Science.gov

Sample records for lung cancer xenograft

  1. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    PubMed

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  2. Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts

    PubMed Central

    Allen, Bryan G.; Bhatia, Sudershan K.; Buatti, John M.; Brandt, Kristin E.; Lindholm, Kaleigh E.; Button, Anna M.; Szweda, Luke I.; Smith, Brian J.; Spitz, Douglas R.; Fath, Melissa A.

    2014-01-01

    Purpose Ketogenic diets (KDs) are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that KDs enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Experimental Design Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a KD (KetoCal® 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immuno-reactive 4-hydroxy-2-nonenal-(4HNE) modified proteins as a marker of oxidative stress as well as PCNA and γH2AX as indices of proliferation and DNA damage, respectively. Results The KD combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (p<0.05), relative to radiation alone. The KD also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a KD in combination with radiation demonstrated increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. Conclusions These results show that a KD enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress. PMID:23743570

  3. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  4. Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer

    PubMed Central

    2013-01-01

    Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. PMID:23635329

  5. Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity.

    PubMed

    Cantor, Joshua P; Iliopoulos, Dimitrios; Rao, Atul S; Druck, Teresa; Semba, Shuho; Han, Shuang-Yin; McCorkell, Kelly A; Lakshman, Thiru V; Collins, Joshua E; Wachsberger, Phyllis; Friedberg, Joseph S; Huebner, Kay

    2007-01-01

    Epigenetic changes involved in cancer development, unlike genetic changes, are reversible. DNA methyltransferase and histone deacetylase inhibitors show antiproliferative effects in vitro, through tumor suppressor reactivation and induction of apoptosis. Such inhibitors have shown activity in the treatment of hematologic disorders but there is little data concerning their effectiveness in treatment of solid tumors. FHIT, WWOX and other tumor suppressor genes are frequently epigenetically inactivated in lung cancers. Lung cancer cell clones carrying conditional FHIT or WWOX transgenes showed significant suppression of xenograft tumor growth after induction of expression of the FHIT or WWOX transgene, suggesting that treatments to restore endogenous Fhit and Wwox expression in lung cancers would result in decreased tumorigenicity. H1299 lung cancer cells, lacking Fhit, Wwox, p16(INK4a) and Rassf1a expression due to epigenetic modifications, were used to assess efficacy of epigenetically targeted protocols in suppressing growth of lung tumors, by injection of 5-aza-2-deoxycytidine (AZA) and trichostatin A (TSA) in nude mice with established H1299 tumors. High doses of intraperitoneal AZA/TSA suppressed growth of small tumors but did not affect large tumors (200 mm(3)); lower AZA doses, administered intraperitoneally or intratumorally, suppressed growth of small tumors without apparent toxicity. Responding tumors showed restoration of Fhit, Wwox, p16(INKa), Rassf1a expression, low mitotic activity, high apoptotic fraction and activation of caspase 3. These preclinical studies show the therapeutic potential of restoration of tumor suppressor expression through epigenetic modulation and the promise of re-expressed tumor suppressors as markers and effectors of the responses. PMID:17019711

  6. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    PubMed Central

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-01-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts. PMID:26883914

  7. Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model

    PubMed Central

    Gao, Yang; Gao, Yonghua; Guan, Weijie; Huang, Liyan; Xu, Xiaoming; Zhang, Chenting; Chen, Xiuqing; Wu, Yizhuang; Zeng, Guangqiao

    2013-01-01

    Background Conventional chemotherapy and radiation therapy against non-small cell lung cancer (NSCLC) are relatively insensitive and unsatisfactory. Para-toluenesulfonamide (PTS), a unique antitumor drug for local intratumoral injection, shows an efficacy of severely suppressing solid tumor growth with mild side effects in clinical trials. The aim of this study was to investigate the effect of PTS on lung cancer H460 cells in vivo in nude mice and its underlying mechanisms in vitro. Methods A lung cancer model for in vivo experiment was established in BALB/c nude mice using H460 cells to examine the effect of local injection of PTS on tumor suppression. We also assessed the injury to the normal tissue by subcutaneous injection of PTS. In vitro, PTS was diluted into different doses for study on its antitumor mechanisms. We evaluated the necrotic effect of PTS on H460 cells by PI and Hoechst 33342 staining. Cell viability and membrane permeability were also determined by using CCK-8 and LDH assays respectively. All these tests were conducted in comparison with traditional local injection of anhydrous ethanol. Results PTS was shown to significantly inhibit the growth of H460 tumor xenografts in nude mice by inducing necrosis of the tumor histologically. Its effect on tumor growth was significantly stronger than that of anhydrous ethanol. By contrast, the injured normal tissue by PTS injection was less than that by ethanol. In vitro, PTS still demonstrated excellent necrotizing effect on H460 cells when diluted to a lower concentration. Detailed analysis of PTS on H460 cells indicated that PTS had a better effect on attenuating the cell viability and increasing the cell membrane permeability than ethanol at the same level. Conclusions PTS exhibits excellent inhibition effect on the growth of lung cancer by necrotizing tumor in vivo and in vitro, reducing tumor cell viability and augmenting the membrane permeability in vitro, with only mild injury to normal tissue. The

  8. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1).

    PubMed

    Singhal, Sharad S; Singhal, Jyotsana; Yadav, Sushma; Dwivedi, Seema; Boor, Paul J; Awasthi, Yogesh C; Awasthi, Sanjay

    2007-05-01

    Ral-binding protein 1 (RALBP1) is a stress-responsive and stress-protective multispecific transporter of glutathione conjugates (GS-E) and xenobiotic toxins. It is frequently overexpressed in malignant cells and plays a prominent antiapoptotic role selectively in cancer cells through its ability to control cellular concentration of proapoptotic oxidized lipid byproducts. In the absence of chemotherapy, depletion or inhibition of RALBP1 causes regression of syngeneic mouse B16 melanoma. Because RALBP1 transports anthracycline and Vinca alkaloid drugs, as well as GS-E, and because it confers resistance to these drugs, we proposed that depletion or inhibition of RALBP1 should cause regression of human solid tumors that overexpress RALBP1 and augment chemotherapy efficacy. Non-small-cell lung cancer (NSCLC) H358 and H520 and colon SW480 cell lines were used. Cytotoxic synergy between anti-RALBP1 immunoglobulin G (IgG), cis-diammine-dichloroplatinum (II) [CDDP], and vinorelbine was examined in cell culture and xenografts of NSCLC cells. Effects of RALBP1 depletion by antisense were examined in xenografts of NSCLC H358, NSCLC H520, and colon SW480 cells. RALBP1 depletion by phosphorothioate antisense was confirmed and was associated with rapid, complete, and sustained remissions in established s.c. human lung and colon xenografts. RALBP1 inhibition by anti-RALBP1 IgG was equally as effective as antisense and enhanced CDDP-vinorelbine in lung cancer xenografts. These studies show that RALBP1 is a transporter that serves as a key effector function in cancer cell survival and is a valid target for cancer therapy, and confirm that inhibitory modulation of RALBP1 transport activity at the cell surface is sufficient for antitumor effects. PMID:17483352

  9. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis

    PubMed Central

    Turkki, Riku; Linder, Nina; Holopainen, Tanja; Wang, Yinhai; Grote, Anne; Lundin, Mikael; Alitalo, Kari; Lundin, Johan

    2015-01-01

    Aims To build and evaluate an automated method for assessing tumour viability in histological tissue samples using texture features and supervised learning. Methods H&E-stained sections (n=56) of human non-small cell lung adenocarcinoma xenografts were digitised with a whole-slide scanner. A novel image analysis method based on local binary patterns and a support vector machine classifier was trained with a set of sample regions (n=177) extracted from the whole-slide images and tested with another set of images (n=494). The extracted regions, or single-tissue entity images, were chosen to represent as pure as possible examples of three morphological tissue entities: viable tumour tissue, non-viable tumour tissue and mouse host tissue. Results An agreement of 94.5% (area under the curve=0.995, kappa=0.90) was achieved to classify the single-tissue entity images in the test set (n=494) into the viable tumour and non-viable tumour tissue categories. The algorithm assigned 250 of the 252 non-viable and 219 of the 242 of viable sample regions to the correct categories, respectively. This corresponds to a sensitivity of 90.5% and specificity of 99.2%. Conclusions The proposed image analysis-based tumour viability assessment resulted in a high agreement with expert annotations. By providing extraction of detailed information of the tumour microenvironment, the automated method can be used in preclinical research settings. The method could also have implications in cancer diagnostics, cancer outcome prognostics and prediction. PMID:26021331

  10. Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer

    PubMed Central

    Song, Lanxi; Smith, Matthew A.; Doshi, Parul; Sasser, Kate; Fulp, William; Altiok, Soner; Haura, Eric B.

    2014-01-01

    Introduction Interleukin-6 (IL-6) can activate downstream signaling pathways in lung cancer cells, such as the STAT3 pathway, and is reported to be produced by tumor cells with activating EGFR mutations. We examined IL-6/STAT3 in lung cancer tumor tissues and the effects of siltuximab, a neutralizing antibody to human IL-6, in mouse models of lung cancer. Methods IL-6 and STAT3 activation levels were compared to tumor histology and presence of KRAS mutations in snap-frozen non-small cell lung cancer (NSCLC) tumors. The effects of siltuximab alone or in combination with erlotinib were examined in mouse xenograft models constructed using three cell line xenograft models and one primary explant mouse model. We examined the influence of cancer-associated fibroblasts (CAFs) on tumor growth and siltuximab effects. Results IL-6 levels were higher in tumors of squamous cell versus adenocarcinoma histology and were not associated with presence of KRAS mutations. Tyrosine phosphorylation status of STAT3 did not correlate with tumor IL-6 levels. Serine phosphorylation of STAT3 was correlated with KRAS mutation status. Both tumor and stromal cells contributed to total IL-6 within tumors. Siltuximab had minimal effect as a single agent in xenografts with tumor cells alone; however, in models co-administered with CAFs, siltuximab had more potent effects on tumor inhibition. We observed no effects of combined erlotinib and siltuximab. Conclusions IL-6 is elevated in subsets of human NSCLCs, especially with squamous cell histology. Tumors supported by stromal production of IL-6 appear to be the most vulnerable to tumor growth inhibition by siltuximab. PMID:24922005

  11. Intratracheally Administered 5-Azacytidine Is Effective Against Orthotopic Human Lung Cancer Xenograft Models and Devoid of Important Systemic Toxicity

    PubMed Central

    Mahesh, Sameer; Saxena, Ashish; Qiu, Xuan; Perez-Soler, Roman; Zou, Yiyu

    2014-01-01

    Introduction Hypermethylation of key tumor suppressor genes plays an important role in lung carcinogenesis. The purpose of this study is to explore the therapeutic potential of regional administration (via the airways) of the demethylating agent 5-azacytidine (5-Aza) for the treatment of early lung cancer. Patients and Methods We administered 5-Aza solution directly into the trachea in imprinting control region (ICR) mice (to study its toxicity) and in nude mice bearing orthotopic human lung cancer xenografts (to assess its antitumor activity). Results In vitro, 5-Aza inhibited the growth of human lung cancer cell lines H226, H358, and H460 in a dose-dependent manner. The concentrations to inhibit cell growth by 50% (IC50) were about 0.6-4.9 μg/mL. 5-Azacytidine reversed hypermethylation in the promoter of tumor suppressor gene RASSF1a in the H226 cells at a 6000-fold lower concentration than its IC50. In animal studies, intratracheal (I.T.) administration of 90 mg/kg 5-Aza (the maximum tolerated dose of 5-Aza intravenous injection [I.V.]) resulted in moderate pulmonary toxicity and 5-fold reduced myelosuppression compared with the same dose of I.V. 5-Aza. Using an optimized multiple dose schedule, I.T. 5-Aza was about 3-fold more effective than I.V. 5-Aza in prolonging the survival of mice bearing orthotopic H460 and H358 xenografts, and did not cause any detectable toxicity. Conclusion 5-Azacytidine can reverse the hypermethylation in the human lung cancer cell lines at a nontoxic dose. Regional administration to the airways enhances the therapeutic index of 5-Aza by 75-fold. The potential of regional administration of 5-Aza (including by aerosolization) for the treatment of advanced bronchial premalignancy deserves further investigation. PMID:21062731

  12. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  13. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  14. Acute vascular response to cediranib treatment in human non-small-cell lung cancer xenografts with different tumour stromal architecture

    PubMed Central

    Jiang, Yanyan; Allen, Danny; Kersemans, Veerle; Devery, Aoife M.; Bokobza, Sivan M.; Smart, Sean; Ryan, Anderson J.

    2015-01-01

    Objectives Tumours can be categorised based on their stromal architecture into tumour vessel and stromal vessel phenotypes, and the phenotypes have been suggested to define tumour response to chronic treatment with a VEGFR2 antibody. However, it is unclear whether the vascular phenotypes of tumours associate with acute vascular response to VEGFR tyrosine kinase inhibitors (TKI), or whether the early changes in vascular function are associated with subsequent changes in tumour size. This study was sought to address these questions by using xenograft models of human non-small cell lung cancer (NSCLC) representing stromal vessel phenotype (Calu-3) and tumour vessel phenotype (Calu-6), respectively. Methods For dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), nude mice bearing established Calu-3 or Calu-6 xenografts were treated with a potent pan-VEGFR TKI, cediranib (6 mg/kg), at 0 h and 22 h. DCE-MRI was performed 2 h before the first dose and 2 h after the second dose of cediranib to examine acute changes in tumour vessel perfusion. Tumours were harvested for hypoxia detection by CA9 immunohistochemistry. For tumour growth study, mice carrying established Calu-3 or Calu-6 tumours were treated with cediranib once daily for 5 days. Results Twenty-four hours after cediranib administration, the perfusion of Calu-3 tumours was markedly reduced, with a significant increase in hypoxia. In contrast, neither perfusion nor hypoxia was significantly affected in Calu-6 tumours. Tumour regressions were induced in Calu-3 xenografts, but not in Calu-6 xenografts, although there was a trend towards tumour growth inhibition after 5 days of cediranib treatment. Conclusion These findings suggest that tumour stromal architecture may associate with acute tumour vascular response to VEGFR TKI, and this acute tumour vascular response may be a promising early predictive marker of response to VEGFR TKI in NSCLC. PMID:26323213

  15. 90Y-Labeled Anti-ROBO1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts

    PubMed Central

    Fujiwara, Kentaro; Koyama, Keitaro; Suga, Kosuke; Ikemura, Masako; Saito, Yasutaka; Hino, Akihiro; Iwanari, Hiroko; Kusano-Arai, Osamu; Mitsui, Kenichi; Kasahara, Hiroyuki; Fukayama, Masashi; Kodama, Tatsuhiko; Hamakubo, Takao; Momose, Toshimitsu

    2015-01-01

    Introduction ROBO1 is a membrane protein that contributes to tumor metastasis and angiogenesis. We previously reported that 90Y-labeled anti-ROBO1 monoclonal antibody (90Y-anti-ROBO1 IgG) showed an antitumor effect against ROBO1-positive tumors. In this study, we performed a biodistribution study and radioimmunotherapy (RIT) against ROBO1-positive small cell lung cancer (SCLC) models. Methods For the biodistribution study, 111In-labeled anti-ROBO1 monoclonal antibody (111In-anti-ROBO1 IgG) was injected into ROBO1-positive SCLC xenograft mice via the tail vein. To evaluate antitumor effects, an RIT study was performed, and SCLC xenograft mice were treated with 90Y-anti-ROBO1 IgG. Tumor volume and body weight were periodically measured throughout the experiments. The tumors and organs of mice were then collected, and a pathological analysis was carried out. Results As a result of the biodistribution study, we observed tumor uptake of 111In-anti-ROBO1 IgG. The liver, kidney, spleen, and lung showed comparably high accumulation of 111In-labeled anti-ROBO1. In the RIT study, 90Y-anti-ROBO1 IgG significantly reduced tumor volume compared with baseline. Pathological analyses of tumors revealed coagulation necrosis and fatal degeneration of tumor cells, significant reduction in the number of Ki-67-positive cells, and an increase in the number of apoptotic cells. A transient reduction of hematopoietic cells was observed in the spleen, sternum, and femur. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 IgG is a promising treatment for ROBO1-positive SCLC. PMID:26017283

  16. Growth and Metastases of Human Lung Cancer Are Inhibited in Mouse Xenografts by a Transition State Analogue of 5′-Methylthioadenosine Phosphorylase*

    PubMed Central

    Basu, Indranil; Locker, Joseph; Cassera, Maria B.; Belbin, Thomas J.; Merino, Emilio F.; Dong, Xinyuan; Hemeon, Ivan; Evans, Gary B.; Guha, Chandan; Schramm, Vern L.

    2011-01-01

    The S-adenosylmethionine (AdoMet) salvage enzyme 5′-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5′-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2−/−γC−/− and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP−/− and H358 MTAP+/+ tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy. PMID:21135097

  17. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer

    PubMed Central

    Peng, Shaohua; Cao, Mengru; Li, Hongyu; Hu, Jing; Huang, Xiao; Liu, Wei; Zhang, Hui; Wu, Shuhong; Pataer, Apar; Heymach, John V.; Eterovic, Agda Karina; Zhang, Qingxiu; Shaw, Kenna R.; Chen, Ken; Futreal, Andrew; Wang, Michael; Hofstetter, Wayne; Mehran, Reza; Rice, David; Roth, Jack A.; Sepesi, Boris; Swisher, Stephen G.; Vaporciyan, Ara; Walsh, Garrett L.; Johnson, Faye M.; Fang, Bingliang

    2014-01-01

    Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies. PMID:25444907

  18. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation.

    PubMed

    Wang, Li; Mason, Kathy A; Ang, K Kian; Buchholz, Thomas; Valdecanas, David; Mathur, Anjili; Buser-Doepner, Carolyn; Toniatti, Carlo; Milas, Luka

    2012-12-01

    The poly-(ADP-ribose) polymerase (PARP) inhibitor, MK-4827, is a novel potent, orally bioavailable PARP-1 and PARP-2 inhibitor currently in phase I clinical trials for cancer treatment. No preclinical data currently exist on the combination of MK-4827 with radiotherapy. The current study examined combined treatment efficacy of MK-4827 and fractionated radiotherapy using a variety of human tumor xenografts of differing p53 status: Calu-6 (p53 null), A549 (p53 wild-type [wt]) and H-460 (p53 wt) lung cancers and triple negative MDA-MB-231 human breast carcinoma. To mimic clinical application of radiotherapy, fractionated radiation (2 Gy per fraction) schedules given once or twice daily for 1 to 2 weeks combined with MK-4827, 50 mg/kg once daily or 25 mg/kg twice daily, were used. MK-4827 was found to be highly and similarly effective in both radiation schedules but maximum radiation enhancement was observed when MK-4827 was given at a dose of 50 mg/kg once daily (EF = 2.2). MK-4827 radiosensitized all four tumors studied regardless of their p53 status. MK-4827 reduced PAR levels in tumors by 1 h after administration which persisted for up to 24 h. This long period of PARP inhibition potentially adds to the flexibility of design of future clinical trials. Thus, MK-4827 shows high potential to improve the efficacy of radiotherapy. PMID:22127459

  19. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model.

    PubMed

    Sher, Yuh-Pyng; Lin, Su-I; Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-01

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials. PMID:26621839

  20. Steroidal cardiac Na+/K+ ATPase inhibitors exhibit strong anti-cancer potential in vitro and in prostate and lung cancer xenografts in vivo.

    PubMed

    Dimas, Konstantinos; Papadopoulou, Natalia; Baskakis, Constantinos; Prousis, Kyriakos C; Tsakos, Michail; Alkahtani, Saad; Honisch, Sabina; Lang, Florian; Calogeropoulou, Theodora; Alevizopoulos, Konstantinos; Stournaras, Christos

    2014-06-01

    Sodium potassium pump (Na(+)/K(+)ATPase) is a validated pharmacological target for the treatment of congestive heart failure. Recent data with inotropic drugs such as digoxin & digitoxin (digitalis) suggest a potent anti-cancer action of these drugs and promote Na(+)/K(+)ATPase as a novel therapeutic target in cancer. However, digitalis have narrow therapeutic indices, are pro-arrhythmic and are considered non-developable drugs by the pharmaceutical industry. On the contrary, a series of recently-developed steroidal inhibitors showed better pharmacological properties and clinical activities in cardiac patients. Their anti-cancer activity however, remained unknown. In this study, we synthesized seventeen steroidal cardiac inhibitors and explored for the first time their anti-cancer activity in vitro and in vivo. Our results indicate potent anti-cancer actions of steroidal cardiac inhibitors in multiple cell lines from different tumor panels including multi-drug resistant cells. Furthermore, the most potent compound identified in our studies, the 3-[(R)-3- pyrrolidinyl]oxime derivative 3, showed outstanding potencies (as measured by GI50, TGI and LC50 values) in most cells in vitro, was selectively cytotoxic in cancer versus normal cells showing a therapeutic index of 31.7 and exhibited significant tumor growth inhibition in prostate and lung xenografts in vivo. Collectively, our results suggest that previously described cardiac Na(+)/K(+)ATPase inhibitors have potent anti-cancer actions and may thus constitute strong re-purposing candidates for further cancer drug development. PMID:24066843

  1. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts

    PubMed Central

    Gerber, David E.; Gupta, Puja; Dellinger, Michael T.; Toombs, Jason E.; Peyton, Michael; Duignan, Inga; Malaby, Jennifer; Bailey, Timothy; Burns, Colleen; Brekken, Rolf A.; Loizos, Nick

    2012-01-01

    In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα mAbs on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were performed using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression. PMID:22933705

  2. Setting up a wide panel of patient-derived tumor xenografts of non–small cell lung cancer by improving the preanalytical steps

    PubMed Central

    Ilie, Marius; Nunes, Manoel; Blot, Lydia; Hofman, Véronique; Long-Mira, Elodie; Butori, Catherine; Selva, Eric; Merino-Trigo, Ana; Vénissac, Nicolas; Mouroux, Jérôme; Vrignaud, Patricia; Hofman, Paul

    2015-01-01

    With the ongoing need to improve therapy for non–small cell lung cancer (NSCLC) there has been increasing interest in developing reliable preclinical models to test novel therapeutics. Patient-derived tumor xenografts (PDX) are considered to be interesting candidates. However, the establishment of such model systems requires highly specialized research facilities and introduces logistic challenges. We aimed to establish an extensive well-characterized panel of NSCLC xenograft models in the context of a long-distance research network after careful control of the preanalytical steps. One hundred fresh surgically resected NSCLC specimens were shipped in survival medium at room temperature from a hospital-integrated biobank to animal facilities. Within 24 h post-surgery, tumor fragments were subcutaneously xenografted into immunodeficient mice. PDX characterization was performed by histopathological, immunohistochemical, aCGH and next-generation sequencing approaches. For this model system, the tumor take rate was 35%, with higher rates for squamous carcinoma (60%) than for adenocarcinoma (13%). Patients for whom PDX tumors were obtained had a significantly shorter disease-free survival (DFS) compared to patients for whom no PDX tumors (P = 0.039) were obtained. We established a large panel of PDX NSCLC models with a high frequency of mutations (29%) in EGFR, KRAS, NRAS, MEK1, BRAF, PTEN, and PI3KCA genes and with gene amplification (20%) of c-MET and FGFR1. This new patient-derived NSCLC xenograft collection, established regardless of the considerable time required and the distance between the clinic and the animal facilities, recapitulated the histopathology and molecular diversity of NSCLC and provides stable and reliable preclinical models for human lung cancer research. PMID:25470237

  3. Differentiation of xenografted human fetal lung parenchyma

    PubMed Central

    Pavlovic, Jelena; Floros, Joanna; Phelps, David S.; Wigdahl, Brian; Welsh, Patricia; Weisz, Judith; Shearer, Debra A.; Pree, Alphonse Leure du; Myers, Roland; Howett, Mary K.

    2009-01-01

    The goal of this study was to characterize xenografted human fetal lung tissue with respect to developmental stage-specific cytodifferentiation. Human fetal lung tissue (pseudoglandular stage) was grafted either beneath the renal capsule or the skin of athymic mice (NCr-nu). Tissues were analyzed from 3 to 42 days post-engraftment for morphological alterations by light and electron microscopy (EM), and for surfactant protein mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC), respectively. The changes observed resemble those seen in human lung development in utero in many respects, including the differentiation of epithelium to the saccular stage. Each stage occurred over approximately one week in the graft in contrast to the eight weeks of normal in utero development. At all time points examined, all four surfactant proteins (SP-A, SP-B, SP-C, and SP-D) were detected in the epithelium by ICC. Lamellar bodies were first identified by EM in 14 day xenografts. By day 21, a significant increase in lamellar body expression was observed. Cellular proliferation, as marked by PCNA ICC and elastic fiber deposition resembled those of canalicular and saccular in utero development. This model in which xenografted lung tissue in different stages of development is available may facilitate the study of human fetal lung development and the impact of various pharmacological agents on this process. PMID:17555893

  4. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  5. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  6. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  7. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  8. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model

    PubMed Central

    Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-01-01

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

  9. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. PMID:27045080

  10. MEK Inhibitor Selumetinib (AZD6244; ARRY-142886) Prevents Lung Metastasis in a Triple-Negative Breast Cancer Xenograft Model.

    PubMed

    Bartholomeusz, Chandra; Xie, Xuemei; Pitner, Mary Kathryn; Kondo, Kimie; Dadbin, Ali; Lee, Jangsoon; Saso, Hitomi; Smith, Paul D; Dalby, Kevin N; Ueno, Naoto T

    2015-12-01

    Patients with triple-negative breast cancer (TNBC) have a poor prognosis because TNBC often metastasizes, leading to death. Among patients with TNBC, those with extracellular signal-regulated kinase 2 (ERK2)-overexpressing tumors were at higher risk of death than those with low-ERK2-expressing tumors (hazard ratio, 2.76; 95% confidence interval, 1.19-6.41). The MAPK pathway has been shown to be a marker of breast cancer metastasis, but has not been explored as a potential therapeutic target for preventing TNBC metastasis. Interestingly, when we treated TNBC cells with the allosteric MEK inhibitor selumetinib, cell viability was not reduced in two-dimensional culture. However, in three-dimensional culture, selumetinib changed the mesenchymal phenotype of TNBC cells to an epithelial phenotype. Cells that undergo epithelial-mesenchymal transition (EMT) are thought to contribute to the metastatic process. EMT leads to generation of mesenchymal-like breast cancer cells with stem cell-like characteristics and a CD44(+)CD24(-/low) expression pattern. We tested the hypothesis that targeted inhibition of the MAPK pathway by selumetinib inhibits acquisition of the breast cancer stem cell phenotype and prevents lung metastasis of TNBC. TNBC cells treated with selumetinib showed inhibition of anchorage-independent growth, an indicator of in vivo tumorigenicity (P < 0.005), and decreases in the CD44(+)CD24(-/low) fraction, ALDH1 activity, and mammosphere-forming efficiency. Mice treated with selumetinib formed significantly fewer lung metastases than control mice injected with vehicle (P < 0.05). Our data demonstrate that MEK inhibitors can inhibit breast cancer stem cells and may have clinical potential for the prevention of metastasis in certain cases in which tumors are MAPK dependent. PMID:26384399

  11. Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel.

    PubMed

    Lee, Jong Hyun; Kim, Chulwon; Sethi, Gautam; Ahn, Kwang Seok

    2015-03-20

    Persistent phosphorylation of signal transducers and activators of transcription 3 (STAT3) is frequently observed in tumor cells. We found that brassinin (BSN) suppressed both constitutive and IL-6-inducible STAT3 activation in lung cancer cells. Moreover, BSN induced PIAS-3 protein and mRNA, whereas the expression of SOCS-3 was reduced. Knockdown of PIAS-3 by small interfering RNA prevented inhibition of STAT3 and cytotoxicity by BSN. Overexpression of SOCS-3 in BSN-treated cells increased STAT3 phosphorylation and cell viability. BSN down-regulated STAT3-regulated gene products, inhibited proliferation, invasion, as well as induced apoptosis. Most importantly, when administered intraperitoneally, combination of BSN and paclitaxel significantly decreased the tumor development in a xenograft lung cancer mouse model associated with down-modulation of phospho-STAT3, Ki-67 and CD31. We suggest that BSN inhibits STAT3 signaling through modulation of PIAS-3 and SOCS-3, thereby attenuating tumor growth and increasing sensitivity to paclitaxel. PMID:25788267

  12. Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel

    PubMed Central

    Lee, Jong Hyun; Kim, Chulwon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Persistent phosphorylation of signal transducers and activators of transcription 3 (STAT3) is frequently observed in tumor cells. We found that brassinin (BSN) suppressed both constitutive and IL-6-inducible STAT3 activation in lung cancer cells. Moreover, BSN induced PIAS-3 protein and mRNA, whereas the expression of SOCS-3 was reduced. Knockdown of PIAS-3 by small interfering RNA prevented inhibition of STAT3 and cytotoxicity by BSN. Overexpression of SOCS-3 in BSN-treated cells increased STAT3 phosphorylation and cell viability. BSN down-regulated STAT3-regulated gene products, inhibited proliferation, invasion, as well as induced apoptosis. Most importantly, when administered intraperitoneally, combination of BSN and paclitaxel significantly decreased the tumor development in a xenograft lung cancer mouse model associated with down-modulation of phospho-STAT3, Ki-67 and CD31. We suggest that BSN inhibits STAT3 signaling through modulation of PIAS-3 and SOCS-3, thereby attenuating tumor growth and increasing sensitivity to paclitaxel. PMID:25788267

  13. Inhibition of Tumor Growth and Angiogenesis by a Lysophosphatidic Acid Antagonist in a Engineered Three-dimensional Lung Cancer Xenograft Model

    PubMed Central

    Xu, Xiaoyu; Prestwich, Glenn D

    2009-01-01

    BACKGROUND We developed an engineered three-dimensional (3-D) tumor xenograft model of non-small cell lung cancer (NSCLC) in nude mice, and used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS First, BrP-LPA, a pan-antagonist for four LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3-D in three semi-synthetic ECMs based on chemically-modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were deteremined as a function of sECM composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with four intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3-D encapsulated A549 cells in vivo in nude mice increased in the order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factors plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS Engineered A549 lung tumors can be created by 3-D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. PMID:20143443

  14. Treatment of small-cell lung cancer xenografts with iodine-313-anti-neural cell adhesion molecule monoclonal antibody and evaluation of absorbed dose in tissue

    SciTech Connect

    Hosono, Makoto; Endo, Keigo; Hosono, Masako N.

    1994-02-01

    Human small-cell lung cancer (SCLC) is considered a feasible target for immunotherapy using a radiolabeled monoclonal antibody (Mab). A murine Mab, NE150 (IgG1), reacts with the neural cell adhesion molecule, which is identical to cluster 1 antigen of SCLC. To estimate their therapeutic effects, NE150 and an isotype-matched control Mab were labeled with {sup 131}I and administered intravenously as a single dose into athymic mice inoculated with a NCI-H69 SCLC xenograft. The absorbed dose in organs was also examined based upon a long-term biodistribution study of {sup 131}I-NE150. Tumors initial volume 563.4 {plus_minus} 223.5 mm{sup 3} treated with 11.1 MBq (300 {mu}Ci) of {sup 131}I-NE150 diminished and became invisible at days 30-33, demonstrating a 60-day mean growth delay to reach a tripled initial volume compared with sham-treated tumors. Cumulative absorbed doses were estimated to be 2310, 410, 500, 330, and 790 cGy for the tumor, liver, kidney, spleen and lung, respectively. Iodine-131-NE150 had potent therapeutic effects against SCLC transplants in athymic mice, however, careful assessment of the side effects, improvement of radioiodination and chimerization of the Mab might be necessary to achieve efficient targeting in clinical therapeutic applications. 25 refs., 2 figs., 3 tabs.

  15. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of ... in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  16. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    PubMed Central

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.; Bokobza, Sivan M.; Weber, Anika M.; Leszczynska, Katarzyna B.; Hammond, Ester M.; Ryan, Anderson J.

    2016-01-01

    Purpose Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O2) or hypoxic (1% O2) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O2). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions Our data suggest that hypoxia potentiates the radiation-sensitizing effects of olaparib by contextual

  17. Mangosenone F, A Furanoxanthone from Garciana mangostana, Induces Reactive Oxygen Species-Mediated Apoptosis in Lung Cancer Cells and Decreases Xenograft Tumor Growth.

    PubMed

    Seo, Kyung Hye; Ryu, Hyung Won; Park, Mi Jin; Park, Ki Hun; Kim, Jin Hyo; Lee, Mi-Ja; Kang, Hyeon Jung; Kim, Sun Lim; Lee, Jin Hwan; Seo, Woo Duck

    2015-11-01

    Mangosenone F (MSF), a natural xanthone, was isolated form Carcinia mangotana, and a few studies have reported its glycosidase inhibitor effect. In this study we investigated the anti lung cancer effect of MSF both in vitro and in vivo. MSF inhibited cancer cell cytotoxicity and induced and induced apoptosis via reactive oxygen species (ROS) generation in NCI-H460. MSF treatment also showed in pronounced release of apoptogenic cytochrome c from the mitochondria to the cytosol, downregulation of Bcl-2 and Bcl-xL, and upregulation of Bax, suggesting that caspase-mediated pathways were involved in MSF-induced apoptosis. ROS activation of the mitogen-activated protein kinase signaling pathway was shown to play a predominant role in the apoptosis mechanism of MSF. Compared with cisplatin treatment, MSF treatment showed significantly increased inhibition of the growth of NCI-H460 cells xenografted in nude mice. Together, these results indicate the potential of MSF as a candidate natural anticancer drug by promoting ROS production. PMID:26310849

  18. Optimized S-Trityl-l-cysteine-Based Inhibitors of Kinesin Spindle Protein with Potent in Vivo Antitumor Activity in Lung Cancer Xenograft Models

    PubMed Central

    2013-01-01

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-l-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (Kiapp < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies. PMID:23394180

  19. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model

    PubMed Central

    Gu, Yuan; Körbel, Christina; Scheuer, Claudia; Nenicu, Anca; Menger, Michael D.; Laschke, Matthias W.

    2016-01-01

    Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases. PMID:26701724

  20. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts.

    PubMed

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with (111)In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of (111)In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of (111)In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of (111)In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, (111)In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of (111)In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  1. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts

    PubMed Central

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with 111In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of 111In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of 111In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of 111In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, 111In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of 111In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  2. Lung cancer

    PubMed Central

    Dong, Jie; Kislinger, Thomas; Jurisica, Igor; Wigle, Dennis A.

    2010-01-01

    High-throughput genomic data for both lung development and lung cancer continue to accumulate. Significant molecular intersection between these two processes has been hypothesized due to overlap in phenotypes and genomic variation. Examining the network biology of both cancer and development of the lung may shed functional light on the individual signaling modules involved. Stem cell biology may explain a portion of this network intersection and consequently studying lung organogenesis may have relevance for understanding lung cancer. This review summarizes our understanding of the potential overlapping mechanisms involved in lung development and lung tumorigenesis. PMID:19202349

  3. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing

    PubMed Central

    Goehe, Rachel Wilson; Shultz, Jacqueline C.; Murudkar, Charuta; Usanovic, Sanja; Lamour, Nadia F.; Massey, Davis H.; Zhang, Lian; Camidge, D. Ross; Shay, Jerry W.; Minna, John D.; Chalfant, Charles E.

    2010-01-01

    Caspase-9 is involved in the intrinsic apoptotic pathway and suggested to play a role as a tumor suppressor. Little is known about the mechanisms governing caspase-9 expression, but post-transcriptional pre-mRNA processing generates 2 splice variants from the caspase-9 gene, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b. Here we demonstrate that the ratio of caspase-9 splice variants is dysregulated in non–small cell lung cancer (NSCLC) tumors. Mechanistic analysis revealed that an exonic splicing silencer (ESS) regulated caspase-9 pre-mRNA processing in NSCLC cells. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) interacted with this ESS, and downregulation of hnRNP L expression induced an increase in the caspase-9a/9b ratio. Although expression of hnRNP L lowered the caspase-9a/9b ratio in NSCLC cells, expression of hnRNP L produced the opposite effect in non-transformed cells, suggesting a post-translational modification specific for NSCLC cells. Indeed, Ser52 was identified as a critical modification regulating the caspase-9a/9b ratio. Importantly, in a mouse xenograft model, downregulation of hnRNP L in NSCLC cells induced a complete loss of tumorigenic capacity that was due to the changes in caspase-9 pre-mRNA processing. This study therefore identifies a cancer-specific mechanism of hnRNP L phosphorylation and subsequent lowering of the caspase-9a/9b ratio, which is required for the tumorigenic capacity of NSCLC cells. PMID:20972334

  4. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  5. What Is Lung Cancer?

    MedlinePlus

    ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ... lung cancer. For more information, visit the National Cancer Institute’s Lung Cancer. Previous Basic Information Basic Information Basic Information ...

  6. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification.

    PubMed

    Furugaki, Koh; Fukumura, Junko; Iwai, Toshiki; Yorozu, Keigo; Kurasawa, Mitsue; Yanagisawa, Mieko; Moriya, Yoichiro; Yamamoto, Kaname; Suda, Kenichi; Mizuuchi, Hiroshi; Mitsudomi, Tetsuya; Harada, Naoki

    2016-02-15

    Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL. PMID:26370161

  7. Immunoscintigraphy of small-cell lung cancer xenografts with anti neural cell adhesion molecule monoclonal antibody, 123C3: improvement of tumour uptake by internalisation.

    PubMed

    Kwa, H B; Wesseling, J; Verhoeven, A H; van Zandwijk, N; Hilkens, J

    1996-02-01

    The efficacy of three murine monoclonal antibodies (MAbs) for immunoscintigraphy of small-cell lung cancer (SCLS) xenografts was studied in a Balb/c nu/nu mouse model. These Mabs, 123C3, 123A8 and MOC191, belong to cluster 1 of anti-SCLC MAbs and bind to the neural cell adhesion molecule (NCAM) with similar affinity. After intraperitoneal injection of these MAbs, labelled with 125I, the highest uptake in tumour tissue was obtained with MAb 123C3. Seven days after the administration of this MAb 13.9% of the injected dose per gram of tumour tissue was retained in the tumour. The corresponding tumour tissue ratios ranged from 3.97 for blood to 31.03 for colon. The imaging results and the tumour uptake were less favourable for the two other MAbs, 123A8 and MOC191 (fractions of injected dose respectively 6.7% and 9.2%), although affinity, biological activity after labelling and uptake in non-tumour tissues were very similar for all three MAbs. These results may be explained by the differences in the interaction between the MAbs and the tumour cells. Mab 123C3 is internalised into tumour cells, whereas both other anti-NCAM Mabs are not. Internalisation into NCI H69 cells was demonstrated in vitro by radioimmunoassay, confocal laser scanning microscopy and electron microscopy. The internalised fraction of MAb 123C3 was 22.3% after 24h, whereas this fraction was only 7.5% for MAb 123A8. Although the internalised radiolabeled Mabs are usually degraded and dehalogenated intracellularly, the retained radioactivity is high. Apparently, intracellular degradation of radiolabelled MAb 123C3 and subsequent secretion of radioactive iodine did not prevent the accumulation of intracellular radioactivity. In conclusion, accumulation and retention of radioactivity in the tumour tissue, due to internalisation of radiolabelled MAbs, may improve the results immunoscintigraphy. PMID:8595157

  8. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action.

    PubMed

    Lui, Goldie Y L; Obeidy, Peyman; Ford, Samuel J; Tselepis, Chris; Sharp, Danae M; Jansson, Patric J; Kalinowski, Danuta S; Kovacevic, Zaklina; Lovejoy, David B; Richardson, Des R

    2013-01-01

    Deferasirox is an orally effective iron (Fe) chelator currently used for the treatment of iron-overload disease and has been implemented as an alternative to the gold standard chelator, desferrioxamine (DFO). Earlier studies demonstrated that DFO exhibits anticancer activity due to its ability to deplete cancer cells of iron. In this investigation, we examined the in vitro and in vivo activity of deferasirox against cells from human solid tumors. To date, there have been no studies to investigate the effect of deferasirox on these types of tumors in vivo. Deferasirox demonstrated similar activity at inhibiting proliferation of DMS-53 lung carcinoma and SK-N-MC neuroepithelioma cell lines compared with DFO. Furthermore, deferasirox was generally similar or slightly more effective than DFO at mobilizing cellular (59)Fe and inhibiting iron uptake from human transferrin depending on the cell type. However, deferasirox potently inhibited DMS-53 xenograft growth in nude mice when given by oral gavage, with no marked alterations in normal tissue histology. To understand the antitumor activity of deferasirox, we investigated its effect on the expression of molecules that play key roles in metastasis, cell cycle control, and apoptosis. We demonstrated that deferasirox increased expression of the metastasis suppressor protein N-myc downstream-regulated gene 1 and upregulated the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) while decreasing cyclin D1 levels. Moreover, this agent increased the expression of apoptosis markers, including cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1. Collectively, we demonstrate that deferasirox is an orally effective antitumor agent against solid tumors. PMID:23074173

  9. Isoliquiritigenin Induces Apoptosis and Inhibits Xenograft Tumor Growth of Human Lung Cancer Cells by Targeting Both Wild Type and L858R/T790M Mutant EGFR*

    PubMed Central

    Jung, Sung Keun; Lee, Mee-Hyun; Lim, Do Young; Kim, Jong Eun; Singh, Puja; Lee, Sung-Young; Jeong, Chul-Ho; Lim, Tae-Gyu; Chen, Hanyong; Chi, Young-In; Kundu, Joydeb Kumar; Lee, Nam Hyouck; Lee, Charles C.; Cho, Yong-Yeon; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is associated with diverse genetic alterations including mutation of epidermal growth factor receptor (EGFR). Isoliquiritigenin (ILQ), a chalcone derivative, possesses anticancer activities. In the present study, we investigated the effects of ILQ on the growth of tyrosine kinase inhibitor (TKI)-sensitive and -resistant NSCLC cells and elucidated its underlying mechanisms. Treatment with ILQ inhibited growth and induced apoptosis in both TKI-sensitive and -resistant NSCLC cells. ILQ-induced apoptosis was associated with the cleavage of caspase-3 and poly-(ADP-ribose)-polymerase, increased expression of Bim, and reduced expression of Bcl-2. In vitro kinase assay results revealed that ILQ inhibited the catalytic activity of both wild type and double mutant (L858R/T790M) EGFR. Treatment with ILQ inhibited the anchorage-independent growth of NIH3T3 cells stably transfected with either wild type or double-mutant EGFR with or without EGF stimulation. ILQ also reduced the phosphorylation of Akt and ERK1/2 in both TKI-sensitive and -resistant NSCLC cells, and attenuated the kinase activity of Akt1 and ERK2 in vitro. ILQ directly interacted with both wild type and double-mutant EGFR in an ATP-competitive manner. A docking model study showed that ILQ formed two hydrogen bonds (Glu-762 and Met-793) with wild type EGFR and three hydrogen bonds (Lys-745, Met-793, and Asp-855) with mutant EGFR. ILQ attenuated the xenograft tumor growth of H1975 cells, which was associated with decreased expression of Ki-67 and diminished phosphorylation of Akt and ERK1/2. Taken together, ILQ suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR. PMID:25368326

  10. Lung cancer.

    PubMed

    Akhurst, Tim; MacManus, Michael; Hicks, Rodney J

    2015-04-01

    (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) plays a key role in the evaluation of undiagnosed lung nodules, when primary lung cancer is strongly suspected, or when it has already been diagnosed by other techniques. Although technical factors may compromise characterization of small or highly mobile lesions, lesions without apparent FDG uptake can generally be safely observed, whereas FDG-avid lung nodules almost always need further evaluation. FDG-PET/CT is now the primary staging imaging modality for patients with lung cancer who are being considered for curative therapy with either surgery or definitive radiation therapy. PMID:25829084

  11. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  12. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  13. A novel ligand-independent peptide inhibitor of TREM-1 suppresses tumor growth in human lung cancer xenografts and prolongs survival of mice with lipopolysaccharide-induced septic shock

    PubMed Central

    Sigalov, Alexander B.

    2014-01-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the inflammatory response and plays a role in cancer and sepsis. Inhibition of TREM-1 by short hairpin RNA (shRNA) in macrophages suppresses cancer cell invasion in vitro. In the clinical setting, high levels of TREM-1 expression on tumor-associated macrophages are associated with cancer recurrence and poor survival of patients with non-small cell lung cancer (NSCLC). TREM-1 upregulation on peritoneal neutrophils has been found in human sepsis patients and in mice with experimental lipopolysaccharide (LPS)-induced septic shock. However, the precise function of TREM-1 and the nature of its ligand are not yet known. In this study, we used the signaling chain homooligomerization (SCHOOL) model of immune signaling to design a novel, ligand-independent peptide-based TREM-1 inhibitor and demonstrated that this peptide specifically silences TREM-1 signaling in vitro and in vivo. Utilizing two human lung tumor xenograft nude mouse models (H292 and A549) and mice with LPS-induced sepsis, we show for the first time that blockade of TREM-1 function using non-toxic and non-immunogenic SCHOOL peptide inhibitors: 1) delays tumor growth in xenograft models of human NSCLC, 2) prolongs survival of mice with LPS-induced septic shock, and 3) substantially decreases cytokine production in vitro and in vivo. In addition, targeted delivery of SCHOOL peptides to macrophages utilizing lipoprotein-mimicking nanoparticles significantly increased peptide half-life and dosage efficacy. Together, the results suggest that ligand-independent modulation of TREM-1 function using small synthetic peptides might be a suitable treatment for sepsis and NSCLC and possibly other types of inflammation-associated disorders. PMID:24836682

  14. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... for Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  15. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  16. Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  17. Enhanced anti-angiogenic effect of E7820 in combination with erlotinib in epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small-cell lung cancer xenograft models.

    PubMed

    Ito, Ken; Semba, Taro; Uenaka, Toshimitsu; Wakabayashi, Toshiaki; Asada, Makoto; Funahashi, Yasuhiro

    2014-08-01

    Most non-small-cell lung cancers (NSCLCs) harboring activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to EGFR tyrosine kinase inhibitors (EGFR-TKIs); however, they invariably develop resistance to these drugs. E7820 is an angiogenesis inhibitor that decreases integrin-α2 expression and is currently undergoing clinical trials. We investigated whether E7820 in combination with erlotinib, an EGFR-TKI, could overcome EGFR-TKI-resistance in the NSCLC cell lines A549 (KRAS; G12S), H1975 (EGFR; L858R/T790M), and H1650 (PTEN; loss, EGFR; exon 19 deletion), which are resistant to erlotinib. Immunohistochemical analysis was carried out in xenografted tumors to investigate anti-angiogenesis activity and endothelial cell apoptosis levels by endothelial cell marker CD31 and TUNEL staining, respectively. Treatment with E7820 (50 mg/kg) with erlotinib (60 mg/kg) showed a synergistic antitumor effect in three xenograft models. Immunohistochemical analysis indicated that combined treatment with E7820 and erlotinib significantly decreased microvessel density and increased apoptosis of tumor-associated endothelial cells compared with use of only one of the agents. This combination increased apoptosis in HUVECs through activation of both intrinsic and extrinsic apoptosis pathways in vitro. The combination of E7820 with erlotinib is an alternative strategy to overcome erlotinib resistance in NSCLC by enhancement of the anti-angiogenic activity of E7820. PMID:24841832

  18. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  19. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

    PubMed Central

    Peng, Lei; Schorzman, Allison N; Ma, Ping; Madden, Andrew J; Zamboni, William C; Benhabbour, Soumya Rahima; Mumper, Russell J

    2014-01-01

    A nanoparticle (NP) formulation with 2′-(2-bromohexadecanoyl)-paclitaxel (Br-16-PX) conjugate was developed in these studies for the treatment of non-small cell lung cancer (NSCLC). The lipophilic paclitaxel conjugate Br-C16-PX was synthesized and incorporated into lipid NPs where the 16-carbon chain enhanced drug entrapment in the drug delivery system and improved in vivo pharmacokinetics. The electron-withdrawing bromine group was used to facilitate the conversion of Br-C16-PX to paclitaxel at the tumor site. The developed system was evaluated in luciferase-expressing A549 cells in vitro and in an orthotopic NSCLC mouse model. The results demonstrated that the Br-C16-PX NPs had a higher maximum tolerated dose (75 mg/kg) than Taxol® (19 mg/kg) and provided significantly longer median survival (88 days versus 70 days, P<0.05) in the orthotopic NSCLC model. An improved pharmacokinetic profile was observed for the Br-C16-PX NPs at 75 mg/kg compared to Taxol at 19 mg/kg. The area under the concentration versus time curve (AUC)0–96 h of Br-C16-PX from the NPs was 91.7-fold and 49.6-fold greater than Taxol in plasma and tumor-bearing lungs, respectively, which provided sustained drug exposure and higher antitumor efficacy in the NP-treated group. PMID:25114529

  20. Efficacy of treatment of colon, lung and breast human carcinoma xenografts with: doxorubicin, cisplatin, irinotecan or topotecan.

    PubMed

    Hardman, W E; Moyer, M P; Cameron, I L

    1999-01-01

    Given that human cancer xenografts tend to retain chemosensitivities similar to the cancerous tissue of origin, human carcinoma xenografts grown in nude mice were tested for sensitivity to four drug protocols: doxorubicin at 5 mg/kg, i.v., q5d; irinotecan at 60 mg/kg, i.v., q4d; cisplatin 5 mg/kg, i.p., q7d; and topotecan 1.5 mg/kg, p.o., qd (5 of 7 days). Irinotecan and doxorubicin protocols either halted or caused significant regression of the breast cancer cell lines (MCF7, MDA-MB 231 and T47D). None of the protocols tested resulted in significant regression in the lung cancer xenografts (H460, A549 and H226) although both irinotecan and doxorubicin did halt growth of the H226 xenograft. The ability of the irinotecan treatment to cause regression of xenograft size in all three colon cancer cell lines (SW620, COLO205 and HT29) justifies further clinical trials of irinotecan as an especially promising drug for the treatment of colon cancer. PMID:10472342

  1. Peloruside A Inhibits Growth of Human Lung and Breast Tumor Xenografts in an Athymic nu/nu Mouse Model.

    PubMed

    Meyer, Colin J; Krauth, Melissa; Wick, Michael J; Shay, Jerry W; Gellert, Ginelle; De Brabander, Jef K; Northcote, Peter T; Miller, John H

    2015-08-01

    Peloruside A is a microtubule-stabilizing agent isolated from a New Zealand marine sponge. Peloruside prevents growth of a panel of cancer cell lines at low nanomolar concentrations, including cell lines that are resistant to paclitaxel. Three xenograft studies in athymic nu/nu mice were performed to assess the efficacy of peloruside compared with standard anticancer agents such as paclitaxel, docetaxel, and doxorubicin. The first study examined the effect of 5 and 10 mg/kg peloruside (QD×5) on the growth of H460 non-small cell lung cancer xenografts. Peloruside caused tumor growth inhibition (%TGI) of 84% and 95%, respectively, whereas standard treatments with paclitaxel (8 mg/kg, QD×5) and docetaxel (6.3 mg/kg, Q2D×3) were much less effective (%TGI of 50% and 18%, respectively). In a second xenograft study using A549 lung cancer cells and varied schedules of dosing, activity of peloruside was again superior compared with the taxanes with inhibitions ranging from 51% to 74%, compared with 44% and 50% for the two taxanes. A third xenograft study in a P-glycoprotein-overexpressing NCI/ADR-RES breast tumor model showed that peloruside was better tolerated than either doxorubicin or paclitaxel. We conclude that peloruside is highly effective in preventing the growth of lung and P-glycoprotein-overexpressing breast tumors in vivo and that further therapeutic development is warranted. Mol Cancer Ther; 14(8); 1816-23. ©2015 AACR. PMID:26056149

  2. Lung cancer.

    PubMed

    Frödin, J E

    1996-01-01

    This synthesis of the literature on radiotherapy for lung cancer is based on 80 scientific articles, including 2 meta-analyses, 29 randomized studies, 19 prospective studies, and 21 retrospective studies. These studies involve 28172 patients. Basic treatment for limited-stage small cell lung cancer (SCLC), is chemotherapy. Addition of radiotherapy to the primary tumor and mediastinum reduces local recurrence, prolongs long-term survival, and is often indicated. Current, and future, studies can be expected to show successive improvements in results for SCLC by optimizing the combination of radiotherapy and chemotherapy. Should these treatments be given simultaneously or sequentially, and in which order? Which fractionation is best? Probably, no change in resource requirements for radiotherapy will be necessary, with the possible exception of changes in fractionation. Surgery constitutes primary treatment for nonsmall cell lung cancer (NSCLC) stages I and II. Radiotherapy may provide an alternative for patients who are inoperable for medical reasons. The value of radiotherapy following radical surgery for NSCLC remains to be shown. It is not indicated based on current knowledge. For NSCLC stage III, radiotherapy shrinks tumors and prolongs survival at 2 and 3 years. Whether it influences long-term survival after 5 years has not been shown. Considering the side effects of treatment, one must question whether limited improvements in survival motivate routine radiotherapy in these patients. Earlier attempts to add chemotherapy to radiotherapy to improve treatment results of NSCLC have not yielded convincing results. Several studies are currently on-going. Prophylactic cranial irradiation (PCI) greatly reduces the risk for brain metastases from SCLC. However, it has little influence on survival. Many treatment centers give PCI to SCLC patients who have achieved complete remission. This practice may be questioned since PCI is associated with serious complications. PCI is

  3. Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with Cu-labeled trastuzumab PET.

    PubMed

    Paudyal, Pramila; Paudyal, Bishnuhari; Hanaoka, Hirofumi; Oriuchi, Noboru; Iida, Yashuhiko; Yoshioka, Hiroki; Tominaga, Hideyuki; Watanabe, Satoshi; Watanabe, Shigeki; Ishioka, Noriko S; Endo, Keigo

    2010-04-01

    Non-small cell lung carcinomas (NSCLC) overexpress the Her2/neu gene in approximately 59% of cases. Trastuzumab, a humanized monoclonal antibody, interferes with Her2 signaling and is approved for the treatment of Her2/neu overexpressing breast cancer. However, its therapeutic use in Her2/neu overexpressing NSCLC remains obscure. The present study aimed to determine the role of (64)Cu-labeled trastuzumab positron emission tomography (PET) for non-invasive imaging of Her2/neu expression in NSCLC. Trastuzumab was conjugated with the bifunctional chelator 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) and radiolabeled with (64)Cu. The molecular specificity of DOTA-trastuzumab was determined in NSCLC cell lines with Her2/neu overexpression (NCI-H2170) and negative expression (NCI-H520). Imaging of Her2/neu expression was performed in NCI-H2170 tumor-bearing mice with (64)Cu-DOTA-trastuzumab PET and (64)Cu-DOTA-IgG. In vitro studies revealed specific binding of DOTA-trastuzumab in the Her2/neu positive NCI-H2170 cells, while no binding was seen in the Her2/neu negative NCI-H520 cell line. Biodistribution and PET studies revealed a significantly high accumulation of (64)Cu-DOTA-trastuzumab in the Her2/neu overexpressing NCI-H2170 tumor at 24 and 48 h post-injection (21.4 +/- 1.4% and 23.2 +/- 5.1% injection dose/gram (% ID/g), respectively). PET imaging of Her2/neu negative NCI-H520 tumors showed much less uptake of (64)Cu-DOTA-trastuzumab (4.0% ID/g). The NCI-H2170 tumor uptake of (64)Cu-DOTA-trastuzumab was significantly higher than that of (64)Cu-DOTA-IgG (P < 0.0001). (64)Cu-DOTA-trastuzumab showed a very clear image of a Her2/neu positive tumor and appeared to be effective as a PET tracer for imaging of Her2/neu gene expression in NSCLC, suggesting its potential clinical use for identifying patients that might benefit from trastuzumab-based therapy. PMID:20219072

  4. Epidemiology of Lung Cancer

    PubMed Central

    Ridge, Carole A.; McErlean, Aoife M.; Ginsberg, Michelle S.

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promising molecular targets for treatment. PMID:24436524

  5. Lung cancer prevention.

    PubMed

    Slatore, Christopher; Sockrider, Marianna

    2014-11-15

    Lung cancer is a common form of cancer.There are things you can do to lower your risk of lung cancer. Stop smoking tobacco. Ask your health care provider for help in quitting, including use of medicines to help with nicotine dependence. discuss with your healthcare provider,what you are taking or doing to decrease your risk for lung cancer PMID:25398122

  6. Epidemiology of Lung Cancer.

    PubMed

    Mao, Yousheng; Yang, Ding; He, Jie; Krasna, Mark J

    2016-07-01

    Lung cancer has been transformed from a rare disease into a global problem and public health issue. The etiologic factors of lung cancer become more complex along with industrialization, urbanization, and environmental pollution around the world. Currently, the control of lung cancer has attracted worldwide attention. Studies on the epidemiologic characteristics of lung cancer and its relative risk factors have played an important role in the tertiary prevention of lung cancer and in exploring new ways of diagnosis and treatment. This article reviews the current evolution of the epidemiology of lung cancer. PMID:27261907

  7. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  8. Occupational lung cancer.

    PubMed

    Cone, J E

    1987-01-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed. PMID:3303381

  9. Occupational lung cancer

    SciTech Connect

    Cone, J.E.

    1987-04-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed.

  10. Lung cancer in women.

    PubMed

    Coscio, Angela M; Garst, Jennifer

    2006-07-01

    Lung cancer is the most common cancer in both men and women; however, there are some clear gender-based differences. As the incidence of lung cancer is declining in men, the incidence of lung cancer is increasing in women. Women are more likely than men to have adenocarcinoma, a histologic subtype that correlates with worsened prognosis, but women have improved survival compared with men. Genetic predisposition and the presence of estrogen receptors in lung cancer cells may predispose women to developing lung cancer. Further studies are needed to understand the mechanism and significance of these findings. PMID:17254523

  11. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  12. Molecular profiling of patient-derived breast cancer xenografts

    PubMed Central

    2012-01-01

    Introduction Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. Methods Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. Results Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. Conclusions This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents. PMID:22247967

  13. Patient-derived bladder cancer xenografts: a systematic review.

    PubMed

    Bernardo, Carina; Costa, Céu; Sousa, Nuno; Amado, Francisco; Santos, Lúcio

    2015-10-01

    Patient-derived tumor xenografts (PDTXs) are said to accurately reflect the heterogeneity of human tumors. In the case of human bladder cancer, few studies are available featuring these models. The best methodology to develop and the real value of the model remain unclear. This systematic review aims to elucidate the best methodology to establish and use PDTXs to study the characteristics and behavior of human bladder tumors. The value and potential application of these models are also addressed. A comprehensive literature search was performed to identify published studies using xenograft models directly established from human bladder cancer samples into mice. A total of 12 studies were included in the final analysis. All studies differed in design; the reported take rate varied between 11% and 80%, with the implantation via dorsal incision and with matrigel obtaining the higher take rate. Advanced stage and high-grade tumors were associated with increased take rate. Xenografts preserved the original tumor identity in the establishment phase and after serial passages. Although some studies suggest a correlation between engraftment success and clinical prognosis, evidence about the association between the response of xenografts to treatment and the clinical response of the tumor of origin is still missing. All methodological approaches resulted in the establishment of tumor xenografts with preservation of the original tumor identity but variable take rate. The time needed to establish the model and propagate xenografts to a number suitable for drug testing is the main limitation of the model, along with the success rate and lack of consistency in the early passages. Comparison between tumor response in mice and clinical outcome remains to be assessed. PMID:25742701

  14. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-01-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  15. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  16. Metastatic cancer to the lung

    MedlinePlus

    ... Bladder cancer Breast cancer Colon cancer Kidney cancer Neuroblastoma Prostate cancer Sarcoma Wilms tumor Symptoms Symptoms may ... Breast cancer Cancer Chemotherapy Colon cancer Lung cancer Neuroblastoma Prostate cancer Radiation therapy Wilms tumor Update Date ...

  17. Risks of Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  18. Lung cancer

    MedlinePlus

    ... any symptoms. Symptoms depend on the type of cancer you have, but may include: Chest pain Cough that does not go away Coughing up blood Fatigue Losing weight without trying Loss of appetite Shortness of breath ...

  19. Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts

    PubMed Central

    Chin, William WL; Heng, Paul WS; Olivo, Malini

    2007-01-01

    Background Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 – polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts. Results Human NSCLC (NCI-H460) and SCLC (NCI-H526) tumor cell lines were used to establish tumor xenografts in the chick chorioallantoic membrane (CAM) model as well as in the Balb/c nude mice. In the CAM model, Ce6-PVP was applied topically (1.0 mg/kg) and fluorescence intensity was charted at various time points. Tumor-bearing mice were given intravenous administration of Ce6-PVP (2.0 mg/kg) and laser irradiation at 665 nm (fluence of 150 J/cm2 and fluence rate of 125 mW/cm2). Tumor response was evaluated at 48 h post PDT. Studies of temporal fluorescence pharmacokinetics in CAM tumor xenografts showed that Ce6-PVP has a selective localization and a good accuracy in demarcating NSCLC compared to SCLC from normal surrounding CAM after 3 h post drug administration. Irradiation at 3 h drug-light interval showed greater tumor necrosis against human NSCLC xenografts in nude mice. SCLC xenografts were observed to express resistance to photosensitization with Ce6-PVP. Conclusion The formulation of Ce6-PVP is distinctly advantageous as a diagnostic and therapeutic agent for fluorescence diagnosis and PDT of NSCLC. PMID:18053148

  20. Drugs Approved for Lung Cancer

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer ... in lung cancer that are not listed here. Drugs Approved for Non-Small Cell Lung Cancer Abitrexate ( ...

  1. Rare lung cancers.

    PubMed

    2015-12-01

    There are several different kinds of lung cancer, often referred to as lung cancer subtypes. Some of these occur more often than others. In this factsheet we will specifically look at the subtypes of cancers that do not happen very often and are considered 'rare'. PMID:27066129

  2. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  3. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines. PMID:26667337

  4. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries. PMID:27535387

  5. Immunotherapy for lung cancer.

    PubMed

    Steven, Antonius; Fisher, Scott A; Robinson, Bruce W

    2016-07-01

    Treatment of lung cancer remains a challenge, and lung cancer is still the leading cause of cancer-related mortality. Immunotherapy has previously failed in lung cancer but has recently emerged as a very effective new therapy, and there is now growing worldwide enthusiasm in cancer immunotherapy. We summarize why immune checkpoint blockade therapies have generated efficacious and durable responses in clinical trials and why this has reignited interest in this field. Cancer vaccines have also been explored in the past with marginal success. Identification of optimal candidate neoantigens may improve cancer vaccine efficacy and may pave the way to personalized immunotherapy, alone or in combination with other immunotherapy such as immune checkpoint blockade. Understanding the steps in immune recognition and eradication of cancer cells is vital to understanding why previous immunotherapies failed and how current therapies can be used optimally. We hold an optimistic view for the future prospect in lung cancer immunotherapy. PMID:27101251

  6. Genetics Home Reference: lung cancer

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions lung cancer lung cancer Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Lung cancer is a disease in which certain cells ...

  7. TUBERCULOSIS AND LUNG CANCER.

    PubMed

    Tamura, Atsuhisa

    2016-01-01

    The occurrence of pulmonary tuberculosis (PTB) and lung cancer as comorbidities has been extensively discussed in many studies. In the past, it was well known that lung cancer is a specific epidemiological successor of PTB and that lung cancer often develops in scars caused by PTB. In recent years, the relevance of the two diseases has drawn attention in terms of the close epidemiological connection and chronic inflammation-associated carcinogenesis. In Japanese case series studies, most lung cancer patients with tuberculous sequelae received supportive care alone in the past, but more recently, the use of aggressive lung cancer treatment is increasing. Many studies on PTB and lung cancer as comorbidities have revealed that active PTB is noted in 2-5% of lung cancer cases, whereas lung cancer is noted in 1-2% of active PTB cases. In such instances of comorbidity, many active PTB cases showed Type II (non-extensively cavitary disease) and Spread 2-3 (intermediate-extensive diseases) on chest X-rays, but standard anti-tuberculosis treatment easily eradicates negative conversion of sputum culture for M. tuberculosis; lung cancer cases were often stage III- IV and squamous cell carcinoma predominant, and the administration of aggressive treatment for lung cancer is increasing. The major clinical problems associated with PTB and lung cancer as comorbidities include delay in diagnosis (doctor's delay) and therapeutic limitations. The former involves two factors of radiographic interpretation: the principles of parsimony (Occam's razor) and visual search; the latter involves three factors of lung cancer treatment: infectivity of M.tuberculosis, anatomical limitation due to lung damage by tuberculosis, and drug-drug interactions between rifampicin and anti-cancer drugs, especially molecularly targeted drugs. The comorbidity of these two diseases is an important health-related issue in Japan. In the treatment of PTB, the possibility of concurrent lung cancer should be kept

  8. Enhancement of tumor initiation and expression of KCNMA1, MORF4L2 and ASPM genes in the adenocarcinoma of lung xenograft after vorinostat treatment.

    PubMed

    Kuo, Wei-Ying; Wu, Chun-Yi; Hwu, Luen; Lee, Jhih-Shian; Tsai, Cheng-Han; Lin, Kang-Ping; Wang, Hsin-Ell; Chou, Teh-Ying; Tsai, Chun-Ming; Gelovani, Juri; Liu, Ren-Shyan

    2015-04-20

    Cancer stem cells (CSCs) are usually tolerant to chemotherapy and radiotherapy and associated with tumor relapse. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), is currently being used in clinical trials of lung cancer. However, SAHA facilitates the formation of induced pluripotent stem cells from somatic cells. We hypothesized that SAHA would mediate the CSCs properties and subsequently confer a more malignant phenotype in lung cancer. Transfected H1299 lung cancer cells, which stably expresses a triple fused reporter gene (DsRedm-Fluc-tTKsr39) under the control of CMV promoter was used to establish a xenograft mouse model. After the treatment of SAHA, H1299 cell line and tumor xenografts were sorted by fluorescence-activated cell sorting (FACS) based on aldehyde dehydrogenase (ALDH) activity. We found that SAHA could suppress the growth of xenografted H1299 tumors with decreased proportion of ALDHbr lung cancer cells indicating that SAHA may target CSCs. However, SAHA significantly enhanced the tumor initiating capacity and the expression of malignant genes such as KCNMA1, MORF4L2 and ASPM in the remaining living ALDHbr cells. These findings suggested that SAHA treatment created a more drug-resistant state in residual ALDHbr cells. The in vivo imaging technique may facilitate searching and characterization of CSCs. PMID:25796627

  9. Staging of Lung Cancer

    MedlinePlus

    ... of N2 means cancer has spread to the middle part of the chest (called the mediastinum). A rating ... so that the surgeon can remove the cancerous part of the lung and/or lymph node ... biopsied are your lungs, bones, and brain. These types of biopsies can be done with ...

  10. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  11. Lung cancer in Australia.

    PubMed

    McLennan, G; Roder, D M

    1989-02-20

    Lung cancer is the leading cause of death of cancer in Australian men and the third leading cause in Australian women. Efforts are being made to reduce the incidence of this disease by smoking-cessation programmes and improved industrial hygiene, and these measures need to be encouraged strongly by all sectors of the community. On a population basis, insufficient evidence is available to justify screening procedures for the early detection of lung cancer in "at-risk" groups. Cure is possible by surgical resection in early cases. Improvements in therapeutic results with traditional cancer treatments largely have reached a plateau, but a number of newer therapies, and combinations of standard therapies, currently are being evaluated. Of particular interest is concurrent radiotherapy and chemotherapy in localized non-small-cell lung cancer; laser "debulking" in conjunction with radiotherapy in non-small-cell lung cancer, and biological response-modifying agents in non-small-cell and small-cell lung cancer. It is important that data be collected adequately to define epidemiological changes and to evaluate treatment results (including repeat bronchoscopy, to assess local control of tumour), and that the quality of life is recorded and reported in the evaluation process. Finally, phase-III studies in lung-cancer treatments require adequate numbers of subjects to enable meaningful conclusions to be achieve objectives within a reasonable study period. PMID:2469943

  12. Lung and Bronchus Cancer

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 224,390 % of All New Cancer Cases 13.3% Estimated Deaths in 2016 158,080 % of All Cancer ... of This Cancer : In 2013, there were an estimated 415,707 people living with lung and bronchus ...

  13. Lung Cancer Screening Update.

    PubMed

    Ruchalski, Kathleen L; Brown, Kathleen

    2016-07-01

    Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients. PMID:27306387

  14. Lung Cancer Prevention

    MedlinePlus

    ... from the breakdown of uranium in rocks and soil. It seeps up through the ground, and leaks ... substances increases the risk of lung cancer: Asbestos . Arsenic . Chromium. Nickel. Beryllium. Cadmium . Tar and soot. These ...

  15. Women and Lung Cancer

    MedlinePlus

    ... Horrigan Conners Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, April, ... Lung Cancer in Women: The Differences in Epidemiology, Biology and Treatment Outcomes, Maria Patricia Rivera MD Expert ...

  16. Lycopene and Lung Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  17. Lung Cancer Rates by State

    MedlinePlus

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who ...

  18. Imaging Axl expression in pancreatic and prostate cancer xenografts

    SciTech Connect

    Nimmagadda, Sridhar; Pullambhatla, Mrudula; Lisok, Ala; Hu, Chaoxin; Maitra, Anirban; Pomper, Martin G

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeled anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic

  19. Chemoprevention of lung cancer.

    PubMed

    Keith, Robert L

    2009-04-15

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to common malignancies other than lung. Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to determine higher risk populations and the understanding of lung tumor and pre-malignant biology continues to advance. Additional biomarkers of risk continue to be investigated and validated. The World Health Organization/International Association for the Study of Lung Cancer classification for lung cancer now recognizes distinct histologic lesions that can be reproducibly graded as precursors of non-small cell lung cancer. For example, carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive squamous cell cancer. Similar precursor lesions exist for adenocarcinoma, and these pre-malignant lesions are targeted by chemopreventive agents in current and future trials. At this time, chemopreventive agents can only be recommended as part of well-designed clinical trials, and multiple trials are currently in progress and additional trials are in the planning stages. This review will discuss the principles of chemoprevention, summarize the completed trials, and discuss ongoing and potential future trials with a focus on targeted pathways. PMID:19349487

  20. [Pathology of lung cancer].

    PubMed

    Theegarten, D; Hager, T

    2016-09-01

    Lung cancer is the leading cause of cancer death in men and the second most frequent cause in women. The pathology of lung tumors is of special relevance concerning therapy and prognosis and current classification systems have to be taken into consideration. The results of molecular tissue subtyping allow further classification and therapeutic options. The histological entities are mainly associated with typical X‑ray morphological features. PMID:27495784

  1. Immunotherapy in lung cancer.

    PubMed Central

    Al-Moundhri, M.; O'Brien, M.; Souberbielle, B. E.

    1998-01-01

    More research and new treatment options are needed in all stages of lung cancer. To this end immunotherapy needs a revival in view of recent improved technologies and greater understanding of the underlying biology. In this review we discuss mechanisms of tumour immunotherapy, non-specific, specific and adoptive, with particular reference to a direct therapeutic action on all subtypes of lung cancer. PMID:9703271

  2. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization.

    PubMed

    Schiller, J H; Bittner, G

    1999-12-01

    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine. PMID:10632372

  3. [Chemoprevention of lung cancer].

    PubMed

    Tsuchida, Takaaki; Saito, Makoto; Honda, Hidetoshi; Hirata, Takeshi; Kato, Harubumi

    2003-02-01

    Since a high concentration of beta-carotene in blood reduces the risk of lung cancer, a large-scale intervention examination containing beta-carotene was conducted, mainly by the National Cancer Institute. The results showed that the risk of lung cancer increased with administration of beta-carotene. This result demonstrates that continuation of smoking is an important factor in the increased risk, and not smoking is confirmed to be the most important prevention method. The authors examined the treatment effect of raising the concentration of folic acid and vitamin B12 in blood on bronchial dysplasia as a pre-cancerous lesion. A significant medical treatment effect was see in the folic acid and vitamin B12 medication groups, which seems promising for the chemoprevention of lung cancer. PMID:12610863

  4. Radon and lung cancer.

    PubMed

    Sethi, Tarsheen K; El-Ghamry, Moataz N; Kloecker, Goetz H

    2012-03-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Radon exposure is the second leading cause of lung cancer, following tobacco smoke. Radon is not only an independent risk factor; it also increases the risk of lung cancer in smokers. Numerous cohort, case-control, and experimental studies have established the carcinogenic potential of radon. The possibility of radon having a causative effect on other cancers has been explored but not yet proven. One of the postulated mechanisms of carcinogenesis is DNA damage by alpha particles mediated by the production of reactive oxygen species. The latter are also thought to constitute one of the common mechanisms underlying the synergistic effect of radon and tobacco smoke. With an estimated 21,000 lung cancer deaths attributable to radon in the United States annually, the need for radon mitigation is well acknowledged. The Environmental Protection Agency (EPA) has established an indoor limit of 4 picocuries (pCi)/L, and various methods are available for indoor radon reduction when testing shows higher levels. Radon mitigation should accompany smoking cessation measures in lung cancer prevention efforts. PMID:22402423

  5. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  6. Lung cancer chemoprevention.

    PubMed

    Keith, Robert L

    2012-05-01

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. Although avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established, advanced-stage disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or block the carcinogenic process and has been successfully applied to common malignancies other than lung (including recent reports on the prevention of breast cancer in high-risk individuals). Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to define the highest-risk populations and the understanding of lung tumor and premalignant biology continue to make advances. Squamous cell carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive cancer. Precursor lesions also have been identified for adenocarcinoma, and these premalignant lesions are targeted by chemopreventive agents in current and future trials. Chemopreventive agents can currently only be recommended as part of well-designed clinical trials, and multiple trials have recently been completed or are enrolling subjects. PMID:22550242

  7. Lung cancer screening

    PubMed Central

    Pastorino, U

    2010-01-01

    Lung cancer is the primary cause of cancer mortality in developed countries. First diagnosis only when disease has already reached the metastatic phase is the main reason for failure in treatment. To this regard, although low-dose spiral computed tomography (CT) has proven to be effective in the early detection of lung cancer (providing both higher resectability and higher long-term survival rates), the capacity of annual CT screening to reduce lung cancer mortality in heavy smokers has yet to be demonstrated. Numerous ongoing large-scale randomised trials are under way in high-risk individuals with different study designs. The initial results should be available within the next 2 years. PMID:20424610

  8. The ALCHEMIST Lung Cancer Trial

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  9. Screening for lung cancer.

    PubMed Central

    Carter, D.

    1981-01-01

    The survival from bronchogenic carcinoma is highly dependent upon stage at the time of treatment. This is particularly true for squamous cell carcinoma, adenocarcinoma, and large cell carcinoma, but holds true for small cell carcinoma as well. The problem presented to the medical profession has been to find a practical means of detecting lung cancer while it is still at an early stage. Three studies in progress have indicated that a larger proportion of the patients may be found to have early stage lung cancer when screened with a combination of chest X-rays and sputum cytology. However, the detection of these early stage cases has not yet been translated into an improvement in the overall mortality rate from lung cancer. PMID:6278787

  10. [Smoking and lung cancer].

    PubMed

    Postmus, P E

    1999-11-01

    Since fifty years it is clear now that smoking of tobacco products is responsible for the lung cancer epidemic that is currently in progress worldwide. Although in the Western world a small decrease of lung cancer in males is found, the number of female patients is steadily increasing. Changes in tobacco production have resulted in exposition of smokers to other carcinogens. This is probably the cause of the change in the histological pattern with an increase of adenocarcinoma and stabilisation of squamous cell lung cancer. Despite the bad prognosis there is some hope that with improvement of early detection methods more patients can be cured. However, for a real change it is necessary to discourage smoking by all means. PMID:11930407

  11. Antitumor effect of traditional Chinese herbal medicines against lung cancer.

    PubMed

    Chen, Yuezhou; Zhu, Jianping; Zhang, Wenpeng

    2014-10-01

    Traditional Chinese herbal medicine (TCHM) is used widely alone or in combination with chemotherapy to treat lung cancer in China. Meta-analysis of clinical trials of TCHM against lung cancer suggested the potential, but not confirmed therapeutic effect. To gain detailed insight into the antilung cancer effects of TCHM, we searched for preclinical studies of TCHM against lung cancer published from 1995 to 2012 and systematically analyzed published articles focusing on the antitumor effect of individual TCHM in lung cancer cell lines or animal models. Among 93 herbal components isolated from 73 Chinese herbs, we found 10 herbal compounds that showed the strongest cytotoxicity in lung cancer cell lines through apoptosis or cell cycle arrest, and agents isolated from seven Chinese herbs that inhibited the primary tumor growth more than 35% in A549 xenografted mice models. In addition, three herbal components suppressed lung cancer cell migration in vitro at the concentration without cytotoxicity. Polyphyllin I, tanshinone IIA, isochaihulactone, 25-OCH3-PPD, and andrographolide were the five TCHM compounds that showed strong antilung cancer effects both in cells and in animal models, and studies of their analogs showed their structure-activity relationships. This review summarizes and analyzes contemporary studies on the antitumor effect of individual TCHM against lung cancer and animal models, providing perspectives to better understand the TCHM effect in lung cancer treatment and develop new antilung cancer drugs from TCHM. PMID:24892722

  12. Tomato paste alters NF-κB and cancer-related mRNA expression in prostate cancer cells, xenografts, and xenograft microenvironment.

    PubMed

    Kolberg, Marit; Pedersen, Sigrid; Bastani, Nasser E; Carlsen, Harald; Blomhoff, Rune; Paur, Ingvild

    2015-01-01

    Tomatoes may protect against prostate cancer development, possibly through targeting signaling pathways such as nuclear factor-κB (NF-κB). We investigated whether tomato paste could modulate NF-κB activity and cancer-related gene expression in human derived prostate cancer cells (PC3) and PC3 xenografts. PC3-cells were stably transduced with an NF-κB-luciferase construct, and treated with tomato extracts or vehicle control. Nude mice bearing PC3 xenografts were fed a Western-like diet with or without 10% tomato paste for 6.5 wk. The tomato diet significantly inhibited TNFα stimulated NF-κB activity in cultured PC3 cells, and modulated the expression of genes associated with inflammation, apoptosis, and cancer progression. Accumulation of lycopene occurred in liver, xenografts, and serum of mice fed tomato diet. Tomato paste in the diet did not affect tumor size in mice; however, there was a trend toward inhibition of NF-κB activity in the xenografts. The effect of tomato on gene expression was most prominent in the xenograft microenvironment, where among others NFKB2, STAT3, and STAT6 showed higher expression levels after tomato treatment. Our findings support biological activity of tomatoes in cancer-related inflammation. PMID:25664890

  13. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  14. Small Cell Lung Cancer

    PubMed Central

    Kalemkerian, Gregory P.; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura QM; Downey, Robert J.; Gandhi, Leena; Ganti, Apar Kishor P.; Govindan, Ramaswamy; Grecula, John C.; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W.; Merritt, Robert E.; Moran, Cesar A.; Niell, Harvey B.; O’Malley, Janis; Patel, Jyoti D.; Ready, Neal; Rudin, Charles M.; Williams, Charles C.; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted. PMID:23307984

  15. Correlations between antitumor activities of fluoropyrimidines and DPD activity in lung tumor xenografts.

    PubMed

    Takechi, Teiji; Okabe, Hiroyuki; Ikeda, Kazumasa; Fujioka, Akio; Nakagawa, Fumio; Ohshimo, Hideyuki; Kitazato, Kenji; Fukushima, Masakazu

    2005-07-01

    The purposes of this study were to evaluate the antitumor activity of S-1 (1 M tegafur, 0.4 M 5-chloro-2,4-dihydroxypyridine and 1 M potassium oxonate) on human lung tumor xenografts, as compared with other fluoro-pyrimidines, and to investigate the relationships between fluoropyrimidine antitumor activities and four distinct enzymatic activities involved in the phosphorylation and degradation pathways of 5-fluorouracil (5-FU) metabolism. S-1, UFT (1 M tegafur-4 M uracil), 5'-deoxy-5-fluorouridine (5'-DFUR), capecitabine and 5-FU were administered for 14 consecutive days to nude mice bearing lung tumor xenografts. S-1 showed stronger tumor growth inhibition in four of the seven tumors than the other drugs. Cluster analysis, on the basis of antitumor activity, indicated that S-1/UFT and 5'-DFUR/capecitabine/5-FU could be classified into another group. We investigated tumor thymidylate synthase content, dihydropyrimidine dehydrogenase (DPD) activity, thymidine phosphorylase (TP) activity and orotate phosphoribosyl transferase activity in seven human lung tumor xenografts and performed regression analyses for the antitumor activities of fluoropyrimidines. There were inverse correlations between antitumor and DPD activities for 5'-DFUR (r=-0.79, P=0.034), capecitabine (r=-0.56, P=0.19) and 5-FU (r=-0.86, P=0.013). However, no such correlations were observed for S-1 and UFT. These findings suggest that S-1 containing a potent DPD inhibitor may have an antitumor effect on lung tumors, with high basal DPD activity, superior to those of other fluoropyrimidines. PMID:15944764

  16. Lung Cancer – Vaccines

    PubMed Central

    Kelly, Ronan J.; Giaccone, Giuseppe

    2011-01-01

    In lung cancer, early attempts to modulate the immune system via vaccine based therapeutics have to date, been unsuccessful. An improved understanding of tumor immunology has facilitated the production of more sophisticated lung cancer vaccines. It is anticipated, that it will likely require multiple epitopes of a diverse set of genes restricted to multiple haplotypes to generate a truly effective vaccine that is able to overcome the various immunologic escape mechanisms that tumors employ. Other issues to overcome include optimal patient selection, which adjuvant agent to use and how to adequately monitor for an immunological response. This review discusses the most promising vaccination strategies for non small cell lung cancer including the allogeneic tumor cell vaccine belagenpumatucel-L, which is a mixture of 4 allogeneic non small cell lung cancer cell lines genetically modified to secrete an antisense oligonucleotide to TGF-β2 and three other target protein-specific vaccines designed to induce responses against melanoma-associated antigen A3 (MAGE-A3), mucin 1 (MUC1) and epidermal growth factor (EGF). PMID:21952280

  17. Nonsmall cell lung cancer.

    PubMed

    Sculier, Jean-Paul

    2013-03-01

    The objective of this review is to report the Clinical Year in Review proceedings in the field of nonsmall cell lung cancer that were presented at the 2012 European Respiratory Society Congress in Vienna, Austria. Various topics were reviewed, including epidemiology, screening, diagnosis, treatment, prognosis, and palliative and end of life care. PMID:23457162

  18. Update in Lung Cancer 2014.

    PubMed

    Spira, Avrum; Halmos, Balazs; Powell, Charles A

    2015-08-01

    In the past 2 years, lung cancer research and clinical care have advanced significantly. Advancements in the field have improved outcomes and promise to lead to further reductions in deaths from lung cancer, the leading cause of cancer death worldwide. These advances include identification of new molecular targets for personalized targeted therapy, validation of molecular signatures of lung cancer risk in smokers, progress in lung tumor immunotherapy, and implementation of population-based lung cancer screening with chest computed tomography in the United States. In this review, we highlight recent research in these areas and challenges for the future. PMID:26230235

  19. Metastatic phenotype in CWR22 prostate cancer xenograft following castration

    PubMed Central

    Seedhouse, Steven J.; Affronti, Hayley C.; Karasik, Ellen; Gillard, Bryan M.; Azabdaftari, Gissou; Smiraglia, Dominic J.

    2015-01-01

    Background CWR22 is a human xenograft model of primary prostate cancer (PCa) that is often utilized to study castration recurrent (CR) PCa. CWR22 recapitulates clinical response to androgen deprivation therapy (ADT), in that tumors regress in response to castration, but can recur after a period of time. Methods Two cohorts of mice, totaling 117 mice were implanted with CWR22, allowed to develop tumors, castrated by pellet removal and followed for a period of 32 and 50 weeks. Mice presenting with tumors >2.0 cm3 at the primary site, moribund appearance, or palpable masses other than the primary tumor were sacrificed prior to the endpoint of the study. Tumor tissue, serum, and abnormal lesions were collected upon necropsy and analyzed by IHC, H&E, and PCR for presence of metastatic lesions arising from CWR22. Results Herein, we report that CWR22 progresses after castration from a primary, hormonal therapy‐naïve tumor to metastatic disease in 20% of castrated nude mice. Histological examination of CWR22 primary tumors revealed distinct pathologies that correlated with metastatic outcome after castration. Conclusion This is the first report and characterization of spontaneous metastasis in the CWR22 model, thus, CWR22 is a bona‐fide model of clinical PCa representing the full progression from androgen‐sensitive, primary PCa to metastatic CR‐PCa. Prostate 76:359–368, 2016. © 2015 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:26642837

  20. Experimental Lung Cancer Drug Shows Early Promise | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and transgenic mice, as reported in the journal Cancer Discovery. It is now being evaluated for safety and efficacy in Phase I and II clinical trials.

  1. Experimental Lung Cancer Drug Shows Early Promise | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer A first-of-its-kind drug is showing early promise in attacking certain lung cancers that are hard to treat because they build up resistance to conventional chemotherapy. The drug, CO-1686, performed well in a preclinical study involving xenograft and transgenic mice, as reported in the journal Cancer Discovery. It is now being evaluated for safety and efficacy in Phase I and II clinical trials.

  2. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats.

    PubMed

    Ning, Shoucheng; Tian, Junqiang; Marshall, Deborah J; Knox, Susan J

    2010-10-01

    We previously reported that intetumumab (CNTO 95), a fully human anti-αv integrin monoclonal antibody, is a radiosensitizer in mice with xenograft tumors. Because intetumumab does not cross-react with mouse integrins, but has cross-reactivity with rat integrins, we next studied the potential combined use of radiation therapy and intetumumab in human cancer xenograft models in nude rats to assess effects on both tumor cells and the tumor microenvironment. Nude rats bearing human head and neck cancer and non-small cell lung cancer (NSCLC) xenografts were treated with intetumumab and fractionated local tumor radiotherapy. Effects on tumor growth and metastasis, blood perfusion, oxygenation, and gastrointestinal toxicity were studied. Intetumumab alone had a moderate effect on tumor growth. When combined with fractionated radiation therapy, intetumumab significantly inhibited tumor growth and produced a tumor response rate that was significantly better than with radiation therapy alone. Treatment with intetumumab also significantly reduced lung metastasis in the A549 NSCLC xenograft model. The oxygenation and blood perfusion in xenograft tumors measured by microbubble-enhanced ultrasound imaging were substantially increased after treatment with intetumumab. The combined use of intetumumab and radiation therapy reduced the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. Toxicity studies showed that treatment with intetumumab did not cause the histopathologic changes in the lungs and did not sensitize the sensitive gastrointestinal epithelium to the effect of radiation therapy. Intetumumab can potentiate the efficacy of fractionated radiation therapy in human cancer xenograft tumors in nude rats without increased toxicity. PMID:20841470

  3. Evaluation of 89Zr-pertuzumab in Breast Cancer Xenografts

    PubMed Central

    2015-01-01

    Pertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2–specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2 binding epitope and adapt this antibody as a PET imaging agent by radiolabeling with 89Zr to increase the sensitivity of HER2 detection in vivo. Here, we investigate the biodistribution of 89Zr-pertuzumab in HER2–expressing BT-474 and HER2–nonexpressing MDA-MB-231 xenografts to quantitatively assess HER2 expression in vivo. In vitro cell binding studies were performed resulting in retained immunoreactivity and specificity for HER2–expressing cells. In vivo evaluation of 89Zr-pertuzumab was conducted in severely combined immunodeficient mice, subcutaneously inoculated with BT-474 and MDA-MB-231 cells. 89Zr-pertuzumab was systemically administered and imaged at 7 days postinjection (p.i.) followed by terminal biodistribution studies. Higher tumor uptake was observed in BT-474 compared to MDA-MB-231 xenografts with 47.5 ± 32.9 and 9.5 ± 1.7% ID/g, respectively at 7 days p.i (P = 0.0009) and blocking studies with excess unlabeled pertuzumab showed a 5-fold decrease in BT-474 tumor uptake (P = 0.0006), confirming the in vivo specificity of this radiotracer. Importantly, we observed that the tumor accumulation of 89Zr-pertuzumab was increased in the presence of unlabeled trastuzumab, at 173 ± 74.5% ID/g (P = 0.01). Biodistribution studies correlate with PET imaging quantification using max SUV (r = 0.98, P = 0.01). Collectively, these results illustrate that 89Zr-pertuzumab as a PET imaging agent may be beneficial for the quantitative and noninvasive assessment of HER2 expression in vivo especially for patients undergoing trastuzumab therapy. PMID:25058168

  4. World conference on lung cancer.

    PubMed

    Felip, Enriqueta; Rosell, Rafael

    2003-12-01

    Lung cancer is the most frequent cause of cancer death. Improving this dismal outcome requires cooperation among several specialists. The 10th World Conference on Lung Cancer was held in Vancouver, Canada last month. The meeting was organised on behalf of the International Association for the Study of Lung Cancer (IASLC) and the British Columbia Cancer Agency. This Conference was chaired by Nevin Murray and the scientific sessions took place 10 - 14 August, with > 3000 participating lung cancer experts. The Vancouver programme included > 140 invited speakers throughout the 'meet the professor', plenary and interactive sessions, as well as 300 oral and 500 poster presentations. PMID:14640956

  5. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  6. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  7. Lung Cancer in Never Smokers.

    PubMed

    Rivera, Gabriel Alberto; Wakelee, Heather

    2016-01-01

    Lung cancer is predominantly associated with cigarette smoking; however, a substantial minority of patients with the disease have never smoked. In the US it is estimated there are 17,000-26,000 annual deaths from lung cancer in never smokers, which as a separate entity would be the seventh leading cause of cancer mortality. Controversy surrounds the question of whether or not the incidence of lung cancer in never-smokers is increasing, with more data to support this observation in Asia. There are several factors associated with an increased risk of developing lung cancer in never smokers including second hand smoke, indoor air pollution, occupational exposures, and genetic susceptibility among others. Adenocarcinoma is the most common histology of lung cancer in never smokers and in comparison to lung cancer in smokers appears less complex with a higher likelihood to have targetable driver mutations. PMID:26667338

  8. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types

    PubMed Central

    Iliopoulos, Dimitrios; Hirsch, Heather A.; Struhl, Kevin

    2011-01-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy-resistant, sub-population of cancer stem cells in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when metformin combined with a 4-fold reduced dose of doxorubicin that is not effective as a monotherapy. Lastly, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the cancer stem cell hypothesis for cancer relapse, as well as an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings and for reducing the chemotherapy dose in cancer patients. PMID:21415163

  9. Establishing Prostate Cancer Patient Derived Xenografts: Lessons Learned From Older Studies

    PubMed Central

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W-C; Williams, Elizabeth D; Raghavan, Derek

    2015-01-01

    Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43

  10. Screening for lung cancer.

    PubMed

    Miettinen, O S

    2000-05-01

    Screening for lung cancer serves to prevent deaths from this disease insofar as earlier resections are associated with higher rates of cure. There is good reason to believe that this is the case: in stage I, the 5-year survival rate with resection is 70%, whereas without resection the corresponding rate is only 10%. Before this evidence emerged, various authoritative organizations and agencies in North America advised against screening for lung cancer on the grounds of the results of several RCTs. As for CXR, I argue that the study results are consistent with up to 40% reduction in the fatality rate. Moreover, modern helical CT screening provides for detecting much smaller tumors than were detected in those studies. It is time to revoke the conclusion that screening for lung cancer does not serve to prevent deaths from this disease, and to quantify the usefulness of CT screening in particular. As for the requisite research, the prevailing orthodoxy has it that RCTs are to be used, but I argue that more meaningful results are obtainable, more rapidly and much less expensively, by the use of noncomparative (and hence unrandomized) studies. PMID:10855255

  11. Controversies in Lung Cancer Screening.

    PubMed

    Gill, Ritu R; Jaklitsch, Michael T; Jacobson, Francine L

    2016-02-01

    There remains an extensive debate over lung cancer screening, with lobbying for and against screening for very compelling reasons. The National Lung Screening Trial, International Early Lung Cancer Program, and other major screening studies favor screening with low-dose CT scans and have shown a reduction in lung cancer-specific mortality. The increasing incidence of lung cancer and the dismal survival rate for advanced disease despite improved multimodality therapy have sparked an interest in the implementation of national lung cancer screening. Concerns over imaging workflow, radiation dose, management of small nodules, overdiagnosis bias, lead-time and length-time bias, emerging new technologies, and cost-effectiveness continue to be debated. The authors address each of these issues as they relate to radiologic practice. PMID:26846531

  12. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  13. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  14. Drugs Approved for Lung Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for lung cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  15. Screening for Lung Cancer.

    PubMed

    Stiles, Brendon M; Pua, Bradley; Altorki, Nasser K

    2016-07-01

    Lung cancer is a global health burden and is among the most common and deadliest of all malignancies worldwide. The goal of screening programs is to detect tumors in earlier, curable stages, consequently reducing disease-specific mortality. The issue of screening has great relevance to thoracic surgeons, who should play a leading role in the debate over screening and its consequences. The burden is on thoracic surgeons to work in a multidisciplinary setting to guide and treat these patients safely and responsibly, ensuring low morbidity and mortality of potential diagnostic or therapeutic interventions. PMID:27261909

  16. UK partnership targets lung cancer.

    PubMed

    2014-07-01

    Cancer Research UK has joined with two major pharmaceutical companies to launch a large multiarm clinical trial, dubbed the National Lung Matrix trial, to test the effectiveness of promising experimental therapies in treating rare forms of advanced lung cancer. PMID:25002593

  17. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    PubMed Central

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  18. [Grading of lung cancer].

    PubMed

    Bohle, R M; Schnabel, P A

    2016-07-01

    In comparison with other tumor entities there is no common generally accepted grading system for lung cancer with clearly defined criteria and clinical relevance. In the recent fourth edition of the World Health Organization (WHO) classification from 2015 of tumors of the lungs, pleura, thymus and heart, there is no generally applicable grading for pulmonary adenocarcinomas, squamous cell carcinomas or rarer forms of carcinoma. Since the new IASLC/ATS/ERS classification of adenocarcinomas published in 2011, 5 different subtypes with significantly different prognosis are proposed. This results in an architectural (histologic) grading, which is usually applied to resection specimens. For squamous cell carcinoma the number of different histological subtypes in the new WHO classification was reduced compared to earlier versions but without a common grading system. In recent publications nesting and budding were proposed as the main (histologic) criteria for a grading of squamous cell carcinomas. The grading of neuroendocrine tumors (NET) of the lungs in comparison with NET in other organs is presented in a separate article in this issue. Certain rare tumor types are high grade per definition: small cell, large cell and pleomorphic carcinomas, carcinosarcomas and pulmonary blastomas. In the future it is to be expected that these developments will be further refined, e. g. by adding further subtypes for adenocarcinomas and cytologic and/or nuclear criteria for adenocarcinoma and/or squamous cell carcinomas. PMID:27356985

  19. [The epidemiology of lung cancer].

    PubMed

    Kosacka, Monika; Jankowska, Renata

    2007-01-01

    Lung cancer is currently most frequently diagnosed neoplasm in males and the fifth most frequent cancer in females. In developed countries only breast cancer is diagnosed more often in women. Worldwide, lung cancer is the most common cause of cancer mortality in males and females. In the Europe lung cancer accounts for 21% of all cancer cases in males and 29% of all cancer deaths. The rapid increase in lung cancer incidence was observed the since beginning of the XX century till 1990-1994. The incidence in males decreased recently, but still increases in females, especially in young women. The changes in frequency of various histological subtypes of lung cancer are observed too. Despite many clinical trials, modern diagnostic techniques and improved supportive care, the prognosis remains unfavourable and long-term survival almost did not change. In Poland the incidence of lung cancer in 2002 was 81.9/100 000 in males and 22.2/100 000 in females. In both genders 1-year and 5-year survivals time are one of the shortest in Europe. PMID:17541915

  20. Bronchoscopy of Lung Cancer

    PubMed Central

    Emslander, H. P.

    1994-01-01

    Lung cancer is a leading cancer site in men and women with a high incidence and mortality rate. Most patients are diagnosed when the disease has already spread. An early, detection and immediate and accurate histological or cytological diagnosis are essential for a hopeful outcome. In most patients, bronchoscopy is the method of choice in establishing a suspected lung neoplasm. With the rigid and flexible method, two complementary techniques are available. The methods bear a very low mortality rate if sufficient monitoring and resuscitative instrumentation is available. Rigid bronchoscopy offers the possibility of obtaining large biopsy specimens from the tumorous tissue and provides an effective tool in the control of major haemorrhage. However, it cannot be used for the inspection of further peripherally located parts of the bronchial system and needs general anaesthesia. In contrast, the flexible method can be quickly and readily performed at practically any location using portable equipment. Bronchi can be inspected up to the 8th order and with bronchial washing, forceps biopsy, brush biopsy and fluorescence bronchoscopy techniques with a high diagnostic yield are available. This holds true, especially if these sampling techniques are used as complementary methods. PMID:18493335

  1. Polonium and Lung Cancer

    PubMed Central

    Zagà, Vincenzo; Lygidakis, Charilaos; Chaouachi, Kamal; Gattavecchia, Enrico

    2011-01-01

    The alpha-radioactive polonium 210 (Po-210) is one of the most powerful carcinogenic agents of tobacco smoke and is responsible for the histotype shift of lung cancer from squamous cell type to adenocarcinoma. According to several studies, the principal source of Po-210 is the fertilizers used in tobacco plants, which are rich in polyphosphates containing radio (Ra-226) and its decay products, lead 210 (Pb-210) and Po-210. Tobacco leaves accumulate Pb-210 and Po-210 through their trichomes, and Pb-210 decays into Po-210 over time. With the combustion of the cigarette smoke becomes radioactive and Pb-210 and Po-210 reach the bronchopulmonary apparatus, especially in bifurcations of segmental bronchi. In this place, combined with other agents, it will manifest its carcinogenic activity, especially in patients with compromised mucous-ciliary clearance. Various studies have confirmed that the radiological risk from Po-210 in a smoker of 20 cigarettes per day for a year is equivalent to the one deriving from 300 chest X-rays, with an autonomous oncogenic capability of 4 lung cancers per 10000 smokers. Po-210 can also be found in passive smoke, since part of Po-210 spreads in the surrounding environment during tobacco combustion. Tobacco manufacturers have been aware of the alpha-radioactivity presence in tobacco smoke since the sixties. PMID:21772848

  2. Antitumor effect of Kanglaite® injection in human pancreatic cancer xenografts

    PubMed Central

    2014-01-01

    Background Kanglaite® injection (KLT), with a main ingredient of Coix seed oil (a traditional Chinese medicine), has been widely used for cancer treatment in China. KLT has an inhibitory effect on many kinds of tumors and PI3K/Akt/mTOR signaling promotes cell survival, proliferation, and progression in cancer cells. Therefore, targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Methods Here, we examined the effects of KLT on the PI3K/Akt/mTOR pathway in pancreatic cancer xenografts in mice, and assessed its therapeutic potential. Growth and apoptosis of tumor xenografts were examined, and the expression levels of genes and proteins involved in the PI3K/Akt/mTOR pathway were measured by RT-PCR and western blotting, respectively. Results Our results revealed that KLT dramatically inhibited the growth of pancreatic cancer xenografts and induced apoptosis simultaneously. Furthermore, it downregulated the expression of phospho-Akt and phospho-mTOR. Conclusions These results suggest that KLT can suppress growth and induce apoptosis of pancreatic cancer xenografts. Moreover, KLT can downregulate the expression of phospho-Akt and phospho-mTOR to modulate the PI3K/Akt/mTOR signaling pathway. PMID:25005526

  3. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  4. Lung Cancer Surgery Worthwhile for Older Patients

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found those ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have lung ...

  5. Lung Cancer Surgery Worthwhile for Older Patients

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found those ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have lung ...

  6. Occupational exposure and lung cancer

    PubMed Central

    Spyratos, Dionysios; Porpodis, Konstantinos; Tsakiridis, Kosmas; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Kougioumtzi, Ioanna; Dryllis, Georgios; Kallianos, Anastasios; Rapti, Aggeliki; Li, Chen; Zarogoulidis, Konstantinos

    2013-01-01

    Lung cancer is the leading cause of cancer death for male and the second most usual cancer for women after breast cancer. Currently there are available several non-specific cytotoxic agents and several targeted agents for lung cancer therapy. However; early stage diagnosis is still unavailable and several efforts are being made towards this direction. Novel biomarkers are being investigated along with new biopsy techniques. The occupational and environmental exposure to carcinogenic agents is an everyday phenomenon. Therefore until efficient early diagnosis is available, avoidance of exposure to carcinogenic agents is necessary. In the current mini-review occupational and environmental carcinogenic agents will be presented. PMID:24102018

  7. Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer

    PubMed Central

    van Weerden, W M; Bangma, C; de Wit, R

    2008-01-01

    With docetaxel as effective chemotherapy for hormone refractory prostate cancer (HRPC), the number of new treatment combinations for HRPC is expanding demanding a fast-track screening system. This review elaborates on the use of xenograft models to select the most promising combination therapies for entering into phase II clinical trials. PMID:19088719

  8. The inhibitory efficacy of methylseleninic acid against colon cancer xenografts in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo. We tested the hypoththesis that oral dosing methylseleninic acid (MSeA), a methylselenol precursor, inhibits the growth of colon cancer xenografts in C57BL/6 mice fed a Se adequate diet. In this...

  9. BRCA1 and BRCA2 mutations sensitize to chemotherapy in patient-derived pancreatic cancer xenografts

    PubMed Central

    Lohse, I; Borgida, A; Cao, P; Cheung, M; Pintilie, M; Bianco, T; Holter, S; Ibrahimov, E; Kumareswaran, R; Bristow, R G; Tsao, M-S; Gallinger, S; Hedley, D W

    2015-01-01

    Background: Germline mutations of the BRCA tumour suppressors have been associated with increased risk of pancreatic cancer. Clinical evidence suggests that these patients may be more sensitive to treatment with cisplatin. As the frequency of germline BRCA mutations is low, definitive experimental data to support the clinical observations are still missing. Methods: We tested gemcitabine and cisplatin sensitivity of four BRCA1 and BRCA2 mutant and three BRCA1 and BRCA2 wild-type (WT) patient-derived pancreatic cancer xenografts. Results: We observed treatment sensitivity to gemcitabine and cisplatin in the BRCA WT and mutant models. The BRCA1 and BRCA2 mutant xenografts were significantly more sensitive to cisplatin although these models also showed sensitivity to gemcitabine. The BRCA1 and BRCA2 WT models showed sensitivity to gemcitabine but not cisplatin. Treatment sensitivity in the xenograft models closely resembled treatment response in the corresponding patients. Discussion: We have characterised a panel of xenografts derived from pancreatic cancer patients carrying germline BRCA mutations, and shown that their genetic features resemble the patient donor. Our results support further clinical testing of treatment regimens combining gemcitabine and platinum drugs in this patient population, as well as preclinical research aiming to identify mechanisms of cisplatin resistance in BRCA mutant pancreatic cancers. PMID:26180923

  10. Target Therapy in Lung Cancer.

    PubMed

    Cafarotti, Stefano; Lococo, Filippo; Froesh, Patrizia; Zappa, Francesco; Andrè, Dutly

    2016-01-01

    Lung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens. For this reason and in order to address advances in lung cancer treatment an international multidisciplinary classification was proposed by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), further increasing the histological heterogeneity and improving the existing WHO-classification. Is now the beginning of personalized therapy era that is ideally finalized to treat each individual case of lung cancer in different way. PMID:26667341

  11. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance. PMID:23606351

  12. [Photodynamic Therapy for Lung Cancer].

    PubMed

    Ohtani, Keishi; Ikeda, Norihiko

    2016-07-01

    In Japan, Photodynamic therapy (PDT) is recommended as a treatment option for centrally located early-stage lung cancers (CLELCs). It is a minimally invasive treatment with excellent anti-tumor effects. The 2nd generation photosensitizer, talaporfin sodium has strong anti-tumor effects with much less photosensitivity than porfimer sodium. Moreover, the laser equipment is compact and portable, and talaporfin sodium is now the current mainstay of PDT for lung cancer. For successful PDT, accurate evaluation of tumor extent and bronchial invasion is crucial. Detailed examination of the tumor using autofluorescence bronchoscopy and endobronchial ultrasonography or optical coherence tomography is extremely useful before PDT. At present, PDT has become the 1st choice of treatment for CLELC in institutions with the necessary equipment. It can also be effective for advanced lung cancer causing tracheobronchial obstruction. With such advances in PDT for CLELC, we are expanding the indications of PDT for not only CLELC, but also peripheral type lung cancer. PMID:27440036

  13. Screening for occult lung cancer.

    PubMed Central

    Barclay, T. H.; MacIntosh, J. H.

    1983-01-01

    A pilot screening program for the early detection of lung cancer was carried out in Saskatchewan in 1968 using chest roentgenography and cytologic examination of sputum samples. The yield from 23 000 men aged 40 years and over was only 10 cases. Nine of the men had advanced disease. One had occult lung cancer. A period of 31 months elapsed between the discovery of malignant cells in this patient's sputum and roentgenographic localization of the tumour. Following pneumonectomy he has survived with no discernible residual or metastatic tumour for 12 years. The morphologic changes in the resected lung provided a basis for discussing the preclinical phase of squamous cancer of the lung, the treatment of occult cancer and multicentric primary pulmonary tumours. The survey would have been more successful with a narrower target group and more frequent examination. Images FIG. 1 FIG. 2 FIG. 3 PMID:6299495

  14. Lung Cancer Screening Recommendation Questioned.

    PubMed

    2016-06-01

    According to a retrospective analysis of data from the National Lung Screening Trial, participants with a history of heavy smoking who test negative for abnormalities suggestive of lung cancer on an initial low-dose CT screen may not need yearly CT scans. Instead, they could work with their doctors to devise an appropriate screening schedule based on individual risk factors. PMID:27076372

  15. Lung Cancer and Hispanics: Know the Facts

    MedlinePlus

    ... other segments of the American population. However, lung cancer is still the leading cause of cancer death among Hispanic men and the second-leading cause among Hispanic women. November is Lung Cancer Awareness ...

  16. In Vivo Activity and Pharmacokinetics of Nemorosone on Pancreatic Cancer Xenografts

    PubMed Central

    Wolf, Robert J.; Hilger, Ralf A.; Hoheisel, Jörg D.; Werner, Jens; Holtrup, Frank

    2013-01-01

    Pancreatic cancer is one of the leading cancer-related causes of death in the western world with an urgent need for new treatment strategies. Recently, hyperforin and nemorosone have been described as promising anti-cancer lead compounds. While hyperforin has been thoroughly investigated in vitro and in vivo, in vivo data for nemorosone are still missing. Thus, we investigated the growth-inhibitory potential of nemorosone on pancreatic cancer xenografts in NMRI nu/nu mice and determined basic pharmacokinetic parameters. Xenograft tumors were treated with nemorosone and gemcitabine, the current standard of care. Tumor sections were subjected to H&E as well as caspase 3 and Ki-67 staining. Nemorosone plasma kinetics were determined by HPLC and mass spectrometry. Induction of CYP3A4 and other metabolizing enzymes by nemorosone and hyperforin was tested on primary hepatocytes using qRT-PCR. At a dose of 50 mg/kg nemorosone per day, a significant growth-inhibitory effect was observed in pancreatic cancer xenografts. The compound was well tolerated and rapidly absorbed into the bloodstream with a half-life of approximately 30 min. Different metabolites were detected, possibly resembling CYP3A4-independent oxidation products. It is concluded that nemorosone is a potential anti-cancer lead compound with good bioavailability, little side-effects and promising growth-inhibitory effects, thus representing a valuable compound for a combination therapy approach. PMID:24040280

  17. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression

  18. Pharmacological Modulation of Cytotoxicity and Cellular Uptake of Anti-cancer Drugs by PDE5 Inhibitors in Lung Cancer Cells

    PubMed Central

    LI, QING; SHU, YAN

    2013-01-01

    Purpose Previous research has led to the recognition of a cGMP signaling pathway governing drug transport. This study is to investigate whether inhibitors of phosphodiesterase type 5 (PDE5), which increase intracellular cGMP levels, modulate the cytotoxicity and uptake of anti-cancer drugs in cancer cells. Methods The experiments were conducted with and without PDE5 inhibitors: dipyridamole, vardenafil, and/or sildenafil. The cytotoxicity of doxorubicin, cisplatin and oxaliplatin was determined in multiple cancer cell lines derived from different tissues. The cellular uptake of structurally diverse compounds was further examined in lung cancer cells with and without various endocytotic inhibitors. The tumor accumulation and the anti-tumor effect of trastuzumab were examined in a lung cancer xenograft mouse model. Results Dipyridamole could modulate the cytotoxicity of doxorubicin, cisplatin, and oxaliplatin in cancer cells. Particularly, PDE5 inhibitors increased cellular uptake of structurally diverse compounds into lung cancer cells both in vitro and in vivo. The effect of vardenafil on drug uptake could be blocked by endocytotic inhibitors. The growth of lung cancer xenograft in nude mice was significantly suppressed by addition of vardenafil to trastuzumab treatment. Conclusion PDE5 inhibitors may increase the efficacy of anti-cancer drugs by increasing endocytosis-mediated cellular drug uptake, and thus serve as adjuvant therapy for certain cancers such as lung cancer. PMID:23884568

  19. Targeted Therapies in Lung Cancer

    PubMed Central

    Chirieac, Lucian R.; Dacic, Sanja

    2010-01-01

    An ongoing research and multiple clinical trials involve new targeted therapies and less aggressive treatment regimens that improve survival in patients with lung cancer. Targeted therapeutic agents are based on the concept of discovering genetic alterations and the signaling pathways altered in cancer and have added significantly to our armamentarium in order to prolong patient survival and minimizing drug toxicity. Among 34 molecularly targeted drugs approved by U.S. Food and Drug Administration (FDA) for treatment of various cancers since 1998 three targeted therapies have been approved for treatment of lung cancer (gefitinib in 2002, erlotinib in 2003, and bevacizumab in 2006). This review focuses on the targeted therapies in lung cancer, the molecular biomarkers that help identify patients that will benefit for these targeted therapies, describes the basic molecular biology principles and selected molecular diagnostic techniques and the pathological features correlated with molecular abnormalities in lung cancer. Lastly, new molecular abnormalities described in lung cancer that are predictive to novel promising targeted agents in various phases of clinical trials are discussed. PMID:20680095

  20. Quality of Life in Patients Undergoing Radiation Therapy for Primary Lung Cancer, Head and Neck Cancer, or Gastrointestinal Cancer

    ClinicalTrials.gov

    2016-04-19

    Anal Cancer; Colorectal Cancer; Esophageal Cancer; Extrahepatic Bile Duct Cancer; Gallbladder Cancer; Gastric Cancer; Head and Neck Cancer; Liver Cancer; Lung Cancer; Pancreatic Cancer; Small Intestine Cancer

  1. Early detection of lung cancer.

    PubMed

    Midthun, David E

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  2. Early detection of lung cancer

    PubMed Central

    Midthun, David E.

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  3. Andrographolide radiosensitizes human ovarian cancer SKOV3 xenografts due to an enhanced apoptosis and autophagy.

    PubMed

    Zhang, Chao; Qiu, Xingsheng

    2015-11-01

    Andrographolide (AND), a diterpenoid lactone isolated from Andrographis paniculata, has been shown to have radiosensitivity in several types of cancer. Whether AND can radiosensitize ovarian cancer remains unknown. The present study investigated the radiosensitizing effects of AND in human ovarian SKOV3 xenografts and examined the molecular mechanisms of AND-mediated radiosensitization. Nude mice bearing human ovarian SKOV3 were treated with AND to investigate the effects of drug administration on tumor growth, radiosensitivity, apoptosis, and autophagy. Subsequent Western blot analysis and monodansylcadaverine (MDC) staining (autophagy analysis) were used to determine the role of AND. Finally, the pathway of apoptosis was characterized by caspase-3 activity assay as well as TUNEL analysis. AND potently sensitized SKOV3 xenografts to radiation. Moreover, apoptosis and autophagy in radiation combined with drug-treated xenografts increased significantly compared with the simple drug or single radiation treatment. This result was associated with an increase in the Bax/Bcl-2 protein ratio and p-p53 expression after exposure to combination treatment. Meanwhile, the level of Beclin 1 and Atg5 and the conversion from LC3-I to LC3-II, three important proteins involved in autophagy, were increased. AND acts as a strong radiosensitizer in human ovarian SKOV3 xenografts in vivo by increasing the Bax/Bcl-2 protein ratio and promoting the activation of caspase-3, leading to enhanced apoptosis as well as autophagy. PMID:26014516

  4. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts.

    PubMed

    Cottu, P; Marangoni, E; Assayag, F; de Cremoux, P; Vincent-Salomon, A; Guyader, Ch; de Plater, L; Elbaz, C; Karboul, N; Fontaine, J J; Chateau-Joubert, S; Boudou-Rouquette, P; Alran, S; Dangles-Marie, V; Gentien, D; Poupon, M-F; Decaudin, D

    2012-06-01

    Resistance to endocrine therapy is a major complication of luminal breast cancer and studies of the biological features of hormonal resistance are limited by the lack of adequate preclinical models. The aim of this study is to establish and characterize a panel of primary human luminal breast carcinoma xenografts, and to evaluate their response to endocrine therapies. Four hundred and twenty-three tumor fragments obtained directly from patients have been grafted in the interscapular fatpad of Swiss nude mice. After stable engraftment with estradiol supplementation, xenografted tumors have been validated by conventional pathology and immunohistochemistry examination, and additional molecular studies. In vivo tumor growth and response to different endocrine treatments were evaluated. We have engrafted 423 tumors including 314 ER+ tumors, and 8 new luminal breast cancer xenografts have been obtained (2.5%). Tumor take was much lower for luminal tumors than for non-luminal tumors (2.5 vs. 24.7%, P < 0.0001), and was associated with two independent criteria, i.e., ER status (P < 0.0001) and a high grade tumor (P = 0.05). Histological and immunohistochemical analyses performed on patient's tumors and xenografts showed striking similarities in the tumor morphology as well as in the expression level of ER, PR, and HER2. Response to hormone therapy, evaluated in 6 luminal models, showed different sensitivities, thus exhibiting heterogeneity similar to what is observed in the clinic. We have established a panel of primary human luminal breast cancer xenografts, recapitulating the biological and clinical behaviors of patient tumors, and therefore suitable for further preclinical experiments. PMID:22002565

  5. Carotenoids and lung cancer prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular actions of carotenoids is critical for human studies involving carotenoids for prevention of lung cancer and cancers at other tissue sites. While the original hypothesis prompting the beta-carotene intervention trials was that beta-carotene exerts beneficial effects thro...

  6. CIGARETTE SMOKE AND LUNG CANCER

    EPA Science Inventory

    Cigarette smoke has been implicated in a causal relationship with carcinoma of the lung. An intriguing feature of the disease is the site-selectivity with which bronchogenic cancer manifests itself; most cancers are detected in the main, lobar and segmental bronchi, perhaps speci...

  7. Palliative Care in Lung Cancer.

    PubMed

    Shinde, Arvind M; Dashti, Azadeh

    2016-01-01

    Lung cancer is the most common cancer worldwide and is the leading cause of cancer death for both men and women in the USA. Symptom burden in patients with advanced lung cancer is very high and has a negative impact on their quality of life (QOL). Palliative care with its focus on the management of symptoms and addressing physical, psychosocial, spiritual, and existential suffering, as well as medically appropriate goal setting and open communication with patients and families, significantly adds to the quality of care received by advanced lung cancer patients. The Provisional Clinical Opinion (PCO) of American Society of Clinical Oncology (ASCO) as well as the National Cancer Care Network's (NCCN) clinical practice guidelines recommends early integration of palliative care into routine cancer care. In this chapter, we will provide an overview of palliative care in lung cancer and will examine the evidence and recommendations with regard to a comprehensive and interdisciplinary approach to symptom management, as well as discussions of goals of care, advance care planning, and care preferences. PMID:27535397

  8. Lung Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Anticancer Activity of Apaziquone in Oral Cancer Cells and Xenograft Model: Implications for Oral Cancer Therapy

    PubMed Central

    Srivastava, Gunjan; Somasundaram, Raj Thani; Walfish, Paul G.; Ralhan, Ranju

    2015-01-01

    Oral squamous cell carcinoma (OSCC) patients diagnosed in late stages have limited chemotherapeutic options underscoring the great need for development of new anticancer agents for more effective disease management. We aimed to investigate the anticancer potential of Apaziquone, [EOquin, USAN, E09, 3-hydroxy-5- aziridinyl-1-methyl-2(1H-indole-4,7-dione)–prop-β-en-α-ol], a pro-drug belonging to a class of anti-cancer agents called bioreductive alkylating agents, for OSCC. Apaziquone treatment inhibited cell proliferation and induced apoptosis in OSCC cells in vitro. Apaziquone treated OSCC cells showed increased activation of Caspase 9 and Caspase 3, and Poly (ADP ribose) polymerase (PARP) cleavage suggesting induction of apoptosis by apaziquone in oral cancer cells. Importantly, apaziquone treatment significantly reduced oral tumor xenograft volume in immunocompromised NOD/SCID/Crl mice without causing apparent toxicity to normal tissues. In conclusion, our in vitro and in vivo studies identified and demonstrated the pre-clinical efficacy of Apaziquone, as a potential novel anti-cancer therapeutic candidate for oral cancer management. PMID:26208303

  10. INTUSSUSCEPTIVE-LIKE ANGIOGENESIS IN HUMAN FETAL LUNG XENOGRAFTS: LINK WITH BRONCHOPULMONARY DYSPLASIA-ASSOCIATED MICROVASCULAR DYSANGIOGENESIS?

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; McDonnell-Clark, Elizabeth; Heger, Nicholas E.; Schorl, Christoph; Mao, Quanfu; Boekelheide, Kim

    2016-01-01

    Background Human fetal lung xenografts display an unusual pattern of non-sprouting, plexus-forming angiogenesis that is reminiscent of the dysmorphic angioarchitecture described in bronchopulmonary dysplasia (BPD). The aim of this study was to determine the clinicopathological correlates, growth characteristics and molecular regulation of this aberrant form of graft angiogenesis. Methods Fetal lung xenografts, derived from 12 previable fetuses (15 to 22 weeks’ gestation) and engrafted in the renal subcapsular space of SCID-beige mice, were analyzed 4 weeks post-transplantation for morphology, vascularization, proliferative activity and gene expression. Results Focal plexus-forming angiogenesis (PFA) was observed in 60/230 (26%) of xenografts. PFA was characterized by a complex network of tortuous non-sprouting vascular structures with low endothelial proliferative activity, suggestive of intussusceptive-type angiogenesis. There was no correlation between the occurrence of PFA and gestational age or time interval between delivery and engraftment. PFA was preferentially localized in the relatively hypoxic central subcapsular area. Microarray analysis suggested altered expression of 15 genes in graft regions with PFA, of which 7 are known angiogenic/lymphangiogenic regulators and 5 are known hypoxia-inducible genes. qRT-PCR analysis confirmed significant upregulation of SULF2, IGF2 and HMOX1 in graft regions with PFA. Conclusion These observations in human fetal lungs ex vivo suggest that postcanalicular lungs can switch from sprouting angiogenesis to an aberrant intussusceptive-type of angiogenesis that is highly reminiscent of BPD-associated dysangiogenesis. While circumstantial evidence suggests hypoxia may be implicated, the exact triggering mechanisms, molecular regulation and clinical implications of this angiogenic switch in preterm lungs in vivo remain to be determined. PMID:26495956

  11. Functional imaging in lung cancer

    PubMed Central

    Harders, S W; Balyasnikowa, S; Fischer, B M

    2014-01-01

    Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional imaging modalities such as dynamic contrast-enhanced CT (DCE-CT) and diffusion-weighted MR imaging (DW-MRI) have demonstrated promising results within this field. The purpose of this review is to provide the reader with a brief and balanced introduction to these three functional imaging modalities and their current or potential application in the care of patients with lung cancer. PMID:24289258

  12. Carbogen breathing increases prostate cancer oxygenation: a translational MRI study in murine xenografts and humans

    PubMed Central

    Alonzi, R; Padhani, A R; Maxwell, R J; Taylor, N J; Stirling, J J; Wilson, J I; d′Arcy, J A; Collins, D J; Saunders, M I; Hoskin, P J

    2009-01-01

    Hypoxia has been associated with poor local tumour control and relapse in many cancer sites, including carcinoma of the prostate. This translational study tests whether breathing carbogen gas improves the oxygenation of human prostate carcinoma xenografts in mice and in human patients with prostate cancer. A total of 23 DU145 tumour-bearing mice, 17 PC3 tumour-bearing mice and 17 human patients with prostate cancer were investigated. Intrinsic susceptibility-weighted MRI was performed before and during a period of carbogen gas breathing. Quantitative R2* pixel maps were produced for each tumour and at each time point and changes in R2* induced by carbogen were determined. There was a mean reduction in R2* of 6.4% (P=0.003) for DU145 xenografts and 5.8% (P=0.007) for PC3 xenografts. In all, 14 human subjects were evaluable; 64% had reductions in tumour R2* during carbogen inhalation with a mean reduction of 21.6% (P=0.0005). Decreases in prostate tumour R2* in both animal models and human patients as a result of carbogen inhalation suggests the presence of significant hypoxia. The finding that carbogen gas breathing improves prostate tumour oxygenation provides a rationale for testing the radiosensitising effects of combining carbogen gas breathing with radiotherapy in prostate cancer patients. PMID:19190629

  13. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo.

    PubMed

    Gomez-Gutierrez, Jorge G; Nitz, Jonathan; Sharma, Rajesh; Wechman, Stephen L; Riedinger, Eric; Martinez-Jaramillo, Elvis; Sam Zhou, Heshan; McMasters, Kelly M

    2016-01-01

    Oncolytic adenoviruses (OAds) are very promising for the treatment of lung cancer. However, OAd-based monotherapeutics have not been effective during clinical trials. Therefore, the effectiveness of virotherapy must be enhanced by combining OAds with other therapies. In this study, the therapeutic potential of OAd in combination with temozolomide (TMZ) was evaluated in lung cancer cells in vitro and in vivo. The combination of OAd and TMZ therapy synergistically enhanced cancer cell death; this enhanced cancer cell death may be explained via three related mechanisms: apoptosis, virus replication, and autophagy. Autophagy inhibition partially protected cancer cells from this combined therapy. This combination significantly suppressed the growth of subcutaneous H441 lung cancer xenograft tumors in athymic nude mice. In this study, we have provided an experimental rationale to test OAds in combination with TMZ in a lung cancer clinical trial. PMID:26561948

  14. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  15. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  16. Molecular oncology of lung cancer.

    PubMed

    Toyooka, Shinichi; Mitsudomi, Tetsuya; Soh, Junichi; Aokage, Keiju; Yamane, Masaomi; Oto, Takahiro; Kiura, Katsuyuki; Miyoshi, Shinichiro

    2011-08-01

    Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities. PMID:21850578

  17. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  18. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  19. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft.

    PubMed

    Senra, Joana M; Telfer, Brian A; Cherry, Kim E; McCrudden, Cian M; Hirst, David G; O'Connor, Mark J; Wedge, Stephen R; Stratford, Ian J

    2011-10-01

    PARP-1 is a critical enzyme in the repair of DNA strand breaks. Inhibition of PARP-1 increases the effectiveness of radiation in killing tumor cells. However, although the mechanism(s) are well understood for these radiosensitizing effects in vitro, the underlying mechanism(s) in vivo are less clear. Nicotinamide, a drug structurally related to the first generation PARP-1 inhibitor, 3-aminobenzamide, reduces tumor hypoxia by preventing transient cessations in tumor blood flow, thus improving tumor oxygenation and sensitivity to radiotherapy. Here, we investigate whether olaparib, a potent PARP-1 inhibitor, enhances radiotherapy, not only by inhibiting DNA repair but also by changing tumor vascular hemodynamics in non-small cell lung carcinoma (NSCLC). In irradiated Calu-6 and A549 cells, olaparib enhanced the cytotoxic effects of radiation (sensitizer enhancement ratio at 10% survival = 1.5 and 1.3) and DNA double-strand breaks persisted for at least 24 hours after treatment. Combination treatment of Calu-6 xenografts with olaparib and fractionated radiotherapy caused significant tumor regression (P = 0.007) relative to radiotherapy alone. To determine whether this radiosensitization was solely due to effects on DNA repair, we used a dorsal window chamber model to establish the drug/radiation effects on vessel dynamics. Olaparib alone, when given as single or multiple daily doses, or in combination with fractionated radiotherapy, increased the perfusion of tumor blood vessels. Furthermore, an ex vivo assay in phenylephrine preconstricted arteries confirmed olaparib to have higher vasodilatory properties than nicotinamide. This study suggests that olaparib warrants consideration for further development in combination with radiotherapy in clinical oncology settings such as NSCLC. PMID:21825006

  20. Lung cancer and air pollution.

    PubMed Central

    Cohen, A J; Pope, C A

    1995-01-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung cancer rates associated with exposure to respirable particles. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the United States continue to be exposed to pollutant mixtures containing known or suspected carcinogens. It is not known how many people in the United States are exposed to levels of fine respirable particles that have been associated with lung cancer in recent epidemiologic studies. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the United States based largely on the results of animal studies, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution among the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer associated with air pollution. PMID:8741787

  1. Epidemiology of lung cancer in China

    PubMed Central

    Chen, Wanqing; Zheng, Rongshou; Zeng, Hongmei; Zhang, Siwei

    2015-01-01

    Background Lung cancer is the most common cancer and the leading cause of cancer death in China. Along with socioeconomic development, environmental problems have intensified and the burden of lung cancer continues to increase. Methods In this study, national cancer registry data was used for evaluating incidence, mortality, time trend, and prediction. Results In China in 2010, 605 900 patients were diagnosed and 486 600 patients died of lung cancer. Throughout the last three decades, the mortality of lung cancer has dramatically increased, as shown in national death surveys. From 2000 to 2010, age specific incidence of lung cancer increased in most age groups. It is estimated that in 2015, the total number of new cases of lung cancer will reach 733 300. Conclusions Lung cancer is a serious disease affecting public health and an effective control strategy is needed in China. PMID:26273360

  2. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  3. Risk Profiling May Improve Lung Cancer Screening

    Cancer.gov

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  4. Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Li, Tsai-Chung; Lin, Jen-Jyh; Lai, Kuang-Chi; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2009-09-01

    Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10mg/kg of body weight) and doxorubicin (4mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4mg/kg of doxorubicin or with 10mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic. PMID:19303753

  5. Picosecond pulsed electric fields induce apoptosis in a cervical cancer xenograft.

    PubMed

    Jia, Jia; Xiong, Zheng-Ai; Qin, Qin; Yao, Chen-Guo; Zhao, Xiao-Zhen

    2015-03-01

    The aim of the present study was to evaluate the efficacy of picosecond pulsed electric fields (psPEF) on a cervical cancer xenograft. Human cervical cancer xenografts were established in nude mice by transplantation of HeLa cells, and the tumors were then treated with psPEF. The histological changes were observed by hematoxylin‑eosin staining and transmission electron microscopy. The rate of tumor cell apoptosis was determined using a terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay. The mitochondrial transmembrane potential of the tumor cells was detected by laser scanning confocal microscopy, and the activity of caspase‑3, ‑8, ‑9 and ‑12 was determined. The inhibitory rate seven days post‑psPEF treatment was also calculated. The results showed that exposure to psPEF led to an increased rate of apoptosis, collapse of mitochondrial transmembrane potential, and activation of caspases. The inhibitory rate was 9.11% at day 7. The results of the present study indicate that psPEF may induce apoptosis in a cervical cancer xenograft through the endoplasmic reticulum stress and caspase‑dependent signaling pathways. PMID:25405328

  6. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice.

    PubMed

    Zhu, Bingyan; Shang, Boyang; Li, Yi; Zhen, Yongsu

    2016-05-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe‑derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl‑H3 and acetyl‑H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl‑2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA‑induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well‑tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in

  7. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice

    PubMed Central

    ZHU, BINGYAN; SHANG, BOYANG; LI, YI; ZHEN, YONGSU

    2016-01-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe-derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl-H3 and acetyl-H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl-2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA-induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well-tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in cancer cells. As

  8. Tobacco Smoking and Lung Cancer

    PubMed Central

    Furrukh, Muhammad

    2013-01-01

    Tobacco smoking remains the most established cause of lung carcinogenesis and other disease processes. Over the last 50 years, tobacco refinement and the introduction of filters have brought a change in histology, and now adenocarcinoma has become the most prevalent subtype. Over the last decade, smoking also has emerged as a strong prognostic and predictive patient characteristic along with other variables. This article briefly reviews scientific facts about tobacco, and the process and molecular pathways involved in lung carcinogenesis in smokers and never-smokers. The evidence from randomised trials about tobacco smoking’s impact on lung cancer outcomes is also reviewed. PMID:23984018

  9. Mouse models for lung cancer.

    PubMed

    Kwon, Min-chul; Berns, Anton

    2013-04-01

    Lung cancer is a devastating disease and a major therapeutic burden with poor survival rates. It is responsible for 30% of all cancer deaths. Lung cancer is strongly associated with smoking, although some subtypes are also seen in non-smokers. Tumors in the latter group are mostly adenocarcinomas with many carrying mutations in the epidermal growth factor receptor (EGFR). Survival statistics of lung cancer are grim because of its late detection and frequent local and distal metastases. Although DNA sequence information from tumors has revealed a number of frequently occurring mutations, affecting well-known tumor suppressor genes and proto-oncogenes, many of the driver mutations remain ill defined. This is likely due to the involvement of numerous rather infrequently occurring driver mutations that are difficult to distinguish from the very large number of passenger mutations detected in smoking-related lung cancers. Therefore, experimental model systems are indispensable to validate putative driver lesions and to gain insight into their mechanisms of action. Whereas a large fraction of these analyzes can be performed in cell cultures in vitro, in many cases the consequences of the mutations have to be assessed in the context of an intact organism, as this is the context in which the Mendelian selection process of the tumorigenic process took place and the advantages of particular mutations become apparent. Current mouse models for cancer are very suitable for this as they permit mimicking many of the salient features of human tumors. The capacity to swiftly re-engineer complex sets of lesions found in human tumors in mice enables us to assess the contribution of defined combinations of lesions to distinct tumor characteristics such as metastatic behavior and response to therapy. In this review we will describe mouse models of lung cancer and how they are used to better understand the disease and how they are exploited to develop better intervention strategies

  10. Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies.

    PubMed

    Stein, Andrew P; Swick, Adam D; Smith, Molly A; Blitzer, Grace C; Yang, Robert Z; Saha, Sandeep; Harari, Paul M; Lambert, Paul F; Liu, Cheng Z; Kimple, Randall J

    2015-05-01

    Head and neck squamous cell carcinoma (HNSCC) remains a challenging cancer to treat with overall 5-year survival on the order of 50-60%. Therefore, predictive biomarkers for this disease would be valuable to provide more effective and individualized therapeutic approaches for these patients. While prognostic biomarkers such as p16 expression correlate with outcome; to date, no predictive biomarkers have been clinically validated for HNSCC. We generated xenografts in immunocompromised mice from six established HNSCC cell lines and evaluated response to cisplatin, cetuximab, and radiation. Tissue microarrays were constructed from pre- and posttreatment tumor samples derived from each xenograft experiment. Quantitative immunohistochemistry was performed using a semiautomated imaging and analysis platform to determine the relative expression of five potential predictive biomarkers: epidermal growth factor receptor (EGFR), phospho-EGFR, phospho-Akt, phospho-ERK, and excision repair cross-complementation group 1 (ERCC1). Biomarker levels were compared between xenografts that were sensitive versus resistant to a specific therapy utilizing a two-sample t-test with equal standard deviations. Indeed the xenografts displayed heterogeneous responses to each treatment, and we linked a number of baseline biomarker levels to response. This included low ERCC1 being associated with cisplatin sensitivity, low phospho-Akt correlated with cetuximab sensitivity, and high total EGFR was related to radiation resistance. Overall, we developed a systematic approach to identifying predictive biomarkers and demonstrated several connections between biomarker levels and treatment response. Despite these promising initial results, this work requires additional preclinical validation, likely involving the use of patient-derived xenografts, prior to moving into the clinical realm for confirmation among patients with HNSCC. PMID:25619980

  11. Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies

    PubMed Central

    Stein, Andrew P; Swick, Adam D; Smith, Molly A; Blitzer, Grace C; Yang, Robert Z; Saha, Sandeep; Harari, Paul M; Lambert, Paul F; Liu, Cheng Z; Kimple, Randall J

    2015-01-01

    Head and neck squamous cell carcinoma (HNSCC) remains a challenging cancer to treat with overall 5-year survival on the order of 50–60%. Therefore, predictive biomarkers for this disease would be valuable to provide more effective and individualized therapeutic approaches for these patients. While prognostic biomarkers such as p16 expression correlate with outcome; to date, no predictive biomarkers have been clinically validated for HNSCC. We generated xenografts in immunocompromised mice from six established HNSCC cell lines and evaluated response to cisplatin, cetuximab, and radiation. Tissue microarrays were constructed from pre- and posttreatment tumor samples derived from each xenograft experiment. Quantitative immunohistochemistry was performed using a semiautomated imaging and analysis platform to determine the relative expression of five potential predictive biomarkers: epidermal growth factor receptor (EGFR), phospho-EGFR, phospho-Akt, phospho-ERK, and excision repair cross-complementation group 1 (ERCC1). Biomarker levels were compared between xenografts that were sensitive versus resistant to a specific therapy utilizing a two-sample t-test with equal standard deviations. Indeed the xenografts displayed heterogeneous responses to each treatment, and we linked a number of baseline biomarker levels to response. This included low ERCC1 being associated with cisplatin sensitivity, low phospho-Akt correlated with cetuximab sensitivity, and high total EGFR was related to radiation resistance. Overall, we developed a systematic approach to identifying predictive biomarkers and demonstrated several connections between biomarker levels and treatment response. Despite these promising initial results, this work requires additional preclinical validation, likely involving the use of patient-derived xenografts, prior to moving into the clinical realm for confirmation among patients with HNSCC. PMID:25619980

  12. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines.

    PubMed

    Guo, Sheng; Qian, Wubin; Cai, Jie; Zhang, Likun; Wery, Jean-Pierre; Li, Qi-Xiang

    2016-08-15

    The Cancer Genome Atlas (TCGA) project has generated abundant genomic data for human cancers of various histopathology types and enabled exploring cancer molecular pathology per big data approach. We developed a new algorithm based on most differentially expressed genes (DEG) per pairwise comparisons to calculate correlation coefficients to be used to quantify similarity within and between cancer types. We systematically compared TCGA cancers, demonstrating high correlation within types and low correlation between types, thus establishing molecular specificity of cancer types and an alternative diagnostic method largely equivalent to histopathology. Different coefficients for different cancers in study may reveal that the degree of the within-type homogeneity varies by cancer types. We also performed the same calculation using the TCGA-derived DEGs on patient-derived xenografts (PDX) of different histopathology types corresponding to the TCGA types, as well as on cancer cell lines. We, for the first time, demonstrated highly similar patterns for within- and between-type correlation between PDXs and patient samples in a systematic study, confirming the high relevance of PDXs as surrogate experimental models for human diseases. In contrast, cancer cell lines have drastically reduced expression similarity to both PDXs and patient samples. The studies also revealed high similarity between some types, for example, LUSC and HNSCC, but low similarity between certain subtypes, for example, LUAD and LUSC. Our newly developed algorithm seems to be a practical diagnostic method to classify and reclassify a disease, either human or xenograft, with better accuracy than traditional histopathology. Cancer Res; 76(16); 4619-26. ©2016 AACR. PMID:27325646

  13. GPR171 expression enhances proliferation and metastasis of lung cancer cells

    PubMed Central

    Dho, So Hee; Lee, Kwang-Pyo; Jeong, Dongjun; Kim, Chang-Jin; Chung, Kyung-Sook; Kim, Ji Young; Park, Bum-Chan; Park, Sung Sup; Kim, Seon-Young; Kwon, Ki-Sun

    2016-01-01

    G protein-coupled receptors (GPCRs) are among the most significant therapeutic targets and some of them promote the growth and metastasis of cancer. Here, we show that an increase in the levels of GPR171 is crucial for lung cancer tumor progression in vitro and in vivo. Immunostaining of clinical samples indicated that GPR171 was overexpressed in 46.8% of lung carcinoma tissues. Depletion of GPR171 with an anti-GPR171 antibody decreased proliferation of lung carcinoma cells and attenuated tumor progression in a mouse xenograft model. Knockdown of GPR171 also inhibited migration and invasion of the lung cancer cell lines. Notably, inhibition of GPR171 synergistically enhanced the tumoricidal activity of an epidermal growth factor receptor (EGFR) inhibitor in lung cancer cells. These results indicate that GPR171 blockade is a promising antineoplastic strategy and provide a preclinical rationale for combined inhibition of GPR171 and EGFR. PMID:26760963

  14. Effects of Cancer-Associated EPHA3 Mutations on Lung Cancer

    PubMed Central

    2012-01-01

    Background Cancer genome sequencing efforts recently identified EPHA3, which encodes the EPHA3 receptor tyrosine kinase, as one of the most frequently mutated genes in lung cancer. Although receptor tyrosine kinase mutations often drive oncogenic conversion and tumorigenesis, the oncogenic potential of the EPHA3 mutations in lung cancer remains unknown. Methods We used immunoprecipitation, western blotting, and kinase assays to determine the activity and signaling of mutant EPHA3 receptors. A mutation-associated gene signature was generated from one large dataset, mapped to another training dataset with survival information, and tested in a third independent dataset. EPHA3 expression levels were determined by quantitative reverse transcription-polymerase chain reaction in paired normal-tumor clinical specimens and by immunohistochemistry in human lung cancer tissue microarrays. We assessed tumor growth in vivo using A549 and H1299 human lung carcinoma cell xenografts in mice (n = 7–8 mice per group). Tumor cell proliferation was measured by bromodeoxyuridine incorporation and apoptosis by multiple assays. All P values are from two-sided tests. Results At least two cancer-associated EPHA3 somatic mutations functioned as dominant inhibitors of the normal (wild type) EPHA3 protein. An EPHA3 mutation–associated gene signature that was associated with poor patient survival was identified. Moreover, EPHA3 gene copy numbers and/or expression levels were decreased in tumors from large cohorts of patients with lung cancer (eg, the gene was deleted in 157 of 371 [42%] primary lung adenocarcinomas). Reexpression of wild-type EPHA3 in human lung cancer lines increased apoptosis by suppression of AKT activation in vitro and inhibited the growth of tumor xenografts (eg, for H1299 cells, mean tumor volume with wild-type EPHA3 = 437.4mm3 vs control = 774.7mm3, P < .001). Tumor-suppressive effects of wild-type EPHA3 could be overridden in trans by dominant negative EPHA3

  15. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  16. Lung Cancer Staging and Prognosis.

    PubMed

    Woodard, Gavitt A; Jones, Kirk D; Jablons, David M

    2016-01-01

    The seventh edition of the non-small cell lung cancer (NSCLC) TNM staging system was developed by the International Association for the Staging of Lung Cancer (IASLC) Lung Cancer Staging Project by a coordinated international effort to develop data-derived TNM classifications with significant survival differences. Based on these TNM groupings, current 5-year survival estimates in NSLCC range from 73 % in stage IA disease to 13 % in stage IV disease. TNM stage remains the most important prognostic factor in predicting recurrence rates and survival times, followed by tumor histologic grade, and patient sex, age, and performance status. Molecular prognostication in lung cancer is an exploding area of research where interest has moved beyond TNM stage and into individualized genetic tumor analysis with immunohistochemistry, microarray, and mutation profiles. However, despite intense research efforts and countless publications, no molecular prognostic marker has been adopted into clinical use since most fail in subsequent cross-validation with few exceptions. The recent interest in immunotherapy for NSCLC has identified new biomarkers with early evidence that suggests that PD-L1 is a predictive marker of a good response to new immunotherapy drugs but a poor prognostic indicator of overall survival. Future prognostication of outcomes in NSCLC will likely be based on a combination of TNM stage and molecular tumor profiling and yield more precise, individualized survival estimates and treatment algorithms. PMID:27535389

  17. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  18. Atmospheric pollution and lung cancer.

    PubMed Central

    Doll, R

    1978-01-01

    Lung cancer is consistently more common in urban areas than in rural. The excess cannot be accounted for by specific occupational hazards but some of it might be due to the presence of carcinogens in urban air. The excess cannot be wholly due to such agents, because the excess in nonsmokers is small and variable. Cigarette consumption has also been greater in urban areas, but it is difficult to estimate how much of the excess it can account for. Occupational studies confirm that pollutants present in town air are capable of causing lung cancer in man and suggest that the pollutants and cigarette smoke act synergistically. The trends in the mortality from lung cancer in young and middle-aged men in England and Wales provide uncertain evidence but support the belief that atmospheric pollution has contributed to the production of the disease. In the absence of cigarette smoking, the combined effect of all atmospheric carcinogens is not responsible for more than about 5 cases of lung cancer per 100,000 persons per year in European populations. PMID:648488

  19. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGESBeta

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  20. Lung cancer screening: from imaging to biomarker

    PubMed Central

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential curative therapy is surgical resection of early stage lung cancer. Therefore, early detection of lung cancer could potentially increase the chance of cure by surgery and underlines the importance of screening and detection of lung cancer. In the past fifty years, screening of lung cancer by chest X-Ray (CXR), sputum cytology, computed tomography (CT), fluorescence endoscopy and low-dose spiral CT (LDCT) has not improved survival except for the recent report in 2010 by the National Lung Screening Trial (NLST), which showed a 20 percent mortality reduction in high risk participants screened with LDCT compared to those screened with CXRs. Furthermore, serum biomarkers for detection of lung cancer using free circulating DNA and RNA, exosomal microRNA, circulating tumor cells and various lung cancer specific antigens have been studied extensively and novel screening methods are being developed with encouraging results. The history of lung cancer screening trials using CXR, sputum cytology and LDCT, as well as results of trials involving various serum biomarkers, are reviewed herein. PMID:24252206

  1. Lung cancer screening: from imaging to biomarker.

    PubMed

    Xiang, Dong; Zhang, Bicheng; Doll, Donald; Shen, Kui; Kloecker, Goetz; Freter, Carl

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential curative therapy is surgical resection of early stage lung cancer. Therefore, early detection of lung cancer could potentially increase the chance of cure by surgery and underlines the importance of screening and detection of lung cancer. In the past fifty years, screening of lung cancer by chest X-Ray (CXR), sputum cytology, computed tomography (CT), fluorescence endoscopy and low-dose spiral CT (LDCT) has not improved survival except for the recent report in 2010 by the National Lung Screening Trial (NLST), which showed a 20 percent mortality reduction in high risk participants screened with LDCT compared to those screened with CXRs. Furthermore, serum biomarkers for detection of lung cancer using free circulating DNA and RNA, exosomal microRNA, circulating tumor cells and various lung cancer specific antigens have been studied extensively and novel screening methods are being developed with encouraging results. The history of lung cancer screening trials using CXR, sputum cytology and LDCT, as well as results of trials involving various serum biomarkers, are reviewed herein. PMID:24252206

  2. [Geographic spreading of lung cancer in Azerbaijan].

    PubMed

    Soltanov, A A

    2009-01-01

    Lung cancer is the second most common cancer and the leading cause of cancer death for both men and women. The impact of geographic as well as of exogenous factor and factors of risk, life style and environment play an important role in etiology of lung cancer. Geographic spread of lung cancer data in literature is fragmentary. The limited existing literature does not report a consistent story of geographic variation in Azerbaijan for the incidence associated with lung cancer. The aim of this study was to evaluate the impact of geographic variation on spread of lung cancer in Azerbaijan. Frequency of lung cancer in various regions of Azerbaijan; different histological types, sex, age and particular risk factors were investigated. It was revealed that epidermoid cancer was the most common histological type in all regions. The highest rate of epidermoid cancer 230 (55.56%) was revealed in industrial regions and industrial cities (Baku and Sumgait). The lowest rate of lung cancer was found in mountain region 12 (3.76%). Smoking and drinking alcohol increases risk of epidermoid cancer (41.2% of patients smoke and drink alcohol). The highest morbidity (13.55 per 100,000 population) and mortality (0.11) rates from lung cancer were observed in industrial regions. Analyses revealed that different endogenous and exogenous factors are associated with lung cancer. PMID:19202230

  3. Guidance molecules in lung cancer

    PubMed Central

    Nasarre, Patrick; Potiron, Vincent; Drabkin, Harry

    2010-01-01

    Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed. PMID:20139699

  4. Curcumin-ER Prolonged Subcutaneous Delivery for the Treatment of Non-Small Cell Lung Cancer.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Gdowski, Andrew; Helson, Lawrence; Bouchard, Annie; Majeed, Muhammed; Vishwanatha, Jamboor K

    2016-04-01

    Non-small-cell lung cancer therapy is a challenge due to poor prognosis and low survival rate. There is an acute need for advanced therapies having higher drug efficacy, low immunogenicity and fewer side effects which will markedly improve patient compliance and quality of life of cancer patients. The purpose of this study was to develop a novel hybrid curcumin nanoformulation (Curcumin-ER) and evaluate the therapeutic efficacy of this formulation on a non-small cell lung cancer xenograft model. Use of curcumin, a natural anticancer agent, is majorly limited due to its poor aqueous solubility and hence it's low systemic bioavailability. In this paper, we carried out the nanoformulation of Curcumin-ER, optimized the formulation process and determined the anticancer effects of Curcumin-ER against human A549 non-small cell lung cancer using in vitro and in vivo studies. Xenograft tumors in nude mice were treated with 20 mg/kg subcutaneous injection of Curcumin-ER and liposomal curcumin (Lipocurc) twice a week for seven weeks. Results showed that tumor growth was suppressed by 52.1% by Curcumin-ER treatment and only 32.2% by Lipocurc compared to controls. Tumor sections were isolated from murine xenografts and histology and immunohistochemistry was performed. A decrease in expression of NFκB-p65 subunit and proliferation marker, Ki-67 was observed in treated tumors. In addition, a potent anti-angiogenic effect, characterized by reduced expression of annexin A2 protein, was observed in treated tumors. These results establish the effectiveness of Curcumin-ER in regressing human non-small cell lung cancer growth in the xenograft model using subcutaneous route of administration. The therapeutic efficacy of Curcumin-ER highlights the potential of this hybrid nanoformulation in treating patients with non-small cell lung cancer. PMID:27301194

  5. Lung cancer treatment outcomes in recipients of lung transplant

    PubMed Central

    Du, Lingling; Pennell, Nathan A.; Elson, Paul

    2015-01-01

    Background Lung transplant recipients develop lung cancer more commonly than the general population. The best treatment approach for these patients is unclear. The goal of this study is to evaluate treatment outcomes in this population. Methods We used the Cleveland Clinic lung transplant database to identify patients diagnosed with lung cancer at the time of or after lung transplant. Transplant and lung cancer-related data were retrospectively reviewed. Results Among 847 patients underwent lung transplant between 2005 and 2013, 17 (2%) were diagnosed with lung cancer and included. Median age was 61 (range, 48–70) years. Majority were stage I/II (n=11), one had stage IIIA, five had stage IV. Non-small cell lung cancer (NSCLC) were more common than small cell lung cancer (SCLC) (n=15 vs. 2). Curative treatment was performed as lobectomy in native lung (n=1), and radiation in transplanted lung (n=2). Chemotherapy was given in 10 patients, primarily carboplatin-based doublets with docetaxel, pemetrexed, or etoposide. Six of these received palliative chemotherapy for either metastases at diagnosis (n=3) or recurrence after early stage disease (n=3). Except for one patient with complete response, all others had progressive disease following palliative chemotherapy. Overall, patients who received chemotherapy had a median survival of 7.5 months from the initiation of chemotherapy, but 30% developed grade 5 sepsis. Median survival for stage I–IIIA and stage IV were 23.2 and 2.5 months respectively. Conclusions Lung cancer in lung transplant recipients carries various clinical courses. Patients with metastatic disease have substantial toxicities from chemotherapy and poor survival. Early stage patients should be offered treatment with modified dosages to decrease the risk of severe toxicities. PMID:26798588

  6. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  7. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  8. Lung cancer screening and management.

    PubMed

    Jones, G S; Baldwin, D R

    2015-12-01

    Deaths from lung cancer are greater than for any other type of malignancy. Many people present with advanced stage cancer at diagnosis and survival is limited. Low radiation dose CT (LDCT) screening appears to offer part of the solution to this. The US National Lung Screening Trial (NLST) showed a 20% reduction in cancer related mortality and a 6.7% reduction in all cause mortality in patients who had LDCT compared to chest X-ray. Lung Cancer screening is now being implemented in the US using the NLST screening criteria but many questions remain about the details of the methodology of screening and its cost effectiveness. Many of these questions are being answered by ongoing European trials that are reporting their findings. In this review we objectively analyse current research evidence and explore the issues that need to be resolved before implementation, including technical considerations, selection criteria and effective nodule management protocols. We discuss the potential barriers that will be faced when beginning a national screening programme and possible solutions to them. PMID:26605556

  9. Biological considerations in lung cancer.

    PubMed

    Almand, B; Carbone, D P

    2001-01-01

    Our understanding of lung cancer biology has rapidly expanded in recent years. Lung cancer, unlike most human cancers, can be traced to an environmental risk factor in the majority of cases, and this fact is reflected in the vast number of genetic alterations discovered in lung tumors whose pathogenesis is believed to be mediated by carcinogen exposure. The discovery of these alterations has led to a greater understanding of tumor development. The dramatic progress in the understanding of the genetic and molecular basis of oncogenesis and the induction of immunity has led to a rejuvenation of efforts to apply this new knowledge to this common and refractory disease. Further, the resurgent interest in cancer immunology and tumor-host interactions holds promise for the development of new approaches to treatment based on harvesting the immune systems ability to recognize these alterations. Hopefully, this understanding will lead to novel approaches with real and convincing clinical efficacy once some of these strategies are tested in carefully performed randomized clinical trials with appropriate power to detect meaningful differences. PMID:11224984

  10. Phosphoproteomics and Lung Cancer Research

    PubMed Central

    López, Elena; Cho, William C. S.

    2012-01-01

    Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed. PMID:23202899

  11. Lung cancer in pregnancy.

    PubMed

    Holzmann, Kornelia; Kropfmüller, Roland; Schinko, Herwig; Bogner, Stephan; Fellner, Franz; Arzt, Wolfgang; Lamprecht, Bernd

    2015-08-01

    In the 26th week of gestation, a 29-year-old pregnant office employee was referred to the pulmonary department of Linz General Hospital (AKH) under the suspicion of tuberculosis. She complained of a cough with intermittent hemoptysis and pain in the thoracic spine from which she had been suffering the past 9 weeks. A plain chest X-ray showed a dense infiltrate on the right side and multiple smaller shadows in both lungs. Laboratory testing revealed anemia, leukocytosis, and an increase of C-reactive protein. All tests for tuberculosis were negative.A bronchoscopy was performed and biopsies were taken from the right upper and middle lobe. The histopathological examination found cells of an adenocarcinoma. A magnetic resonance imaging (MRI) revealed a large tumor and surrounding atelectasis were seen in the right upper and middle lobe, as well as multiple intrapulmonary metastases in both lungs. In addition, not only metastases in the thoracic spine (level Th2/3) but also at other osseous locations and multiple cerebral metastases were detected. The patient received one cycle of chemotherapy consisting of docetaxel and carboplatin (AUC5) in the 27th week of gestation. Additional radiotherapy was applied to the involved thoracic spine. Due to positive epidermal growth factor receptor mutation, therapy with gefitinib 250 mg/day was started 2 days after a Caesarean section (preceded by treatment for fetal lung maturation). A healthy girl was delivered in the 30th week of pregnancy. Staging with computed tomography (CT) after delivery revealed an unstable fracture of Th2 with compression of the spinal cord. Neurosurgery was performed, consisting of a ventral corporectomy of Th1-2 followed by an anterior and posterior osteosynthesis for stabilization. The patient was discharged without neurological deficits within 1 week. Subsequent treatment with gefitinib improved the performance status of the patient, and CT scans of the chest and an MRI of the brain showed the size of

  12. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  13. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells.

    PubMed

    Hoeppner, Luke H; Wang, Ying; Sharma, Anil; Javeed, Naureen; Van Keulen, Virginia P; Wang, Enfeng; Yang, Ping; Roden, Anja C; Peikert, Tobias; Molina, Julian R; Mukhopadhyay, Debabrata

    2015-01-01

    We sought to determine whether Dopamine D2 Receptor (D2R) agonists inhibit lung tumor progression and identify subpopulations of lung cancer patients that benefit most from D2R agonist therapy. We demonstrate D2R agonists abrogate lung tumor progression in syngeneic (LLC1) and human xenograft (A549) orthotopic murine models through inhibition of tumor angiogenesis and reduction of tumor infiltrating myeloid derived suppressor cells. Pathological examination of human lung cancer tissue revealed a positive correlation between endothelial D2R expression and tumor stage. Lung cancer patients with a smoking history exhibited greater levels of D2R in lung endothelium. Our results suggest D2R agonists may represent a promising individualized therapy for lung cancer patients with high levels of endothelial D2R expression and a smoking history. PMID:25226814

  14. Dopamine D2 Receptor Agonists Inhibit Lung Cancer Progression by Reducing Angiogenesis and Tumor Infiltrating Myeloid Derived Suppressor Cells

    PubMed Central

    Hoeppner, Luke H.; Wang, Ying; Sharma, Anil; Javeed, Naureen; Van Keulen, Virginia P.; Wang, Enfeng; Yang, Ping; Roden, Anja C.; Peikert, Tobias; Molina, Julian R.; Mukhopadhyay, Debabrata

    2014-01-01

    We sought to determine whether Dopamine D2 Receptor (D2R) agonists inhibit lung tumor progression and identify subpopulations of lung cancer patients that benefit most from D2R agonist therapy. We demonstrate D2R agonists abrogate lung tumor progression in syngeneic (LLC1) and human xenograft (A549) orthotopic murine models through inhibition of tumor angiogenesis and reduction of tumor infiltrating myeloid derived suppressor cells. Pathological examination of human lung cancer tissue revealed a positive correlation between endothelial D2R expression and tumor stage. Lung cancer patients with a smoking history exhibited greater levels of D2R in lung endothelium. Our results suggest D2R agonists may represent a promising individualized therapy for lung cancer patients with high levels of endothelial D2R expression and a smoking history. PMID:25226814

  15. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    PubMed Central

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  16. Famitinib exerted powerful antitumor activity in human gastric cancer cells and xenografts

    PubMed Central

    Ge, Sai; Zhang, Qiyue; He, Qiong; Zou, Jianling; Liu, Xijuan; Li, Na; Tian, Tiantian; Zhu, Yan; Gao, Jing; Shen, Lin

    2016-01-01

    Famitinib (SHR1020), a novel multi-targeted tyrosine kinase inhibitor, has antitumor activity against several solid tumors via targeting vascular endothelial growth factor receptor 2, c-Kit and platelet-derived growth factor receptor β. The present study investigated famitinib's activity against human gastric cancer cells in vitro and in vivo. Cell viability and apoptosis were measured, and cell cycle analysis was performed following famitinib treatment using 3-(4,5-dimethylthiazol −2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and western blotting. Subsequently, cluster of differentiation 34 staining was used to evaluate microvessel density. BGC-823-derived xenografts in nude mice were established to assess drug efficacy in vivo. Famitinib inhibited cell proliferation by inducing cell cycle arrest at the G2/M phase and caused cell apoptosis in a dose-dependent manner in gastric cancer cell lines. In BGC-823 xenograft models, famitinib significantly slowed tumor growth in vivo via inhibition of angiogenesis. Compared with other chemotherapeutics such as 5-fluorouracil, cisplatin or paclitaxel alone, famitinib exhibited the greatest tumor suppression effect (>85% inhibition). The present study demonstrated for the first time that famitinib has efficacy against human gastric cancer in vitro and in vivo, which may lay the foundations for future clinical trials. PMID:27602110

  17. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  18. Lung cancer: Biology and treatment options.

    PubMed

    Lemjabbar-Alaoui, Hassan; Hassan, Omer Ui; Yang, Yi-Wei; Buchanan, Petra

    2015-12-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  19. An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

    PubMed Central

    Cho, Sung-Yup; Kang, Wonyoung; Han, Jee Yun; Min, Seoyeon; Kang, Jinjoo; Lee, Ahra; Kwon, Jee Young; Lee, Charles; Park, Hansoo

    2016-01-01

    Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients’ tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine. PMID:26831452

  20. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  1. Lung cancer stem cells—characteristics, phenotype

    PubMed Central

    George, Rachel; Sethi, Tariq

    2016-01-01

    Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype. PMID:27413709

  2. Cryotherapy in Treating Patients With Lung Cancer That Has Spread to the Other Lung or Parts of the Body

    ClinicalTrials.gov

    2012-03-16

    Advanced Malignant Mesothelioma; Extensive Stage Small Cell Lung Cancer; Lung Metastases; Recurrent Malignant Mesothelioma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  3. Lung Cancer Awareness Week

    ERIC Educational Resources Information Center

    Glennon, Catherine; Laczko, Lori

    2003-01-01

    Smoking is the most preventable cause of death in our society. Tobacco use is responsible for nearly one in five deaths in the United States and the cause of premature death of approximately 2 million individuals in developed countries. Smoking accounts for at least 30% of all cancer deaths and is a major cause of heart disease, cerebrovascular…

  4. [Cannabis smoking and lung cancer].

    PubMed

    Underner, M; Urban, T; Perriot, J; de Chazeron, I; Meurice, J-C

    2014-06-01

    Cannabis is the most commonly smoked illicit substance in the world. It can be smoked alone in plant form (marijuana) but it is mainly smoked mixed with tobacco. The combined smoking of cannabis and tobacco is a common-place phenomenon in our society. However, its use is responsible for severe pulmonary consequences. The specific impact of smoking cannabis is difficult to assess precisely and to distinguish from the effect of tobacco. Marijuana smoke contains polycyclic aromatic hydrocarbons and carcinogens at higher concentration than tobacco smoke. Cellular, tissue, animal and human studies, and also epidemiological studies, show that marijuana smoke is a risk factor for lung cancer. Cannabis exposure doubles the risk of developing lung cancer. This should encourage clinicians to identify cannabis use and to offer patients support in quitting. PMID:25012035

  5. Bronchoplastic procedures for lung cancer.

    PubMed

    Naruke, T; Yoneyama, T; Ogata, T; Suemasu, K

    1977-06-01

    Twenty patients with lung cancer have undergone bronchoplastic procedures September, 1965, to June, 1976 in our hospital. Bronchoplastic procedures are considered to be indicated for early cases of hilar lung cancer rather than for somewhat advanced cases. Endoscopic examination and roentgenograms of the bronchial arteries are needed to delineate resectional lines of bronchus, the former for deciding the mucosal extent and the latter the intrabronchial extent of the tumor. The bronchoplastic procedures we adopted were free from the risks and dangers generally accompanying the operation, and there were no postoperative deaths. For the prevention of postoperative complications, careful attention to suture technique is needed, and postoperative bronchoscopic suction of intrabronchial secretions is absolutely necessary. These procedures assure good quality of life postoperatively and improvement in the survival rate by preserving pulmonary function, enhancing curability, and increasing the operative indications. These advantages warrant high evaluation of the operation. PMID:870767

  6. Unmasking the lung cancer epigenome.

    PubMed

    Belinsky, Steven A

    2015-01-01

    The reprogramming of the epigenome through silencing of genes and microRNAs by cytosine DNA methylation and chromatin remodeling is critical for the initiation and progression of lung cancer through affecting all major cell regulatory pathways. Importantly, the fact that epigenetic reprogramming is reversible by pharmacological agents has opened new avenues for clinical intervention. This review focuses on the tremendous progress made in elucidating genes and microRNAs that are epigenetically silenced in lung cancer and highlights how loss of function impacts cell phenotype and major signaling pathways. The article describes the utility of (a) an in vitro model using hTERT/Cdk4 immortalized human bronchial epithelial cell lines to identify genes and microRNAs silenced during premalignancy and (b) an in vivo orthotopic nude rat lung cancer model to evaluate response to epigenetic therapy. New insights regarding the advantage of aerosol delivery of demethylating agents and the concept of priming tumors for subsequent therapy are presented and discussed. PMID:25668024

  7. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    DOE PAGESBeta

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; Wang, Qin; Wen, Mingxin; Wang, Yuli; Yuan, Hongtu; Mao, Jian-Hua; Wei, Guangwei

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpressionmore » of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.« less

  8. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to Erlotinib via transcriptional regulation of EGFR

    SciTech Connect

    Wang, Yunshan; Zhang, Pengju; Liu, Ziming; Wang, Qin; Wen, Mingxin; Wang, Yuli; Yuan, Hongtu; Mao, Jian-Hua; Wei, Guangwei

    2014-11-21

    CUL4A has been proposed as oncogene in several types of human cancer, but its clinical significance and functional role in human non-small cell lung cancer (NSCLC) remain unclear. Expression level of CUL4A was examined by RT-PCR and Western blot. Forced expression of CUL4A was mediated by retroviruses, and CUL4A silencing by shRNAs expressing lentiviruses. Growth capacity of lung cancer cells was measured by MTT in vitro and tumorigenesis in vivo, respectively. We found that CUL4A was highly expressed in human lung cancer tissues and lung cancer cell lines, and this elevated expression positively correlated with disease progression and prognosis. Overexpression of CUL4A in human lung cancer cell lines increased cell proliferation, inhibited apoptosis, and subsequently conferred resistance to chemotherapy. On other hand, silencing CUL4A expression in NSCLC cells reduced proliferation, promoted apoptosis and resulted in tumor growth inhibition in cancer xenograft model. Mechanistically, we revealed CUL4A regulated EGFR transcriptional expression and activation, and subsequently activated AKT. Targeted inhibition of EGFR activity blocked these CUL4A induced oncogenic activities. In conclusion, our results highlight the significance of CUL4A in NSCLC and suggest that CUL4A could be a promising therapy target and a potential biomarker for prognosis and EGFR target therapy in NSCLC patients.

  9. Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles.

    PubMed

    Yalcin, Murat; Lin, Hung-Yun; Sudha, Thangirala; Bharali, Dhruba J; Meng, Ran; Tang, Heng-Yuan; Davis, Faith B; Stain, Steven C; Davis, Paul J; Mousa, Shaker A

    2013-06-01

    Tetraiodothyroacetic acid (tetrac) and its nanoparticle formulation (Tetrac NP) act at an integrin cell surface receptor to inhibit tumor cell proliferation and tumor-related angiogenesis. Human pancreatic cancer cell (PANC-1 and MPanc96) xenografts were established in nude mice, and the effects of tetrac versus Tetrac NP on tumor growth and tumor angiogenesis were determined. The in vitro effects of tetrac and Tetrac NP were also determined by reverse transcription polymerase chain reaction or immunoblot on gene expression or gene products relevant to cell cycle arrest, apoptosis, or angiogenesis. Tetrac and Tetrac NP reduced both PANC-1 tumor mass by 45-55 % and PANC-1 tumor hemoglobin content, a marker of angiogenesis, by 50-60 % (*P < 0.05) in treated groups vs. controls by treatment day 15. Comparable results were obtained with tetrac and Tetrac NP in suppressing tumor growth and tumor angiogenesis in MPanc96 xenografts. In vitro studies showed that tetrac and Tetrac NP caused accumulation of pro-apoptotic protein BcLx-s. Tetrac NP was more effective than tetrac in increasing cellular abundance of mRNAs of pro-apoptotic p53 and p21 and anti-angiogenesis thrombospondin 1 protein in PANC-1 and MPanc96 cancer cell lines. Tetrac NP noticeably decreased expression of EGFR and of anti-apoptosis gene XIAP; tetrac did not affect EGFR and increased XIAP mRNA in both MPanc96 and PANC-1. In conclusion, tetrac or Tetrac NP effectively inhibited human pancreatic xenograft growth and tumor angiogenesis via a plasma membrane receptor that downstream modulated cellular abundance of proteins or mRNAs relevant to apoptosis and angiogenesis. PMID:23456390

  10. Attitudes and Stereotypes in Lung Cancer versus Breast Cancer

    PubMed Central

    Sriram, N.

    2015-01-01

    Societal perceptions may factor into the high rates of nontreatment in patients with lung cancer. To determine whether bias exists toward lung cancer, a study using the Implicit Association Test method of inferring subconscious attitudes and stereotypes from participant reaction times to visual cues was initiated. Participants were primarily recruited from an online survey panel based on US census data. Explicit attitudes regarding lung and breast cancer were derived from participants’ ratings (n = 1778) regarding what they thought patients experienced in terms of guilt, shame, and hope (descriptive statements) and from participants’ opinions regarding whether patients ought to experience such feelings (normative statements). Participants’ responses to descriptive and normative statements about lung cancer were compared with responses to statements about breast cancer. Analyses of responses revealed that the participants were more likely to agree with negative descriptive and normative statements about lung cancer than breast cancer (P<0.001). Furthermore, participants had significantly stronger implicit negative associations with lung cancer compared with breast cancer; mean response times in the lung cancer/negative conditions were significantly shorter than in the lung cancer/positive conditions (P<0.001). Patients, caregivers, healthcare providers, and members of the general public had comparable levels of negative implicit attitudes toward lung cancer. These results show that lung cancer was stigmatized by patients, caregivers, healthcare professionals, and the general public. Further research is needed to investigate whether implicit and explicit attitudes and stereotypes affect patient care. PMID:26698307

  11. Attitudes and Stereotypes in Lung Cancer versus Breast Cancer.

    PubMed

    Sriram, N; Mills, Jennifer; Lang, Edward; Dickson, Holli K; Hamann, Heidi A; Nosek, Brian A; Schiller, Joan H

    2015-01-01

    Societal perceptions may factor into the high rates of nontreatment in patients with lung cancer. To determine whether bias exists toward lung cancer, a study using the Implicit Association Test method of inferring subconscious attitudes and stereotypes from participant reaction times to visual cues was initiated. Participants were primarily recruited from an online survey panel based on US census data. Explicit attitudes regarding lung and breast cancer were derived from participants' ratings (n = 1778) regarding what they thought patients experienced in terms of guilt, shame, and hope (descriptive statements) and from participants' opinions regarding whether patients ought to experience such feelings (normative statements). Participants' responses to descriptive and normative statements about lung cancer were compared with responses to statements about breast cancer. Analyses of responses revealed that the participants were more likely to agree with negative descriptive and normative statements about lung cancer than breast cancer (P<0.001). Furthermore, participants had significantly stronger implicit negative associations with lung cancer compared with breast cancer; mean response times in the lung cancer/negative conditions were significantly shorter than in the lung cancer/positive conditions (P<0.001). Patients, caregivers, healthcare providers, and members of the general public had comparable levels of negative implicit attitudes toward lung cancer. These results show that lung cancer was stigmatized by patients, caregivers, healthcare professionals, and the general public. Further research is needed to investigate whether implicit and explicit attitudes and stereotypes affect patient care. PMID:26698307

  12. ARHI (DIRAS3)-mediated autophagy-associated cell death enhances chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts

    PubMed Central

    Washington, M N; Suh, G; Orozco, A F; Sutton, M N; Yang, H; Wang, Y; Mao, W; Millward, S; Ornelas, A; Atkinson, N; Liao, W; Bast, R C; Lu, Z

    2015-01-01

    Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy. PMID:26247722

  13. [Innovation in Surgery for Advanced Lung Cancer].

    PubMed

    Nakano, Tomoyuki; Yasunori, Sohara; Endo, Shunsuke

    2016-07-01

    Thoracoscopic surgery can be one of less invasive surgical interventions for early stage lung cancer. Locally advanced lung cancer, however, cannot avoid aggressive procedures including pneumonectomy and/or extended combined resection of chest wall, aorta, esophagus, etc. for complete resection. Surgical approach even for advanced lung cancer can be less invasive by benefit from new anti-cancer treatment, innovated manipulations of bronchoplasty and angioplasty, and bench surgery( lung autotransplantation technique). We herein reviewed the strategy to minimize invasive interventions for locally advanced lung cancer, introducing 2 successful cases with advanced lung cancer. The 1st patient is a 62-year old man with centrally advanced lung cancer invading to mediastinum. Right upper sleeve lobectomy with one-stoma carinoplasty following induction chemoradiation therapy was successful. The operation time was 241 minutes. The performance status is good with no recurrence for 60 months after surgery. The 2nd is a 79-year old man with advanced lung cancer invading to the distal aortic arch. Left upper segmentectomy following thoracic endovascular aortic repair with stentgraft was successful with no extracorporeal circulation. The operation time was 170 minutes. The performance status is good with no recurrence for 30 months after surgery. The invasiveness of surgical interventions for local advanced lung cancer can be minimized by innovated device and new anti-cancer drugs. PMID:27440037

  14. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    SciTech Connect

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  15. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  16. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study.

    PubMed

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis activation in lung cancer cells, which was evidenced by TRAIL/death receptor-5 (DR5) induction and caspase-8 activation. The caspase-8 inhibitor or TRAIL/DR5 siRNA knockdown alleviated ONC201's cytotoxicity against lung cancer cells. Molecularly, ONC201 in-activated Akt-S6K1 and Erk signalings in lung cancer cells, causing Foxo3a nuclear translocation. For the in vivo studies, intraperitoneal injection of ONC201 at well-tolerated doses significantly inhibited xenografted A549 tumor growth in severe combined immunodeficient (SCID) mice. Further, ONC201 administration induced TRAIL/DR5 expression, yet inactivated Akt-S6K1 and Erk in tumor tissues. These results of the study demonstrates the potent anti-lung cancer activity by ONC201. PMID:27626799

  17. A murine xenograft model for a transmissible cancer in Tasmanian devils.

    PubMed

    Kreiss, A; Tovar, C; Obendorf, D L; Dun, K; Woods, G M

    2011-03-01

    The number of Tasmanian devils in the wild is rapidly declining owing to a transmissible cancer, devil facial tumor disease (DFTD). Although progress has been made to understand the spread of this disease, crucial research on the pathogenesis of DFTD has been limited because of the threatened status of the host species. Here, the authors describe the development of a NOD/SCID (nonobese diabetic / severe combined immunodeficiency) mouse model that reproduces DFTD and provides a much-needed model to undertake studies into this intriguing transmissible cancer. Histologically, the DFTD produced in NOD/SCID mice (xenografted DFTD) was indistinguishable from the DFTD identified in Tasmanian devils. At the protein level, all xenografted DFTD tumors expressed periaxin, a marker that confirmed the diagnosis of DFTD. The karyotype of DFTD in NOD/SCID mice reproduced similar chromosomal alterations as seen in diseased devils. Furthermore, each NOD/SCID mouse inoculated with cultured DFTD tumor cells developed tumors, whereas DFTD did not develop in any of the inoculated immune-competent BALB/c mice. PMID:20861503

  18. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft.

    PubMed

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-16

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy. PMID:23868030

  19. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft

    NASA Astrophysics Data System (ADS)

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-01

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy.

  20. Lung Cancer and Interstitial Lung Diseases: A Systematic Review

    PubMed Central

    Archontogeorgis, Kostas; Steiropoulos, Paschalis; Tzouvelekis, Argyris; Nena, Evangelia; Bouros, Demosthenes

    2012-01-01

    Interstitial lung diseases (ILDs) represent a heterogeneous group of more than two hundred diseases of either known or unknown etiology with different pathogenesis and prognosis. Lung cancer, which is the major cause of cancer death in the developed countries, is mainly attributed to cigarette smoking and exposure to inhaled carcinogens. Different studies suggest a link between ILDs and lung cancer, through different pathogenetic mechanisms, such as inflammation, coagulation, dysregulated apoptosis, focal hypoxia, activation, and accumulation of myofibroblasts as well as extracellular matrix accumulation. This paper reviews current evidence on the association between lung cancer and interstitial lung diseases such as idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis, dermatomyositis/polymyositis, rheumatoid arthritis, systemic lupus erythematosus, and pneumoconiosis. PMID:22900168

  1. Year-in-Review of Lung Cancer

    PubMed Central

    2012-01-01

    In the last several years, we have made slow but steady progress in understanding molecular biology of lung cancer. This review is focused on advances in understanding the biology of lung cancer that have led to proof of concept studies on new therapeutic approaches. The three selected topics include genetics, epigenetics and non-coding RNA. This new information represents progress in the integration of molecular mechanisms that to identify more effective ways to target lung cancer. PMID:23166546

  2. Curbing the burden of lung cancer.

    PubMed

    Urman, Alexandra; Hosgood, H Dean

    2016-06-01

    Lung cancer contributes substantially to the global burden of disease and healthcare costs. New screening modalities using low-dose computerized tomography are promising tools for early detection leading to curative surgery. However, the screening and follow-up diagnostic procedures of these techniques may be costly. Focusing on prevention is an important factor to reduce the burden of screening, treatment, and lung cancer deaths. The International Agency for Research on Cancer has identified several lung carcinogens, which we believe can be considered actionable when developing prevention strategies. To curb the societal burden of lung cancer, healthcare resources need to be focused on early detection and screening and on mitigating exposure(s) of a person to known lung carcinogens, such as active tobacco smoking, household air pollution (HAP), and outdoor air pollution. Evidence has also suggested that these known lung carcinogens may be associated with genetic predispositions, supporting the hypothesis that lung cancers attributed to differing exposures may have developed from unique underlying genetic mechanisms attributed to the exposure of interest. For instance, smokingattributed lung cancer involves novel genetic markers of risk compared with HAP-attributed lung cancer. Therefore, genetic risk markers may be used in risk stratification to identify subpopulations that are at a higher risk for developing lung cancer attributed to a given exposure. Such targeted prevention strategies suggest that precision prevention strategies may be possible in the future; however, much work is needed to determine whether these strategies will be viable. PMID:27178304

  3. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice.

    PubMed

    Liu, Yi-Zhen; Yang, Chih-Min; Chen, Jen-Yin; Liao, Junn-Wang; Hu, Miao-Lin

    2015-06-01

    This study aimed to investigate the anti-metastatic activity of α-carotene (AC) in Lewis lung carcinoma (LLC) and in combination with taxol in LLC-xenografted C57BL/6 mice. Cell culture studies reveal that AC significantly inhibited invasion, migration and activities of matrix metalloproteinase (MMP)-2, -9 and urokinase plasminogen activator but increased protein expression of tissue inhibitor of MMP (TIMP)-1, -2 and plasminogen activator inhibitor (PAI)-1. These effects of AC are similar to those of β-carotene at the same concentration (2.5 μM). AC (2.5 μM) also significantly inhibited integrin β1-mediated phosphorylation of focal adhesion kinase (FAK) which then decreased the phosphorylation of MAPK family. Findings from the animal model reveal that AC treatment (5m g/kg) alone significantly decreased lung metastasis without affecting primary tumor growth, whereas taxol treatment (6 mg/kg) alone exhibited significant inhibition on both actions, as compared to tumor control group. AC treatment alone significantly decreased protein expression of integrin β1 but increased protein expression of TIMP-1 and PAI-1 without affecting protein expression of TIMP-2 and phosphorylation of FAK in lung tissues, whereas taxol treatment alone significantly increased protein expression of TIMP-1, PAI-1 and TIMP-2 but decreased protein expression of integrin β1 and phosphorylation of FAK. The combined treatment produced stronger actions on lung metastasis and lung tissues protein expression of TIMP-1, TIMP-2 and PAI-1. Overall, we demonstrate that AC effectively inhibits LLC metastasis and suppresses lung metastasis in combination with taxol in LLC-bearing mice, suggesting that AC could be used as an anti-metastatic agent or as an adjuvant for anti-cancer drugs. PMID:25736483

  4. Chemotherapy for lung cancers: here to stay.

    PubMed

    Kris, Mark G; Hellmann, Matthew D; Chaft, Jamie E

    2014-01-01

    Four decades of clinical research document the effectiveness of chemotherapy in patients with lung cancers. Chemotherapeutic agents can improve lung cancer symptoms, lengthen life in most patients with lung cancers, and enhance curability in individuals with locoregional disease when combined with surgery or irradiation. Chemotherapy's effectiveness is enhanced in patients with EGFR-mutant and ALK-positive lung cancers and can "rescue" individuals whose oncogene-driven cancers have become resistant to targeted agents. As immunotherapies become part of the therapeutic armamentarium for lung cancers, chemotherapeutic drugs have the potential to modulate the immune system to enhance the effectiveness of immune check point inhibitors. Even in this era of personalized medicine and targeted therapies, chemotherapeutic agents remain essential components in cancer care. PMID:24857127

  5. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  6. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.

    PubMed

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong

    2015-11-01

    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate. PMID:26044560

  7. TNM classification for lung cancer.

    PubMed

    Watanabe, Yoh

    2003-12-01

    The international tumor-node-metastasis (TNM) staging system is the "international language" in cancer diagnosis and treatment. Six revisions of the TNM staging system for lung cancer have been repeated over the past 35 years after the beginning of UICC-TNM classification in 1968. The 1997 revision for lung cancer has undergone an extensive correction for many deficiencies of the old staging system. As a result, the new staging system appears to be a great improvement over previous editions. There are, however, still some controversies and proposals for revising, even when the new staging system is applied in daily diagnoses and treatment for lung cancer. In the present paper, these problems are presented and discussed. Main subjects for discussions are as follows: (1). Since the 2nd revision, T1 and T2 lesions were divided at the border of a 3 cm tumor size. Is 3 cm diameter an appropriate cut-off point for dividing T1 and T2 lesions? (2). Is it valid to subdivide T1 and T2 lesions into each A and B? (3). Is it appropriate to down-stage all of T3N0M0 to stage IIB, because there exists heterogeneity of T3? (4). Definitions of T4 lesion. (5). Controversies in three kinds of lymph node maps. Especially, where there is a boundary between N1 and N2 station in each map? (6) How to classify separate tumor nodules (STN) in the same lobe, and in the non-primary lobe. (7) Controversy exists concerning the validity of present stage grouping, because there are no significant difference of survivals between IB and IIA, IIA and IIB in most reports and also between T3N0M0 and T3N1M0 in some reports. PMID:15003094

  8. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients. PMID:26483336

  9. High-throughput Phenotyping of Lung Cancer Somatic Mutations.

    PubMed

    Berger, Alice H; Brooks, Angela N; Wu, Xiaoyun; Shrestha, Yashaswi; Chouinard, Candace; Piccioni, Federica; Bagul, Mukta; Kamburov, Atanas; Imielinski, Marcin; Hogstrom, Larson; Zhu, Cong; Yang, Xiaoping; Pantel, Sasha; Sakai, Ryo; Watson, Jacqueline; Kaplan, Nathan; Campbell, Joshua D; Singh, Shantanu; Root, David E; Narayan, Rajiv; Natoli, Ted; Lahr, David L; Tirosh, Itay; Tamayo, Pablo; Getz, Gad; Wong, Bang; Doench, John; Subramanian, Aravind; Golub, Todd R; Meyerson, Matthew; Boehm, Jesse S

    2016-08-01

    Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer. PMID:27478040

  10. Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy

    SciTech Connect

    Yang, Heekyoung; Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710; Cancer Stem Cell Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 ; Yoon, Su Jin; Jin, Juyoun; Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710; Cancer Stem Cell Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 ; Choi, Seung Ho; Seol, Ho Jun; Lee, Jung-Il; and others

    2011-03-04

    Research highlights: {yields} The most important therapeutic tool in brain metastasis is radiation therapy. {yields} Radiosensitivity of cancer cells was enhanced with treatment of Chk1 inhibitor. {yields} Depletion of Chk1 in cancer cells showed an enhancement of sensitivity to radiation. {yields} Chk1 can be a good target for enhancement of radiosensitivity. -- Abstract: The most important therapeutic tool in brain metastasis is radiation therapy. However, resistance to radiation is a possible cause of recurrence or treatment failure. Recently, signal pathways about DNA damage checkpoints after irradiation have been noticed. We investigated the radiosensitivity can be enhanced with treatment of Chk1 inhibitor, AZD7762 in lung cancer cell lines and xenograft models of lung cancer brain metastasis. Clonogenic survival assays showed enhancement of radiosensitivity with AZD7762 after irradiation of various doses. AZD7762 increased ATR/ATM-mediated Chk1 phosphorylation and stabilized Cdc25A, suppressed cyclin A expression in lung cancer cell lines. In xenograft models of lung cancer (PC14PE6) brain metastasis, AZD7762 significantly prolonged the median survival time in response to radiation. Depletion of Chk1 using shRNA also showed an enhancement of sensitivity to radiation in PC14PE6 cells. The results of this study support that Chk1 can be a good target for enhancement of radiosensitivity.