Science.gov

Sample records for lymphopoiesis

  1. Modulation of lymphopoiesis

    SciTech Connect

    Rosse, C.

    1991-01-01

    During the current project period we have demonstrated correspondence between animal models and in vitro models of modulated lymphopoiesis. Our finding that G-CSF, a growth factor for neutrophil granulocytes, suppresses lymphopoiesis in long term bone marrow cultures (LTBMC) has important implications both for understanding the regulatory mechanisms of hemopoiesis and for clinical use of recombinant growth factors that are beginning to be widely used for the treatment of a variety of diseases. During the present project period we adopted LTBMC systems developed by others for the purposes of our specific aims. Also we developed a novel long term culture system for NK cells. The discovery of a new growth factor, O-CSF, specific for osteoclasts and the establishment of a clonal assay system that provides evidence for a new class of hemopoietic progenitor cells, the osteoclast progenitor, are important contributions. Given the important role T cells play in the immune response and in the regulation of other lymphohemopoietic cell lineages through the lymphokines they secrete, the need for an in vitro system that lends itself to the analysis of T cell maturation and to the testing of factors that may adversely affect T lymphopoiesis cannot be overemphasized. We believe that we can exploit an advantageous set of circumstances that present an excellent opportunity for initiating a focused experimental program for developing such a system. By a systematic and selective analysis of molecular interactions between heterogenous thymic stromal cells and T cell progenitors at different stages of maturation, it will be possible for our program to define the complement of critical cellular interactions on which successive stages of T lymphopoiesis depend. The experiments we propose will lay a rational foundation for the development of a long term culture system for T lymphopoiesis. 24 refs., 7 figs.

  2. Modulation of lymphopoiesis

    SciTech Connect

    Rosse, C.

    1990-01-01

    Ongoing experiments contribute to the four specific aims in our current 3-year project period studying lymphopoiesis using CE mammary adenocarcinoma (CE maca) mice. Specific Aim 1: Function of Bone Marrow Stroma in CE Maca Bearing Mice. We have concluded that bone marrow stromal cells from tumor bearing animals are as effective as bone marrow stromal cells from normal animals at supporting B lymphopoiesis in culture. If stromal cell disfunction occurs in tumor bearing animals, the effect is not long lasting. Specific Aim 2: Factors Elaborated by CE Maca. Conditioned medium from CE maca cultures induces bone resorbing activity in bone organ cultures. We have identified a 32 kDa protein that meets the criteria for an osteoclast specific growth factor in this medium. However, we have also found that even though an osteoclast specific growth factor exists, a growth factor whose primary targets are granulocyte precursors will also stimulate osteoclast activity. Specific Aim 3: In Vitro Systems for Investigating Modulation of NK Lymphopoiesis by CE Maca. CE maca is shown to inhibit NK all production as well as B all production. In the course of the these experiments, we have established conditions for enriching NK precursors and have established a prototype long term bone marrow culture system which shows NK cell production. Specific Aim 4: Relationship Between Myclogenic and Intrathymic T Cell Precursors. There is evidence for a stream of T all maturation in both host (or intrathymic) cells and non-host (both hematogenous and intrathymic) cells. If thymic atrophy is induced by cortisone (a depopulation equivalent to that caused by 1000 rad) our data conclusively show thymic recovery is effected almost exclusively by intrathymic cells. This assigns a much greater importance to intrathymic T all progenitors in the maintenance of T cell production in the thymus than has been hitherto recognized. (MHB)

  3. [Lymphopoiesis supported by osteolineage cells].

    PubMed

    Katayama, Yoshio

    2016-05-01

    Bone marrow(BM)and thymus are known as the primary lymphoid organs for B and T cells, respectively. However, the cell fate for T cell lineage commitment is already determined in the BM. Thus, the lymphopoiesis is critically controlled in the BM and, according to the recent advances in genetic mouse models, it appears that this process is strictly regulated by a series of osteolineage mesenchymal populations. PMID:27117616

  4. Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells.

    PubMed

    Kennedy, Domenick E; Knight, Katherine L

    2015-09-15

    B lymphopoiesis declines with age, and this decline correlates with increased adipose tissue in the bone marrow (BM). Also, adipocyte-derived factors are known to inhibit B lymphopoiesis. Using cocultures of mouse BM cells with OP9 stromal cells, we found that adipocyte-conditioned medium induces the generation of CD11b(+)Gr1(+) myeloid cells, which inhibit B cell development in vitro. Adipocyte-conditioned medium-induced CD11b(+)Gr1(+) cells express Arg1 (arginase) and Nos2 (inducible NO synthase) and suppress CD4(+) T cell proliferation, indicating that these cells are myeloid-derived suppressor cells (MDSCs). Blocking arginase and inducible NO synthase did not restore B lymphopoiesis, indicating that inhibition is not mediated by these molecules. Transwell and conditioned-medium experiments showed that MDSCs inhibit B lymphopoiesis via soluble factors, and by cytokine array we identified IL-1 as an important factor. Addition of anti-IL-1 Abs restored B lymphopoiesis in BM cultures containing MDSCs, showing that MDSC inhibition of B lymphopoiesis is mediated by IL-1. By treating hematopoietic precursors with IL-1, we found that multipotent progenitors are targets of IL-1. This study uncovers a novel function for MDSCs to inhibit B lymphopoiesis through IL-1. We suggest that inflammaging contributes to a decline of B lymphopoiesis in aged individuals, and furthermore, that MDSCs and IL-1 provide therapeutic targets for restoration of B lymphopoiesis in aged and obese individuals. PMID:26268654

  5. An experimental and mathematical analysis of lymphopoiesis dynamics under continuous irradiation

    SciTech Connect

    Zukhbaya, T.M.; Smirnova, O.A. )

    1991-07-01

    A mathematical model describing the dynamics of lymphopoiesis in mammals continuously exposed to ionizing radiation has been developed. It is based on the theory of chalone regulation of hematopoiesis. The model comprises a system of nine differential equations. Results from the model were compared with our experimental data for bone marrow and blood lymphocytes of rats continuously exposed to gamma radiation in a wide range of dose rates. The model reproduces the lymphopoiesis dynamics that we observed in our experiment, in particular, the radiation hormesis at low dose rates, the reduction of lymphopoiesis at intermediate dose rates, and extinction of lymphopoiesis at high dose rates of continuous radiation. The possible explanation of the hormesis is suggested by the framework of the model. The model can be used for predicting the lymphopoiesis dynamics in mammals under continuous irradiation.

  6. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging.

    PubMed

    Lescale, Chloé; Schenten, Véronique; Djeghloul, Dounia; Bennabi, Meriem; Gaignier, Fanny; Vandamme, Katleen; Strazielle, Catherine; Kuzniak, Isabelle; Petite, Hervé; Dosquet, Christine; Frippiat, Jean-Pol; Goodhardt, Michele

    2015-02-01

    Within the bone marrow, the endosteal niche plays a crucial role in B-cell differentiation. Because spaceflight is associated with osteoporosis, we investigated whether changes in bone microstructure induced by a ground-based model of spaceflight, hind limb unloading (HU), could affect B lymphopoiesis. To this end, we analyzed both bone parameters and the frequency of early hematopoietic precursors and cells of the B lineage after 3, 6, 13, and 21 d of HU. We found that limb disuse leads to a decrease in both bone microstructure and the frequency of B-cell progenitors in the bone marrow. Although multipotent hematopoietic progenitors were not affected by HU, a decrease in B lymphopoiesis was observed as of the common lymphoid progenitor (CLP) stage with a major block at the progenitor B (pro-B) to precursor B (pre-B) cell transition (5- to 10-fold decrease). The modifications in B lymphopoiesis were similar to those observed in aged mice and, as with aging, decreased B-cell generation in HU mice was associated with reduced expression of B-cell transcription factors, early B-cell factor (EBF) and Pax5, and an alteration in STAT5-mediated IL-7 signaling. These findings demonstrate that mechanical unloading of hind limbs results in a decrease in early B-cell differentiation resembling age-related modifications in B lymphopoiesis. PMID:25376832

  7. Conserved IL-2Rγc Signaling Mediates Lymphopoiesis in Zebrafish.

    PubMed

    Sertori, Robert; Liongue, Clifford; Basheer, Faiza; Lewis, Kanako L; Rasighaemi, Parisa; de Coninck, Dennis; Traver, David; Ward, Alister C

    2016-01-01

    The IL-2 receptor γ common (IL-2Rγc) chain is the shared subunit of the receptors for the IL-2 family of cytokines, which mediate signaling through JAK3 and various downstream pathways to regulate lymphopoiesis. Inactivating mutations in human IL-2Rγc result in SCID, a primary immunodeficiency characterized by greatly reduced numbers of lymphocytes. This study used bioinformatics, expression analysis, gene ablation, and specific pharmacologic inhibitors to investigate the function of two putative zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and downstream signaling components during early lymphopoiesis. Expression of il-2rγc.a commenced at 16 h post fertilization (hpf) and rose steadily from 4-6 d postfertilization (dpf) in the developing thymus, with il-2rγc.a expression also confirmed in adult T and B lymphocytes. Transcripts of il-2rγc.b were first observed from 8 hpf, but waned from 16 hpf before reaching maximal expression at 6 dpf, but this was not evident in the thymus. Knockdown of il-2rγc.a, but not il-2rγc.b, substantially reduced embryonic lymphopoiesis without affecting other aspects of hematopoiesis. Specific targeting of zebrafish Jak3 exerted a similar effect on lymphopoiesis, whereas ablation of zebrafish Stat5.1 and pharmacologic inhibition of PI3K and MEK also produced significant but smaller effects. Ablation of il-2rγc.a was further demonstrated to lead to an absence of mature T cells, but not B cells in juvenile fish. These results indicate that conserved IL-2Rγc signaling via JAK3 plays a key role during early zebrafish lymphopoiesis, which can be potentially targeted to generate a zebrafish model of human SCID. PMID:26590317

  8. Modulation of lymphopoiesis. Comprehensive progress report, January 1, 1991--July 30, 1991

    SciTech Connect

    Rosse, C.

    1991-12-31

    During the current project period we have demonstrated correspondence between animal models and in vitro models of modulated lymphopoiesis. Our finding that G-CSF, a growth factor for neutrophil granulocytes, suppresses lymphopoiesis in long term bone marrow cultures (LTBMC) has important implications both for understanding the regulatory mechanisms of hemopoiesis and for clinical use of recombinant growth factors that are beginning to be widely used for the treatment of a variety of diseases. During the present project period we adopted LTBMC systems developed by others for the purposes of our specific aims. Also we developed a novel long term culture system for NK cells. The discovery of a new growth factor, O-CSF, specific for osteoclasts and the establishment of a clonal assay system that provides evidence for a new class of hemopoietic progenitor cells, the osteoclast progenitor, are important contributions. Given the important role T cells play in the immune response and in the regulation of other lymphohemopoietic cell lineages through the lymphokines they secrete, the need for an in vitro system that lends itself to the analysis of T cell maturation and to the testing of factors that may adversely affect T lymphopoiesis cannot be overemphasized. We believe that we can exploit an advantageous set of circumstances that present an excellent opportunity for initiating a focused experimental program for developing such a system. By a systematic and selective analysis of molecular interactions between heterogenous thymic stromal cells and T cell progenitors at different stages of maturation, it will be possible for our program to define the complement of critical cellular interactions on which successive stages of T lymphopoiesis depend. The experiments we propose will lay a rational foundation for the development of a long term culture system for T lymphopoiesis. 24 refs., 7 figs.

  9. Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice

    PubMed Central

    Day, Ryan B.; Bhattacharya, Deepta; Nagasawa, Takashi

    2015-01-01

    The mechanisms that mediate the shift from lymphopoiesis to myelopoiesis in response to infectious stress are largely unknown. We show that treatment with granulocyte colony-stimulating factor (G-CSF), which is often induced during infection, results in marked suppression of B lymphopoiesis at multiple stages of B-cell development. Mesenchymal-lineage stromal cells in the bone marrow, including CXCL12-abundant reticular (CAR) cells and osteoblasts, constitutively support B lymphopoiesis through the production of multiple B trophic factors. G-CSF acting through a monocytic cell intermediate reprograms these stromal cells, altering their capacity to support B lymphopoiesis. G-CSF treatment is associated with an expansion of CAR cells and a shift toward osteogenic lineage commitment. It markedly suppresses the production of multiple B-cell trophic factors by CAR cells and osteoblasts, including CXCL12, kit ligand, interleukin-6, interleukin-7, and insulin-like growth factor-1. Targeting bone marrow stromal cells is one mechanism by which inflammatory cytokines such as G-CSF actively suppress lymphopoiesis. PMID:25814527

  10. B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2

    PubMed Central

    Winkler, Ingrid G.; Bendall, Linda J.; Forristal, Catherine E.; Helwani, Falak; Nowlan, Bianca; Barbier, Valerie; Shen, Yi; Cisterne, Adam; Sedger, Lisa M.; Levesque, Jean-Pierre

    2013-01-01

    Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties. PMID:22929978

  11. Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice

    PubMed Central

    Ruan, L; Zhang, Z; Mu, L; Burnley, P; Wang, L; Coder, B; Zhuge, Q; Su, D-M

    2014-01-01

    FoxN1 is cell-autonomously expressed in skin and thymic epithelial cells (TECs), essential for their development. Inborn mutation of FoxN1 results in hair follicle and TEC development failure, whereas insufficient postnatal FoxN1 expression induces thymic atrophy, resulting in declined T lymphopoiesis. Although upregulating FoxN1 expression in the aged FoxN1-declined thymus rejuvenates T lymphopoiesis, whether its over- and ectopic-expression in early life is beneficial for T lymphopoiesis is unknown. Using our newly generated Rosa26-STOPflox–FoxN1 mice, in which over- and ectopic-expression of FoxN1 can be induced by various promoter-driven Cre-mediated deletions of the roadblock STOPflox in early life, we found that K14Cre-mediated inborn FoxN1 overexpression induced neonatal lethality, exhibited abnormal permeability in the skin and abnormal nursing. Ubiquitous deletion of the STOPflox mediated by progressive uCreERT leakage in juvenile mice affected thymus and bone marrow normality, resulting in an increased ratio of medullary/cortical TECs, along with declined T and B lymphopoiesis. Although the K5CreERT-mediated FoxN1 overexpression mice had a normal lifespan, induction of K5CreERT activation in juveniles adversely influenced total thymoycte development and produced ichthyosis-like skin. Therefore, FoxN1 has temporal and tissue-specific activity. Over- and ectopic-expression of FoxN1 in early life adversely influence immature TEC, T and B cell, and skin epithelial development. PMID:25299782

  12. Curative drug treatment of trypanosomosis leads to the restoration of B-cell lymphopoiesis and splenic B-cell compartments.

    PubMed

    Cnops, J; Bockstal, V; De Trez, C; Miquel, M C; Radwanska, M; Magez, S

    2015-09-01

    African trypanosomosis is a parasitic disease affecting both humans (sleeping sickness) and animals (nagana). In murine trypanosomosis, the B-cell compartment is rapidly destroyed after infection. In addition, B-cell lymphopoiesis in the bone marrow is abrogated, B-cell subsets in the spleen are irreversibly depleted, and B-cell memory is destroyed. Here, we investigated the effect of cure of infection on the B-cell compartment. Suramin and diminazene aceturate were used in this study as these drugs exhibit different modes of uptake and different mechanisms of trypanocidal action. Curative drug treatment of trypanosomosis infection led to the re-initiation of B-cell lymphopoiesis in the bone marrow, and to the repopulation of splenic B-cell subsets, independent of the drug used. Neither of these drugs by itself induced measurable effects on B-cell lymphopoiesis in the bone marrow or B-cell homoeostasis in the spleen in healthy, naïve animals. PMID:26072963

  13. Estrogen-inducible sFRP5 inhibits early B-lymphopoiesis in vivo, but not during pregnancy.

    PubMed

    Yokota, Takafumi; Oritani, Kenji; Sudo, Takao; Ishibashi, Tomohiko; Doi, Yukiko; Habuchi, Yoko; Ichii, Michiko; Fukushima, Kentaro; Okuzaki, Daisuke; Tomizuka, Kazuma; Yamawaki, Kengo; Kakitani, Makoto; Shimono, Akihiko; Morii, Eiichi; Kincade, Paul W; Kanakura, Yuzuru

    2015-05-01

    Mammals have evolved to protect their offspring during early fetal development. Elaborated mechanisms induce tolerance in the maternal immune system for the fetus. Female hormones, mainly estrogen, play a role in suppressing maternal lymphopoiesis. However, the molecular mechanisms involved in the maternal immune tolerance are largely unknown. Here, we show that estrogen-induced soluble Frizzled-related proteins (sFRPs), and particularly sFRP5, suppress B-lymphopoiesis in vivo in transgenic mice. Mice overexpressing sFRP5 had fewer B-lymphocytes in the peripheral blood and spleen. High levels of sFRP5 inhibited early B-cell differentiation in the bone marrow (BM), resulting in the accumulation of cells with a common lymphoid progenitor (CLP) phenotype. Conversely, sFRP5 deficiency reduced the number of hematopoietic stem cells (HSCs) and primitive lymphoid progenitors in the BM, particularly when estrogen was administered. Furthermore, a significant reduction in CLPs and B-lineage-committed progenitors was observed in the BM of sfrp5-null pregnant females. We concluded that, although high sFRP5 expression inhibits B-lymphopoiesis in vivo, physiologically, it contributes to the preservation of very primitive lymphopoietic progenitors, including HSCs, under high estrogen levels. Thus, sFRP5 regulates early lympho-hematopoiesis in the maternal BM, but the maternal-fetal immune tolerance still involves other molecular mechanisms that remain to be uncovered. PMID:25676235

  14. A Biomathematical Model of Lymphopoiesis and Its Application to Acute and Chronic Irradiation Assessment

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2010-01-01

    After the events of September 11, 2001, there is an increasing concern of the occurrence of radiological terrorism that may result in significant casualties in densely populated areas. Much effort has been made to establish various biomarkers to rapidly assess radiation dose in mass-casualty and population-monitoring scenarios, which are demanded for effective medical management and treatment of the exposed victims. Among these the count of lymphocytes in peripheral blood and their depletion kinetics are the most important early indicators of the severity of the radiation injury. In this study, we examine a biomathematical model of lymphopoiesis which has been successfully utilized to simulate and interpret experimental data of acute and chronic irradiations on rodents [1]. With revised parameters for humans, we find this model can reproduce several sets of clinical lymphocyte data of accident victims over a wide range of absorbed doses. In addition, the absolute lymphocyte counts and the depletion rate constants calculated by this model also show good correlation with the Guskova formula and the Goans model, the two empirical tools which have been widely recognized for early estimation of the exposed dose after radiation accidents [2]. We also use the model to analyze the hematological data of the Techa River residents which were exposed to chronic low-dose irradiation during 1950-1956 [3]. This model can serve as a computational tool in radiation accident management, military operations involving nuclear warfare, radiation therapy, and space radiation risk assessment.

  15. Intrathymic lymphopoiesis: stromal cell-associated proliferation of T cells is independent of lymphocyte genotype.

    PubMed

    Kyewski, B A; Travis, M; Kaplan, H S

    1984-09-01

    We analyzed the genetic restriction of direct cell-cell interactions between thymocytes and a) cortical epithelial cells, b) macrophages, and c) medullary dendritic cells in the mouse thymus. Thymectomized (C3H X C57BL/Ka)F1 hybrid mice were doubly grafted with P1 and P2 neonatal thymus grafts, were lethally irradiated, and were reconstituted with a mixture of P1 and P2 bone marrow cells which differed in the Thy-1 locus. The contributions of both parental inocula to the composition of the free and stromal cell-associated T cell compartments were analyzed separately in thymic grafts of each parental strain. The lymphoid composition in both compartments essentially reflected the peripheral T cell-chimerism in the host. The development of lymphostromal complexes was not restricted by the genotype of the partner cells. Statistical analysis of the distributions of P1 and P2 T cells among free thymocytes and within individual lymphostromal complexes, however, suggests that the T cells of an individual complex are the progeny of oligoclonal proliferation. Thus, both epithelial cells and bone marrow-derived stromal cells seem to be involved in different stages of intrathymic lymphopoiesis. PMID:6611364

  16. Effects of Sleep Deprivation on Mice Bone Marrow and Spleen B Lymphopoiesis.

    PubMed

    Lungato, Lisandro; Nogueira-Pedro, Amanda; Carvalho Dias, Carolina; Paredes-Gamero, Edgar Julian; Tufik, Sergio; D'Almeida, Vânia

    2016-06-01

    B lymphocytes are immune cells crucial for the maintenance and viability of the humoral response. Sleep is an essential event for the maintenance and integrity of all systems, including the immune system (IS). Thus, sleep deprivation (SD) causes problems in metabolism and homeostasis in many cell systems, including the IS. In this study, our goal was to determine changes in B lymphocytes from the bone marrow (BM) and spleen after SD. Three-month-old male Swiss mice were used. These mice were sleep deprived through the modified multiple platform method for different periods (24, 48, and 72 h), whereas another group was allowed to sleep for 24 h after 72 h of SD (rebound group) and a third group was allowed to sleep normally during the entire experiment. After this, the spleen and BM were collected, and cell analyses were performed. The numbers of B lymphocytes in the BM and spleen were reduced by SD. Additionally, reductions in the percentage of lymphocyte progenitors and their ability to form colonies were observed. Moreover, an increase in the death of B lymphocytes from the BM and spleen was associated with an increase in oxidative stress indicators, such as DCFH-DA, CAT, and mitochondrial SOD. Rebound was not able to reverse most of the alterations elicited by SD. The reduction in B lymphocytes and their progenitors by cell death, with a concomitant increase in oxidative stress, showed that SD promoted a failure in B lymphopoiesis. PMID:26517012

  17. Retinoic Acid Receptor γ Regulates B and T Lymphopoiesis via Nestin-Expressing Cells in the Bone Marrow and Thymic Microenvironments.

    PubMed

    Joseph, Chacko; Nota, Celeste; Fletcher, Jessica L; Maluenda, Ana C; Green, Alanna C; Purton, Louise E

    2016-03-01

    Vitamin A has essential but largely unexplained roles in regulating lymphopoiesis. We have previously shown that retinoic acid receptor (RAR) γ-deficient mice have hematopoietic defects, some phenotypes of which were microenvironment induced. Bone marrow (BM) microenvironment cells identified by either their expression of nestin (Nes) or osterix (Osx) have previously been shown to have roles in regulating lymphopoiesis. We therefore conditionally deleted Rarγ in Nes- or Osx-expressing microenvironment cells. Osx cell-specific deletion of Rarγ had no impact on hematopoiesis. In contrast, deletion of Rarγ in Nes-expressing cells resulted in reductions in peripheral blood B cells and CD4(+) T cells, accompanied by reductions of immature PreB cells in BM. The mice lacking Rarγ in Nes-expressing cells also had smaller thymi, with reductions in double-negative 4 T cell precursors, accompanied by reduced numbers of both TCRβ(low) immature single-positive CD8(+) cells and double-positive T cells. In the thymus, Nes expression was restricted to thymic stromal cells that expressed cerebellar degeneration-related Ag 1 and lacked expression of epithelial cell adhesion molecule. These cells expressed platelet-derived growth factor α and high transcript levels of Rars, Cxcl12, and stem cell factor (Scf). Short-term treatment of mice with all-trans retinoic acid resulted in increased PreB lymphopoiesis in BM and an increase in thymic double-negative 4 T cells, inverse to that observed upon Nes cell-specific deletion of Rarγ. Collectively, these studies show that RARγ is a regulator of B and T lymphopoiesis via Nes-expressing cells in the BM and thymic microenvironments, respectively. PMID:26843326

  18. IL-7 Dependence in Human B Lymphopoiesis Increases During Progression of Ontogeny from Cord Blood to Bone Marrow1

    PubMed Central

    Parrish, Yasmin Khan; Baez, Ineavely; Milford, Terry-Ann; Benitez, Abigail; Galloway, Nicholas; Rogerio, Jaqueline Willeman; Sahakian, Eva; Kagoda, Mercy; Huang, Grace; Hao, Qian-Lin; Sevilla, Yazmar; Barsky, Lora W.; Zielinska, Ewa; Price, Mary A.; Wall, Nathan R.; Dovat, Sinisa; Payne, Kimberly J.

    2009-01-01

    IL-7 is critical for B cell production in adult mice, however its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on co-culturing human HSCs on primary human BM stroma. In this model, IL-7 increases human B cell production by >60-fold from both CB and adult BM HSCs. IL-7-induced increases are dose-dependent and specific to CD19+ cells. STAT5 phosphorylation and expression of the Ki-67 proliferation antigen, indicate that IL-7 acts directly on CD19+ cells to increase proliferation at the CD34+ and CD34− pro-B cell stages. Without IL-7, HSCS in CB, but not BM give rise to a small but consistent population of CD19LO B lineage cells that express EBF and PAX-5 and respond to subsequent IL-7 stimulation. Flt3 ligand, but not thymic stromal-derived lymhopoietin (TSLP), was required for the IL-7-independent production of human B lineage cells. As compared to CB, adult BM shows a reduction of in vitro generative capacity that is progressively more profound in developmentally sequential populations, resulting in a ~50-fold reduction in IL-7-dependent B lineage generative capacity. These data provide evidence that IL-7 is essential for human B cell production from adult BM and that IL-7-induced expansion of the pro-B compartment is increasingly critical for human B cell production during the progression of ontogeny. PMID:19299724

  19. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    PubMed

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients. PMID:26608917

  20. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Martinez, Shannalee R; Baez, Ineavely; Coats, Jacqueline S; Mayagoitia, Karina; Concepcion, Katherine R; Ginelli, Elizabeth; Beldiman, Cornelia; Benitez, Abigail; Weldon, Abby J; Arogyaswamy, Keshav; Shiraz, Parveen; Fisher, Ross; Morris, Christopher L; Zhang, Xiao-Bing; Filippov, Valeri; Van Handel, Ben; Ge, Zheng; Song, Chunhua; Dovat, Sinisa; Su, Ruijun Jeanna; Payne, Kimberly J

    2016-04-01

    Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2. PMID:26611474

  1. Engineering approaches for regeneration of T lymphopoiesis.

    PubMed

    Roh, Kyung-Ho; Roy, Krishnendu

    2016-01-01

    T cells play a central role in immune-homeostasis; specifically in the induction of antigen-specific adaptive immunity against pathogens and mutated self with immunological memory. The thymus is the unique organ where T cells are generated. In this review, first the complex structures and functions of various thymic microcompartments are briefly discussed to identify critical engineering targets for regeneration of thymic functions in vitro and in vivo. Then the biomimetic regenerative engineering approaches are reviewed in three categories: 1) reconstruction of 3-D thymic architecture, 2) cellular engineering, and 3) biomaterials-based artificial presentation of critical biomolecules. For each engineering approach, remaining challenges and clinical opportunities are also identified and discussed. PMID:27358746

  2. Lymphopoiesis in the chicken pineal gland

    SciTech Connect

    Cogburn, L.A.; Glick, B.

    1981-10-01

    Pineal lymphoid development was studied in two breeds of chickens from hatching until sexual maturity. No lymphocytes were found in the pineal prior to 9 days of age (da). Lymphocytes migrate through the endothelium of venules into the pineal stroma. Lymphoid tissue reached its maximal accumulation in 32-da pineal glands of both breeds. At this age, the New Hampshire (NH) breed had a larger proportion of lymphoid volume to total pineal volume (32%) than did pineal glands from White Leghorn (WL) chickens (18%).

  3. Lymphopoiesis in transgenic mice over-expressing Artemis.

    PubMed

    Rivera-Munoz, P; Abramowski, V; Jacquot, S; André, P; Charrier, S; Lipson-Ruffert, K; Fischer, A; Galy, A; Cavazzana, M; de Villartay, J-P

    2016-02-01

    Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients. However, the safety of an unregulated expression of Artemis has to be established. We developed a transgenic mouse model expressing human Artemis under the control of the strong CMV early enhancer/chicken beta actin promoter through knock-in at the ROSA26 locus to analyze this issue. Transgenic mice present a normal development, maturation and function of T and B cells with no signs of lymphopoietic malignancies for up to 15 months. These results suggest that the over-expression of Artemis in mice (up to 40 times) has no deleterious effects in early and mature lymphoid cells and support the safety of gene therapy as a possible curative treatment for Artemis-deficient patients. PMID:26361272

  4. B-Cell Lymphopoiesis Is Regulated by Cathepsin L

    PubMed Central

    Badano, Maria Noel; Camicia, Gabriela Lorena; Lombardi, Gabriela; Maglioco, Andrea; Cabrera, Gabriel; Costa, Hector; Meiss, Roberto Pablo

    2013-01-01

    Cathepsin L (CTSL) is a ubiquitously expressed lysosomal cysteine peptidase with diverse and highly specific functions. The involvement of CTSL in thymic CD4+ T-cell positive selection has been well documented. Using CTSLnkt/nkt mice that lack CTSL activity, we have previously demonstrated that the absence of CTSL activity affects the homeostasis of the T-cell pool by decreasing CD4+ cell thymic production and increasing CD8+ thymocyte production. Herein we investigated the influence of CTSL activity on the homeostasis of peripheral B-cell populations and bone marrow (BM) B-cell maturation. B-cell numbers were increased in lymph nodes (LN), spleen and blood from CTSLnkt/nkt mice. Increases in splenic B-cell numbers were restricted to transitional T1 and T2 cells and to the marginal zone (MZ) cell subpopulation. No alterations in the proliferative or apoptosis levels were detected in peripheral B-cell populations from CTSLnkt/nkt mice. In the BM, the percentage and the absolute number of pre-pro-B, pro-B, pre-B, immature and mature B cells were not altered. However, in vitro and in vivo experiments showed that BM B-cell production was markedly increased in CTSLnkt/nkt mice. Besides, BM B-cell emigration to the spleen was increased in CTSLnkt/nkt mice. Colony-forming unit pre-B (CFU pre-B) assays in the presence of BM stromal cells (SC) and reciprocal BM chimeras revealed that both BM B-cell precursors and SC would contribute to sustain the increased B-cell hematopoiesis in CTSLnkt/nkt mice. Overall, our data clearly demonstrate that CTSL negatively regulates BM B-cell production and output therefore influencing the homeostasis of peripheral B cells. PMID:23585893

  5. Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis.

    PubMed

    Lee, Stanley C W; Miller, Sarah; Hyland, Craig; Kauppi, Maria; Lebois, Marion; Di Rago, Ladina; Metcalf, Donald; Kinkel, Sarah A; Josefsson, Emma C; Blewitt, Marnie E; Majewski, Ian J; Alexander, Warren S

    2015-07-01

    Polycomb repressive complex 2 (PRC2) is a chromatin modifier that regulates stem cells in embryonic and adult tissues. Loss-of-function studies of PRC2 components have been complicated by early embryonic dependence on PRC2 activity and the partial functional redundancy of enhancer of zeste homolog 1 (Ezh1) and enhancer of zeste homolog 2 (Ezh2), which encode the enzymatic component of PRC2. Here, we investigated the role of PRC2 in hematopoiesis by conditional deletion of suppressor of zeste 12 protein homolog (Suz12), a core component of PRC2. Complete loss of Suz12 resulted in failure of hematopoiesis, both in the embryo and the adult, with a loss of maintenance of hematopoietic stem cells (HSCs). In contrast, partial loss of PRC2 enhanced HSC self-renewal. Although Suz12 was required for lymphoid development, deletion in individual blood cell lineages revealed that it was dispensable for the development of granulocytic, monocytic, and megakaryocytic cells. Collectively, these data reveal the multifaceted role of PRC2 in hematopoiesis, with divergent dose-dependent effects in HSC and distinct roles in maturing blood cells. Because PRC2 is a potential target for cancer therapy, the significant consequences of modest changes in PRC2 activity, as well as the cell and developmental stage-specific effects, will need to be carefully considered in any therapeutic context. PMID:26036803

  6. Functional Redundancy of Sos1 and Sos2 for Lymphopoiesis and Organismal Homeostasis and Survival

    PubMed Central

    Baltanás, Fernando C.; Pérez-Andrés, Martín; Ginel-Picardo, Alicia; Diaz, David; Jimeno, David; Liceras-Boillos, Pilar; Kortum, Robert L.; Samelson, Lawrence E.; Orfao, Alberto

    2013-01-01

    Sos1 and Sos2 are ubiquitously expressed, universal Ras guanine nucleotide exchange factors (Ras-GEFs) acting in multiple signal transduction pathways activated by upstream cellular kinases. The embryonic lethality of Sos1 null mutants has hampered ascertaining the specific in vivo contributions of Sos1 and Sos2 to processes controlling adult organism survival or development of hematopoietic and nonhematopoietic organs, tissues, and cell lineages. Here, we generated a tamoxifen-inducible Sos1-null mouse strain allowing analysis of the combined disruption of Sos1 and Sos2 (Sos1/2) during adulthood. Sos1/2 double-knockout (DKO) animals died precipitously, whereas individual Sos1 and Sos2 knockout (KO) mice were perfectly viable. A reduced percentage of total bone marrow precursors occurred in single-KO animals, but a dramatic depletion of B-cell progenitors was specifically detected in Sos1/2 DKO mice. We also confirmed a dominant role of Sos1 over Sos2 in early thymocyte maturation, with almost complete thymus disappearance and dramatically higher reduction of absolute thymocyte counts in Sos1/2 DKO animals. Absolute counts of mature B and T cells in spleen and peripheral blood were unchanged in single-KO mutants, while significantly reduced in Sos1/2 DKO mice. Our data demonstrate functional redundancy between Sos1 and Sos2 for homeostasis and survival of the full organism and for development and maturation of T and B lymphocytes. PMID:24043312

  7. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis.

    PubMed

    Zhang, Y; Lu, L; Furlonger, C; Wu, G E; Paige, C J

    2000-11-01

    We report here the molecular cloning of a newly identified preprotachykinin gene, Pptc, which specifies the sequence for a new preprotachykinin protein and bioactive peptide designated hemokinin 1 (HK-1). PPT-C mRNA was detected primarily in hematopoietic cells in contrast to the previously described Ppta and Pptb genes, which are predominantly expressed in neuronal tissues. HK-1 has several biological activities that are similar to the most studied tachykinin, substance P, such as induction of plasma extravasation and mast cell degranulation. However, HK-1 also has properties that are indicative of a critical role in mouse B cell development. HK-1 stimulated the proliferation of interleukin 7-expanded B cell precursors, whereas substance P had no effect. HK-1, but not substance P, promoted the survival of freshly isolated bone marrow B lineage cells or cultured, lipopolysaccharide-stimulated pre-B cells. N-acetyl-L-trytophan-3,5-bistrifluromethyl benzyl ester, a tachykinin receptor antagonist, increased apoptosis of these cells and in vivo administration of this antagonist led to specific reductions of the B220lowCD43 population (the pre-B cell compartment) in the bone marrow and the IgMhighIgDlow population (the newly generated B cells) in the spleen. Thus, HK-1 may be an autocrine factor that is important for the survival of B cell precursors at a critical phase of development. PMID:11062498

  8. Chronic exposure to IFNα drives medullar lymphopoiesis towards T-cell differentiation in mice.

    PubMed

    Di Scala, Marianna; Gil-Fariña, Irene; Vanrell, Lucia; Sánchez-Bayona, Rodrigo; Alignani, Diego; Olagüe, Cristina; Vales, Africa; Berraondo, Pedro; Prieto, Jesús; González-Aseguinolaza, Gloria

    2015-08-01

    Interferon-α is a potent antiviral agent and a vigorous adjuvant in the induction of T-cell responses but its use is limited by hematologic toxicity. Interferon-α alters hematopoietic stem cell dormancy and impairs myelocytic and erythrocytic/megakaryocytic differentiation from hematopoietic progenitors. However, the effect of chronic interferon-α exposure on hematopoietic precursors has still not been well characterized. Here, we transduced the liver of mice with an adenoassociated vector encoding interferon-α to achieve sustained high serum levels of the cytokine. The bone marrow of these animals showed diminished long-term and short-term hematopoietic stem cells, reduction of multipotent progenitor cells, and marked decrease of B cells, but significant increase in the proportion of CD8(+) and CD4(+)CD8(+) T cells. Upon adoptive transfer to RAG(-/-) mice, bone marrow cells from interferon-α-treated animals generated CD4(+) and CD8(+) T cells while CD19(+), CD11b(+) and NK1.1(+) lineages failed to develop. These effects are associated with the transcriptional downregulation of transcription factors involved in B-cell differentiation and modulation of key factors for T-cell development. Thus, sustained interferon-α exposure causes hematopoietic stem cells exhaustion and drives common lymphoid progenitors towards T-cell generation. PMID:25715405

  9. Chronic exposure to IFNα drives medullar lymphopoiesis towards T-cell differentiation in mice

    PubMed Central

    Di Scala, Marianna; Gil-Fariña, Irene; Vanrell, Lucia; Sánchez-Bayona, Rodrigo; Alignani, Diego; Olagüe, Cristina; Vales, Africa; Berraondo, Pedro; Prieto, Jesús; González-Aseguinolaza, Gloria

    2015-01-01

    Interferon-α is a potent antiviral agent and a vigorous adjuvant in the induction of T-cell responses but its use is limited by hematologic toxicity. Interferon-α alters hematopoietic stem cell dormancy and impairs myelocytic and erythrocytic/megakaryocytic differentiation from hematopoietic progenitors. However, the effect of chronic interferon-α exposure on hematopoietic precursors has still not been well characterized. Here, we transduced the liver of mice with an adenoassociated vector encoding interferon-α to achieve sustained high serum levels of the cytokine. The bone marrow of these animals showed diminished long-term and short-term hematopoietic stem cells, reduction of multipotent progenitor cells, and marked decrease of B cells, but significant increase in the proportion of CD8+ and CD4+CD8+ T cells. Upon adoptive transfer to RAG−/− mice, bone marrow cells from interferon-α-treated animals generated CD4+ and CD8+ T cells while CD19+, CD11b+ and NK1.1+ lineages failed to develop. These effects are associated with the transcriptional downregulation of transcription factors involved in B-cell differentiation and modulation of key factors for T-cell development. Thus, sustained interferon-α exposure causes hematopoietic stem cells exhaustion and drives common lymphoid progenitors towards T-cell generation. PMID:25715405

  10. High Fat Diet Rapidly Suppresses B Lymphopoiesis by Disrupting the Supportive Capacity of the Bone Marrow Niche

    PubMed Central

    Adler, Benjamin J.; Green, Danielle E.; Pagnotti, Gabriel M.; Chan, M. Ete; Rubin, Clinton T.

    2014-01-01

    The bone marrow (BM) niche is the primary site of hematopoiesis, and cues from this microenvironment are critical to maintain hematopoiesis. Obesity increases lifetime susceptibility to a host of chronic diseases, and has been linked to defective leukogenesis. The pressures obesity exerts on hematopoietic tissues led us to study the effects of a high fat diet (HFD: 60% Kcal from fat) on B cell development in BM. Seven week old male C57Bl/6J mice were fed either a high fat (HFD) or regular chow (RD) diet for periods of 2 days, 1 week and 6 weeks. B-cell populations (B220+) were not altered after 2 d of HFD, within 1 w B-cell proportions were reduced by −10%, and by 6 w by −25% as compared to RD (p<0.05). BM RNA was extracted to track the expression of B-cell development markers Il-7, Ebf-1 and Pax-5. At 2 d, the expression of Il-7 and Ebf-1 were reduced by −20% (p = 0.08) and −11% (p = 0.06) whereas Pax-5 was not significantly impacted. At one week, however, the expressions of Il-7, Ebf-1, and Pax-5 in HFD mice fell by -19%, −20% and −16%, and by six weeks were further reduced to −23%, −29% and −34% as compared to RD (p<0.05 for all), a suppression paralleled by a +363% increase in adipose encroachment within the marrow space (p<0.01). Il-7 is a critical factor in the early B-cell lineage which is secreted by supportive cells in the BM niche, and is necessary for B-cell commitment. These data indicate that BM Il-7 expression, and by extension B-cell differentiation, are rapidly impaired by HFD. The trend towards suppressed expression of Il-7 following only 2 d of HFD demonstrates how susceptible the BM niche, and the cells which rely on it, are to diet, which ultimately could contribute to disease susceptibility in metabolic disorders such as obesity. PMID:24595332

  11. Insights on Foxn1 Biological Significance and Usages of the “Nude” Mouse in Studies of T-Lymphopoiesis

    PubMed Central

    Zhang, Zhijie; Burnley, Preston; Coder, Brandon; Su, Dong-Ming

    2012-01-01

    Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1's role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1's roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies. PMID:23091413

  12. Alpha-Particle-Induced Complex Chromosome Exchanges Transmitted through Extra-Thymic Lymphopoiesis In Vitro Show Evidence of Emerging Genomic Instability

    PubMed Central

    Sumption, Natalia; Goodhead, Dudley T.; Anderson, Rhona M.

    2015-01-01

    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure. PMID:26252014

  13. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation.

    PubMed

    Wong, Gwendolyn T; Manfra, Denise; Poulet, Frederique M; Zhang, Qi; Josien, Hubert; Bara, Thomas; Engstrom, Laura; Pinzon-Ortiz, Maria; Fine, Jay S; Lee, Hu-Jung J; Zhang, Lili; Higgins, Guy A; Parker, Eric M

    2004-03-26

    Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce the pathogenic beta-amyloid (Abeta) peptides, is an attractive approach to the treatment of Alzheimer disease. In addition to APP, however, several other gamma-secretase substrates have been identified (e.g. Notch), and altered processing of these substrates by gamma-secretase inhibitors could lead to unintended biological consequences. To study the in vivo consequences of gamma-secretase inhibition, the gamma-secretase inhibitor LY-411,575 was administered to C57BL/6 and TgCRND8 APP transgenic mice for 15 days. Although most tissues were unaffected, doses of LY-411,575 that inhibited Abeta production had marked effects on lymphocyte development and on the intestine. LY-411,575 decreased overall thymic cellularity and impaired intrathymic differentiation at the CD4(-)CD8(-)CD44(+)CD25(+) precursor stage. No effects on peripheral T cell populations were noted following LY-411,575 treatment, but evidence for the altered maturation of peripheral B cells was observed. In the intestine, LY-411,575 treatment increased goblet cell number and drastically altered tissue morphology. These effects of LY-411,575 were not seen in mice that were administered LY-D, a diastereoisomer of LY-411,575, which is a very weak gamma-secretase inhibitor. These studies show that inhibition of gamma-secretase has the expected benefit of reducing Abeta in a murine model of Alzheimer disease but has potentially undesirable biological effects as well, most likely because of the inhibition of Notch processing. PMID:14709552

  14. Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche.

    PubMed

    Fujita, Natsuko; Ichii, Michiko; Maeda, Tetsuo; Saitoh, Norimitsu; Yokota, Takafumi; Yamawaki, Kengo; Kakitani, Makoto; Tomizuka, Kazuma; Oritani, Kenji; Kanakura, Yuzuru

    2015-11-01

    Recent studies have revealed the crucial role of the niche which supports B-lymphocyte differentiation from hematopoietic stem cells. In this study, we aimed to identify a novel regulator of B lymphopoiesis secreted in the specific niche using the signal sequence trap method. Among the identified proteins from MS5 stromal cells, expression of pleiotrophin, placental proliferin 2, and osteoblast stimulating factor 5 (OSF-5) was dominantly high in several stromal cell lines. We found that OSF-5 suppressed early B lymphopoiesis in transgenic mice producing the target protein. The number of pre-B and immature B cells was reduced by more than half compared with control in the transgenic mice. In vitro studies showed that a secreted variant of OSF-5 inhibited the proliferation and colony formation of pre-B cells, whereas cell-intrinsic form had no influence on B lymphopoiesis. The main components of the B-lymphopoietic niche, osteoblasts in mice and mesenchymal cells in humans, are primary producers of OSF-5. These results define a novel mechanism of B lymphopoiesis in bone marrow. In the specific niche, B-lymphocyte differentiation is fine-tuned by negative regulators as well as supportive factors. PMID:26213229

  15. The primordial thymus: everything you need under one roof.

    PubMed

    Anderson, Graham; Baik, Song

    2014-08-21

    Lymphocytes normally develop within anatomically distinct tissues. In Cell Reports, Swann et al. (2014) reconstruct the primordial thymus and suggest that it was a site of combined T and B lymphopoiesis before evolving into an organ specialized for T cell production. PMID:25148021

  16. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy

    PubMed Central

    Luan, Chengxin; Yang, Zixue; Chen, Baoan

    2015-01-01

    MicroRNAs (miRNAs), a new class of noncoding RNAs, which can hybridize to target messenger RNAs and regulate their expression posttranscriptionally, express differentially in distinct stages of lymphopoiesis and influence the direction of lymphoid precursor maturation. Hence, there is aberrant expression of miRNAs involved in malignant lymphopoiesis, and these aberrations can be used as signatures of acute lymphoblastic leukemia (ALL) with different subtypes. In addition, changes in the expression of several miRNAs may have functional relevance with leukemogenesis or drug resistance. As a result, the reversal of the expression of these miRNAs may alleviate the disease to some extent and improve clinical outcomes. However, among the studies of miRNAs, there are still some problems that need to be solved to understand the function of miRNAs in ALL more thoroughly. PMID:26508875

  17. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Papaemmanuil, Elli; Ford, Anthony; Kweon, Soo-Mi; Trageser, Daniel; Hasselfeld, Brian; Henke, Nadine; Mooster, Jana; Geng, Huimin; Schwarz, Klaus; Kogan, Scott C.; Casellas, Rafael; Schatz, David G.; Lieber, Michael R; Greaves, Mel F.; Müschen, Markus

    2015-01-01

    Childhood acute lymphoblastic leukemia can often be retraced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution towards overt leukemia. RAG1-RAG2 and AID enzymes, the diversifiers of immunoglobulin genes, are strictly segregated to early and late stages of B-lymphopoiesis, respectively. Here, we identified small pre-BII cells as a natural subset of increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B-lymphopoiesis at the large to small pre-BII transition is exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrate that AID and RAG1-RAG2 drive leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood. PMID:25985233

  18. The regulation of the B-cell gene expression programme by Pax5.

    PubMed

    Holmes, Melissa L; Pridans, Clare; Nutt, Stephen L

    2008-01-01

    The activity of the transcription factor paired box gene 5 (Pax5) is essential for many aspects of B lymphopoiesis including the initial commitment to the lineage, immunoglobulin rearrangement, pre-B cell receptor signalling and maintaining cell identity in mature B cells. Deregulated or reduced Pax5 activity has also been implicated in B-cell malignancies both in human disease and mouse models. Candidate gene approaches and biochemical analysis have revealed that Pax5 regulates B lymphopoiesis by concurrently activating B cell-specific gene expression as well as repressing the expression of genes, many of which are associated with non-B cell lineages. These studies have been recently complemented with more exhaustive microarray studies, which have identified and validated a large panel of Pax5 target genes. These target genes reveal a gene regulatory network, with Pax5 at its centre that controls the B-cell gene expression programme. PMID:17998914

  19. CpG inhibits pro-B cell expansion through a cathepsin B-dependent mechanism.

    PubMed

    Lalanne, Ana Inés; Moraga, Ignacio; Hao, Yi; Pereira, João Pedro; Alves, Nuno L; Huntington, Nicholas D; Freitas, Antonio A; Cumano, Ana; Vieira, Paulo

    2010-05-15

    TLR9 is expressed in cells of the innate immune system, as well as in B lymphocytes and their progenitors. We investigated the effect of the TLR9 ligand CpG DNA on the proliferation of pro-B cells. CpG DNA inhibits the proliferation of pro-B, but not pre-B, cells by inducing caspase-independent cell death through a pathway that requires the expression of cathepsin B. This pathway is operative in Rag-deficient mice carrying an SP6 transgene, in which B lymphopoiesis is compromised, to reduce the size of the B lymphocyte precursor compartments in the bone marrow. Thus, TLR9 signals can regulate B lymphopoiesis in vivo. PMID:20400700

  20. An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes

    SciTech Connect

    Zhang, Liqun; Teng, Yen-Tung; Melet, F.

    1995-12-01

    This report describes how expression of the proto-oncogene Fli-1 is involved in the regulation of lymphopoiesis. Transgenic mice were generated which overexpressed the oncogene, leading to a high incidence of immunological renal diseases and death. The data suggests that overexpression of Fli-1 perturbs normal lymphoid cell function and programmed cell death, making these transgenic mice suitable as a biological model for autoimmune disease in humans. 35 refs., 6 figs., 4 tabs.

  1. Trisomic hemopoietic stem cells of fetal origin restore hemopoiesis in lethally irradiated mice

    SciTech Connect

    Herbst, E.W.; Pluznik, D.H.; Gropp, A.; Uthgenannt, H.

    1981-03-13

    Autosomal trisomy in the mouse is invariably associated with fetal or early postnatal death. Hemopoietic stem cells from fetuses trisomic for chromosome 12 or 19 can be rescued by transplantation into lethally irradiated mice. These trisomic cells restore hemopoiesis, including lymphopoiesis, in the irradiated mice and establish a permanent and almost complete engraftment. There is no evidence that hemopoietic cells with trisomy 12 or 19 are cytogenetically unstable.

  2. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    PubMed

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner. PMID:26487326

  3. IL-18 acts in synergy with IL-7 to promote ex vivo expansion of T lymphoid progenitor cells

    PubMed Central

    Gandhapudi, Siva K.; Tan, Chibing; Marino, Julie H.; Taylor, Ashlee A.; Pack, Christopher C.; Gaikwad, Joel; Van De Wiele, C. Justin; Wren, Jonathan D.; Teague, T. Kent

    2015-01-01

    Although IL-18 has not previously been shown to promote T lymphopoiesis, results obtained via a novel data mining algorithm (GAMMA), led us to explore a predicted role for this cytokine in T cell development. IL-18 is a member of the IL-1 cytokine family that has been extensively characterized as a mediator of inflammatory immune responses. To assess a potential role for IL-18 in T cell development, we sort-purified mouse bone marrow derived common lymphoid progenitor cells (CLP), early thymic progenitors (ETP) and DN2 thymocytes and cultured these populations on OP9-DL4 stromal layers in the presence or absence of IL-18 and/or IL-7. After one week of culture, IL-18 promoted proliferation and accelerated differentiation of ETPs to the DN3 stage, similar in efficiency to IL-7. IL-18 showed synergy with IL-7 and enhanced proliferation of both the thymus derived progenitor cells and the bone marrow derived common lymphoid progenitor cells. The synergistic effect on the ETP population was further characterized and found to correlate with increased surface expression of c-Kit and IL-7 receptors on the IL-18-treated cells. In summary, we successfully validated the GAMMA prediction that IL-18 affects T lymphopoiesis and demonstrated that IL-18 can positively impact bone marrow lymphopoiesis and T cell development, presumably via interaction with the c-Kit and IL-7 signaling axis. PMID:25780034

  4. Toll-like receptor 9 and interferon-γ receptor signaling suppress the B-cell fate of uncommitted progenitors in mice.

    PubMed

    Baratono, Sheena R; Chu, Niansheng; Richman, Lee P; Behrens, Edward M

    2015-05-01

    Systemic inflammatory response syndrome describes a heterogeneous group of cytokine storm disorders, with different immunogens and cytokines leading to variations in organ pathology. The severe inflammation generated by the cytokine storm results in widespread organ pathology including alterations in T- and B-lymphocyte counts. This study explores the roles of TLR9 and IFN-γR stimulation in decreasing T- and B-cell lymphopoiesis in a mouse model of hyperinflammation. We demonstrate that early B-cell lymphopoiesis is severely compromised during TLR9- and IFN-γ-driven hyperinflammation from the Ly-6D(+) common lymphoid progenitor stage onwards with different effects inhibiting development at multiple stages. We show that TLR9 signaling directly decreases in vitro B-cell yields while increasing T-cell yields. IFN-γ also directly inhibits B-cell and T-cell differentiation in vitro as well as when induced by TLR9 in vivo. Microarray and RT-PCR analysis of Ly-6D(-) common lymphoid progenitors point to HOXa9 and EBF-1 as transcription factors altered by TLR9-induced inflammation. Our work demonstrates both cellular and molecular targets that lead to diminished B-cell lymphopoiesis in sustained TLR9- and IFN-γ-driven inflammation that may be relevant in a number of infectious and autoimmune/inflammatory settings. PMID:25639361

  5. Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients.

    PubMed Central

    Müller-Hermelink, H. K.; Sale, G. E.; Borisch, B.; Storb, R.

    1987-01-01

    A major hypothesis to explain the immunodeficiency associated with bone marrow transplantation states that thymic epithelial damage due to graft-versus-host disease (GVHD) abrogates or delays the recovery of normal immunologic function. This study evaluated the thymus glands of 36 human bone marrow transplant recipients dying between 4 and 1742 days after transplant using histology, histochemistry, and immunohistology. The observations lead to a model of thymic damage by irradiation, chemotherapy, and GVHD in which early injury by all three of these agents results in profound thymic atrophy followed by long-delayed restitution. Patients undergoing total body irradiation showed more severe damage to thymic cortical and medullary epithelium than did patients undergoing chemotherapy alone as preparation for transplantation. Patients with GVHD showed additional damage in the form of individual thymic epithelial cell death and showed HLA-DR surface protein expression on thymic epithelium during GVHD. Longer-term survivors showed a profoundly delayed restitution of normal thymic epithelium and delayed evidence of restored lymphopoiesis. A few patients dying late after transplant showed evidence of reconstitution of normal thymic structure or nodules of lymphopoiesis in focal areas of epithelial-cell reconstitution. Evidence of such lymphopoiesis was seen at times ranging between 90 and 1742 days after grafting. The data are consistent with a model of long-standing thymic damage caused by GVHD which is reversible after the development of tolerance. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:3314529

  6. IL-18 acts in synergy with IL-7 to promote ex vivo expansion of T lymphoid progenitor cells.

    PubMed

    Gandhapudi, Siva K; Tan, Chibing; Marino, Julie H; Taylor, Ashlee A; Pack, Christopher C; Gaikwad, Joel; Van De Wiele, C Justin; Wren, Jonathan D; Teague, T Kent

    2015-04-15

    Although IL-18 has not previously been shown to promote T lymphopoiesis, results obtained via a novel data mining algorithm (global microarray meta-analysis) led us to explore a predicted role for this cytokine in T cell development. IL-18 is a member of the IL-1 cytokine family that has been extensively characterized as a mediator of inflammatory immune responses. To assess a potential role for IL-18 in T cell development, we sort-purified mouse bone marrow-derived common lymphoid progenitor cells, early thymic progenitors (ETPs), and double-negative 2 thymocytes and cultured these populations on OP9-Delta-like 4 stromal layers in the presence or absence of IL-18 and/or IL-7. After 1 wk of culture, IL-18 promoted proliferation and accelerated differentiation of ETPs to the double-negative 3 stage, similar in efficiency to IL-7. IL-18 showed synergy with IL-7 and enhanced proliferation of both the thymus-derived progenitor cells and the bone marrow-derived common lymphoid progenitor cells. The synergistic effect on the ETP population was further characterized and found to correlate with increased surface expression of c-Kit and IL-7 receptors on the IL-18-treated cells. In summary, we successfully validated the global microarray meta-analysis prediction that IL-18 affects T lymphopoiesis and demonstrated that IL-18 can positively impact bone marrow lymphopoiesis and T cell development, presumably via interaction with the c-Kit and IL-7 signaling axis. PMID:25780034

  7. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies.

    PubMed

    Sangaletti, Sabina; Tripodo, Claudio; Portararo, Paola; Dugo, Matteo; Vitali, Caterina; Botti, Laura; Guarnotta, Carla; Cappetti, Barbara; Gulino, Alessandro; Torselli, Ilaria; Casalini, Patrizia; Chiodoni, Claudia; Colombo, Mario P

    2014-01-01

    Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc(-/-) mice and BM chimeras retaining the Sparc(-/-) genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53(-/-)/Sparc(-/-) double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53(-/-)/Sparc(+/+) counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis

  8. Phospholipase Cgamma2 dosage is critical for B cell development in the absence of adaptor protein BLNK.

    PubMed

    Xu, Shengli; Huo, Jianxin; Chew, Weng-Keong; Hikida, Masaki; Kurosaki, Tomohiro; Lam, Kong-Peng

    2006-04-15

    B cell linker (BLNK) protein and phospholipase Cgamma2 (PLCgamma2) are components of the BCR signalosome that activate calcium signaling in B cells. Mice lacking either molecule have a severe but incomplete block in B lymphopoiesis. In this study, we generated BLNK-/- PLCgamma2-/- mice to examine the effect of simultaneous disruption of both molecules on B cell development. We showed that BLNK-/- PLCgamma2-/- mice had compounded defects in B cell maturation compared with either single mutant, suggesting that these two molecules cooperatively or synergistically signaled B lymphopoiesis. However, Ig H chain allelic exclusion was maintained in single and double mutants, indicating that signals propagated by BLNK and PLCgamma2 were not involved in this process. Interestingly, in the absence of BLNK, B cell development was dependent on plcgamma2 gene dosage. This was evidenced by the proportionate decrease in splenic B cell population and increase in bone marrow surface pre-BCR+ cells in PLCgamma2-diploid, -haploid, and -null animals. Intracellular calcium signaling and ERK activation in response to BCR engagement were also proportionately decreased and delayed, respectively, with stepwise reduction of plcgamma2 dosage in a BLNK(null) background. Thus, these data indicate the importance of BLNK not only as a conduit to specifically channel BCR-signaling pathways and as a scaffold for the assembling of macromolecular complex, but also as an efficient aggregator or concentrator of PLCgamma2 molecules to effect optimal signaling for B cell generation and activation. PMID:16585562

  9. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1{sup +}B220{sup +} NK cells

    SciTech Connect

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-05-16

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1{sup +}B220{sup +}, a recently identified potent interferon (IFN)-{gamma} producer. Indeed, IFN-{gamma} was produced in those cultures, and pre-B cells lacking IFN-{gamma} receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking {beta}2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-{gamma} beyond the selection imposed upon self-recognition.

  10. B-cell development fails in the absence of the Pbx1 proto-oncogene

    PubMed Central

    Sanyal, Mrinmoy; Tung, James W.; Karsunky, Holger; Zeng, Hong; Selleri, Licia; Weissman, Irving L.; Herzenberg, Leonore A.

    2007-01-01

    Pbx1, a homeodomain transcription factor that was originally identified as the product of a proto-oncogene in acute pre-B–cell leukemia, is a global regulator of embryonic development. However, embryonic lethality in its absence has prevented an assessment of its role in B-cell development. Here, using Rag1-deficient blastocyst complementation assays, we demonstrate that Pbx1 null embryonic stem (ES) cells fail to generate common lymphoid progenitors (CLPs) resulting in a complete lack of B and NK cells, and a partial impairment of T-cell development in chimeric mice. A critical role for Pbx1 was confirmed by rescue of B-cell development from CLPs following restoration of its expression in Pbx1-deficient ES cells. In adoptive transfer experiments, B-cell development from Pbx1-deficient fetal liver cells was also severely compromised, but not erased, since transient B lymphopoiesis was detected in Rag-deficient recipients. Conditional inactivation of Pbx1 in pro-B (CD19+) cells and thereafter revealed that Pbx1 is not necessary for B-cell development to proceed from the pro-B–cell stage. Thus, Pbx1 critically functions at a stage between hematopoietic stem cell development and B-cell commitment and, therefore, is one of the earliest-acting transcription factors that regulate de novo B-lineage lymphopoiesis. PMID:17244677

  11. Estren promotes androgen phenotypes in primary lymphoid organs and submandibular glands

    PubMed Central

    Islander, Ulrika; Hasséus, Bengt; Erlandsson, Malin C; Jochems, Caroline; Skrtic, Sofia Movérare; Lindberg, Marie; Gustafsson, Jan-Åke; Ohlsson, Claes; Carlsten, Hans

    2005-01-01

    Background Estrogens and androgens have extensive effects on the immune system, for example they suppress both T and B lymphopoiesis in thymus and bone marrow. Submandibular glands are sexually dimorphic in rodents, resulting in larger granular convoluted tubules in males compared to females. The aim of the present experiments was to investigate the estrogenic and androgenic effects of 4-estren-3α,17β-diol (estren) on thymus, bone marrow and submandibular glands, and compare the effects to those of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT), respectively. Estrogen receptors (ERs) were blocked by treatment of mice with the ER-antagonist ICI 182,780; also, knock-out mice lacking one or both ERs were used. Results As expected, the presence of functional ERs was mandatory for all the effects of E2. Similar to DHT-treatment, estren-treatment resulted in decreased thymus weight, as well as decreased frequency of bone marrow B cells. Treatment with estren or DHT also resulted in a shift in submandibular glands towards an androgen phenotype. All the effects of estren and DHT were independent of ERs. Conclusion Our study is the first to show that estren has similar effects as the androgen DHT on lymphopoiesis in thymus and bone marrow, and on submandibular glands, and that these effects are independent of estrogen receptors. This supports the hypothesis of estren being able to signal through the androgen receptor. PMID:16011795

  12. Interferons Mediate Terminal Differentiation of Human Cortical Thymic Epithelial Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Laine, David; Zaffran, Yona; Azocar, Olga; Servet-Delprat, Christine; Wild, T. Fabian; Rabourdin-Combe, Chantal; Valentin, Hélène

    2002-01-01

    In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-β) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-β induction. Finally, we demonstrated that recombinant IFN-α, IFN-β, or IFN-γ was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections. PMID:12050353

  13. Marginal zone B cells emerge as a critical component of pregnancy well-being.

    PubMed

    Muzzio, Damián O; Ziegler, Katharina B; Ehrhardt, Jens; Zygmunt, Marek; Jensen, Federico

    2016-01-01

    The success of eutherian mammal evolution was certainly supported by the ability of the already existing immune system to adapt to the presence of the semi-allogeneic fetus without losing the capability to defend the mother against infections. This required the acquisition of highly regulated and coordinated immunological mechanisms. Failures in the development of these strategies not only lead to the interruption of pregnancy but also compromise maternal health. Alongside changes on the cytokine profile - expansion of tolerogenic dendritic and regulatory T cells - a profound adaptation of the B cell compartment during pregnancy was recently described. Among others, the suppression of B cell lymphopoiesis and B cell lymphopenia were proposed to be protective mechanisms tending to reduce the occurrence of autoreactive B cells that might recognize fetal structures and put pregnancy on risk. On the other hand, expansion of the pre-activated marginal zone (MZ) B cell phenotype was described as a compensatory strategy launched to overcome B cell lymphopenia thus ensuring a proper defense. In this work, using an animal model of pregnancy disturbances, we demonstrated that the suppression of B cell lymphopoiesis as well as splenic B cell lymphopenia occur independently of pregnancy outcome. However, only animals undergoing normal pregnancies, but not those suffering from pregnancy disturbances, could induce an expansion and activation of the MZ B cells. Hence, our results clearly show that MZ B cells, probably due to the production of natural protective antibodies, participate in the fine balance of immune activation required for pregnancy well-being. PMID:26493101

  14. Degeneration and atrophy of the thymus of lethally irradiated dogs, rescued by transfusion of cryopreserved autologous blood leukocytes

    SciTech Connect

    Calvo, W.; Fliedner, T.M.; Herbst, E.W.; Huegl, E.B.; Boedey, B.

    1987-12-01

    Dogs exposed to a fatal radiation dose of 12 Gy were rescued by transfusion of autologous blood leukocytes. A severe acute and long-lasting damage to the thymus was observed. The acute damage, as observed on the tenth day, consisted of a marked reduction in the number of lymphocytes, degeneration of Hassall's bodies, and hemorrhage. Long-term effects, observed several months after irradiation, were partial to total atrophy of the thymus. Regeneration, when it occurred, was limited to a few small isolated areas in which lymphopoiesis was supported by epithelial reticular cells. In contrast, the lymph nodes of all dogs had abundant cortical lymphopoiesis. The abundant hemopoiesis present in the marrow from the tenth day after irradiation until the end of the observation period should have provided sufficient circulating precursor cells to seed the thymus and regenerate the organ to the same extent as that observed in the other blood-forming organs. The impairment of lymphopoietic regeneration in the thymus seems to be due, therefore, to damage caused by irradiation on the specific stroma of the organ, which is not able to support such activity.

  15. Congenic Mice Confirm That Collagen X Is Required for Proper Hematopoietic Development

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Corbo, Tina; Jacenko, Olena

    2010-01-01

    The link between endochondral skeletal development and hematopoiesis in the marrow was established in the collagen X transgenic (Tg) and null (KO) mice. Disrupted function of collagen X, a major hypertrophic cartilage matrix protein, resulted in skeletal and hematopoietic defects in endochondrally derived tissues. Manifestation of the disease phenotype was variable, ranging from perinatal lethality in a subset of mice, to altered lymphopoiesis and impaired immunity in the surviving mice. To exclude contribution of strain specific modifiers to this variable manifestation of the skeleto-hematopoietic phenotype, C57Bl/6 and DBA/2J collagen X congenic lines were established. Comparable disease manifestations confirmed that the skeleto-hematopoietic alterations are an inherent outcome of disrupted collagen X function. Further, colony forming cell assays, complete blood count analysis, serum antibody ELISA, and organ outgrowth studies established altered lymphopoiesis in all collagen X Tg and KO mice and implicated opportunistic infection as a contributor to the severe disease phenotype. These data support a model where endochondral ossification-specific collagen X contributes to the establishment of a hematopoietic niche at the chondro-osseous junction. PMID:20209091

  16. Lymphocyte development in fish and amphibians.

    PubMed

    Hansen, J D; Zapata, A G

    1998-12-01

    Recently, molecular markers such as recombination activating genes (RAG), terminal deoxynucleotidyl transferase (TdT), stem cell leukemia hematopoietic transcription factor (SCL), Ikaros and gata-binding protein (Gata)-family members have been isolated and characterized from key lower vertebrates, adding to our growing knowledge of lymphopoiesis in ectotherms. In all gnathostomes there appear to be two main embryonic locations derived from the early mesoderm, both intra- and extraembryonic, which contribute to primitive and definitive hematopoiesis based upon their differential expression of SCL, Gata-1, Gata-2 and myeloblastosis oncogene (c-myb). In teleosts, a unique intraembryonic location for hematopoietic stem cells termed the intermediate cell mass (ICM) of Oellacher appears to be responsible for primitive or definitive hematopoiesis depending upon the species being investigated. In Xenopus, elegant grafting studies in combination with specific molecular markers has led to a better definition of the roles that ventral blood islands and dorsal lateral plate play in amphibian hematopoiesis, that of primitive and definitive lymphopoiesis. After the early embryonic contribution to hematopoiesis, specialized tissues must assume the role of providing the proper microenvironment for T and B-lymphocyte development from progenitor stem cells. In all gnathostomes, the thymus is the major site for T-cell maturation as evidenced by strong expression of developmental markers such as Ikaros, Rag and TdT plus expression of T-cell specific markers such as T-cell receptor beta and lck. In this respect, several zebrafish mutants have provided new insights on the development of the thymopoietic environment. On the other hand, the sites for B-cell lymphopoiesis are less clear among the lower vertebrates. In elasmobranchs, the spleen, Leydig's organ and the spiral valve may all contribute to B-cell development, although pre-B cells have yet to be fully addressed in fish. In

  17. Neuro-immune modulation of the thymus microenvironment (review).

    PubMed

    Mignini, Fiorenzo; Sabbatini, Maurizio; Mattioli, Laura; Cosenza, Monica; Artico, Marco; Cavallotti, Carlo

    2014-06-01

    The thymus is the primary site for T-cell lympho-poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells to the periphery. These highly complex processes require precise parenchymal organization and compartmentation where a plethora of signalling pathways occur, performing strict control on the maturation and selection processes of T lymphocytes. In this review, the main morphological characteristics of the thymus microenvironment, with particular emphasis on nerve fibers and neuropeptides were assessed, as both are responsible for neuro-immune‑modulation functions. Among several neurotransmitters that affect thymus function, we highlight the dopaminergic system as only recently has its importance on thymus function and lymphocyte physiology come to light. PMID:24676230

  18. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    PubMed

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  19. Insulin–InsR signaling drives multipotent progenitor differentiation toward lymphoid lineages

    PubMed Central

    Xia, Pengyan; Wang, Shuo; Du, Ying; Huang, Guanling; Satoh, Takashi; Akira, Shizuo

    2015-01-01

    The lineage commitment of HSCs generates balanced myeloid and lymphoid populations in hematopoiesis. However, the underlying mechanisms that control this process remain largely unknown. Here, we show that insulin–insulin receptor (InsR) signaling is required for lineage commitment of multipotent progenitors (MPPs). Deletion of Insr in murine bone marrow causes skewed differentiation of MPPs to myeloid cells. mTOR acts as a downstream effector that modulates MPP differentiation. mTOR activates Stat3 by phosphorylation at serine 727 under insulin stimulation, which binds to the promoter of Ikaros, leading to its transcription priming. Our findings reveal that the insulin–InsR signaling drives MPP differentiation into lymphoid lineages in early lymphopoiesis, which is essential for maintaining a balanced immune system for an individual organism. PMID:26573296

  20. Hematopoietic ontogeny and its relevance for pediatric leukemias.

    PubMed

    Udroiu, Ion; Sgura, Antonella

    2016-03-01

    Fetal and infant hematopoiesis display characteristics different from the adult one: our suggestion is that these features may help to explain the peculiar incidence rates of acute leukemias. Hematopoietic stem cells (HSCs) are fast-cycling (those in adults instead are largely quiescent) and studies in mice demonstrated that their relative contribution to myelo- and lymphopoiesis varies during development. We hypothesize that during development some of the "hits" needed for the onset of leukemia are usually occurring (being part of the normal development), so leukemogenesis needs less mutations than in adults to take place and therefore it's more probable. The switch between the relative incidence of acute myeloid and lymphoid leukemias may be related to the changes of the percentage of lymphoid-deficient and lymphoid-proficient sub-set of HSCs during development. Further investigations may clarify this hypothesis, elucidating also the roles of the different microenvironments in determining the myeloid/lymphoid predisposition of the HSCs. PMID:26880643

  1. A surrogate 15 kDa JC kappa protein is expressed in combination with mu heavy chain by human B cell precursors.

    PubMed Central

    Francés, V; Pandrau-Garcia, D; Guret, C; Ho, S; Wang, Z; Duvert, V; Saeland, S; Martinez-Valdez, H

    1994-01-01

    A novel kappa protein, encoded by a germline JC kappa transcript, is expressed by normal and leukemic human B cell precursors. The transcript displays an open reading frame initiated by a non-AUG codon, and predicts a 15 kDa molecule which could be readily confirmed by in vitro translation. Cellular expression was demonstrated by immunofluorescence, precipitation and Western blotting. Furthermore, 2-D gel electrophoresis revealed that germline JC kappa can covalently associate with mu heavy chain at the surface of pre-B cells. We therefore propose that during B cell lymphopoiesis, two alternative pathways could be operative in which mu heavy chain can either associate with lambda 5 or germ-line JC kappa. Images PMID:7813432

  2. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1974-01-01

    Cellular response and cell population kinetics were studied during lymphopoiesis in the thymus of the mouse under continuous gamma irradiation using autoradiographic techniques and specific labeling with tritiated thymidine. On the basis of tissue weights, it is concluded that the response of both the thymus and spleen to continuous low dose-rate irradiation is multiphasic. That is, alternating periods of steady state growth, followed by collapse, which in turn is followed by another period of homeostasis. Since there are two populations of lymphocytes - short lived and long-lived, it may be that different phases of steady state growth are mediated by different lymphocytes. The spleen is affected to a greater extent with shorter periods of steady-state growth than exhibited by the thymus.

  3. [Effect of anesthesia with xenon and nitrous oxide with fentanyl on dynamics of cellular immunity and cytokines].

    PubMed

    Kitiashvili, I Z; Burov, N E; Freĭdlin, I S; Khrykova, E V

    2006-01-01

    Immunological parameters were studied at randomization in 60 surgical patients during the similar operation--cholecystectomy made under combined endotracheal low-flow general anesthesia using N2O:O2+fentanyl in 32 patients and Xe:O2 in 28 patients. The time course of changes in cellular immunity and cytokines was closely related to the type of an anesthetic. Unlike N2O:O2+fentanyl, Xe did not show such a marked proinflammatory activity, exerted a mild normalizing effect on leuko- and lymphopoiesis, had an immunostimulating activity, and reduced the frequency of postoperative inflammatory complications and the length of stay at hospital. The differences in the action of the anesthetics were due to the fact that Xe had a greater narcotic potential, a protective action on neuroendocrine function, and no toxicity. Xe is indicated to patients with baseline immunodeficiency. PMID:16758935

  4. On the radiosensitivity of man in space

    NASA Astrophysics Data System (ADS)

    Esposito, R. D.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Jones, T. D.

    Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space.

  5. ZNF423: Transcriptional modulation in development and cancer

    PubMed Central

    Harder, Lena; Puller, Ann-Christin; Horstmann, Martin A

    2014-01-01

    Krüppel-like zinc finger proteins are versatile players in biology that have been implicated in mammalian development and disease. Among these proteins, ZNF423 and its mouse ortholog Zfp423 were initially implicated in midline patterning of the central nervous system but have emerged as critical transcriptional modulators in cancer. Epigenetically uncurbed ZNF423 interferes with lymphopoiesis by sequestration of the essential early B-cell factor 1 (EBF1) causing B-cell maturation arrest, a hallmark of acute lymphoblastic leukemia. Conversely, its presence in neuroblastoma, a primitive neuroectodermal tumor of childhood, allows retinoic acid-induced differentiation and is associated with a favorable outcome of neuroblastoma patients. Such opposing effects may be explained by the cellular context, but also by the multifunctionality of ZNF423 that is mediated by 30 zinc fingers forming various functional domains. This review summarizes current knowledge of ZNF423, focusing on its role in development and cancer. PMID:27308357

  6. Identification and expression of Helios, a member of the Ikaros family, in the Mexican axolotl: implications for the embryonic origin of lymphocyte progenitors.

    PubMed

    Durand, Charles; Kerfourn, Fabienne; Charlemagne, Jacques; Fellah, Julien S

    2002-06-01

    Transcription factors of the Ikaros gene family are critical for the differentiation of T and B lymphocytes from pluripotent hematopoietic stem cells. To study the first steps of lymphopoiesis in the Mexican axolotl, we have cloned the Helios ortholog in this urodele amphibian species. We demonstrated that the axolotl Helios contains a 144-bp deletion at the 5' end of the activation domain. Helios is expressed in both the thymus and spleen but not in the liver of the pre-adult axolotl. During ontogeny, Helios transcripts are detected from neurula stage, before the apparition of the first Ikaros transcripts and the colonization of lymphoid tissues. Interestingly, Helios and Ikaros mRNA are found predominantly in the ventral blood islands of late tail-bud embryos. These results suggest that in contrast to the Xenopus and amniote embryos where two sites of hematopoiesis have been characterized, the ventral blood islands could be the major site of hematopoiesis in the axolotl. PMID:12115658

  7. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    PubMed Central

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M.

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates. PMID:22046564

  8. Thymic B Cells and Central T Cell Tolerance

    PubMed Central

    Yamano, Tomoyoshi; Steinert, Madlen; Klein, Ludger

    2015-01-01

    Central T cell tolerance is believed to be mainly induced by thymic dendritic cells and medullary thymic epithelial cells. The thymus also harbors substantial numbers of B cells. These may arise though intrathymic B lymphopoiesis or immigration from the bloodstream. Importantly, and in contrast to resting “mainstream” B cells in the periphery, thymic B cells display elevated levels of MHC class II and constitutively express CD80. Arguably, their most unexpected feature is the expression of autoimmune regulator. These unique features of thymic B cells result from a licensing process that involves cross-talk with CD4 single-positive T cells and CD40 signaling. Together, these recent findings suggest that B cells play a more prominent role as thymic APCs than previously appreciated. PMID:26257742

  9. Hematopoiesis in snakes (Ophidia).

    PubMed

    Dabrowski, Z; Tabarowski, Z; Sano-Martins, I S; Spadacci-Morena, D D; Witkowska-Pelc, E; Krzysztofowicz, E; Spodaryk, K

    2002-01-01

    Locations of the hematopoietic tissue have been described in the following ophidian species: Bothrops jararaca, Bothrops jararacusu, Waglerophis merremii, Elaphe teniura teniura, Boa constrictor, and Python reticulatus. Studies were carried out on perfusion fixed vertebrae, ribs, spleen, liver, thymus, and kidney. Routine histological technique was applied using both light and electron microscopy. Hematopoietic tissue was found in the following locations of the vertebrae: neural spine, neural arch, postzygophysis processes, hypapophysis, vertebral centre. Moreover, intense hematopoiesis was found inside the ribs. In the spleen and thymus, only lymphopoiesis was found. Hematopoietic islets in the spleen were sporadically found only in young specimens. No hematopoiesis was observed in the liver and kidney. In the studied species, there were no differences in the location of hematopoietic tissue. A new model of mature and immature blood cell release to the lumen of marrow sinuses different from that known to operate in higher vertebrates is proposed. PMID:12056654

  10. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

    PubMed Central

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C.; Mead, Adam; Jacobsen, Sten Eirik W.; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  11. BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth.

    PubMed Central

    Kaisho, T; Ishikawa, J; Oritani, K; Inazawa, J; Tomizawa, H; Muraoka, O; Ochi, T; Hirano, T

    1994-01-01

    Bone marrow stromal cells are essential for B-lymphocyte development. However, how stromal cells regulate B lymphopoiesis is not clear. In this paper, we report the molecular cloning of a stromal cell line-derived glycosyl-phosphatidylinositol-anchored molecule, BST-1, that facilitates pre-B-cell growth. The deduced amino acid sequence of BST-1 exhibited 33% identity with CD38. BST-1 was expressed in a wide range of tissues and in umbilical vein endothelial cells, whereas it was scarcely expressed in a variety of hematopoietic cell lines. The gene for BST-1 was assigned to chromosome 14q32.3, where immunoglobulin heavy-chain genes are clustered. BST-1 expression was enhanced in rheumatoid arthritis patient-derived bone marrow stromal cell lines that were previously shown to have an enhanced ability to support the growth of a pre-B-cell line as compared with stromal cell lines derived from healthy donors. Images PMID:8202488

  12. B-cell production and differentiation in adult rats.

    PubMed Central

    Bazin, H; Platteau, B; Maclennan, I C; Johnson, G D

    1985-01-01

    The B-cell development in a group of rats was suppressed for the first 45 days of life by serial administration of rabbit anti-rat IgM and IgD antibody. Total or near total suppression of B lymphopoiesis was achieved. At 45 days, suppression was stopped by injection of IgM and IgD rat paraproteins. The sequence of B-cell and plasma cell development following suppression was assessed by immunohistological analysis of spleen lymph nodes and small intestinal lamina propria. The main findings are listed below. Complete reconstitution of B-cell numbers occurs within 8 days, at which stage germinal centres are also present. B lymphopoiesis in the red pulp of the spleen differs from that reported for bone marrow. Cells develop expressing surface sIgM and sIgM with IgA, but not sIgD. sIgD-positive cells first appear in splenic follicles 2 days after stopping suppression, but their appearance in lymph nodes is delayed until after 3 days. At this stage, sIgD-positive cells become apparent in the splenic red pulp. IgM plasma cells appear from day 4. IgA plasma cells in the gut appear in small numbers at day 6, and gradually increase to normal numbers by day 14. sIgG2c expression in the splenic marginal zone did not approach normal levels, even 2 weeks after suppression was stopped. Images Figure 4 Figure 2 Figure 3 PMID:3871730

  13. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART.

    PubMed

    Menkova-Garnier, Inna; Hocini, Hakim; Foucat, Emile; Tisserand, Pascaline; Bourdery, Laure; Delaugerre, Constance; Benne, Clarisse; Lévy, Yves; Lelièvre, Jean-Daniel

    2016-04-01

    Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs. PMID:27082982

  14. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART

    PubMed Central

    Menkova-Garnier, Inna; Hocini, Hakim; Foucat, Emile; Tisserand, Pascaline; Bourdery, Laure; Delaugerre, Constance; Benne, Clarisse; Lévy, Yves; Lelièvre, Jean-Daniel

    2016-01-01

    Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs. PMID:27082982

  15. Perturbation of B cell genesis in the bone marrow of pristane-treated mice. Implications for plasmacytoma induction.

    PubMed

    Rico-Vargas, S A; Potter, M; Osmond, D G

    1995-03-01

    A single injection of pristane was given i.p. to plasmacytoma-susceptible BALB/cAn mice. At intervals up to 6 mo thereafter, immunofluorescence labeling of intranuclear terminal deoxynucleotidyl transferase (TdT), cell surface B220 glycoprotein, cytoplasmic mu-chains of IgM (c mu), and surface mu-chains (s mu), together with mitotic arrest techniques, were used to quantitate the in vivo population dynamics of precursor B cells in the bone marrow. TdT-expressing pro-B cells (TdT+B220-, TdT+B220+), before the expression of mu-chains, showed sustained increases in both population size and the number of cells flowing through mitosis per unit time. In contrast, populations of pre-B cells (c mu + s mu -) and B cells (s mu +) were consistently depressed for long periods of time, including the phase of plasmacytoma formation. Precursor B cells in DBA/2 mice, a plasmacytoma-resistant strain, showed similar responses to pristane treatment. The results demonstrate that a single injection of pristane, which greatly increases the demand for macrophage activity in the peritoneal space, causes sustained distant alterations in B cell lymphopoiesis in the bone marrow; specifically, a prolonged increased proliferation of pro-B cells coupled with a depression and a exaggerated loss of pre-B cells and B cells. The protracted stress on B cell lymphopoiesis may be a predisposing factor in the subsequent development of c-myc-activating chromosomal rearrangements that play a critical role in plasmacytomagenesis. PMID:7868885

  16. Effects of low-doses of Bacillus spp. from permafrost on differentiation of bone marrow cells.

    PubMed

    Kalyonova, L F; Novikova, M A; Kostolomova, E G

    2015-01-01

    The effects of a new microorganism species (Bacillus spp., strain M3) isolated from permafrost specimens from Central Yakutia (Mamontova Mountain) on the bone marrow hemopoiesis were studied on laboratory mice. Analysis of the count and immunophenotype of bone marrow cells indicated that even in low doses (1000-5000 microbial cells) these microorganisms modulated hemopoiesis and lymphopoiesis activity. The percentage of early hemopoietic precursors (CD117(+)CD34(-)) increased, intensity of lymphocyte precursor proliferation and differentiation (CD25(+)CD44(-)) decreased, and the percentage of lymphocytes released from the bone marrow (CD25(+)CD44(+)) increased on day 21 after injection of the bacteria. These changes in activity of hemopoiesis were associated with changes in the level of regulatory T lymphocytes (reduced expression of TCRαβ) and were most likely compensatory. The possibility of modulating hemopoiesis activity in the bone marrow by low doses of one microorganism strain isolated from the permafrost could be useful for evaluating the effects of other low dose bacteria on the bone marrow hemopoiesis. PMID:25567196

  17. Use of Mutated Self-Cleaving 2A Peptides as a Molecular Rheostat to Direct Simultaneous Formation of Membrane and Secreted Anti-HIV Immunoglobulins

    PubMed Central

    Yu, Kenneth K.; Aguilar, Kiefer; Tsai, Jonathan; Galimidi, Rachel; Gnanapragasam, Priyanthi; Yang, Lili; Baltimore, David

    2012-01-01

    In nature, B cells produce surface immunoglobulin and secreted antibody from the same immunoglobulin gene via alternative splicing of the pre-messenger RNA. Here we present a novel system for genetically programming B cells to direct the simultaneous formation of membrane-bound and secreted immunoglobulins that we term a “Molecular Rheostat”, based on the use of mutated “self-cleaving” 2A peptides. The Molecular Rheostat is designed so that the ratio of secreted to membrane-bound immunoglobulins can be controlled by selecting appropriate mutations in the 2A peptide. Lentiviral transgenesis of Molecular Rheostat constructs into B cell lines enables the simultaneous expression of functional b12-based IgM-like BCRs that signal to the cells and mediate the secretion of b12 IgG broadly neutralizing antibodies that can bind and neutralize HIV-1 pseudovirus. We show that these b12-based Molecular Rheostat constructs promote the maturation of EU12 B cells in an in vitro model of B lymphopoiesis. The Molecular Rheostat offers a novel tool for genetically manipulating B cell specificity for B-cell based gene therapy. PMID:23209743

  18. Lymphoid tissue during irradiation of tumors with pulsing laser's radiation

    NASA Astrophysics Data System (ADS)

    Moskalik, Konstantin G.

    2002-06-01

    The structure of the regional lymph nodes and the thymus was studied in the experiments upon the mice of the line C57BL with the subcutaneous interwoven melanoma B16 in the periods from one hour to 12 days after the radiation of melanoma with one irradiation impulse of the Nd laser with the energy density of 400 J/cm2. During the first 3 days after the irradiation of tumor with laser radiation the impoverishment of lymph nodes and thymus with lymphocytes takes place because of their intensified migration from these organs to the blood channel. Then one can see the restoration of the lymph nodes and thymus structure. The restoration of lymphopoiesis in the lymph nodes went on in the first place because of the poiesis in the follicles which consist of B-lymphocytes. Consequently, the lymphoid tissue plays a great role in the reorganization of the immunological status of the organism. Reorganization can be seen during the treatment of tumors with laser radiation, and it takes place in the first instance because of the reinforcement of the humoral immunity.

  19. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation.

    PubMed

    Becker, Amy M; Callahan, Derrick J; Richner, Justin M; Choi, Jaebok; DiPersio, John F; Diamond, Michael S; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  20. Regulation of T Cell Differentiation and Function by EZH2.

    PubMed

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  1. The transcriptional landscape of hematopoietic stem cell ontogeny

    PubMed Central

    McKinney-Freeman, Shannon; Cahan, Patrick; Li, Hu; Lacadie, Scott A.; Huang, Hsuan-Ting; Curran, Matthew; Loewer, Sabine; Naveiras, Olaia; Kathrein, Katie L.; Konantz, Martina; Langdon, Erin M.; Lengerke, Claudia; Zon, Leonard I.; Collins, James J.; Daley, George Q.

    2012-01-01

    Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification. PMID:23122293

  2. CCX-CKR deficiency alters thymic stroma impairing thymocyte development and promoting autoimmunity.

    PubMed

    Bunting, Mark D; Comerford, Iain; Seach, Natalie; Hammett, Maree V; Asquith, Darren L; Körner, Heinrich; Boyd, Richard L; Nibbs, Robert J B; McColl, Shaun R

    2013-01-01

    The atypical chemokine receptor CCX-CKR regulates bioavailability of CCL19, CCL21, and CCL25, homeostatic chemokines that play crucial roles in thymic lymphopoiesis. Deletion of CCX-CKR results in accelerated experimental autoimmunity induced by immunization. Here we show that CCX-CKR deletion also increases incidence of a spontaneous Sjögren's syndrome-like pathology, characterized by lymphocytic infiltrates in salivary glands and liver of CCX-CKR(-/-) mice, suggestive of a defect in self-tolerance when CCX-CKR is deleted. This prompted detailed examination of the thymus in CCX-CKR(-/-) mice. Negatively selected mature SP cells were less abundant in CCX-CKR(-/-) thymi, yet expansion of both DP and immature SP cells was apparent. Deletion of CCX-CKR also profoundly reduced proportions of DN3 thymocyte precursors and caused DN2 cells to accumulate within the medulla. These effects are likely driven by alterations in thymic stroma as CCX-CKR(-/-) mice have fewer cTECs per thymocyte, and cTECs express the highest level of CCX-CKR in the thymus. A profound decrease in CCL25 within the thymic cortex was observed in CCX-CKR(-/-) thymi, likely accounting for their defects in thymocyte distribution and frequency. These findings identify a novel role for CCX-CKR in regulating cTEC biology, which promotes optimal thymocyte development and selection important for self-tolerant adaptive immunity. PMID:23152546

  3. Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1.

    PubMed

    Denis, Christopher M; Chitayat, Seth; Plevin, Michael J; Wang, Feng; Thompson, Patrick; Liu, Shuang; Spencer, Holly L; Ikura, Mitsuhiko; LeBrun, David P; Smith, Steven P

    2012-11-01

    E-proteins are critical transcription factors in B-cell lymphopoiesis. E2A, 1 of 3 E-protein-encoding genes, is implicated in the induction of acute lymphoblastic leukemia through its involvement in the chromosomal translocation 1;19 and consequent expression of the E2A-PBX1 oncoprotein. An interaction involving a region within the N-terminal transcriptional activation domain of E2A-PBX1, termed the PCET motif, which has previously been implicated in E-protein silencing, and the KIX domain of the transcriptional coactivator CBP/p300, critical for leukemogenesis. However, the structural details of this interaction remain unknown. Here we report the structure of a 1:1 complex between PCET motif peptide and the KIX domain. Residues throughout the helical PCET motif that contact the KIX domain are important for both binding KIX and bone marrow immortalization by E2A-PBX1. These results provide molecular insights into E-protein-driven differentiation of B-cells and the mechanism of E-protein silencing, and reveal the PCET/KIX interaction as a therapeutic target for E2A-PBX1-induced leukemia. PMID:22972988

  4. Regulation of the transcriptional program by DNA methylation during human αβ T-cell development

    PubMed Central

    Rodriguez, Ramon M.; Suarez-Alvarez, Beatriz; Mosén-Ansorena, David; García-Peydró, Marina; Fuentes, Patricia; García-León, María J.; Gonzalez-Lahera, Aintzane; Macias-Camara, Nuria; Toribio, María L.; Aransay, Ana M.; Lopez-Larrea, Carlos

    2015-01-01

    Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis. PMID:25539926

  5. The impact of trisomy 21 on foetal haematopoiesis

    PubMed Central

    Roberts, Irene; O'Connor, David; Roy, Anindita; Cowan, Gillian; Vyas, Paresh

    2015-01-01

    The high frequency of a unique neonatal preleukaemic syndrome, Transient Abnormal Myelopoiesis (TAM), and subsequent acute myeloid leukaemia in early childhood in patients with trisomy 21 (Down syndrome) points to a specific role for trisomy 21 in transforming foetal haematopoietic cells. N-terminal truncating mutations in the key haematopoietic transcription factor GATA1 are acquired during foetal life in virtually every case. These mutations are not leukaemogenic in the absence of trisomy 21. In mouse models, deregulated expression of chromosome 21-encoded genes is implicated in leukaemic transformation, but does not recapitulate the effects of trisomy 21 in a human context. Recent work using primary human foetal liver and bone marrow cells, human embryonic stem cells and iPS cells cells shows that prior to acquistion of GATA1 mutations, trisomy 21 itself alters human foetal haematopoietic stem cell and progenitor cell biology causing multiple abnormalities in myelopoiesis and B-lymphopoiesis. The molecular basis by which trisomy 21 exerts these effects is likely to be extremely complex, to be tissue- and lineage-specific and to be dependent on ontogeny-related characteristics of the foetal microenvironment. PMID:23932236

  6. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  7. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis

    PubMed Central

    Wang, Wenyuan; Org, Tonis; Montel-Hagen, Amélie; Pioli, Peter D.; Duan, Dan; Israely, Edo; Malkin, Daniel; Su, Trent; Flach, Johanna; Kurdistani, Siavash K.; Schiestl, Robert H.; Mikkola, Hanna K. A.

    2016-01-01

    DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors. PMID:27507714

  8. Removal of myeloid cytokines from the cellular environment enhances T-cell development in vitro.

    PubMed

    Smeets, Monique F M A; Mackenzie-Kludas, Charley; Mohtashami, Mahmood; Zhang, Hui-Hua; Zúñiga-Pflücker, Juan Carlos; Izon, David J

    2013-10-01

    The majority of T-cell development occurs in the thymus. Thymic epithelial cells are specialized cells that express NOTCH ligands and secrete specific cytokines required for normal T-cell lymphopoiesis. It has been demonstrated that OP9 cells derived from macrophage colony-stimulating factor (M-CSF)-deficient mice can support T-cell development when transduced with a NOTCH ligand, Delta-like 1 (Dll1). In this report, we have tested CSF-deficient mouse fibroblasts transduced with Dll1 for their ability to support T-cell differentiation. The data provided here demonstrate that CSF-deficient fibroblasts expressing DLL1 can support T-cell development. Indeed, co-cultures with these fibroblasts produced more T-cell progenitors compared with OP9-DL1 cultures. Addition of myeloid cytokines to OP9-DL1 co-cultures significantly inhibited T-cell development while CSF-deficient DLL1(+) fibroblasts retained partial T-cell differentiation. Taken together, these data imply that their lack of myeloid cytokines allows DLL1(+) fibroblasts to more efficiently generate T-cells. Development of this fibroblast system suggests that there is potential for generating human T-cell precursors via co-culture with human fibroblasts expressing DLL1 or DLL4. These T-cell precursors could be used for treating immunodeficient patients. PMID:23988615

  9. Extracoporeal photopheresis treatment of acute graft-versus-host disease following allogeneic haematopoietic stem cell transplantation

    PubMed Central

    Flinn, Aisling M.; Gennery, Andrew R.

    2016-01-01

    Acute graft-versus-host disease (aGvHD) continues to be a major obstacle to allogeneic haematopoietic stem cell transplantation. Thymic damage secondary to aGvHD along with corticosteroids and other non-selective T lymphocyte-suppressive agents used in the treatment of aGvHD concurrently impair thymopoiesis and negatively impact on immunoreconstitution of the adaptive immune compartment and ultimately adversely affect clinical outcome. Extracorporeal photopheresis (ECP) is an alternative therapeutic strategy that appears to act in an immunomodulatory fashion, potentially involving regulatory T lymphocytes and dendritic cells. By promoting immune tolerance and simultaneously avoiding systemic immunosuppression, ECP could reduce aGvHD and enable a reduction in other immunosuppression, allowing thymic recovery, restoration of normal T lymphopoiesis, and complete immunoreconstitution with improved clinical outcome. Although the safety and efficacy of ECP has been demonstrated, further randomised controlled studies are needed as well as elucidation of the underlying mechanisms responsible and the effect of ECP on thymic recovery. PMID:27408705

  10. Immunodeficiency syndromes: Disorder of lymphocytopoiesis caused by environmental agents: Volume 1, comprehensive progress report

    SciTech Connect

    Rosse, C.

    1988-01-01

    The studies we have performed have provided a substantial database that supports these beliefs. Our work sponsored by DOE has defined experimental tumor systems in which we have known that there is interaction between the bone marrow and certain neoplasms. We have documents that these interactions are important in host responses against tumors, and that certain tumors profoundly alter the production of several types of cells in the lymphopoiesis in an experimental model of graft-vs-host disease (GVHD) that develops as a consequence of bone marrow transplantation between H-2 identical mouse strains that differ in monorhistocompatibility antigens (minor HA). Parallel with the experimental systems that investigated interactions between the bone marrow and tumors, we have maintained an active program concerned with fundamental studies of lymphocyte production and differentation in the bone marrow, thymus, and periphery. The elucidation of the mechanisms that regulate the differentiation program of T, B, and natural killer (NK) cells remains a requisite for understanding at what level carcinogenic and noncarcinogenic environmental factors exert their influence on the lymphomyeloid complex. We have made notable progress with studies concerning the regulation of B lymphocyte production, the maintenance of T cell precursors in the bone marrow and thymus and the cell traffic between these organs, and especially in unravelling the lineage relationship, turnover, and functional heterogeneity of NK cells. 173 refs., 11 figs., 14 tabs.

  11. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish.

    PubMed

    Wei, Yonglong; Xu, Jin; Zhang, Wenqing; Wen, Zilong; Liu, Feng

    2016-06-15

    Hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and replenishing all lineages of blood cells throughout life and are thus crucial for tissue homeostasis. However, the mechanism regulating HSPC development is still incompletely understood. Here, we isolate a zebrafish mutant with defective T lymphopoiesis and positional cloning identifies that Rpc9, a component of DNA-directed RNA polymerase III (Pol III) complex, is responsible for the mutant phenotype. Further analysis shows that rpc9 deficiency leads to the impairment of HSPCs and their derivatives in zebrafish embryos. Excessive apoptosis is observed in the caudal hematopoietic tissue (CHT; the equivalent of fetal liver in mammals) of rpc9(-/-) embryos and the hematopoietic defects in these embryos can be fully rescued by suppression of p53 Thus, our work illustrates that Rpc9, a component of Pol III, plays an important tissue-specific role in HSPC maintenance during zebrafish embryogenesis and might be conserved across vertebrates, including mammals. PMID:27151951

  12. Gene Correction of iPSCs from a Wiskott-Aldrich Syndrome Patient Normalizes the Lymphoid Developmental and Functional Defects.

    PubMed

    Laskowski, Tamara J; Van Caeneghem, Yasmine; Pourebrahim, Rasoul; Ma, Chao; Ni, Zhenya; Garate, Zita; Crane, Ana M; Li, Xuan Shirley; Liao, Wei; Gonzalez-Garay, Manuel; Segovia, Jose Carlos; Paschon, David E; Rebar, Edward J; Holmes, Michael C; Kaufman, Dan; Vandekerckhove, Bart; Davis, Brian R

    2016-08-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined. Whereas differentiation to non-lymphoid lineages was readily obtained from WAS-iPSCs, in vitro T lymphopoiesis from WAS-iPSC was deficient with few CD4(+)CD8(+) double-positive and mature CD3(+) T cells obtained. T cell differentiation was restored for cWAS-iPSCs. Similarly, defects in natural killer cell differentiation and function were restored on targeted correction of the WAS locus. These results demonstrate that the defects exhibited by WAS-iPSC-derived lymphoid cells were fully corrected and suggests the potential therapeutic use of gene-corrected WAS-iPSCs. PMID:27396937

  13. Interleukin 4 inhibits in vitro proliferation of leukemic and normal human B cell precursors.

    PubMed Central

    Pandrau, D; Saeland, S; Duvert, V; Durand, I; Manel, A M; Zabot, M T; Philippe, N; Banchereau, J

    1992-01-01

    In the present study, we have investigated the effects of IL-4 on the proliferation and differentiation of leukemic and normal human B cell precursors (BCP). We have demonstrated that IL-4 significantly inhibited spontaneous [3H]thymidine ([3H]-TdR) incorporation by leukemic blasts from some B lineage acute lymphoblastic leukemia (BCP-ALL) patients (8 of 14). Furthermore, IL-4 was found to suppress the spontaneous and factor-dependent (IL-7 and IL-3) proliferation of normal BCP (CD10+ surface [s] IgM- cells) isolated from fetal bone marrow. Maximum growth inhibition of either leukemic or normal BCP was reached at low IL-4 concentrations (10 U/ml), and the effect was specifically neutralized by anti-IL-4 antibody. IL-4 was further found to induce the expression of CD20 antigen on BCP-ALL cells from a number of the cases examined (5 of 8), but in contrast to leukemic cells, IL-4 failed to induce CD20 antigen on normal BCP. Finally, IL-4 was found to induce neither the expression of cytoplasmic mu chain, nor the appearance of sIgM+ cells in cultures of normal or leukemic BCP. Our data indicate that IL-4 has the potential to inhibit cell proliferation in leukemic and normal human B lymphopoiesis but is unable to drive the transition from BCP to mature B cells. Images PMID:1385474

  14. Interleukin 7 independent development of human B cells.

    PubMed Central

    Prieyl, J A; LeBien, T W

    1996-01-01

    Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis. PMID:8816803

  15. HDAC3 is essential for DNA replication in hematopoietic progenitor cells

    PubMed Central

    Summers, Alyssa R.; Fischer, Melissa A.; Stengel, Kristy R.; Zhao, Yue; Kaiser, Jonathan F.; Wells, Christina E.; Hunt, Aubrey; Bhaskara, Srividya; Luzwick, Jessica W.; Sampathi, Shilpa; Chen, Xi; Thompson, Mary Ann; Cortez, David; Hiebert, Scott W.

    2013-01-01

    Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3–5 times more multipotent progenitor cells. Hdac3–/– stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3–/– stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3–/– stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis. PMID:23921131

  16. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models

    PubMed Central

    Cornejo, Melanie G.; Kharas, Michael G.; Werneck, Miriam B.; Bras, Séverine Le; Moore, Sandra A.; Ball, Brian; Beylot-Barry, Marie; Rodig, Scott J.; Aster, Jon C.; Lee, Benjamin H.; Cantor, Harvey; Merlio, Jean-Philippe

    2009-01-01

    The tyrosine kinase JAK3 plays a well-established role during normal lymphocyte development and is constitutively phosphorylated in several lymphoid malignancies. However, its contribution to lymphomagenesis remains elusive. In this study, we used the newly identified activating JAK3A572V mutation to elucidate the effect of constitutive JAK3 signaling on murine lymphopoiesis. In a bone marrow transplantation model, JAK3A572V induces an aggressive, fatal, and transplantable lymphoproliferative disorder characterized by the expansion of CD8+TCRαβ+CD44+CD122+Ly-6C+ T cellsthat closely resemble an effector/memory T-cell subtype. Compared with wild-type counterparts, these cells show increased proliferative capacities in response to polyclonal stimulation, enhanced survival rates with elevated expression of Bcl-2, and increased production of interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα), correlating with enhanced cytotoxic abilities against allogeneic target cells. Of interest, the JAK3A572V disease is epidermotropic and produces intraepidermal microabscesses. Taken together, these clinical features are reminiscent of those observed in an uncommon but aggressive subset of CD8+ human cutaneous T-cell lymphomas (CTCLs). However, we also observed a CD4+ CTCL-like phenotype when cells are transplanted in an MHC-I–deficient background. These data demonstrate that constitutive JAK3 activation disrupts T-cell homeostasis and induces lymphoproliferative diseases in mice. PMID:19139084

  17. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    PubMed Central

    James, Sally; Fox, James; Afsari, Farinaz; Lee, Jennifer; Clough, Sally; Knight, Charlotte; Ashmore, James; Ashton, Peter; Preham, Olivier; Hoogduijn, Martin; Ponzoni, Raquel De Almeida Rocha; Hancock, Y.; Coles, Mark; Genever, Paul

    2015-01-01

    Summary Bone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis of functional markers for BMSC subsets. All clones expressed typical BMSC cell-surface antigens; however, clones with trilineage differentiation capacity exhibited enhanced vascular interaction gene sets, whereas non-differentiating clones were uniquely CD317 positive with significantly enriched immunomodulatory transcriptional networks and high IL-7 production. IL-7 lineage tracing and CD317 immunolocalization confirmed the existence of a rare non-differentiating BMSC subtype, distinct from Cxcl12-DsRed+ perivascular stromal cells in vivo. Colony-forming CD317+ IL-7hi cells, identified at ∼1%–3% frequency in heterogeneous human BMSC fractions, were found to have the same biomolecular profile as non-differentiating BMSC clones using Raman spectroscopy. Distinct functional identities can be assigned to BMSC subpopulations, which are likely to have specific roles in immune control, lymphopoiesis, and bone homeostasis. PMID:26070611

  18. ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies

    PubMed Central

    Mesuraca, Maria; Chiarella, Emanuela; Scicchitano, Stefania; Codispoti, Bruna; Giordano, Marco; Nappo, Giovanna; Bond, Heather M.; Morrone, Giovanni

    2015-01-01

    The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies. PMID:26788497

  19. Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues

    PubMed Central

    Hisamatsu, Daisuke; Ohno-Oishi, Michiko; Nakamura, Shiho; Mabuchi, Yo; Naka-Kaneda, Hayato

    2016-01-01

    The senescence-associated secretory phenotype (SASP) has attracted attention as a mechanism that connects cellular senescence to tissue dysfunction, and specific SASP factors have been identified as systemic pro-aging factors. However, little is known about the age-dependent changes in the secretory properties of stem cells. Young, but not old, mesenchymal stem/stromal cells (MSCs) are a well-known source of critical regenerative factors, but the identity of these factors remains elusive. In this study, we identified growth differentiation factor 6 (Gdf6; also known as Bmp13 and CDMP-2) as a regenerative factor secreted from young MSCs. The expression of specific secretory factors, including Gdf6, was regulated by the microRNA (miRNA) miR-17, whose expression declined with age. Upregulation of Gdf6 restored the osteogenic capacity of old MSCs in vitro and exerted positive effects in vivo on aging-associated pathologies such as reduced lymphopoiesis, insufficient muscle repair, reduced numbers of neural progenitors in the brain, and chronic inflammation. Our results suggest that manipulation of miRNA could enable control of the SASP, and that regenerative factors derived from certain types of young cells could be used to treat geriatric diseases. PMID:27311402

  20. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  1. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

    PubMed Central

    Henry, Curtis J.; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E.; Jimenez, Linda; Azam, Tania; McNamee, Eoin N.; Clambey, Eric T.; Klawitter, Jelena; Serkova, Natalie J.; Tan, Aik Choon; Dinarello, Charles A.; DeGregori, James

    2015-01-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRASV12, or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRASV12-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation — a common feature of aging — has the potential to limit aging-associated oncogenesis. PMID:26551682

  2. Exploring the RNA World in Hematopoietic Cells Through the Lens of RNA-Binding Proteins

    PubMed Central

    Yuan, Joan; Muljo, Stefan A.

    2013-01-01

    Summary The discovery of microRNAs has renewed interest in post-transcriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map post-transcriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel post-transcriptional networks. Here, we review RBP-mediated post-transcriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis. PMID:23550653

  3. Mir-17-92 regulates bone marrow homing of plasma cells and production of immunoglobulin G2c.

    PubMed

    Xu, Shengli; Ou, Xijun; Huo, Jianxin; Lim, Kristen; Huang, Yuhan; Chee, Sheena; Lam, Kong-Peng

    2015-01-01

    The polycistronic mir-17-92 cluster, also known as oncomir-1, was previously shown to be essential for early B lymphopoiesis. However, its role in late-stage B-cell differentiation and function remains unexplored. Here we ablate mir-17-92 in mature B cells and demonstrate that mir-17-92 is dispensable for conventional B-cell development in the periphery. Interestingly, mir-17-92-deficiency in B cells leads to enhanced homing of plasma cells to the bone marrow during T-cell-dependent immune response and selectively impairs IgG2c production. Mechanistically, mir-17-92 directly represses the expression of Sphingosine 1-phosphate receptor 1 and transcription factor IKAROS, which are, respectively, important for plasma cell homing and IgG2c production. We further show that deletion of mir-17-92 could reduce IgG2c anti-DNA autoantibody production and hence mitigate immune complex glomerulonephritis in Shp1-deficient mice prone to autoimmunity. Our results identify important roles for mir-17-92 in the regulation of peripheral B-cell function. PMID:25881561

  4. Enterocolitis causes profound lymphoid depletion in endothelin receptor B- and endothelin 3-null mouse models of Hirschsprung-associated enterocolitis

    PubMed Central

    Frykman, Philip K.; Cheng, Zhi; Wang, Xiao; Dhall, Deepti

    2015-01-01

    Potentially life-threatening enterocolitis is the most frequent complication in children with colonic aganglionosis (Hirschsprung disease, HSCR), and little is known about the mechanisms leading to enterocolitis. Splenic lymphopenia has been reported in the Endothelin Receptor B (Ednrb)-null mouse model of HSCR that develops enterocolitis. In this study, we sought to identify molecular mechanisms underlying this immune phenotype. We employed the Ednrb−/− mouse, and the knockout of its ligand, Edn3 (Edn3−/−). The major finding is that enterocolitis in the Ednrb−/− and Edn3−/− mice lead to thymic involution, splenic lymphopenia, and suppression of B lymphopoiesis as a consequence of colonic aganglionosis, not an intrinsic Edn3-Ednrb signaling defect directly affecting the lymphoid organs. We showed that adoptive transfer of Ednrb−/− marrow repopulated the RAG2-null mice marrow, thymus and spleen without development of enterocolitis. We identified the glucocorticoid corticosterone, as a potential mediator of the immune phenotype. This previously unrecognized pattern of immune abnormalities in mouse is nearly identical to lymphoid depletion in neonatal sepsis during severe physiological stress, suggesting that the mouse model used here could be also used for sepsis studies. PMID:25487064

  5. Interferon-α signaling promotes embryonic HSC maturation.

    PubMed

    Kim, Peter Geon; Canver, Matthew C; Rhee, Catherine; Ross, Samantha J; Harriss, June V; Tu, Ho-Chou; Orkin, Stuart H; Tucker, Haley O; Daley, George Q

    2016-07-14

    In the developing mouse embryo, the first hematopoietic stem cells (HSCs) arise in the aorta-gonad-mesonephros (AGM) and mature as they transit through the fetal liver (FL). Compared with FL and adult HSCs, AGM HSCs have reduced repopulation potential in irradiated adult transplant recipients but mechanisms underlying this deficiency in AGM HSCs are poorly understood. By co-expression gene network analysis, we deduced that AGM HSCs show lower levels of interferon-α (IFN-α)/Jak-Stat1-associated gene expression than FL HSCs. Treatment of AGM HSCs with IFN-α enhanced long-term hematopoietic engraftment and donor chimerism. Conversely, IFN-α receptor-deficient AGMs (Ifnαr1(-/-)), had significantly reduced donor chimerism. We identify adenine-thymine-rich interactive domain-3a (Arid3a), a factor essential for FL and B lymphopoiesis, as a key transcriptional co-regulator of IFN-α/Stat1 signaling. Arid3a occupies the genomic loci of Stat1 as well as several IFN-α effector genes, acting to regulate their expression. Accordingly, Arid3a(-/-) AGM HSCs had significantly reduced transplant potential, which was rescued by IFN-α treatment. Our results implicate the inflammatory IFN-α/Jak-Stat pathway in the developmental maturation of embryonic HSCs, whose manipulation may lead to increased potency of reprogrammed HSCs for transplantation. PMID:27095787

  6. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice.

    PubMed

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Tuccillo, Franca Maria; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; de Laurentiis, Annamaria; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Buonaguro, Franco Maria; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4(+) and CD8(+) T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  7. FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors

    PubMed Central

    Mead, Adam J.; Kharazi, Shabnam; Atkinson, Deborah; Macaulay, Iain; Pecquet, Christian; Loughran, Stephen; Lutteropp, Michael; Woll, Petter; Chowdhury, Onima; Luc, Sidinh; Buza-Vidas, Natalija; Ferry, Helen; Clark, Sally-Ann; Goardon, Nicolas; Vyas, Paresh; Constantinescu, Stefan N.; Sitnicka, Ewa; Nerlov, Claus; Jacobsen, Sten Eirik W.

    2013-01-01

    Summary Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies. PMID:23727242

  8. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.

    PubMed

    Uy, Geoffrey L; Hsu, Yen-Michael S; Schmidt, Amy P; Stock, Wendy; Fletcher, Theresa R; Trinkaus, Kathryn M; Westervelt, Peter; DiPersio, John F; Link, Daniel C

    2015-12-01

    In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal. PMID:26467815

  9. The microRNA-212/132 cluster regulates B cell development by targeting Sox4

    PubMed Central

    Mehta, Arnav; Mann, Mati; Zhao, Jimmy L.; Marinov, Georgi K.; Majumdar, Devdoot; Garcia-Flores, Yvette; Du, Xiaomi; Erikci, Erdem; Chowdhury, Kamal

    2015-01-01

    MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the prepro–B cell to pro–B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in accelerated B cell recovery after antibody-mediated B cell depletion. We find that Sox4 is a target of miR-132 in B cells. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from overexpression of miR-132 alone, thus suggesting that miR-132 may regulate B lymphopoiesis through Sox4. In addition, we show that the expression of miR-132 can inhibit cancer development in cells that are prone to B cell cancers, such as B cells expressing the c-Myc oncogene. We have thus uncovered miR-132 as a novel contributor to B cell development. PMID:26371188

  10. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells.

    PubMed

    Olivier, Aurélie; Lauret, Evelyne; Gonin, Patrick; Galy, Anne

    2006-04-01

    Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity, prompting interest in mechanisms controlling the production of this lineage of cells. Notch signaling via one of the Notch ligands, delta-like 1 (delta-1), influences the hematopoietic development of several lymphoid and myeloid lineages, but whether or not delta-1 affects the formation of pDCs is unknown and was tested here. Human CD34+ progenitor cells were cultured onto delta-1-expressing OP9 stroma in the presence of flt-3 ligand and IL-7, and this efficiently generated BDCA-2+ CD123+ CD4+ CD11c- cells with the characteristic morphology of pDCs, expressing toll-like receptor-9 (TLR9), pre-Talpha mRNAs, and secreting CpG-induced IFN-alpha. Delta-1 augmented the numbers of BDCA-2+ cells produced without affecting their proliferation, and the effect was blocked by gamma-secretase inhibition. The development of pDCs was stroma-, delta-1-, and cytokine-dependent and could be induced from committed lymphoid progenitor cells, which responded to delta-1 by opposite changes in pDC- and B-cell production. Our results identify delta-1 as a novel factor enhancing pDC hematopoiesis and delineate a new role for Notch signaling in lymphopoiesis by showing its opposite effect on pDC and B lineage determination. PMID:16357328

  11. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection.

    PubMed

    Welner, Robert S; Pelayo, Rosana; Nagai, Yoshinori; Garrett, Karla P; Wuest, Todd R; Carr, Daniel J; Borghesi, Lisa A; Farrar, Michael A; Kincade, Paul W

    2008-11-01

    Hematopoietic stem and progenitor cells were previously found to express Toll-like receptors (TLRs), suggesting that bacterial/viral products may influence blood cell formation. We now show that common lymphoid progenitors (CLPs) from mice with active HSV-1 infection are biased to dendritic cell (DC) differentiation, and the phenomenon is largely TLR9 dependent. Similarly, CLPs from mice treated with the TLR9 ligand CpG ODN had little ability to generate CD19+ B lineage cells and had augmented competence to generate DCs. TNFalpha mediates the depletion of late-stage lymphoid progenitors from bone marrow in many inflammatory conditions, but redirection of lymphopoiesis occurred in TNFalpha-/- mice treated with CpG ODN. Increased numbers of DCs with a lymphoid past were identified in Ig gene recombination substrate reporter mice treated with CpG ODN. TLR9 is highly expressed on lymphoid progenitors, and culture studies revealed that those receptors, rather than inflammatory cytokines, accounted for the production of several types of functional DCs. Common myeloid progenitors are normally a good source of DCs, but this potential was reduced by TLR9 ligation. Thus, alternate differentiation pathways may be used to produce innate effector cells in health and disease. PMID:18552210

  12. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis.

    PubMed

    Wang, Wenyuan; Org, Tonis; Montel-Hagen, Amélie; Pioli, Peter D; Duan, Dan; Israely, Edo; Malkin, Daniel; Su, Trent; Flach, Johanna; Kurdistani, Siavash K; Schiestl, Robert H; Mikkola, Hanna K A

    2016-01-01

    DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors. PMID:27507714

  13. SOX7-enforced expression promotes the expansion of adult blood progenitors and blocks B-cell development.

    PubMed

    Cuvertino, Sara; Lacaud, Georges; Kouskoff, Valerie

    2016-07-01

    During embryogenesis, the three SOXF transcription factors, SOX7, SOX17 and SOX18, regulate the specification of the cardiovascular system and are also involved in the development of haematopoiesis. The ectopic expression of SOX17 in both embryonic and adult blood cells enhances self-renewal. Likewise, the enforced expression of SOX7 during embryonic development promotes the proliferation of early blood progenitors and blocks lineage commitment. However, whether SOX7 expression can also affect the self-renewal of adult blood progenitors has never been explored. In this study, we demonstrate using an inducible transgenic mouse model that the enforced expression of Sox7 ex vivo in bone marrow/stroma cell co-culture promotes the proliferation of blood progenitors which retain multi-lineage short-term engrafting capacity. Furthermore, SOX7 expression induces a profound block in the generation of B lymphocytes. Correspondingly, the ectopic expression of SOX7 in vivo results in dramatic alterations of the haematopoietic system, inducing the proliferation of blood progenitors in the bone marrow while blocking B lymphopoiesis. In addition, SOX7 expression induces extra-medullary haematopoiesis in the spleen and liver. Together, these data demonstrate that the uncontrolled expression of the transcription factor SOX7 in adult haematopoietic cells has dramatic consequences on blood homeostasis. PMID:27411892

  14. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation

    PubMed Central

    Becker, Amy M.; Callahan, Derrick J.; Richner, Justin M.; Choi, Jaebok; DiPersio, John F.; Diamond, Michael S.; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  15. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming.

    PubMed

    Boller, Sören; Ramamoorthy, Senthilkumar; Akbas, Duygu; Nechanitzky, Robert; Burger, Lukas; Murr, Rabih; Schübeler, Dirk; Grosschedl, Rudolf

    2016-03-15

    Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape. PMID:26982363

  16. IRF-4 functions as a tumor suppressor in early B-cell development

    PubMed Central

    Acquaviva, Jaime; Chen, Xiaoren

    2008-01-01

    Interferon regulatory factor-4 (IRF-4) is a hematopoietic cell–restricted transcription factor important for hematopoietic development and immune response regulation. It was also originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. In contrast to its oncogenic function in late stages of B lymphopoiesis, expression of IRF-4 is down-regulated in certain myeloid and early B-lymphoid malignancies. In this study, we found that the IRF-4 protein levels are increased in lymphoblastic cells transformed by the BCR/ABL oncogene in response to BCR/ABL tyrosine kinase inhibitor imatinib. We further found that IRF-4 deficiency enhances BCR/ABL transformation of B-lymphoid progenitors in vitro and accelerates disease progression of BCR/ABL-induced acute B-lymphoblastic leukemia (B-ALL) in mice, whereas forced expression of IRF-4 potently suppresses BCR/ABL transformation of B-lymphoid progenitors in vitro and BCR/ABL-induced B-ALL in vivo. Further analysis showed that IRF-4 inhibits growth of BCR/ABL+ B lymphoblasts primarily through negative regulation of cell-cycle progression. These results demonstrate that IRF-4 functions as tumor suppressor in early B-cell development and may allow elucidation of new molecular pathways significant to the lymphoid leukemogenesis by BCR/ABL. The context dependent roles of IRF-4 in oncogenesis should be an important consideration in developing cancer therapies targeting IRF-4. PMID:18713947

  17. B Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells

    PubMed Central

    Shahaf, Gitit; Zisman-Rozen, Simona; Benhamou, David; Melamed, Doron; Mehr, Ramit

    2016-01-01

    Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment. PMID:27047488

  18. Tristetraprolin is a tumor suppressor that impairs Myc-induced lymphoma and abolishes the malignant state

    PubMed Central

    Rounbehler, Robert J.; Fallahi, Mohammad; Yang, Chunying; Steeves, Meredith A.; Li, Weimin; Doherty, Joanne R.; Schaub, Franz X.; Sanduja, Sandhya; Dixon, Dan A.; Blackshear, Perry J.; Cleveland, John L.

    2012-01-01

    SUMMARY Myc oncoproteins directly regulate transcription by binding to target genes, yet this only explains a fraction of the genes affected by Myc. mRNA turnover is controlled via AU-binding proteins (AUBPs) that recognize AU-rich elements (AREs) found within many transcripts. Analyses of precancerous and malignant Myc-expressing B cells revealed that Myc regulates hundreds of ARE-containing (ARED) genes and select AUBPs. Notably, Myc directly suppresses transcription of Tristetraprolin (TTP/ZFP36), an mRNA-destabilizing AUBP, and this circuit is also operational during B lymphopoiesis and IL7 signaling. Importantly, TTP suppression is a hallmark of cancers with MYC involvement, and restoring TTP impairs Myc-induced lymphomagenesis and abolishes maintenance of the malignant state. Further, there is a selection for TTP loss in malignancy; thus, TTP functions as a tumor suppressor. Finally, Myc/TTP-directed control of select cancer-associated ARED genes is disabled during lymphomagenesis. Thus, Myc targets AUBPs to regulate ARED genes that control tumorigenesis. PMID:22863009

  19. The effect of dextran sulphate on CFU-S and nucleic acids in blood and haemopoietic tissues in irradiated mice.

    PubMed

    Pado, D; Misúrová, E; Fedoroćko, P

    1990-01-01

    The effect of synthetic polyanion dextran sulphate on the development and recovery of radiation-induced haemopoietic damage in mice was investigated. Dextran sulphate (mol. wt. 500,000 D) in the dose of 40 mg.kg-1 of body weight was injected i.p. 3 days before single total body irradiation with a dose of 7.8 Gy gamma-rays. The animals were examined from hour 6 to day 26 after irradiation, i.e. from hour 78 to day 29 after DS-treatment. In irradiated mice DS-pretreatment showed some positive effect on the CFU-S number in bone marrow (less in spleen and blood), bone marrow cellularity, attenuated the radiation-induced changes of erythrocytes (number, MCV) and of RNA concentration in blood. The changes of other parameters (spleen cellularity, liver CFU-S, leukocyte count and DNA concentration in blood) were the same as in unprotected animals. In conclusion, we can say that DS-pretreatment had a beneficial effect on the recovery of radiation-induced damage of erythropoiesis but not on granulopoiesis or lymphopoiesis. PMID:1697839

  20. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  1. Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts

    PubMed Central

    Kode, Aruna; Manavalan, John S.; Mosialou, Ioanna; Bhagat, Govind; Rathinam, Chozha V.; Luo, Na; Khiabanian, Hossein; Lee, Albert; Vundavalli, Murty; Friedman, Richard; Brum, Andrea; Park, David; Galili, Naomi; Mukherjee, Siddhartha; Teruya-Feldstein, Julie; Raza, Azra; Rabadan, Raul; Berman, Ellin; Kousteni, Stavroula

    2014-01-01

    Summary Cells of the osteoblast lineage affect homing, 1, 2 number of long term repopulating hematopoietic stem cells (HSCs) 3, 4, HSC mobilization and lineage determination and B lymphopoiesis 5-8. More recently osteoblasts were implicated in pre-leukemic conditions in mice 9, 10. Yet, it has not been shown that a single genetic event taking place in osteoblasts can induce leukemogenesis. We show here that in mice, an activating mutation of β-catenin in osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukemia (AML) with common chromosomal aberrations and cell autonomous progression. Activated β-catenin stimulates expression of the Notch ligand Jagged-1 in osteoblasts. Subsequent activation of Notch signaling in HSC progenitors induces the malignant changes. Demonstrating the pathogenetic role of the Notch pathway, genetic or pharmacological inhibition of Notch signaling ameliorates AML. Nuclear accumulation and increased β-catenin signaling in osteoblasts was also identified in 38% of patients with MDS/AML. These patients showed increased Notch signaling in hematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce AML, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to AML. PMID:24429522

  2. SOX7-enforced expression promotes the expansion of adult blood progenitors and blocks B-cell development

    PubMed Central

    Cuvertino, Sara; Lacaud, Georges; Kouskoff, Valerie

    2016-01-01

    During embryogenesis, the three SOXF transcription factors, SOX7, SOX17 and SOX18, regulate the specification of the cardiovascular system and are also involved in the development of haematopoiesis. The ectopic expression of SOX17 in both embryonic and adult blood cells enhances self-renewal. Likewise, the enforced expression of SOX7 during embryonic development promotes the proliferation of early blood progenitors and blocks lineage commitment. However, whether SOX7 expression can also affect the self-renewal of adult blood progenitors has never been explored. In this study, we demonstrate using an inducible transgenic mouse model that the enforced expression of Sox7 ex vivo in bone marrow/stroma cell co-culture promotes the proliferation of blood progenitors which retain multi-lineage short-term engrafting capacity. Furthermore, SOX7 expression induces a profound block in the generation of B lymphocytes. Correspondingly, the ectopic expression of SOX7 in vivo results in dramatic alterations of the haematopoietic system, inducing the proliferation of blood progenitors in the bone marrow while blocking B lymphopoiesis. In addition, SOX7 expression induces extra-medullary haematopoiesis in the spleen and liver. Together, these data demonstrate that the uncontrolled expression of the transcription factor SOX7 in adult haematopoietic cells has dramatic consequences on blood homeostasis. PMID:27411892

  3. Regulation of T Cell Differentiation and Function by EZH2

    PubMed Central

    Karantanos, Theodoros; Chistofides, Anthos; Barhdan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  4. The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines.

    PubMed

    Prado-Lòpez, Sonia; Duffy, Michelle M; Baustian, Claas; Alagesan, Senthilkumar; Hanley, Shirley A; Stocca, Alessia; Griffin, Matthew D; Ceredig, Rhodri

    2014-08-01

    Multipotent mesenchymal stromal cells are multipotent cells capable of differentiating into different mesodermal cell types. Enigmatically, mesenchymal stromal cells present in the bone marrow support early lymphopoiesis yet can inhibit mature lymphocyte growth. Critical features of the bone marrow microenvironment, such as the level of oxygen, play an important role in mesenchymal stromal cell biology. Herein, we show that a panel of continuously growing mouse mesenchymal stromal cell lines, namely OP9, MS5, PA6, ST2 and B16-14, exhibit mesenchymal stromal cell characteristic phenotypes and respond physiologically to oxygen deprivation. Culturing freshly isolated bone marrow-derived mesenchymal stromal cells or cell lines at 5% O2 resulted in a dramatic increase in expression of hypoxia-inducible factor family members and of key genes involved in their differentiation. Phenotypically, their osteogenic and adipogenic differentiation capacity was generally improved in hypoxia, whereas their inhibitory effects on in vitro T-cell proliferation were preserved. Taken together, we conclude that these continuously growing mouse cell lines behave as canonical mesenchymal stromal cells and respond physiologically to hypoxia, thereby providing a potent tool for the study of different aspects of mesenchymal stromal cell biology. PMID:24777310

  5. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    PubMed

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  6. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    PubMed

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells. PMID:23893300

  7. Engraftment and Lineage Potential of Adult Hematopoietic Stem and Progenitor Cells Is Compromised Following Short-Term Culture in the Presence of an Aryl Hydrocarbon Receptor Antagonist

    PubMed Central

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W.; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette

    2014-01-01

    Abstract Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting. PMID:25003230

  8. Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ-producing T cells.

    PubMed

    Mori, Taizo; Iwasaki, Yukiko; Seki, Yoichi; Iseki, Masanori; Katayama, Hiroko; Yamamoto, Kazuhiko; Takatsu, Kiyoshi; Takaki, Satoshi

    2014-08-15

    Dendritic cells (DCs) are proficient APCs that play crucial roles in the immune responses to various Ags and pathogens and polarize Th cell immune responses. Lnk/SH2B adaptor protein 3 (Sh2b3) is an intracellular adaptor protein that regulates B lymphopoiesis, megakaryopoiesis, and expansion of hematopoietic stem cells by constraining cytokine signals. Recent genome-wide association studies have revealed a link between polymorphism in this adaptor protein and autoimmune diseases, including type 1 diabetes and celiac disease. We found that Lnk/Sh2b3 was also expressed in DCs and investigated its role in the production and function of DC lineage cells. In Lnk(-/-) mice, DC numbers were increased in the spleen and lymph nodes, and growth responses of bone marrow-derived DCs to GM-CSF were augmented. Mature DCs from Lnk(-/-) mice were hypersensitive and showed enhanced responses to IL-15 and GM-CSF. Compared to normal DCs, Lnk(-/-) DCs had enhanced abilities to support the differentiation of IFN-γ-producing Th1 cells from naive CD4(+) T cells. This was due to their elevated expression of IL-12Rβ1 and increased production of IFN-γ. Lnk(-/-) DCs supported the appearance of IFN-γ-producing T cells even under conditions in which normal DCs supported induction of regulatory T cells. These results indicated that Lnk/Sh2b3 plays a regulatory role in the expansion of DCs and might influence inflammatory immune responses in peripheral lymphoid tissues. PMID:25024389

  9. Cellular Ontogeny and Hierarchy Influence the Reprogramming Efficiency of Human B Cells into Induced Pluripotent Stem Cells.

    PubMed

    Muñoz-López, Álvaro; van Roon, Eddy H J; Romero-Moya, Damià; López-Millan, Belén; Stam, Ronald W; Colomer, Dolors; Nakanishi, Mahito; Bueno, Clara; Menendez, Pablo

    2016-03-01

    Although B cells have been shown to be refractory to reprogramming into pluripotency, induced pluripotent stem cells (iPSCs) have been very recently generated, at very low efficiency, from human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20 + B cells using nonintegrative tetracistronic OSKM-expressing Sendai Virus (SeV). Here, we addressed whether cell ontogeny and hierarchy influence the reprogramming efficiency of the B-cell compartment. We demonstrate that human fetal liver (FL)-derived CD19 + B cells are 110-fold easier to reprogram into iPSCs than those from CB/PB. Similarly, FL-derived CD34+CD19 + B progenitors are reprogrammed much easier than mature B cells (0.46% vs. 0.11%). All FL B-cell iPSCs carry complete VDJH rearrangements while 55% and 45% of the FL B-progenitor iPSCs carry incomplete and complete VDJH rearrangements, respectively, reflecting the reprogramming of developmentally different B progenitors (pro-B vs. pre-B) within a continuous differentiation process. Finally, our data suggest that successful B-cell reprogramming relies on active cell proliferation, and it is MYC-dependent as identical nonintegrative polycistronic SeV lacking MYC (OSKL or OSKLN) fail to reprogram B cells. The ability to efficiently reprogram human fetal primary B cells and B precursors offers an unprecedented opportunity for studying developmental B-lymphopoiesis and modeling B-cell malignances. Stem Cells 2016;34:581-587. PMID:26850912

  10. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice

    PubMed Central

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C. A.; Woll, Petter S.; Jacobsen, Sten Eirik W.

    2016-01-01

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19+ B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R+CD19+ ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R+ myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R+ myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  11. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  12. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  13. Negative Selection of Self-Reactive Chicken B Cells Requires B Cell Receptor Signaling and Is Independent of the Bursal Microenvironment

    PubMed Central

    Davani, Dariush; Pancer, Zeev; Cheroutre, Hilde; Ratcliffe, Michael J. H.

    2014-01-01

    Although the negative selection of self-reactive B cells in the bone marrow of mammals has been clearly demonstrated, it remains unclear in models of gut-associated B cell lymphopoiesis, such as that of the chicken (Gallus gallus). We have generated chicken surface IgM–related receptors in which the diversity region of the lamprey variable lymphocyte receptor (VLR) has been fused to the C region of chicken surface IgM (Tμ). Expression of a VLR:Tμ receptor with specificity for PE supported normal development of B cells, whereas a VLR:Tμ receptor specific to hen egg lysozyme (a self-antigen with respect to chicken B cells) induced, in vivo, complete deletion of VLRHELTμ-expressing B cells. In ovo i.v. injection of PE resulted in deletion of VLRPETμ-expressing Β cells in the embryo spleen, demonstrating that negative selection was independent of the bursal microenvironment. Although chickens transduced with a murine CD8α:chicken Igα fusion protein contained B cells expressing mCD8α:chIgα, cotransfection of the mCD8α:chIgα construct, together with thymus leukemia Ag (a natural ligand for mCD8α), resulted in reduced levels of mCD8α:chIgα-expressing B cells in inverse proportion to the levels of thymus leukemia Ag–expressing cells. Deletion of mCD8a: chIga-expressing cells was specific for B cells and required active signaling downstream of the mCD8α:chIgα receptor. Ag-mediated negative selection of developing chicken B cells can therefore occur independently of the bursal microenvironment and is dependent on signaling downstream of the BCR. PMID:24516196

  14. Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins

    PubMed Central

    Ji, Ming; Li, Huajie; Suh, Hyung Chan; Klarmann, Kimberly D.; Yokota, Yoshifumi

    2008-01-01

    Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage–specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins. PMID:18523151

  15. Perspectives on fetal derived CD5+ B1 B cells.

    PubMed

    Hardy, Richard R; Hayakawa, Kyoko

    2015-11-01

    CD5(+) B-cell origins and their predisposition to lymphoma are long-standing issues. Transfer of fetal and adult liver BM Pro-B cells generates B cells with distinct phenotypes: fetal cells generate IgM(high) IgD(low) CD5(+) , whereas adult cells IgM(low) IgD(high) CD5(-) . This suggests a developmental switch in B lymphopoiesis, similar to the switch in erythropoiesis. Comparison of mRNA and miRNA expression in fetal and adult Pro-B cells revealed differential expression of Lin28b mRNA and Let-7 miRNA, providing evidence that this regulatory axis functions in the switch. Recent work has shown that Arid3a is a key transcription factor mediating fetal-type B-cell development. Lin28b-promoted fetal development generates CD5(+) B cells as a consequence of positively selected self-reactivity. CD5(+) B cells play important roles in clearance of apoptotic cells and in protective immune responses, but also pose a risk of progression to leukemia/lymphoma. Differential Lin28b expression in fetal and adult human B-cell precursors showed that human B-cell development may resemble mouse, with self-reactive "innate-like" B cells generated early in life. It remains to be determined whether such human B cells have a higher propensity to leukemic progression. This review describes our recent research with CD5(+) B cells and presents our perspective on their role in disease. PMID:26339791

  16. AP-Endonuclease 2 is necessary for normal B cell development and recovery of lymphoid progenitors after chemotherapeutic challenge

    PubMed Central

    Guikema, Jeroen E.J.; Gerstein, Rachel M.; Linehan, Erin K.; Cloherty, Erin K.; Evan-Browning, Eric; Tsuchimoto, Daisuke; Nakabeppu, Yusaku; Schrader, Carol E.

    2014-01-01

    B cell development involves rapid cellular proliferation, gene rearrangements, selection and differentiation, and provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair (BER) pathway in lymphocyte development has been lacking primarily due to the essential nature of this repair pathway. However, mice deficient for the BER enzyme, apurinic/apyrimidinic (AP) endonuclease 2 (APE2) protein develop relatively normally, but display defects in lymphopoiesis. Here we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J-recombination, and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell co-cultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased two weeks after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1. PMID:21228350

  17. Phenotypic characterization in mice of thymus target cells susceptible to productive infection by the radiation leukemia virus

    SciTech Connect

    Boniver, J.; Decleve, A.; Honsik, C.; Libermann, M.; Kaplan, H.S.

    1981-11-01

    The spread of virus repliction was studied by electron microscopy in the thymuses of inbred C57BL/Ka mice after intrathymic inoculation of the radiation leukemia virus (RadLV). The first type C-budding virus particles appeared in scarce blast cells of the subcapsular zone. Most of these blast cells were ''X-cells,'' i.e., the thymus lymphoid cells most actively engaged in DNA synthesis. Virus replication spread to the entire cortical blast cell population and, from day 7 on, to the small cortical lymphocytes. The first virus-producing cells were derived from a very few target cells (approx. =0.001-0.003% of thymocytes) susceptible to RadLV infection. For determination of the phenotypes of these target cells, various thymocyte subpopulations obtained through a battery of cell separation methods were tested for their ability to support the replication of RadLV/VL/sub 3/ virus in short-term culture. Most of these target cells were sensitive to the lytic effect of hydrocortisone and migrated in the fastest fraction of a 1Xg sedimentation gradient, together with the majority of (/sup 3/H)thymidine-incorporating blast cells. They exhibited an intermediate density and expressed H-2 and Thy 1.2 cell surface antigens, although they were not found preferentially among the high Thy 1.2 population to which most of the cortical blast cells belonged. The spread of RadLV within the thymus and the surface phenotype characteristics of target cells indicate that these cells correspond to a thymocyte subset at the earliest stage of thymic lymphopoiesis and may be transitional between the prothymocytes and the subcapsular blast cell population.

  18. LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    PubMed Central

    Malumbres, Raquel; Fresquet, Vicente; Roman-Gomez, Jose; Bobadilla, Miriam; Robles, Eloy F.; Altobelli, Giovanna G.; Calasanz, M.ª José; Smeland, Erlend B.; Aznar, Maria Angela; Agirre, Xabier; Martin-Palanco, Vanesa; Prosper, Felipe; Lossos, Izidore S.; Martinez-Climent, Jose A.

    2011-01-01

    Background LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. Design and Methods We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. Results B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%–87.1%) vs. 25.8% (10.9%–40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%–94.2%) vs. 63.0% (46.1%–79.9%) (P= 0.043). Conclusions Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance. PMID:21459790

  19. Haematopoiesis and a new mechanism for the release of mature blood cells from the bone marrow into the circulation in snakes (Ophidia).

    PubMed

    Sano-Martins, I Sigueko; Dabrowski, Z; Tabarowski, Z; Witkowska-Pelc, E; Spadacci Morena, D Denelle; Spodaryk, K

    2002-10-01

    from young specimens, 1-2 foci of haematopoiesis were encountered where lymphopoiesis predominated. Haematopoiesis was not detected in the liver. PMID:12242485

  20. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    PubMed

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. PMID:27207794

  1. The normal structure and function of CD44 and its role in neoplasia.

    PubMed Central

    Sneath, R J; Mangham, D C

    1998-01-01

    CD44 is a transmembrane glycoprotein, the variant isoforms of which are coded for by alternative splicing, with the most prolific isoform being CD44 standard. CD44 is found in a wide variety of tissues including the central nervous system, lung, epidermis, liver, and pancreas, whereas variant isoforms of CD44 (CD44v) appear to have a much more restricted distribution. Variants of CD44 are expressed in tissues during development, including embryonic epithelia. Known functions of CD44 are cellular adhesion (aggregation and migration), hyaluronate degradation, lymphocyte activation, lymph node homing, myelopoiesis and lymphopoiesis, angiogenesis, and release of cytokines. The functions of CD44 are principally dependant on cellular adhesion in one setting or another. The role of CD44 in neoplasia is less well defined, although metastatic potential can be conferred on non-metastasising cell lines by transfection with a variant of CD44 and high levels of CD44 are associated with several types of malignant tumours. The physiological functions of CD44 indicate that the molecule could be involved in the metastatic spread of tumours. Many studies have investigated the pattern of CD44 distribution in tumours and some observations suggest that certain cells do not use CD44 in tumorigenesis or in the production of metastases. However, the data are extremely conflicting, and further studies are needed to establish the prognostic value of CD44 and its variant isoforms. The precise function of CD44 in the metastatic process and the degree of involvement in human malignancies has yet to be established fully. PMID:9893744

  2. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    PubMed

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  3. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    PubMed Central

    2014-01-01

    Background This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure. Methods Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform. Results Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r ≥ 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r ≥ 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas. Conclusion A

  4. The effect of in vivo IL-7 deprivation on T cell maturation.

    PubMed

    Bhatia, S K; Tygrett, L T; Grabstein, K H; Waldschmidt, T J

    1995-04-01

    A number of previous studies have suggested a key role for interleukin 7 (IL-7) in the maturation of T lymphocytes. To better assess the function of IL-7 in lymphopoiesis, we have deprived mice of IL-7 in vivo by long-term administration of a neutralizing anti-IL-7 antibody. In a previous report (Grabstein, K. H., T. J. Waldschmidt, F. D. Finkelman, B. W. Hess, A. R. Alpert, N. E. Boiani, A. E. Namen, and P. J. Morrissey. 1993. J. Exp. Med. 178:257-264), we used this system to demonstrate the critical role of IL-7 in B cell maturation. After a brief period of anti-IL-7 treatment, most of the pro-B cells and all of the pre-B and immature B cells were depleted from the bone marrow. In the present report, we have injected anti-IL-7 antibody for periods of up to 12 wk to determine the effect of in vivo IL-7 deprivation on the thymus. The results demonstrate a > 99% reduction in thymic cellularity after extended periods of antibody administration. Examination of thymic CD4- and CD8- defined subsets revealed that, on a proportional basis, the CD4+, CD8+ subset was most depleted, the CD4 and CD8 single positive cells remained essentially unchanged, and the CD4-, CD8- compartment actually increased to approximately 50% of the thymus. Further examination of the double negative thymocytes demonstrated that IL-7 deprivation did, indeed, deplete the CD3-, CD4-, CD8- precursors, with expansion of this subset being interupted at the CD44+, CD25+ stage. The proportional increase in the CD4-, CD8- compartment was found to be due to an accumulation of CD3+, T cell receptor alpha, beta + double negative T cells. Additional analysis revealed that anti-IL-7 treatment suppressed the audition/selection process of T cells, as shown by a significant reduction of single positive cells expressing CD69 and heat stable antigen. Finally, the effects of IL-7 deprivation on the thymus were found to be reversible, with a normal pattern of thymic subsets returning 4 wk after cessation of treatment

  5. Growing B Lymphocytes in a Three-Dimensional Culture System

    NASA Technical Reports Server (NTRS)

    Wu, J. H. David; Bottaro, Andrea

    2010-01-01

    within 3D cultures that have been modified to foster lymphopoiesis retain an immunophenotype that closely recapitulates cells in fresh bone marrow harvests. The 3D culture system has been found to be capable of supporting long-lived (8 weeks) populations of B and T lymphocytes from peripheral lymphoid organs, in the absence of activation signals, to an extent not achievable by conventional culture techniques. Interestingly, it has been found that 3D-culture B cells display a phenotype that has characteristics of both B1a and B2 cells. These promising preliminary observations suggest that the 3D culture system could be used with success in the study of peripheral-B-lymphocyte biology and in the development of biotechnological techniques and processes.

  6. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT