Science.gov

Sample records for lysis

  1. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  2. Epidural lysis of adhesions.

    PubMed

    Lee, Frank; Jamison, David E; Hurley, Robert W; Cohen, Steven P

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  3. Spontaneous Tumor Lysis Syndrome

    PubMed Central

    Kimple, Michelle E.

    2015-01-01

    Tumor lysis syndrome (TLS) is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL), and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes. PMID:26904699

  4. Bacteriophage lysis: mechanism and regulation.

    PubMed Central

    Young, R

    1992-01-01

    Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E. Images PMID:1406491

  5. Acute spontaneous tumor lysis syndrome.

    PubMed

    Jasek, A M; Day, H J

    1994-10-01

    An 83-year-old woman with no previous history of malignancy was admitted to our institution with weakness and anemia and subsequently developed acute tumor lysis syndrome secondary to newly diagnosed Burkitt's leukemia/lymphoma. This syndrome has been previously described in patients with hematologic malignancies; however, its development has been related to the administration of chemotherapy, steroids, or radiotherapy. The spontaneous occurrence of tumor lysis syndrome has not been previously reported; however, Cohen et al. [Am J Med 58:486-491, 1980] report 8 of 37 patients with "clinically insignificant pretreatment derangements" of serum potassium, phosphate, and calcium. PMID:8092128

  6. Membrane fusion during phage lysis.

    PubMed

    Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-04-28

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  7. Membrane fusion during phage lysis

    PubMed Central

    Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-01-01

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  8. Tumor lysis syndrome: A clinical review

    PubMed Central

    Mirrakhimov, Aibek E; Voore, Prakruthi; Khan, Maliha; Ali, Alaa M

    2015-01-01

    Tumor lysis syndrome is an oncometabolic emergency resulting from rapid cell death. Tumor lysis syndrome can occur as a consequence of tumor targeted therapy or spontaneously. Clinicians should stratify every hospitalized cancer patient and especially those receiving chemotherapy for the risk of tumor lysis syndrome. Several aspects of prevention include adequate hydration, use of uric acid lowering therapies, use of phosphate binders and minimization of potassium intake. Patients at high risk for the development of tumor lysis syndrome should be monitored in the intensive care unit. Established tumor lysis syndrome should be treated in the intensive care unit by aggressive hydration, possible use of loop diuretics, possible use of phosphate binders, use of uric acid lowering agents and dialysis in refractory cases. PMID:25938028

  9. Genetic Dissection of T4 Lysis

    PubMed Central

    Moussa, Samir H.; Lawler, Jessica L.

    2014-01-01

    t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an Nin-Cout topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; Nout-Cin) of the coliphage lambda and S68 (2 TMDs; Nin-Cin) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation. PMID:24706740

  10. Microfluidic device for acoustic cell lysis

    DOEpatents

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  11. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  12. Resistance of Zygorhynchus Species to Lysis

    PubMed Central

    Ballesta, J.-P. G.; Alexander, M.

    1971-01-01

    Zygorhynchus vuilleminii, a nonmelanin-containing fungus, was not lysed by mycolytic actinomycetes. Several enzymes and Streptomyces enzyme preparations digesting walls of other fungi were without appreciable activity on walls of Zygorhynchus species. A bacterium able to solubilize a portion of the Zygorhynchus wall released little or no reducing sugars from these structures. Fractions of Z. vuilleminii walls were resistant to glucanase hydrolysis, but certain fractions were digested by chitinase and microbial enzyme preparations. The walls and several wall fractions were not readily susceptible to degradation by a soil community. Walls of lysis-resistant Zygorhynchus species contained glucosamine, fucose, glucuronic acid, and galactose but little or no glucose. Resistant wall fractions were rich in uronic acid and fucose, whereas the readily degradable fractions contained abundant glucosamine. Cultural conditions affected the extent of digestion and composition of the walls. Possible reasons for the resistance of Zygorhynchus to lysis in nature are discussed. PMID:5557598

  13. Development of a simple cell lysis method for recombinant DNA using bacteriophage lambda lysis genes.

    PubMed

    Jang, Boyun; Jung, Yuna; Lim, Dongbin

    2007-12-01

    In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification. PMID:18176547

  14. Acute tumor lysis syndrome after proximal splenic artery embolization.

    PubMed

    Salsamendi, Jason T; Doshi, Mehul H; Gortes, Francisco J; Levi, Joe U; Narayanan, Govindarajan

    2016-06-01

    Preoperative splenic artery embolization for massive splenomegaly has been shown to reduce intraoperative hemorrhage during splenectomy. We describe a case of tumor lysis syndrome after proximal splenic artery embolization in a patient with advanced mantle cell lymphoma and splenic involvement. The patient presented initially with hyperkalemia two days after embolization that worsened during splenectomy. He was stabilized, but developed laboratory tumor lysis syndrome with renal failure and expired. High clinical suspicion of tumor lysis syndrome in this setting is advised. Treatment must be started early to avoid serious renal injury and death. Lastly, same day splenectomy and embolization should be considered to decrease the likelihood of developing tumor lysis syndrome. PMID:27257458

  15. Electrical lysis of cells for detergent-free droplet assays

    PubMed Central

    Tran, T. M.; Abate, A. R.

    2016-01-01

    Efficient lysis is critical when analyzing single cells in microfluidic droplets, but existing methods utilize detergents that can interfere with the assays to be performed. We demonstrate robust cell lysis without the use of detergents or other chemicals. In our method, cells are exposed to electric field immediately before encapsulation in droplets, resulting in cell lysis. We characterize lysis efficiency as a function of control parameters and demonstrate compatibility with enzymatic assays by measuring the catalysis of β-glucosidase, an important cellulase used in the conversion of biomass to biofuel. Our method enables assays in microfluidic droplets that are incompatible with detergents. PMID:27051471

  16. Electrical lysis of cells for detergent-free droplet assays.

    PubMed

    de Lange, N; Tran, T M; Abate, A R

    2016-03-01

    Efficient lysis is critical when analyzing single cells in microfluidic droplets, but existing methods utilize detergents that can interfere with the assays to be performed. We demonstrate robust cell lysis without the use of detergents or other chemicals. In our method, cells are exposed to electric field immediately before encapsulation in droplets, resulting in cell lysis. We characterize lysis efficiency as a function of control parameters and demonstrate compatibility with enzymatic assays by measuring the catalysis of β-glucosidase, an important cellulase used in the conversion of biomass to biofuel. Our method enables assays in microfluidic droplets that are incompatible with detergents. PMID:27051471

  17. Consensus conference on the management of tumor lysis syndrome.

    PubMed

    Tosi, Patrizia; Barosi, Giovanni; Lazzaro, Carlo; Liso, Vincenzo; Marchetti, Monia; Morra, Enrica; Pession, Andrea; Rosti, Giovanni; Santoro, Antonio; Zinzani, Pier Luigi; Tura, Sante

    2008-12-01

    Tumor lysis syndrome is a potentially life threatening complication of massive cellular lysis in cancers. Identification of high-risk patients and early recognition of the syndrome is crucial in the institution of appropriate treatments. Drugs that act on the metabolic pathway of uric acid to allantoin, like allopurinol or rasburicase, are effective for prophylaxis and treatment of tumor lysis syndrome. Sound recommendations should regulate diagnosis and drug application in the clinical setting. The current article reports the recommendations on the management of tumor lysis syndrome that were issued during a Consensus Conference project, and which were endorsed by the Italian Society of Hematology (SIE), the Italian Association of Pediatric Oncologists (AIEOP) and the Italian Society of Medical Oncology (AIOM). Current concepts on the pathophysiology, clinical features, and therapy of tumor lysis syndrome were evaluated by a Panel of 8 experts. A consensus was then developed for statements regarding key questions on tumor lysis syndrome management selected according to the criterion of relevance by group discussion. Hydration and rasburicase should be administered to adult cancer patients who are candidates for tumor-specific therapy and who carry a high risk of tumor lysis syndrome. Cancer patients with a low-risk of tumor lysis syndrome should instead receive hydration along with oral allopurinol. Hydration and rasburicase should also be administered to patients with clinical tumor lysis syndrome and to adults and high-risk children who develop laboratory tumor lysis syndrome. In conclusion, the Panel recommended rasburicase for tumor lysis syndrome prophylaxis in selected patients based on the drug efficacy profile. Methodologically rigorous studies are needed to clarify its cost-effectiveness profile. PMID:18838473

  18. Arthroscopic Lysis of Arthrofibrosis of the Fifth Tarsometatarsal Joint

    PubMed Central

    Lui, Tun Hing

    2015-01-01

    Loss of motion of the fifth tarsometatarsal joint can be a cause of lateral foot pain after Lisfranc fracture-dislocation or fracture of the fifth metatarsal tubercle. Arthroscopic lysis of the joint can be an effective surgical treatment with the advantage of minimal soft-tissue trauma and early vigorous mobilization of the joint. The lysis can be extended to the fourth tarsometatarsal joint and the adjacent tendons if indicated. PMID:26870650

  19. Reagentless cell lysis on a PDMS CD using beads

    NASA Astrophysics Data System (ADS)

    Kim, Jitae; Jang, She-Hee; Zoval, Jim V.; Da Silva, Nancy A.; Madou, Marc J.

    2004-08-01

    Reagentless mechanical cell lysis was demonstrated on a microfluidic CD (Compact Disc) microfabricated in PDMS (Polydimethylsiloxane). The motion of beads in a lysis chamber on the CD causes disruption of mammalian (CHO-K1), bacterial (Escherichia coli), and yeast (Saccharomyces cerevisiae) cells. Interactions between beads and cells are generated in the rimming flow established inside a partially filled annular chamber in the CD rotating around a horizontal axis. To maximize bead-cell interactions, the CD was spun forward and backwards around this axis, using high acceleration for up to 7 minutes. Based on our theoretical work, we investigated the following control parameters: bead density, angular velocity, acceleration rate, and solid volume fraction, all of which influence cell lysis efficiency. Cell disruption efficiency was verified either through direct microscopic viewing or measurement of DNA concentration after cell lysing. Lysis efficiency relative to a conventional lysis protocol was also determined. In the long term, this work is geared towards CD based sample-to-answer nucleic acid analysis which will include cell lysis, DNA purification, DNA amplification, and DNA hybridization detection.

  20. Temporal analysis of protozoan lysis in a microfluidic device.

    PubMed

    Santillo, Michael F; Heien, Michael L; Ewing, Andrew G

    2009-10-01

    A microfluidic device was fabricated and characterized for studying cell lysis of Arcella vulgaris, a nonpathogenic amoeba, over time. The device contains a series of chambers which capture cells allowing them to be subsequently exposed to a constant flow of biocidal agent. With this microfluidic system, individual cells are observed as they undergo lysis. This allows high-throughput measurements of individual lysis events, which are not possible with conventional techniques. Differences in lysis and decay times for Arcella were seen at different flow rates and concentrations of benzalkonium chloride, a biocidal detergent. The efficacy of benzalkonium chloride, chlorhexidine digluconate, phenol, sodium dodecyl sulfate, and Triton X-100 were compared, revealing information on their mechanisms of action. The presented device allows cell capture, controlled exposure to chemical biocides, and observation of lysis with single-cell resolution. Observations at the single cell level give insight into the mechanistic details of the lysis of individual Arcella cells vs. the population; decay times for individual Arcella cells were much shorter when compared to a population of 15 cells. PMID:19967116

  1. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    SciTech Connect

    Cavard, D. )

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either ({sup 35}S)cysteine or ({sup 3}H)lysine. This 3-kDa protein was acylated, as shown by (2-{sup 3}H)glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants.

  2. Carfilzomib-associated tumor lysis syndrome.

    PubMed

    Shely, Ryan N; Ratliff, Patrick D

    2014-05-01

    Multiple myeloma is the second most common type of hematologic malignancy. It is a B-cell malignancy that affects the bone marrow and often results in thrombocytopenia as well as renal dysfunction. Treatment options range from oral and intravenous chemotherapy to bone marrow transplantation and supportive care. Carfilzomib was approved by the U.S. Food and Drug Administration in 2012 as a treatment option for patients with refractory multiple myeloma who have received at least two previous therapies and have demonstrated recent disease progression. According to the product labeling, the frequency of tumor lysis syndrome (TLS) is less than 1% in patients treated with carfilzomib. To our knowledge, no postmarketing events of TLS have been reported or published. We describe a 55-year-old man with relapsed multiple myeloma who developed a case of TLS that occurred after he received his first two doses of carfilzomib therapy on days 1 and 2; he also had chronic kidney disease secondary to his neoplastic disease. Beginning on day 4, his uric acid levels spiked to critical levels, prompting the use of rasburicase, which returned the levels to within normal limits. His phosphorus and creatinine levels increased during days 5 and 6. On day 8, the patient died, likely due to a combination of disease progression and the adverse effects of treatment. Use of the Naranjo adverse drug reaction probability scale indicated a probable relationship (score of 6) between the patient's development of TLS and carfilzomib therapy. The Hill criteria were used as a secondary measure to ensure causality, which also suggested a link between the patient's development of TLS and the administration of carfilzomib. This case report shows that even the most unlikely of adverse events may occur with medications, especially in the case of a new or recently approved medication. Caution must be taken when deciding to treat and when choosing hydration and premedications with regard to biologic and

  3. The Spanin Complex Is Essential for Lambda Lysis

    PubMed Central

    Berry, Joel; Rajaure, Manoj; Pang, Ting

    2012-01-01

    Phage lysis is a ubiquitous biological process, the most frequent cytocidal event in the biosphere. Lysis of Gram-negative hosts has been shown to require holins and endolysins, which attack the cytoplasmic membrane and peptidoglycan, respectively. Recently, a third class of lysis proteins, the spanins, was identified. The first spanins to be characterized were λ Rz and Rz1, an integral cytoplasmic membrane protein and an outer membrane lipoprotein, respectively. Previous work has shown that Rz and Rz1 form complexes that span the entire periplasm. Phase-contrast video microscopy was used to record the morphological changes involved in the lysis of induced λ lysogens carrying prophages with either the λ canonical holin-endolysin system or the phage 21 pinholin-signal anchor release (SAR) endolysin system. In the former, rod morphology persisted until the instant of an explosive polar rupture, immediately emptying the cell of its contents. In contrast, in pinholin-SAR endolysin lysis, the cell began to shorten and thicken uniformly, with the resultant rounded cell finally bursting. In both cases, lysis failed to occur in inductions of isogenic prophages carrying null mutations in the spanin genes. In both systems, instead of an envelope rupture, the induced cells were converted from a rod shape to a spherical form. A functional GFPΦRz chimera was shown to exhibit a punctate distribution when coexpressed with Rz1, despite the absence of endolysin function. A model is proposed in which the spanins carry out the essential step of disrupting the outer membrane, in a manner regulated by the state of the peptidoglycan layer. PMID:22904283

  4. Complement-mediated adipocyte lysis by nephritic factor sera.

    PubMed

    Mathieson, P W; Würzner, R; Oliveria, D B; Lachmann, P J; Peters, D K

    1993-06-01

    Recent data indicate a previously unsuspected link between the complement system and adipocyte biology. Murine adipocytes produce key components of the alternative pathway of complement and are able to activate this pathway. This suggested to us an explanation for adipose tissue loss in partial lipodystrophy, a rare human condition usually associated with the immunoglobulin G(IgG) autoantibody nephritic factor (NeF) which leads to enhanced alternative pathway activation in vivo. We hypothesized that in the presence of NeF, there is dysregulated complement activation at the membrane of the adipocyte, leading to adipocyte lysis. Here we show that adipocytes explanted from rat epididymal fat pads are lysed by NeF-containing sera but not by control sera. A similar pattern is seen with IgG fractions of these sera. Adipocyte lysis in the presence of NeF is associated with the generation of fluid-phase terminal complement complexes, the level of which correlates closely with the level of lactate dehydrogenase, a marker of cell lysis. Lysis is abolished by ethylenediaminetetraacetic acid, which chelates divalent cations and prevents complement activation, and reduced by an antibody to factor D, a key component of the alternative pathway. These data provide an explanation for the previously obscure link between NeF and fat cell damage. PMID:8496694

  5. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin...

  6. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin...

  7. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin...

  8. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin...

  9. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin...

  10. Sandia Text ANaLysis Extensible librarY Server

    Energy Science and Technology Software Center (ESTSC)

    2006-05-11

    This is a server wrapper for STANLEY (Sandia Text ANaLysis Extensible librarY). STANLEY provides capabilities for analyzing, indexing and searching through text. STANLEY Server exposes this capability through a TCP/IP interface allowing third party applications and remote clients to access it.

  11. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    SciTech Connect

    Chourey, Karuna; Jansson, Janet; Verberkmoes, Nathan C; Shah, Manesh B; Chavarria, Krystle L.; Tom, Lauren M; Brodie, Eoin L.; Hettich, Robert {Bob} L

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  12. Impaired clot lysis in copper-deficient mice

    SciTech Connect

    Lynch, S.M.; Klevay, L.M. )

    1991-03-15

    Cu-deficient mice exhibit atrial thrombosis but have significantly lowered plasma coagulation factor V and VIII activities. To investigate the effects of a dietary Cu deficiency on clot lysis, groups of adult male and female Swiss-Webster mice were fed Cu-supplemented or -deficient diets with deionized water for 49 days. Animals were exsanguinated under pentobarbital anesthesia; platelet-poor plasma prepared and assayed for euglobulin clot lysis time (ECLT) and antithrombin III activity. A protamine sulfate test was also performed. The highly significant ECLT prolongation in Cu-deficient mice clearly demonstrates that critical components of the physiological clot-lysing mechanism must be severely impaired in these animals. These results may help to explain the thrombotic sequelae of a dietary Cu deficiency in mice.

  13. Synchronized cycles of bacterial lysis for in vivo delivery.

    PubMed

    Din, M Omar; Danino, Tal; Prindle, Arthur; Skalak, Matt; Selimkhanov, Jangir; Allen, Kaitlin; Julio, Ellixis; Atolia, Eta; Tsimring, Lev S; Bhatia, Sangeeta N; Hasty, Jeff

    2016-08-01

    The widespread view of bacteria as strictly pathogenic has given way to an appreciation of the prevalence of some beneficial microbes within the human body. It is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here we engineer a clinically relevant bacterium to lyse synchronously ata threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We used microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. Asa proof of principle, we tracked the bacterial population dynamics in ectopic syngeneic colorectal tumours in mice via a luminescent reporter. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administered the lysis strain alone or in combination with a clinical chemotherapeutic to a syngeneic mouse transplantation model of hepatic colorectal metastases. We found that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumour activity along with a marked survival benefit over either therapy alone.Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites. PMID:27437587

  14. Protein determinants of phage T4 lysis inhibition

    PubMed Central

    Moussa, Samir H; Kuznetsov, Vladimir; Tran, Tram Anh T; Sacchettini, James C; Young, Ry

    2012-01-01

    Genetic studies have established that lysis inhibition in bacteriophage T4 infections occurs when the RI antiholin inhibits the lethal hole-forming function of the T holin. The T-holin is composed of a single N-terminal transmembrane domain and a ∼20 kDa periplasmic domain. It accumulates harmlessly throughout the bacteriophage infection cycle until suddenly causing permeabilization of the inner membrane, thereby initiating lysis. The RI antiholin has a SAR domain that directs its secretion to the periplasm, where it can either be inactivated and degraded or be activated as a specific inhibitor of T. Previously, it was shown that the interaction of the soluble domains of these two proteins within the periplasm was necessary for lysis inhibition. We have purified and characterized the periplasmic domains of both T and RI. Both proteins were purified in a modified host that allows disulfide bond formation in the cytoplasm, due to the functional requirement of conserved disulfide bonds. Analytical centrifugation and circular dichroism spectroscopy showed that RI was monomeric and exhibited ∼80% alpha-helical content. In contrast, T exhibited a propensity to oligomerize and precipitate at high concentrations. Incubation of RI with T inhibits this aggregation and results in a complex of equimolar T and RI content. Although gel filtration analysis indicated a complex mass of 45 kDa, intermediate between the predicted 30 kDa heterodimer and 60 kDa heterotetramer, sedimentation velocity analysis indicated that the predominant species is the former. These results suggest that RI binding to T is necessary and sufficient for lysis inhibition. PMID:22389108

  15. Transcranial Clot Lysis Using High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Hölscher, Thilo; Zadicario, Eyal; Fisher, David J.; Bradley, William G.

    2010-03-01

    Stroke is the third common cause of death worldwide. The majority of strokes are caused by sudden vessel occlusion, due to a blood clot. Vessel recanalization is the primary goal of all acute stroke treatment strategies. Initial data using ultrasound in combination with a therapeutic agent for clot lysis in stroke are promising. However, sound absorption and defocusing of the ultrasound beam occur during transskull insonation, limiting the efficiency of this approach to high extent. Using a transskull High Intensity Focused Ultrasound (HIFU) head system we were able to lyse blood clots within seconds and in absence of further lytic agents. We could show that any correction for the distortion might be negligible to focus the ultrasound beam after transskull insonation. The use of transskull HIFU for immediate clot lysis in the human brain without the need of further drugs and disregarding individual skull bone characteristics could become a successful strategy in early stroke treatment. Using magnetic resonance tomography for neuronavigation MRI Guided High Intensity Focused Ultrasound has the potential to open new avenues for therapeutic applications in the brain including Stroke, Intracranial Hemorrhages, Braintumors, Neurodegenerative Diseases, Thalamic Pain, BBB opening, and local drug delivery. First results in transcranial clot lysis will be presented in this paper.

  16. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  17. Wireless induction heating in a microfluidic device for cell lysis.

    PubMed

    Baek, Seung-ki; Min, Junghong; Park, Jung-Hwan

    2010-04-01

    A wireless induction heating system in a microfluidic device was devised for cell lysis to extract DNA and RNA from Escherichia coli. The thermal responses of nickel, iron and copper heating units were studied by applying an alternating magnetic field as a function of geometry of unit, strength of magnetic field, and kind of metal. Heating units were prepared by cutting metal film using a fiber laser, and the units were integrated into a microchannel system using a soft lithographic process. Variation and distribution of temperature on the surface of the heating units was observed using a thermographic camera and temperature labels. The amount of protein released from E. coli by thermal lysis was determined by protein concentration measurement. Hemoglobin released from red blood cells was observed using colorimetric intensity measurement. Extracted DNA was quantified by real-time polymerase chain reaction, and the profile was compared with that of a positive control of ultrasonically disrupted E. coli. The stability of RNA extracted by induction heating was quantified by the measurement of 23S/16S rRNA ratio and comparison with that by normal RNA extraction kit as a gold standard. A solid-shaped nickel structure was selected as the induction heating element in the microfluidic device because of the relatively small influence of geometries and faster thermal response.The amount of protein extracted from E. coli and hemoglobin released from red blood cells by induction heating of the nickel unit in the microfluidic device was proportional to the strength of the applied magnetic field. The lysis of E. coli by induction heating was as effective as lysis of DNA by the ultrasonication method because the threshold cycle values of the sample were compatible with those of the positive control as measured by ultrasonication. Thermal lysis of E. coli by induction heating represents a reasonable alternative to a commercial RNA extraction method as shown by the comparative

  18. Rapid, Effective DNA Isolation from Osmanthus via Modified Alkaline Lysis.

    PubMed

    Alexander, Lisa

    2016-07-01

    Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ∼1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species. PMID:26816495

  19. Rapid, Effective DNA Isolation from Osmanthus via Modified Alkaline Lysis

    PubMed Central

    2016-01-01

    Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ∼1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species. PMID:26816495

  20. Phage lysis: three steps, three choices, one outcome

    PubMed Central

    Young, Ry

    2014-01-01

    The lysis of bacterial hosts by double-strand DNA bacteriophages, once thought to reflect merely the accumulation of sufficient lysozyme activity during the infection cycle, has been revealed to recently been revealed to be a carefully regulated and temporally scheduled process. For phages of Gram-negative hosts, there are three steps, corresponding to subversion of each of the three layers of the cell envelope: inner membrane, peptidoglycan, and outer membrane. The pathway is controlled at the level of the cytoplasmic membrane. In canonical lysis, a phage encoded protein, the holin, accumulates harmlessly in the cytoplasmic membrane until triggering at an allele-specific time to form micron-scale holes. This allows the soluble endolysin to escape from the cytoplasm to degrade the peptidoglycan. Recently a parallel pathway has been elucidated in which a different type of holin, the pinholin, which, instead of triggering to form large holes, instead triggers to form small, heptameric channels that serve to depolarize the membrane. Pinholins are associated with SAR endolysins, which accumulate in the periplasm as inactive, membrane-tethered enzymes. Pinholin triggering collapses the proton motive force, allowing the SAR endolysins to refold to an active form and attack the peptidoglycan. Surprisingly, a third step, the disruption of the outer membrane is also required. This is usually achieved by a spanin complex, consisting of a small outer membrane lipoprotein and an integral cytoplasmic membrane protein, designated as o-spanins and i-spanins, respectively. Without spanin function, lysis is blocked and progeny virions are trapped in dead spherical cells, suggesting that the outer membrane has considerable tensile strength. In addition to two-component spanins, there are some single-component spanins, or u-spanins, that have an N-terminal outer-membrane lipoprotein signal and a C-terminal transmembrane domain. A possible mechanism for spanin function to disrupt the

  1. Enzymatic lysis of the pseudomurein-containing methanogen Methanobacterium formicicum.

    PubMed Central

    Bush, J W

    1985-01-01

    A streptomycete isolated from cow manure produces an extracellular enzyme capable of lysing the pseudomurein-containing methanogen Methanobacterium formicicum. The lytic activity has been partially purified from culture fluid and appears to be a serine protease. Similar lytic activity has been fractionated from pronase. Optimal conditions have been developed for lysis of M. formicicum by commercial preparations of proteinase K. The three lytic enzymes have been partially characterized. The results with the three enzyme preparations tend to confirm that proteolytic enzymes are capable of lysing methanogen cells. Images PMID:3891731

  2. A review of stereotaxy and lysis for intracranial hemorrhage.

    PubMed

    Samadani, Uzma; Rohde, Veit

    2009-01-01

    Intracranial hemorrhage represents a significant cause of human morbidity and mortality, leaving as many as 80% of patients either dead or disabled. Techniques for management of hemorrhage include optimal medical care, craniotomy, endoscopy, and stereotaxy. This work reviews the history of cranial stereotaxy for evacuation of nontraumatic hemorrhage beginning with techniques for mechanical disruption of the coagulated hemorrhage modeled after Archimedes screw. We discuss the properties of urokinase and tissue plasminogen activator, which have been utilized for lysis, and the outcomes after stereotactic fibrinolytic evacuation of intracerebral hemorrhage. The ongoing clinical trials evaluating the efficacy of stereotactic fibrinolysis are also discussed. PMID:18830646

  3. Lysis of horse red blood cells mediated by antibody-independent activation of the alternative pathway of chicken complement.

    PubMed Central

    Ohta, H; Yoshikawa, Y; Kai, C; Yamanouchi, K; Okada, H

    1984-01-01

    Horse red blood cells (HRBC) were found to be lysed when incubated with fresh normal chicken serum (NCS). By comparison of the properties of the lysis of HRBC with those of the complement-dependent lysis of sheep red blood cells (SRBC) sensitized with haemolytic antibody via the classical pathway, the following differences were observed between the two haemolytic phenomena. (i) The lysis of HRBC was independent on antibody in contrast to the antibody dependence of the lysis of sensitized SRBC. (ii) The lysis of HRBC was dependent on Mg but not on Ca ion, whereas the lysis of sensitized SRBC required both Mg and Ca ions. (iii) Treatment of NCS with carrageenan that acts as an inactivator of the first component of complement (C1) inhibited the lysis of sensitized SRBC but not the lysis of HRBC. (iv) C1 was consumed in the lysis of sensitized SRBC but not in the lysis of HRBC. (v) Cobra venom factor (CVF), C3 inactivator via the alternative complement pathway, inhibited the lysis of HRBC but not the lysis of sensitized SRBC. (vi) Minimal reaction times for the lysis of HRBC and for the lysis of sensitized SRBC were 90 and 60 min, respectively. These findings indicate that the lysis of HRBC was caused by the antibody-independent activation of complement via the alternative pathway. PMID:6430791

  4. Fluorescent method for monitoring cheese starter permeabilization and lysis.

    PubMed

    Bunthof, C J; van Schalkwijk, S; Meijer, W; Abee, T; Hugenholtz, J

    2001-09-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iodide (PI), staining damaged membrane cells fluorescent red and intact cells fluorescent green. For evaluation of the fluorescence method, cells of Lactococcus lactis MG1363 were incubated under different conditions and subsequently labeled with SYTO 9 and PI and analyzed by flow cytometry and epifluorescence microscopy. Lysis was induced by treatment with cell wall-hydrolyzing enzyme mutanolysin. Cheese conditions were mimicked by incubating cells in a buffer with high protein, potassium, and magnesium, which stabilizes the cells. Under nonstabilizing conditions a high concentration of mutanolysin caused complete disruption of the cells. This resulted in a decrease in the total number of cells and release of cytoplasmic enzyme lactate dehydrogenase. In the stabilizing buffer, mutanolysin caused membrane damage as well but the cells disintegrated at a much lower rate. Stabilizing buffer supported permeabilized cells, as indicated by a high number of PI-labeled cells. In addition, permeable cells did not release intracellular aminopeptidase N, but increased enzyme activity was observed with the externally added and nonpermeable peptide substrate lysyl-p-nitroanilide. Finally, with these stains and confocal scanning laser microscopy the permeabilization of starter cells in cheese could be analyzed. PMID:11526032

  5. Fluorescent Method for Monitoring Cheese Starter Permeabilization and Lysis

    PubMed Central

    Bunthof, Christine J.; van Schalkwijk, Saskia; Meijer, Wilco; Abee, Tjakko; Hugenholtz, Jeroen

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iodide (PI), staining damaged membrane cells fluorescent red and intact cells fluorescent green. For evaluation of the fluorescence method, cells of Lactococcus lactis MG1363 were incubated under different conditions and subsequently labeled with SYTO 9 and PI and analyzed by flow cytometry and epifluorescence microscopy. Lysis was induced by treatment with cell wall-hydrolyzing enzyme mutanolysin. Cheese conditions were mimicked by incubating cells in a buffer with high protein, potassium, and magnesium, which stabilizes the cells. Under nonstabilizing conditions a high concentration of mutanolysin caused complete disruption of the cells. This resulted in a decrease in the total number of cells and release of cytoplasmic enzyme lactate dehydrogenase. In the stabilizing buffer, mutanolysin caused membrane damage as well but the cells disintegrated at a much lower rate. Stabilizing buffer supported permeabilized cells, as indicated by a high number of PI-labeled cells. In addition, permeable cells did not release intracellular aminopeptidase N, but increased enzyme activity was observed with the externally added and nonpermeable peptide substrate lysyl-p-nitroanilide. Finally, with these stains and confocal scanning laser microscopy the permeabilization of starter cells in cheese could be analyzed. PMID:11526032

  6. Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis.

    PubMed

    Pezzotti, Giuseppe; Bock, Ryan M; McEntire, Bryan J; Jones, Erin; Boffelli, Marco; Zhu, Wenliang; Baggio, Greta; Boschetto, Francesco; Puppulin, Leonardo; Adachi, Tetsuya; Yamamoto, Toshiro; Kanamura, Narisato; Marunaka, Yoshinori; Bal, B Sonny

    2016-03-29

    Organisms of Gram-negative phylum bacteroidetes, Porphyromonas gingivalis, underwent lysis on polished surfaces of silicon nitride (Si3N4) bioceramics. The antibacterial activity of Si3N4 was mainly the result of chemically driven principles. The lytic activity, although not osmotic in nature, was related to the peculiar pH-dependent surface chemistry of Si3N4. A buffering effect via the formation of ammonium ions (NH4(+)) (and their modifications) was experimentally observed by pH microscopy. Lysis was confirmed by conventional fluorescence spectroscopy, and the bacteria's metabolism was traced with the aid of in situ Raman microprobe spectroscopy. This latter technique revealed the formation of peroxynitrite within the bacterium itself. Degradation of the bacteria's nucleic acid, drastic reduction in phenilalanine, and reduction of lipid concentration were observed due to short-term exposure (6 days) to Si3N4. Altering the surface chemistry of Si3N4 by either chemical etching or thermal oxidation influenced peroxynitrite formation and affected bacteria metabolism in different ways. Exploiting the peculiar surface chemistry of Si3N4 bioceramics could be helpful in counteracting Porphyromonas gingivalis in an alkaline pH environment. PMID:26948186

  7. Comparative analysis of whole blood lysis methods for flow cytometry.

    PubMed

    Bossuyt, X; Marti, G E; Fleisher, T A

    1997-06-15

    We performed a parallel evaluation of six whole blood lysis methods comparing light scatter and quantitative fluorescence intensity based on quantitative flow cytometry, of selected lymphocyte subsets and CD34+ cells. Leukocytes prepared with FACS Lysing Solution (BDIS), Immunolyse (Coulter) and Optilyse B (Immunotech) consistently gave lower forward scatter values than those prepared with ACK (BioWhitaker), Ortho-mune (Ortho) and ImmunoPrep (Coulter). Debris, defined as CD45 negative events with the threshold off, accounted approximately 80% of all events with ACK and Ortho-mune. The other lysing methods consistently yielded less debris (approximately 50%) with Immunolyse generating only approximately 16% debris. Optilyse and FACS lyse consistently displayed the lowest percentage of lymphoid cells (CD45+/CD14-) in the three part differential. The percentage of CD3+, CD20+, CD5+, and CD16/CD56+ cells was consistent with all methods but CD4 and CD8 determinants showed inconsistent variation with ACK and Ortho-mune. In addition, the fluorescence intensity of CD14 PE and CD8 PE staining was markedly decreased on cells prepared with ImmunoPrep. Finally, the clearest separation of CD34+ cells was observed with ACK and Ortho-mune. Our data demonstrate that the method used for red cell lysis can have definite impact on immunophenotyping and selected methods appear to be more suitable for specific applications. PMID:9222098

  8. On the mechanism of cell lysis by deformation.

    PubMed

    Takamatsu, Hiroshi; Takeya, Ryu; Naito, Seiji; Sumimoto, Hideki

    2005-01-01

    In this study, we identify the extent of deformation that causes cell lysis using a simple technique where a drop of cell suspension is compressed by two flat plates. The viability of human prostatic adenocarcinoma PC-3 cells in solutions of various concentrations of NaCl is determined as a function of the gap size between the plates. The viability declines with decreasing gap size in the following order: 700 mM >150 mM >75 mM NaCl. This is considered to be due to the difference in cell size, which is caused by the osmotic volume change before deformation; cell diameter becomes smaller in a solution of higher NaCl concentration, which appears to increase the survival ratio in a given gap size. The deformation-induced decrease in cell viability is correlated with the cell surface strain, which is dependent on the increase in surface area, irrespective of NaCl concentration. In addition, the treatment of cells with cytochalasin D results in the disappearance of cortical actin filaments and a marked drop in the viability, indicating that cell lysis is closely related to the deformation of the cytoskeleton. PMID:15519346

  9. Fungal lysis by a soil bacterium fermenting cellulose.

    PubMed

    Tolonen, Andrew C; Cerisy, Tristan; El-Sayyed, Hafez; Boutard, Magali; Salanoubat, Marcel; Church, George M

    2015-08-01

    Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria. PMID:24798076

  10. Tumor lysis syndrome: new challenges and recent advances.

    PubMed

    Wilson, F Perry; Berns, Jeffrey S

    2014-01-01

    Tumor lysis syndrome (TLS) is an oncologic emergency triggered by the rapid release of intracellular material from lysing malignant cells. Most common in rapidly growing hematologic malignancies, TLS has been reported in virtually every cancer type. Central to its pathogenesis is the rapid accumulation of uric acid derived from the breakdown of nucleic acids, which leads to kidney failure by various mechanisms. Kidney failure then limits the clearance of potassium, phosphorus, and uric acid leading to hyperkalemia, hyperphosphatemia, and secondary hypocalcemia, which can be fatal. Prevention of TLS may be more effective than treatment, and identification of at-risk individuals in whom to target preventative efforts remains a key research area. Herein, we discuss the pathophysiology, epidemiology, and treatment of TLS with an emphasis on the kidney manifestations of the disease. PMID:24359983

  11. On-chip lysis of mammalian cells through a handheld corona device.

    PubMed

    Escobedo, C; Bürgel, S C; Kemmerling, S; Sauter, N; Braun, T; Hierlemann, A

    2015-07-21

    On-chip lysis is required in many lab-on-chip applications involving cell studies. In these applications, the complete disruption of the cellular membrane and a high lysis yield is essential. Here, we present a novel approach to lyse cells on-chip through the application of electric discharges from a corona handheld device. The method only requires a microfluidic chip and a low-cost corona device. We demonstrate the effective lysis of BHK and eGFP HCT 116 cells in the sub-second time range using an embedded microelectrode. We also show cell lysis of non-adherent K562 leukemia cells without the use of an electrode in the chip. Cell lysis has been assessed through the use of bright-field microscopy, high-speed imaging and cell-viability fluorescence probes. The experimental results show effective cell lysis without any bubble formation or significant heating. Due to the simplicity of both the components involved and the lysis procedure, this technique offers an inexpensive lysis option with the potential for integration into lab-on-a-chip devices. PMID:26055165

  12. Education for Epiphany: The Case of Plato's "Lysis"

    ERIC Educational Resources Information Center

    Jonas, Mark E.

    2015-01-01

    While a great deal has been written on Plato's "Lysis" in philosophy and philology journals over the last thirty years, nothing has been published on "Lysis" in the major Anglo-American philosophy of education journals during that time. Nevertheless, this dialogue deserves attention from educators. In this essay, Mark…

  13. Cyanobacterial Blue Color Formation during Lysis under Natural Conditions

    PubMed Central

    Tsuji, Kiyomi; Tomita, Koji; Hasegawa, Masateru; Bober, Beata; Harada, Ken-Ichi

    2015-01-01

    Cyanobacteria produce numerous volatile organic compounds (VOCs), such as β-cyclocitral, geosmin, and 2-methylisoborneol, which show lytic activity against cyanobacteria. Among these compounds, only β-cyclocitral causes a characteristic color change from green to blue (blue color formation) in the culture broth during the lysis process. In August 2008 and September 2010, the lysis of cyanobacteria involving blue color formation was observed at Lake Tsukui in northern Kanagawa Prefecture, Japan. We collected lake water containing the cyanobacteria and investigated the VOCs, such as β-cyclocitral, β-ionone, 1-propanol, 3-methyl-1-butanol, and 2-phenylethanol, as well as the number of cyanobacterial cells and their damage and pH changes. As a result, the following results were confirmed: the detection of several VOCs, including β-cyclocitral and its oxidation product, 2,2,6-trimethylcyclohexene-1-carboxylic acid; the identification of phycocyanin based on its visible spectrum; the lower pH (6.7 and 5.4) of the lysed samples; and characteristic morphological change in the damaged cyanobacterial cells. We also encountered the same phenomenon on 6 September 2013 in Lake Sagami in northern Kanagawa Prefecture and obtained almost the same results, such as blue color formation, decreasing pH, damaged cells, and detection of VOCs, including the oxidation products of β-cyclocitral. β-Cyclocitral derived from Microcystis has lytic activity against Microcystis itself but has stronger inhibitory activity against other cyanobacteria and algae, suggesting that the VOCs play an important role in the ecology of aquatic environments. PMID:25662969

  14. Cyanobacterial blue color formation during lysis under natural conditions.

    PubMed

    Arii, Suzue; Tsuji, Kiyomi; Tomita, Koji; Hasegawa, Masateru; Bober, Beata; Harada, Ken-ichi

    2015-04-01

    Cyanobacteria produce numerous volatile organic compounds (VOCs), such as β-cyclocitral, geosmin, and 2-methylisoborneol, which show lytic activity against cyanobacteria. Among these compounds, only β-cyclocitral causes a characteristic color change from green to blue (blue color formation) in the culture broth during the lysis process. In August 2008 and September 2010, the lysis of cyanobacteria involving blue color formation was observed at Lake Tsukui in northern Kanagawa Prefecture, Japan. We collected lake water containing the cyanobacteria and investigated the VOCs, such as β-cyclocitral, β-ionone, 1-propanol, 3-methyl-1-butanol, and 2-phenylethanol, as well as the number of cyanobacterial cells and their damage and pH changes. As a result, the following results were confirmed: the detection of several VOCs, including β-cyclocitral and its oxidation product, 2,2,6-trimethylcyclohexene-1-carboxylic acid; the identification of phycocyanin based on its visible spectrum; the lower pH (6.7 and 5.4) of the lysed samples; and characteristic morphological change in the damaged cyanobacterial cells. We also encountered the same phenomenon on 6 September 2013 in Lake Sagami in northern Kanagawa Prefecture and obtained almost the same results, such as blue color formation, decreasing pH, damaged cells, and detection of VOCs, including the oxidation products of β-cyclocitral. β-Cyclocitral derived from Microcystis has lytic activity against Microcystis itself but has stronger inhibitory activity against other cyanobacteria and algae, suggesting that the VOCs play an important role in the ecology of aquatic environments. PMID:25662969

  15. The influence of octyl β-D-glucopyranoside on cell lysis induced by ultrasonic cavitation

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan

    2011-01-01

    Octyl β-D-glucopyranoside (OGP) has been reported to completely inhibit cavitation-induced cell lysis in vitro, possibly by quenching critical free-radical effects. In this study, the influence of OGP on cell lysis in a 60 rpm rotating-tube exposure apparatus was assessed. HL-60 cell lysis was estimated with a Coulter Multisizer counter. Cavitation activity from the 2.3 MHz, 30 s duration exposures were monitored at the 1.15 MHz subharmonic. Cavitation nucleation was accomplished by addition of an ultrasound contrast agent, or by using freshly dissolved culture media. For both nucleation methods, exposures were conducted for 0–0.7 MPa peak rarefactional pressure-amplitudes with and without 5 mM OGP, and for 0.5 MPa with 0-5 mM OGP. The addition of OGP to the cell suspension medium generally had little influence on cavitation-induced cell lysis. Exposures with no rotation had reduced subharmonic and lysis for added contrast agent, but essentially no cavitation for the fresh medium. Since the decreases or increases in cell lysis found for added OGP generally were accounted for by concomitant decreases or increases in cavitation activity, the changes in cell lysis could be explained by variation of the mechanical effects of cavitation without invoking a critical role for free-radical effects. PMID:22088023

  16. Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ

    NASA Astrophysics Data System (ADS)

    Ryan, Gillian; Rutenberg, Andrew

    2007-03-01

    Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.

  17. On-line monitoring of diatom lysis by thermal lens spectrometry

    NASA Astrophysics Data System (ADS)

    Logar, J. K.; Malej, A.; Franko, M.

    2005-06-01

    The applicability of a double dual beam thermal lens spectrometer in on-line monitoring of phytoplankton cell lysis was tested in laboratory experiments with cultured diatom Skeletonema costatum. The lysis was induced by the addition of the cytotoxin poly-APS. Increased poly-APS concentration resulted in increased cell lysis and release of cellular pigments into the solution. The associated change in absorbance was monitored as increased difference of TLS signals from lysed and control cultures. The lowest number of decayed cells that can be detected by the double dual beam TLS without any pretreatment or preconcentration of the examined culture is 6.106 to 107 cells/L.

  18. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis

    PubMed Central

    Poon, Ivan KH; Baxter, Amy A; Lay, Fung T; Mills, Grant D; Adda, Christopher G; Payne, Jennifer AE; Phan, Thanh Kha; Ryan, Gemma F; White, Julie A; Veneer, Prem K; van der Weerden, Nicole L; Anderson, Marilyn A; Kvansakul, Marc; Hulett, Mark D

    2014-01-01

    Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique ‘cationic grip’ configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001 PMID:24692446

  19. Tumor lysis syndrome in the emergency department: challenges and solutions

    PubMed Central

    Ñamendys-Silva, Silvio A; Arredondo-Armenta, Juan M; Plata-Menchaca, Erika P; Guevara-García, Humberto; García-Guillén, Francisco J; Rivero-Sigarroa, Eduardo; Herrera-Gómez, Angel

    2015-01-01

    Tumor lysis syndrome (TLS) is the most common oncologic emergency. It is caused by rapid tumor cell destruction and the resulting nucleic acid degradation during or days after initiation of cytotoxic therapy. Also, a spontaneous form exists. The metabolic abnormalities associated with this syndrome include hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, and acute kidney injury. These abnormalities can lead to life-threatening complications, such as heart rhythm abnormalities and neurologic manifestations. The emergency management of overt TLS involves proper fluid resuscitation with crystalloids in order to improve the intravascular volume and the urinary output and to increase the renal excretion of potassium, phosphorus, and uric acid. With this therapeutic strategy, prevention of calcium phosphate and uric acid crystal deposition within renal tubules is achieved. Other measures in the management of overt TLS are prescription of hypouricemic agents, renal replacement therapy, and correction of electrolyte imbalances. Hyperkalemia should be treated quickly and aggressively as its presence is the most hazardous acute complication that can cause sudden death from cardiac arrhythmias. Treatment of hypocalcemia is reserved for patients with electrocardiographic changes or symptoms of neuromuscular irritability. In patients who are refractory to medical management of electrolyte abnormalities or with severe cardiac and neurologic manifestations, early dialysis is recommended. PMID:27147889

  20. Tumour lysis syndrome in children: experience of last decade.

    PubMed

    Ahn, Yo Han; Kang, Hyoung Jin; Shin, Hee Young; Ahn, Hyo Seop; Choi, Yong; Kang, Hee Gyung

    2011-12-01

    The strategy against tumour lysis syndrome (TLS) had been hyperhydration, urine alkalinization, and allopurinol. Recently, rasburicase was added to the armament against this life-threatening condition. In Korea, rasburicase is used as a rescue therapy for cases with allopurinol-resistant hyperuricemia, because of the restriction by the National Health Insurance. We reviewed our experiences to re-assess the risk factors of TLS and the efficacy of rasburicase. Medical records were retrospectively reviewed for 396 children who were diagnosed as positive with acute leukemia and non-Hodgkin lymphoma between the years 2000 and 2009. The risk factors for TLS were analyzed statistically, and those before and after the availability of rasburicase were compared. Sixty eight patients (17.2%) had TLS. Multivariate analysis showed that pre-chemotherapy hypophosphatemia was a risk factor for TLS, in addition to the known risk factors of hyperuricemia and high lactate dehydrogenase concentration. The availability of rasburicase as a rescue therapy did not negate the importance of uric acid as a risk factor of TLS. Rasburicase as a second line treatment for intractable hyperuricemia was not effective in reducing the incidence of TLS. Pre-chemotherapy hypophosphatemia was a significant independent risk factor for TLS. PMID:21710502

  1. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  2. Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities

    NASA Astrophysics Data System (ADS)

    Agustí, S.; Duarte, C. M.

    2013-03-01

    The relationship between the percent extracellular carbon release (PER) and the specific lysis rates of phytoplankton was examined across a range of communities spanning from highly oligotrophic ones in the subtropical Atlantic Ocean to productive ones in the N. African upwelling and the Southern Ocean. Communities in oligotrophic waters supported high phytoplankton cell lysis rates and low particulate primary production rates but high dissolved primary production and PER. The percent extracellular carbon released increased with increasing lysis rates to reach an asymptote at about 80% PER with specific lysis rates > 1.5 d-1, observed in the most oligotrophic conditions tested. These results confirm that high phytoplankton mortality in the oligotrophic ocean leads to high PER, accounting for the large fraction of the photosynthetic carbon channelled through bacteria characteristic of oligotrophic marine communities.

  3. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  4. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    PubMed

    Matsuo, Yuzy; Nishino, Kouhei; Mizuno, Kouhei; Akihiro, Takashi; Toda, Takashi; Matsuo, Yasuhiro; Kaino, Tomohiro; Kawamukai, Makoto

    2013-01-01

    Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5). Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3)-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants. PMID:23555823

  5. Charge injection through nanocomposite electrode in microfluidic channel for electrical lysis of biological cells

    NASA Astrophysics Data System (ADS)

    Mishra, Madhusmita; Krishna, Anil; Chandra, Aman; Shenoy, B. M.; Hegde, G. M.; Mahapatra, D. Roy

    2013-03-01

    Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.

  6. Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells.

    PubMed

    Crop, Meindert J; Korevaar, Sander S; de Kuiper, Ronella; IJzermans, Jan N M; van Besouw, Nicole M; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2011-01-01

    There is growing interest in the use of mesenchymal stem cells (MSCs) to improve the outcome of organ transplantation. The immunogenicity of MSCs is, however, unclear and is important for the efficacy of MSC therapy and for potential sensitization against donor antigens. We investigated the susceptibility of autologous and allogeneic MSCs for lysis by CD8(+) T-lymphocytes and NK cells in a kidney transplant setting. MSCs were derived from adipose tissue of human kidney donors and were CD90(+), CD105(+), CD166(+), and HLA class I(+). They showed differentiation ability and immunosuppressive capacity. Lysis of MSCs by peripheral blood mononuclear cells (PBMCs), FACS-sorted CD8(+) T cells, and NK cells was measured by europium release assay. Allogeneic MSCs were susceptible for lysis by cytotoxic CD8(+) T cells and NK cells, while autologous MSCs were lysed by NK cells only. NK cell-mediated lysis was inversely correlated with the expression of HLA class I on MSCs. Lysis of autologous MSCs was not dependent on culturing of MSCs in FBS, and MSCs in suspension as well as adherent to plastic were lysed by NK cells. Pretransplant recipient PBMCs did not lyse donor MSCs, but PBMCs isolated 3, 6, and 12 months after transplantation showed increasing lysing ability. After 12 months, CD8(+) T-cell-mediated lysis of donor MSCs persisted, indicating there was no evidence for desensitization against donor MSCs. Lysis of MSCs is important to take into account when MSCs are considered for clinical application. Our results suggest that the HLA background of MSCs and timing of MSC administration are important for the efficacy of MSC therapy. PMID:21396164

  7. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  8. Systematic approach to Escherichia coli cell population control using a genetic lysis circuit

    PubMed Central

    2014-01-01

    Background Cell population control allows for the maintenance of a specific cell population density. In this study, we use lysis gene BBa_K117000 from the Registry of Standard Biological Parts, formed by MIT, to lyse Escherichia coli (E. coli). The lysis gene is regulated by a synthetic genetic lysis circuit, using an inducer-regulated promoter-RBS component. To make the design more easily, it is necessary to provide a systematic approach for a genetic lysis circuit to achieve control of cell population density. Results Firstly, the lytic ability of the constructed genetic lysis circuit is described by the relationship between the promoter-RBS components and inducer concentration in a steady state model. Then, three types of promoter-RBS libraries are established. Finally, according to design specifications, a systematic design approach is proposed to provide synthetic biologists with a prescribed I/O response by selecting proper promoter-RBS component set in combination with suitable inducer concentrations, within a feasible range. Conclusion This study provides an important systematic design method for the development of next-generation synthetic gene circuits, from component library construction to genetic circuit assembly. In future, when libraries are more complete, more precise cell density control can be achieved. PMID:25559865

  9. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1

    PubMed Central

    Gödeke, Julia; Paul, Kristina; Lassak, Jürgen; Thormann, Kai M

    2011-01-01

    Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. PMID:20962878

  10. Quantification of cell lysis during CHO bioprocesses: Impact on cell count, growth kinetics and productivity.

    PubMed

    Klein, Tobias; Heinzel, Nicole; Kroll, Paul; Brunner, Matthias; Herwig, Christoph; Neutsch, Lukas

    2015-08-10

    High cell densities and high viability are critical quality attributes for mammalian bioprocesses. Determination of living and dead cell numbers is nowadays routinely performed by automated image-based cell analyzers or flow cytometry. However, complete lysis of cells is usually neglected by these devices. We present a novel method for robust quantification of lysed cell populations over the course of a CHO bioprocess. The release of lactate dehydrogenase (LDH) and double stranded genomic DNA in culture supernatants were used as markers for cell lysis. We considered the degradation of both markers over cultivation time, which significantly increased the amount of released LDH and DNA. For correct and robust estimation of lysed cell fractions, degradation of both markers over cultivation time was considered, where redundancy of markers allowed data reconciliation. Calculating the number of cells which were subject to complete cell lysis, we could show that this fraction makes up as much as 30% of the total produced biomass and is not described by measurements of image-based analyzers. Finally, we demonstrate that disregarding cell lysis heavily affects the calculation of biomass yields and growth rates and that increasing levels of cell lysis are related to decreased productivity. PMID:25956245

  11. Characterization and use of laser-based lysis for cell analysis on-chip

    PubMed Central

    Lai, Hsuan-Hong; Quinto-Su, Pedro A.; Sims, Christopher E.; Bachman, Mark; Li, G.P.; Venugopalan, Vasan; Allbritton, Nancy L.

    2008-01-01

    We demonstrate the use of a pulsed laser microbeam for cell lysis followed by electrophoretic separation of cellular analytes in a microfluidic device. The influence of pulse energy and laser focal point within the microchannel on the threshold for plasma formation was measured. The thickness of the poly(dimethylsiloxane) (PDMS) layer through which the beam travelled was a critical determinant of the threshold energy. An effective optical path length, Leff, for the laser beam can be used to predict the threshold for optical breakdown at different microchannel locations. A key benefit of laser-based cell lysis is the very limited zone (less than 5 μm) of lysis. A second asset is the rapid cell lysis times (approx. microseconds). These features enable two analytes, fluorescein and Oregon Green, from a cell to be electrophoretically separated in the channel in which cell lysis occurred. The resolution and efficiency of the separation of the cellular analytes are similar to those of standards demonstrating the feasibility of using a pulsed laser microbeam in single-cell analysis. PMID:18583277

  12. Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells

    PubMed Central

    Jen, Chun-Ping; Hsiao, Ju-Hsiu; Maslov, Nikolay A.

    2012-01-01

    Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. Microfluidic chips with arrays of microwells were developed for single-cell chemical lysis in the present study. The cellular occupancy in 30-μm-diameter microwells (91.45%) was higher than that in 20-μm-diameter microwells (83.19%) at an injection flow rate of 2.8 μL/min. However, most of the occupied 20-μm-diameter microwells contained individual cells. The results of chemical lysis experiments at the single-cell level indicate that cell membranes were gradually lysed as the lysis buffer was injected; they were fully lysed after 12 s. Single-cell chemical lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis. PMID:22368473

  13. Kinetic Model of the Lysogeny/Lysis Switch of Phage λ

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Luo, Liao-Fu

    2009-09-01

    A kinetic model of the interactions between operators and regulators is developed to study the stabilities of genetic states and lysogeny/lysis switch in Escherichia coli infected by bacteriophage lambda. Using adiabatic approximation, the kinetic evolutions of mRNA and regulator concentrations can be deduced from operators' equations. Furthermore, the stability of each state of the system is studied. The results show that the lysogenic state switches to the lytic state through two bifurcations: one from a single stable state to a three-point state, and the other from a three-point state to a single stable state. Then we indicate that the property of the lysogeny/lysis switch satisfies the topological characteristics theorem. Finally, the influence of the left operators on the lysogeny/lysis switch is briefly discussed. The results show that the cooperativity of the CI2 bound to left and right operators makes the lysogenic state more stable.

  14. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria.

    PubMed

    Berlowska, Joanna; Dudkiewicz, Marta; Kregiel, Dorota; Czyzowska, Agata; Witonska, Izabela

    2015-01-01

    This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only. PMID:26047915

  15. An integrated microfluidic device for rapid cell lysis and DNA purification of epithelial cell samples.

    PubMed

    Ha, Seung-Mo; Cho, Woong; Ahn, Yoomin; Hwang, Seung Yong

    2011-05-01

    In this paper, we describe the design and fabrication of a microfluidic device for cell lysis and DNA purification, and the results of device tests using a real sample of buccal cells. Cell lysis was thermally executed for two minutes at 80 degrees C in a serpentine type microreactor (20 microL) using an Au microheater with a microsensor. The DNA was then mixed with other residual products and purified by a new filtration process involving micropillars and 50-80 microm microbeads. The entire process of sample loading, cell lysis, DNA purification, and sample extraction was successfully completed in the microchip within five minutes. Sample preparation within the microchip was verified by performing a SY158 gene PCR analysis and gel electrophoresis on the products obtained from the chip. The new purification method enhanced DNA purity from 0.93 to 1.62 after purification. PMID:21780436

  16. Acute Respiratory Distress Syndrome Associated with Tumor Lysis Syndrome in a Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Macaluso, Alessandra; Genova, Selene; Maringhini, Silvio; Coffaro, Giancarlo; Ziino, Ottavio; D’Angelo, Paolo

    2015-01-01

    Tumor lysis syndrome is a serious and dangerous complication usually associated with antiblastic treatment in some malignancies characterized by high cell turn-over. Mild or severe electrolyte abnormalities including high serum levels of uric acid, potassium, phosphorus, creatinine, bun and reduction of calcium can be responsible for multi-organ failure, involving mostly kidneys, heart and central nervous system. Renal damage can be followed by acute renal failure, weight gain, progressive liver impairment, overproduction of cytokines, and subsequent maintenance of multi-organ damage. Life-threatening acute respiratory failure associated with tumor lysis syndrome is rare. We describe a child with T-cell acute lymphoblastic leukemia, who developed an unusually dramatic tumor lysis syndrome, after administration of the first low doses of steroid, that was rapidly associated with severe acute respiratory distress syndrome. Subsequent clinical course and treatment modalities that resulted in the gradual and full recovery of the child are also described. PMID:25918625

  17. Pulsed Laser Microbeam-Induced Cell Lysis: Time-Resolved Imaging and Analysis of Hydrodynamic Effects

    PubMed Central

    Rau, Kaustubh R.; Quinto-Su, Pedro A.; Hellman, Amy N.; Venugopalan, Vasan

    2006-01-01

    Time-resolved imaging was used to examine the use of pulsed laser microbeam irradiation to produce cell lysis. Lysis was accomplished through the delivery of 6 ns, λ = 532 nm laser pulses via a 40×, 0.8 NA objective to a location 10 μm above confluent monolayers of PtK2 cells. The process dynamics were examined at cell surface densities of 600 and 1000 cells/mm2 and pulse energies corresponding to 0.7×, 1×, 2×, and 3× the threshold for plasma formation. The cell lysis process was imaged at times of 0.5 ns to 50 μs after laser pulse delivery and revealed the processes of plasma formation, pressure wave propagation, and cavitation bubble dynamics. Cavitation bubble expansion was the primary agent of cell lysis with the zone of lysed cells fully established within 600 ns of laser pulse delivery. The spatial extent of cell lysis increased with pulse energy but decreased with cell surface density. Hydrodynamic analysis indicated that cells subject to transient shear stresses in excess of a critical value were lysed while cells exposed to lower shear stresses remained adherent and viable. This critical shear stress is independent of laser pulse energy and varied from ∼60–85 kPa for cell monolayers cultured at a density of 600 cells/mm2 to ∼180–220 kPa for a surface density of 1000 cells/mm2. The implications for single cell lysis and microsurgery are discussed. PMID:16617076

  18. Mesenchymal Stromal Cells Protect Endothelial Cells from Cytotoxic T Lymphocyte-Induced Lysis.

    PubMed

    Cahill, E F; Sax, T; Hartmann, I; Haffner, S; Holler, E; Holler, B; Huss, R; Günther, C; Parolini, O; Kolch, W; Eissner, G

    2016-09-01

    The integrity of the vasculature plays an important role in the success of allogeneic organ and haematopoietic stem cell transplantation. Endothelial cells (EC) have previously been shown to be the target of activated cytotoxic T lymphocytes (CTL) resulting in extensive cell lysis. Mesenchymal stromal cells (MSC) are multipotent cells which can be isolated from multiple sites, each demonstrating immunomodulatory capabilities. They are explored herein for their potential to protect EC from CTL-targeted lysis. CD8(+) T cells isolated from human PBMC were stimulated with mitotically inactive cells of a human microvascular endothelial cell line (CDC/EU.HMEC-1, further referred to as HMEC) for 7 days. Target HMEC were cultured in the presence or absence of MSC for 24 h before exposure to activated allogeneic CTL for 4 h. EC were then analysed for cytotoxic lysis by flow cytometry. Culture of HMEC with MSC in the efferent immune phase (24 h before the assay) led to a decrease in HMEC lysis. This lysis was determined to be MHC Class I restricted linked and further analysis suggested that MSC contact is important in abrogation of lysis, as protection is reduced where MSC are separated in transwell experiments. The efficacy of multiple sources of MSC was also confirmed, and the collaborative effect of MSC and the endothelium protective drug defibrotide were determined, with defibrotide enhancing the protection provided by MSC. These results support the use of MSC as an adjuvant cellular therapeutic in transplant medicine, alone or in conjunction with EC protective agents such as defibrotide. PMID:27384426

  19. The lysis of cytotoxic T lymphocytes and their blasts by cytotoxic T lymphocytes.

    PubMed Central

    Schick, B; Berke, G

    1990-01-01

    After binding to their targets, cytotoxic T lymphocytes (CTL) deliver a lethal hit signal, ultimately leading to target cell lysis, and then can recycle to lyse additional targets, without themselves being destroyed. If non-specific secreted lytic mediators are involved in such lysis. CTL survival would not be expected unless the effectors are immune to CTL-mediated lysis. Therefore the lytic susceptibilities of alloimmune peritoneal exudate lymphocytes (PEL), containing up to 50% CTL, and of the cytolytic PEL blasts (PEB), obtained by culturing with interleukin-2 (IL-2), were examined. 51Cr-labelled BALB/c (H-2d) anti-EL4 (H-2b) (d alpha b) PEL were lysed 88%, 78%, and 48% by C3H/eb (H-2k) anti-P815 (H-2d) (k alpha d) PEL, C57BL/6 (H-2b) anti-P815 (b alpha d) PEL and b alpha d PEB, respectively. Similarly, b alpha d PEL were lysed 82% and 21% by d alpha b PEL and PEB, respectively. b alpha d PEB were lysed 82%, 28-39% and 39-51% by k alpha d PEL, b alpha d PEL and b alpha d PEB, respectively, b alpha d PEB were lysed 29-55% by d alpha b PEL. Furthermore, the CTL-containing populations were no less susceptible to lysis than normal lymphocytes. Since the majority (80-90%) of cells in these two types of CTL-containing populations can be directly and specifically lysed by appropriately immunized PEL CTL, we conclude that both the lytic granule and perforin lacking (PEL) and containing (PEB) CTL are not a priori immune to CTL-mediated lysis. These findings are in accord with theories proposing lysis to be induced by receptor-mediated contact between effector CTL and target cells, and challenge those suggesting the involvement of secreted lytic mediators. PMID:2269479

  20. [Lysis of the cell walls of streptococcus group A by Streptomyces griseus pronase].

    PubMed

    Savel'ev, E P; Petrov, G I

    1978-01-01

    The effect of Streptomyces griseus pronase on Streptococcus group A cell walls was studied. Cell walls were shown to be lysed by pronase, the lysis level being dependent on the molarity of the potassium-phosphate buffer used. With an increase in the buffer molarity from 0.005 M to 0.05 M lysis of cell walls decreased from 70-80% to 30%. By DEAE-cellulose chromatography lysates were separated into two fractions the first of which contained a group specific polysaccharide. A preparative method of obtaining a group specific polysaccharide of Streptococcus group A using Streptomyces griseus pronase under mild conditions is described. PMID:416431

  1. The Occurrence of Thrombosis in Inflammatory Bowel Disease Is Reflected in the Clot Lysis Profile

    PubMed Central

    Bollen, Lize; Vande Casteele, Niels; Peeters, Miet; Van Assche, Gert; Ferrante, Marc; Van Moerkercke, Wouter; Declerck, Paul; Vermeire, Séverine

    2015-01-01

    Background: The occurrence of thromboembolic events (TE) is an important extraintestinal manifestation in patients with inflammatory bowel disease (IBD). The aim of this study was to compare fibrinolysis and clot lysis parameters between (1) patients with IBD and healthy controls and (2) patients with IBD with TE (IBD + TE) and without TE (IBD − TE). Methods: One hundred thirteen healthy controls and 202 patients with IBD, of which 84 patients with IBD + TE and 118 patients with IBD − TE, were included in this case–control study. Three clot lysis parameters (area under the curve, 50% clot lysis time, and amplitude) were determined using a clot lysis assay. Plasminogen activator inhibitor 1 (PAI-1) and thrombin activatable fibrinolysis inhibitor concentrations were determined by enzyme-linked immunosorbent assay. Results: PAI-1 antigen, active PAI-1, and intact thrombin activatable fibrinolysis inhibitor concentrations, as well as 50% clot lysis time and area under the curve, were significantly associated with the presence of IBD (all P < 0.05). The median time between TE and plasma collection was 5.0 (1.8–11.0) years. Comparing IBD + TE versus IBD − TE, active to total PAI-1 ratio (0.36 [0.24–0.61] versus 0.24 [0.13–0.40]), area under the curve (31 [24–49] versus 22 [13-31]), 50% clot lysis time (110 [64–132] versus 95 [70–126] minutes), and amplitude (0.295 [0.222–0.436] versus 0.241 [0.168–0.308]) were significantly higher in IBD + TE (all P <0.05) and remained higher after adjustment for age, gender, C-reactive protein, type of disease, presence of comorbidities, and disease activity. Conclusions: Patients with IBD have an altered clot lysis profile compared with healthy controls. Clot lysis parameters differ significantly between patients with IBD with and without a history of TE and should be included in the risk assessment. PMID:26313696

  2. Tumor Lysis Syndrome: An Unreported Complication of Intrathecal Ara-C.

    PubMed

    Simangan, Lenore R; Kline, Ronald M

    2015-04-01

    Intrathecal (IT) chemotherapy is an established method of preventing and treating CNS leukemia. Although this intervention is beneficial and necessary, understanding the potential adverse effects of IT chemotherapy is important so that these potential effects can be anticipated and prevented. Tumor lysis syndrome is a known complication of systemic chemotherapy and has also been reported as a rare complication after IT chemotherapy in patients with CNS disease. We report the first case of tumor lysis syndrome occurring in a patient with T-cell acute lymphoblastic leukemia without CNS disease. The systemic effects of the IT chemotherapy were confirmed by the decreased size of the presenting mediastinal mass. PMID:24942026

  3. Argon laser suture lysis with different suture materials. An experimental study.

    PubMed Central

    Hugkulstone, C E; Spencer, A F; Vernon, S A

    1994-01-01

    In an in vitro study, 10/0 nylon was found to require a significantly lower laser energy density to produce suture lysis following a single shot than either 10/0 Dacron or 10/0 prolene. Nylon and Dacron monofilament sutures ruptured at reproducible energy levels without significant observable changes at subthreshold irradiation. Prolene, however, was observed to stretch at energy levels below the lysis threshold, under the standard tension produced by a weight of 0.36 (SD 0.02) g. This feature may be of value when performing laser treatment to trabeculectomy flap sutures in the early postoperative period. Images PMID:8025074

  4. Fabrication of rigid microstructures with thiol-ene-based soft lithography for continuous-flow cell lysis

    PubMed Central

    Burke, Jeffrey M.; Pandit, Kunal R.; Goertz, John P.

    2014-01-01

    In this work, we introduce a method for the soft-lithography-based fabrication of rigid microstructures and a new, simple bonding technique for use as a continuous-flow cell lysis device. While on-chip cell lysis techniques have been reported previously, these techniques generally require a long on-chip residence time, and thus cannot be performed in a rapid, continuous-flow manner. Microstructured microfluidic devices can perform mechanical lysis of cells, enabling continuous-flow lysis; however, rigid silicon-based devices require complex and expensive fabrication of each device, while polydimethylsiloxane (PMDS), the most common material used for soft lithography fabrication, is not rigid and expands under the pressures required, resulting in poor lysis performance. Here, we demonstrate the fabrication of microfluidic microstructures from off-stoichiometry thiol-ene (OSTE) polymer using soft-lithography replica molding combined with a post-assembly cure for easy bonding. With finite element simulations, we show that the rigid microstructures generate an energy dissipation rate of nearly 107, which is sufficient for continuous-flow cell lysis. Correspondingly, with the OSTE device we achieve lysis of highly deformable MDA-MB-231 breast cancer cells at a rate of 85%, while a comparable PDMS device leads to a lysis rate of only 40%. PMID:25538814

  5. NKG2D Signaling Leads to NK Cell Mediated Lysis of Childhood AML

    PubMed Central

    Schlegel, Patrick; Ditthard, Kerstin; Lang, Peter; Mezger, Markus; Michaelis, Sebastian; Handgretinger, Rupert; Pfeiffer, Matthias

    2015-01-01

    Natural killer cells have been shown to be relevant in the recognition and lysis of acute myeloid leukemia. In childhood acute lymphoblastic leukemia, it was shown that HLA I expression and KIR receptor-ligand mismatch significantly impact ALL cytolysis. We characterized 14 different primary childhood AML blasts by flow cytometry including NKG2D ligands. Further HLA I typing of blasts was performed and HLA I on the AML blasts was quantified. In two healthy volunteer NK cell donors HLA I typing and KIR genotyping were done. Blasts with high NKG2D ligand expression had significantly higher lysis by isolated NK cells. Grouping the blasts by NKG2D ligand expression led to a significant inverse correlation of HLA I expression and cytolysis in NKG2D low blasts. Furthermore, a significant positive correlation of NKG2D ligand expression and blast cytolysis was shown. No impact of KIR ligand-ligand mismatch was found but a significantly increased lysis of homozygous C2 blasts by KIR2DL1 negative NK cells (donor B) was revealed. In conclusion, NKG2D signaling leads to NK cell mediated lysis of childhood AML despite high HLA I expression. PMID:26236752

  6. Genetically Determined Variation in Lysis Time Variance in the Bacteriophage φX174

    PubMed Central

    Baker, Christopher W.; Miller, Craig R.; Thaweethai, Tanayott; Yuan, Jeffrey; Baker, Meghan Hollibaugh; Joyce, Paul; Weinreich, Daniel M.

    2016-01-01

    Researchers in evolutionary genetics recently have recognized an exciting opportunity in decomposing beneficial mutations into their proximal, mechanistic determinants. The application of methods and concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed them to understand how natural selection sees mutations influencing life history. This work motivated the research presented here, in which we explored whether, under consistent experimental conditions, small differences in the genome of bacteriophage φX174 could lead to altered life history phenotypes among a panel of eight genetically distinct clones. We assessed the clones’ phenotypes by applying a novel statistical framework to the results of a serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate host volumes with ∼1 phage particle. We sequentially plated the volumes over the course of infection and counted the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a single volume as a function of time. From repeated assays, we inferred significant, genetically determined heterogeneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic and phenotypic constraints on the single-protein lysis mechanism of φX174. We speculate briefly on the mechanisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution. PMID:26921293

  7. Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes.

    PubMed Central

    Kranz, D M; Eisen, H N

    1987-01-01

    To investigate how cytotoxic T lymphocytes (CTL) avoid killing themselves when they destroy target cells, we compared 20 different cell lines as target cells, including several CTL cell lines, for their susceptibility to lysis by CTL. Variations in recognition of this diverse set of target cells was circumvented by attaching to all of them a monoclonal antibody to the antigen-specific receptor of a cloned CTL cell line (clone 2C) and using the 2C cell line as the standard aggressor or effector cell. All of the nine tumor cell lines and the four noncytolytic T-helper cell lines tested as targets were highly susceptible to lysis by the aggressor CTL, but seven cytotoxic T-cell lines (six CTL and one T-helper cell line with cytotoxic activity) were largely resistant. These results, and the use of the lectin Con A as an alternative means for triggering CTL activity, point clearly to a level of resistance that could enable CTL to avoid their own destruction when they lyse target cells. The resistance of the cytolytic T cells did not appear to be accompanied by a similar resistance to complement-mediated lysis, indicating that mechanisms of CTL-mediated and complement-mediated lysis are not identical. PMID:2953028

  8. Disposable on-chip microfluidic system for buccal cell lysis, DNA purification, and polymerase chain reaction.

    PubMed

    Cho, Woong; Maeng, Joon-Ho; Ahn, Yoomin; Hwang, Seung Yong

    2013-09-01

    This paper reports the development of a disposable, integrated biochip for DNA sample preparation and PCR. The hybrid biochip (25 × 45 mm) is composed of a disposable PDMS layer with a microchannel chamber and reusable glass substrate integrated with a microheater and thermal microsensor. Lysis, purification, and PCR can be performed sequentially on this microfluidic device. Cell lysis is achieved by heat and purification is performed by mechanical filtration. Passive check valves are integrated to enable sample preparation and PCR in a fixed sequence. Reactor temperature is needed to lysis and PCR reaction is controlled within ±1°C by PID controller of LabVIEW software. Buccal epithelial cell lysis, DNA purification, and SY158 gene PCR amplification were successfully performed on this novel chip. Our experiments confirm that the entire process, except the off-chip gel electrophoresis, requires only approximately 1 h for completion. This disposable microfluidic chip for sample preparation and PCR can be easily united with other technologies to realize a fully integrated DNA chip. PMID:23784986

  9. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. PMID:24681053

  10. Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T.; Jacobson, Stephen C.; McClain, Maxine A.; Ramsey, J. Michael

    2004-08-31

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  11. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    DOEpatents

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  12. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.

    PubMed

    Quinto-Su, Pedro A; Lai, Hsuan-Hong; Yoon, Helen H; Sims, Christopher E; Allbritton, Nancy L; Venugopalan, Vasan

    2008-03-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  13. Lysis of typhus-group rickettsia-infected targets by lymphokine activated killers

    SciTech Connect

    Carl, M.; Dasch, G.A.

    1986-03-01

    The authors recently described a subset of OKT8, OKT3-positive lymphocytes from typhus-group rickettsia immune individuals which were capable of lysing autologous PHA-blasts or Epstein-Barr virus transformed B cells (LCL) infected with typhus-group rickettsiae. In order to determine if killing by these effectors was HLA-restricted, they stimulated peripheral blood mononuclear cells (PBMC) from typhus-group rickettsia immune individuals in vitro with typhus-group rickettsia-derived antigen for one week and then measured lysis of autologous LCL or HLA-mismatched LCL in a 4-6 hour Cr/sup 51/-release assay. There was significant lysis of both the autologous and the HLA-mismatched infected targets as compared to the corresponding uninfected targets. Since this suggested that the effectors were lymphokine activated killers (LAK) rather than cytotoxic T lymphocytes, they then tested this hypothesis by stimulating PBMC from both immune and non-immune individuals in vitro for one week with purified interleukin 2 and measuring lysis of infected, autologous LCL. PBMC thus treated, from both immune and non-immune individuals, were capable of significantly lysing autologous, infected LCL as compared to the non-infected control. They therefore conclude that targets infected with typhus-group rickettsiae are susceptible to lysis to LAK.

  14. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  15. Active Caspase-1 Induces Plasma Membrane Pores That Precede Pyroptotic Lysis and Are Blocked by Lanthanides.

    PubMed

    Russo, Hana M; Rathkey, Joseph; Boyd-Tressler, Andrea; Katsnelson, Michael A; Abbott, Derek W; Dubyak, George R

    2016-08-15

    Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd)-dependent lytic cell death called pyroptosis that promotes antimicrobial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium(2+) (Pro(2+)) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDMs) as an indicator of this PM permeabilization. BMDMs were characterized by rapid Pro(2+) influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin (NG) or Clostridium difficile toxin B (TcdB), respectively. No Pro(2+) uptake in response to NG or TcdB was observed in Casp1(-/-) or Asc(-/-) BMDMs. The cytoprotectant glycine profoundly suppressed NG and TcdB-induced lysis but not Pro(2+) influx. The absence of Gsdmd expression resulted in suppression of NG-stimulated Pro(2+) influx and pyroptotic lysis. Extracellular La(3+) and Gd(3+) rapidly and reversibly blocked the induced Pro(2+) influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1-driven pyroptosis requires induction of initial prelytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca(2+) Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDMs but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in nonlytic/nonclassical IL-1β export. PMID:27385778

  16. On-chip cell lysis by antibacterial non-leaching reusable quaternary ammonium monolithic column.

    PubMed

    Aly Saad Aly, Mohamed; Gauthier, Mario; Yeow, John

    2016-02-01

    Reusable antibacterial non-leaching monolithic columns polymerized in microfluidic channels designed for on-chip cell lysis applications were obtained by the photoinitiated free radical copolymerization of diallyldimethylammonium chloride (DADMAC) and ethylene glycol diacrylate (EGDA) in the presence of a porogenic solvent. The microfluidic channels were fabricated in cross-linked poly(methyl methacrylate) (X-PMMA) substrates by laser micromachining. The monolithic columns have the ability to inhibit the growth of, kill and efficiently lyse Gram-positive Micrococcus luteus (Schroeter) (ATCC 4698) and Kocuria rosea (ATCC 186), and Gram-negative bacteria Pseudomonas putida (ATCC 12633) and Escherichia coli (ATCC 35218) by mechanically shearing the bacterial membrane when forcing the cells to pass through the narrow pores of the monolithic column, and simultaneously disintegrating the cell membrane by physical contact with the antibacterial surface of the column. Cell lysis was confirmed by off-chip PCR without the need for further purification. The influence of the cross-linking monomer on bacterial growth inhibition, leaching, lysis efficiency of the monolithic column and its mechanical stability within the microfluidic channel were investigated and analyzed for three different cross-linking monomers: ethylene glycol dimethacrylate (EGDA), ethylene glycol dimethacrylate (EGDMA) and 1,6-hexanediol dimethacrylate (1,6-HDDMA). Furthermore, the bonding efficiency of two X-PMMA substrates with different cross-linking levels was studied. The monolithic columns were shown to be stable, non-leaching, and reusable for over 30 lysis cycles without significant performance degradation or DNA carryover when they were back-flushed between lysis cycles. PMID:26671610

  17. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest D; Seshia, Ashwin A

    2016-08-01

    A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array. PMID:27299468

  18. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh.

    PubMed

    Henrich, B; Binishofer, B; Bläsi, U

    1995-02-01

    The lysis genes of the Lactobacillus gasseri bacteriophage phi adh were isolated by complementation of a lambda Sam mutation in Escherichia coli. Nucleotide sequencing of a 1,735-bp DNA fragment revealed two adjacent coding regions of 342 bp (hol) and 951 bp (lys) in the same reading frame which appear to belong to a common transcriptional unit. Proteins corresponding to the predicted gene products, holin (12.9 kDa) and lysin (34.7 kDa), were identified by in vitro and in vivo expression of the cloned genes. The phi adh holin is a membrane-bound protein with structural similarity to lysis proteins of other phage, known to be required for the transit of murein hydrolases through the cytoplasmic membrane. The phi adh lysin shows homology with mureinolytic enzymes encoded by the Lactobacillus bulgaricus phage mv4, the Streptococcus pneumoniae phage Cp-1, Cp-7, and Cp-9, and the Lactococcus lactis phage phi LC3. Significant homology with the N termini of known muramidases suggests that phi adh lysin acts by a similar catalytic mechanism. In E. coli, the phi adh lysin seems to be associated with the total membrane fraction, from which it can be extracted with lauryl sarcosinate. Either one of the phi adh lysis proteins provoked lysis of E. coli when expressed along with holins or lysins of phage lambda or Bacillus subtilis phage phi 29. Concomitant expression of the combined holin and lysin functions of phi adh in E. coli, however, did not result in efficient cell lysis. PMID:7836307

  19. The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: a new perspective.

    PubMed Central

    Paddison, P; Abedon, S T; Dressman, H K; Gailbreath, K; Tracy, J; Mosser, E; Neitzel, J; Guttman, B; Kutter, E

    1998-01-01

    Seldom has the study of a set of genes contributed more to our understanding of molecular genetics than has the characterization of the rapid-lysis genes of bacteriophage T4. For example, T4 rII mutants were used to define gene structure and mutagen effects at the molecular level and to help unravel the genetic code. The large-plaque morphology of these mutants reflects a block in expressing lysis inhibition (LIN), the ability to delay lysis for several hours in response to sensing external related phages attacking the cell, which is a unique and highly adaptive attribute of the T4 family of phages. However, surprisingly little is known about the mechanism of LIN, or how the various r genes affect its expression. Here, we review the extensive old literature about the r genes and the lysis process and try to sort out the major players affecting lysis inhibition. We confirm that superinfection can induce lysis inhibition even while infected cells are lysing, suggesting that the signal response is virtually instantaneous and thus probably the result of post-translational regulation. We identify the rI gene as ORF tk.-2, based on sequence analysis of canonical rI mutants. The rI gene encodes a peptide of 97 amino acids (Mr = 11.1 kD; pI = 4.8) that probably is secreted into the periplasmic space. This gene is widely conserved among T-even phage. We then present a model for LIN, postulating that rI is largely responsible for regulating the gpt holin protein in response to superinfection. The evidence suggests that the rIIA and B genes are not directly involved in lysis inhibition; rather, when they are absent, an alternate pathway for lysis develops which depends on the presence of genes from any of several possible prophages and is not sensitive to lysis inhibition. PMID:9560373

  20. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.

    PubMed

    El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F

    2005-06-01

    We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions. PMID:15924398

  1. Erythrocyte lysis and Xenopus laevis oocyte rupture by recombinant Plasmodium falciparum hemolysin III.

    PubMed

    Moonah, Shannon; Sanders, Natalie G; Persichetti, Jason K; Sullivan, David J

    2014-10-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  2. One-step cell lysis suitable for quantitative bacteria detection in inhibitor-laden sands

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Jeong; Choi, Jung-Hyun; Son, Ahjeong

    2015-04-01

    Complexity and heterogeneity of soils often hinder effective DNA extraction from the soil matrix. In particular, conventional DNA extraction techniques require extensive purification which makes DNA extraction time-consuming and labor-intensive. Other drawbacks include lower recovery yield, degradation, and damage of DNA, which are also caused by intensive purifications during DNA extraction. Therefore a rapid and simple and yet effective DNA pretreatment method is preferred for environmental monitoring and screening. This study has evaluated the feasibility of simple physical pretreatment for effective cell lysis of bacteria in sands. Bead beating method was selected as an effective physical cell lysis method in this study. We examined the capability of this physical lysis for Pseudomonas putida seeded sands without additional chemical purification steps. The lysate from the method was analysed by the quantitative polymerase chain reaction (qPCR) assay and subsequently compared to that by commercial DNA extraction kit. The best lysis condition (treatment with 0.1 mm glass beads at 3000 rpm for 3 minutes) was selected. The qPCR results of bead beating treated samples showed the better performance than that of conventional DNA extraction kit. Moreover, the qPCR assay was performed to the sands laden with qPCR inhibitors (humic acids, clay, and magnesium), which generally present in environmental samples. Further experiments with the sands containing less than 10 μg/g of humic acids and 70% of clay showed successful quantification results of qPCR assay. In conclusion, the bead beating method is useful for simplified DNA extraction prior to qPCR analysis for sand samples of particular composition. It is expected that this approach will be beneficial for environmental in-situ analysis or immediate pre-screening. It also provides the groundwork for future studies with real soil samples that have various physico-chemical properties.

  3. Erythrocyte Lysis and Xenopus laevis Oocyte Rupture by Recombinant Plasmodium falciparum Hemolysin III

    PubMed Central

    Moonah, Shannon; Sanders, Natalie G.; Persichetti, Jason K.

    2014-01-01

    Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia. PMID:25148832

  4. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease.

    PubMed

    Haidinger, W; Mayr, U B; Szostak, M P; Resch, S; Lubitz, W

    2003-10-01

    The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression. PMID:14532068

  5. Visualization of Clot Lysis in a Rat Embolic Stroke Model: Application to Comparative Lytic Efficacy

    PubMed Central

    Walvick, Ronn P.; Bråtane, Bernt T.; Henninger, Nils; Sicard, Kenneth M.; Bouley, James; Yu, Zhanyang; Lo, Eng; Wang, Xiaoying; Fisher, Marc

    2011-01-01

    Background and Purpose The purpose of this study was to develop a novel MRI method for imaging clot lysis in a rat embolic stroke model, and to compare tissue plasminogen activator (tPA) based clot lysis with and without recombinant Annexin-2 (rA2). Methods Experiment 1: In vitro optimization of clot visualization using multiple MRI contrast agents in concentrations ranging from 5 to 50μL in 250μL blood. Experiment 2: In vivo characterization of the time course of clot lysis using the clot developed in the previous experiment. Diffusion, perfusion, angiography, and T1-weighted MRI for clot imaging were conducted prior to and during treatment with vehicle (n=6), tPA (n=8) or rA2+tPA (n=8) at multiple time-points. Brains were removed for ex vivo clot localization. Results Clots created with 25μL Magnevist© were the most stable and provided the highest contrast-to-noise ratio. In the vehicle group, clot length as assessed by T1-weighted imaging correlated with histology (r=0.93). Clot length and CBF-derived ischemic lesion volume were significantly smaller than vehicle at 15 minutes post-treatment initiation in the rA2+tPA group, while in the tPA group no significant reduction from vehicle was observed until 30 minutes post-treatment initiation. The rA2+tPA group had a significantly shorter clot length than the tPA group at 60 and 90 minutes post-treatment initiation, and significantly smaller CBF deficit than the tPA group at 90 minutes post-treatment initiation. Conclusions We introduce a novel MRI based clot imaging method for in vivo monitoring of clot lysis. Lytic efficacy of tPA was enhanced by rA2. PMID:21372305

  6. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  7. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  8. Electrical lysis: dynamics revisited and advances in On-chip operation.

    PubMed

    Morshed, Bashir; Shams, Maitham; Mussivand, Tofy

    2013-01-01

    Electrical lysis (EL) is the process of breaking the cell membrane to expose the internal contents under an applied high electric field. Lysis is an important phenomenon for cellular analysis, medical treatment, and biofouling control. This paper aims to review, summarize, and analyze recent advancements on EL. Major databases including PubMed, Ei Engineering Village, IEEE Xplore, and Scholars Portal were searched using relevant keywords. More than 50 articles published in English since 1997 are cited in this article. EL has several key advantages compared to other lysis techniques such as chemical, mechanical, sonication, or laser, including rapid speed of operation, ability to control, miniaturization, low cost, and low power requirement. A variety of cell types have been investigated for including protoplasts, E. coli, yeasts, blood cells, and cancer cells. EL has been developed and applied for decontamination, cytology, genetics, single-cell analysis, cancer treatment, and other applications. On-chip EL is a promising technology for multiplexed automated implementation of cell-sample preparation and processing with micro- or nanoliter reagents. PMID:23510008

  9. Erythrocyte lysis in isotonic solution of ammonium chloride: theoretical modeling and experimental verification.

    PubMed

    Chernyshev, Andrey V; Tarasov, Peter A; Semianov, Konstantin A; Nekrasov, Vyacheslav M; Hoekstra, Alfons G; Maltsev, Valeri P

    2008-03-01

    A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10 degrees to 60 degrees . Comparison of the experimentally measured and theoretically calculated light scattering patterns allows discrimination of spherical from non-spherical erythrocytes and evaluation of volume and hemoglobin concentration for individual spherical cells. Three different processes were applied for erythrocytes sphering: (1) colloid osmotic lysis in isotonic solution of ammonium chloride, (2) isovolumetric sphering in the presence of sodium dodecyl sulphate and albumin in neutrally buffered isotonic saline, and (3) osmotic fragility test in hypotonic media. For the hemolysis in ammonium chloride, the evolution of distributions of sphered erythrocytes on volume and hemoglobin content was monitored in real-time experiments. The analysis of experimental data was performed in the context of a statistical approach, taking into account that parameters of erythrocytes vary from cell to cell. PMID:18083194

  10. Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis.

    PubMed

    Tsougeni, K; Papadakis, G; Gianneli, M; Grammoustianou, A; Constantoudis, V; Dupuy, B; Petrou, P S; Kakabakos, S E; Tserepi, A; Gizeli, E; Gogolides, E

    2016-01-01

    We describe the design, fabrication, and successful demonstration of a sample preparation module comprising bacteria cell capture and thermal lysis on-chip with potential applications in food sample pathogen analysis. Plasma nanotexturing of the polymeric substrate allows increase of the surface area of the chip and the antibody binding capacity. Three different anti-Salmonella antibodies were directly and covalently linked to plasma treated chips without any additional linker chemistry or other treatment. Then, the Ab-modified chips were tested for their capacity to bind bacteria in the concentration range of 10(2)-10(8) cells per mL; the module exhibited 100% efficiency in Salmonella enterica serovar Typhimurium bacteria capture for cell suspensions below 10(5) cells per mL (10(4) cells injected with a 100 μL sample volume) and efficiency higher than 50% for 10(7) cells per mL. Moreover, thermal lysis achieved on-chip from as low as 10 captured cells was demonstrated and shown to compare well with off-chip lysis. Excellent selectivity (over 1 : 300) was obtained in a sample containing, in addition to S. Typhimurium and E. coli bacteria. PMID:26556673

  11. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  12. Uptake of granulysin via lipid rafts leads to lysis of intracellular Listeria innocua.

    PubMed

    Walch, Michael; Eppler, Elisabeth; Dumrese, Claudia; Barman, Hanna; Groscurth, Peter; Ziegler, Urs

    2005-04-01

    The bacteriolytic activity of CTL is mediated by granulysin, which has been reported to kill intracellular Mycobacterium tuberculosis in dendritic cells (DC) with high efficiency. Despite that crucial effector function, the killing mechanism and uptake of granulysin into target cells have not been well investigated. To this end we analyzed granulysin binding, uptake, and the subsequent lysis of intracellular Listeria innocua in human DC. Recombinant granulysin was found to be actively taken up by DC into early endosomal Ag 1-labeled endosomes, as detected by immunofluorescence. Further transfer to L. innocua-containing phagosomes was indicated by colocalization of bacterial DNA with granulysin. After uptake of granulysin by DC, lysis of L. innocua was found in a dose-dependent manner. Uptake as well as lysis of Listeria were inhibited after blocking endocytosis by lowering the temperature and by cholesterol depletion of DC. Colocalization of granulysin with cholera toxin during uptake showed binding to and internalization via lipid rafts. In contrast to cholera toxin, which was targeted to the perinuclear compartment, granulysin was found exclusively in endosomal-phagosomal vesicles. Lipid raft microdomains, enriched in the immunological synapse, may thus enhance uptake and transfer of granulysin into bacterial infected host cells. PMID:15778384

  13. Endothelial Cells Organize Fibrin Clots into Structures That Are More Resistant to Lysis

    NASA Astrophysics Data System (ADS)

    Gray Jerome, W.; Handt, Stefan; Hantgan, Roy R.

    2005-06-01

    Acute myocardial infarction is a major cause of death and disability in the United States. Introducing thrombolytic agents into the clot to dissolve occlusive coronary artery thrombi is one method of treatment. However, despite advances in our knowledge of thrombosis and thrombolysis, survival rates following thrombolytic therapy have not improved substantially. This failure highlights the need for further study of the factors mediating clot stabilization. Using laser scanning confocal microscopy of clots formed from fluorescein-labeled fibrinogen, we investigated what effect binding of fibrin to the endothelial surface has on clot structure and resistance to lysis. Fluorescent fibrin clots were produced over human umbilical vein endothelial cells (HUVEC) and the clot structure analyzed. In the presence of HUVEC, fibrin near the endothelial surface was more organized and occurred in tighter bundles compared to fibrin just 50 [mu]m above. The HUVEC influence on fibrin architecture was blocked by inhibitory concentrations of antibodies to [alpha]V or [beta]3 integrin subunits. The regions of the clots associated with endothelial cells were more resistant to lysis than the more homogenous regions distal to endothelium. Thus, our data show that binding of fibrin to integrins on endothelial surfaces produces clots that are more resistant to lysis.

  14. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe.

    PubMed

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  15. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.

    PubMed

    Newton, Joseph M; Schofield, Desmond; Vlahopoulou, Joanna; Zhou, Yuhong

    2016-07-01

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016. PMID:27111912

  16. A Flow-Through Ultrasonic Lysis System for the Disruption of Bacterial Spores

    SciTech Connect

    Warner, Cynthia L.; Bruckner-Lea, Cindy J.; Grate, Jay W.; Straub, Tim M.; Posakony, Gerald J.; Valentine, Nancy B.; Ozanich, Richard M.; Bond, Leonard J.; Matzke, Melissa M.; Dockendorff, Brian P.; Valdez, Catherine O.; Valdez, Patrick LJ; Owsley, Stanley L.

    2009-10-01

    An automated, flow-through spore lysis instrument that is capable of rapidly disrupting bacterial spores is described. The system utilizes a flow-through chamber that allows for direct injection of the sample without the need for a chemical or enzymatic pre-treatment step to soften the spore coat prior to lysis. Lysis of Bacillus subtilis spores, a benign simulant of Bacillus anthracis, is achieved by flowing the sample through a tube whose axis is parallel to the faces of two transducers that deliver 10 W cm-2 to the surface of the tube at 1.4 MHz frequency. Increases in amplifiable DNA were assessed by real-time PCR analysis, which showed at least a 25-fold increase in amplifiable DNA following ultrasonic treatment, and dilution-to-extinction PCR, which suggests up to a 100-1000-fold increase. The modular design of the ultrasonic system and integrated fluidics allow it to be incorporated into multi-step sample treatment and detection systems.

  17. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss

    PubMed Central

    Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna

    2016-01-01

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912

  18. Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices

    PubMed Central

    Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino

    2014-01-01

    By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells. PMID:25033080

  19. Effects of Amyloid β-Peptides on the Lysis Tension of Lipid Bilayer Vesicles Containing Oxysterols

    PubMed Central

    Kim, Dennis H.; Frangos, John A.

    2008-01-01

    Amyloid β-peptides (Aβ) applied directly from solution to model lipid membranes produced dramatic changes in the material properties of the bilayer when certain oxysterols were present in the bilayer. These effects were dependent on both lipid and peptide composition, and occurred at peptide concentrations as low as 100 nM. Using micropipette manipulation of giant unilamellar vesicles, we directly measured the lysis tension of lipid bilayers of various compositions. The glycerophospholipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) constituted the main lipid component at 70 mol %. The remaining 30 mol % was composed of the following pure or mixed sterols: cholesterol (CHOL), 7-ketocholesterol (KETO), or 7β-hydroxycholesterol (OHCHOL). SOPC/CHOL bilayers did not exhibit significant changes in mechanical properties after exposure to either Aβ(1–42) or Aβ(1–40). Partial substitution of CHOL with KETO (5 mol %), however, caused a drastic reduction of the lysis tension after exposure to Aβ(1–42) but not to Aβ(1–40). Partial substitution of CHOL with OHCHOL (5 mol %) caused a drastic reduction of the lysis tension after exposure to Aβ(1–40) and to Aβ(1–42). We attribute these effects to the reduction in intermolecular cohesive interactions caused by the presence of the second dipole of oxysterols, which reduces the energetic barrier for Aβ insertion into the bilayer. PMID:18390616

  20. A comparison of different lysis buffers to assess allele dropout from single cells for preimplantation genetic diagnosis.

    PubMed

    Thornhill, A R; McGrath, J A; Eady, R A; Braude, P R; Handyside, A H

    2001-06-01

    Single cell polymerase chain reaction (PCR) for preimplantation genetic diagnosis (PGD) requires high efficiency and accuracy. Allele dropout (ADO), the random amplification failure of one of the two parental alleles, remains the most significant problem in PCR-based PGD testing since it can result in serious misdiagnosis for compound heterozygous or autosomal dominant conditions. A number of different strategies (including the use of lysis buffers to break down the cell and make the DNA accessible) have been employed to combat ADO with varying degrees of success, yet there is still no consensus among PGD centres over which lysis buffer should be used (ESHRE PGD Consortium, 1999). To address this issue, PCR amplification of three genes (CFTR, LAMA3 and PKP1) at different chromosomal loci was investigated. Single lymphocytes from individuals heterozygous for mutations within each of the three genes were collected and lysed in either alkaline lysis buffer (ALB) or proteinase K/SDS lysis buffer (PK). PCR amplification efficiencies were comparable between alkaline lysis and proteinase K lysis for PCR products spanning each of the three mutated loci (DeltaF508 in CFTR 90% vs 88%; R650X in LAMA3 82% vs 78%; and Y71X in PKP1 91% vs 87%). While there was no appreciable difference between ADO rates between the two lysis buffers for the LAMA3 PCR product (25% vs 26%), there were significant differences in ADO rates between ALB and PK for the CFTR PCR product (0% vs 23%) and the PKP1 PCR product (8% vs 56%). Based on these results, we are currently using ALB in preference to PK/SDS buffer for the lysis of cells in clinical PGD. PMID:11438956

  1. Iliofemoral Deep Vein Thrombosis: Conventional Therapy Versus Lysis and Percutaneous Transluminal Angioplasty and Stenting

    PubMed Central

    AbuRahma, Ali F.; Perkins, Samuel E.; Wulu, John T.; Ng, Hong K.

    2001-01-01

    Objective To compare conventional treatment (heparin and warfarin) of iliofemoral venous thrombosis with multimodality treatment (lysis and stenting). Summary Background Data Several studies have reported on conventional therapy for iliofemoral venous thrombosis with disappointing results. However, more recent studies have reported better results with multimodality treatment. Methods Fifty-one consecutive patients with extensive iliofemoral venous thrombosis were treated during a 10-year period. If there were no contraindications, patients were given the option to choose between conventional therapy (group 1) and multimodality therapy (group 2). The multimodality treatment strategy included catheter-directed lysis followed by percutaneous transluminal balloon angioplasty (PTA) and stenting for residual iliac stenoses. All patients underwent routine venous duplex imaging at 30 days, 3 months, 6 months, and every 6 months thereafter. Results There were 33 patients in group 1 and 18 patients in group 2. Demographic and clinical characteristics were comparable for both groups. Initial lysis was achieved in 16 of 18 patients (89%) in group 2. Ten of 18 patients in group 2 had residual stenosis after lysis (8 primary and 2 secondary to malignancy), and they were treated with PTA/stenting with an initial success rate of 90%. Two patients in group 1 (6%) had a symptomatic pulmonary embolism (none in group 2). At 30 days, venous patency and symptom resolution were achieved in 1 of 33 patients (3%) in group 1 versus 15 of 18 (83%) in group 2. Kaplan-Meier analysis showed primary iliofemoral venous patency rates at 1, 3, and 5 years of 24%, 18%, and 18% and 83%, 69%, and 69% for groups 1 and 2, respectively. Long-term symptom resolution was achieved in 10 of 33 patients (30%) in group 1 versus 14 of 18 (78%) in group 2. Kaplan-Meier life table analysis showed similar survival rates at 1, 3, and 5 years of 100%, 93%, and 85% for group 1 and 100%, 93%, and 81% for group 2

  2. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  3. Genomic Investigation of Lysogen Formation and Host Lysis Systems of the Salmonella Temperate Bacteriophage SPN9CC

    PubMed Central

    Shin, Hakdong; Lee, Ju-Hoon; Yoon, Hyunjin; Kang, Dong-Hyun

    2014-01-01

    To understand phage infection and host cell lysis mechanisms in pathogenic Salmonella, a novel Salmonella enterica serovar Typhimurium-targeting bacteriophage, SPN9CC, belonging to the Podoviridae family was isolated and characterized. The phage infects S. Typhimurium via the O antigen of lipopolysaccharide (LPS) and forms clear plaques with cloudy centers due to lysogen formation. Phylogenetic analysis of phage major capsid proteins revealed that this phage is a member of the lysogen-forming P22-like phage group. However, comparative genomic analysis of SPN9CC with P22-like phages indicated that their lysogeny control regions and host cell lysis gene clusters show very low levels of identity, suggesting that lysogen formation and host cell lysis mechanisms may be diverse among phages in this group. Analysis of the expression of SPN9CC host cell lysis genes encoding holin, endolysin, and Rz/Rz1-like proteins individually or in combinations in S. Typhimurium and Escherichia coli hosts revealed that collaboration of these lysis proteins is important for the lysis of both hosts and that holin is a key protein. To further investigate the role of the lysogeny control region in phage SPN9CC, a ΔcI mutant (SPN9CCM) of phage SPN9CC was constructed. The mutant does not produce a cloudy center in the plaques, suggesting that this mutant phage is virulent and no longer temperate. Subsequent comparative one-step growth analysis and challenge assays revealed that SPN9CCM has shorter eclipse/latency periods and a larger burst size, as well as higher host cell lysis activity, than SPN9CC. The present work indicates the possibility of engineering temperate phages as promising biocontrol agents similar to virulent phages. PMID:24185850

  4. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment.

    PubMed Central

    Moré, M I; Herrick, J B; Silva, M C; Ghiorse, W C; Madsen, E L

    1994-01-01

    This study reports improvements in two of the key steps, lysis of indigenous cells and DNA purification, required for achieving a rapid nonselective protocol for extracting nucleic acids directly from sodium dodecyl sulfate (SDS)-treated sediment rich in organic matter. Incorporation of bead-mill homogenization into the DNA extraction procedure doubled the densitometrically determined DNA yield (11.8 micrograms of DNA.g [dry weight] of sediment-1) relative to incorporation of three cycles of freezing and thawing (5.2 micrograms of DNA.g [dry weight] of sediment-1). The improved DNA extraction efficiency was attributed to increased cell lysis, measured by viable counts of sediment microorganisms which showed that 2 and 8%, respectively, survived the bead-mill homogenization and freeze-thaw procedures. Corresponding measurements of suspensions of viable Bacillus endospores demonstrated that 2 and 94% of the initial number survived. Conventional, laser scanning epifluorescence phase-contrast, and differential interference-contrast microscopy revealed that small coccoid bacterial cells (1.2 to 0.3 micron long) were left intact after combined SDS and bead-mill homogenization of sediment samples. Estimates of the residual fraction of the fluorescently stained cell numbers indicated that 6% (2.2 x 10(8) cells.g [dry weight] of sediment-1) of the original population (3.8 x 10(9) cells.g [dry weight] of sediment-1) remained after treatment with SDS and bead-mill homogenization. Thus, lysis of total cells was less efficient than that of cells which could be cultured. The extracted DNA was used to successfully amplify nahR, the regulatory gene for naphthalene catabolism in Pseudomonas putida G7, by PCR.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8017936

  5. The lysis cassette of DLP12 defective prophage is regulated by RpoE.

    PubMed

    Rueggeberg, Karl-Gustav; Toba, Faustino A; Bird, Jeremy G; Franck, Nathan; Thompson, Mitchell G; Hay, Anthony G

    2015-08-01

    Expression of the lysis cassette (essD, ybcT, rzpD/rzoD) from the defective lambdoid prophage at the 12th minute of Escherichia coli's genome (DLP12) is required in some strains for proper curli expression and biofilm formation. Regulating production of the lytic enzymes encoded by these genes is critical for maintaining cell wall integrity. In lambdoid phages, late-gene regulation is mediated by the vegetative sigma factor RpoD and the lambda antiterminator Qλ. We previously demonstrated that DLP12 contains a Q-like protein (QDLP12) that positively regulates transcription of the lysis cassette, but the sigma factor responsible for this transcription initiation remained to be elucidated. In silico analysis of essDp revealed the presence of a putative - 35 and - 10 sigma site recognized by the extracytoplasmic stress response sigma factor, RpoE. In this work, we report that RpoE overexpression promoted transcription from essDp in vivo, and in vitro using purified RNAP. We demonstrate that the - 35 region is important for RpoE binding in vitro and that this region is also important for QDLP12-mediated transcription of essDp in vivo. A bacterial two-hybrid assay indicated that QDLP12 and RpoE physically interact in vivo, consistent with what is seen for Qλ and RpoD. We propose that RpoE regulates transcription of the DLP12 lysis genes through interaction with QDLP12 and that proper expression is dependent on an intact - 35 sigma region in essDp. This work provides evidence that the unique Q-dependent regulatory mechanism of lambdoid phages has been co-opted by E. coli harbouring defective DLP12 and has been integrated into the tightly controlled RpoE regulon. PMID:25998262

  6. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  7. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein.

    PubMed

    Hajduk, S L; Moore, D R; Vasudevacharya, J; Siqueira, H; Torri, A F; Tytler, E M; Esko, J D

    1989-03-25

    Trypanosoma brucei brucei is an important pathogen of domestic cattle in sub-Saharan Africa and is closely related to the human sleeping sickness parasites, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, T. b. brucei is non-infectious to humans. The restriction of the host range of T. b. brucei results from the sensitivity of the parasite to lysis by toxic human high density lipoproteins (HDL) (Rifkin, M. R. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3450-3454). We show in this report that trypanosome lytic activity is not a universal feature of all human HDL particles but rather that it is associated with a minor subclass of HDL. We have purified the lytic activity about 8,000-fold and have identified and characterized the subspecies of HDL responsible for trypanosome lysis. This class of HDL has a relative molecular weight of 490,000, a buoyant density of 1.21-1.24 g/ml, and a particle diameter of 150-210 A. It contains apolipoproteins AI, AII, CI, CII, and CIII, and monoclonal antibodies against apo-AI and apo-AII inhibit trypanocidal activity. In addition to these common apolipoproteins, the particles also contain at least three unique proteins, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Treatment of the particles with dithiothreitol resulted in the disappearance of two of the proteins and abolished trypanocidal activity. Two-dimensional gel electrophoresis showed that these proteins were a disulfide-linked trimer of 45,000, 36,000, and 13,500-Da polypeptides and dimers of the 36,000- and 13,500-Da polypeptides or of 65,000- and 8,500-Da polypeptides. Studies on the lysis of T. b. brucei by the purified particle suggest that the lytic pathway may involve the uptake of the trypanocidal subspecies of HDL by endocytosis. PMID:2494183

  8. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    PubMed

    Mercer, Frances; Diala, Fitz Gerald I; Chen, Yi-Pei; Molgora, Brenda M; Ng, Shek Hang; Johnson, Patricia J

    2016-08-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  9. A microfluidic device for physical trapping and electrical lysis of bacterial cells

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Lu, Chang

    2008-05-01

    In this letter, we report a simple microfluidic device that integrates the capture of bacterial cells using a microscale bead array and the rapid electrical lysis for release of intracellular materials. We study the retention of Escherichia coli cells with different concentrations in this type of bead array and the optimal electrical parameters for the electroporative release of intracellular proteins. Our design provides a simple solution to the extraction of intracellular materials from a bacterial cell population based entirely on physical methods without applying chemical or biological reagents.

  10. Medical Management of Tumor Lysis Syndrome, Postprocedural Pain, and Venous Thromboembolism Following Interventional Radiology Procedures

    PubMed Central

    Faramarzalian, Ali; Armitage, Keith B.; Kapoor, Baljendra; Kalva, Sanjeeva P.

    2015-01-01

    The rapid expansion of minimally invasive image-guided procedures has led to their extensive use in the interdisciplinary management of patients with vascular, hepatobiliary, genitourinary, and oncologic diseases. Given the increased availability and breadth of these procedures, it is important for physicians to be aware of common complications and their management. In this article, the authors describe management of select common complications from interventional radiology procedures including tumor lysis syndrome, acute on chronic postprocedural pain, and venous thromboembolism. These complications are discussed in detail and their medical management is outlined according to generally accepted practice and evidence from the literature. PMID:26038627

  11. Successful lysis in a stroke following endovenous laser ablation and extensive miniphlebectomy of varicose veins.

    PubMed

    Spinedi, Luca; Staub, Daniel; Uthoff, Heiko

    2016-05-01

    Stroke is a very rare but potential fatal complication of endovenous thermal treatment in patients with a right-to-left shunt. To our best knowledge, there are only two reports in the literature of stroke after endovenous thermal ablation of varicose veins, one after endovenous laser ablation and one after radiofrequency ablation and phlebectomy, both treated conservatively. This report describes a successful lysis in a patient with an ischemic stroke associated with bilateral endovenous heat-induced thrombosis class I after endovenous laser ablation of both great saphenous vein and extensive miniphlebectomy in a patient with an unknown patent foramen ovale. PMID:26447137

  12. Lead ions but not other metallic ions increase resistance to hypotonic lysis in prenatal hemopoiesis red blood cells.

    PubMed

    Corchs, J; Gioia, I A; Serrani, R E; Taborda, D

    2001-12-01

    Metals known to have toxic effects on exposed individuals (Aluminum (Al), Cadmium (Cd), Zinc (Zn) and lead (Pb)) were selected. Umbilical cord erythrocytes from normal newborns were incubated in isotonic media alone or with addition of Pb (20 microM), Cd, Zn or Al (concentration range: 20-250 microM). Red cells were then placed in media of diminishing tonicity, to measure cellular lysis and volume; the regression curves of percent lysis as a function of osmolarity were determined for each data set and the break points calculated. Resistance to lysis increased significantly in Pb treated cells whereas cells treated with the other metals did not differ from controls, even at concentrations ten times higher than that of Pb. Lead produced a reduction in cellular volume corrected by addition of quinidine (an inhibitor of potassium channels activation) to the cell suspension; on the other hand, quinidine did not modify the effect of lead on lysis sensitivity. These results suggest that the effect of lead on cell resistance to lysis might be mediated by changes in membrane structure. The other metals examined did not affect the variables studied. PMID:11813545

  13. Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and Interacts with Peptidoglycan

    PubMed Central

    Terrasse, Rémi; Amoroso, Ana; Vernet, Thierry; Di Guilmi, Anne Marie

    2015-01-01

    Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway. PMID:25927608

  14. Cytotoxic T lymphocyte hybridomas that mediate specific tumor-cell lysis in vitro.

    PubMed Central

    Kaufmann, Y; Berke, G; Eshhar, Z

    1981-01-01

    Cytotoxic hybridomas were generated by polyethylene glycol-induced fusion of cytotoxic T lymphocytes (CTL) and BW5147 lymphoma cells. The CTL populations used for fusion were obtained from BALB/c (H-2d) mice primed with leukemia EL4 of C57BL/6 (H-2b) and restimulated either in vivo or in vitro. To circumvent possible CTL-mediated nonspecific lysis of BW5147 cells during fusion, the CTL were transiently inactivated by trypsin prior to fusion. Four cytolytically active hybridomas were obtained, cloned, and subcloned. Hybrid clones lysed all H-2b leukemic target cells tested but not lipopolysaccharide- or concavanalin A-stimulated C57BL/6 lymphoblasts or non-H2b target tumor cells. The mechanism of hybridoma-mediated killing of target cells in vitro appears to be similar to that of parental CTL, although some differences have been observed. The hybridomas appear to possess neither natural killing nor antibody-dependent cytolytic activity. Clones of hybrids propagated in culture for over 6 months without the addition of known external stimulus (i.e., independent of cell growth factor and antigen) exhibit specific lytic activity against H-2b tumor cells. Such autonomous hybridomas will provide a tool for studying the mechanism of CTL-mediated lysis and the nature of the CTL receptors. PMID:6972538

  15. High-k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields.

    PubMed

    Wassermann, Klemens J; Barth, Sven; Keplinger, Franz; Noehammer, Christa; Peham, Johannes R

    2016-08-24

    A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry. PMID:27466697

  16. Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and Interacts with Peptidoglycan.

    PubMed

    Terrasse, Rémi; Amoroso, Ana; Vernet, Thierry; Di Guilmi, Anne Marie

    2015-01-01

    Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway. PMID:25927608

  17. Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles.

    PubMed

    Jackman, Joshua A; Goh, Haw Zan; Zhdanov, Vladimir P; Knoll, Wolfgang; Cho, Nam-Joon

    2016-02-01

    Pore formation by membrane-active antimicrobial peptides is a classic strategy of pathogen inactivation through disruption of membrane biochemical gradients. It remains unknown why some membrane-active peptides also inhibit enveloped viruses, which do not depend on biochemical gradients. Here, we employ a label-free biosensing approach based on simultaneous quartz crystal microbalance-dissipation and ellipsometry measurements in order to investigate how a pore-forming, virucidal peptide destabilizes lipid vesicles in a surface-based experimental configuration. A key advantage of the approach is that it enables direct kinetic measurement of the surface-bound peptide-to-lipid (P:L) ratio. Comprehensive experiments involving different bulk peptide concentrations and biologically relevant membrane compositions support a unified model that membrane lysis occurs at or above a critical P:L ratio, which is at least several-fold greater than the value corresponding to the onset of pore formation. That is consistent with peptide-induced pores causing additional membrane strain that leads to lysis of highly curved membranes. Collectively, the work presents a new model that describes how peptide-induced pores may destabilize lipid membranes through a membrane strain-related lytic process, and this knowledge has important implications for the design and application of membrane-active peptides. PMID:26751083

  18. Pelvic lysis and polyethylene wear at 5-8 years in an uncemented total hip.

    PubMed

    Barrack, R L; Folgueras, A; Munn, B; Tvetden, D; Sharkey, P

    1997-02-01

    The clinical and radiographic results of 160 primary, uncemented porous coated total hip replacements performed at 3 teaching hospitals were reviewed. Followup was obtained in 132 of 148 (89%) nondeceased patients. The acetabular component is a full hemisphere, fabricated of cobalt chrome with a sintered bead coating and was implanted with screws in all cases. A 32 mm cobalt chrome femoral head was used in all cases. At 2 to 4 years the incidence of pelvic lysis was 0 and no acetabular revisions had been performed. At 5 to 8 years followup, 3 of 132 (2%) femoral stems had been revised, while on the acetabulum side discrete expansile pelvic lytic lesions occurred in 15 cases (11%) with 8 cases (5%) requiring revision. Abrasion of the screwhead against the backside of the polyethylene liner was seen in all retrieved cases and may have contributed to the development of the lytic lesions seen. Use of this uncemented press fit hemispheric acetabular components, using adjunctive screw fixation resulted in an unacceptably high rate of polyethylene wear and aggressive pelvic lysis. While the results on the femoral side were good, the results with this uncemented acetabular system did not represent an improvement over previous cemented or uncemented acetabular components. PMID:9020220

  19. Influenza peptide-induced self-lysis and down-regulation of cloned cytotoxic T cells.

    PubMed Central

    Pemberton, R M; Wraith, D C; Askonas, B A

    1990-01-01

    Virus-specific cytotoxic T-cell (Tc) clones can lyse target cells in vitro in the presence of their specific peptide epitopes. The lytic potency of murine influenza nucleoprotein (NP)-specific Tc clones was investigated after observing that target cell killing was reduced in the presence of high (greater than 0.2 microM) concentrations of specific NP peptide antigen. Following incubation of Tc for 16 hr in the presence of a range of peptide concentrations, two effects were observed; (i) a peptide dose-dependent mortality of Tc, which has been attributed to self-lysis by clonal Tc in the presence of specific peptide; (ii) and a reduced ability to specifically lyse NP-expressing target cells whilst retaining lectin-dependent lytic activity in the surviving Tc. This functional down-regulation was reversible after 24 hr incubation in the absence of peptide. Toxic effects were excluded, since inhibition of specific target lysis by Tc was mediated only be pretreatment with specifically recognized peptide. PMID:2373520

  20. Clot Lysis and Antimitotic Study of Ficus glomerata Roxb Fruit Extracts

    PubMed Central

    Shivasharanappa, Kirankumar; Londonkar, Ramesh

    2014-01-01

    The present study was carried out to investigate the thrombolytic and antimitotic potentiality of various extracts of fruits of Ficus glomerata, a traditional medicinal plant, using an in vitro assay method. Three crude extracts such as petroleum ether (FGPE), chloroform (FGCE), and methanol (FGME) were used for the study, with a standard (streptokinase) and negative control (sterile distilled water) to validate the method. The thrombolytic nature of the plant was found significant with methanol extract and chloroform and petroleum ether extracts have recorded mild activity, when compared with the negative control (sterile distilled water). The extracts have shown mild clot lysis, that is, 2.16%, 23.06%, 27.60%, and 47.74% of sterile distilled water, FGPE, FGCE, and FGME, respectively, while the standard (streptokinase) has shown 74.22% clot lysis. FGME inhibited the root growth in number as well as length effectively, followed by FGPE, while FGCE exhibited moderate antimitotic activity and it was supported by mitotic index. Therefore, the obtained results suggest that among all the extracts of plant the methanolic extract has shown highest thrombolytic and antimitotic activity. PMID:25006495

  1. [Study of a lysis medium stabilizing microfilaments and microtubules in vitro and in vivo].

    PubMed

    Foucault, G; Raymond, M N; Coffe, G; Pudles, J

    1984-01-01

    Determination of experimental conditions which allow the evaluation of the variations in the ratio of non polymerized and polymerized forms of actin and tubulin during the reorganization of the cytoskeletal cell system is of most valuable importance. In order to prepare cell homogenates which would reflect the in vivo situation, we tested in vitro a lysis medium which stabilized both microfilaments and microtubules, which were determined by DNase inhibition assays and colchicine binding assays respectively. This lysis medium containing 10 mM potassium phosphate, 1mM magnesium chloride, 5 mM EGTA, 1 M hexylene glycol, 1% Triton X-100, pH 6.4, used at 4 degrees C a) diffused rapidly into the cells; b) did not denature actin and tubulin; c) did not displace the equilibrium between non polymerized and polymerized forms of actin and tubulin, allowing biochemical assays on cell homogenates; d) blocked the evolution of the cytoskeletal system and permitted structural studies; e) and allowed the decoration of microfilaments by heavy meromyosin. PMID:6241485

  2. Diffuse melanosis after chemotherapy-induced tumor lysis syndrome in a patient with metastatic melanoma.

    PubMed

    Busam, Klaus J; Wolchok, Jedd; Jungbluth, Achim A; Chapman, Paul

    2004-03-01

    Diffuse melanosis is a rare event associated with advanced metastatic malignant melanoma. A 35-year-old woman with stage IV melanoma is presented, who developed slate bluish-gray to brown discoloration of her skin after chemotherapy-induced tumor lysis syndrome. A number of studies were performed to re-evaluate possible mechanisms of melanosis. Skin tissue was examined on routine hematoxylin-and-eosin-stained sections, Fontana stains, immunohistochemical studies with antibodies for Melan-A, gp100, tyrosinase, FXIIIa, and CD68, and by electron microscopy. The main cell types found to contain melanin pigment were histiocytes and dendritic cells. In the dermis, they were distributed mainly around venules. In the subcutaneous fat, they were scattered throughout the fat lobule. Melanin pigment was not only seen within cells but also extracellularly. No melanoma cells were seen in the skin. No increase in melanin pigment or number of melanocytes was seen in the epidermis. A bone marrow biopsy contained melanophages but no melanoma cells. Ultrastructural examination of the patient's serum revealed the presence of melanosomes. Sequence analysis of the tumor's cDNA failed to identify any mutations in the tyrosinase gene, and no tyrosinase protein was detected in non-melanocytic cells, indicating that it was unlikely that a mutation had resulted in a secretory form of the protein. These findings document that diffuse melanosis may result from tumor lysis, with release of melanosomes into the bloodstream. PMID:14984582

  3. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    PubMed

    Bednarz, Michael; Halliday, Jennifer A; Herman, Christophe; Golding, Ido

    2014-01-01

    The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching. PMID:24963924

  4. Mechanism of adenovirus-mediated endosome lysis: role of the intact adenovirus capsid structure.

    PubMed

    Seth, P

    1994-12-15

    Adenoviruses have been previously shown to enhance the delivery of many ligands including proteins and plasmid DNAs to the cells. The key biochemical step during this process is the ability of adenovirus to disrupt (lyse) the endosome membrane releasing the co-internalized virus and the other ligands into the cytosol (Seth et al, 1986, In: Adenovirus attachment and entry into cells, pp 191-195, American Society for Microbiology, Washington, D.C.). To understand the role of the adenovirus proteins involved in the endosome lysis, it is further shown here that empty capsids of adenovirus also possess this membrane vesicle lytic activity; though the activity is about 5-times lower than the adenovirus. Incubation of adenovirus with low concentration of ionic detergent or brief exposure to 45 degrees C destroyed this lytic activity without affecting the adenovirus binding to cell surface receptor, suggesting the lytic activity of adenovirus to be of enzymatic nature. However, exposing adenovirus to conditions that can disrupt adenovirus capsid structure such as heating at 65 degrees C, treating with 0.5% SDS, treating with different proteases, dialyzing against no glycerol buffer, treating with 6 M urea or with 10% pyridine, and sonication destroyed the adenovirus-associated lytic activity. Results suggest the requirement of an intact capsid structure for adenovirus-mediated lysis of the endosome. PMID:7802664

  5. Comparison of point-of-care-compatible lysis methods for bacteria and viruses.

    PubMed

    Heiniger, Erin K; Buser, Joshua R; Mireles, Lillian; Zhang, Xiaohong; Ladd, Paula D; Lutz, Barry R; Yager, Paul

    2016-09-01

    Nucleic acid sample preparation has been an especially challenging barrier to point-of-care nucleic acid amplification tests in low-resource settings. Here we provide a head-to-head comparison of methods for lysis of, and nucleic acid release from, several pathogenic bacteria and viruses-methods that are adaptable to point-of-care usage in low-resource settings. Digestion with achromopeptidase, a mixture of proteases and peptidoglycan-specific hydrolases, followed by thermal deactivation in a boiling water bath, effectively released amplifiable nucleic acid from Staphylococcus aureus, Bordetella pertussis, respiratory syncytial virus, and influenza virus. Achromopeptidase was functional after dehydration and reconstitution, even after eleven months of dry storage without refrigeration. Mechanical lysis methods proved to be effective against a hard-to-lyse Mycobacterium species, and a miniature bead-mill, the AudioLyse, is shown to be capable of releasing amplifiable DNA and RNA from this species. We conclude that point-of-care-compatible sample preparation methods for nucleic acid tests need not introduce amplification inhibitors, and can provide amplification-ready lysates from a wide range of bacterial and viral pathogens. PMID:27424294

  6. Examination of laser-induced cell lysis by time resolved imaging

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.; Guerra, Arnold, III; Vogel, Alfred; Venugopalan, Vasan

    2004-07-01

    Highly focused laser microbeams are being used with increasing regularity for targeted cell lysis, cellular microsurgery and molecular delivery via transient cell membrane permeabilization. To examine the mechanisms of laser induced cell lysis, we performed time-resolved imaging of confluent PtK2 cell cultures following the delivery of a single 6 ns, 532 nm Nd:YAG laser pulse. The laser pulse energies employed correspond to 1x and 3x threshold for plasma formation. The resulting plasma formation, pressure wave propagation and cavitation bubble dynamics were imaged over a temporal range spanning 5 orders of magnitude (0.5 ns - 50 microsec.). Time-resolved imaging enabled determination of process characteristics including pressure wave speed and amplitude and cavitation bubble energies. The time-resolved images also revealed the onset of cellular damage to occur on nano-second time scales and complete within 1 microsecond. Moreover, the size of the damage zone was larger than the plasma but smaller than the maximum cavitation bubble size. This indicated that mechanisms apart from plasma vaporization namely pressure wave propagation and cavitation bubble expansion are contributors to cellular damage. Dye exclusion assays showed that the majority of cells experiencing considerable deformation due to fluid flow generated by the cavitation bubble expansion remain viable over 24 hours.

  7. Revisiting Bistability in the Lysis/Lysogeny Circuit of Bacteriophage Lambda

    PubMed Central

    Bednarz, Michael; Halliday, Jennifer A.; Herman, Christophe; Golding, Ido

    2014-01-01

    The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as “bistable.” However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching. PMID:24963924

  8. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.

    PubMed

    Chen, Lin; Li, Runzhi; Ren, Xiaoli; Liu, Tianzhong

    2016-08-01

    High moisture content in wet algal biomass hinders effective performance of current lipid extraction methods. An improved aqueous extraction method combing thermal and enzymatic lysis was proposed and performed in algal slurry of Nannochloropsis oceanica (96.0% moisture) in this study. In general, cell-wall of N. oceanica was disrupted via thermal lysis and enzymatic lysis and lipid extraction was performed using aqueous surfactant solution. At the optimal conditions, high extraction efficiencies for both lipid (88.3%) and protein (62.4%) were obtained, which were significantly higher than those of traditional hexane extraction and other methods for wet algal biomass. Furthermore, an excessive extraction of polar lipid was found for wet biomass compared with dry biomass. The advantage of this method is to efficiently extract lipids from high moisture content algal biomass and avoid using organic solvent, indicating immense potential for commercial microalgae-based biofuel production. PMID:27132220

  9. Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes.

    PubMed

    Nguyen, Huong Minh; Kang, Changwon

    2014-02-01

    Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have

  10. A disposable bacterial lysis cartridge (BLC) suitable for an in situ water-borne pathogen detection system.

    PubMed

    Lee, Eun-Hee; Lim, Hyun Jeong; Son, Ahjeong; Chua, Beelee

    2015-11-21

    We constructed a disposable bacterial lysis cartridge (BLC) suitable for an in situ pathogen detection system. It had an in-built micro corona discharge based ozone generator that provided ozone for cell lysis. Using a custom sample handling platform, its performance was evaluated with a Gram-positive bacterium of Bacillus subtilis. It was capable of achieving a similar degree of lysis as a commercial ultrasonic dismembrator with a P-1 microprobe in 10 min at an air pump flow rate of 29.4 ml min(-1) and an ozone generator operating voltage of 1600 V. The lysing duration could be significantly reduced to 5 min by increasing the air pump flow rate and the ozone generator operating voltage as well as by the addition of sodium dodecyl sulfate (SDS). PMID:26460197

  11. All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation

    PubMed Central

    2015-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232

  12. Lysis Delay and Burst Shrinkage of Coliphage T7 by Deletion of Terminator Tφ Reversed by Deletion of Early Genes

    PubMed Central

    Nguyen, Huong Minh

    2014-01-01

    ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287

  13. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example.

    PubMed

    Yuan, Mei; Yang, Xiaolan; Li, Yuwei; Liu, Hongbo; Pu, Jun; Zhan, Chang-Guo; Liao, Fei

    2016-06-01

    Facile alkaline lysis of Escherichia coli cells in high-throughput (HTP) mode for screening enzyme mutants was tested with Pseudomonas aeruginosa arylsulfatase (PAAS). The alkaline lysis buffer was 1.0 M Tris-HCl at pH 9.0 plus 0.1 % Tween-20 and 2.0 mM 4-aminobenzamidine, mixed with cell suspension at 8:1 to 12:1 ratio for continuous agitation of mixtures in 96-well plates under room temperature; enzymatic activity in lysates was measured with 96-well microplate. PAAS activity tolerated final 0.1 % Tween-20. Individual clones were amplified for 12 h in 0.50 mL TB medium with 48-well plates to enhance the repeatability of induced expression. During continuous agitation of the mixture of cells and the lysis buffer, PAAS activities in lysates were steady from 3 to 9 h and comparable to sonication treatment but better than freezing-thawing. Coefficients of variation of activities of PAAS/mutants in lysates after treatment for 7 h reached ∼22 %. The mutant M72Q had specific activity 2-fold of G138S. By HTP lysis of cells, M72Q was recognized as a positive mutant over G138S with the area under the curve of 0.873. Therefore, for enzymes tolerating concentrated alkaline buffers, the proposed alkaline lysis approach may be generally applicable for HTP lysis of host cells during directed evolution. PMID:26899233

  14. Acute Tumor Lysis Syndrome Caused by Transcatheter Oily Chemoembolization in a Patient with a Large Hepatocellular Carcinoma

    SciTech Connect

    Sakamoto, Noriaki Monzawa, Shuichi; Nagano, Hidenobu; Nishizaki, Hogara; Arai, Yasuaki; Sugimura, Kazuro

    2007-06-15

    Acute tumor lysis syndrome results from a sudden and rapid release of products of cellular breakdown after anticancer therapy. Severe alterations of metabolic profile might occur and result in acute renal failure. We present a patient with a large hepatocellular carcinoma who received transcatheter oily chemoembolization and died subsequently of this syndrome. To our knowledge, there has been only one report of this syndrome induced by chemoembolization for hepatocellular carcinoma. This case illustrates the need to anticipate the development of acute tumor lysis syndrome when chemoembolization is planned for a large hepatocellular carcinoma.

  15. Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in Lake Bourget (France).

    PubMed

    Thomas, Rozenn; Berdjeb, Lyria; Sime-Ngando, Télesphore; Jacquet, Stéphan

    2011-03-01

    We have investigated the ecology of viruses in Lake Bourget (France) from January to August 2008. Data were analysed for viral and bacterial abundance and production, viral decay, frequency of lysogenic cells, the contribution of bacteriophages to prokaryotic mortality and their potential influence on nutrient dynamics. Analyses and experiments were conducted on samples from the epilimnion (2 m) and the hypolimnion (50 m), taken at the reference site of the lake. The abundance of virus-like particles (VLP) varied from 3.4 × 10⁷to 8.2 × 10⁷ VLP ml⁻¹; with the highest numbers and virus-to-bacterium ratio (VBR = 69) recorded in winter. Viral production varied from 3.2 × 10⁴ VLP ml⁻¹  h⁻¹ (July) to 2 × 10⁶ VLP ml⁻¹ h⁻¹ (February and April), and production was lower in the hypolimnion. Viral decay rate reached 0.12-0.15 day⁻¹, and this parameter varied greatly with sampling date and methodology (i.e. KCN versus filtration). Using transmission electron microscopy (TEM) analysis, viral lysis was responsible for 0% (January) to 71% (February) of bacterial mortality, while viral lysis varied between 0% (April) and 53% (January) per day when using a modified dilution approach. Calculated from viral production and burst size, the virus-induced bacterial mortality varied between 0% (January) and 68% (August). A weak relationship was found between the two first methods (TEM versus dilution approach). Interestingly, flow cytometry analysis performed on the dilution experiment samples revealed that the viral impact was mostly on high DNA content bacterial cells whereas grazing, varying between 8.3% (June) and 75.4% (April), was reflected in both HDNA and LDNA cells equally. The lysogenic fraction varied between 0% (spring/summer) and 62% (winter) of total bacterial abundance, and increased slightly with increasing amounts of mitomycin C added. High percentages of lysogenic cells were recorded when bacterial abundance and activity were the lowest

  16. Making the Right Choice: Optimizing rt-PA and eptifibatide lysis, an in vitro study

    PubMed Central

    Shaw, George J.; Meunier, Jason M.; Lindsell, Christopher J.; Pancioli, Arthur M.; Holland, Christy K.

    2010-01-01

    Introduction Recombinant tissue plasminogen activator (rt-PA) is the only FDA approved lytic therapy for acute ischemic stroke. However, there can be complications such as intra-cerebral hemorrhage. This has led to interest in adjuncts such as GP IIb-IIIa inhibitors. However, there is little data on combined therapies. Here, we measure clot lysis for rt-PA and eptifibatide in an in vitro human clot model, and determine the drug concentrations maximizing lysis. A pharmacokinetic model is used to compare drug concentrations expected in clinical trials with those used here. The hypothesis is that there is a range of rt-PA and eptifibatide concentrations that maximize in vitro clot lysis. Materials and Methods Whole blood clots were made from blood obtained from 28 volunteers, after appropriate institutional approval. Sample clots were exposed to rt-PA and eptifibatide in human fresh-frozen plasma; rt-PA concentrations were 0, 0.5, 1, and 3.15 μg/ml, and eptifibatide concentrations were 0, 0.63, 1.05, 1.26 and 2.31 μg/ml. All exposures were for 30 minutes at 37 C. Clot width was measured using a microscopic imaging technique and mean fractional clot loss (FCL) at 30 minutes was used to determine lytic efficacy. On average, 28 clots (range: 6-148) from 6 subjects (3-24) were used in each group. Results and Conclusions FCL for control clots was 14% (95% Confidence Interval: 13-15%). FCL was 58% (55-61%) for clots exposed to both drugs at all concentrations, except those at an rt-PA concentration of 3.15 μg/ml, and eptifibatide concentrations of 1.26 μg/ml (Epf) or 2.31 μg/ml. Here, FCL was 43% (36-51) and 35% (32-38) respectively. FCL is maximized at moderate rt-PA and eptifibatide concentration; these values may approximate the average concentrations used in some rt-PA and eptifibatide treatments. PMID:20813398

  17. Learning from the Jersey Turnpike:Cell Lysis, Labeling and Washing with Microfluidic Metamaterials

    NASA Astrophysics Data System (ADS)

    Loutherback, Kevin; Morton, Keith; Inglis, David; Tsui, Opheli; Sturm, James; Chou, Stephen; Austin, Robert

    2008-03-01

    Directing objects across functional streamlines at low Reynolds number is difficult but important since this motion can be used to label, lyse, and analyze complex biological objects on-chip without cross-contamination. Here we use an asymmeteric post array to move cells across coflowing reagents and show on-chip, immunofluorescent labeling of platelets with washing and E.Coli cell lysis with simultaneous separation of bacterial chromosome from the cell contents. Furthermore, we develop the concept of a microfluidic metamaterial by using the basic asymmetric post array as a building block for complex particle handling modes. These modular array elements could be of great use for developing robust techniques for on-chip, continuous flow manipulation and analysis of cells, large bio-particles, and functional beads.

  18. Learning from the Jersey Turnpike: Cell Lysis, Labeling and Washing with Microfluidic Metamaterials

    NASA Astrophysics Data System (ADS)

    Austin, Robert

    2008-03-01

    Directing objects across functional streamlines at low Reynolds number is difficult but important since this motion can be used to label, lyse, and analyze complex biological objects on-chip without cross-contamination. Here we use an asymmeteric post array to move cells across coflowing reagents and show on-chip, immunofluorescent labeling of platelets with washing and E.Coli cell lysis with simultaneous separation of bacterial chromosome from the cell contents. Furthermore, we develop the concept of a microfluidic metamaterial by using the basic asymmetric post array as a building block for complex particle handling modes. These modular array elements could be of great use for developing robust techniques for on-chip, continuous flow manipulation and analysis of cells, large bio-particles, and functional beads.

  19. [Acute-onset eosinophilic leukemia associated with tumor lysis syndrome after imatinib and steroid pulse therapy].

    PubMed

    Nemoto, Tomoe; Saito, Yuriko; Tokuhira, Michihide; Tomikawa, Atsushi; Sagawa, Morihiko; Haba, Yuichiro; Hanzawa, Kyoko; Sekiguchi, Yasunobu; Watanabe, Reiko; Tamaru, Jun-ichi; Itoyama, Shinji; Mori, Shigehisa; Kizaki, Masahiro

    2010-05-01

    An 83-year-old woman had been suffering from palpitations and fatigue for a month. An annual screening test revealed an increased WBC count so she was referred to our hospital. CBC showed extremely elevated WBC count (186,300/microl), in which the population of blastic eosinophils was over 90%. The eosinophils expressed CD7/13/33/34/DR, and the karyotype demonstrated 47,XX,+8. The fusion gene of FIP1-LP/PDGFRalpha in peripheral blood was negative. As plural effusion due to the underlying disease progressively worsened, she was given prednisolone and hydroxyurea, but the effect was limited. Steroid pulse therapy and imatinib (100 mg/day) were administrated. As a result, a prompt response was observed. The WBC count rapidly decreased, but tumor lysis syndrome led to acute renal failure and disseminated intravasucular coagulation appeared. Supportive therapies such as artificial dialysis and transfusions were conducted, but unfortunately she died because of alveolar hemorrhage. PMID:20534953

  20. Tumor lysis syndrome in metastatic breast cancer after a single dose of paclitaxel.

    PubMed

    Vaidya, Gaurang Nandkishor; Acevedo, Russell

    2015-02-01

    Tumor lysis syndrome (TLS) is an oncologic emergency characterized by spillage of intracellular material into the blood caused by disruption of massive load of tumor cells. It is more commonly reported in hematological cancers and can have fatal consequences due to renal and multi-organ failure and arrhythmias due to electrolyte imbalance. We describe a case with metastatic breast cancer who presented with TLS after a single dose of paclitaxel, second such case in literature. The development of a risk stratification score to assess the need for hospitalization or close observation of these patients and the documentation of appropriate preventive strategies could help prevent such fatal occurrences. TLS should be included in the differential when cancer patients on treatment present with acute decompensation. PMID:25178848

  1. Detection and quantitation by lysis-filtration of bacteremia after different oral surgical procedures.

    PubMed Central

    Heimdahl, A; Hall, G; Hedberg, M; Sandberg, H; Söder, P O; Tunér, K; Nord, C E

    1990-01-01

    Patients with bacteremia after dental extraction, third-molar surgery, dental scaling, endodontic treatment, and bilateral tonsillectomy were studied by means of lysis-filtration of blood samples with subsequent aerobic and anaerobic incubation. Samples were obtained before, during, and 10 min after treatment. Bacteremia was observed in 100% of patients after dental extraction, 55% of patients after third-molar surgery, 70% of patients after dental scaling, 20% of patients after endodontic treatment, and 55% of patients after bilateral tonsillectomy. Anaerobic microorganisms were isolated more frequently than aerobic microorganisms were, and viridans group streptococci were the most commonly isolated bacteria. Ten minutes after treatment, the frequency as well as the magnitude of bacteremia showed pronounced reduction. PMID:2229342

  2. Spontaneous tumour lysis syndrome associated with contrast dye iohexol use in mantle cell lymphoma

    PubMed Central

    Yun, Seongseok; Vincelette, Nicole D; Phan, Tuan; Anwer, Faiz

    2014-01-01

    We describe a case of a 73-year-old man who presented with right-sided abdominal pain associated with palpable mass. Initial laboratory examination was normal except lactate dehydrogenase level. Subsequent CT image showed situs inversus and splenic mass with multiple lymph nodes enlargement. Biopsy taken from the splenic mass demonstrated mantle cell lymphoma. Staging CT examination was performed with intravenous contrast, and patient developed altered mental status, respiratory failure and acute kidney injury requiring intensive care unit care. Laboratory examination revealed hyperuricaemia, hyperphosphataemia, hyperkalaemia and hypocalcaemia, which are consistent with spontaneous tumour lysis syndrome. The patient was successfully treated with rasburicase and haemodialysis, and completed the first course of chemotherapy without further complications. PMID:25028407

  3. A case of metastatic testicular cancer complicated by tumour lysis syndrome and choriocarcinoma syndrome.

    PubMed

    Kawai, Koji; Takaoka, Ei-Ichiro; Naoi, Makito; Mori, Kensaku; Minami, Manabu; Shimazui, Toru; Akaza, Hideyuki

    2006-10-01

    A 26-year-old man was referred to our hospital for treatment of metastatic testicular cancer. The pathological diagnosis was choriocarcinoma with seminoma. Sequential computerized tomography examinations revealed rapidly progressing bulky liver metastases and a lung metastasis. Chemotherapy with bleomycin, etoposide and cisplatin (BEP) was started on the day of admission. Subsequently, the patient suffered from tumour lysis syndrome (TLS) and massive haemorrhage at metastatic sites. The latter complication is also called choriocarcinoma syndrome. To our knowledge, this is the first case report of testicular cancer complicated with both critical conditions. Intensive care and radiological intervention barely prevented a fatal outcome. The urological oncologist should be aware of the potential complications TLS and choriocarcinoma syndrome in cases of rapidly progressive and high-volume choriocarcinoma. PMID:16935862

  4. [Tumor lysis syndrome after FOLFIRI+cetuximab for ascending colon cancer].

    PubMed

    Matsuyama, Satoru; Kuramoto, Takako; Tanaka, Ryosuke; Hashiguchi, Kazutoshi

    2015-04-01

    We report a case of an 83-year-old woman who developed tumor lysis syndrome (TLS) 5 days after FOLFIRI+cetuximab (Cmab) therapy. A huge ascending colon cancer measuring 10 cm in diameter and with peritoneal dissemination was diagnosed. Following successful therapy with FOLFIRI alone, FOLFIRI+Cmab was administered. On day 5, TLS was diagnosed with hyperuricemia, hyperkalemia, hyperphosphatemia, and an increase in serum creatinine. Intravenous furosemide, volume loading, and glucose-insulin therapy resulted in improvement of laboratory data in 2 days. However, she died on the 34th day due to multiple organ failure caused by aspiration pneumonia following small intestine functional ileus. Although TLS is a rare complication in colon cancer, its onset must be taken into consideration. Also, risk assessment and preventive therapy for TLS should be performed before cancer treatment. PMID:25843460

  5. Development of matrix lysis for concentration of gram positive bacteria from food and blood.

    PubMed

    Rossmanith, Peter; Süss, Beate; Wagner, Martin; Hein, Ingeborg

    2007-06-01

    The development of a fast, reliable and inexpensive protocol for the concentration of bacteria from food by the removal of fat, carbohydrates and proteins that is compatible with downstream alternative DNA-based quantification methods is described. The protocol was used for dairy products, cooked and smoked fish and meat, carbohydrate-rich cooked products, ready-to-eat sauces, egg and blood. Lysis resulted in pellets of reasonable size for further processing. Starch, plant materials, fungi, tissues such as sinew, and chalaza could not be dissolved. Using L. monocytogenes, S. aureus and B. cereus as model organisms, microscopic analysis of the remaining bacterial pellets revealed that the recovered bacteria remained physically intact, albeit that the viability of the cells was compromised. Using real-time PCR, 7.3 CFU of L. monocytogenes were detected in artificially contaminated ultra-high temperature treated (UHT) milk and raw milk. PMID:17462766

  6. Cutaneous metastatic adenocarcinoma complicated by spontaneous tumor lysis syndrome: A case report

    PubMed Central

    WANG, YU; YUAN, CAIJUN; LIU, XIAOMEI

    2014-01-01

    The present study reports the case of a 71-year-old female with metastatic adenocarcinoma of the skin who developed tumor lysis syndrome (TLS) upon admittance to the First Affiliated Hospital of Liaoning Medical University (Jinzhou, China). The patient presented to the hospital due to multiple subcutaneous nodules, lethargy and weakness, but succumbed without any cancer therapy. Metastases to the skin from solid carcinomas are uncommon, and several studies have reported patients with minimal primary symptoms despite extensive metastatic skin disease. However, few cases were accompanied with spontaneous TLS at the time of presentation. TLS may be a severe complication during the therapy for hematological and oncological diseases. Although spontaneous TLS in internal tumors has been reported, it is extremely rare. The present study highlights the fact that multiple subcutaneous metastases may occur with the symptoms of spontaneous TLS, and may be key for the early recognition of this syndrome. PMID:25013514

  7. A comparison of different pre-lysis methods and extraction kits for recovery of Streptococcus agalacticae (Lancefield group B Streptococcus) DNA from whole blood.

    PubMed

    Burke, Rachael M; McKenna, James P; Cox, Ciara; Coyle, Peter V; Shields, Michael D; Fairley, Derek J

    2016-10-01

    Sub-optimal recovery of bacterial DNA from whole blood samples can limit the sensitivity of molecular assays to detect pathogenic bacteria. We compared 3 different pre-lysis protocols (none, mechanical pre-lysis and achromopeptidase pre-lysis) and 5 commercially available DNA extraction platforms for direct detection of Group B Streptococcus (GBS) in spiked whole blood samples, without enrichment culture. DNA was extracted using the QIAamp Blood Mini kit (Qiagen), UCP Pathogen Mini kit (Qiagen), QuickGene DNA Whole Blood kit S (Fuji), Speed Xtract Nucleic Acid Kit 200 (Qiagen) and MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche Diagnostics Corp). Mechanical pre-lysis increased yields of bacterial genomic DNA by 51.3 fold (95% confidence interval; 31.6-85.1, p<0.001) and pre-lysis with achromopeptidase by 6.1 fold (95% CI; 4.2-8.9, p<0.001), compared with no pre-lysis. Differences in yield due to pre-lysis were 2-3 fold larger than differences in yield between extraction methods. Including a pre-lysis step can improve the limits of detection of GBS using PCR or other molecular methods without need for culture. PMID:27546716

  8. PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER.

    PubMed

    Shrestha, Sony; Park, Jiyeong; Ahn, Seung-Joon; Kim, Yonggyun

    2015-08-01

    Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 . PMID:25845372

  9. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    PubMed

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-12

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future. PMID:26987542

  10. Lysozyme-mediated aggregation and lysis of the periodontal microorganism Capnocytophaga gingivalis 2010.

    PubMed

    Iacono, V J; Zove, S M; Grossbard, B L; Pollock, J J; Fine, D H; Greene, L S

    1985-02-01

    The ability of lysozyme to aggregate and lyse the gram-negative capnophilic periodontal microorganism Capnocytophaga gingivalis 2010 was monitored optically at 540 nm. Both hen egg white and chromatographically purified human lysozymes had significant but similar aggregation potentials for both logarithmic- and stationary-phase bacteria. In general, an increase in enzyme concentration resulted in a graded increase in both the initial and maximum changes in turbidity which occurred during the reaction period. The greatest change in turbidity occurred within the initial minutes of interaction of lysozyme and the cells, and the extent of aggregation paralleled a rapid depletion of lysozyme by the suspensions during the first minute of its incubation with the bacteria. Interestingly, the muramidase inhibitors N-acetyl-D-glucosamine and histamine did not block aggregation, whereas maleylation of lysozyme completely inhibited its aggregating ability. Demaleylation, however, restored aggregation activity comparable to the native enzyme, indicating that maleylated lysozyme retained its integrity and that aggregation was primarily dependent on charge. The addition of up to physiological concentrations of NaHCO3 and NaCl to cell aggregates resulted in varying degrees of deaggregation and lysis. Surprisingly, ultrastructural analysis of lysozyme-treated cells revealed morphological changes with or without the addition of salt. Damage appeared to occur at the blunted polar end of the cells where there was a large spherical outpouching bordered by a damaged cell envelope. Damaged cells uniformly contained dense granular cytoplasmic debris. In effect, the cationic enzyme lysed C. gingivalis 2010, which was not apparent in the spectrophotometric assay. The paradoxical finding that during bacterial aggregation there was lysis may be of significance to the further elucidation of lysozyme's antibacterial role in the gingival sulcus. PMID:3967924

  11. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.

    PubMed

    Nnane, Daniel Ekane

    2011-11-15

    Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. PMID:21962927

  12. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    PubMed

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. PMID:24355286

  13. Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins

    PubMed Central

    Leibly, David J.; Nguyen, Trang Nhu; Kao, Louis T.; Hewitt, Stephen N.; Barrett, Lynn K.; Van Voorhis, Wesley C.

    2012-01-01

    Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher. PMID:23285060

  14. Deletion of a Cation Transporter Promotes Lysis in Streptococcus pneumoniae ▿ †

    PubMed Central

    Neef, Jolanda; Andisi, Vahid Farshchi; Kim, Kwang S.; Kuipers, Oscar P.; Bijlsma, Jetta J. E.

    2011-01-01

    Streptococcus pneumoniae is a significant human pathogen which causes respiratory and serious invasive diseases. Mg2+ is essential for life, and its concentration varies throughout the human body. Magnesium uptake plays an important role in the virulence of many bacterial pathogens. To study the Mg2+ uptake of S. pneumoniae strain D39, a mutant was generated in SPD1383, a P-type ATPase with homology to the Salmonella Mg2+ transporter MgtA, which has also been shown to be a Ca2+ exporter in strain TIGR4. Under low-Ca2+ conditions, mutation led to a growth defect in complex medium and the gene was nearly essential for growth under low-Mg2+ conditions. Addition of Mg2+ restored the normal growth of the mutant in all cases, but the addition of other divalent cations had no effect. Addition of Ca2+, Mn2+, and Zn2+ in the presence of high Mg2+ concentrations inhibited restoration of growth. The mutant was unable to proliferate in blood, which was also alleviated by the addition of Mg2+. The protein was located in the membrane and produced in various S. pneumoniae strains and pathogenic streptococcal species. Surprisingly, mutation of the gene led to an elevated toxicity for endothelial cells. This was caused by an increased amount of pneumolysin in the medium, mediated by elevated lysis of the mutant. Thus, in this study, we uncovered a role for SPD1383 in Mg2+ uptake and hypothesize that the protein is a Mg2+/Ca2+ antiporter. Furthermore, a disturbance in Mg2+ homeostasis seems to promote lysis of S. pneumoniae. PMID:21422174

  15. Use of pressure cycling technology for cell lysis and recovery of bacterial and fungal communities from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current molecular methodologies, specifically DNA-based approaches, provide access to previously hidden soil biodiversity and are routinely employed in environmental studies of microbial ecology. Selection of cell lysis methodology is critical to community analyses due to the inability of any singul...

  16. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells.

    PubMed

    Noman, Muhammad Zaeem; Buart, Stéphanie; Romero, Pedro; Ketari, Sami; Janji, Bassam; Mari, Bernard; Mami-Chouaib, Fathia; Chouaib, Salem

    2012-09-15

    Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve. PMID:22962263

  17. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death.

    PubMed

    Heurlier, Karin; Dénervaud, Valérie; Haenni, Marisa; Guy, Lionel; Krishnapillai, Viji; Haas, Dieter

    2005-07-01

    In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37 degrees C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to > or = 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh(-) phenotype, and five of these mutants, which were functionally complemented by lasR(+), had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants. PMID:15995202

  18. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells.

    PubMed

    Nakamatsu, Y; Tanaka, T

    2004-04-01

    Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom

  19. On-Chip Single-Cell Lysis for Extracting Intracellular Material

    NASA Astrophysics Data System (ADS)

    Ikeda, Norifumi; Tanaka, Nobuaki; Yanagida, Yasuko; Hatsuzawa, Takeshi

    2007-09-01

    A newly designed microfluidic chip with a pinched-channel structure and two pairs of electrodes has been developed to enable easier single-cell capture and lysis. The function of the chip was evaluated by introducing zucchini protoplast cells into the channel. In the first experiment, we attempted to break a cell using the through force of a triangular pinched structure via electroosmotic flow generated by outer electrodes. The pinched structure appeared to break the cell without applying the electric field to the cell directly; however, in this case, the breakable size of the cell was limited by the width of the pinched structure. The next attempt was to break cells regardless of their sizes using a pair of inner electrodes located under the pinched structure. The inner electrodes generated a gradient electric field around the captured cell by applying an alternative voltage to the electrodes. Captured cells with a diameter from 40 to 85 μm could be broken using the inner electrodes with a trapezoidal pinched structure, and the cells were successfully broken at 10 Vpp or less at a frequency of 1 MHz.

  20. Significance of extensional stresses to red blood cell lysis in a shearing flow.

    PubMed

    Down, Linden A; Papavassiliou, Dimitrios V; O'Rear, Edgar A

    2011-06-01

    Traditionally, an empirical power-law model relating hemolysis to shear stress and exposure time has been used to estimate hemolysis related to flow--however, this basis alone has been insufficient in attempts to predict hemolysis through computational fluid dynamics. Because of this deficiency, we sought to re-examine flow features related to hemolysis in a shearing flow by computationally modeling a set of classic experiments performed in a capillary tube. Simulating 21 different flows of varying entrance contraction ratio, flowrate and viscosity, we identified hemolysis threshold streamlines and analyzed the stresses present. Constant damage thresholds for radial and axial extensional stresses of approximately 3000 Pa for exposure times on the order of microseconds were observed, while no such threshold was found for the maximum shear stress or gradient of the shear stress. The extensional flow seen at the entrance of the capillary appears to be most consistently related to hemolysis. An account of how extensional stresses can lead to lysis of a red cell undergoing tank-tread motion in a shearing flow is provided. This work shows that extensional components of the stress tensor are integral in causing hemolysis for some flows, and should be considered when attempting to predict hemolysis computationally. PMID:21298343

  1. Improved lysis of single bacterial cells by a modified alkaline-thermal shock procedure.

    PubMed

    He, Jian; Du, Shiyu; Tan, Xiaohua; Arefin, Ayesha; Han, Cliff S

    2016-01-01

    Single-cell genomics (SCG) is a recently developed tool to study the genomes of unculturable bacterial species. SCG relies on multiple-strand displacement amplification (MDA), PCR, and next-generation sequencing (NGS); however, obtaining sufficient amounts of high-quality DNA from samples is a major challenge when performing this technique. Here we present an improved bacterial cell lysing procedure that combines incubation in an alkaline buffer with a thermal shock (freezing/heating) treatment to yield highly intact genomic DNA with high efficiency. This procedure is more efficient in lysing Bacillus subtilis and Synechocystis cells compared with two other frequently used lysis methods. Furthermore, 16S ribosomal RNA gene and overall genome recovery were found to be improved by this method using single cells from a Utah desert soil community or Escherichia coli single cells, respectively. The efficiency of genome recovery for E. coli single cells using our procedure is comparable with that of the REPLI-g Single Cell (sc) Kit, but our method is much more economical. By providing high-quality genome templates suitable for downstream applications, our procedure will be a promising improvement for SCG research. PMID:26956090

  2. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis.

    PubMed

    Gade, Aniket; Adams, Joshua; Britt, David W; Shen, Fen-Ann; McLean, Joan E; Jacobson, Astrid; Kim, Young-Cheol; Anderson, Anne J

    2016-04-01

    Cost-effective "green" methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag(+) ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag(+) ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity. PMID:26805711

  3. Physical Isolation of Endospores from Environmental Samples by Targeted Lysis of Vegetative Cells.

    PubMed

    Wunderlin, Tina; Junier, Thomas; Paul, Christophe; Jeanneret, Nicole; Junier, Pilar

    2016-01-01

    Endospore formation is a survival strategy found among some bacteria from the phylum Firmicutes. During endospore formation, these bacteria enter a morpho-physiological resting state that enhances survival under adverse environmental conditions. Even though endospore-forming Firmicutes are one of the most frequently enriched and isolated bacterial groups in culturing studies, they are often absent from diversity studies based on molecular methods. The resistance of the spore core is considered one of the factors limiting the recovery of DNA from endospores. We developed a method that takes advantage of the higher resistance of endospores to separate them from other cells in a complex microbial community using physical, enzymatic and chemical lysis methods. The endospore-only preparation thus obtained can be used for re-culturing or to perform downstream analysis such as tailored DNA extraction optimized for endospores and subsequent DNA sequencing. This method, applied to sediment samples, has allowed the enrichment of endospores and after sequencing, has revealed a large diversity of endospore-formers in freshwater lake sediments. We expect that the application of this method to other samples will yield a similar outcome. PMID:26863128

  4. Prolonged clot lysis time increases the risk of a first but not recurrent venous thrombosis.

    PubMed

    Karasu, Alev; Baglin, Trevor P; Luddington, Roger; Baglin, Caroline A; van Hylckama Vlieg, Astrid

    2016-03-01

    The role of the fibrinolytic system in the development of venous thrombosis (VT) is unclear. We studied the risk of first and recurrent VT associated with reduced fibrinolysis, as measured by clot lysis time (CLT). We also studied the relationship between CLT and thrombin generation to determine if any relationship between CLT and VT was affected by thrombin generation. Analyses were performed in the Thrombophilia Hypercoagulability Environmental risk for Venous Thromboembolism Study, a two-centre population-based case-control study, including 579 patients and 338 controls, with patients followed from the event to determine incidence of recurrent VT. Hypofibrinolysis was associated with a 1·8-fold increased risk of a first VT [95% confidence interval (CI) 1·2-2·7]. Adjustment for sex, age, study location and Endogenous Thrombin Potential (ETP) did not change the result. The risk of VT was 2·9-fold increased when the 90th percentiles of prolonged CLT and high ETP were combined, with the highest risk for unprovoked first events (Odds Ratio = 4·2, 95% CI 1·3-13·5). In the follow-up study the Hazard Ratio for a recurrent VT associated with hypofibrinolysis was 1·5 (95% CI 0·9-2·6). A weak dose response effect was observed in relation to prolongation of CLT and recurrent VT. Although hypofibrinolysis constitutes a risk factor for a first VT, an association with recurrence is, at best, weak. PMID:26773756

  5. A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli.

    PubMed

    Feliciello, I; Chinali, G

    1993-08-01

    We have developed a very efficient and rapid method for the preparation on a small or large scale of highly purified plasmid DNA from Escherichia coli. The procedure consists of five steps: (1) cell lysis by NaOH-SDS, (2) precipitation of cell lysate with 2 M potassium acetate-1 M acetic acid, (3) precipitation of the resulting supernatant with isopropanol, (4) treatment of the precipitate with RNase, and (5) a second isopropanol precipitation. The new procedure yields a plasmid DNA that is more than 90% in the supercoiled form and virtually free from proteins, RNA, and chromosomal DNA. We have thoroughly tested the method in the preparation of several thousand samples of different plasmids from various E. coli strains. We found that it consistently produced samples of plasmid DNA suitable for all routine uses such as restriction analysis, sequencing, and preparation of DNA probes for cloning and hybridization experiments. Moreover, plasmids purified by this procedure could fully replace plasmids purified on CsCl gradients for more demanding tasks such as the in vitro synthesis of RNA probes by phage RNA polymerases, the generation of deletion mutants with exonuclease III, and the transfection of mammalian cells by the calcium phosphate coprecipitation method, as tested on human fibroblasts and on CV-1 cells. PMID:8214582

  6. Preparation of intact chloroplasts by chemically induced lysis of the green alga Dunaliella marina.

    PubMed

    Kombrink, E; Wöber, G

    1980-07-01

    A method for the isolation in high yield of intact chloroplasts from the unicellular green alga Dunaliella marina (Volvocales) is described. This procedure uses chemically induced lysis of cells with the polycationic macromolecules, DEAE-dextran (M=500,000) or poly-D,L-lysine (M=30,000-70,000). Reaction conditions were optimized with respect to obtaining a high yield of intact chloroplasts, after isopycnic centrifugation in a linear sucrose density gradient, by varying the concentration of polycation and the temperature and pH of incubation. Broken chloroplasts devoid of the stromal marker enzymes fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, but containing mitochondrial (fumarase) and microbody (catalase) contamination, were banded at a bouyant density of 1.18 g cm(-3). Intact chloroplasts, as indicated by their retention of alkaline fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, were found in 30% yield (chlorophyll in intact cells, 100%) at an equilibrium density of 1.24 g cm(-3). Contamination by cytoplasmic material (pyruvate kinase), mitochondria, and microbodies was less than 8% each. PMID:24306242

  7. A Hybrid Capillary-Microfluidic Device for the Separation, Lysis, and Electrochemical Detection of Vesicles

    PubMed Central

    Omiatek, Donna M.; Santillo, Michael F.; Heien, Michael L; Ewing, Andrew G.

    2009-01-01

    The primary method for neuronal communication involves the extracellular release of small molecules that are packaged in secretory vesicles. We have developed a platform to separate, lyse, and electrochemically measure the contents of single vesicles using a hybrid capillary-microfluidic device. This device incorporates a sheath-flow design at the outlet of the capillary for chemical lysis of vesicles and subsequent electrochemical detection. The effect of sheath-flow on analyte dispersion was characterized using confocal fluorescence microscopy and electrochemical detection. At increased flow rates, dispersion was minimized, leading to higher separation efficiencies, but lower detected amounts. Large unilamellar vesicles (diameter ∼ 200 nm), a model for secretory vesicles, were prepared by extrusion and loaded with an electroactive molecule. They were then separated and detected using the hybrid capillary-microfluidic device. Determination of size from internalized analyte concentration provides a method to characterize the liposomal suspension. These results were compared to an orthogonal size measurement using dynamic light scattering to validate the detection platform. PMID:19228035

  8. Floor of the nose mucosa lysis and labial abscess caused by a bee sting.

    PubMed

    Alemán Navas, Ramón Manuel; Martínez Mendoza, María Guadalupe; Herrera, Henry; Herrera, Helen Piccolo de

    2009-01-01

    Hymenoptera order includes bees, which have a stinging apparatus at the tail capable of delivering venom to the affected tissues. Myocardial infarction, acute renal failure, Necrotizing fasciitis, fatal infection and hemifacial asymmetry, are some of the unusual reactions reported following hymenoptera stings. This paper reports a case of bee sting in the right floor of the nose that mimicked an odontogenic infection affecting the upper lip, canine space and nasal cavity such as in cases of infection secondary to pulpal or periodontal pathology of the anterior teeth. After a thorough clinical and radiographic examination, odontogenic infection was discarded and the diagnosis of floor of the nose mucosal lysis and lip abscess secondary to a bee sting was made. This case was successfully managed with adequate incision, drainage and antibiotics without any further complication. There are several reports of unusual reactions following hymenoptera stings. However, just a few of them referred to infections of local reactions and none of them related to the anatomic location affected in the patient of the present case. Early diagnosis and treatment prevented infection dissemination and the likelihood of tissue necrosis as in previously reported cases of Necrotizing fasciitis. PMID:19784473

  9. Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay.

    PubMed

    Wang, Guqi; Gong, Yu; Burczynski, Frank J; Hasinoff, Brian B

    2008-05-01

    The oxidation of 2',7'-dichlorodihydrofluorescein (2',7'-dichlorofluorescin, DCFH) to a fluorescent product, 2',7'-dichlorofluorescein (DCF), is commonly used to quantitatively measure oxidative stress in cells using a fluorescence microplate reader. However, many cell lines tend to grow non-uniformly in the wells. This non-uniform distribution results in a high degree of variability in the fluorescence signal and decreases the precision of the method. Also, samples treated in large culture plates, dishes or flasks cannot be assayed directly in fluorescence microplate readers. This study reports an improved DCF assay method that lyses cells with DMSO/PBS (90% dimethyl sulphoxide/10% phosphate buffered saline). Oxidative stress was induced with either hydrogen peroxide or an hypoxia-reoxygenation treatment. Cell lysis with DMSO/PBS resulted in highly stable fluorescence signals in comparison to Triton X-100/PBS lysed cells. The precision of DCF fluorescence measurements of DMSO/PBS lysed cells was much better than for attached cells measured directly in 96-well plates. While DCF fluorescence in PBS was strongly quenched by albumin, no quenching occurred in DMSO/PBS. In conclusion this study describes a more convenient and accurate method for measuring cellular oxidative stress that also makes it possible to assay cells treated in large culture plates. PMID:18484276

  10. Expression of blaA Underlies Unexpected Ampicillin-Induced Cell Lysis of Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Sun, Linlin; Dong, Yangyang; Chi, Xun; Zhu, Weiming; Qi, Shu-hua; Gao, Haichun

    2013-01-01

    Shewanella oneidensis is a facultative anaerobic γ-proteobacterium possessing remarkably diverse respiratory capacities for reducing various organic and inorganic substrates. As a veteran research model for investigating redox transformations of environmental contaminants the bacterium is well known to be a naturally ampicillin-resistant microorganism. However, in this study we discovered that ampicillin has a significant impact on growth of S. oneidensis. Particularly, cell lysis occurred only with ampicillin at levels ranging from 0.49 to 6.25 µg/ml but not at 50 µg/ml. This phenotype is attributable to insufficient expression of the β-lactamase BlaA. The subsequent analysis revealed that the blaA gene is strongly induced by ampicillin at high (50 µg/ml), but not at low levels (2.5 µg/ml). In addition, we demonstrated that penicillin binding protein 5 (PBP5), the most abundant low molecular weight PBP (LMW PBP), is the only one relevant to β-lactam resistance under the tested conditions. This nonessential PBP, largely resembling its Escherichia coli counterpart in functionality, mediates expression of the blaA gene. PMID:23555975

  11. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis.

    PubMed

    Uawonggul, Nunthawun; Chaveerach, Arunrat; Thammasirirak, Sompong; Arkaravichien, Tarinee; Chuachan, Chattong; Daduang, Sakda

    2006-01-16

    The aqueous extracts of 64 plant species, listed as animal- or insect-bite antidotes in old Thai drug recipes were screened for their activity against fibroblast cell lysis after Heterometrus laoticus scorpion venom treatment. The venom was preincubated with plant extract for 30 min and furthered treated to confluent fibroblast cells for 30 min. More than 40% efficiency (test/control) was obtained from cell treatment with venom preincubated with extracts of Andrographis paniculata Nees (Acanthaceae), Barringtonia acutangula (L.) Gaertn. (Lecythidaceae), Calamus sp. (Palmae), Clinacanthus nutans Lindau (Acanthaceae), Euphorbia neriifolia L. (Euphorbiaceae), Ipomoea aquatica Forssk (Convolvulaceae), Mesua ferrea L. (Guttiferae), Passiflora laurifolia L. (Passifloraceae), Plectranthus amboinicus (Lour.) Spreng. (Labiatae), Ricinus communis L. (Euphorbiaceae), Rumex sp. (Polygonaceae) and Sapindus rarak DC. (Sapindaceae), indicating that they had a tendency to be scorpion venom antidotes. However, only Andrographis paniculata and Barringtonia acutangula extracts provided around 50% viable cells from extract treatments without venom preincubation. These two plant extracts are expected to be scorpion venom antidotes with low cytotoxicity. PMID:16169172

  12. Minimal gene regulatory circuits for a lysis-lysogeny choice in the presence of noise.

    PubMed

    Avlund, Mikkel; Krishna, Sandeep; Semsey, Szabolcs; Dodd, Ian B; Sneppen, Kim

    2010-01-01

    Gene regulatory networks (GRNs) that make reliable decisions should have design features to cope with random fluctuations in the levels or activities of biological molecules. The phage λ GRN makes a lysis-lysogeny decision informed by the number of phages infecting the cell. To analyse the design of decision making GRNs, we generated random in silico GRNs comprised of two or three transcriptional regulators and selected those able to perform a λ-like decision in the presence of noise. Various two-protein networks analogous to the λ CI-Cro GRN worked in noise-less conditions but failed when noise was introduced. Adding a λ CII-like protein significantly improved robustness to noise. CII relieves the CI-like protein of its 'decider' function, allowing CI to be optimized as a decision 'maintainer'. CII's lysogenic decider function was improved by its instability and rapid removal once the decision was taken, preventing its interference with maintenance. A more reliable decision also resulted from simulated co-transcription of the genes for CII and the Cro-like protein, which correlates fluctuations in these opposing decider functions and makes their ratio less noisy. Thus, the λ decision network contains design features for reducing and resisting noise. PMID:21188148

  13. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    SciTech Connect

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-12-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional /sup 51/Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.

  14. Comparison of different methods of cell lysis and protein measurements in Clostridium perfringens: application to the cell volume determination.

    PubMed

    Guerlava, P; Izac, V; Tholozan, J L

    1998-03-01

    Four cell lysis methods (NaOH-SDS solubilization, French press treatment, sonication, mutanolysin treatment) and three methods of protein assays (Lowry, Bradford, Pierce) were studied for their applicability to determination of cell volume in Clostridium perfringens NCTC 8798 cell suspensions. Protein contents were higher after a mechanical disruption of the cells than with the other techniques of lysis. The lowest concentrations of protein were obtained with the Bradford procedure. With each of the three protein assay methods, Clostridium perfringens NCTC 8798 protein cell contents were 45% to 58% of protein. Other factors possibly involved in variations of the intracellular volume measurements were examined. A control of the level of protein concentration in the test sample and the type of silicone oil used for the centrifugation were of prime importance during sample preparation. Under our conditions, an intracellular volume of 4 microl/(mg of protein) was routinely found for Clostridium perfringens NCTC 8798. PMID:9516540

  15. Identification of an inflammatory bowel disease patient with a deep vein thrombosis and an altered clot lysis profile.

    PubMed

    Bollen, Lize; Wuyts, Joke; Vermeire, Séverine; Gils, Ann

    2016-03-01

    Patients with inflammatory bowel diseases (IBD), a chronic inflammatory disease characterized by flares and remission, are prone to develop thrombosis. The mechanism behind this prothrombotic state is not completely understood but is definitely multifactorial and linked with excessive inflammation observed in these patients. So far, no biomarker exists to select among IBD patients those with and increased risk for thrombosis. Corticosteroid therapy, given as rescue IBD treatment, is known to increase the thrombotic risk, whereas for antitumor necrosis factor (TNF)-alpha therapy such as infliximab, given to induce and maintain remission in IBD, the results are inconclusive. Here, we describe a 31-year-old IBD patient who developed a deep vein thrombosis. We determined the clot lysis profiles before and after developing thrombosis. We showed that a global functional clot lysis assay can be used as a tool to identify IBD patients who may benefit from thromboprophylactic therapy. PMID:26378816

  16. A dual-targeting triplebody mediates preferential redirected lysis of antigen double-positive over single-positive leukemic cells

    PubMed Central

    Schubert, Ingo; Saul, Domenica; Nowecki, Stefanie; Mackensen, Andreas; Fey, Georg H; Oduncu, Fuat S

    2014-01-01

    The single-chain triplebody HLA-ds16-hu19 consists of three single-chain Fv (scFv) antibody fragments connected in a single polypeptide chain. This protein with dual-targeting capacity mediated preferential lysis of antigen double-positive (dp) over single-positive (sp) leukemic cells by recruitment of natural killer (NK) cells as effectors. The two distal scFv modules were specific for the histocompatibility protein HLA-DR and the lymphoid antigen CD19, the central one for the Fc gamma receptor CD16. In antibody-dependent cellular cytotoxicity (ADCC) experiments with a mixture of leukemic target cells comprising both HLA-DR sp HuT-78 or Kasumi-1 cells and (HLA-DR plus CD19) dp SEM cells, the triplebody mediated preferential lysis of the dp cells even when the sp cells were present in ≤20-fold numerical excess. The triplebody promoted equal lysis of SEM cells at 2.5-fold and 19.5-fold lower concentrations than the parental antibodies specific for HLA-DR and CD19, respectively. Finally, the triplebody also eliminated primary leukemic cells at lower concentrations than an equimolar mixture of bispecific single-chain Fv fragments (bsscFvs) separately addressing each target antigen (hu19-ds16 and HLA-ds16). The increased selectivity of targeting and the preferential lysis of dp over sp cells achieved by dual-targeting open attractive new perspectives for the use of dual-targeting agents in cancer therapy. PMID:24135631

  17. Enhancement of complement-mediated lysis by a peptide derived from SCR 13 of complement factor H.

    PubMed

    Stoiber, H; Ammann, C; Spruth, M; Müllauer, B; Eberhart, A; Harris, C L; Huber, C G; Longhi, R; Falkensammer, B; Würzner, R; Dierich, M P

    2001-05-01

    Complement factor H (fH) is an important regulator of complement activation. It contributes to protection of cells against homologous complement attack. In this study we tested the effect of fH-depletion of normal human serum (NHS) on lysis of antibody-coated sheep and human erythrocytes (EshA and EhuA). In the absence of fH, lysis of sensitised Esh and Ehu was clearly increased. Addition of fH to fH-depleted serum re-established protection of cells against complement similar to that seen with NHS. A fH-derived peptide (pepAred), covering the N-terminal half of SCR 13 in fH, was able to enhance complement-mediated lysis of EhuA significantly. However, the oxidised form of this peptide (pepAox) had no effect. Biotinylated pepAred, but not pepAox, was able to directly bind to cells. Additionally, pepAred competed with direct fH-cell interaction which was observable only after treatment of purified fH with mercaptoethanol. Only pepAred increased the amount of C3 fragments and reduced levels of fH detectable on cells as shown by FACS analysis and radio-immuno assay. Furthermore, fH and factor I (fI)-mediated cleavage of agarose bound C3b into iC3b was decreased in the presence of pepAred. These data indicate that a fH-derived peptide can enhance complement-mediated lysis. We will continue to investigate whether the use of a fH peptide can be exploited for therapeutical purposes. PMID:11402501

  18. Electromechanical cell lysis using a portable audio device: enabling challenging sample preparation at the point-of-care.

    PubMed

    Buser, J R; Wollen, A; Heiniger, E K; Byrnes, S A; Kauffman, P C; Ladd, P D; Yager, P

    2015-05-01

    Audio sources are ubiquitously available on portable electronic devices, including cell phones. Here we demonstrate lysis of Mycobacterium marinum and Staphylococcus epidermidis bacteria utilizing a portable audio device coupled with a simple and inexpensive electromagnetic coil. The resulting alternating magnetic field rotates a magnet in a tube with the sample and glass beads, lysing the cells and enabling sample preparation for these bacteria anywhere there is a cell phone, mp3 player, laptop, or other device with a headphone jack. PMID:25797443

  19. Bidirectional functions of thrombin on fibrinolysis: Evidence of thrombin-dependent enhancement of fibrinolysis provided by spontaneous plasma clot lysis.

    PubMed

    Tomczyk, Martyna; Suzuki, Yuko; Sano, Hideto; Brzoska, Tomasz; Tanaka, Hiroki; Urano, Tetsumei

    2016-07-01

    Besides procoagulant activity, thrombin exhibits anticoagulant and profibrinolytic activities. We demonstrated that the euglobulin clot lysis time (ECLT) was shortened by endogenously generated thrombin as a result of the inactivation of plasminogen activator inhibitor type 1 (PAI-1). In contrast, thrombin suppressed fibrinolytic activity through the activation of thrombin activatable fibrinolysis inhibitor (TAFI). Here, using three different clot lysis assays of the ECLT, the tissue plasminogen activator supplemented plasma clot lysis time (tPA-PCLT) and the spontaneous plasma clot lysis time (s-PCLT), we analyzed how the coagulation process modifies fibrinolysis. The ECLT was shortened by exogenously supplemented thrombin in a dose-dependent manner in the absence of calcium ion (Ca(++)), whereas this shortening was not observed in the presence of Ca(++) where endogenous prothrombin was effectively activated to thrombin. This shortening was also not observed for the tPA-PCLT, in which tPA is supplemented in excess and PAI-1 activity is mostly lost. On the contrary, thrombin dose-dependently prolonged the tPA-PCLT, which was mostly abolished by inhibitors of carboxypeptidase and activated FXIII, suggesting that the prolongation is TAFI- and Factor XIII-dependent. The s-PCLT was shortened when thrombin generation was boosted by supplementing tissue factor and phosphatidylserine together with Ca(++), which was more apparent in the presence of inhibitors of activated FXIII and activated TAFI. Thus, thrombin appeared to express its enhancing effect on fibrinolysis even in plasma, in addition to its inhibiting effect. These bidirectional functions of thrombin on fibrinolysis seem to take place on demand under different environments to maintain adequate vascular blood flow. PMID:27179129

  20. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis.

    PubMed

    Bhatt, Apoorva; Kremer, Laurent; Dai, Annie Z; Sacchettini, James C; Jacobs, William R

    2005-11-01

    Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development. PMID:16267284

  1. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia

    PubMed Central

    Baginska, Joanna; Viry, Elodie; Berchem, Guy; Poli, Aurélie; Noman, Muhammad Zaeem; van Moer, Kris; Medves, Sandrine; Zimmer, Jacques; Oudin, Anaïs; Niclou, Simone P.; Bleackley, R. Chris; Goping, Ing Swie; Chouaib, Salem; Janji, Bassam

    2013-01-01

    Recent studies demonstrated that autophagy is an important regulator of innate immune response. However, the mechanism by which autophagy regulates natural killer (NK) cell-mediated antitumor immune responses remains elusive. Here, we demonstrate that hypoxia impairs breast cancer cell susceptibility to NK-mediated lysis in vitro via the activation of autophagy. This impairment was not related to a defect in target cell recognition by NK cells but to the degradation of NK-derived granzyme B in autophagosomes of hypoxic cells. Inhibition of autophagy by targeting beclin1 (BECN1) restored granzyme B levels in hypoxic cells in vitro and induced tumor regression in vivo by facilitating NK-mediated tumor cell killing. Together, our data highlight autophagy as a mechanism underlying the resistance of hypoxic tumor cells to NK-mediated lysis. The work presented here provides a cutting-edge advance in our understanding of the mechanism by which hypoxia-induced autophagy impairs NK-mediated lysis in vitro and paves the way for the formulation of more effective NK cell-based antitumor therapies. PMID:24101526

  2. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    PubMed

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS. PMID:25973637

  3. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria.

    PubMed

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Iñigo; Novick, Richard P; Christie, Gail E; Penadés, José R

    2013-08-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  4. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  5. Acquired Resistance of Escherichia coli to Complement Lysis by Binding of Glycophosphoinositol-Anchored Protectin (CD59)

    PubMed Central

    Rautemaa, Riina; Jarvis, Gary A.; Marnila, Pertti; Meri, Seppo

    1998-01-01

    Protectin (CD59) is a glycophosphoinsitol (GPI)-anchored defender of human cells against lysis by the membrane attack complex of complement. In this study, we examined whether protectin released from human cell membranes can incorporate into the surface of gram-negative bacteria. Analysis by using radiolabeled protectin, immunofluorescence, flow cytometry, and whole-cell enzyme-linked immunosorbent assay demonstrated that protectin bound to nonencapsulated Escherichia coli EH237 (Re) and EH234 (Ra) in a calcium-dependent manner. The incorporation required the GPI-phospholipid moiety since no binding of a phospholipid-free soluble form of protectin was observed. Mg2+ did not enhance the binding, and a polysialic acid capsule prevented it (strain IH3080 [O18:K1:H8]). Bound protectin inhibited the C5b-9 neoantigen expression on complement-treated bacteria. Protection against complement lysis was observed in both a colony counting assay and a bioluminescence assay, where viable EH234 bacteria expressing the luciferase gene emitted green light in the presence of the luciferine substrate. In general, two- to four-times-higher serum concentrations were needed to obtain 50% lysis of protectin-coated versus noncoated bacteria. The results indicate that protectin can incorporate in a functionally active form into the cell membranes of the two nonencapsulated deep rough E. coli strains studied. PMID:9573071

  6. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  7. Lysis of pig endothelium by IL-2 activated human natural killer cells is inhibited by swine and human major histocompatibility complex (MHC) class I gene products.

    PubMed

    Itescu, S; Artrip, J H; Kwiatkowski, P A; Wang, S F; Minanov, O P; Morgenthau, A S; Michler, R E

    1997-01-01

    We have previously described a form of xenograft rejection, mediated by natural killer (NK) cells, occurring in pig-to-primate organ transplants beyond the period of antibody-mediated hyperacute rejection. In this study, two distinct NK activation pathways were identified as mechanisms of pig aortic endotheliual cell (PAEC) lysis by human NK cells. Using an antibody-dependent cellular cytotoxicity (ADCC) assay, a progressive increase in human NK lysis of PAEC was observed following incubation with human IgG at increasing serum titer. In the absence of IgG, a second mechanism of PAEC lysis by human NK cells was observed following activation with IL-2. IL-2 activation of human NK cells increased lysis of PAEC by over 3-fold compared with ADCC. These results indicate that IL-2 activation of human NK cells induces significantly higher levels of lytic activity than does conventional ADCC involving IgG and FcRIII. We next investigated the role of MHC class I molecules in the regulation of NK lysis following IL-2 activation. PAEC expression of SLA class I molecules was increased by up to 75% by treatment with human TNFa. Following treatment with TNFa at 1 u/ml, IL-2 activated human NK lysis of PAEC was inhibited at every effector:target (E:T) ratio tested. Maximal effect occurred at an E:T ratio of 10:1, with TNFa inhibiting specific lysis by 59% (p < 0.01). Incubation with an anti-SLA class I Mab, but not IgG isotype control, abrogated the protective effects of TNFa on NK lysis of PAEC, suggesting direct inhibitory effects of SLA class I molecules on human NK function. To investigate whether human MHC class I molecules might have similar effects on human NK lysis of PAEC, further experiments were performed using a soluble peptide derived from the alpha-helical region of HLA-B7. Incubation with the HLA-B7 derived peptide significantly reduced the IL-2 activated NK lytic activity against PAEC in a dose-dependent fashion. Maximal effect occurred at a concentration of 10 mg

  8. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    SciTech Connect

    Torpey, D.J. III

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with /sup 51/Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant.

  9. Human leukocyte antigen E contributes to protect tumor cells from lysis by natural killer cells.

    PubMed

    Lo Monaco, Elisa; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-09-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network. PMID:21969815

  10. [Incidence and Risk Assessment of Tumor Lysis Syndrome in Patients with Advanced Germ Cell Cancer].

    PubMed

    Kurobe, Masahiro; Kawai, Koji; Tanaka, Ken; Ichioka, Daishi; Yoshino, Takayuki; Kandori, Shuya; Kawahara, Takashi; Waku, Natsui; Takaoka, Ei-Ichirou; Kojima, Takahiro; Joraku, Akira; Suetomi, Takahiro; Miyazaki, Jun; Nishiyama, Hiroyuki

    2016-05-01

    Tumor lysis syndrome (TLS) is a major oncological emergency. TLS is common in patients with hematological malignancies, but it can occur across a spectrum of cancer types. Germ cell tumors (GCT) have rapid cancer cell turnover and often present with bulky metastasis. The international TLS expert consensus panel has recommended guidelines for a medical decision tree to assign low, intermediate and high risk to patients with cancer at risk for TLS. GCT is classified as intermediate risk for TLS, and the patients who have other TLS risks factors are classified to be at high risk for TLS. In this study, we retrospectively analyzed 67 patients with metastatic GCT who were treated with induction chemotherapy at Tsukuba University Hospital between 2000 and 2013. Thirty-one, 15 and 21 patients were classified with good-, intermediate- and poor-prognosis disease, respectively, according to the International Germ Cell Cancer Collaborative Group criteria. Twelve patients (18%) were classified to be at high risk for TLS, and two patients were treated with allopurinol or rasburicase as prophylaxes for TLS. They did not show progression to laboratory TLS (L-TLS). In the remaining 10 TLS high-risk patients, three (30%) patients developed L-TLS after chemotherapy and started receiving oral allopurinol. As a result, no patients developed clinical TLS (C-TLS). In this study, 30% of TLS-high risk patients developed L-TLS without prophylactic treatment. Therefore, it is important to conduct TLS-risk stratification and consider prophylaxis such as rasburicase for advanced GCT patients at induction chemotherapy. PMID:27320114

  11. Microphotographs of cyanobacteria documenting the effects of various cell-lysis techniques

    USGS Publications Warehouse

    Rosen, Barry H.; Loftin, Keith A.; Smith, Christopher E.; Lane, Rachael F.; Keydel, Susan P.

    2011-01-01

    Cyanotoxins are a group of organic compounds biosynthesized intracellularly by many species of cyanobacteria found in surface water. The United States Environmental Protection Agency has listed cyanotoxins on the Safe Drinking Water Act's Contaminant Candidate List 3 for consideration for future regulation to protect public health. Cyanotoxins also pose a risk to humans and other organisms in a variety of other exposure scenarios. Accurate and precise analytical measurements of cyanotoxins are critical to the evaluation of concentrations in surface water to address the human health and ecosystem effects. A common approach to total cyanotoxin measurement involves cell membrane disruption to release the cyanotoxins to the dissolved phase followed by filtration to remove cellular debris. Several methods have been used historically, however no standard protocols exist to ensure this process is consistent between laboratories before the dissolved phase is measured by an analytical technique for cyanotoxin identification and quantitation. No systematic evaluation has been conducted comparing the multiple laboratory sample processing techniques for physical disruption of cell membrane or cyanotoxins recovery. Surface water samples collected from lakes, reservoirs, and rivers containing mixed assemblages of organisms dominated by cyanobacteria, as well as laboratory cultures of species-specific cyanobacteria, were used as part of this study evaluating multiple laboratory cell-lysis techniques in partnership with the U.S. Environmental Protection Agency. Evaluated extraction techniques included boiling, autoclaving, sonication, chemical treatment, and freeze-thaw. Both treated and untreated samples were evaluated for cell membrane integrity microscopically via light, epifluorescence, and epifluorescence in the presence of a DNA stain. The DNA stain, which does not permeate live cells with intact membrane structures, was used as an indicator for cyanotoxin release into the

  12. Myxoma Virus Infection Promotes NK Lysis of Malignant Gliomas In Vitro and In Vivo

    PubMed Central

    Ogbomo, Henry; Zemp, Franz J.; Lun, Xueqing; Zhang, Jiqing; Stack, Danuta; Rahman, Masmudur M.; Mcfadden, Grant; Mody, Christopher H.; Forsyth, Peter A.

    2013-01-01

    Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas. PMID:23762498

  13. Controlling serum uric acid using febuxostat in cancer patients at risk of tumor lysis syndrome.

    PubMed

    Takai, Mihoko; Yamauchi, Takahiro; Fujita, Kei; Lee, Shin; Ookura, Miyuki; Kishi, Shinji; Urasaki, Yoshimasa; Yoshida, Akira; Iwasaki, Hiromichi; Ueda, Takanori

    2014-10-01

    Tumor lysis syndrome (TLS) is a life-threatening oncological emergency, in which control of serum uric acid (S-UA) levels is important. S-UA-lowering efficacy of a new xanthine oxidase inhibitor, febuxostat, was retrospectively evaluated in seven patients with hematological malignancies who were at an intermediate risk of developing TLS. A 10-mg dose of febuxostat was initiated and chemotherapy was started within 24 h of administering the first dose of febuxostat. Febuxostat was continued until at least day 7 of chemotherapy treatment. The UA-lowering treatment was considered effective if febuxostat reduced S-UA levels to ≤7.5 mg/dl by day 5. The mean S-UA level at base line was 6.4±2.6 mg/dl and, on day 5, the mean S-UA level was 4.7±1.8 mg/dl. All the patients achieved S-UA levels ≤7.5 mg/dl. Serum creatinine levels decreased from 0.93±0.25 to 0.85±0.25 mg/dl. The estimated glomerular filtration rate values increased from 69.7±24.5 to 76.9±26.2 ml/min. No adverse reactions were noted during the study period and no patients experienced progressive TLS. Successful control of S-UA and improved renal function were obtained in response to febuxostat treatment in cancer patients at a risk of TLS. PMID:25202361

  14. Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells12

    PubMed Central

    Monaco, Elisa Lo; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-01-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network. PMID:21969815

  15. Haemoglobin-Triton X-100 conjugate as model system for red blood cell lysis

    NASA Astrophysics Data System (ADS)

    Pop, Simona-Florentina; Ion, Rodica-Mariana; Doncea, Sanda

    2010-11-01

    The action of detergents is thought to be connected primarily with micelle formation. However, detergent monomers can also affect biological systems. It was found that human red blood cells can be disintegrated with Triton X-100 non-ionic detergent at a concentration of 0.007%, lower than the critical micellar concentration (CMC). The lytic membrane of non-ionic detergent Triton X-100 (as a model), and its ability to lyse red blood cells in vitro used as an indicator of conjugate conformation at different pHs. The time dependent release of hemoglobin (Hb) and potassium from red blood cells was detected at 37 °C and both were sigmoid in character. Although Triton X-100 was highly lytic at pH 5.5, 7.4 and 8.0, the conjugate only show a lysis concentration-dependent of red blood cell at pH 5.5. Triton X-100 causes the Hb to aggregate, a condition that can be simulated when this non-ionic surfactant is incubated with Hb in vitro. The determination of Triton-X was done by HPLC, in accordance to characterize the surfactant. The increased stability in micellar medium can be attributed to deep penetration with the polar group -OH oriented towarded to the micelle surface. Thermal stability of hemoglobin has been investigated in order to evaluate the nature of thermal behavior of this compound. We studied the effects of surfactant Triton -X on the rate constants for the destroying of hemoglobin.

  16. Reduced administration of rasburicase for tumor lysis syndrome: A single-institution experience

    PubMed Central

    TAKAI, MIHOKO; YAMAUCHI, TAKAHIRO; MATSUDA, YASUFUMI; TAI, KATSUNORI; IKEGAYA, SATOSHI; KISHI, SHINJI; URASAKI, YOSHIMASA; YOSHIDA, AKIRA; IWASAKI, HIROMICHI; UEDA, TAKANORI

    2015-01-01

    In the present study, the dosage and duration of rasburicase administration were retrospectively evaluated for the ability to control the serum uric acid (S-UA) level in 13 patients diagnosed with hematological malignancies and tumor lysis syndrome (TLS), or those at risk of developing TLS, at the University of Fukui Hospital. At the time of diagnosis, seven patients already exhibited laboratory TLS, and three demonstrated clinical TLS. All patients received rasburicase in addition to chemotherapy agents. The median dose was 0.19 mg/kg (range, 0.13–0.25 mg/kg), and the median duration was four days (range, 1–7 days). Six patients sequentially received a xanthine oxidase inhibitor, allopurinol or febuxostat. The primary estimate was the normalization of the S-UA level at the end of rasburicase treatment and on treatment day seven. The average S-UA level prior to treatment was 10.4±4.5 mg/dl (mean ±standard deviation), and 11 out of 13 patients demonstrated a S-UA level >7 mg/dl. The S-UA level at the end of rasburicase administration was 0.5±1.5 mg/dl and the S-UA level at day seven was 1.4±1.5 mg/dl. All the patients achieved normalization of the S-UA level. On day seven subsequent to the initiation of treatment, the patients receiving rasburicase for a maximum of three days exhibited an S-UA level of 1.9±1.8 mg/dl, while the patients receiving rasburicase for longer than three days demonstrated an S-UA level of 1.0±1.3 mg/dl (P=0.20; Mann-Whitney test). The administration of 0.13 mg/kg and 0.22 mg/kg resulted in comparable UA level reductions. The administration of allopurinol or febuxostat following rasburicase administration suppressed the re-increase in S-UA level. Therefore, it was concluded that reduced administration of rasburicase successfully controlled the S-UA level in TLS. PMID:26137024

  17. Host range and in vitro lysis of Listeria monocytogenes seafood isolates by bacteriophages.

    PubMed

    Arachchi, Geevika J Ganegama; Cruz, Cristina D; Dias-Wanigasekera, Beatrice M; McIntyre, Lynn; Billington, Craig; Hudson, Andrew; Flint, Steve H; Mutukumira, Anthony N

    2014-12-01

    Listeria-infecting bacteriophages (listeriaphages) can be used to control Listeria monocytogenes in the food industry. However, the sensitivity of many of seafood-borne Listeria strains to phages has not been reported. This research investigated the host ranges of three listeriaphages (FWLLm1, FWLLm3 and FWLLm5) by the formation of lytic zones and plaques on host lawns and in vitro lysis kinetics of listeriaphage FWLLm3. The study also predicted the phage titres required to lyse host cells. The host ranges of the phages were determined using 50 L. monocytogenes strains, of which 48 were isolated from the seafood industry and two from clinical cases. Of the 50 strains, 36 were tested at 25 and 30 ℃ and the remainder (14) at 15 and 25 ℃. Based on the formation of either discrete plaques or lytic zones (host kill zones), the host ranges of FWLLm1, FWLLm3 and FWLLm5 were about 87%, 81% and 87%, respectively, at 25 ℃. Six L. monocytogenes strains from the seafood environment were insensitive to all three phages, while the other seafood strains (42) were phage-sensitive. The adsorption rate constant (k value) of listeriaphage FWLLm3 was between 1.2 × 10(-9) and 1.6 × 10(-9 )ml/min across four host strains in tryptic soy broth at 25 ℃. The cultures (at 3-4 log colony-forming unit (CFU/ml) were completely lysed (<1 log CFU/ml) when cultures were infected with FWLLm3 at > 8.7 log phage-forming units (PFU/ml) for 30 min. Re-growth of phage-infected cultures was not detected after 24 h. The effective empirical phage titre was similar to the calculated titre using a kinetic model. Results indicate the potential use of the three phages for controlling L. monocytogenes strains in seafood processing environments. PMID:23908393

  18. Intramammary lipopolysaccharide infusion alters gene expression but does not induce lysis of the bovine corpus luteum.

    PubMed

    Lüttgenau, J; Wellnitz, O; Kradolfer, D; Kalaitzakis, E; Ulbrich, S E; Bruckmaier, R M; Bollwein, H

    2016-05-01

    treatment. In conclusion, intramammary LPS challenge induces systemic inflammatory reactions which alter the luteal mRNA abundance of TLR2 and TNFA but does not induce lysis of the CL. PMID:26923046

  19. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC).

    PubMed

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  20. Shedding and enrichment of the glycolipid-anchored complement lysis inhibitor protectin (CD59) into milk fat globules.

    PubMed

    Hakulinen, J; Meri, S

    1995-07-01

    Protectin (CD59) is a glycolipid-anchored inhibitor of the membrane attack complex (MAC) of human complement (C) that protects blood cells, endothelial cells and various epithelial cells from C-mediated lysis. Because of its activities protectin is a candidate molecule for use in the treatment of paroxysmal nocturnal haemoglobinuria or conditions where MAC causes tissue damage. Soluble, phospholipid-free forms of protectin have been isolated from human urine and produced in recombinant form, but they have only a relatively weak C lysis-inhibiting activity. In the present study we have looked for functionally active protectin in human breast milk. Milk is rich in fat droplets, milk fat globules (MFG), that are enveloped in a plasma membrane derived from secretory cells of the mammary gland. The membranes of MFG contain a variety of glycoproteins expressed by the mammary epithelial cells. Both immunofluorescence and immunoblotting analysis demonstrated that protectin was strongly expressed on human MFG. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, MFG protectin (CD59M) appeared as distinct bands with apparent molecular weights of 19,000-23,000 MW, similar to protectin extracted from MCF7 breast carcinoma cells. CD59M in breast milk was functionally active and had a glycophospholipid anchor, as judged by its ability to incorporate into guinea-pig erythrocytes and inhibit their lysis by human complement. These results indicate that functionally active protectin becomes enriched in MFG and imply that secretion of glycophospholipid-anchored molecules, e.g. into cow milk and colostrum, could be exploited as a means of producing bioactive molecules that need to be targeted into cell membranes. PMID:7558140

  1. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S.; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  2. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis.

    PubMed

    Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming

    2016-06-17

    Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. PMID:27207575

  3. Thermal denaturation produced degenerative proteins and interfered with MS for proteins dissolved in lysis buffer in proteomic analysis.

    PubMed

    Wang, Xuchu; Wang, Haiyan; Wang, Dan; Wang, Dongyang; Han, Bing; Tian, Weimin; Guo, Anping

    2011-02-01

    In 1-DE, proteins were traditionally mixed with the standard Laemmli buffer and boiled for several minutes. Recently, proteins dissolved in lysis buffer were used to produce better-resolved 2-DE gels, but thermal denaturation procedure still remained in some proteomic analysis. To determine the detailed effects of thermal denaturation on SDS-PAGE and MS, both 1-DE and 2-DE were performed using proteins heated at 100°C for different periods of time, and 17 protein bands/spots were positively identified by MALDI TOF/TOF MS/MS. Protein profiles on both 1-DE and 2-DE gels changed obviously and more polydisperse bands/spots were observed with increased heating time for over-heated samples. Based on these observations, an alternative protein marker-producing method was designed by directly dissolving protein standards without BSA into lysis buffer. This new kind of protein marker could be stored at room temperature for a long time, thus was more convenient for using and shipping. The identification of 17 proteins via MS and comparison of their identities revealed MASCOT-searched scores, number of both matched peptides, total searched peptides and sequence coverage became progressively lower with increasing denaturation intensity, probably due to the interference of thermal denaturation on trypsin cleavage efficiency and produced redundant modified peptides. Therefore, it was concluded that thermal denaturation not only changed the protein profiles and produced more polydisperse protein bands/spots, but also heavily interfered with the subsequent MS analysis, hence not recommended in future proteomic analysis for proteins dissolved in lysis buffer. PMID:21298662

  4. Live attenuated Salmonella vaccines displaying regulated delayed lysis and delayed antigen synthesis to confer protection against Mycobacterium tuberculosis.

    PubMed

    Juárez-Rodríguez, María Dolores; Yang, Jiseon; Kader, Rebin; Alamuri, Praveen; Curtiss, Roy; Clark-Curtiss, Josephine E

    2012-02-01

    Live recombinant attenuated Salmonella vaccine (RASV) strains have great potential to induce protective immunity against Mycobacterium tuberculosis by delivering M. tuberculosis antigens. Recently, we reported that, in orally immunized mice, RASV strains delivering the M. tuberculosis early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10) antigens via the Salmonella type III secretion system (SopE amino-terminal region residues 1 to 80 with two copies of ESAT-6 and one copy of CFP-10 [SopE(Nt80)-E2C]) afforded protection against aerosol challenge with M. tuberculosis. Here, we constructed and evaluated an improved Salmonella vaccine against M. tuberculosis. We constructed translational fusions for the synthesis of two copies of ESAT-6 plus CFP-10 fused to the OmpC signal sequence (OmpC(SS)-E2C) and amino acids 44 to 338 of antigen 85A (Ag85A(294)) flanked by the signal sequence (SS) and C-terminal peptide (CT) of β-lactamase (Bla(SS)-Ag85A(294)-Bla(CT)) to enable delivery via the Salmonella type II secretion system. The genes expressing these proteins were cloned as an operon transcribed from P(trc) into isogenic Asd(+)/MurA(+) pYA3681 lysis vector derivatives with different replication origins (pBR, p15A, pSC101), resulting in pYA4890, pYA4891, and pYA4892 for SopE(Nt80)-E2C/Ag85A(294) synthesis and pYA4893 and pYA4894 for OmpC(SS)-E2C/Ag85A(294) synthesis. Mice orally immunized with the RASV χ11021 strain engineered to display regulated delayed lysis and regulated delayed antigen synthesis in vivo and harboring pYA4891, pYA4893, or pYA4894 elicited significantly greater humoral and cellular immune responses, and the RASV χ11021 strain afforded a greater degree of protection against M. tuberculosis aerosol challenge in mice than RASVs harboring any other Asd(+)/MurA(+) lysis plasmid and immunization with M. bovis BCG, demonstrating that RASV strains displaying regulated delayed lysis with delayed antigen synthesis

  5. Splenectomy-related red cell lysis resistance causing analytical difficulty in a patient with a hematological malignancy.

    PubMed

    Kevane, Barry; Dowd, Anna; Lennon, Aine; Bacon, Christopher L; Fortune, Anne

    2014-01-01

    A patient with a history of chronic lymphocytic leukaemia and a previous splenectomy underwent full blood count analysis in a general hospital. Her medical care had previously taken place in a different institution. A CELL- DYN Sapphire analyser measured her lymphocyte count at ten-fold higher than her known baseline. The sample was sent to her previous hospital, where the laboratory utilises an ADVIA-2120i analyser. The results of this analysis were in keeping with her baseline. The spurious result appears to be related to red cell lysis resistance following splenectomy; however, this resistance appeared to be specific to the analytical method used. PMID:25648036

  6. Severe Tumor Lysis Syndrome and Acute Pulmonary Edema Requiring Extracorporeal Membrane Oxygenation Following Initiation of Chemotherapy for Metastatic Alveolar Rhabdomyosarcoma.

    PubMed

    Sanford, Ethan; Wolbrink, Traci; Mack, Jennifer; Grant Rowe, R

    2016-05-01

    We present an 8-year-old male with metastatic alveolar rhabdomyosarcoma (ARMS) who developed precipitous cardiopulmonary collapse with severe tumor lysis syndrome (TLS) 48 hr after initiation of chemotherapy. Despite no detectable pulmonary metastases, acute hypoxemic respiratory failure developed, requiring extracorporeal membrane oxygenation (ECMO). Although TLS has been reported in disseminated ARMS, this singular case of life-threatening respiratory deterioration developing after initiation of chemotherapy presented unique therapeutic dilemmas. We review the clinical aspects of this case, including possible mechanisms of respiratory failure, and discuss the role of ECMO utilization in pediatric oncology. PMID:26713672

  7. Cell Lysis in S. pombe ura4 Mutants Is Suppressed by Loss of Functional Pub1, Which Regulates the Uracil Transporter Fur4

    PubMed Central

    Nishino, Kohei; Kushima, Misaki; Matsuo, Yuzy; Matsuo, Yasuhiro; Kawamukai, Makoto

    2015-01-01

    Schizosaccharomyces pombe Δura4 cells lyse when grown on YPD medium. A S. pombe non-essential gene deletion library was screened to determine suppressors of the lysis phenotype. Deletion of the pub1 gene, which encoded E3 ubiquitin ligase, strongly suppressed cell lysis in Δura4 cells. The Δpub1 cells displayed high sensitivity to 5-fluorouracil, a toxic analog of uracil, and this sensitivity was suppressed by deletion of fur4, which encoded a uracil transporter. Fur4 localized primarily to the Golgi apparatus and vacuoles in wild-type cells, but localization was predominantly at the plasma membrane in Δpub1 cells. Fur4 was necessary for the utilization of extracellular uracil, cytosine, or UMP. Uracil uptake activity increased in the Δpub1 strain in a Fur4-dependent manner. In addition, uracil starvation was critical for induction of cell lysis of Δura4 strains and uracil supplementation suppressed lysis. In summary, the increased uracil uptake ability of Δpub1 cells, where Fur4 was predominantly localized to the plasma membrane, resulted in suppression of cell lysis in the Δura4 background. PMID:26536126

  8. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    PubMed

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. PMID:25725204

  9. The Combined Approach to Lysis Utilizing Eptifibatide and rt-PA in Acute Ischemic Stroke

    PubMed Central

    Pancioli, Arthur M.; Broderick, Joseph; Brott, Thomas; Tomsick, Thomas; Khoury, Jane; Bean, Judy; del Zoppo, Gregory; Kleindorfer, Dawn; Woo, Daniel; Khatri, Pooja; Castaldo, John; Frey, James; Gebel, James; Kasner, Scott; Kidwell, Chelsea; Kwiatkowski, Thomas; Libman, Richard; Mackenzie, Richard; Scott, Phillip; Starkman, Sidney; Thurman, R. Jason

    2008-01-01

    Background and Purpose Multiple approaches are being studied to enhance the rate of thrombolysis for acute ischemic stroke. Treatment of myocardial infarction with a combination of a reduced-dose fibrinolytic agent and a glycoprotein (GP) IIb/IIIa receptor antagonist has been shown to improve the rate of recanalization versus fibrinolysis alone. The combined approach to lysis utilizing eptifibatide and recombinant tissue-type plasminogen activator (rt-PA) (CLEAR) stroke trial assessed the safety of treating acute ischemic stroke patients within 3 hours of symptom onset with this combination. Methods The CLEAR trial was a National Institutes of Health/National Institute of Neurological Disorders and Stroke–funded multicenter, double-blind, randomized, dose-escalation and safety study. Patients were randomized 3:1 to either low-dose rt-PA (tier 1=0.3 mg/kg, tier 2=0.45 mg/kg) plus eptifibatide (75 μg/kg bolus followed by 0.75 μg/kg per min infusion for 2 hours) or standard-dose rt-PA (0.9 mg/kg). The primary safety end point was the incidence of symptomatic intracerebral hemorrhage within 36 hours. Secondary analyses were performed regarding clinical efficacy. Results Ninety-four patients (40 in tier 1 and 54 in tier 2) were enrolled. The combination group of the 2 dose tiers (n=69) had a median age of 71 years and a median baseline National Institutes of Health Stroke Scale (NIHSS) score of 14, and the standard-dose rt-PA group (n=25) had a median age of 61 years and a median baseline NIHSS score of 10 (P=0.01 for NIHSS score). Fifty-two (75%) of the combination treatment group and 24 (96%) of the standard treatment group had a baseline modified Rankin scale score of 0 (P=0.04). There was 1 (1.4%; 95% CI, 0% to 4.3%) symptomatic intracranial hemorrhage in the combination group and 2 (8.0%; 95% CI, 0% to 19.2%) in the rt-PA–only arm (P=0.17). During randomization in tier 2, a review by the independent data safety monitoring board demonstrated that the safety

  10. Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+ CD33+ leukemia cells.

    PubMed

    Roskopf, Claudia C; Braciak, Todd A; Fenn, Nadja C; Kobold, Sebastian; Fey, Georg H; Hopfner, Karl-Peter; Oduncu, Fuat S

    2016-04-19

    Simultaneous targeting of multiple tumor-associated antigens (TAAs) in cancer immunotherapy is presumed to enhance tumor cell selectivity and to reduce immune escape.The combination of B lymphoid marker CD19 and myeloid marker CD33 is exclusively present on biphenotypic B/myeloid leukemia cells. Triplebody 33-3-19 binds specifically to both of these TAAs and activates T cells as immune effectors. Thereby it induces specific lysis of established myeloid (MOLM13, THP-1) and B-lymphoid cell lines (BV173, SEM, Raji, ARH77) as well as of primary patient cells. EC50 values range from 3 pM to 2.4 nM. In accordance with our hypothesis, 33-3-19 is able to induce preferential lysis of double- rather than single-positive leukemia cells in a target cell mixture: CD19/CD33 double-positive BV173 cells were eliminated to a significantly greater extent than CD19 single-positive SEM cells (36.6% vs. 20.9% in 3 hours, p = 0.0048) in the presence of both cell lines. In contrast, equivalent elimination efficiencies were observed for both cell lines, when control triplebody 19-3-19 or a mixture of the bispecific single chain variable fragments 19-3 and 33-3 were used. This result highlights the potential of dual-targeting agents for efficient and selective immune-intervention in leukemia patients. PMID:26981773

  11. Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+ CD33+ leukemia cells

    PubMed Central

    Roskopf, Claudia C.; Braciak, Todd A.; Fenn, Nadja C.; Kobold, Sebastian; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2016-01-01

    Simultaneous targeting of multiple tumor-associated antigens (TAAs) in cancer immunotherapy is presumed to enhance tumor cell selectivity and to reduce immune escape. The combination of B lymphoid marker CD19 and myeloid marker CD33 is exclusively present on biphenotypic B/myeloid leukemia cells. Triplebody 33-3-19 binds specifically to both of these TAAs and activates T cells as immune effectors. Thereby it induces specific lysis of established myeloid (MOLM13, THP-1) and B-lymphoid cell lines (BV173, SEM, Raji, ARH77) as well as of primary patient cells. EC50 values range from 3 pM to 2.4 nM. In accordance with our hypothesis, 33-3-19 is able to induce preferential lysis of double- rather than single-positive leukemia cells in a target cell mixture: CD19/CD33 double-positive BV173 cells were eliminated to a significantly greater extent than CD19 single-positive SEM cells (36.6% vs. 20.9% in 3 hours, p = 0.0048) in the presence of both cell lines. In contrast, equivalent elimination efficiencies were observed for both cell lines, when control triplebody 19-3-19 or a mixture of the bispecific single chain variable fragments 19-3 and 33-3 were used. This result highlights the potential of dual-targeting agents for efficient and selective immune-intervention in leukemia patients. PMID:26981773

  12. Group B Streptococcus GAPDH Is Released upon Cell Lysis, Associates with Bacterial Surface, and Induces Apoptosis in Murine Macrophages

    PubMed Central

    Oliveira, Liliana; Madureira, Pedro; Andrade, Elva Bonifácio; Bouaboud, Abdelouhab; Morello, Eric; Ferreira, Paula; Poyart, Claire; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2012-01-01

    Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages. PMID:22291899

  13. Recyclable Photo-Thermal Nano-Aggregates of Magnetic Nanoparticle Conjugated Gold Nanorods for Effective Pathogenic Bacteria Lysis.

    PubMed

    Ramasamy, Mohankandhasamy; Kim, Sanghyo; Lee, Su Seong; Yi, Dong Kee

    2016-01-01

    We describe the nucleophilic hybridization technique for fabricating magnetic nanoparticle (MNP) around gold nanorod (AuNR) for desired photo-thermal lysis on pathogenic bacteria. From the electromagnetic energy conversion into heat to the surrounding medium, a significant and quicker temperature rise was noted after light absorption on nanohybrids, at a controlled laser light output and optimum nanoparticle concentration. We observed a similar photo-thermal pattern for more than three times for the same material up on repeated magnetic separation. Regardless of the cell wall nature, superior pathogenic cell lysis has been observed for the bacteria suspensions of individual and mixed samples of Salmonella typhi (S.typhi) and Bacillus subtilis (B.subtilis) by the photo-heated nanoparticles. The synthesis of short gold nanorod, conjugation with magnetic nanoparticle and its subsequent laser exposure provides a rapid and reiterated photo-thermal effect with enhanced magnetic separation for efficient bactericidal application in water samples. Resultant novel properties of the nano-aggregates makes them a candidate to be used for a rapid, effective, and re-iterated photo-thermal agent against a wide variety of pathogens to attain microbe free water. PMID:27398487

  14. Erythrocyte-mediated delivery of pravastatin: in vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency.

    PubMed

    Harisa, Gamaleldin I; Ibrahim, Mohamed F; Alanazi, Fars K

    2012-08-01

    Exposure of erythrocytes to hypotonic lysis creates pores in the cell membrane, through which pravastatin can enter and become trapped, after resealing them with a suitable buffer. We investigated the effects of tonicity, incubation time and drug concentration on drug loading into erythrocytes. Furthermore, we investigate the effects of pravastatin on erythrocyte oxidative stress markers and osmotic fragility behavior. Encapsulation was achieved using buffer solutions of different tonicities (0.5, 0.6 and 0.7% NaCl) and different drug concentrations (2, 4, 8 and 10 mg/mL) for a range of incubation times (15, 30, 60 and 120 min). The results demonstrated that controlled hypotonic lysis could entrap pravastatin in human erythrocytes, with acceptable loading parameters. The highest loading (34%) was achieved at 0.6% NaCl and 10 mg/mL pravastatin for 60 min incubation. At this pravastatin concentration, oxidative stress markers were similar to those seen in controls, and fragility and hematological parameters were unaffected in drug-loaded erythrocytes. These results indicate that the loading process and pravastatin concentration had no deleterious effects on the structure of pravastatin-loaded erythrocytes, suggesting that they may therefore have a similar life span to normal cells. Pravastatin-loaded erythrocytes may thus provide an effective extended-release-delivery system for pravastatin. PMID:22941486

  15. Direct involvement of CD56 in cytokine-induced killer-mediated lysis of CD56+ hematopoietic target cells.

    PubMed

    Valgardsdottir, Rut; Capitanio, Cristina; Texido, Gemma; Pende, Daniela; Cantoni, Claudia; Pesenti, Enrico; Rambaldi, Alessandro; Golay, Josée; Introna, Martino

    2014-12-01

    Cytokine-induced killer (CIK) cells are in-vitro-expanded T lymphocytes that represent a heterogeneous population. A large majority of CIK cells are CD3(+)CD56(+), and this population has been shown to confer a cytotoxic effect against tumor targets. The scope of this work was to study whether CD56 has a direct role in CIK-mediated cytotoxicity. Blocking of CD56 with the anti-CD56 monoclonal antibody GPR165 significantly reduced CIK-mediated lysis of three CD56(+) hematopoietic tumor cell lines (AML-NS8, NB4, and KCL22), whereas no effect was observed on three CD56(-) hematopoietic tumor cell lines (K562, REH, and MOLT-4). Knockdown of CD56 in CIK cells by short interfering RNA made the cells less cytotoxic against a CD56(+) target, and knockdown of CD56 in target cells with lentiviral short hairpin RNA significantly altered their susceptibility to CIK-mediated lysis. Our data suggest that homophilic interaction between CD56 molecules may occur in tumor-cell recognition, leading to CIK-mediated cell death. PMID:25201755

  16. Association of alpha interferon production with natural killer cell lysis of U937 cells infected with human immunodeficiency virus.

    PubMed Central

    Rappocciolo, G; Toso, J F; Torpey, D J; Gupta, P; Rinaldo, C R

    1989-01-01

    Mononuclear leukocytes from human immunodeficiency virus (HIV)-seronegative and -seropositive homosexual men lysed HIV-infected U937 cells to a significantly greater degree than uninfected U937 cells. Depletion of cell subsets with monoclonal antibodies and complement indicated that the effector cells were primarily of the CD16+ phenotype. Acid-stable alpha interferon (IFN-alpha) production induced by the HIV-infected cells correlated with, although was not an absolute requisite for, preferential lysis of the infected targets. The activity of these CD16+, natural killer (NK) cells decreased in relation to the duration of HIV infection and the presence of acquired immunodeficiency syndrome. Pretreatment of peripheral blood mononuclear cells from HIV-seronegative subjects, but not HIV-seropositive men, with IFN-alpha or recombinant interleukin-2 enhanced lysis of both uninfected and HIV-infected U937 cells. These results suggest that IFN-alpha-associated, NK-like mechanisms are active in the cytotoxic response against HIV-infected cells and that HIV infection results in an early and progressive depression of such responses. Prospective investigations may be useful in determining the role of this NK cell response in the natural history and pathogenesis of HIV infection and the efficacy of therapeutic modalities. PMID:2913035

  17. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    PubMed

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis. PMID:25805020

  18. Fibrinolytic enzyme production by newly isolated Bacillus cereus SRM-001 with enhanced in-vitro blood clot lysis potential.

    PubMed

    Narasimhan, Manoj Kumar; Chandrasekaran, Muthukumaran; Rajesh, Mathur

    2015-01-01

    The discovery of plasmin-like microbial fibrinolytic enzymes having high specificity and negligible side effects is crucial for thrombolytic therapy. Herein, we report one such extra-cellular fibrinolytic enzyme producing Bacillus cereus SRM-001 isolated from the blood-laden soil of a chicken dump yard. The potency of the enzyme was established with fibrin plate assay and in-vitro blood clot lysis assay. The shake-flask operating parameters and media composition were optimized for maximizing the productivity of the enzyme. The operating parameters, pH 7, 37°C, 1% inoculum volume and 24 h inoculum age, were found to be the optimum. The levels of media components, corn flour (0.3% w/v), soyabean powder (1.9% w/v) and MnSO4 (11.5 mM) were optimized by statistical analysis using Box-Behnken design derived RSM. This resulted in an almost 1.8 fold increase in fibrinolytic enzyme productivity. The 3D response surface plots showed soyabean powder and MnSO4 to be the key ingredients for enhancing the enzyme productivity, whereas corn flour had a marginal effect. The in-vitro blood clot lysis assay conducted at near physiological pH 7 at 37°C showed the enzyme to be a potential therapeutic thrombolytic agent. PMID:26582284

  19. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    SciTech Connect

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  20. In vitro and in vivo studies of cellular lysis of oral bacteria by a lysozyme-protease-inorganic monovalent anion antibacterial system.

    PubMed Central

    Pollock, J J; Shoda, J; McNamara, T F; Cho, M I; Campbell, A; Iacono, V J

    1984-01-01

    Compared with anion-activated cell lysis of oral bacteria damaged with either lysozyme or trypsin, cells which were treated with both of these enzymes showed a far greater degree of lysis. This was true regardless of whether turbidimetric, DNA release, or electron microscopic assays were used to monitor the lytic process. At an acidic pH of 5.2 and an NaHCO3 concentration of 100 mM, the kinetics of lysis for two different serotype c strains of Streptococcus mutans were similar. At 0 to 100 mM bicarbonate, however, differences in the lytic susceptibilities of the two strains were evident. At pH 5.2, NaHCO3, but not NaSCN, NaCl, or NaF, was effective in promoting cell lysis of the oral bacteria. At apparent sublytic concentrations of NaHCO3, lysis was achieved by adding appropriate concentrations of NaSCN, NaCl, or NaF to the lysozyme-protease-damaged cells. In in vivo studies, hamsters given a combination of NaHCO3, NaCl, and NaSCN were found to have significantly reduced levels of S. mutans on their molar teeth compared with that found in controls or animals exposed to any one of the salts alone or to a combination of chloride and thiocyanate only. The results suggest that bicarbonate is an essential anion which, together with the other major salivary inorganic monovalent anions, plays an active role in the lysis and ultimate elimination of cariogenic bacteria. Images PMID:6432696

  1. Tumor lysis syndrome in a chronic lymphocytic leukemia patient with pleural effusion after oral fludarabine and cyclophosphamide therapy.

    PubMed

    Nakazawa, Hideyuki; Nishina, Sayaka; Mimura, Yuto; Kawakami, Toru; Senoo, Yasushi; Sakai, Kaoko; Nakazawa, Ko; Kitano, Kiyoshi

    2014-06-01

    Tumor lysis syndrome (TLS) is a rare complication of the treatment for chronic lymphocytic leukemia (CLL). Since the advent of new therapeutic agents with higher response rates, however, TLS has been observed with increasing frequency. An 84-year-old woman with a nine-year history of untreated CLL presented with exacerbating dyspnea due to pleural effusion. CLL cells without Richter transformation were observed in the pleural effusion at a high concentration, as well as in lymph nodes and bone marrow. After 5 days of oral fludarabine and cyclophosphamide (FC) therapy, the patient developed TLS, which necessitated rescue with hemodialysis. Although transient exacerbation of pleurisy occurred, the effusion cytology ameliorated, and she eventually achieved complete remission after additional two courses of FC and rituximab. Sequestration of fludarabine in the pleural effusion may be attributable to the development of TLS. PMID:24584911

  2. High intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic powers

    PubMed Central

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon (PFC) droplets to reduce the sonication powers required to achieve clot lysis using high intensity focused ultrasound (HIFU). HIFU with droplets was initially applied to blood clots in an in vitro flow apparatus and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to demonstrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24±5% of the sonication power without droplets. Rabbits receiving 1 ms pulsed sonication during continuous intravascular droplet infusion recanalized in 71% of cases (p=0.041 vs controls). Preliminary experiments showed that damage was contained to the ultrasonic focus, suggesting that safe treatments would be possible with a more tightly focused hemispherical array that allows the whole focus to be placed inside of the main arteries in the human brain. PMID:25023095

  3. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    PubMed Central

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  4. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study.

    PubMed

    Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco

    2016-11-01

    Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. PMID:27211619

  5. Inhibitory effects of Stephania tetrandra S. Moore on free radical-induced lysis of rat red blood cells.

    PubMed

    Sekiya, Nobuyasu; Hikiami, Hiroaki; Yokoyama, Koichi; Kouta, Kazufumi; Sakakibara, Iwao; Shimada, Yutaka; Terasawa, Katsutoshi

    2005-04-01

    Crude preparations of Stephania tetrandra S. MOORE (ST), a traditional herbal medicine, have been used safely for arthritis and silicosis in China. In this study, we demonstrated that ST in vitro protects red blood cells from 2,2-azo-bis (2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis. The inhibitory effect was dose-dependent at concentrations of 10 to 1000 microg/ml. Moreover, tests were carried out to identify the main ingredient of ST that exerts a scavenging effect on free-radicals. Three representative alkaloids, tetrandrine, fangchinoline, and cyclanoline, isolated from ST, were found to have inhibitory activities against AAPH-induced lysis of red blood cells (RBC). Furthermore, the ingestion of 200 mg of ST extract was associated with a significant increase in free-radical scavenging effect of plasma in rats. These results suggest that ST as antioxidant inhibits AAPH-induced hemolysis of RBC both in vitro and in vivo. PMID:15802807

  6. CADM1/TSLC1 Identifies HTLV-1-Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis

    PubMed Central

    Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.

    2016-01-01

    Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax–at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax–HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax−CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1– cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax–CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus. PMID:27105228

  7. HLA-A11-mediated protection from NK cell-mediated lysis: role of HLA-A11-presented peptides.

    PubMed

    Gavioli, R; Zhang, Q J; Masucci, M G

    1996-08-01

    The capacity of MHC class I to protect target cells from NK is well established, but the mechanism by which these molecules influence NK recognition and the physical properties associated with this function remain poorly defined. We have examined this issue using as a model the HLA-A11 allele. HLA-A11 expression correlated with reduced susceptibility to NK and interferon-activated cytotoxicity in transfected sublines of the A11-defective Burkitt's lymphoma WW2-BL and the HLA class I A,B-null C1R cell line. Protection was also achieved by transfection of HLA-A11 in the peptide processing mutant T2 cells line (T2/A11), despite a very low expression of the transfected product at the cell surface. Induction of surface HLA-A11 by culture of T2/A11 cells at 26 degrees C or in the presence of beta 2m did not affect lysis, whereas NK sensitivity was restored by culture in the presence of HLA-All-binding synthetic peptides derived from viral or cellular proteins. Acid treatment rendered T2/A11 and C1R/A11 cells sensitive to lysis, but protection was restored after preincubation with peptide preparations derived from surface stripping of T2/A11 cells. Similar peptide preparations from T2 cells had no effect. The results suggest that NK protection is mediated by HLA-A11 molecules carrying a particular set of peptides that are translocated to the site of MHC class I assembly in the ER in a TAP-independent fashion. PMID:8839770

  8. CADM1/TSLC1 Identifies HTLV-1-Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis.

    PubMed

    Manivannan, Kiruthika; Rowan, Aileen G; Tanaka, Yuetsu; Taylor, Graham P; Bangham, Charles R M

    2016-04-01

    Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax-at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax-HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax-CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1- cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax-CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus. PMID:27105228

  9. FMLP- and TNF-stimulated monoclonal Lym-1 antibody-dependent lysis of B lymphoblastoid tumour targets by neutrophils.

    PubMed

    Ottonello, L; Morone, P; Mancini, M; Amelotti, M; Dapino, P; Dallegri, F

    1999-05-01

    Human neutrophils, incubated with Cr51-labelled B lymphoblastoid Raji cells in the presence of the anti-target monoclonal antibody (mAb) Lym-1 plus formyl-methionyl-leucyl-phenylalanine (FMLP) or tumour necrosis factor alpha (TNF-alpha), were found to induce significant C51 release, i.e. significant cytolysis. The lytic process was inhibited by mAb IV.3, specific for the Fcgamma receptor (FcgammaR) type II. The mAb 3G8, which reacts with FcgammaR type III, was ineffective. Moreover, the lysis was inhibited by the anti-CD18 mAb MEM-48. These data suggest that FMLP/Lym-1 as well as TNF-alpha/Lym-1 cytolytic systems strictly require FcgammaRII and CD18 integrins. As the lysis induced by TNF-alpha/Lym-1 was prevented by pertussis toxin (PT), PT-sensitive G-proteins are likely to intervene in post-FcgammaRII signal transduction. Both the FMLP- and the TNF-alpha-dependent systems were also found to be equally susceptible to inhibition by various inhibitors of kinases (genistein, staurosporin, 1-(5-isoquinolinnylsulphonyl)-2-methylpiperazine and wortmannin). On the contrary, an inhibitor of protein kinase C (bis-indolyl-maleimide, BIM) was effective only in the FMLP/Lym-1 cytolytic system. Therefore, it appears that signals delivered by FMLP or TNF-alpha, BIM-sensitive and insensitive respectively, converge and synergize with those from G-protein-coupled FcgammaRII and, probably, CD18-integrins to promote the expression of the neutrophil cytolytic potential. PMID:10408834

  10. FMLP- and TNF-stimulated monoclonal Lym-1 antibody-dependent lysis of B lymphoblastoid tumour targets by neutrophils

    PubMed Central

    Ottonello, L; Morone, P; Mancini, M; Amelotti, M; Dapino, P; Dallegri, F

    1999-01-01

    Human neutrophils, incubated with Cr51-labelled B lymphoblastoid Raji cells in the presence of the anti-target monoclonal antibody (mAb) Lym-1 plus formyl-methionyl-leucyl-phenylalanine (FMLP) or tumour necrosis factor alpha (TNF-α), were found to induce significant Cr51 release, i.e. significant cytolysis. The lytic process was inhibited by mAb IV.3, specific for the Fcγ receptor (FcγR) type II. The mAb 3G8, which reacts with FcγR type III, was ineffective. Moreover, the lysis was inhibited by the anti-CD18 mAb MEM-48. These data suggest that FMLP/Lym-1 as well as TNF-α/Lym-1 cytolytic systems strictly require FcγRII and CD18 integrins. As the lysis induced by TNF-α/Lym-1 was prevented by pertussis toxin (PT), PT-sensitive G-proteins are likely to intervene in post-FcγRII signal transduction. Both the FMLP- and the TNF-α-dependent systems were also found to be equally susceptible to inhibition by various inhibitors of kinases (genistein, staurosporin, 1-(5-isoquinolinnylsulphonyl)-2-methylpiperazine and wortmannin). On the contrary, an inhibitor of protein kinase C (bis-indolyl-maleimide, BIM) was effective only in the FMLP/Lym-1 cytolytic system. Therefore, it appears that signals delivered by FMLP or TNF-α, BIM-sensitive and insensitive respectively, converge and synergize with those from G-protein-coupled FcγRII and, probably, CD18-integrins to promote the expression of the neutrophil cytolytic potential. © 1999 Cancer Research Campaign PMID:10408834