined. Intratumoral treatments with either docetaxel alone or Ad-p53 alone resulted in statistically significant antitumor activity and improved survival compared with control group. Furthermore, combined delivery of Ad-p53 and docetaxel resulted in a statistically significant reduction in tumor weight when compared to treatment with either Ad-p53 or docetaxel alone. Intratumoral delivery of docetaxel enhanced the antitumor effect of Ad-p53 in murine head and neck cancer xenograft model. The result of this preclinical in vivo study is promising and supports further clinical testing to evaluate efficacy of combined intratumoral docetaxel and Ad-p53 in treatment of head and neck cancer. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Overexpression of ZIC5 promotes proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qi; Shi, Run; Wang, Xin

    Background: Non-small cell lung cancer (NSCLC) has become the leading cause of cancer-related deaths. It is therefore urgent that we identify new molecular targets to help cure NSCLC patients. Here, we identified ZIC5 as a potential novel oncogene. Methods: We detected the expression of ZIC5 in tumor and normal tissues of NSCLC patients using quantitative real-time PCR and explored its clinical appearance. We then knocked down ZIC5 to observe changes in NSCLC cell proliferation and metastasis. Nude mouse xenograft models were established to measure ZIC5's function in vivo. Results: Our results revealed that ZIC5 was expressed at dramatically higher levels inmore » NSCLC tumor tissues than in normal tissues. High levels of ZIC5 expression were associated with a higher primary tumor grade. ZIC5 expression was significantly inhibited by small interfering RNA. After silencing ZIC5, the metastatic capacity of NSCLC cells was clearly lower. Knocking down ZIC5 significantly inhibited the proliferation of NSCLC cells, causing the cell cycle to be arrested in G2 phase. Xenograft tumor models showed that knocking down ZIC5 also inhibited tumor growth in vivo. Q-PCR and western blot analysis revealed that ZIC5 expression was closely associated with CCNB1 and CDK1 complex expression, while other cell cycle-related genes showed no significant correlation with ZIC5. Conclusions: Our experiment show that ZIC5 is highly upregulated in NSCLC tumor tissues and suggest that ZIC5 may act as an oncogene by influencing CCNB1 and CDK1 complex expression. ZIC5 may therefore be a potential biomarker and therapeutic target for NSCLC patients.« less

  20. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts.

    PubMed

    Sheng, Yuqiao; Liu, Kangdong; Wu, Qiong; Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2016-05-24

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma.

  1. Lung Cancer Messages on Twitter: Content Analysis and Evaluation.

    PubMed

    Sutton, Jeannette; Vos, Sarah C; Olson, Michele K; Woods, Chelsea; Cohen, Elisia; Gibson, C Ben; Phillips, Nolan Edward; Studts, Jamie L; Eberth, Jan M; Butts, Carter T

    2018-01-01

    The aim of this project was to describe and evaluate the levels of lung cancer communication across the cancer prevention and control continuum for content posted to Twitter during a 10-day period (September 30 to October 9) in 2016. Descriptive and inferential statistics were used to identify relationships between tweet characteristics in lung cancer communication on Twitter and user-level data. Overall, 3,000 tweets published between September 30 and October 9 were assessed by a team of three coders. Lung cancer-specific tweets by user type (individuals, media, and organizations) were examined to identify content and structural message features. The study also assessed differences by user type in the use of hashtags, directed messages, health topic focus, and lung cancer-specific focus across the cancer control continuum. Across the universe of lung cancer tweets, the majority of tweets focused on treatment and the use of pharmaceutical and research interventions, followed by awareness and prevention and risk topics. Among all lung cancer tweets, messages were most consistently tweeted by individual users, and personal behavioral mobilizing cues to action were rare. Lung cancer advocates, as well as patient and medical advocacy organizations, with an interest in expanding the reach and effectiveness of social media efforts should monitor the topical nature of public tweets across the cancer continuum and consider integrating cues to action as a strategy to increase engagement and behavioral activation pertaining to lung cancer reduction efforts. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2017-04-05

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  3. Vasculature surrounding a nodule: A novel lung cancer biomarker.

    PubMed

    Wang, Xiaohua; Leader, Joseph K; Wang, Renwei; Wilson, David; Herman, James; Yuan, Jian-Min; Pu, Jiantao

    2017-12-01

    To investigate whether the vessels surrounding a nodule depicted on non-contrast, low-dose computed tomography (LDCT) can discriminate benign and malignant screen detected nodules. We collected a dataset consisting of LDCT scans acquired on 100 subjects from the Pittsburgh Lung Screening study (PLuSS). Fifty subjects were diagnosed with lung cancer and 50 subjects had suspicious nodules later proven benign. For the lung cancer cases, the location of the malignant nodule in the LDCT scans was known; while for the benign cases, the largest nodule in the LDCT scan was used in the analysis. A computer algorithm was developed to identify surrounding vessels and quantify the number and volume of vessels that were connected or near the nodule. A nonparametric receiver operating characteristic (ROC) analysis was performed based on a single nodule per subject to assess the discriminability of the surrounding vessels to provide a lung cancer diagnosis. Odds ratio (OR) were computed to determine the probability of a nodule being lung cancer based on the vessel features. The areas under the ROC curves (AUCs) for vessel count and vessel volume were 0.722 (95% CI=0.616-0.811, p<0.01) and 0.676 (95% CI=0.565-0.772), respectively. The number of vessels attached to a nodule was significantly higher in the lung cancer group 9.7 (±9.6) compared to the non-lung cancer group 4.0 (±4.3) CONCLUSION: Our preliminary results showed that malignant nodules are often surrounded by more vessels compared to benign nodules, suggesting that the surrounding vessel characteristics could serve as lung cancer biomarker for indeterminate nodules detected during LDCT lung cancer screening using only the information collected during the initial visit. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluating Dual Activity LPA Receptor Pan-Antagonist/Autotaxin Inhibitors as Anti-Cancer Agents in vivo using Engineered Human Tumors

    PubMed Central

    Xu, Xiaoyu; Yang, Guanghui; Zhang, Honglu; Prestwich, Glenn D.

    2009-01-01

    Using an in situ crosslinkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a “tumor engineering” strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3-D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and injection parameters for engineered xenografts. Second, we summarize a study to compare angiogenesis inhibition in vivo, comparing BrP-LPA to the kinase inhibitor sunitinib maleate (Sutent). Third, we compare treatment of engineered breast tumors with LPAa/ATXi alone with treatment with Taxol. Fourth, using a re-optimized sECM for non-small cell lung cancer cells, we created reproducibly sized subcutaneous lung tumors and evaluated their response to treatment with LPAa/ATXi. Fifth, we summarize the data on the use of LPAa/ATXi to treat a model for colon cancer metastasis to the liver. Taken together, these improved, more realistic xenografts show considerable utility for evaluating the potential of novel anti-metastatic, anti-proliferative, and anti-angiogenic compounds that modify signal transduction through the LPA signaling pathway. PMID:19682598

  5. Liquid biopsy for lung cancer early detection.

    PubMed

    Santarpia, Mariacarmela; Liguori, Alessia; D'Aveni, Alessandro; Karachaliou, Niki; Gonzalez-Cao, Maria; Daffinà, Maria Grazia; Lazzari, Chiara; Altavilla, Giuseppe; Rosell, Rafael

    2018-04-01

    Molecularly targeted therapies and immune checkpoint inhibitors have markedly improved the therapeutic management of advanced lung cancer. However, it still remains the leading cause of cancer-related mortality worldwide, with disease stage at diagnosis representing the main prognostic factor. Detection of lung cancer at an earlier stage of disease, potentially susceptible of curative resection, can be critical to improve patients survival. Low-dose computed tomography (LDCT) screening of high-risk patients has been demonstrated to reduce mortality from lung cancer, but can be also associated with high false-positive rate, thus often resulting in unnecessary interventions for patients. Novel sensitive and specific biomarkers for identification of high-risk subjects and early detection that can be used alternatively and/or complement current routine diagnostic procedures are needed. Liquid biopsy has recently demonstrated its clinical usefulness in advanced NSCLC as a surrogate of tissue biopsy for noninvasive assessment of specific genomic alterations, thereby providing prognostic and predictive information. Different biosources from liquid biopsy, including cell free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs), have also been widely investigated for their potential role in lung cancer diagnosis. This review will provide an overview on the circulating biomarkers being evaluated for lung cancer detection, mainly focusing on results from most recent studies, the techniques developed to perform their assessment in blood and other biologic fluids and challenges in their clinical applications.

  6. Liquid biopsy for lung cancer early detection

    PubMed Central

    Liguori, Alessia; D’Aveni, Alessandro; Karachaliou, Niki; Gonzalez-Cao, Maria; Daffinà, Maria Grazia; Lazzari, Chiara; Altavilla, Giuseppe; Rosell, Rafael

    2018-01-01

    Molecularly targeted therapies and immune checkpoint inhibitors have markedly improved the therapeutic management of advanced lung cancer. However, it still remains the leading cause of cancer-related mortality worldwide, with disease stage at diagnosis representing the main prognostic factor. Detection of lung cancer at an earlier stage of disease, potentially susceptible of curative resection, can be critical to improve patients survival. Low-dose computed tomography (LDCT) screening of high-risk patients has been demonstrated to reduce mortality from lung cancer, but can be also associated with high false-positive rate, thus often resulting in unnecessary interventions for patients. Novel sensitive and specific biomarkers for identification of high-risk subjects and early detection that can be used alternatively and/or complement current routine diagnostic procedures are needed. Liquid biopsy has recently demonstrated its clinical usefulness in advanced NSCLC as a surrogate of tissue biopsy for noninvasive assessment of specific genomic alterations, thereby providing prognostic and predictive information. Different biosources from liquid biopsy, including cell free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs), have also been widely investigated for their potential role in lung cancer diagnosis. This review will provide an overview on the circulating biomarkers being evaluated for lung cancer detection, mainly focusing on results from most recent studies, the techniques developed to perform their assessment in blood and other biologic fluids and challenges in their clinical applications. PMID:29780635

  7. Is Previous Respiratory Disease a Risk Factor for Lung Cancer?

    PubMed Central

    Denholm, Rachel; Schüz, Joachim; Straif, Kurt; Stücker, Isabelle; Jöckel, Karl-Heinz; Brenner, Darren R.; De Matteis, Sara; Boffetta, Paolo; Guida, Florence; Brüske, Irene; Wichmann, Heinz-Erich; Landi, Maria Teresa; Caporaso, Neil; Siemiatycki, Jack; Ahrens, Wolfgang; Pohlabeln, Hermann; Zaridze, David; Field, John K.; McLaughlin, John; Demers, Paul; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Dumitru, Rodica Stanescu; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Kendzia, Benjamin; Peters, Susan; Behrens, Thomas; Vermeulen, Roel; Brüning, Thomas; Kromhout, Hans

    2014-01-01

    Rationale: Previous respiratory diseases have been associated with increased risk of lung cancer. Respiratory conditions often co-occur and few studies have investigated multiple conditions simultaneously. Objectives: Investigate lung cancer risk associated with chronic bronchitis, emphysema, tuberculosis, pneumonia, and asthma. Methods: The SYNERGY project pooled information on previous respiratory diseases from 12,739 case subjects and 14,945 control subjects from 7 case–control studies conducted in Europe and Canada. Multivariate logistic regression models were used to investigate the relationship between individual diseases adjusting for co-occurring conditions, and patterns of respiratory disease diagnoses and lung cancer. Analyses were stratified by sex, and adjusted for age, center, ever-employed in a high-risk occupation, education, smoking status, cigarette pack-years, and time since quitting smoking. Measurements and Main Results: Chronic bronchitis and emphysema were positively associated with lung cancer, after accounting for other respiratory diseases and smoking (e.g., in men: odds ratio [OR], 1.33; 95% confidence interval [CI], 1.20–1.48 and OR, 1.50; 95% CI, 1.21–1.87, respectively). A positive relationship was observed between lung cancer and pneumonia diagnosed 2 years or less before lung cancer (OR, 3.31; 95% CI, 2.33–4.70 for men), but not longer. Co-occurrence of chronic bronchitis and emphysema and/or pneumonia had a stronger positive association with lung cancer than chronic bronchitis “only.” Asthma had an inverse association with lung cancer, the association being stronger with an asthma diagnosis 5 years or more before lung cancer compared with shorter. Conclusions: Findings from this large international case–control consortium indicate that after accounting for co-occurring respiratory diseases, chronic bronchitis and emphysema continue to have a positive association with lung cancer. PMID:25054566

  8. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  9. Long Noncoding RNAs in Lung Cancer.

    PubMed

    Roth, Anna; Diederichs, Sven

    2016-01-01

    Despite great progress in research and treatment options, lung cancer remains the leading cause of cancer-related deaths worldwide. Oncogenic driver mutations in protein-encoding genes were defined and allow for personalized therapies based on genetic diagnoses. Nonetheless, diagnosis of lung cancer mostly occurs at late stages, and chronic treatment is followed by a fast onset of chemoresistance. Hence, there is an urgent need for reliable biomarkers and alternative treatment options. With the era of whole genome and transcriptome sequencing technologies, long noncoding RNAs emerged as a novel class of versatile, functional RNA molecules. Although for most of them the mechanism of action remains to be defined, accumulating evidence confirms their involvement in various aspects of lung tumorigenesis. They are functional on the epigenetic, transcriptional, and posttranscriptional level and are regulators of pathophysiological key pathways including cell growth, apoptosis, and metastasis. Long noncoding RNAs are gaining increasing attention as potential biomarkers and a novel class of druggable molecules. It has become clear that we are only beginning to understand the complexity of tumorigenic processes. The clinical integration of long noncoding RNAs in terms of prognostic and predictive biomarker signatures and additional cancer targets could provide a chance to increase the therapeutic benefit. Here, we review the current knowledge about the expression, regulation, biological function, and clinical relevance of long noncoding RNAs in lung cancer.

  10. Computed Tomography Screening for Lung Cancer in the National Lung Screening Trial

    PubMed Central

    Black, William C.

    2016-01-01

    The National Lung Screening Trial (NLST) demonstrated that screening with low-dose CT versus chest radiography reduced lung cancer mortality by 16% to 20%. More recently, a cost-effectiveness analysis (CEA) of CT screening for lung cancer versus no screening in the NLST was performed. The CEA conformed to the reference-case recommendations of the US Panel on Cost-Effectiveness in Health and Medicine, including the use of the societal perspective and an annual discount rate of 3%. The CEA was based on several important assumptions. In this paper, I review the methods and assumptions used to obtain the base case estimate of $81,000 per quality-adjusted life-year gained. In addition, I show how this estimate varied widely among different subsets and when some of the base case assumptions were changed and speculate on the cost-effectiveness of CT screening for lung cancer outside the NLST. PMID:25635704

  11. [Occupational factors influencing lung cancer in women in epidemiological studies].

    PubMed

    Swiatkowska, Beata

    2011-01-01

    Lung cancer is the most common cancer in men, although the alarming statistics of recent years indicate that this pathology affects also more likely a group of women and in recent years has become the leading cause of cancer deaths among Polish women. This article presents the main issues relating to occupational determinants of lung cancer in women. The results of the analysis show that the number of neoplastic diseases, including the lung cancer, recognized as an occupational disease in Poland is low, particularly among women. A major factor hampering the certification of occupational etiology of lung cancer is a long latency period, no differences in terms of the clinical and morphological characteristics from lung cancer occurring in the general population, and relatively small number of identified occupational carcinogens. Analysis of the available literature on the adverse workplace conditions shows that only a few epidemiological studies focus on the problem of job-related risk among women, and only some of them provide detailed results for lung cancer. Moreover, the abundant literature on the subject concerning the male workers might not be fully relevant because of possible differences in hormonal, genetic and other gender-related biological differences that may significantly modify the risk of cancer in women. These aspects cause that the true contribution of occupational factors to the risk of lung cancer, particularly in women, is underestimated.

  12. Community-Based Multidisciplinary Computed Tomography Screening Program Improves Lung Cancer Survival.

    PubMed

    Miller, Daniel L; Mayfield, William R; Luu, Theresa D; Helms, Gerald A; Muster, Alan R; Beckler, Vickie J; Cann, Aaron

    2016-05-01

    Lung cancer is the most common cause of cancer deaths in the United States. Overall survival is less than 20%, with the majority of patients presenting with advanced disease. The National Lung Screening Trial, performed mainly in academic medical centers, showed that cancer mortality can be reduced with computed tomography (CT) screening compared with chest radiography in high-risk patients. To determine whether this survival advantage can be duplicated in a community-based multidisciplinary thoracic oncology program, we initiated a CT scan screening program for lung cancer within an established health care system. In 2008, we launched a lung cancer CT screening program within the WellStar Health System (WHS) consisting of five hospitals, three health parks, 140 outpatient medical offices, and 12 imaging centers that provide care in a five-county area of approximately 1.4 million people in Metro-Atlanta. Screening criteria incorporated were the International Early Lung Cancer Action Program (2008 to 2010) and National Comprehensive Cancer Network guidelines (2011 to 2013) for moderate- and high-risk patients. A total of 1,267 persons underwent CT lung cancer screening in WHS from 2008 through 2013; 53% were men, 87% were 50 years of age or older, and 83% were current or former smokers. Noncalcified indeterminate pulmonary nodules were found in 518 patients (41%). Thirty-six patients (2.8%) underwent a diagnostic procedure for positive findings on their CT scan; 30 proved to have cancer, 28 (2.2%) primary lung cancer and 2 metastatic cancer, and 6 had benign disease. Fourteen patients (50%) had their lung cancer discovered on their initial CT scan, 11 on subsequent scans associated with indeterminate pulmonary nodules growth and 3 patients who had a new indeterminate pulmonary nodules. Only 15 (54%) of these 28 patients would have qualified as a National Lung Screening Trial high-risk patient; 75% had stage I or II disease. Overall 5-year survival was 64% and 5-year

  13. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less

  14. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp; Tanaka, Kimitaka; Wang, Lixiang

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancermore » cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.« less

  15. Impact of Lung Cancer Screening Results on Smoking Cessation

    PubMed Central

    Berg, Christine D.; Riley, Thomas L.; Cunningham, Christopher R.; Taylor, Kathryn L.

    2014-01-01

    Background Lung cancer screening programs may provide opportunities to reduce smoking rates among participants. This study evaluates the impact of lung cancer screening results on smoking cessation. Methods Data from Lung Screening Study participants in the National Lung Screening Trial (NLST; 2002–2009) were used to prepare multivariable longitudinal regression models predicting annual smoking cessation in those who were current smokers at study entry (n = 15489, excluding those developing lung cancer in follow-up). The associations of lung cancer screening results on smoking cessation over the trial period were analyzed. All hypothesis testing used two sided P values. Results In adjusted analyses, smoking cessation was strongly associated with the amount of abnormality observed in the previous year’s screening (P < .0001). Compared with those with a normal screen, individuals were less likely to be smokers if their previous year’s screen had a major abnormality that was not suspicious for lung cancer (odds ratio [OR] = 0.811; 95% confidence interval [CI] = 0.722 to 0.912; P < .001), was suspicious for lung cancer but stable from previous screens (OR = 0.785; 95% CI = 0.706 to 0.872; P < .001), or was suspicious for lung cancer and was new or changed from the previous screen (OR = 0.663; 95% CI = 0.607 to 0.724; P < .001). Differences in smoking prevalence were present up to 5 years after the last screen. Conclusions Smoking cessation is statistically significantly associated with screen-detected abnormality. Integration of effective smoking cessation programs within screening programs should lead to further reduction in smoking-related morbidity and mortality. PMID:24872540

  16. Octa-Arginine-Modified Pegylated Liposomal Doxorubicin: An Effective Treatment Strategy for Non-Small Cell Lung Cancer

    PubMed Central

    Biswas, Swati; Deshpande, Pranali P.; Perche, Federico; Dodwadkar, Namita S.; Sane, Shailendra D.; Torchilin, Vladimir P.

    2013-01-01

    The present study aims to evaluate the efficacy of octa-arginine (R8)-modified PEGylated liposomal doxorubicin (R8-PLD) for the treatment of non-small cell lung cancer, for which the primary treatment modality currently consists of surgery and radiotherapy. Cell-penetrating peptide R8 modification of Doxorubicin-(Dox)-loaded liposomes was performed by post-insertion of an R8-conjugated amphiphilic PEG-PE copolymer (R8-PEG-DOPE) into the liposomal lipid bilayer. In vitro analysis with the non-small cell lung cancer cell line, A549 confirmed the efficient cellular accumulation of Dox, delivered by R8-PLD compared to PLD. It led to the early initiation of apoptosis and a 9-fold higher level of the apoptotic regulator, caspase 3/7 (9.24±0.34) compared to PLD (1.07±0.19) at Dox concentration of 100 µg/mL. The treatment of A549 monolayers with R8-PLD increased the level of cell death marker lactate dehydrogenase (LDH) secretion (1.2 ± 0.1 for PLD and 2.3 ± 0.1 for R8-PLD at Dox concentration of 100 µg/mL) confirming higher cytotoxicity of R8-PLD than PLD, which was ineffective under the same treatment regimen (cell viability 90 ± 6 % in PLD vs. 45 ± 2 % in R8-PLD after 24 h). R8-PLD had significantly higher penetration into the hypoxic A549 tumor spheroids compared to PLD. R8-PLD induced greater level of apoptosis to A549 tumor xenograft and dramatic inhibition of tumor volume and tumor weight reduction. The R8-PLD treated tumor lysate had a elevated caspase3/7 expression than with R8-PLD treatment. This suggested system improved the delivery efficiency of Dox in selected model of cancer which supports the potential usefulness of R8-PLD in cancer treatment, lung cancer in particular. PMID:23419527

  17. Squamous cell lung cancer in a male with pulmonary tuberculosis.

    PubMed

    Skowroński, Marcin; Iwanik, Katarzyna; Halicka, Anna; Barinow-Wojewódzki, Aleksander

    2015-01-01

    Lung cancer and pulmonary tuberculosis (TB) are highly prevalent and representing major public health issues. They share common risk factors and clinical manifestations. It is also suggested that TB predicts raised lung cancer risk likely related to chronic inflammation in the lungs. However, it does not seem to influence the clinical course of lung cancer provided that it is properly treated. We present a case report of a 57-year old male with concurrent TB and lung cancer. He was diagnosed with positive sputum smear for acid fast bacilli (AFB) and subsequent culture of Mycobacterium tuberculosis. Besides, his comorbid conditions were chronic hepatitis C virus (HCV) infection and peripheral artery disease (PAD). Later while on anti-tuberculous treatment (ATT) squamous cell lung cancer (SCC) was confirmed with computed tomography (CT) guided biopsy. Due to poor general condition the patient was not fit for either surgery or radical chemo- and radiotherapy. He was transferred to hospice for palliative therapy. We want to emphasize that both TB and lung cancer should be actively sought for in patients with either disorder. In addition, there is no doubt that these patients with lung cancer and with good response to TB treatment should be promptly considered for appropriate anticancer therapy.

  18. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Sang, Jim; Friedland, Julie C; He, Suqin; Sequeira, Manuel; Zhang, Chaohua; Wada, Yumiko; Proia, David A

    2012-12-01

    Mutant KRAS is a feature of more than 25% of non-small cell lung cancers (NSCLC) and represents one of the most prevalent oncogenic drivers in this disease. NSCLC tumors with oncogenic KRAS respond poorly to current therapies, necessitating the pursuit of new treatment strategies. Targeted inhibition of the molecular chaperone Hsp90 results in the coordinated blockade of multiple oncogenic signaling pathways in tumor cells and has thus emerged as an attractive avenue for therapeutic intervention in human malignancies. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90 currently in clinical trials for NSCLCs in a panel of lung cancer cell lines harboring a diverse spectrum of KRAS mutations. In vitro, ganetespib was potently cytotoxic in all lines, with concomitant destabilization of KRAS signaling effectors. Combinations of low-dose ganetespib with MEK or PI3K/mTOR inhibitors resulted in superior cytotoxic activity than single agents alone in a subset of mutant KRAS cells, and the antitumor efficacy of ganetespib was potentiated by cotreatment with the PI3K/mTOR inhibitor BEZ235 in A549 xenografts in vivo. At the molecular level, ganetespib suppressed activating feedback signaling loops that occurred in response to MEK and PI3K/mTOR inhibition, although this activity was not the sole determinant of combinatorial benefit. In addition, ganetespib sensitized mutant KRAS NSCLC cells to standard-of-care chemotherapeutics of the antimitotic, topoisomerase inhibitor, and alkylating agent classes. Taken together, these data underscore the promise of ganetespib as a single-agent or combination treatment in KRAS-driven lung tumors.

  19. Bronchoscopy in the investigation of outpatients with hemoptysis at a lung cancer clinic.

    PubMed

    Arooj, Parniya; Bredin, Emily; Henry, Michael T; Khan, Kashif A; Plant, Barry J; Murphy, Desmond M; Kennedy, Marcus P

    2018-06-01

    In the investigation of lung cancer, current practice in many healthcare systems would support bronchoscopy regardless of CT findings in patients with hemoptysis. We sought to identify the cause, the diagnostic yield of CT and bronchoscopy and the requirement for bronchoscopy in at risk patients with hemoptysis with a normal CT scan through our rapid access lung cancer clinic (RALC). Initially, a chart review was performed on all patients with hemoptysis (2011-2012) and thereafter a prospective analysis was performed (2013-2016). Our analysis represents the largest study to date in outpatients with hemoptysis. In our retrospective study, 155 patients reported hemoptysis. Causes were lower respiratory tract infections (RTIs) (47%) and lung cancer (16%). Our prospective study included 182 patients. The causes of hemoptysis were RTIs (50%) and lung cancer (18%). There were no false negative CT-scans for lung cancer. 47/57 present with lung cancer underwent bronchoscopy and 43/47 were positive for lung cancer (92%). Patients with hemoptysis and lung cancer have a higher stage of malignancy with a predominance of squamous cell lung carcinoma. Smoking status, the duration of hemoptysis or description of hemoptysis were not predictive of lung cancer however lung cancer was not identified in patients age <50. One sixth of patients presenting with hemoptysis to our lung cancer clinic had lung cancer. No patient identified with cancer related haemoptysis had a CT negative for lung cancer and a combination of bronchoscopy plus endobronchial ultrasound trans-bronchial needle aspiration (EBUS-TBNA) in those patients with a CT suspicious of lung cancer is 92% sensitive for lung cancer causing hemoptysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. General Information about Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  1. Multifactorial Analysis of Mortality in Screening Detected Lung Cancer.

    PubMed

    Digumarthy, Subba R; De Man, Ruben; Canellas, Rodrigo; Otrakji, Alexi; Wang, Ge; Kalra, Mannudeep K

    2018-01-01

    We hypothesized that severity of coronary artery calcification (CAC), emphysema, muscle mass, and fat attenuation can help predict mortality in patients with lung cancer participating in the National Lung Screening Trial (NLST). Following regulatory approval from the Cancer Data Access System (CDAS), all patients diagnosed with lung cancer at the time of the screening study were identified. These subjects were classified into two groups: survivors and nonsurvivors at the conclusion of the NLST trial. These groups were matched based on their age, gender, body mass index (BMI), smoking history, lung cancer stage, and survival time. CAC, emphysema, muscle mass, and subcutaneous fat attenuation were quantified on baseline low-dose chest CT (LDCT) for all patients in both groups. Nonsurvivor group had significantly greater CAC, decreased muscle mass, and higher fat attenuation compared to the survivor group ( p < 0.01). No significant difference in severity of emphysema was noted between the two groups ( p > 0.1). We thus conclude that it is possible to create a quantitative prediction model for lung cancer mortality for subjects with lung cancer detected on screening low-dose CT (LDCT).

  2. Algorithm for lung cancer detection based on PET/CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2009-02-01

    The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.

  3. Protein Secretion Is Required for Pregnancy-Associated Plasma Protein-A to Promote Lung Cancer Growth In Vivo

    PubMed Central

    Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing

    2012-01-01

    Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806

  4. Lung cancer exosomes as drivers of epithelial mesenchymal transition

    PubMed Central

    Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick

    2016-01-01

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026

  5. Lung cancer exosomes as drivers of epithelial mesenchymal transition.

    PubMed

    Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick

    2016-08-23

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.

  6. ALK-targeted therapy for lung cancer: ready for prime time.

    PubMed

    Husain, Hatim; Rudin, Charles M

    2011-06-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Ongoing research into the molecular basis of lung cancer has yielded insight into various critical pathways that are deregulated in lung tumorigenesis, and in particular key driver mutations integral to cancer cell survival and proliferation. One of the most recent examples of this has been definition of translocations and functional dysregulation of the anaplastic lymphoma kinase (ALK) gene in a subset of patients with non-small-cell lung cancer. The pace of research progress in this area has been remarkable: chromosomal rearrangements involving this gene in lung cancer were first reported in 2007 by a team of investigators in Japan. Less than 3 years later, an early-phase clinical trial of a targeted ALK inhibitor has yielded impressive responses in patients with advanced lung cancer containing ALK rearrangements, and mechanisms of acquired resistance to ALK-targeted therapy are being reported. A definitive study randomizing patients with ALK-mutant lung cancer to crizotinib (also known as PF-02341066 or 1066) versus standard therapy has recently completed enrollment.Taken together, these data describe a trajectory of research progress from basic discovery science to real-world implementation that should serve as a model for future integration of preclinical and clinical therapeutic research.

  7. The Changing Landscape of Lung Cancer Research and Treatment

    Cancer.gov

    Along with the Lung Cancer Social Media (#LCSM) community, the National Cancer Institute will be co-hosting a lively and interactive Google Hangout on Air about the changing landscape of lung cancer research and treatment. During the chat, viewers will have the opportunity to pose questions to a panel of lung cancer experts including NCI's Dr. Shakun Malik, the head of thoracic oncology therapeutics, Roy S. Herbst, MD, PhD, Chief of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital at Yale-New Haven and David Tom Cooke MD FACS, Head, Section of General Thoracic Surgery University of California, Davis. You can also learn more and follow along on the #LCSM Chat page. The chat will be moderated by lung cancer advocate and #LCSM co-founder, Janet Freeman-Daily. To ask questions of our experts, simply use the #LCSM hashtag during the chat.

  8. The National Lung Screening Trial (NLST) | Division of Cancer Prevention

    Cancer.gov

    The National Lung Screening Trial (NLST) compared two ways of detecting lung cancer: low-dose helical computed tomography (CT) and standard chest X-ray. Both chest X-rays and low-dose helical CT scans have been used to find lung cancer early, but the effects of these screening techniques on lung cancer mortality rates had not been determined. NLST enrolled 53,454 current or

  9. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  10. Lung cancer and chronic obstructive pulmonary disease: From a clinical perspective

    PubMed Central

    Dai, Jie; Yang, Ping; Cox, Angela; Jiang, Gening

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are devastating pulmonary diseases that commonly coexist and present a number of clinical challenges. COPD confers a higher risk for lung cancer development, but available chemopreventive measures remain rudimentary. Current studies have shown a marked benefit of cancer screening in the COPD population, although challenges remain, including the common underdiagnosis of COPD. COPD-associated lung cancer presents distinct clinical features. Treatment for lung cancer coexisting with COPD is challenging as COPD may increase postoperative morbidities and decrease survival. In this review, we outline current progress in the understanding of the clinical association between COPD and lung cancer, and suggest possible cancer prevention strategies in this patient population. PMID:28061470

  11. Factors related with colorectal and stomach cancer screening practice among disease-free lung cancer survivors in Korea.

    PubMed

    Park, Sang Min; Lee, Jongmog; Kim, Young Ae; Chang, Yoon Jung; Kim, Moon Soo; Shim, Young Mog; Zo, Jae Ill; Yun, Young Ho

    2017-08-30

    Lung cancer survivors are more likely to develop colorectal and stomach cancer than the general population. However, little is known about the current status of gastrointestinal cancer screening practices and related factors among lung cancer survivors. We enrolled 829 disease-free lung cancer survivors ≥40 years of age, who had been treated at two hospitals from 2001 to 2006. The patients completed a questionnaire that included stomach and colorectal cancer screening after lung cancer treatment, as well as other sociodemographic variables. Among lung cancer survivors, correlations with stomach and colorectal screening recommendations were 22.7 and 25.8%, respectively. Of these, 40.7% reported receiving physician advice to screen for second primary cancer (SPC). Those who were recommended for further screening for other cancers were more likely to receive stomach cancer screening [adjusted odds ratios (aOR) = 1.63, 95% confidence interval (CI), 1.16-2.30] and colorectal cancer screening [aOR = 1.37, 95% CI, 0.99-1.90]. Less-educated lung cancer survivors were less likely to have stomach and colorectal cancer screenings. Lack of a physician's advice for SPC screening and lower educational status had negative impact on the gastrointestinal cancer screening rates of lung cancer survivors.

  12. Raw Garlic Consumption and Lung Cancer in a Chinese Population.

    PubMed

    Myneni, Ajay A; Chang, Shen-Chih; Niu, Rungui; Liu, Li; Swanson, Mya K; Li, Jiawei; Su, Jia; Giovino, Gary A; Yu, Shunzhang; Zhang, Zuo-Feng; Mu, Lina

    2016-04-01

    Evidence of anticancer properties of garlic for different cancer sites has been reported previously in in vitro and in vivo experimental studies but there is limited epidemiologic evidence on the association between garlic and lung cancer. We examined the association between raw garlic consumption and lung cancer in a case-control study conducted between 2005 and 2007 in Taiyuan, China. Epidemiologic data was collected by face-to-face interviews from 399 incident lung cancer cases and 466 healthy controls. We used unconditional logistic regression models to estimate crude and adjusted ORs (aOR) and their 95% confidence intervals (CI). Adjusted models controlled for age, sex, average annual household income 10 years ago, smoking, and indoor air pollution. Compared with no intake, raw garlic intake was associated with lower risk of development of lung cancer with a dose-response pattern (aOR for <2 times/week = 0.56; 95% CI, 0.39-0.81 and aOR for ≥2 times/week = 0.50; 95% CI, 0.34-0.74; Ptrend = 0.0002). Exploratory analysis showed an additive interaction of raw garlic consumption with indoor air pollution and with any supplement use in association with lung cancer. The results of the current study suggest that raw garlic consumption is associated with reduced risk of lung cancer in a Chinese population. This study contributes to the limited research in human population on the association between garlic and lung cancer and advocates further investigation into the use of garlic in chemoprevention of lung cancer. Cancer Epidemiol Biomarkers Prev; 25(4); 624-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Skin metastases from lung cancer: a case report.

    PubMed

    Pajaziti, Laura; Hapçiu, Syzana Rexhepi; Dobruna, Shkendije; Hoxha, Naim; Kurshumliu, Fisnik; Pajaziti, Artina

    2015-04-11

    Lung cancer is one of the most frequent malignancies, with high mortality rates. It can metastasize in almost all organs, but more often invades hilar nodes, liver, adrenal glands, bones and brain. There are various data on the incidence of lung cancer metastases in the skin. In 1-12% of patients with lung cancer are developed skin metastases. Metastases in the skin may be the first sign of lung cancer. Forty-five years old Albanian male, smoker, was admitted to our department with multiple nodules localized in the skin of the head, neck, back and chest. The nodules measuring 5-15 millimeters in greatest dimension were round and skin-colored, with telangiectasias, firm and tender. They appeared in an eruptive form about two weeks before being admitted at our hospital. In addition, the patient exhibited signs of weight loss, anorexia and fatigue. Excisional biopsy was performed to one of the lesions. Histopathology confirmed metastatic nature of the lesion namely, malignant tumor of neuroendocrine phenotype consistent with small-cell carcinoma. Chest X-ray and computed tomography revealed an expansive process in the 7(th) segment of the left lung, left hilar and mediastinal lymphadenopathy and a suspicious initial secondary deposit in the left adrenal gland. The patient was referred to the department of oncology for further treatment. After the third cycle of chemotherapy, the magnetic resonance imaging revealed brain metastases. The patient passed away four months after the diagnosis of lung cancer first presented with skin metastases. Metastases in skin may be the first sign of lung cancer. Although rare appearing, we should raise suspicion in cases of atypical lesions in the skin not only of the smokers, but also of the non-smokers. Skin metastases from small-cell lung carcinoma are a poor prognostic indicator. The appearance of multiple skin metastases with other internal metastases shorten the survival time.

  14. Triple synchronous primary lung cancer: a case report and review of the literature.

    PubMed

    Kashif, Muhammad; Ayyadurai, Puvanalingam; Thanha, Luong; Khaja, Misbahuddin

    2017-09-01

    Multiple primary lung cancer may present in synchronous or metachronous form. Synchronous multiple primary lung cancer is defined as multiple lung lesions that develop at the same time, whereas metachronous multiple primary lung cancer describes multiple lung lesions that develop at different times, typically following treatment of the primary lung cancer. Patients with previously treated lung cancer are at risk for developing metachronous lung cancer, but with the success of computed tomography and positron emission tomography, the ability to detect both synchronous and metachronous lung cancer has increased. We present a case of a 63-year-old Hispanic man who came to our hospital for evaluation of chest pain, dry cough, and weight loss. He had recently been diagnosed with adenocarcinoma in the right upper lobe, with a poorly differentiated carcinoma favoring squamous cell cancer based on bronchoalveolar lavage of the right lower lobe for which treatment was started. Later, bronchoscopy incidentally revealed the patient to have an endobronchial lesion that turned out to be mixed small and large cell neuroendocrine lung cancer. Our patient had triple synchronous primary lung cancers that histologically were variant primary cancers. Triple synchronous primary lung cancer management continues to be a challenge. Our patient's case suggests that multiple primary lung cancers may still occur at a greater rate than can be detected by high-resolution computed tomography.

  15. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species.

    PubMed

    Maciag, Anna E; Chakrapani, Harinath; Saavedra, Joseph E; Morris, Nicole L; Holland, Ryan J; Kosak, Ken M; Shami, Paul J; Anderson, Lucy M; Keefer, Larry K

    2011-02-01

    Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.

  16. Admixture mapping of lung cancer in 1812 African-Americans.

    PubMed

    Schwartz, Ann G; Wenzlaff, Angela S; Bock, Cathryn H; Ruterbusch, Julie J; Chen, Wei; Cote, Michele L; Artis, Amanda S; Van Dyke, Alison L; Land, Susan J; Harris, Curtis C; Pine, Sharon R; Spitz, Margaret R; Amos, Christopher I; Levin, Albert M; McKeigue, Paul M

    2011-03-01

    Lung cancer continues to be the leading cause of cancer death in the USA and the best example of a cancer with undisputed evidence of environmental risk. However, a genetic contribution to lung cancer has also been demonstrated by studies of familial aggregation, family-based linkage, candidate gene studies and most recently genome-wide association studies (GWAS). The African-American population has been underrepresented in these genetic studies and has patterns of cigarette use and linkage disequilibrium that differ from patterns in other populations. Therefore, studies in African-Americans can provide complementary data to localize lung cancer susceptibility genes and explore smoking dependence-related genes. We used admixture mapping to further characterize genetic risk of lung cancer in a series of 837 African-American lung cancer cases and 975 African-American controls genotyped at 1344 ancestry informative single-nucleotide polymorphisms. Both case-only and case-control analyses were conducted using ADMIXMAP adjusted for age, sex, pack-years of smoking, family history of lung cancer, history of emphysema and study site. In case-only analyses, excess European ancestry was observed over a wide region on chromosome 1 with the largest excess seen at rs6587361 for non-small-cell lung cancer (NSCLC) (Z-score = -4.33; P = 1.5 × 10⁻⁵) and for women with NSCLC (Z-score = -4.82; P = 1.4 × 10⁻⁶). Excess African ancestry was also observed on chromosome 3q with a peak Z-score of 3.33 (P = 0.0009) at rs181696 among ever smokers with NSCLC. These results add to the findings from the GWAS in Caucasian populations and suggest novel regions of interest.

  17. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro.

    PubMed

    Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang

    2014-01-01

    Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.

  18. Adjustment to Life with Lung Cancer.

    PubMed

    Czerw, Aleksandra I; Religioni, Urszula; Deptała, Andrzej

    2016-01-01

    In Poland, lung cancer is the most common type of cancer in males (20% of all cases) and third most common type of cancer in females (9% of all cases), right behind breast and colorectal cancers. Recently, 28,000 new cases of lung cancer per year were reported in both genders. The objective of the study was to asses coping strategies, pain management, acceptance of illness and adjustment to cancer in patients diagnosed with pulmonary carcinoma and the effect of socioeconomic variables on the abovementioned issues. The study included 243 patients diagnosed with lung cancer during outpatient chemotherapy (classical chemotherapy and molecularly targeted therapies) at the Center of Oncology, Maria Skłodowska-Curie Institute in Warszawa. We applied the Paper and Pencil Interview (PAPI) technique. The questionnaire interview was composed of demographic questions and the following four psychometric tests: BPCQ measuring the influence of factors affecting pain management in patients, CSQ designed to evaluate pain coping strategies, AIS questionnaire, measuring disease acceptance, and the mini-Mac scale, assessing psychological adjustment to disease. The highest mean score recorded in the BPCQ was recorded in the powerful doctors subscale (16.79) and the lowest in the internal factors section (15.64). Education, professional status and income were the variables which differentiated the scores. We recorded the top average score in CSQ in the coping self statements subscale (mean = 19.64), and the lowest score in the reinterpreting pain sensations subscale (mean score = 10.32). The results of the test were differentiated by education and income. Patients had the highest Mini-MAC scale scores in the fighting spirit section (21.91). In the case of patients affected with lung cancer, education and professional status affect the way patients treat doctors in the disease process. These variables are also critical in patients' approach to disease and methods of coping with it.

  19. Socioeconomic Status and Lung Cancer: Unraveling the Contribution of Genetic Admixture

    PubMed Central

    Selvin, Steve; Wrensch, Margaret R.; Sison, Jennette D.; Hansen, Helen M.; Quesenberry, Charles P.; Seldin, Michael F.; Barcellos, Lisa F.; Buffler, Patricia A.; Wiencke, John K.

    2013-01-01

    Objectives. We examined the relationship between genetic ancestry, socioeconomic status (SES), and lung cancer among African Americans and Latinos. Methods. We evaluated SES and genetic ancestry in a Northern California lung cancer case–control study (1998–2003) of African Americans and Latinos. Lung cancer case and control participants were frequency matched on age, gender, and race/ethnicity. We assessed case–control differences in individual admixture proportions using the 2-sample t test and analysis of covariance. Logistic regression models examined associations among genetic ancestry, socioeconomic characteristics, and lung cancer. Results. Decreased Amerindian ancestry was associated with higher education among Latino control participants and greater African ancestry was associated with decreased education among African lung cancer case participants. Education was associated with lung cancer among both Latinos and African Americans, independent of smoking, ancestry, age, and gender. Genetic ancestry was not associated with lung cancer among African Americans. Conclusions. Findings suggest that socioeconomic factors may have a greater impact than genetic ancestry on lung cancer among African Americans. The genetic heterogeneity and recent dynamic migration and acculturation of Latinos complicate recruitment; thus, epidemiological analyses and findings should be interpreted cautiously. PMID:23948011

  20. The Case for Lung Cancer Screening: What Nurses Need to Know.

    PubMed

    Sorrie, Kerrin; Cates, Lisa; Hill, Alethea

    2016-06-01

    Lung cancer screening with low-dose helical computed tomography (LDCT) can improve high-risk individuals' chances of being diagnosed at an earlier stage and increase survival. The aims of this article are to present the risk factors associated with the development of lung cancer, identify patients at high risk for lung cancer qualifying for LDCT screening, and understand the importance of early lung cancer detection through the use of LDCT screening. PubMed and CINAHL® databases were searched with key words lung cancer screening to identify full-text academic articles from 2004-2014. This resulted in 529 articles from PubMed and 195 from CINAHL. PubMed offered suggestions for additional relevant journal articles. The National Comprehensive Cancer Network guidelines also provided substantial evidence-based information. Nurses need to provide support, education, and resources for patients undergoing lung cancer screening.