Science.gov

Sample records for m-type barium hexaferrite

  1. Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Pawar, R. A.; Desai, S. S.; Tamboli, Q. Y.; Shirsath, Sagar E.; Patange, S. M.

    2015-03-01

    M type barium hexaferrites BaCexFe12-xO19 (0≤x≤0.3) (BCFO) were synthesized by the sol-gel auto combination method. Optimum annealing temperature of hexagonal phase was determined by using the TGA analysis. The annealing temperature form the TGA is 1000 °C samples annealed 1000 °C for 5 h to produce M type hexaferrites. X-ray diffraction data run to full Prof Program (Winploter 2010) pattern indicate that samples are single phase hexagonal structure with space group P63/mmc. Lattice parameter 'a' and 'c' increase with increase in Ce content x. Results of field emission scanning electron microscope show that the grains are regular hexagonal platelets with sizes from 0.3 to 1.4 μm. It is observed that from M-H curve value of the saturation magnetization and coercivity decreases with increasing x. Curie temperature from magnetization with temperature plot is found to decrease with Ce3+ substitution x due to decreases in magnetic interaction.

  2. Structural and magnetic properties of Cu-V substituted M-type barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmood, Sami H.; Awadallah, Ahmad; Maswadeh, Yazan; Bsoul, Ibrahim

    2015-10-01

    In search of magnetic materials with improved magnetic characteristics for practical applications, M-type barium hexaferrites with Fe3+ ions partially substituted by a mixture of Cu and V ions were prepared by ball milling and sintering at 1200° C. The structural analyses of the prepared BaFe12-2xCuxVxO19 samples (x = 0.1, 0.2, 0.3, 0.4) revealed the presence of BaM phase, in addition to α-Fe2O3, Ba3V2O8, and BaFe2O4 nonmagnetic phases which evolved as x increased. Scanning electron microscopy (SEM) imaging demonstrated the presence of different phases in the substituted samples, and a general trend of particle-size growth with increasing x. Energy dispersive spectroscopy was used to examine the local stoichiometry of the samples, and confirmed the different phases identified by XRD analysis. The saturation magnetization was found to be high for low substitution level (72 emu/g for the sample with x = 0.1 sintered for 2 h, and 65 emu/g for the sample sintered for 10 h), while it decreased significantly with increasing the substitution level. The coercivity (Hc) for the samples sintered for 2 h was found to decrease sharply with increasing x, even at low substitution levels (x < 0.2), where it decreased from about 3.5 kOe for the un-substituted sample down to about 1.6 kOe for the sample with x = 0.1, and down to below 0.3 kOe at higher substitution levels. The coercivity of the sample with x = 0.1 sintered for 10 h reduced further, down to about 677 Oe, demonstrating properties demanded for magnetic recording applications. Further, washing with HCl was found to remove some of the nonmagnetic phases, and increase the yield of the BaM phase.

  3. Mössbauer and X-ray diffraction study of Co2+-Si4+ substituted M-type barium hexaferrite BaFe12-2хСохSiхO19±γ

    NASA Astrophysics Data System (ADS)

    Solovyova, E. D.; Pashkova, E. V.; Ivanitski, V. P.; V‧yunov, O. I.; Belous, A. G.

    2013-03-01

    Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants (Co2++Si4+) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution 2Fe3+→Со2++Sі4+.

  4. Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxun; Gu, Mingyuan; Shen, Haigen

    2005-09-01

    Aluminum- and chromium-substituted barium ferrite particles with single magnetic domain were prepared using self-propagating combustion method. The crystalline structure, size, coercivity and microwave absorption property of the particles were investigated by means of X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry and vector network analyzer. The results show that the crystalline structure of BaFe 12-xAl xO 19 is still hexagonal. But when the chromium substitution amount y exceeds 0.6, the extra chromium ions cannot enter the lattice of BaFe 12-yCr yO 19. After Fe 3+ is partly substituted with Al 3+ and Cr 3+, the microwave absorption properties of barium ferrite are improved. The maximum absorption reaches 34.76 dB. The ferromagnetic resonance is an important channel of barium ferrite to absorb microwaves with high frequency. Aluminum and chromium substitutions change the ferromagnetic resonant frequency of barium ferrite. The multipeak phenomenon of the ferromagnetic resonance increases the microwave absorption capability of barium ferrite.

  5. Structural, magnetic and dielectrical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Alange, R. C.; Khirade, Pankaj P.; Birajdar, Shankar D.; Humbe, Ashok V.; Jadhav, K. M.

    2016-02-01

    Al3+ and Cr3+ co-substituted barium hexaferrite BaCrxAlxFe12-2xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoparticles were prepared by using sol-gel auto combustion method. X-ray diffraction (XRD) confirmed the formation of M-type hexagonal crystal structure with some additional peaks of Fe2O3. Various structural parameters such as lattice constants (a and c), unit cell volume (V), X-ray density (ρx), bulk density (ρm) and porosity (P) were determined using XRD data. The lattice constant (a), X-ray density (ρx) and porosity (P) decreases with increase in Fe content x. The grain size determined from scanning electron microscopy (SEM) images is in the nanometer range. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of hexagonal ferrite structure for all the calcined samples. The M-H curves recorded at room temperature using pulse field hysteresis loop tracer technique exhibited typical hysteresis loop indicating that the sample exhibits ferromagnetic nature. The large coercivity (Hc) values indicate the nanocrystalline nature of the present samples. The coercivity (Hc), saturation magnetization (Ms), remanence magnetization (Mr) and magneton number (nB) decreases with increase in Al-Cr content x. The dielectric parameters such as dielectric constant (ɛ‧), dielectric loss (ɛ″) and loss tangent (tan δ) were measured at room temperature in the frequency range 50 Hz to 5 MHz. All the dielectrical parameters show compositional as a function of frequency dependences. At lower frequencies, it is observed that the dielectric constant (ɛ‧), dielectric loss (ɛ″) and loss tangent (tan δ) are high.

  6. Magnetic study of M-type doped barium hexaferrite nanocrystalline particles

    SciTech Connect

    Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.; Alnawashi, G.; Prokeš, K.; Siemensmeyer, K.; Klemke, B.; Nakotte, H.

    2013-12-28

    Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe{sub 12−2x}Co{sub x}Ti{sub x}O{sub 19} with (0≤x≤1) and BaFe{sub 12−2x}Ru{sub x}Ti{sub x}O{sub 19} with (0≤x≤0.6) were prepared by ball milling method, and their magnetic properties and their temperature dependencies were studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at low magnetic fields and the ZFC curves displayed a broad peak at a temperature T{sub M}. In all samples under investigation, a clear irreversibility between the ZFC and FC curves was observed below room temperature, and this irreversibility disappeared above room temperature. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around T{sub M}. At 2 K, the saturation magnetization slightly decreased and the coercivity dropped dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the saturation magnetization showed small variations, while the coercivity decreased monotonically, recording a reduction of about 73% at x = 0.6. These results were discussed in light of the single ion anisotropy model and the cationic distributions based on previously reported neutron diffraction data for the CoTi substituted system, and the results of our Mössbauer spectroscopy data for the RuTi substituted system.

  7. Structural and magnetic properties of Vanadium Doped M- Type Barium Hexaferrite (BaFe12-xVxO19)

    NASA Astrophysics Data System (ADS)

    Awadallah, Ahmad; Mahmood, Sami H.; Maswadeh, Yazan; Bsoul, Ibrahim; Aloqaily, Aynour

    2015-10-01

    Precursor powders of barium hexaferrite doped with vanadium, BaFe12-xVxO19 with (x = 0.1, 0.2, 0.3, 0.4, 0.5), were prepared using the ball milling technique and then sintered at different temperatures for 2 h. The structural properties of the prepared samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the magnetic properties were examined by the vibrating sample magnetometry (VSM). XRD and SEM studies of the samples sintered at 1100° C indicated the presence of Ba3V2O8 and α-Fe2O3 non-magnetic oxide phases in addition to BaM hexaferrite phase. The fractions of the nonmagnetic oxide phases were found to increase with increasing x, and sintering the samples at temperatures higher than 1100° C was found to reduce the amounts of these non-magnetic phases only slightly. However, the addition of barium in excess of the stoichiometric ratio was found to remove the α-Fe2O3 oxide, and improve the saturation magnetization of the samples significantly. In addition, washing these samples with HCl was found to improve the saturation magnetization further. The effect of sintering the samples at higher temperatures was also found to reduce the coercivity due to growth of the particle size. However, the coercivity of all samples remained high enough for potential permanent magnet and magnetic recording applications.

  8. Synthesis of M-type hexaferrites from steel pickling liquors (ID 109)

    NASA Astrophysics Data System (ADS)

    Dufour, J.; Latorre, R.; Alcalá, E. M.; Negro, C.; Formoso, A.; López-Mateos, F.

    1996-05-01

    The recovery of steel pickling liquors is one of the main environmental aspects that the steelmaking industry must resolve. We propose the synthesis of barium M-type hexaferrite from these liquors as a recovery treatment. Two methods of synthesis have been studied: a variation of the ceramic method, and an oxicoprecipitation process. Products with excellent magnetic properties have been obtained.

  9. Physical Property of Magnesium Doped Barium Hexaferrite Particles By Citrate Precursor Route In Presence Of Surfactants

    SciTech Connect

    Paladiya, Snehal; Chauhan, C. C.; Jotania, R. B.

    2010-12-01

    M-type Barium Magnesium hexaferrite with the composition BaMg{sub 2}Fe{sub 10}O{sub 19} was successfully prepared with and without surfactant by using a citrate precursor route. The obtained precursors were calcined at various temperatures. The crystalline structure, phase analysis and particle size were investigated by using X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) techniques. It is observed that the surfactant addition controls the microstructure of the formed Barium Magnesium hexaferrite particles and the type of surfactant plays a crucial role in deciding the morphology of particles.

  10. Structural and magnetic properties of barium-gadolinium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba 1-xGd x)O·5.25Fe 2O 3 ( x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe 2O 3) and GdFeO 3 were detected in the remaining samples. Coercivity ( Hc) shows remarkably high values, ˜293 kA/m for x=0.20 and 0.30 with a maximum of 322 kA/m for x=0.25. Specific saturation magnetization ( σsat) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  11. Designed microstructures in textured barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  12. Barium hexaferrite ferrofluids - preparation and physical properties

    NASA Astrophysics Data System (ADS)

    Müller, R.; Hiergeist, R.; Steinmetz, H.; Ayoub, N.; Fujisaki, M.; Schüppel, W.

    1999-07-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared for the first time using oleic acid as surfactant and Isopar M ® as carrier liquid. The initial susceptibility versus temperature for zero-field cooling of the ferrofluid was obtained by a vibrating sample magnetometer. TEM pictures of the fluid show isolated particles and only small agglomerates and a mean particle diameter of approx. 8 nm. Numerical calculations of the magneto-viscous effect, based on the local-equilibrium magnetic state model, clearly show the benefit for Ba-ferrite ferrofluids resulting from the high uniaxial anisotropy compared to magnetite ferrofluids. Rheological measurements were performed with a rotational-type viscometer with magnetic field perpendicular to the hydrodynamic vortex axis.

  13. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    NASA Astrophysics Data System (ADS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-05-01

    M-type barium hexaferrite (BaFe12O19) and cobalt doped barium hexaferrite (BaFe11CoO19) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300K to 60K, magnetization value was increased in both the samples compared to those at 300K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  14. Preparation of barium hexaferrite powders using oxidized steel scales waste

    NASA Astrophysics Data System (ADS)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  15. Spherical barium ferrite nanoparticles and hexaferrite single crystals for information data storage and RF devices

    NASA Astrophysics Data System (ADS)

    Jalli, Jeevan Prasad

    circulators and isolators. Traditional RF devices using spinel or garnets are disadvantageous in the millimeter range frequencies, since they require a strong external bias field provided by external permanent magnets. A promising approach to circumvent this problem is to use the high crystalline anisotropy field in the hexaferrites. Single crystals of M and Y-type hexaferrites show promising results with their low microwave losses and excellent magnetic and physical properties. In this dissertation efforts to grow, high-quality bulk M and Y-type single crystals with the aim to study and improve their magnetic and microwave properties with respect to different cation dopant elements is reported. Also, a liquid phase epitaxial technique was developed to grow thick barium ferrite films onto semiconductor substrates. Finally, magnetic domain patterns on bulk M-type single crystals was studied by using a magnetic force microscopy technique.

  16. Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; El-Sayed, Adly H.; Tawfik, A.; Hamad, Mahmoud A.

    2016-07-01

    M-type barium hexaferrite (BaM) particles–polystyrene (PS) composite has been successfully synthesized. Fourier transform infrared spectra confirm the synthesis of the BaM–PS composite. Scanning electron microscopy shows that BaM particles are attached rather well to the PS matrix and have variable sizes and shapes. Differential and thermogravimetric analysis indicate that PS chains are well coupled within the BaM powder and the thermal stability of PS is enhanced by incorporating BaM in the PS matrix.

  17. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Lim, Guh-Hwan; Lee, Jooyoung; Kwon, Nayoung; Bok, Shingyu; Sim, Hwansu; Moon, Kyoung-Seok; Lee, Sang-Eui; Lim, Byungkwon

    2016-08-01

    We report on a simple approach to fabricate mechanically robust magnetic cellulose papers containing M-type barium hexaferrite (BaFe12O19) nanoplates. BaFe12O19 nanoplates were synthesized by a hydrothermal method and then chemically functionalized by using a silane coupling agent. The magnetic cellulose papers prepared with the silane-treated BaFe12O19 nanoplates exhibited improved mechanical properties with tensile strength of 58.5 MPa and Young's modulus of 2.95 GPa. [Figure not available: see fulltext.

  18. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  19. Magnetic and structural investigations on barium hexaferrite ferrofluids

    NASA Astrophysics Data System (ADS)

    Müller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.; Wiedenmann, A.

    2002-11-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared using oleic acid as surfactant and Isopar M ® or dodecane as carrier liquid. The ferrite particles were prepared by glass crystallization. Hysteresis parameters, the initial susceptibility versus temperature and the magnetic particle size were obtained by VSM. Ferrofluids with a partly deuterated carrier liquid were investigated by small angle neutron scattering (SANS). SANS curves lead to a bimodal size distribution consisting of single magnetic particles with an organic shell and aggregated particles with an incomplete organic layer.

  20. Brillouin function characteristics for La-Co substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Wu, Chuanjian; Yu, Zhong; Yang, Yan; Sun, Ke; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen

    2015-09-01

    La-Co substituted barium hexaferrites with the chemical formula of Ba1-xLaxFe12-xCoxO19 (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f1, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ωbf2, ωkf1, ωaf1, ωkf2, and ωbk of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f1, 4f2, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ωbf2 and ωaf1 decrease constantly, while the molecular-field coefficients ωkf1, ωkf2, and ωbk show a slight change.

  1. First observation of magnetoelectric effect in M-type hexaferrite thin films

    SciTech Connect

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetization with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  2. Effect of pb on the magnetic interactions of the M-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Guerrero, A. L.; Mirabal-García, M.; Palomares-Sánchez, S. A.; Martínez, J. R.

    2016-02-01

    This work reports the magnetic interactions of M-type lead hexaferrites. The samples were prepared using the solid state reaction method varying the lead concentration and compensating its lost by thermal treatment in order to obtain pure phases. The structural characterization was made through X-ray diffraction and the Rietveld refinement method. The morphology and grain-growth analysis were carried out using scanning electron microscopy. The magnetic interactions were studied through isothermal remanence (IRM) and DC demagnetization (DCD) remanence curves and through the construction of Henkel plots. By analyzing deviations from the Stoner-Wohlfarth model for non-interacting particles, it was determined the way in which lead modifies the interaction state in the hexaferrites. The experimental results show that the demagnetizing interactions prevail in systems with high lead content, and as lead concentration diminishes the intensity of magnetic interactions also decreases giving rise to magnetizing interactions

  3. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications. PMID:26726671

  4. Brillouin function characteristics for La-Co substituted barium hexaferrites

    SciTech Connect

    Wu, Chuanjian E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen; Yang, Yan

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  5. Damage of M-type baryum hexaferrites induced by GeV-heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, J. M.; Brisard, F.; Meftah, A.; Toulemonde, M.; Studer, F.

    1995-12-01

    The damage induced in single crystals of M-type baryum hexaferrites (BaFe 12O 19 and BaFe 12- x-yCo xTi yO 19 with x ˜- 1.4; y ˜- 1.5) by 3.8 GeV 129Xe and 6.0 GeV 208Pb ion irradiations has been monitored with room temperature (RT) 57Fe Mössbauer spectrometry. The damage cross sections deduced from the former data are compared with our previous results on polycrystalline samples. The effects of amorphous track formation on the RT ac magnetic permeability and Mössbauer spectra are studied. Comparison is also made with our previous results on another (ferri) magnetic insulator, namely Y 3Fe 5O 12, regarding the effects of disorder and track-induced strain field on the magnetic properties.

  6. Synthesis and magnetic properties of Co-Ti-Bi codoped M-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Jia, Lijun; Zhang, Huaiwu; Yin, Shuiming; Bai, Feiming; Liu, Baoyuan; Wen, Qiye; Shen, Jian

    2011-04-01

    The effects of Co2+, Ti4+, and Bi3+ substitution on the microstructures and properties of low-temperature fired M-type barium hexaferrites have been studied in order to adapt the development of low-temperature cofired ferrites technology and produce gyromagnetic devices with a multilayer process. It is found that Bi3+ ions can enter into the 2a sublattice and consequently enhance the grain growth and densification due to the activation of the lattice, which in turn first lead to an increase and then a decrease of Ms. The substitution of Bi3+ ions is beneficial to forming the M phase and lowers the sintering temperature to about 900 °C, which is ideal for cofiring with silver paste. Scanning electron microscope and x-ray diffraction analysis have shown that the samples have excellent crystalline grains with a uniform size about 1-2 μm. Moreover, nonmagnetic Ti4+ ions prefer to enter the 4fVI octahedral sites, giving rise to the weakening of the strong 12k-4fVI superexchange path and thus the isotropic exchange energy approaches the other second-order terms on the magnetic Hamiltonian, such as the antisymmetric interaction or even the magnetocrystalline anisotropy. With increasing the substitution content, some Co2+ ions, which locate in octahedral 12k sites, give a strong planar contribution to the anisotropy. Therefore, Ms and Hc decrease with the Co-Ti-substitution.

  7. Effect of sintering temperature on structural property of X-type barium-zinc hexaferrites

    NASA Astrophysics Data System (ADS)

    Kagdi, Amrin; Solanki, Neha; Jotania, Rajshree B.

    2016-05-01

    X-type Barium-Zinc hexaferrite powder with chemical composition Ba2Zn2Fe28O46 has been prepared using citrate gel auto combustion technique. The combusted powder waspre-heated at 550 °C for 4 hours followed by final calcinations of 1100 °C and 1250 °C for 5 hoursrespectively. Prepared hexaferrite samples were characterizedusingdifferent instrumental techniques such as FTIR and XRD. XRD analysis of the sample calcined at 1250 °C revealed formation of mono phase of X-type hexaferrite; while the sample calcined at 1100 °C shows multiphases of M, W and X-type hexaferrites. FTIR spectra of both samples show stretching of metal-oxide bands.

  8. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki; Liyanage, Laalitha S. I.; Moitra, Amitava

    2015-06-01

    We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite SrFe12-xAlxO19 with x = 0.5 and x = 1.0. We find that the non-magnetic Al3+ ions preferentially replace Fe3+ ions at two of the majority spin sites, 2a and 12k, eliminating their positive contribution to the total magnetization causing the saturation magnetization Ms to be reduced as Al concentration x is increased. Our formation probability analysis further provides the explanation for increased magnetic anisotropy field when the fraction of Al is increased. Although Al3+ ions preferentially occupy the 2a sites at a low temperature, the occupation probability of the 12k site increases with the rise of the temperature. At a typical annealing temperature (>700 °C) Al3+ ions are much more likely to occupy the 12k site than the 2a site. Although this causes the magnetocrystalline anisotropy K1 to be reduced slightly, the reduction in Ms is much more significant. Their combined effect causes the anisotropy field Ha to increase as the fraction of Al is increased, consistent with recent experimental measurements.

  9. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite

    SciTech Connect

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki; Liyanage, Laalitha S. I.; Moitra, Amitava

    2015-06-28

    We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite SrFe{sub 12−x}Al{sub x}O{sub 19} with x = 0.5 and x = 1.0. We find that the non-magnetic Al{sup 3+} ions preferentially replace Fe{sup 3+} ions at two of the majority spin sites, 2a and 12k, eliminating their positive contribution to the total magnetization causing the saturation magnetization M{sub s} to be reduced as Al concentration x is increased. Our formation probability analysis further provides the explanation for increased magnetic anisotropy field when the fraction of Al is increased. Although Al{sup 3+} ions preferentially occupy the 2a sites at a low temperature, the occupation probability of the 12k site increases with the rise of the temperature. At a typical annealing temperature (>700 °C) Al{sup 3+} ions are much more likely to occupy the 12k site than the 2a site. Although this causes the magnetocrystalline anisotropy K{sub 1} to be reduced slightly, the reduction in M{sub s} is much more significant. Their combined effect causes the anisotropy field H{sub a} to increase as the fraction of Al is increased, consistent with recent experimental measurements.

  10. Synthesis and magnetic properties of Co-Ti-Bi codoped M-type barium ferrite

    SciTech Connect

    Jia Lijun; Zhang Huaiwu; Yin Shuiming; Bai Feiming; Liu Baoyuan; Wen Qiye; Shen Jian

    2011-04-01

    The effects of Co{sup 2+}, Ti{sup 4+}, and Bi{sup 3+} substitution on the microstructures and properties of low-temperature fired M-type barium hexaferrites have been studied in order to adapt the development of low-temperature cofired ferrites technology and produce gyromagnetic devices with a multilayer process. It is found that Bi{sup 3+} ions can enter into the 2a sublattice and consequently enhance the grain growth and densification due to the activation of the lattice, which in turn first lead to an increase and then a decrease of M{sub s}. The substitution of Bi{sup 3+} ions is beneficial to forming the M phase and lowers the sintering temperature to about 900 deg. C, which is ideal for cofiring with silver paste. Scanning electron microscope and x-ray diffraction analysis have shown that the samples have excellent crystalline grains with a uniform size about 1-2 {mu}m. Moreover, nonmagnetic Ti{sup 4+} ions prefer to enter the 4f{sub VI} octahedral sites, giving rise to the weakening of the strong 12k-4f{sub VI} superexchange path and thus the isotropic exchange energy approaches the other second-order terms on the magnetic Hamiltonian, such as the antisymmetric interaction or even the magnetocrystalline anisotropy. With increasing the substitution content, some Co{sup 2+} ions, which locate in octahedral 12k sites, give a strong planar contribution to the anisotropy. Therefore, M{sub s} and H{sub c} decrease with the Co-Ti-substitution.

  11. Properties of Cr-substituted M-type barium ferrites prepared by nitrate citrate gel-autocombustion process

    NASA Astrophysics Data System (ADS)

    Ounnunkad, S.; Winotai, P.

    2006-06-01

    The Cr-substituted M-type barium hexaferrites, BaFe 12-xCr xO 19, with x=0.0-0.8 have been successfully prepared by nitrate-citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr 3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr 3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr 3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr 3+ ions preferentially occupy the 2a, 12k, and 4f VI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.

  12. Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Su, Zhijuan; Geiler, Michael; Chen, Yajie; Harris, Vincent G.

    2016-06-01

    A highly textured M-type barium hexa-ferrite (BaM) quasi-single crystal was fabricated by a magnetic forming plus liquid participation sintering technique. Its grain orientation degree was determined to be 97.3% with the tile angle no more that 5°. The magnetization behavior from its angular magnetic hysteresis loops was very similar to that of a BaM single crystal. Moreover, the feasibility of practical utilization of the as-fabricated BaM quasi-single crystal in low-field biased circulators was certificated by a simulation method.

  13. Structural and magnetic properties of conventional and microwave treated Ni-Zr doped barium strontium hexaferrite

    SciTech Connect

    Kanagesan, S.; Jesurani, S.; Velmurugan, R.; Prabu, S.; Kalaivani, T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Saturation magnetization increases whereas the coercivity decreases. Black-Right-Pointing-Pointer The transition from hard phase to soft phase. Black-Right-Pointing-Pointer Therefore, it is used for high-density magnetic recording applications. -- Abstract: M-type hexaferrites of component B{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} were investigated. The XRD patterns show single phase of the magnetoplumbite barium strontium ferrite and no other phases were present. Significant increase in line broadening of the XRD patterns was observed indicating a decrease of grain size. The samples exhibit well defined crystallization; all of them are hexagonal platelet grains. As the substitution level increased x = 0.2-0.8 mol%, the grains are agglomerated and the average diameter increased. The H{sub c} decreases remarkably with increasing Ni and Zr ions content. It was found that the particle size could be effectively decreased and coercivity H{sub c} could easily be controlled by varying the concentration (x) without significantly decreasing saturation magnetization. In particular, Ba{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} with x = 0.2, 0.4, 0.6, 0.8 mol% has suitable magnetic characteristics with particle size small enough for high-density magnetic recording applications.

  14. Structural and magnetic properties of an anisotropic M-type LaCo-substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Tyrman, Muriel; Pasko, Alexandre; De La Barrière, Olivier; Mazaleyrat, Frédéric

    2015-11-01

    Rare-earth-free permanent magnets returned to the forefront of scientific and technological concerns about the environmental and economical issues. The emergence of new markets, control of costs and availability of raw materials encourage to look for alternative materials containing much less, or no, rare earth elements selected from the most common and most available. The hexaferrite doped with lanthanum and cobalt present interesting properties to succeed the rare-earth magnets. The structural and magnetic properties of a strontium hexaferrite are presented in this paper, and two models are developed in order to correlate structural and magnetic properties. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  15. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    SciTech Connect

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A.

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{sup (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.

  16. Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2014-02-01

    M-type hexaferrite BaCr x Ga x Fe12-2 x O19 ( x = 0.2) powders have been synthesized by use of a sol-gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz-3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell-Wagner two-layer model and Koop's phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

  17. Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations

    SciTech Connect

    Sharma, Manju; Kashyap, Subhash C.; Gupta, Hem C.; Dimri, Mukesh C.; Asokan, K.

    2014-07-15

    Curie temperature of polycrystalline barium hexaferrite (BaFe{sub 12}O{sub 19}), prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15%) by energetic heavy ion irradiation (150 MeV, Ag{sup 12+}) at ambient temperature due to dense electronic excitations Moderate fluence (1 × 10{sup 12} ions/cm{sup 2}) induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 10{sup 13} ions/cm{sup 2}) has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.

  18. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Primc, D.; Makovec, D.

    2015-01-01

    supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. Electronic supplementary information (ESI) available: Synthesis (ESI #1) and properties (ESI #2) of the barium hexaferrite core nanoparticles, TEM of the nanoparticles synthesized under an excessive supersaturation (ESI #3), and magnetic properties of physical mixtures of the hard-magnetic hexaferrite and the soft-magnetic spinel ferrite (ESI #4). See DOI: 10.1039/c4nr05854b

  19. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    NASA Astrophysics Data System (ADS)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  20. The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism.

    PubMed

    Sepelák, V; Myndyk, M; Witte, R; Röder, J; Menzel, D; Schuster, R H; Hahn, H; Heitjans, P; Becker, K-D

    2014-01-01

    The response of the structure of the M-type barium hexaferrite (BaFe12O19) to mechanical action through high-energy milling and its impact on the magnetic behaviour of the ferrite are investigated. Due to the ability of the (57)Fe Mössbauer spectroscopic technique to probe the environment of the Fe nuclei, a valuable insight on a local atomic scale into the mechanically induced changes in the hexagonal structure of the material is obtained. It is revealed that the milling of BaFe12O19 results in the deformation of its constituent polyhedra (FeO6 octahedra, FeO4 tetrahedra and FeO5 triangular bi-pyramids) as well as in the mechanically triggered transition of the Fe(3+) cations from the regular 12k octahedral sites into the interstitial positions provided by the magnetoplumbite structure. The response of the hexaferrite to the mechanical treatment is found to be accompanied by the formation of a non-uniform nanostructure consisting of an ordered crystallite surrounded/separated by a structurally disordered surface shell/interface region. The distorted polyhedra and the non-equilibrium cation distribution are found to be confined to the amorphous near-surface layers of the ferrite nanoparticles with the thickness extending up to about 2 nm. The information on the mechanically induced short-range structural disorder in BaFe12O19 is complemented by an investigation of its magnetic behaviour on a macroscopic scale. It is demonstrated that the milled ferrite nanoparticles exhibit a pure superparamagnetism at room temperature. As a consequence of the far-from-equilibrium structural disorder in the surface shell of the nanoparticles, the mechanically treated BaFe12O19 exhibits a reduced magnetization and an enhanced coercivity. PMID:25406482

  1. Influence of sintering temperature on structural, morphological and magnetic properties of barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Shafqat, M. Burhan; Arif, Omer; Atiq, Shahid; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Naseem, Shahzad

    2016-07-01

    Barium hexaferrite nanoparticles are attractive for modern data storage and microwave devices due to their unique properties. Single phase synthesis of barium hexaferrite using sol-gel auto-combustion route was optimized by varying sintering temperature and time. X-ray diffraction confirmed single phase hexagonal crystal structure of the sample sintered at 1100∘C for 2 h. Crystallite size, as determined using Scherrer’s formula, was increased with the increase in sintering temperature while the porosity remained nearly unchanged. Field emission scanning electron microscope (FE-SEM) revealed that grain size was increased from nanometers to micrometers by rising the sintering temperature and the shape of particles was platelet-like hexagonal at 900∘C. Vibrating sample magnetometer (VSM) exhibited that saturation magnetization and coercivity increased with the increase of sintering temperature. Maximum saturation magnetization and coercivity values were 36.80 emu/g and 5365 Oe, respectively, for the sample sintered at 1100∘C for 2 h.

  2. Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA

    PubMed Central

    Ferk, Gregor; Krajnc, Peter; Hamler, Anton; Mertelj, Alenka; Cebollada, Federico; Drofenik, Miha; Lisjak, Darja

    2015-01-01

    The incorporation of magnetic barium hexaferrite nanoparticles in a transparent polymer matrix of poly(methyl methacrylate) (PMMA) is reported for the first time. The barium hexaferrite nanoplatelets doped with Sc3+, i.e., BaSc0.5Fe11.5O12 (BaHF), having diameters in the range 20 to 130 nm and thicknesses of approximately 5 nm, are synthesized hydrothermally and stabilized in 1-butanol with dodecylbenzenesulfonic acid. This method enables the preparation of monolithic nanocomposites by admixing the BaHF suspension into a liquid monomer, followed by in-situ, bulk free-radical polymerization. The PMMA retains its transparency for loadings of BaHF nanoparticles up to 0.27 wt.%, meaning that magnetically and optically anisotropic, monolithic nanocomposites can be synthesized when the polymerization is carried out in a magnetic field. The excellent dispersion of the magnetic nanoparticles, coupled with a reasonable control over the magnetic properties achieved in this investigation, is encouraging for the magneto-optical applications of these materials. PMID:26066069

  3. Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites

    NASA Astrophysics Data System (ADS)

    Ashima; Sanghi, Sujata; Agarwal, Ashish; Reetu; Ahlawat, Neetu; Monica

    2012-07-01

    M-type hexaferrites with compositions BaFe12O19 (BFO), SrFe12O19 (SFO), Ba0.5Sr0.5Fe12O19 (BSFO), and Ba0.5Pb0.5Fe12O19 (BPFO) were synthesized by commercial solid state reaction method. The Rietveld refinement of x-ray powder diffraction revealed a single hexagonal phase with space group P63/mmc for BFO, SFO, and BSFO samples, whereas BPFO sample contains hematite (α-Fe2O3) phase with space group R3c along with the M-type main phase. All the samples show dispersion in dielectric constant (ɛ') and dielectric loss (tan δ) values with frequency. The values of ɛ' and tan δ increase with increase in temperature due to increase in the number of charge carriers and their mobilities, which are thermally activated. The reciprocal temperature dependence of conductivity (σac) and the most probable relaxation time (τM″) satisfies the Arrhenius relation. A perfect overlapping of the normalized plots of modulus isotherms on a single "super curve" for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. Further, the complex plots of M* (M″ vs M') indicate that dc conductivity dominates in the region below the M″max point. Above M″max, the variations follow Jonscher power law (σ = Aωs) implying that ac conductivity is dominating in this region. Among the prepared samples, SFO hexaferrite has lowest values of σac, ɛ', and tan δ making it suitable for use in microwave devices.

  4. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxun; Zhang, Qiguo; Gu, Mingyuan; Shen, Haigen

    2005-11-01

    Aluminum substituted barium hexaferrites were prepared by the self-propagating combustion method and subsequent calcination at 850 °C. The crystalline structure, complex permittivity, complex permeability, and hyperfine parameters of BaFe12-xAlxO19 (x varies from 1.5 to 2.3 in steps of 0.2) were measured with x-ray diffraction (XRD), vector network analyzer and Mössbauer spectroscopy. The XRD results show that all Al3+ ions enter into the lattice of hexagonal barium ferrite. The substitution of Al3+ ions can greatly affect the complex permittivity and permeability of barium ferrite. With increasing substitution, the real part of complex permittivity increases gradually, and the peaks of the imaginary part of complex permeability shift into higher frequency band. When the substitution amount x is 1.9, the largest movement of the peaks is 1.95 GHz, which indicates that the ferromagnetic resonant frequency of barium ferrite increases by 1.95 GHz. The Al3+ ions preferentially occupy the 4f2, 2a, 4f1, and 12k sites in the subcrystalline structure up to x =1.9, and then the Al3+ ions mainly occupy 12k sites. This change also results in 2b sites with a large quadrupole splitting. These occupations lead to a variable magnetocrystalline anisotropy field.

  5. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.; Afsar, Mohammed N.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffraction to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.

  6. Atomic scale study of magnetic phase transitions in (Co,Ti;Sc) substituted nanosize barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Krezhov, Kiril

    BaFe12O19 and related isostructural (M-type) hexaferrites derived by single or double cation substitution for Fe3+ with preservation of the formal valence are a recognized group of oxides for their remarkable properties. The magnetic interactions may be tuned by suitable substitutions resulting in notable magnetic properties utilized extensively for permanent magnets, microwave devices and perpendicular recording media. We report on the magnetic structure evolution accompanying the magnetic anisotropy change, from a combined magnetic (SQUID), x-ray and neutron diffraction, and magnetic field dependent 57Fe Mössbauer study on BaFe12O19 at selected cation substitutions. The short and long range atomic and magnetic order in powder samples of nanosize particles prepared by soft chemistry routes were studied and compared with own and literature data for the parent BaFe12O19 compound prepared by solid state reaction. Refinements based on diffraction data show that the magnetic structures of BaFe12-xXxO19 (X=Co,Ti; Sc) hexaferrites are largely temperature and substitution dependent. Between 200 and 300K the (Co,Ti)-hexaferrites (x=0.4, 0.7, 0.8, 0.85) display ferrimagnetic structures where the canting of the magnetic moments depends on the substitution rate. When lowering the temperature the magnetic structure for x=0.45 remains ferrimagnetic down to 10 K, while for x=0.7 and x=0.8 a complex conical magnetic structures is finally established. For x=0.85 significant distortions in the local oxygen surrounding of ferric cation sites were established, while the grain-size effect on the structural parameters was considerably smaller. The thermal expansion coefficient exhibits a strong anisotropy. The refined magnetic moments are considerably lower than the theoretical spin only moments, especially for the 4e and 12k sites, indicating a local noncollinearity with short-range ordering. The five-cation sublattice collinear ferrimagnetic structure of uniaxial type known as

  7. Magnetic and Microwave Properties of Barium Hexaferrite Ceramics Doped with Gd and Nd

    NASA Astrophysics Data System (ADS)

    Jamalian, Majid; Ghasemi, Ali; Pourhosseini Asl, Mohammad Javad

    2015-08-01

    Substituted barium hexaferrite nanoparticles with the chemical formula BaFe12- x (GdNd) x/2O19 ( x = 0-2, in steps of 0.5) were prepared by a co-precipitation method. Phase identification and crystal structure of the nanoparticles were investigated by x-ray diffraction. The morphology of the nanopowders was investigated by field-emission scanning electron microscopy. Results from Fourier-transform infrared spectroscopy enabled identification of stretching and bending modes. Magnetic properties were measured by use of a vibrating sample magnetometer. The results revealed that saturation magnetization and coercivity decreased as x increased. Investigation of microwave-absorption properties, by use of a vector network analyzer, revealed that the maximum reflection loss of substituted Ba-ferrite of thickness 1.6 mm reached -41.8 dB at a frequency of 4.3 GHz and a bandwidth of 7.5 GHz, with reflection loss being >-20 dB. From these results it was concluded that the composites had good potential as absorbers in the gigahertz frequency range.

  8. Influence of the preparation methods on the structure and magnetic properties of nanosized Al-substituted barium hexaferrite powders

    NASA Astrophysics Data System (ADS)

    Peneva, P.; Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Vertruyen, B.; Henrist, C.; Closet, R.; Cloots, R.; Zaleski, A.

    2016-03-01

    We report studies on the correlation between the method of preparation, microstructure and magnetic properties of nanosized monodomain Al-substituted barium hexaferrite (BaAlFe11O19) powders. The powders were obtained by the co-precipitation and single microemulsion methods. The particles in the samples had a size between 80 nm and 135 nm depending on the synthesis conditions. The value of the saturation magnetization Ms measured was very high, namely, 66.12 emu/g. The hysteresis loop was very narrow, with the coercivity Hc being 163 Oe, which indicated that the particles were in a near-superparamagnetic state.

  9. Electron spin resonance (ESR) of magnetic sublattices in Sc-substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Díaz-Pardo, Rebeca; Bierlich, Silvia; Töpfer, Jörg; Monjaras, Raúl Valenzuela

    2016-05-01

    The partial substitution of Fe3+ by Sc3+ in barium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the ferrite. In order to investigate these interactions, samples with formula BaScxFe12-xO19 (1 ≤x ≤ 2) were prepared by sintering (1300°C, 6h). After structural characterization by x-ray diffraction, their ferromagnetic resonance spectra were measured in the X-band (9.4 GHz), in the 100-500 K temperature range. For x = 2, a single, broad resonance peak was observed at the low temperatures (103 K), exhibiting a progressive splitting into two peaks for increasing T, to finally coalesce again into a single (paramagnetic) narrow peak at 473 K. These results are interpreted in terms of a substitution of Fe3+ by Sc3+ ions in the 4fvi and 2b sublattices; the diamagnetic cations disrupt the superexchange interactions and produce a splitting of the 12k sublattice (which interacts directly with the 4fvi sublattice) into two sublattices with different canting angles, and different thermal dependence. As a result, the fraction of the 12k sublattices that are nearest neighbours of substituted 4fvi sites can behave as an independent sublattice for some temperature ranges. A similar behavior is observed for all the compositions with varying degrees of amplitude, but it is more evident for x = 2. A deconvolution of peaks has been attempted, in order to shed more light into this behavior.

  10. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  11. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite.

    PubMed

    Primc, D; Makovec, D

    2015-02-14

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe(3+)/Fe(2+) ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe(3+) ions from the nitrate complex with urea ([Fe((H2N)2C=O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. PMID:25583312

  12. Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite

    NASA Astrophysics Data System (ADS)

    Abbas, S. M.; Chatterjee, R.; Dixit, A. K.; Kumar, A. V. R.; Goel, T. C.

    2007-04-01

    The electromagnetic (EM) and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrite compositions BaCox2+Fey+2Six+y4+Fe12-2x-2y+3O19 (x =0.9 and y =0.0, 0.05, and 0.2) and its polymer composites prepared from hexaferrite, polyaniline, and carbon powders dispersed in polyurethane matrix have been investigated at the microwave frequency range of the X band (8.2-12.4GHz). The hexaferrite compositions were synthesized by solid-state reaction technique, whereas polyaniline, by chemical route. The permeabilities of a ferrite are drastically reduced at higher gigahertz frequencies. The permittivities, however, can be enhanced by appropriate choice of composition and processing temperature. In the present ferrite composition, silicon content is taken in excess so as to convert some of the Fe3+ ions to Fe2+ ions. This conversion has been shown to enhance EM and absorption properties. Mössbauer spectroscopy on the samples establishes that addition of excess Si4+ converts some of the Fe3+ to Fe2+. The sintered ferrites have shown resonance phenomena, but the composites do not. The EM parameters ɛ', ɛ″, μ', and μ″ were measured using a vector network analyzer (Agilent, model PNA E8364B). These measured EM parameters were used to determine the absorption spectra at different sample thicknesses based on a model of a single layered plane wave absorber backed by a perfect conductor. The sintered ferrite composition (x =0.9 and y =0.05) showed the best absorption properties [a minimum reflection loss of -17.7to-14.3dB over the whole frequency range of the X band (8.2-12.4) for a sample thickness of just 0.8mm], and it is used in the composite absorbers in powder form along with other constituents. The optimized composite absorber has shown dielectric constant ɛ'˜11.5, dielectric loss ɛ″˜2.3, and a minimum reflection loss of -29dB at 10.97GHz with the -20dB bandwidth over the frequency range of 9.7-12.2GHz for a sample thickness of 2.0mm. The

  13. Synthesis and structural characterization of nonstoichiometric barium hexaferrite materials with Fe:Ba ratio of 11.5 - 16.16

    NASA Astrophysics Data System (ADS)

    Maswadeh, Yazan; Mahmood, Sami H.; Awadallah, Ahmad; Aloqaily, Aynour N.

    2015-10-01

    Synthesis of barium hexaferrites BaFe12O19 (BaM) is often accompanied by the presence of secondary nonmagnetic phases. The coexistence of these phases reduces the yield of the desired BaM magnetic phase and screens its intrinsic magnetic properties such as the saturation magnetization, and impacts the magnetic properties of the sample negatively. Therefore, assessment of the abundance of these phases and investigating their effect on the structural properties of the sample is of fundamental and practical importance. In this work, BaM hexaferrites were prepared by ball milling and sintering powder precursors with Fe:Ba molar ratios varying from 11.5 to 16.16. The structural properties of the phases in the samples were investigated by x-ray diffraction (XRD). The weight ratios of the different phases, as well as their refined structural parameters were determined using Rietveld analysis. XRD patterns revealed the development of α-Fe2O3 (hematite) phase with increasing relative diffracted intensity as the Fe:Ba molar ratio increased. The evolution of the intensity of this phase was used to monitor the weight ratio of the secondary hematite phase in the sample, and a relation between the its weight ratio and the Fe:Ba ratio was established. The optimal Fe:Ba ratio required to synthesis a pure barium hexaferrite phase was then determined, and found to be 11.7.

  14. Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

    SciTech Connect

    Penn, R.L.; Banfield, J.F.; Voigt, J.

    1997-03-01

    To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

  15. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    NASA Astrophysics Data System (ADS)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  16. Structural, magnetic and microwave properties of barium hexaferrite thick films with different Fe/Ba mole ratio

    NASA Astrophysics Data System (ADS)

    Verma, Samiksha; Dhawan, S. K.; Paesano, Andrea; Pandey, O. P.; Sharma, Puneet

    2015-12-01

    Barium hexaferrite (BaFe12O19) thick films (∼60 μm) with different BaO·xFe2O3 mole ratio (x=5.0-6.0) were prepared by screen printing method. X-ray diffraction analysis confirmed the formation of single phase BaFe12O19 (BaM). Preferential site occupation of Fe3+ ion at five different crystallographic sites, with varied mole ratio was measured by Mössbauer spectroscopy. Vacancy fraction found to be higher at 4f1, 4f2 and 2b sites for mole ratio 5.5 and 5.0 respectively. Magnetic measurement shows that the magnetization (M) and magnetocrystalline anisotropy field (Ha) depends upon mole ratio. M and Ha are found to be maximum for mole ratio 5.5, while the coercivity (Hc) remains constant. Reflection losses (RL) in the frequency range of 12-18 GHz were also studied. Present investigation demonstrates the effect of mole ratio on structural, magnetic and microwave absorption properties of BaM thick films for microwave device applications.

  17. Study of electrical properties of W-type barium hexaferrite for high frequency application

    NASA Astrophysics Data System (ADS)

    Sharma, Parul; Thakur, Atul; Thakur, Preeti

    2016-05-01

    Hexaplana W-type barium ferrite of nominal composition BaZn1.5Co0.5Fe16O27 was prepared by a co-precipitation method. The structural and electrical properties were studied at different sintering temperatures. The average crystallite size was found to be in the range 46 ‒ 57 nm calculated by Scherrer formula, which means crystallite size increases with an increase in sintering temperature. Fourier transform spectroscopy reveals the ferrite peaks in the range 577.19 cm-1 ‒ 595.48 cm-1 confirming the hexagonal structure of ferrites. Metal-Semiconductor transition temperature was found to be decrease as the sintering temperature increases, whereas the trend for activation energy was found to be increasing.

  18. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-05-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the "crystal seeds" for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%.

  19. Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Shams, Mohammad H.; Rozatian, Amir S. H.; Yousefi, Mohammad H.; Valíček, Jan; Šepelák, Vladimir

    2016-02-01

    The doped barium hexaferrite, BaFe12-x(Mg0.5Ti0.5)xO19 with 1≤x≤5, is synthesized by a solid state ceramic method. Its crystalline structure, morphology, as well as static and dynamic magnetic properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry, and vector network analysis, respectively. The cation distribution of Mg2+ and Ti4+ in the hexagonal structure of BaFe12-x(Mg0.5Ti0.5)xO19 is investigated by 57Fe Mössbauer spectroscopy. The effect of Mg2+ and Ti4+ dopants on static and high-frequency magnetic properties of the ferrite is studied.

  20. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    NASA Astrophysics Data System (ADS)

    Jotania, R. B.; Khomane, R. B.; Chauhan, C. C.; Menon, S. K.; Kulkarni, B. D.

    The preparation of W-type hexaferrite particles with the composition BaCa 2Fe 16O 27 by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa 2Fe 16O 27 hexaferrites has been studied. The value of saturation magnetization ( Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization ( Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization ( Ms=24.60 emu/g) compared to the normal sample.

  1. LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Liu, Yingli; Li, Jie; Liu, Qian; Zhang, Huaiwu; Harris, Vincent. G.

    2016-05-01

    Hexagonal magnetoplumbite ferrites typically have sintering temperatures above 1100∘C in order to stabilize a single phase compound, which is much higher than the melting point of silver leading to device fabrication challenges. Application of low temperature co-fired ceramics (LTCC) technologies may prove effective in decreasing the sintering temperature of hexagonal ferrites. Ferrite powders combined with glass frit powder is an effective pathway to lowering the sintering temperature. Here, hexagonal M-type barium ferrite (i.e., Ba(CoTi)1.5Fe9O19) ceramics, combined with BBSZ glass powder as a sintering aid were synthesized. Co and Ti ions where used to substitute for Fe cations in order to modify the magnetic anisotropy field. The density, microstructure, magnetic properties and complex permeability are reported. The BBSZ glass addition was shown to improve the densification and magnetic properties of the barium ferrite. The densification of the BaM ferrite Ba(CoTi)1.5Fe9O19 was further enhanced by the glass additive at low firing temperatures of below 900∘C because of the formation of a liquid phase. Complex permeability of ferrites sintered at 900∘C was also influenced by the BBSZ addition and the resonance frequency was shown to decrease with increased amounts of the glass modifier.

  2. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  3. Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method

    NASA Astrophysics Data System (ADS)

    Odeh, I.; El Ghanem, H. M.; Mahmood, S. H.; Azzam, S.; Bsoul, I.; Lehlooh, A.-F.

    2016-08-01

    This work describes the synthesis, structural, dielectric, and magnetic properties of Y-type Ba2Co2-xZnxFe12O22 hexaferrites prepared by the sol-gel n method. X-ray diffraction (XRD) results revealed a structure of the Zn-substituted samples consistent with the standard patterns for Y-type hexaferrites. The saturation magnetization at room temperature increased with Zn-substitution. Further, the coercive field for the sample with x=2.0 was found to have the lowest value. The results of the dielectric measurements indicated that all samples are insulators, and that the ac conductivity decreased with increasing zinc content. However, the ac conductivity increased with increasing dc bias. The effect of the dc bias was more pronounced on samples with low zinc content. The real part of the dielectric constant decreased markedly with increasing frequency at constant applied bias voltage. Further, the activation energy for the prepared samples depends strongly on the Zn concentration.

  4. Substantial enhancement in intrinsic coercivity on M-type strontium hexaferrite through the increase in magneto-crystalline anisotropy by co-doping of group-V and alkali elements

    SciTech Connect

    Ahn, Kyunghan Ryu, Byungki; Korolev, Dmitry; Jae Kang, Young

    2013-12-09

    The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantial improvement of intrinsic coercivity.

  5. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Kaur, Talwinder; Kaur, Barjinder; Bhat, Bilal H.; Kumar, Sachin; Srivastava, A. K.

    2015-01-01

    M-type barium hexaferrite Ba0.7La0.3Fe11.7Co0.3O19 (BaLCM) powder, synthesized using sol gel auto combustion method, heat treated at 700, 900, 1100 and 1200 °C. X ray diffraction (XRD) powder patterns of heat treated samples show the formation of pure phase of M-type hexaferrite after 700 °C. Thermo gravimetric analysis (TGA) reveals that the weight loss of BaLCM becomes constant after 680 °C. The presence of two prominent peaks, at 432 cm-1 and 586 cm-1 in Fourier Transform Infrared Spectroscopy (FT-IR) spectra, gives the idea of formation of M-type hexaferrites. The M-H curve obtained from Vibrating Sample Magnetometer (VSM) were used to calculate saturation magnetization (MS), retentivity (Mr), squareness ration (SR) and coercivity (Hc). The maximum value of coercivity (5602 Oe) is found at 900 °C. The band gap dependency on temperature was studied using UV-vis NIR spectroscopy. The dielectric constant has been found to be high at low frequency but it decreases with increase in frequency. Such kind of dielectric behavior is explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory.

  6. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  7. An investigation on the microstructures and magnetic properties of the Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Liu, Xiansong

    2014-11-01

    M-type hexaferrite Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 (0≤x≤0.35) magnetic powders and magnets were prepared by the solid-state reaction. The phase compositions of the magnetic powders were investigated by X-ray diffraction. X-ray diffraction patterns show that the hexagonal single phase is obtained in all samples. The micrographs of the magnets were observed by a field emission scanning electron microscopy. All magnets have formed hexagonal structures and the particles are distributed evenly. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence, intrinsic coercivity, magnetic induction coercivity and maximum energy product of the magnets continuously decrease with increasing barium content (x).

  8. Magnetism and magneto-optics of hexaferrite layers

    NASA Astrophysics Data System (ADS)

    Gerber, R.; Atkinson, R.; Šimša, Z.

    1997-11-01

    Recent contributions to research in magnetism and magneto-optics of hexaferrite layers, resulting from the collaboration between the above-mentioned institutions, are comprehensively reviewed. The pulsed laser deposition (PLD) technique is described and its main features, relying on the plume diagnostics and correct oxygen pressure, both being important for the deposition of hexaferrites of complex stoichiometry, are highlighted. The fabricated layers were investigated structurally and it was found that they are highly textured with the c-axis perpendicular to the film plane. Their magnetization was measured over a wide temperature range, 4.2-300 K, and in fields up to 12 T. Its dependence upon the cobalt content x in BaFe 12- x- yCo xTi yO 19 was also determined in the interval 0 ⩽ x ⩽ 0.8. The results were interpreted in terms of Néel theory and this, when combined with our results of Mössbauer spectra measurements, led to the formulation of a consistent model for the cation distribution in CoTi-substituted barium hexaferrites. The hysteresis-loop measurements provided data for obtaining values of anisotropy, which are in agreement with those of the bulk materials. The domain structure of thin hexaferrite layers was also studied, particularly the domain period dependence upon the sample thickness and cobalt content. The domain period dependence was found to be in very good agreement with theoretical micromagnetic calculations. Ellipsometry, reflectance photometry and Kerr/Faraday polarimetry were used to determine the optical and magneto-optical properties of hexaferrite platelets and thin layers. The complex refractive index and magneto-optic parameter were determined over the spectral range 350-850 nm and the reliability of the data was tested by comparison with photometric measurements of reflectance. The Faraday rotation and absorption spectra of substituted hexaferrite thin layers were measured in the 500-2000 nm wavelength range at room temperature

  9. Barium enema

    MedlinePlus

    ... series; Colorectal cancer - lower GI series; Colorectal cancer - barium enema; Crohn disease - lower GI series; Crohn disease - barium enema; Intestinal blockage - lower GI series; Intestinal blockage - ...

  10. The Microscopic Magnetic Properties of W-type Hexaferrite Powder Prepared by A Sol-Gel Route

    SciTech Connect

    Jotania, Rajshree; Chauhan, Chetna; Sharma, Pooja

    2010-12-01

    Magnetic particles of W-type barium-calcium hexaferrite (BaCa{sub 2}Fe{sub 16}O{sub 27}) have been synthesized using a Stearic acid gel route. The gel precursors were dried at 100 deg. C for 2 hrs and then calcinated at 650 deg. C, 750 deg. C, 850 deg. C and 950 deg. C for 4 hrs in a furnace and slowly cooled to room temperature in order to obtain barium-calcium hexaferrite particles. The microscopic magnetic properties of prepared samples studying using Moessbauer spectroscopy. Moessbauer spectra of all samples were recorded at room temperature. Mossbauer parameters like Isomer shift, Quadruple splitting etc. were calculated with respect to iron foil. Barium calcium hexaferrite samples heated at 650 deg. C, 750 deg. C, 850 deg. C show relaxation type Moessbauer spectra along with paramagnetic doublet. The intensity of paramagnetic doublet increases with temperature confirm the presence of ferrous ions in the samples, where as sample calcinated at 950 deg. C confirm the presence of ferrimagnetic phase with partial super paramagnetic nature of prepared hexaferrite sample.

  11. Magnetic characterization of Ca substituted Ba and Sr hexaferrites

    NASA Astrophysics Data System (ADS)

    Asti, G.; Carbucicchio, M.; Deriu, A.; Lucchini, E.; Slokar, G.

    1980-04-01

    A magnetic characterization has been worked out for the solid solution from Ba and Sr hexaferrites (BaFe 1 2O 1 9, SrFe 1 2O 1 9) towards CaO- xFe 2O 3 (2 ⪕ x ⪕5.5). Measurements of Curie temperature, saturation magnetization, magnetic anisotropy, together with Mössbauer characterization indicate that the intrinsic properties of the studied compounds do not change appreciably with increasing Ca content. These results, together with the X-ray data, are consistent with the formation of an undistorted M-type cell with a low content of iron and oxygen vacancies.

  12. Hexaferrite particles by coprecipitation and lyophilization

    NASA Astrophysics Data System (ADS)

    Calleja, A.; Tijero, E.; Martínez, B.; Piñol, S.; Sandiumenge, F.; Obradors, X.

    1999-05-01

    Fine strontium hexaferrite particles were prepared by lyophilization (known as freeze-drying) and coprecipitation of nitrates and chloride salts, respectively. The resulting powders were calcined at different temperatures between 700°C and 1100°C. As concluded from the measured hysteresis loops at 300 K, the freeze-dried hexaferrite showed good magnetic characteristics, the coercivity being as high as 5690 Oe. However, coprecipitated hexaferrite displayed poor coercivity values, around 1300 Oe at best.

  13. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  14. Al doped Ba hexaferrite (BaAlxFe12-xO19) thin films on Pt using metallo-organic decomposition

    NASA Astrophysics Data System (ADS)

    Harward, I.; Nie, Yan; Gardner, A.; Reisman, L.; Celinski, Z.

    2012-04-01

    We grew a series of aluminum-substituted M-type barium hexaferrite (BaAlxFe12-xO19) thin films on a Pt (111) template and Si wafer using metallo-organic decomposition technique. We varied the composition from x = 0 to x = 2 with 0.25 step increments. X-ray diffraction patterns confirm highly textured c-axis polycrystalline films while atomic force microscope measurements allow us to estimate the lateral grain sizes which range from 0.2-1 micron depending on Al content. The microwave properties of these films were studied using a broadband ferromagnetic resonance spectrometer from 35 to 70 GHz. The measured out of plane effective anisotropy field increases in a nearly linear fashion with increasing Al concentration, between 12.8 kOe for x = 0 and 25 kOe for x = 2. The measured ferromagnetic resonance linewidths were relatively low, on the order of 150-300 Oe for compositions below x = 1, increasing significantly up to 800 Oe for x = 2. The easy axis magnetic hysteresis loops exhibit high squareness.

  15. Synthesis and orientation of barium hexaferrite ceramics by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Autissier, Denis

    1990-01-01

    Particles of Ba 2Mn xZn 2- xFe 12O 22 with planar structure were prepared by chemical precipitation. They were processed by sleep casting in presence of a magnetic field. The degree of alignment was improved by a special sintering treatment. By this procedure an alignment as high as 99.9% is obtained.

  16. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2007-09-01

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25Fe2O3 and Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gd)O·5.25Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  17. Complex electrical transport behavior in low temperature sintered M-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Peng, Long; Li, Lezhong; Tu, Xiaoqiang; Wang, Rui; Hu, Yun; Zhong, Xiaoxi

    2016-03-01

    Temperature dependence of resistivity from room temperature to 750 °C at different frequency for the low temperature sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.3) ferrites was investigated, and a theory model based on a hybrid grain structure was established to explain the observed complex electrical transport behavior. It indicates that the formation of surface phase associated with non-uniform La3+-Co2+ substitution is crucial to the hybrid grain structure, which consists of body phase, surface phase, and interface. The abnormal double metal-semiconductor (M-S) transitions in La3+-Co2+ substituted ferrites are suggested to arise from the competition of lattice vibration scattering effect and thermal excitation of different conduction electrons strongly correlated with the hopping of electrons between Fe2+ and Fe3+ at octahedral sites in body phase and surface phase.

  18. Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12-4xO19 hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Shams Alam, Reza; Moradi, Mahmood; Nikmanesh, Hossein; Ventura, Joao; Rostami, Mohammad

    2016-03-01

    Substituted barium hexaferrite nanoparticles with nominal composition of BaMgx/2Mnx/2CoxTi2xFe12-4xO19 (x=0-0.5) were synthesized by a co-precipitation method. Then, the structural, magnetic and microwave characteristics of the representative samples were examined by employing X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA). The XRD, along with FTIR evaluations confirmed the successful substitution of Mg, Mn, Co and Ti cations in the barium hexaferrite lattice. The microstructure evaluations also proved that the mean particle size decreases and typical morphologies are gradually varying from almost platelet (x=0) to irregular shapes (x=0.5) with increasing dopant concentration. Hysteresis loops revealed that the saturation magnetization increased up to substitution level of x=0.2, and then decreased abruptly. In addition, the coercivity exhibited a decreasing trend from 3669 Oe to 708 Oe with increasing amount of substitution. Finally, microwave measurement showed that the substituted barium hexaferrite sample with x=0.5 could be used as an efficient microwave absorption material with an appropriate absorption bandwidth of 6 GHz in the 10-16 GHz frequency range.

  19. Barium cyanide

    Integrated Risk Information System (IRIS)

    Barium cyanide ; CASRN 542 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. First principles investigation of substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek

    This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19, is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the 'density functional theory' a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-x AlxO19 with x=0.5 and x=1.0 were investigated. It was found that at the annealing temperature the non-magnetic Al +3 ions preferentially replace Fe+3 ions from the 12 k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-xGaxO19 and SrFe12-xInxO19 with x=0.5 and x=1.0 were investigated. In the case of SrFe12-xGaxO19, the sites where Ga+3 ions prefer to enter are: 12 k, 2a, and 4f1. For SrFe12-xInxO19, In+3 ions most likely to occupy the 12k, 4f1 , and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-xGaxO 19, and decreased for SrFe12-xInxO19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-xMxO 19

  1. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    SciTech Connect

    Ahmed, M.A.; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.

  2. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (δ), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  3. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  4. Hexaferrites and phase relations in the iron-rich part of the system Sr-La-Co-Fe-O

    SciTech Connect

    Langhof, N.; Goebbels, M.

    2009-10-15

    The iron rich part of the system was examined in the temperature range of 1200-1380 deg. C in air, with focus on the solid solutions of M-type hexaferrites. Samples of suitable compositions were studied by electronprobe microanalysis (EPMA). Substituted Sr-hexaferrites in the system Sr-La-Co-Fe-O do not follow the 1:1 substitution mechanism of La/Co in M-type ferrites. Due to the presence and limited Co{sup 2+}-incorporation Fe{sup 3+}-ions are reduced to Fe{sup 2+} within the crystal lattice to obtain charge balance. In all examined M-type ferrites divalent iron is formed, even at 1200 deg. C. The substitution principle Sr{sup 2+}+Fe{sup 3+}reversibleLa{sup 3+}+(Fe{sup 2+}, Co{sup 2+}) yields to the general substitution formula for the M-type hexaferrite Sr{sup 2+}{sub 1-x}La{sup 3+}{sub x}Fe{sup 2+}{sub x-y}Co{sup 2+}{sub y}Fe{sup 3+}{sub 12-x}O{sup 19} (0<=x<=1 and 0<=y<=x). In addition Sr/La-perovskite{sub SS} ({sub SS}=solid solution), Co/Fe-spinel{sub SS}, hematite and magnetite are formed. Sr-hexaferrite exhibits at 1200 deg. C a limited solid solution with small amounts of Fe{sup 2+} (SrFe{sub 12}O{sub 19}reversibleSr{sub 0.3}La{sub 0.7}Co{sub 0.5}Fe{sup 2+}{sub 0.2}Fe{sub 11.3}O{sub 19}). At 1300 and 1380 deg. C a continuous solid solution series of the M-type hexaferrite is stable. SrFe{sub 12}O{sub 19} and LaCo{sub 0.4}Fe{sup 2+}{sub 0.6}Fe{sub 11}O{sub 19} are the end members at 1300 deg. C. The maximum Fe{sup 2+}O content is about 13 mol% in the M-type ferrite at 1380 deg. C (LaCo{sub 0.1}Fe{sup 2+}{sub 0.9}Fe{sub 11}O{sub 19}). - Graphical abstract: M-type hexaferrite solid solution series Sr{sub 1-x}La{sub x}Fe{sup 2+}{sub x-y}Co{sup 2+}{sub y}Fe{sup 3+}{sub 12-x}O{sup 19} (0<=x<=1 and 0<=y<=0.40) at 1300 deg. C; M-type contains significant amounts of FeO even at 1200 deg. C; blue=data from electronprobe microanalyses; SF{sub 6}=SrFe{sup 3+}{sub 12}O{sub 19}; LCoFf{sub 6}=LaCo{sub 0.4}Fe{sup 2+}{sub 0.6}Fe{sup 3+}{sub 11}O{sub 19}; S=SrO; L=La{sub 2

  5. Magnetoelectric sensor excitations in hexaferrite films

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Rabinowitz, Jake; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-05-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite thin films in the frequency range of 1 kHz to 10 MHz. The technique incorporating solenoid coils and multi-capacitors bank was developed to probe the physics and properties of ME hexaferrite film and explore ME effects for sensor detections and tunable device applications. For H-field sensing, we obtained sensitivity of 4 × 10-4 V/Gm and for E-field sensing the sensitivity was 10-3 Gm/V. Tunability of up to 6% was achieved for tunable inductor applications. The proposed fabrication designs lend themselves to significant (˜106) improvements in sensitivity and tunability.

  6. BARIUM RECOVERY PROCESS

    DOEpatents

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  7. Crystal structure refinement, dielectric and magnetic properties of Ca/Pb substituted SrFe12O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Dahiya, Reetu

    2015-08-01

    SrFe12O19 (SFO), Sr0.5Ca0.5Fe12O19 (SCFO) and Sr0.5Pb0.5Fe12O19 (SPFO) hexaferrites have been synthesized by a conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement confirm the presence of M-type hexagonal phase in prepared samples. However in SCFO, secondary phase was also present with main phase. Analysis of Nyquist's plots of SFO hexaferrite revealed the contribution of many electrically active regions corresponding to bulk mechanism, distribution of grain boundaries and electrode processes also. Both conductivity and electric modulus formalisms have been employed to study the relaxation dynamics of charge carriers. A perfect overlapping of the normalized plots of modulus isotherms on a single 'super curve' for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. In SPFO sample coercivity is reduced effectively but accompanied with increase in magnetization, which is requirement for hexaferrites to be used as magnetic recording media.

  8. High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2008-04-01

    A series of Gd-substituted Ba hexaferrites with nominal formula (Ba1-xGdx)Oṡ5.25 Fe2O3 (x=0-0.30) were prepared by the chemical coprecipitation method from nitrate precursors and heating at T =800-1200°C for 2h. The samples have been examined by x-ray diffraction, vibrating-sample magnetometer, and scanning electron microscopy methods. Gd substituted samples form single phase materials with the M-type hexaferrite structure at all heating temperatures, in the range of x ⩽0.10-0.20. The saturation magnetization (at 1.8T) varies slightly with x in most cases and, for x =0.05-0.10, it increases up to 66.7Am2/kg, exceeding the value of the unsubstituted hexaferrite. A strong enhancement of the coercivity is observed for all substituted samples, with maximum values Hc=457kA/m for the single-phase x =0.10 sample annealed at 1000°C and Hc=477kA/m for the x =0.25 sample annealed at 1100°C which contains Fe2O3 and GdFeO3 impurities. As the variation of coercivity with either substitution rate (x ) or annealing temperature is not monotonic, three different factors may account for the high coercivities that are obtained: (a) an inhibition of grain growth due to the presence of Gd, (b) a possible inherent effect on magnetocrystalline anisotropy, especially for single phase samples, and (c) a microstructural effect of secondary phases.

  9. Barium enema (image)

    MedlinePlus

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  10. Hard magnetic properties of nanosized Sr(Fe,Al)12O19 hexaferrites obtained by Pechini method

    NASA Astrophysics Data System (ADS)

    Barrera, V.; Betancourt, I.

    2016-06-01

    In this work, we report the magnetic properties of isotropic M-type SrFe12-xAlxO19 (x=0.0,1.5) hexaferrites synthesized by means of Pechini method. A polycrystalline distribution of fine grains was verified by Transmission Electron Microscopy for both compositions, with average sizes below 60 nm. Remarkable coercivity values within the range 500-850 kA/m were attained as a consequence of a combined effect of grain size refinement together with an enhancement of the anisotropy field afforded by the incorporation of the Al3+ cations into the hexagonal crystal structure.

  11. Synthesis and magnetic characterization of Sr-based Ni{sub 2}X-type hexaferrite

    SciTech Connect

    Kamishima, K. Mashiko, T.; Kakizaki, K.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-10-15

    We have investigated the synthesis conditions, and the magnetic properties of the Sr{sub 2}Ni{sub 2}X-type hexagonal ferrite, Sr{sub 2}Ni{sub 2}Fe{sub 28}O{sub 46}. The Sr{sub 2}Ni{sub 2}X-type hexaferrite was synthesized at 1240{sup ∘}C. The spontaneous magnetization at 5 K was 44.2 μ{sub B}/f.u., suggesting that most of the Ni{sup 2+} ions are at the up-spin octahedral sites in the spinel-structure blocks within the model of a Néel-type collinear ferrimagnetic structure. The Curie temperature of the Sr{sub 2}Ni{sub 2}X-type hexaferrite was estimated to be T{sub C}[Sr{sub 2}Ni{sub 2}X] = 472{sup ∘}C. This is consistent with the difference of the block stacking structures of SrM-type, Sr{sub 2}Ni{sub 2}X-type, SrNi{sub 2}W-type, and nickel spinel ferrites.

  12. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-01

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium-Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo2Ti2Fe8O19/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10-10 s m-1 in SrCo2Ti2Fe8O19 thin films.

  13. Temperature dependent spin structures in Hexaferrite crystal

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Lin, J. G.; Chun, S. H.; Kim, K. H.

    2016-01-01

    In this work, the Hexaferrite Ba0.5Sr1.5Zn2Fe12O22 (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state.

  14. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  15. Structural, AC conductivity and dielectric properties of Sr-La hexaferrite

    NASA Astrophysics Data System (ADS)

    Singh, A.; Narang, S. B.; Singh, K.; Sharma, P.; Pandey, O. P.

    2006-03-01

    A series of M-type hexaferrite samples with composition Sr{1-x}La{x}Fe{12}O{19} (x = 0.00, 0.05, 0.15 and 0.25) were prepared by standard ceramic technique. AC electrical conductivity measurements were carried out at different frequencies (20 Hz 1 MHz) and at different temperatures. The dielectric constant and dielectric loss tangent were measured in the same range of frequencies. The experimental results indicate that AC electrical conductivity increases on increasing the frequency as well as the temperature, indicating magnetic semiconductor behavior of the samples. The increase in AC electrical conductivity with frequency and temperature has been explained on the basis of Koops Model whereas dielectric constant and dielectric loss tangent has been explained with the Maxwell Wagner type interfacial polarization in agreement with the Koops phenomenological theory.

  16. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie Harris, Vincent G.

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  17. Single crystal growth, structural characteristics and magnetic properties of chromium substituted M-type ferrites

    NASA Astrophysics Data System (ADS)

    Shlyk, L.; Vinnik, D. A.; Zherebtsov, D. A.; Hu, Z.; Kuo, C.-Y.; Chang, C.-F.; Lin, H.-J.; Yang, L.-Y.; Semisalova, A. S.; Perov, N. S.; Langer, T.; Pöttgen, R.; Nemrava, S.; Niewa, R.

    2015-12-01

    Two different types of fluxes, namely sodium based and chloride based fluxes were used to grow Cr substituted barium and strontium hexaferrite ferrite crystals, (Sr,Ba)Fe12 - xCrxO19 at comparatively low temperatures of about 1300 °C. The sodium based flux led to growth of larger crystals up to 5 mm, but with only minor Cr contents x ≤ 0.07. From the chloride based flux the obtained Cr contents are significantly higher with x = 5.7 (Sr) and x = 3.4 (Ba), however, crystals reach only sizes in the sub-mm range. X-ray absorption spectroscopy data support exclusively isovalent substitution of Fe3+ by Cr3+ even for very low Cr contents. 57Fe Mößbauer spectroscopy reveals Cr to preferentially occupy the six-fold by oxygen coordinated site at 12k and, to a lower degree, 2a and 4f2 in space group P63/mmc. All characteristic magnetic properties drop upon Cr substitution, e. g., the Curie temperature from 728 K for pure BaFe12O19 to 465 K for BaFe8.6Cr3.4O19, the saturation magnetization from 71 emu/g to 29.7 emu/g and the coercive field from 363 Oe to 45 Oe.

  18. Barium release system

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1973-01-01

    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.

  19. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe12O19

    NASA Astrophysics Data System (ADS)

    Tenorio Gonzalez, F. N.; Bolarín Miró, A. M.; Sánchez De Jesús, F.; Cortés Escobedo, C. A.; Ammar, S.

    2016-06-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe12O19 with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide.

  20. Polarimetry of M-type asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.

    2007-03-01

    Aims:Results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the X taxonomic class. In this paper results of the campaign for M-type objects are presented. Methods: The data have been obtained with Casprof and Torino polarimeters at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation and the Torino polarimeter is an instrument that allows simultaneous measurement of polarization in the U-, B-, V-, R-, and I-bands. Results: The campaign began in 2000, and data on a sample of 26 M-type asteroids were obtained. Most of these objects were polarimetricaly observed for the first time. Combining these data with those available in the literature, an estimate of the polarimetric parameters and albedo for 12 objects is presented. Furthermore, the data show that asteroids 21 Lutetia and 77 Frigga have a large inversion angle and 441 Bathilde a deep polarization minimum, implying a controversial taxonomic classification as M-type for these objects. Also, the polarimetric parameters estimated for the M-type asteroids showing in their spectra the 3 μm band and classified as W-type by Rivkin et al. (1995, Icarus, 117, 90; 2000, ApJ, 145, 351) could be different from those without that feature. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, and the National Universities of La Plata, Córdoba and San Juan.

  1. Magnetic and Dielectric Investigations of Mn-Doped Ba Hexaferrite Nanoparticles by Hydrothermal Approach

    NASA Astrophysics Data System (ADS)

    Adeela, N.; Khan, U.; Iqbal, M.; Riaz, S.; Ali, H.; Maaz, K.; Naseem, S.

    2016-07-01

    A hydrothermal method followed by heat treatment was used to synthesize Mn-substituted Ba2Co2-x Mn x Fe12O22 nanoparticles with a nominal chemical composition of 0 ≤ x < 1 and step gap of 0.3. In this study, the effect of Mn substitution on Co2Y-type barium hexaferrite is investigated after employing x-ray diffraction for crystal structure, field emission scanning electron microscopy for morphology, energy dispersive analysis of x-ray spectroscopy for elemental composition, Fourier transform infrared spectroscopy to confirm bond modes, and vibrating sample magnetometry for magnetic measurements. It was found that the sample at x = 0.9 is of particular interest due to its large coercivity and anisotropy. Later on, for x = 0.9, temperature-dependent magnetic analyses including hysteresis loops, zero-field-cooled, and field-cooled at a particular field of 100 Oe were performed. The decreasing trend in saturation magnetization with increase in temperature was estimated. On the other hand, first an increase and then decrease in coercivity values were observed. These loops also revealed dependence of coercivity on magneto-crystalline anisotropy and average crystallite size of nanoparticles. Dielectric measurements at x = 0.9 make it suitable for high frequency applications.

  2. The influence of Nd-Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bercoff, P. G.; Herme, C.; Jacobo, S. E.

    2009-07-01

    Non-stoichiometric Nd-Co substituted hexaferrites of composition Sr 1-xNd xFe 12(1-x)Co xO 19 ( x=0-0.4) were prepared by the self-propagating combustion method and subsequent heat treatments. Structural characterization of samples showed that the M-type hexagonal structure can be maintained for substitutions x<0.4 without the segregation of secondary phases on samples calcined at 1100 °C. The crystallites sizes range between 50 and 70 nm. Mössbauer spectroscopy results indicate that the iron vacancies are not evenly distributed over the lattice and that Co/Fe substitution mainly takes place in site 4f2. Magnetic measurements reveal that values of saturation magnetization MS increased from 72 to 76 Am 2/kg ( x=0-0.2), while coercivity Hc increased from 26.40 to 58.70 A/m ( x=0-0.3). Nd-Co substitutions enhance magnetic properties in deficient iron Sr hexaferrites.

  3. Structural and magnetic properties of Sn-Zn doped BaCo2Z-type hexaferrite powders prepared by citrate precursor method

    NASA Astrophysics Data System (ADS)

    Rasly, M.; Rashad, M. M.

    2013-07-01

    Polycrystalline Sn-Zn substituted barium Z-type hexagonal ferrites powders Ba3Co2SnxZnxFe24-2XO41 (0≤X≤0.1) have been synthesized using the citrate precursor method. The effect of synthesis conditions on crystal structure, crystallite size, microstructure and magnetic properties was systematically studied. The results revealed that two steps annealing; pre-annealing of the hexaferrite citrate precursor at 600 °C for 4 h then post-annealed at 1250 °C for 5 h was required to form single Co2Z-type phase. Moreover, the critical Sn-Zn concentration, that was not destroy the symmetry of the hexagonal lattice, was found to be X=0.08. The crystallite size of the produced Sn-Zn doped Co2Z-type hexaferrite powders was in the range between 70 and 85 nm. Additionally, the lattice parameters, unit cell volume and the porosity were increased whereas the X-ray and bulk densities were decreased with increasing Sn-Zn concentration. The microstructure of the ferrite powders appeared as a hexagonal platelet-like structure. The saturation magnetization of Sn-Zn substituted Co2Z type hexaferrite was reached the maximum value (Ms=47.8 emu/g) at X=0.06 whereas it was reached the minimum value (Ms=43.4 emu/g) at X=0.1. Meanwhile, the coercivity and the squareness ratio were increased as X value increasing.

  4. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    PubMed

    Pullar, Robert C

    2012-07-01

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite. PMID:22676556

  5. Size effects on gamma radiation response of magnetic properties of barium hexaferrite powders

    SciTech Connect

    McCloy, John; Kukkadapu, Ravi; Crum, Jarrod; Johnson, Brad; Droubay, Tim

    2011-12-01

    Little is currently known about the effects of gamma-ray irradiation on oxide magnet materials. In particular, the effect of particle size on radiation susceptibility was investigated. Two commercial powders of BaFe{sub 12}O{sub 19} were thoroughly characterized, then exposed to 1 MGy of gamma radiation from a {sup 60}Co source. AC susceptibility and DC magnetometry and Moessbauer spectroscopy were performed after irradiation and compared to pre-irradiated measurements. DC magnetization and AC susceptibility decreased for both samples with the relative change of DC magnetization being larger for the micrometer-sized particles and the relative change of the AC susceptibility being larger for the nanometer-sized particles. Moessbauer spectroscopy indicated a decrease in both the hyperfine fields and in their distribution for each Fe site, particularly in the larger particle sample. Decreases in susceptibility are believed to be due to radiation-induced amorphization at the particle surfaces as well as amorphization and nucleation of new crystallites at internal crystallite boundaries, resulting in overall reduction in the particle magnetic moment. This radiation damage mechanism is different than that seen in previous studies of neutron and heavy ion irradiation of BaFe{sub 12}O{sub 19}.

  6. Cation distribution in Co-Ti-substituted barium hexaferrites: a consistent model

    NASA Astrophysics Data System (ADS)

    Šimša, Z.; Lego, S.; Gerber, R.; Pollert, E.

    1995-02-01

    A consistent model of cation distribution in single-crystal and polycrystalline samples of BaCo xTi yFe 12- x- yO 19 for x and y in the range 0-0.8 was deduced from the Mössbauer spectra, magnetic moments and magneto-optical measurements.

  7. Co and Sn substituted barium M-hexaferrites: single crystal growth and magnetic characterization

    NASA Astrophysics Data System (ADS)

    Solé, R.; Ruiz, X.; Cabré, R.; Aguiló, M.; Díaz, F.; Nikolov, V.

    1996-09-01

    In this work, single crystals with a BaFe 12 - ( x + y) Sn xCo yO 19, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 composition, were grown by slow cooling and the TSSG technique, using a mixture of 0.4Na 2O-0.6B 2O 3 as solvent. Taking into account previous results about primary crystallization regions, saturation temperatures, physical properties of the solutions, digital simulations and several previous growth experiments, suitable growth conditions were proposed and used. Crystals grown under these conditions were characterized from the point of view of their perfection and compositional homogeneity. Magnetic properties were also investigated and their evolution as a function of the level of substitution stated.

  8. Growth and interface phase stability of barium hexaferrite films on SiC(0001)

    SciTech Connect

    Lazarov, V. K.; Hasnip, P. J.; Cai, Z.; Ziemer, K. S.; Yoshida, K.

    2011-04-01

    We have studied interface phase stability of the BaFe{sub 12}O{sub 19} (BaM) thin films grown by molecular beam epitaxy on SiC(0001). The films were epitaxially grown with the following crystallographic relation: BaM(0001) parallel SiC(0001) and BaM(11-20) parallel SiC(11-20). High resolution TEM reveals the existence of two interfacial bands with different structure than BaM. The first band close to SiC is SiO{sub x} while the second has spinel structure and chemically corresponds to Fe{sub 3}O{sub 4}. These findings suggest that at initial growth stages Fe{sub 3}O{sub 4} is more favorable than BaM. Density functional theory modeling of the phase stability of BaM compared to Fe{sub 3}O{sub 4} shows that BaM is only stable at high oxygen partial pressures.

  9. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  10. Structural and magnetic properties of Ca-substituted barium W-type hexagonal hexaferrites

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Liu, Xiansong; Feng, Shuangjiu; Zhang, Zhanjun; Yu, Jiangying; Niu, Xiaofei; Lv, Farui; Huang, Xing

    2015-04-01

    A series of W-type hexagonal ferrites with the composition Ba1-xCaxCo2Fe16O27 (x=0, 0.1, 0.3, 0.4 and 0.5) were synthesized using a sol-gel method. The effects of doping on structural and magnetic properties are studied by X-ray diffraction, thermal analyzer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, respectively. The X-ray diffraction analysis shows that the samples belong to the W-type hexagonal ferrite. The lattice constants a and c decreases as Ca contents increases. The grains exhibit well defined hexagonal shape. The saturation magnetization and the intrinsic coercive force increases with the increase of the Ca substitution amount. The real part of complex permittivity (ε‧) and imaginary part (ε″) increase with more addition of Ca2+ amount. The imaginary part of complex permittivity (μ‧) increases and the real part (μ‧‧) goes down after Ca2+ is doped. Furthermore, the Ca2+ ions doped in the ferrite improved microwave absorbency.

  11. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  12. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  13. Structural and dielectric properties of La and Ni-doped M-type BaFe12O19 ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Poorva; Kumar, Ashwini; Dube, Avinash; Li, Qi; Varshney, Dinesh

    2016-05-01

    BaFe12O19 and Ba0.98La0.02Fe12-xNixO19 (x = 0.02, 0.05) samples synthesized using solid-state reaction route crystallizes in hexagonal structure with space group P63/mmc as revealed from X-ray diffraction. A Raman spectrum shows seven strong and sharp modes at 291.9 (A1g), 410.4 (E2g), 496.09 (A1g), 611.3 (E2g), 681(A1g), 1048.0 (A1g+A1g) and 1313.3 cm-1 (A1g+E2g), identifying the presence of barium hexaferrite phase. The higher values of the dielectric constant at lower frequency and lower values at higher frequency indicate the dispersion due to interfacial polarization. Dielectric constant decreases as the doping concentration of Ni increases due to increase in band gap. A resonance peak has been observed in all three sample and is attributed to the fact that hopping frequency of charge carrier matches well with the frequency of the applied field. Henceforth, Ba0.98La0.02Fe12-xNixO19 (x = 0.02, 0.05) is suitable novel materials for microwave application with low dielectric constant and dielectric loss values.

  14. Magnetic and structural characterization of nanosized BaCoxZn2-xFe16O27 hexaferrite in the vicinity of spin reorientation transition

    NASA Astrophysics Data System (ADS)

    Pasko, A.; Mazaleyrat, F.; LoBue, M.; Loyau, V.; Basso, V.; Küpferling, M.; Sasso, C. P.; Bessais, L.

    2011-07-01

    Numerous applications of hexagonal ferrites are related to their easy axis or easy plane magnetocrystalline anisotropy configurations. Certain W-type ferrites undergo spin reorientation transitions (SRT) between different anisotropy states on magnetic field or temperature variation. The transition point can be tuned by modifying the chemical composition, which suggests a potential application of hexaferrites in room temperature magnetic refrigeration. Here we present the results of structural and magnetic characterization of BaCoxZn2-xFe16O27 (0.7 <= x <= 2) doped barium ferrites. Fine powders were prepared using a sol-gel citrate precursor method. Crystal structures and particle size distributions were examined by X-ray diffraction and transmission electron microscopy. The optimal synthesis temperature ensuring complete formation of single W-phase with limited grain growth has been determined. Spin reorientation transitions were revealed by thermomagnetic analysis and AC susceptibility measurements.

  15. Effects of Gd-Substitutions on the Microstructure, Electrical and Electromagnetic Behavior of M-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ahmad, Ishtiaq; Ahmad, Mahmood; Ali, Ihsan; Kanwal, M.; Awan, M. S.; Mustafa, Ghulam; Ahmad, Mukhtar

    2015-07-01

    A series of Gd-substituted Ba-Co-based (M-type) hexaferrites having the chemical compositions of Ba0.5Co0.5Gd x Fe12- x O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by co-precipitation method. The pellets formed by co-precipitated powder were calcined at a temperature of 1200°C for 20 h. Final sintering was done at 1320°C for 4 h. From the x-ray diffraction analysis, it was revealed that all the samples showed M-type hexagonal structure as a major phase. The scanning electron microscope was used to examine the morphology of the sintered ferrites. The average grain size estimated by the line intercept method was found to be in the range of 2.8-1.0 μm. The room temperature DC resistivity increases with increasing Gd-contents to make these ferrites useful for high frequency applications and microwave devices. Lower values of coercivity ( H c) and higher saturation magnetization ( M s) may be suitable to enhance the permeability of these ferrites, which is favorable for impedance matching in microwave absorption. In addition, reflection coefficients for a sample was also measured from a frequency of 1 MHz to 3 GHz and a reflection peak was observed at about 2.2 GHz.

  16. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    SciTech Connect

    Makovec, Darko; Primc, Darinka; Sturm, Saso; Kodre, Alojz; Jozef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana ; Hanzel, Darko; Drofenik, Miha; Jozef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction. The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.

  17. Substitutional effect of magnetic behaviour in calcium hexaferrite

    NASA Astrophysics Data System (ADS)

    Prakash, C. S.; Nanoti, V. M.; Kulkarni, D. K.; Rao, G. M.

    1995-02-01

    Three hexaferrites CaFe 4Me 8O 19 (Me  Al, Cr, or Co) are prepared and found to have M-structure. The substitution of Al +3 or Cr +3 ions in the lattice reduces the magnetization, whereas Co +3 enhances it with higher Curie temperature. These differences are explained on the basis of exchange interactions within the sub-lattices. Static electrical resistivity of the samples is also studied and results show that they are semiconductors.

  18. Barium and Compounds

    Integrated Risk Information System (IRIS)

    Barium and Compounds ; CASRN 7440 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  19. Epitaxy barium ferrite thin films on LiTaO3 substrate

    NASA Astrophysics Data System (ADS)

    Fang, H. C.; Ong, C. K.; Xu, S. Y.; Tan, K. L.; Lim, S. L.; Li, Y.; Liu, J. M.

    1999-08-01

    Barium hexaferrite (BaM) thin films were deposited on (0001) LiTaO3 substrates by pulsed laser deposition. Effects of the substrate temperature and oxygen gas pressure on the formation and quality of these films were studied. Films deposited at a substrate temperature of 800 °C and an oxygen pressure around 0.23 mbar showed the best c axis normal to the film plane with locked in-plane orientation. The saturation magnetization Ms and anisotropy field Ha measured by vibrating sample magnetometer were almost the same as those reported on bulk barium ferrite. Decreasing oxygen pressure hinders the formation of the Ba layer in BaM magnetoplumbite structure and gives rise to the spinel phase, which greatly decreases coercivity Hc of the films and finally destroys the whole BaM structure. Effects of the lattice mismatch and substrate-induced strains on the film structure were also studied. It was found that barium ferrite thin films grown on LiTaO3 substrates tend to choose a matching mode with compressional strains rather than shear strains.

  20. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  1. Room temperature optical and dielectric properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2016-05-01

    The citrate sol gel combustion method has been used to synthesize (Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19 hexaferrites. Microstructural analyses were carried out by XRD and FTIR. Optical properties were studied by UV-visible technique in the range of 300-800 nm. The energy band gap was calculated with the help of Tauc relationship shows increases in band gap. Ca and Ni doped barium ferrite annealed at 850°C exhibit significant dispersion in complex permeability. The dispersion in complex dielectric constant can be explained on the basis of Koop's theory based on Maxwell-Wagner two layer models in studied nanoparticles.

  2. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    SciTech Connect

    Hu, Bolin; Chen, Yajie Gillette, Scott; Su, Zhijuan; Harris, Vincent G.; Wolf, Jason; McHenry, Michael E.

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

  3. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  4. Dynamical investigations of multiferroics: hexagonal manganites and a hexaferrite.

    NASA Astrophysics Data System (ADS)

    Talbayev, Diyar

    2010-03-01

    The electrodynamic response of magnetoelectric multiferroics can provide significant insight in the microscopic origin of multiferroicity. Hexagonal manganite HoMnO3 is a robust room temperature ferroelectric with frustrated triangular antiferromagnetic order of Mn spins setting in at 72 K. Strong magnetoelectric effects were observed in HoMnO3 and related hexa-manganites, the most intriguing of which is the control of magnetization by an applied electric field. The magnetic exchange interaction between the Ho and Mn ions was identified as a possible mechanism responsible for the observation, even though the detailed knowledge about this interaction was lacking. To fill this void, we studied magnetic excitations in HoMnO3 by far-infrared spectroscopy and elucidated the ferromagnetic nature of the rare-earth/Mn exchange. Hexaferrites that display room-temperature magnetic order are also good candidates for room temperature multiferroics. We present a study of magnetic excitations in the hexaferrite Ba0.6Sr1.4Zn2Fe12O22 using optical pump-probe spectroscopy. Pump-probe spectroscopy is known as an excellent tool for manipulating and probing magnons and phonons and for studying dynamic magnetoelectric effects. In Ba0.6Sr1.4Zn2Fe12O22, we have observed a magnetic resonance using time domain pump-probe reflectance spectroscopy, revealing a modulation of the dielectric tensor by magnetization precession. The magnetic motion in the hexaferrite modifies the dielectric constant at visible wavelengths, providing a novel manifestation of the dynamic magnetoelectric coupling and a new way of detecting magnetic motion in multiferroics. Our results highlight that magnetoelectric dynamics manifests from the far-infrared through the visible and that both time-integrated and time-resolved spectroscopy are important tools in elucidating the microscopic properties of multiferroics.

  5. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~106) improvements in sensitivity and tunability.

  6. Barium Peritonitis in Small Animals

    PubMed Central

    KO, Jae Jin; MANN, F. A. (Tony)

    2014-01-01

    ABSTRACT Barium peritonitis is extremely rare, but is difficult to treat and may be life-threatening. Barium suspension leakage from the gastrointestinal tract into the abdominal cavity has a time-dependent and synergistically deleterious effect in patients who have generalized bacterial peritonitis. The severity of barium peritonitis is dependent on the quantity of barium in the abdominal cavity. Barium sulfate leakage results in hypovolemia and hypoproteinemia by worsening the exudation of extracellular fluid and albumin. Abdominal fluid analysis is a useful and efficient method to diagnose barium peritonitis. Serial radiographs may not be a reliable or timely diagnostic technique. Initial aggressive fluid resuscitation and empirical broad-spectrum antibiotic treatment should be instituted promptly, followed quickly by celiotomy. During exploratory surgical intervention, copious irrigation and direct wiping with gauze are employed to remove as much barium as possible. Omentectomy should be considered when needed to expedite barium removal. Despite aggressive medical and surgical treatments, postoperative prognosis is guarded to poor due to complications, such as acute vascular shock, sepsis, diffuse peritonitis, hypoproteninemia, electrolyte imbalance, cardiac arrest, small bowel obstruction related to progression of granulomas and adhesions in the abdominal cavity. Therefore, intensive postoperative monitoring and prompt intervention are necessary to maximize chances for a positive outcome. For those that do survive, small bowel obstruction is a potential consequence due to progression of abdominal adhesions. PMID:24430662

  7. Barium uranyl diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  8. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Liu, Xiansong; Yang, Yujie; Huang, Kai; Niu, Xiaofei; Jin, Dali; Gao, Shang; Ma, Yuqi; Huang, Feng; Lv, Farui; Feng, Shuangjiu

    2015-03-01

    M-type strontium hexaferrites with chemical composition of Sr0.80-xCaxLa0.20Fe11.85Co0.15O19 (x=0-0.15) were prepared by the ceramic process. The samples were sintered at temperatures of 1175, 1185 and 1195 °C for 2 h in air. Effects of the substituted amount x of Ca2+ on the ferrites microstructure and magnetic properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and B-H hysteresis curve measurements. As a result, at x≤0.12, all samples are single phase after the Ca substitution. At x=0.15, another phase of hematite (α-Fe2O3) is present. In addition, the maximum values of the remanence (Br) and maximum energy product ((BH)max) for the magnets have been obtained at x=0.08 for sintering temperature=1185 °C. The maximum value of the intrinsic coercive force (Hcj) for the magnets has been obtained at x=0.12 when the magnets were sintered at 1185 °C.

  9. Barium uranyl diphosphonates

    NASA Astrophysics Data System (ADS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-01

    Three Ba2+/UO22+ methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 °C. These compounds, Ba[UO2[CH2(PO3)2]·1.4H2O (Ba-1), Ba3[(UO2)4(CH2(PO3)2)2F6]·6H2O (Ba-2), and Ba2[(UO2)2(CH2(PO3)2)F4]·5.75H2O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO5F2 pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO2[CH2(PO3)2]2- sheets. The interlayer space of the structures is occupied by Ba2+, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance.

  10. Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics

    NASA Astrophysics Data System (ADS)

    Tan, Guolong; Chen, Xiuna

    2013-05-01

    Simultaneous occurrence of large ferroelectricity and strong ferromagnetism has been observed in strontium hexaferrite (SrFe12O19) ceramics. Strontium hexaferrite powders with hexagonal crystal structures have been successfully synthesized through the co-precipitation precursor method using strontium nitrate and ferric nitrate as starting materials. The powders were pressed into pellets and then sintered into ceramics at a temperature range of at 1000°C to 1100°C for 1 h. The structure and morphology of the ceramics were determined using x-ray diffraction and field-emission scanning electron microscopy techniques. Clear ferroelectric hysteresis loops demonstrated large spontaneous polarization in the SrFe12O19 ceramics at room temperature. The maximum remnant polarization of the SrFe12O19 ceramic was estimated to be approximately 15 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the displacement of Fe3+ off the center of the octahedron are proposed to be the origin of electric polarization in SrFe12O19. In our experimental observations, the SrFe12O19 ceramic also revealed strong ferromagnetism at room temperature.

  11. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  12. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  13. First order reversal curves analysis of the temperature effect on magnetic interactions in barium ferrite with La-Co addition

    NASA Astrophysics Data System (ADS)

    Oliva, Marcos I.; Bercoff, Paula G.; Bertorello, Héctor R.

    2009-10-01

    First order reversal curves (FORCs) distributions are a powerful tool for investigating hysteresis and interactions in magnetic systems and have been widely applied. La-Co substitution in barium hexaferrites has also been extensively studied. The most effective substitution to improve the magnetic properties (coercive field and energy product) is given by x=y=0.2 in the formula Ba1-xLaxFe12-yCoyO19. In this work, this stoichiometry is initially used to obtain a state where more than one phase is present. The magnetic behavior as a function of temperature was studied in order to have an insight into the magnetic interactions that originate a decrease in the magnetic performance of Ba hexaferrite magnets. The sample was structurally characterized by X-ray diffraction (XRD) and magnetically studied in a SQUID magnetometer. FORC distributions were used to study the dependence of the magnetic interactions with the temperature. FORC diagrams performed on the sample at different temperatures exhibit similar characteristics, such as the spread in the hc-hu plane and a spread out of the hc-axes. These features are interpreted in terms of exchange-interacting particles and dipolar interactions, respectively. As the temperature decreases, stronger interactions are noticed among hard and soft phases.

  14. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  15. Synthesis and characterization of polyaniline-hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Khursheed, Tooba; Islam, M. U.; Asif Iqbal, M.; Ali, Irshad; Shakoor, Abdul; Awan, M. S.; Iftikhar, Aisha; Azhar Khan, Muhammad; Naeem Ashiq, Muhammad

    2015-11-01

    Polyaniline was synthesized by chemical polymerization using aniline as monomer, and Y-type hexaferrite with composition (Co2Mn2Sr1.66Nd0.4Fe10O22) was prepared by co-precipitation assisted by surfactant. Three composites of Polyaniline with different ferrite ratios were prepared by mechanical blending. The synthesized samples were characterized by X-Ray diffraction, Scanning electron microscopy and electrical measurements. The XRD analysis reveals that no second phase was observed in Y-type hexagonal ferrite. In PANI-Ferrite composites, significant changes in resistivity, real and imaginary part of complex permittivity were observed with the increase of ferrite in the polyaniline matrix. At low frequencies the magnitude of dielectric constant and complex permittivity is high with few relaxation peaks. AC conductivity of PANI-Ferrite composites increase with the increase of frequency following Jonscher law. The resistivity and activation energy were found to show similar behavior.

  16. Dielectric dispersion of Y-type hexaferrites at low frequencies

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.

    2003-02-01

    A series of polycrystalline Y-type hexaferrites with composition Ba 2Ni 2- xZn xFe 12O 22 (where 0.0⩽ x⩽2.0) were prepared by the standard ceramic method to study the effect of the frequency, temperature and composition on their AC electrical conductivity σ' AC, and dielectric properties. It was found that, the AC conductivity shows dispersion at high frequencies. This dispersion was attributed to the interfacial polarization arising from the inhomogeneous structure of the material. At low frequencies the dielectric constant, ɛ', is abnormally high and decreases rapidly with increasing frequency. Dielectric relaxation peaks were observed on the tan δ( F) curves. The results of the dielectric constant and dielectric loss were explained on the basis of the assumption that the mechanism of dielectric polarization is similar to that of the conduction process.

  17. Rare-earth substitutions in Z-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Jacquiod, Catherine; Autissier, Denis

    1992-02-01

    Z-type hexaferrite (Ba 3Co 2Fe 24O 41) presents a gyromagnetic permeability whose resonance frequency stands around 2 GHz. The damping coefficient α is less than 0.1. The influence on the damping coefficient of doping this ferrite by a rare-earth (La) has been studied. Powders have been synthesized by carbonate coprecipitation, dried and calcined at different temperatures. Different phases have been characterized by X-ray diffraction and magnetization measurements. Solubility in the range of weak concentrations has been verified. The synthesized powders were processed by slip casting in the presence of a magnetic field in order to align the particles. The microstructural and hyperfrequency characteristics have been evaluated. The influence of the substitution on anisotropy fields and damping are studied in comparison with pure Co 2Z, whose processing and properties have been optimized as a reference.

  18. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3). PMID:27185343

  19. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-05-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3.

  20. Synthesis and magnetic properties of (Eu-Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; sadiq, Imran; Karamat, Nazia; Iftikhar, Aisha; khan, M. Azhar; Shah, Afzal; Athar, Muhammad; Shakir, Imran; Ashiq, Muhammad Naeem

    2015-07-01

    A series of (Eu-Ni) substituted Y-type hexaferrite with composition Sr2Co(2-x)NixEuyFe(12-y)O22 (x=0.0-1, Y=0.0-0.1) were prepared by the surfactant assisted co-precipitation method. The present samples were sintered at 1050 °C for 8 h. The shape of the particles is plate-like which is very advantageous for various applications and the grain size varies from 73 to 269 nm. The values of saturation magnetization (Ms), remanent magnetization (Mr) and magnetic moment (nB) were found to decrease which are attributed to the weakening of super exchange interactions. The values of in-plane Squareness ratios (Mr/Ms) ranging from 0.41 to 0.65 whereas in case of out of plane measurement it varies from 0.30 to 0.62.The investigated samples can be used in perpendicular recording media (PRM) due to high value of coercivity 2300 Oe which is analogous to the those of M-type and W-type hard magnetic.

  1. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    PubMed Central

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3. PMID:27185343

  2. On the surface composition of the M-type asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Belskaya, I. N.

    1989-04-01

    Photometric and polarimetric observations of the largest M-type asteroids conducted over the period 1978-1986 are presently interpreted in view of results from laboratory photometric and polarimetric measurements of meteoritic, terrestrial silicate, and metallic samples. The samples, including among its 13 meteorites suitable representatives of iron, chondrite, and achondrite types, are of similar structure, with grain sizes smaller than 50 microns. An analysis of all data extant indicate that the surfaces of the largest M-type asteroids, namely 16, 21, 22, 69, and 110, cannot consist of pure metal; they must instead include silicate componentlike stony-iron and enstatite chondrite meteorites.

  3. New Results on Hydration in M-Type Asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, Humberto; Pinilla-Alonso, Noemí; Emery, Joshua P.; Lorenzi, Vania

    2014-11-01

    The M-type asteroids are a taxonomic group considered to be a candidate source of iron meteorites due to spectral and albedo similarities; however, because the spectra of M-type asteroids lack strong diagnostic absorption features in the near-infrared (NIR), their composition is difficult to constrain. High-resolution NIR spectroscopy and radar studies have shown that a metallic interpretation is unlikely to be valid for the majority of M-types. Many show weak absorption features attributed to mafic silicates (Hardersen et al. 2005, 2011; Ockert-Bell et al. 2010; Fornasier et al. 2010). Radar results show evidence for elevated metal content on the surfaces of most M-type asteroids, but few are likely to be entirely metal (Shepard et al. 2010). Surprisingly, spectrophotometric studies in the 3-μm region have indicated that hydrated minerals are relatively common among the M-type population, confounding interpretations of M-types as highly thermally processed (Rivkin et al. 1995, 2000). The shape of the 3-μm band, diagnostic of hydrated and hydroxylated minerals, is relevant to an asteroid’s thermal history (Rivkin et al. 2002, Takir & Emery 2012). To characterize this region, we have conducted a 2 - 4 μm spectroscopic study of six M-type asteroids using SpeX at NASA’s Infrared Telescope Facility. In its LXD mode, SpeX allows us to investigate the 3-μm band at spectral resolutions unavailable during previously published studies. We report the presence of a 3-μm feature on all six asteroids, indicating hydrated minerals on the asteroids’ surfaces. We have also detected rotational variability of the 3-μm feature in asteroid (216) Kleopatra, which, interestingly, had been interpreted as “dry” in previous work (Rivkin et al. 2000). On all of our target asteroids, the 3-μm band depths are < 10%, and there is apparent variation in the shape of the feature among them. We discuss the impact of our results on interpretations of M-type asteroid composition.

  4. Interaction between Barium Oxide and Barium Containing Chloride Melt

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Korzun, Iraida V.; Bovet, Andrey L.; Antonov, Boris D.

    2015-05-01

    Thermal analysis was applied to determine the liquidus temperatures in the NaCl-KCl-BaCl2-BaO system, with BaO concentration varied from 0 to 6 mole%. The temperature dependence of the BaO solubility in the NaCl-KCl-BaCl2 eutectic melt was investigated; the thermodynamic parameters of BaO dissolution were calculated. The caloric effects of melting of the NaCl-KCl-BaCl2 eutectic with barium oxide and barium oxychloride additions were studied. The type, morphology, and composition of oxychloride ionic groupings in the melt were determined in situ using Raman spectroscopy.

  5. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    NASA Astrophysics Data System (ADS)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  6. Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping

    SciTech Connect

    Mu Chunhong; Liu Yingli; Song Yuanqiang; Wang Liguo; Zhang Huaiwu

    2011-06-15

    Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-type hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.

  7. Magnetoelectric Effects and Related Phenomena in Spin-spiral Hexaferrites

    NASA Astrophysics Data System (ADS)

    Kimura, Tsuyoshi

    2012-02-01

    Among various multiferroics, extensive studies of ferroelectrics originating from magnetic orders, i.e., magnetically-induced ferroelectrics in which the inversion simmetry breaking and resultant ferroelectricity are induced by complex magnetic orders, have been triggered almost a decade ago by the discovery of multiferroic nature in a perovskite-type rare-earh manganites TbMnO3. The magnetically-induced ferroelectrics often show giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field, since the origin of their ferroelectricity is driven by magnetism which sensitively responds to an applied magnetic field. Though a large number of new magnetically-induced ferroelectrics have been reported in the past decade, so far there has been no practical application employing the magnetoelectric effect of the magnetically-induced ferroelectrics. This is partly because none of the existing magnetically-induced ferroelectrics have combined large and robust electric and magnetic polarizations at room temperature until quite recently. The situation is changed by the discoveries of magnetoelectricity in hexagonal ferrites (hexaferrites) with spin-spiral structures.ootnotetextT. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).^,ootnotetextY. Kitagawa et al., Nature Mater. 9, 797 (2010).^,ootnotetextK. Okumura et al., Appl. Phys. Lett. 98, 212504 (2011). In this presentation, I show our recent studies on magnetoelectric effects and related phenomena in the new series of magnetically-induced ferroelectrics which are promising candidates for multiferroics operating at room temperature and low fields. This work has been done in collaboration with Y. Hiraoka, T. Ishikura, K. Okumura, Y. Kitagawa, H. Nakamura, Y. Wakabayashi, M. Soda, T. Asaka, and Y. Tanaka.

  8. The problem of the barium stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  9. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  10. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  11. Barium granuloma of the transverse colon.

    PubMed Central

    McKee, P. H.; Cameron, C. H.

    1978-01-01

    A case of barium sulphate granuloma of the transverse colon following gunshot wounds to the abdomen has been described. Scanning electron microscopy with electron probe microanalysis was used to confirm the presence of barium sulphate and the absence of lead or other elements related to the gunshot wounds. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:740599

  12. The thermal stability range and magnetic properties of U-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Lisjak, Darja; Drofenik, Miha

    2004-05-01

    Single-phase polycrystalline U-hexaferrites with the composition Ba4A2Fe36O60 (A=Co, Ni, Zn) were prepared by solid-state reaction synthesis employing high-energy milling or topotactic reaction and calcination at 1200-1300°C. The Curie temperature and saturation magnetization of the samples were influenced by the composition, while the coercivity was more strongly influenced by the preparation conditions.

  13. Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities

    NASA Astrophysics Data System (ADS)

    Dufour, J.; Latorre, R.; Negro, C.; Alcalá, E. M.; Formoso, A.; López-Mateos, F.

    1997-08-01

    The ferrite industry is one of the largest consumers of iron oxides, usually in the form of hematite from the roasting of steel pickling liquors or from mineral sources. In previous papers we have tested an oxidation process for obtaining magnetite and goethite from steel pickling liquors and two mathematical models have been proposed for synthesizing these two iron oxides. In this paper, the characteristics of magnetite and goethite are related with the coercivity of hexaferrites synthesized when the former are used as raw materials. Constant conditions were used for the ceramic method. Using goethite, Ba-hexaferrite is obtained only when the goethite is precipitated at the lowest oxidizer flow. When magnetite is used, a protocol with a statistically validated correlation is proposed for synthesizing hexaferrites with coercive fields between 230 and 450 kA/m. This correlation is valid for an oxidation process carried out at stirring speed of 1000 rev/min and with an air flow between 7.5 and 101/min. A second empirical correlation is proposed for obtaining final coercivities between 450 and 525 kA/m, for which it is necessary to increase the calcination time.

  14. Effect of annealing temperature on structural and magnetic properties of strontium hexaferrite nanoparticles synthesized by sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza; Sudkhah, Saeedeh; Shabani, Ameneh

    2015-10-01

    In this paper, strontium hexaferrite nanoparticles were synthesized by the sol-gel auto-combustion method. Effect of annealing temperature on crystal structure, morphology and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Also, the thermal decomposition of as-synthesized powdered samples has been studied by thermogravimetric analysis (TGA). The XRD patterns confirmed the formation of single phase M-type hexagonal crystal structure for powders annealed above 950∘C, whereas the presence of hematite (α-Fe2O3) as secondary phase was also observed for sample annealed at 900∘C. Furthermore, the crystallinity along with the crystallite size were augmented with annealing temperature. Comparison of the FT-IR spectra of the samples before and after annealing treatment showed the existence of metal-oxygen stretching modes after annealing. The thermogravimetric analysis confirmed the thermal decomposition of as-burnt powders happened in three-stage degradation process. The TEM images showed the nanoparticles like hexagonal-shaped platelets as the size of nanoparticles increases by increasing the annealing temperature. With increasing annealing temperature, the magnetic saturation and the coercivity were increased to the maximum value of 74.26 emu/g and 5.67 kOe for sample annealed at 1000∘C and then decreased.

  15. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  16. Mössbauer and magnetic study of nanocrystalline strontium hexaferrite prepared by an ionic coordination reaction technique

    NASA Astrophysics Data System (ADS)

    de Araújo, J. H.; Soares, J. M.; Ginani, M. F.; Machado, F. L. A.; da Cunha, J. B. M.

    2013-10-01

    Hard-magnetic nanocrystalline strontium hexaferrites SrFe12O19 were synthesized using an ionic coordination reaction technique. In this sample preparation technique the biopolymer chitosan was used as a nanoreactor. The obtained precursor powders were calcined at temperatures in the range 600-900 °C. The samples were analyzed by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry. A complementary study of X-ray Rietveld refinement and Mössbauer spectroscopy shown that the hexaferrite phase formation is accompanied by formation of maghemite and hematite as intermediate phases. It was found that hexaferrite is present in the samples calcined at and above 600 °C but it is fully developed at 900 °C. For this sample the average particle size was found to be 41.6 nm. Magnetization measurements yielded squared hysteresis loops with a magnetization ratio (Mr/Ms) of 0.58 and a coercive field of 6.48 kOe. The overall results indicated that the particles in these samples are in the single domain regime and that the magnetization reversal in these particles is mainly due to coherent rotation. Hard-magnetic hexaferrites were synthesized using an ionic reaction technique. The hexaferrite formation is accompanied by formation of maghemite and hematite. How much more absorption of the sites spin up time is higher net magnetic moment.

  17. Radium/Barium Waste Project

    SciTech Connect

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  18. Formation of a magnetic composite by reduction of Co-Nd doped strontium hexaferrite in a hydrogen gas flow

    NASA Astrophysics Data System (ADS)

    Herme, C. A.; Bercoff, P. G.; Jacobo, S. E.

    2012-08-01

    Co-Nd strontium hexaferrite nanoparticles synthesized by the self-combustion method were treated in a hydrogen flow at different temperatures and times. The samples were characterized structurally by scanning electron microscopy and X-ray diffraction and magnetically with a vibrating sample magnetometer. Phase identification showed decomposition of the hexaferrite structure into Fe3O4 and different strontium mixed oxides. The sample treated at 500 °C for 30 minutes shows good magnetic properties due to the formation of a magnetite/hexaferrite composite. In this case magnetization is very close to the original sample while the coercivity slightly diminishes. The hexagonal phase is almost completely transformed into different oxides at a reducing temperature of 500 °C for 120 minutes. The obtained results are analyzed in terms of the phase composition and of the magnetic susceptibility of the studied samples.

  19. Barium Isotopes in Single Presolar Grains

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  20. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    SciTech Connect

    Xu, Wenfei; Yang, Jing E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Chu, Junhao; Tang, Xiaodong E-mail: xdtang@sist.ecnu.edu.cn

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher

  1. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Tang, Xiaodong; Chu, Junhao

    2015-05-01

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (HC) and the saturation magnetization (MS) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.

  2. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  3. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  4. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping. PMID:23485244

  5. Magnetic and electrical properties of Z-type hexaferrites sintered in different atmospheres

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Peng, Bin; Yuan, Lixin

    2015-05-15

    Graphical abstract: Oxygen atmosphere played an important role in inhibiting electrons hopping between Fe{sup 2+} and Fe{sup 3+} and reducing both of magnetic and dielectric losses of Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41}, which is favorable in view of antenna substrate applications. - Highlights: • Co{sub 2}Z-type hexaferrites were sintered in different atmospheres. • The losses of the sample sintered in O{sub 2} were reduced effectively without additive. • A 3RC equivalent circuit model was put forward in the impedance analysis. - Abstract: Co{sub 2}Z-type hexaferrites with stoichiometric composition of Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} were fabricated by using a conventional solid–state reaction method. The influence of sintering atmosphere, namely air, O{sub 2} and N{sub 2}, on magnetic and electrical properties of the hexaferrites was systematically investigated. This work reveals that O{sub 2} played an important role in inhibiting the formation of Fe{sup 2+} and thus reducing magnetic and dielectric losses. The Co{sub 2}Z specimen sintered at 1300 °C in O{sub 2} atmosphere showed promising magneto-dielectric properties. Specifically, the magnetic and dielectric losses were less than 0.05 and 0.005 in the frequency range of 30–300 MHz, respectively. Impedance spectra were performed to reveal the underlying mechanisms for the different electrical properties of the Co{sub 2}Z ceramics sintered in different atmospheres.

  6. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  7. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  8. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  9. Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.

    2012-07-01

    Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.

  10. Structural, Magnetic, and Electrical Properties of Microwave-Sintered Cr3+-Doped Sr Hexaferrites

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Bououdina, M.; Penchal Reddy, M.; Srinath, S.; Sandhya, R.; Katlakunta, Sadhana

    2015-01-01

    SrCr x Fe12- x O19 ( x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) hexaferrites were prepared by a microwave-hydrothermal method and subsequently sintered at 950°C for 90 min using the microwave sintering method. The results show that, with increasing Cr3+ content, the lattice parameters changed anisotropically. The average grain sizes of sintered samples were in the range of 280 nm to 660 nm. The saturation magnetization systematically decreased with increasing Cr3+ doping, but the coercivity values increased. The electrical resistivity (log ρ) decreased linearly with increasing temperature up to a certain temperature known as the transition temperature ( T c), and T c decreased with further increase ( x > 0.5) of the Cr3+ content. This decrease in log ρ and the activation energy ( E g) is due to electron hopping and occupancy of doped ions at different lattice sites. We found that the dielectric constant and dielectric loss for all the samples decreased with the Cr3+ content. The structural, magnetic, and electrical properties of Cr3+-doped SrFe12O19 hexaferrites have thus been investigated.

  11. Nonvolatile electric-field control of magnetization in a Y-type hexaferrite

    PubMed Central

    Shen, Shipeng; Chai, Yisheng; Sun, Young

    2015-01-01

    The magnetoelectric effects in multiferroic materials enable the mutual control of electric polarization by a magnetic field and magnetization by an electric field. Nonvolatile electric-field control of magnetization is extremely important for information storage applications, but has been rarely realized in single-phase multiferroic materials. Here we demonstrate the prominent direct and converse magnetoelectric effects in the Y-type hexaferrite BaSrCoZnFe11AlO22 single crystal. The electric polarization due to conical magnetic structure can be totally reversed by a small magnetic field, giving rise to large magnetoelectric coefficients of 6000 and 4000 ps/m at 100 and 200 K, respectively. The ab-plane magnetization can be controlled by electric fields with a large hysteresis, leading to nonvolatile change of magnetization. In addition, the reversal of magnetization by electric fields is also realized at 200 K. These diverse magnetoelectric effects with large coefficients highlight the promise of hexaferrites as potential multiferroic materials. PMID:25653008

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  13. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  14. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  15. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  16. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  17. The Effect of High Energy Milling on the SR-HEXAFERRITE Nanocrystalline Powder Synthesized by a Sol-Gel Autocombustion Method

    NASA Astrophysics Data System (ADS)

    Sadeghi-Niaraki, S.; Seyyed Ebrahim, S. A.; Raygan, Sh.

    In this research SrFe12O19 nanocrystalline synthesized by sol-gel auto-combustion method and subsequent annealing at 1000°C for 1h subjected to mechanochemical treatment in a high-energy ball mill and then re-annealing. A planetary ball mill (Fritsch Pulveristte 6) was used to mill the strontium hexaferrite powder at 300 rpm in air for 10, 20 and 40 hours. The process was studied by X-ray diffraction technique and scanning electron microscopy. The X-ray study showed that SrFe12O19 phase was decomposed by milling. Strontium hexaferrite and α-Fe2O3 were obtained with 10 hours milling. There were α-Fe2O3 and strontium hexaferrite in XRD patterns of 20 hours milled sample. With increasing of the milling time to 40 hours, strontium hexaferrite was decomposed completely. The annealing of the 20 and 40 h milled powders at 900°C for 1h led to the formation of single phase strontium hexaferrite with smaller crystallite size compare to that of the hexaferrite powder before milling and subsequent annealing.

  18. 75 FR 19657 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of Commission determination to conduct a full five-year review concerning the antidumping duty order on...

  19. 75 FR 20625 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  20. A catalog of M-type star candidates in the LAMOST data release 1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jinliang

    2016-08-01

    In this work, we present a set of M-type star candidates selected from the LAMOST DR1. A discrimination method with the spectral index diagram is used to separate M giants and M dwarfs. Then, we have successfully assembled a set of M giants templates from M0 to M6, using the spectra identified from the LAMOST spectral database. After combining the M dwarf templates in Zhong et al. (2015a) and the new created M giant templates, we use the M-type spectral library to perform the template-fit method to classify and identify M-type stars in the LAMOST DR1. A catalog of M-type star candidates including 8639 M giants and 101690 M dwarfs/subdwarfs is provided. As an additional results, we also present other fundamental parameters like proper motion, photometry, radial velocity and spectroscopic distance.

  1. Preparation of strontium hexaferrite film by pulsed laser deposition with in situ heating and post annealing

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-09-01

    Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50-80 nm.

  2. Magnetic properties of strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-08-01

    The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50-700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.

  3. Synthesis of coprecipitated strontium hexaferrite nanoparticles in the presence of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Hashemi, B.; Yousefi, M. H.

    2011-12-01

    Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.

  4. Microwave-assisted synthesis of SrFe 12O 19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Zhanyong, Wang; Liuming, Zhong; Jieli, Lv; Huichun, Qian; Yuli, Zheng; Yongzheng, Fang; Minglin, Jin; Jiayue, Xu

    2010-09-01

    Ultra-fine and homogeneous SrFe 12O 19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO 3) 3·9H 2O, Sr(NO 3) 2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.

  5. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  6. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    SciTech Connect

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu; An, Sung Yong; Seo, Jung-wook; Hur, Kangheon; Kim, Hakkwan

    2015-05-07

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) at 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.

  7. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    NASA Astrophysics Data System (ADS)

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu; An, Sung Yong; Seo, Jung-wook; Hur, Kangheon; Kim, Hakkwan

    2015-05-01

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe2O3) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ') and loss tangent (δ) at 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.

  8. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  9. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  10. Resonance-fluorescence in barium ion clouds

    NASA Astrophysics Data System (ADS)

    Horak, H. G.; Whitaker, R. W.

    1982-09-01

    The problem of resonant-fluorescent scattering of sunlight by a high altitude, plane-parallel, barium ion cloud is solved numerically. Line strengths and profiles are computed using a modified version of the computer program LINEAR (Auer, Heasley and Milkey, 1972). Hyperfine structure of the spectral lines becomes important for very thick layers and is taken into account. Comparisons are made between coherent and completely noncoherent scattering results, and finally the influence of collisions on the radiation field is estimated.

  11. Nanoparticles of barium induce apoptosis in human phagocytes

    PubMed Central

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108

  12. Barium Titanate Nanoparticles for Biomarker Applications

    NASA Astrophysics Data System (ADS)

    Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.

    2015-10-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.

  13. Suicidal ingestion of barium-sulfide-containing shaving powder.

    PubMed

    Downs, J C; Milling, D; Nichols, C A

    1995-03-01

    Physicians, familiar with the common usage of barium medicinally as the contrast agent barium sulfate, may consider it an innocuous or at most a minimally harmful compound. The barium cation is extremely toxic and produces characteristic gastrointestinal symptoms, periorbital and extremity paresthesia, hypertension, and progressive flaccid muscular paralysis. Profound hypokalemia also may be induced. Overdose may be rapidly fatal unless the ingestion is recognized and appropriate treatment is instituted expediently. PMID:7771386

  14. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Welke, Martin; Bern, Francis; Ziese, Michael; Denecke, Reinhard

    2013-08-01

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film.

  15. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  16. Creating unstable velocity-space distributions with barium injections

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1983-01-01

    Ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped charges are discussed. Active experiments confirm that anomalous ionization processes may operate, but photoionization accounts for the production of the bulk of the barium ions. Pitch-angle diffusion and/or velocity-space diffusion may occur, but observations of barium ions moving upwards against gravity suggests that the ions retain a significant enough fraction of their initial perpendicular velocity to provide a mirror force. The barium ion plasmas should have a range of Alfven Mach numbers and plasma betas. Because the initial conditions can be predicted these active experiments should permit testing plasma instability hypotheses.

  17. Clonal diversity of Streptococcus pyogenes within some M-types revealed by multilocus enzyme electrophoresis.

    PubMed Central

    Haase, A. M.; Melder, A.; Mathews, J. D.; Kemp, D. J.; Adams, M.

    1994-01-01

    Twenty-two reference isolates and 30 local isolates of group A Streptococci were classified into 36 electrophoretic types (ET) on the basis of allozyme variation at 27 enzyme loci. Local isolates were characterized by a high frequency of M-non typable strains. M-type and ET were more closely associated in local isolates from an endemically-infected population; nevertheless, amongst the local isolates there were also strains of the same ET type with different M-types. A possible explanation is that genetic exchange between strains may introduce different M-types into strains of defined ET when these are exposed to strong selection in the presence of heavy loads of infection. In contrast to the reported clustering of strains associated with toxic shock-like syndrome into two closely related ET clones, we found no relationship of ET phenotype to acute poststreptococcal glomerulonephritis or rheumatic fever. PMID:7995355

  18. Magnetic structure in cool stars. XVI - Emissions from the outer atmosphere of M-type dwarfs

    NASA Technical Reports Server (NTRS)

    Rutten, R. G. M.; Zwaan, C.; Schrijver, C. J.; Duncan, D. K.; Mewe, R.

    1989-01-01

    Consideration is given to emission from the outer atmospheres of M-type dwarfs in several spectral lines originating from the chromosphere, the transition-region, and the soft X-ray emission from the corona. It is shown that M-type dwarfs systematically deviate from relations between flux densities in soft X-rays and chromospheric and transition-region emission lines. The quantitative relation between the equivalent width of H-alpha and the Ca II, H, and K emission index is determined. It is suggested that the emission in the Balmer spectrum may result from back heating by coronal soft X-rays.

  19. A new investigation of hydration in the M-type asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, Humberto; Pinilla-Alonso, Noemí; Hanuš, Josef; Lorenzi, Vania

    2015-05-01

    We obtained 2-4 μm spectra of six M-type asteroids using the SpeX spectrograph at NASA's Infrared Telescope Facility. We find evidence for hydrated minerals on all six asteroids, including two that were previously thought to be dry. One of our targets, (216) Kleopatra, shows rotational variability in the depth of its 3-μm feature. We also studied three of these asteroids in the 0.8-2.4 μm range using the NICS instrument at the Telescopio Nazionale Galileo (TNG) in La Palma, Spain. The discovery of spectral signatures of hydrated minerals on so many M-types is difficult to reconcile with a highly thermally evolved composition. It has been suggested that the hydrated minerals could have been delivered to M-types via impacts with primitive objects, or that the M-types may actually have primitive compositions that are not represented in meteorite collections. Understanding the origin and type of hydration on these asteroids will help determine which of these interpretations is correct.

  20. Barium Enhancement in NGC 6819 Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn; Mathieu, Robert D.; Schuler, Simon C.

    2015-01-01

    Possible formation pathways for blue straggler stars include mergers in hierarchical triple systems, stellar collisions during dynamical encounters, and mass transfer from a giant companion. Extensive work on the blue stragglers in the old open cluster NGC 188 (7 Gyr) has led to exciting discoveries including a binary secondary mass distribution peaked at 0.5 MSolar and the detection of three young white dwarf binary companions. These indicate that mass transfer from an asymptotic giant branch star is the dominant mechanism for blue straggler formation in open clusters. Such mass transfer events should pollute the surface abundance of the blue straggler with nucleosynthesis products from the evolved donor. The other formation pathways, mergers and collisions, are predicted to produce no such enhancements. In an effort to move beyond NGC 188 and into other open clusters we present the first results of a surface abundance study of the blue stragglers in the intermediate-aged open cluster NGC 6819 (2.5 Gyr) using the Hydra multi-object spectrograph on the WIYN 3.5 m telescope. This part of our study centers on the s-process element barium as a tracer of formation via mass transfer. We compare the blue straggler surface abundance of barium to that of a sample of main-sequence stars in NGC 6819 and find multiple blue stragglers with anomalous abundances. Surprising, most of the blue stragglers with barium anomalies show no radial-velocity evidence for a companion. We gratefully acknowledge funding from the National Science Foundation under grant AST- 0908082 and the Wisconsin Space Grant Consortium.

  1. BARIUM IN TEETH AS INDICATOR OF BODY BURDEN

    EPA Science Inventory

    A study was conducted to determine the biological availability of naturally occurring barium in a municipal drinking water by the analysis of barium in deciduous teeth of children. The grade school children of two Illinois towns were chosen for the study. The towns were chosen ba...

  2. Barium dithionate as an EPR dosemeter.

    PubMed

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  3. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  4. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  5. Vacancy ordering in reduced barium titanate

    NASA Astrophysics Data System (ADS)

    Woodward, David I.; Reaney, Ian M.; Yang, Gaiying Y.; Dickey, Elizabeth C.; Randall, Clive A.

    2004-06-01

    A crystal structure is proposed for reduced barium titanate, BaTiO3-δ, δ≈0.33, formed during the degradation of Ni-BaTiO3 X7R multilayer ceramic capacitors. High-resolution transmission electron microscopy and selected-area electron diffraction have been used in combination with computer simulations to show that oxygen vacancies accrete on every third pseudocubic {111} plane, resulting in a cell with space group P3m1. Additionally, from electron energy loss spectroscopy, it is proposed that Ti4+ is reduced to Ti3+ as a mechanism of charge compensation within oxygen-deficient octahedra.

  6. Barium cardiotoxicity: Relationship between ultrastructural damage and mechanical effects.

    PubMed

    Delfino, G; Amerini, S; Mugelli, A

    1988-01-01

    The ultrastructural damage in guinea-pig ventricular strips caused by barium was analysed. At a concentration of 1 mmol/litre, barium chloride caused a dramatic increase in the developed tension associated with the onset of automaticity. The ultrastructural analysis demonstrated that barium caused notable and consistent alterations which affected most myocyte components. Various degenerative aspects were observed in mitochondria and in the contractile apparatus. Glycogen deposits were completely depleted. Preparations driven at 4 Hz (i.e. the rate of spontaneous firing of barium-treated preparations) showed moderate ultrastructural alterations, thus demonstrating that the increase in the rate of beating is not the only determinant of the observed damage. These results suggest that the myocardial toxicity of barium is due not only to the well-known modifications in membrane permeability, but possibly also to alterations in cell function. PMID:20702358

  7. Emission analysis of a laser-produced barium plasma plume.

    PubMed

    Singh, R K; Joshi, H C; Kumar, Ajai

    2015-09-01

    In the present work we report the characteristic emission features of a laser-produced barium plasma plume. The time-resolved analysis for the different spectral lines of neutral and singly charged ionic barium has been carried out. It has been observed that the temporal evolution of electron temperature and density shows a peculiar behavior which is significantly different from the reported results of laser ablation of materials. The electron density increases with increase in delay time but the temperature does not change to any significant extent. Strong self-reversal in the emission of a resonant singly charged barium ionic line (455.4 nm) with time delay indicates the increase of population of singly charged barium ion with time. The results are explained on the basis of the increased population of barium metastables and subsequent ionization (Penning type). PMID:26368891

  8. An Investigation of the 3-μm Feature in M-Type Asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, H.; Hargrove, K.; Pinilla-Alonso, N.; Emery, J.; Ziffer, J.

    2013-10-01

    The M-type asteroids had originally been interpreted as the disrupted iron cores of differentiated bodies by spectral analogy with the NiFe meteorites. More detailed studies have since indicated a range of compositions. In particular, the presence of a 3-µm feature, diagnostic of hydration, detected in more than 35% of surveyed M-type asteroids (Jones et al. 1990, Rivkin et al. 1995, 2000) has challenged the notion that these bodies are all metallic. Spectroscopy in the 0.8 - 2.5 µm region has revealed absorption features due to mafic silicates and hydroxides or phyllosilicates (Fornasier et al. 2010, Hardersen et al. 2006, 2010, Ockert-Bell et al. 2010). Radar studies have shown that most M-types are not likely to be iron cores, but they typically have a higher metal content than average (Shepard et al. 2010). Taken together, these results paint a fairly confounding picture of the M-type asteroids. While several interpretations have been suggested, more work is needed to clarify the mineralogy of these bodies. We have started a new spectroscopic study of the M asteroids in the 2 - 4 µm region. We seek to characterize the shape, band center, and band depth of the 3-µm feature where it is present, as these measures are indicative of the type and extent of hydration present on asteroids (Lebofsky et al. 1985, Rivkin et al. 2002, Takir & Emery 2012, Volguardsen et al. 2007). With this work, we hope to shed new light on the origin of hydration on M asteroids and its context within their mineralogy and thermal evolution. In July 2013, we obtained 2 - 4 µm spectra for 69 Hesperia, 136 Austria, and 261 Prymno with the SpeX at NASA’s IRTF, and are in the process of reducing the data. We have also obtained 0.8 - 2.0 µm data for 261 Prymno using the NICS at the TNG in February 2013. We report the presence of an absorption feature near 0.9 µm in Prymno’s spectrum, indicating a partially silicate composition. Based on spectral, physical and orbital similarities to

  9. Proton conductivity of potassium doped barium zirconates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    2010-01-01

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ at 600 °C is 2.2×10 -3 S/cm in wet 5% H 2. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H 2 and 0.31(1), 0.74(3) eV in dry 5% H 2. A power density of 7.7 mW/cm 2 at 718 °C was observed when a 1 mm thick Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ pellet was used as electrolyte and platinum electrodes.

  10. Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite

    PubMed Central

    Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-01-01

    The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913

  11. Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia

    2013-10-01

    Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.

  12. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  13. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9–11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g‑1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  14. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki

    2015-11-01

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe12O19). Based on the calculation of the substitution energy of Ga and In in SrFe12O19 and the formation probability analysis, we conclude that in SrFe12-xGaxO19 the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f1 sites, while In atoms in SrFe12-xInxO19 occupy the 12k, 4f2, and 4f1 sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe12O19. It was found that as the fraction of Ga atoms in SrFe12-xGaxO19 increases, the saturation magnetization (Ms) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (Ha) increases. In the case of SrFe12-xInxO19, Ms, MAE, and Ha decrease with an increase of the concentration of In atoms.

  15. Synthesis of strontium hexaferrite nanoparticles prepared using co-precipitation method and microemulsion processing

    NASA Astrophysics Data System (ADS)

    Drmota, A.; Žnidaršič, A.; Košak, A.

    2010-01-01

    Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.

  16. Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite.

    PubMed

    Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-01-01

    The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 10(8) Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 10(8) Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913

  17. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    SciTech Connect

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki

    2015-11-28

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fraction of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.

  18. Structural modification of strontium hexaferrite through destruction process and ionic substitution

    NASA Astrophysics Data System (ADS)

    Fitriana, Karina Nur; Hafizah, Mas Ayu Elita; Manaf, Azwar

    2016-04-01

    Synthesis of single phased SrO.6Fe2-xMnx/2Tix/2O3 (x = 0.0; 0.5; and 1.0) nanoparticles has been prepared through mechanical alloying, assisted with the ultrasonic destruction process. Monocrystalline particles were obtained when x = 0 treated with ultrasonic destruction at 55 μm of transducer amplitude. Average particle size and crystallite size were reduced significantly from 723 nm to ˜87 nm for x = 0. The particle size was not significantly reduced when x = 0.5 and x = 1 was changed. On the other hand, substitution of Ti elements on some of Fe elements expectedly had a major effect on reducing particle size. This was proven by larger size on both particle and crystallite size at x = 1 rather than x = 0.5, with comparison respectively 2:1 (in nm). In addition, a higher transducer power was required for modifying Strontium Hexaferrite (SHF) with more Ti elements and a bigger size of pre-ultrasonic destructed sample. It is concluded that the amplitude of the transducer in ultrasonic destruction process and the element of ionic substitution affects both average particle size and crystallite size of SHF.

  19. Role of grain boundaries in the conduction of Eu-Ni substituted Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Naeem Ashiq, Muhammad; Asif Iqbal, M.; Khan, Hasan M.; Murtaza, G.

    2014-08-01

    Single phase nanostructured (Eu-Ni) substituted Y-type hexaferrites with nominal composition of Sr2Co2-xNixEuyFe12-yO22 (x=0.0-1, y=0.0-0.1) were synthesized by the microemulsion method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The presence of Debye peaks in imaginary electric modulus curves confirmed the existence of relaxation phenomena in given frequency range. The AC conductivity follows power law, with exponent (n) value, ranges from 0.81-0.97, indicating that the mechanism is due to polaron hopping. In the present ferrite system, Cole-Cole plots were used to separate the grain and grain boundary effects. Eu-Ni substitution leads to a remarkable rise of grain boundary resistance as compared to the grain resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. It was also observed that the AC activation energy is lower than the DC activation energy. Appreciable improved values of quality factor suggested the possible use of these synthesized materials for power applications and high frequency multilayer chip inductors.

  20. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10‑16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  1. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  2. Structural, electrical and magnetic study of Nd-Ni substituted W-type Hexaferrite

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Sadiq, Imran; Ali, Irshad; Rana, Mazhar-Ud-Din; Najam-Ul-Haq, Muhammad; Shah, Afzal; Shakir, Imran; Naeem Ashiq, Muhammad

    2016-01-01

    A series of Nd-Ni substituted W-type hexaferrites with composition Sr1-xNdxCo2NiyFe16-yO27 (where x=0.0, 0.025, 0.050, 0.075, 0.1 and y=0.0, 0.25, 0.50, 0.75, 1) has been prepared by the chemical co-precipitation method. The effect of rare earth Nd substitution at strontium site while Ni at iron site on microstructure, electrical and magnetic properties has been investigated. All the XRD patterns of the synthesized materials show single W-type hexagonal phase without any other intermediate phases. SEM images show that the particles are homogeneous and hexagonal platelet-like shape. DC electrical resistivity measurements were carried out in temperature range of 298-673 K showing metal-to-semiconductor transition when doped with Nd-Ni. The magnetic properties such as saturation magnetization, remanence, squareness ratio and coercivity were calculated from hysteresis loops and were observed to increase with the increase in Nd-Ni concentration up to a certain substitution level which is beneficial for high density recording media.

  3. Iron oxide nanocomposite magnets produced by partial reduction of strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Tikkanen, Jussi; Paturi, Petriina

    2014-07-01

    Isotropic bulk nanocomposite permanent magnets were produced with strontium hexaferrite, SrO·6Fe2O3, and magnetite, Fe3O4, as the magnetically hard and soft components. A novels synthesis scheme based on the partial reduction of SrO·6Fe2O3 was employed. In two parallel experiments, nano- and microcrystalline SrO·6Fe2O3 particles were compacted into pellets along with a controlled, understoichiometric amount of potato starch as a reducing agent. The pellets were then sintered in a passive atmosphere. Based on XRD and room temperature magnetic hysteresis measurements, it was concluded that a fraction of the SrO·6Fe2O3 input material had been reduced into Fe3O4. In comparison with pure SrO·6Fe2O3 control pellets, these composites exhibited maximum energy product increases in excess of 5 % due to remanence boosting. The improvement of magnetic properties was attributed to an efficient exchange spring coupling between the magnetic phases. Interestingly, as the synthesis scheme also worked for microcrystalline SrO·6Fe2O3 , the method could presumably be adapted to yield crystallographically oriented bulk nanocomposite magnets.

  4. Synthesis of Y-type hexaferrites via a soft mechanochemical route

    NASA Astrophysics Data System (ADS)

    Temuujin, J.; Aoyama, M.; Senna, M.; Masuko, T.; Ando, C.; Kishi, H.

    2004-11-01

    Y-type (Ba 2Co 2Fe 12O 22) hexaferrite precursors have been prepared via a soft mechanochemical route from mixtures comprising BaCO 3, Co(OH) 2 and α-FeOOH. The mixture was activated with a multi-ring type mill for varying duration. The chemical and structural changes during grinding were examined in detail by XRD, DTA-TG, SEM, XPS and FTIR. During grinding, extended crystallinity loss or lattice disturbance was observed without an emersion of any new crystalline phases. At the same time, electronic states were changed toward the final product, fully crystallized Y-phase ferrite. Mechanical activation for only 1 h was sufficient to obtain a precursor for phase pure Y-type by subsequent heating in air at temperatures as low as 1000 °C. Development of plate-like anisotropy by using a precursor with prolonged milling was also observed. Magnetic permeability, μ', was ca. 3 at 1 GHz, equivalent to the reported data, in spite of the lower firing temperature.

  5. Moessbauer and magnetic study of Mn, Zr and Cd substituted W-type hexaferrites prepared by co-precipitation

    SciTech Connect

    Iqbal, Muhammad Javed; Khan, Rafaqat Ali; Mizukami, Shigemi; Miyazaki, Terunobu

    2011-11-15

    Highlights: {yields} Zr and Cd ions substitute tetrahedral 4e and 4f{sub IV} sites while Mn ions occupy octahedral 6g and 4f sites. {yields} Doping of W-type hexaferrites with Mn, Zr and Cd improves the values of M{sub s} and M{sub r}. {yields} The enhancement of magnetic characteristic togetherwith the formation of rice shaped W-type hexaferrites nanoparticles is promising for imaging and sensing devices. {yields} The synthesized materials are suitable for magnetic data storage with high density. -- Abstract: BaCo{sub 2-x}Mn{sub x}Fe{sub 16-2y}(Zr-Cd){sub y}O{sub 27} (x = 0-0.5 and y = 0-1.0) hexaferrite nanocrystallites of average sizes in the range of 33-42 nm are synthesized by the chemical co-precipitation method. The synthesized materials are characterized using different techniques including X-ray diffraction (XRD), energy dispersive X-ray florescence (ED-XRF), scanning electron microscope (SEM), Moessbauer spectrometer and vibrating-sample magnetometer (VSM). Based on analysis of the data obtained from Moessbauer spectral studies, doping is believed to have occurred preferably in the vicinity of 12k sub-lattice, i.e. f{sub IV} (4e, 4f{sub IV}), 2b (6g, 4f) and 2d site. Variations in the saturation magnetization (77.1-60.9 emu g{sup -1}), remanent magnetization (22.08-31.23 emu g{sup -1}) and coercivity (1570.1-674.7 Oe) exhibit tunable behavior with dopant content and therefore can be useful for application in various magnetic devices.

  6. Electric characterization of (Sr, Sr-Ba, Ba) M-type ferrites by AC measurements[Alternating Current

    SciTech Connect

    Huanosta-Tera, A.; Lira-Hueso, R. de; Perez-Orta, O.; Palomares-Sanchez, S.A.; Ponce-Castaneda, S.; Mirabal-Garcia, M.

    2000-02-01

    Considering the electrical conductivity in ceramics, necessary reference should be given to dynamic processes occurring as a function of frequency and temperature. Although the most immediate interest in ferrites lies in their magnetic properties, technological applications require a wider knowledge of general physical properties as well. This is especially applicable when the materials are studied as a function of composition or when adding different modifiers. In this report, the authors present results of the ac and dc electric characteristics of a family of magneto-plumbite-type hexaferrites, where Ba gradually substitutes Sr in the Ba{sub x}Sr{sub 1{minus}x}Fe{sub 12}O{sub 19} compound (0 {le} x {le} 1). The results were determined over a wide range of frequencies and temperatures.

  7. Diagnosis of Cervical Cancer Using the Median M-Type Radial Basis Function (MMRBF) Neural Network

    NASA Astrophysics Data System (ADS)

    Gómez-Mayorga, Margarita E.; Gallegos-Funes, Francisco J.; de-La-Rosa-Vázquez, José M.; Cruz-Santiago, Rene; Ponomaryov, Volodymyr

    The automatic analysis of Pap smear microscopic images is one of the most interesting fields in biomedical image processing. In this paper we present the capability of the Median M-Type Radial Basis Function (MMRBF) neural network in the classification of cervical cancer cells. From simulation results we observe that the MMRBF neural network has better classification capabilities in comparison with the Median RBF algorithm used as comparative.

  8. Hygienic importance of increased barium content in some fresh waters.

    PubMed

    Havlík, B; Hanusová, J; Rálková, J

    1980-01-01

    In surface waters of the mining and processing areas of uranium ore there is an increased content of free and bound barium ions due to the use of barium salts for the treatment of waste and mine waters containing radium. In model experiments with the algae Ankistrodesmus falcatus, Chlorella kessleri and Scenedesmus obliquus, we studied the effect of Ba2+ on the accumulation of 226Ra. It was found that the accumulation of radium by algae is negatively influenced with barium concentrations higher than 1 mg.l-1. The accumulation of barium of organisms of primary production was studied using 133BaCl2. At a barium content in the medium of 4.0, 0.46 and 0.04 mu. l-1, the algae accumulated 30-60% of the added amount of barium during an exposure of 15 days. Biochemical analyses showed that barium is bound to the cellular membrane and to other components of the algal cell that cannot be extracted with water or alcohol. PMID:7462608

  9. Do all barium stars have a white dwarf companion?

    NASA Technical Reports Server (NTRS)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  10. Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature.

    PubMed

    Moreira, M L; Gurgel, M F C; Mambrini, G P; Leite, E R; Pizani, P S; Varela, J A; Longo, E

    2008-09-25

    The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems. PMID:18593105

  11. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  12. Metallurgical Properties and Phase Transformations of Barium-Strontium Modifier

    NASA Astrophysics Data System (ADS)

    Platonov, M. A.; Sulimova, I. S.; Rozhikhina, I. D.; Dmitrienko, V. I.; Horoshun, G. V.

    2016-04-01

    Metallurgical properties and phase transformations of barium-strontium modifier were tested in laboratory conditions resembling steel processing in furnace and ladle. When heating barium-strontium modifier start of melting, kinetics of decomposition, phase and structure transformation were studied. The concentrate under consideration has been revealed to be a complex mineral compound containing barytocalcite, calcite, calciostrontianite, dolomite and siderite. The reaction kinetics of decomposing mineral components of barium-strontium modifier to oxides does not considerably affect slag formation in conditions of out-of-furnace steel processing.

  13. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  14. Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties

    NASA Astrophysics Data System (ADS)

    Hue Dang, Thi Minh; Dung Trinh, Viet; Huan Bui, Doan; Huong Phan, Manh; Chinh Huynh, Dang

    2012-06-01

    Hard magnetic strontium hexaferrite SrFe12O19 nanoparticles were synthesized by the sol–gel hydrothermal method. The factors affecting the synthesized process, such as the mole proportion of the reactants, pH, temperature, the hydrothermal conditions and the calcination process, have been investigated. The crystal structures of these materials were refined by Rietveld method. The obtained materials have single crystal phase, equal nano-size, plate shape and high anisotropy. The high magnetic coercivity of 6.3 kOe with the magnetization at 11.1 kOe of 66 emu g‑1 at room temperature was observed for the strontium hexaferrite nanoparticles. For other nanoparticles (SrLnxFe12-xO19 and SrFe12O19/CoFe2O4) synthesized on the basis of SrFe12O19 the complex completion of the crystal structure distortion and the interaction between magnetic phases were observed.

  15. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  16. Phased surgical treatment of barium enema-induced rectal injury and retention of barium in the pelvic floor space

    PubMed Central

    Yang, Xuefei; Xia, Ligang; Huang, Jun; Wang, Jianping

    2014-01-01

    Iatrogenic injuries caused by barium enema are rarely reported. Following a phased surgical protocol for up to one year, we have successfully treated a patient with rectal injury and severe infection of the pelvic floor space complicated with retention of large amounts of barium and vaginal fistula. In this article, the phased surgery planning for the treatment of rectal injury complicated with vaginal fistula is discussed in terms of the pros and cons, and the observed effect and evolution of barium retained in the pelvic floor space are described. PMID:25405155

  17. Modeling of the nonstationary regimes of distributed-emission M-type microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Gritsunov, A. V.

    An improved modeling procedure for the calculation of transient processes in M-type microwave amplifiers by the large-particle method is described which involves a three-dimensional mulitparticle configuration and rectangular and cylindrical geometry. The operating characteristics of the TUL'PAN applied program package based on the models developed are examined. Typical time dependences of the output parameters during the insertion process are shown for the QK-434 device, and the space-charge distribution in the interaction space under stationary conditions is presented.

  18. Gas poisoning investigations of scandate and M-type dispenser cathodes

    NASA Astrophysics Data System (ADS)

    Shao, Wensheng; Zhang, Ke; Li, Ji; Yan, Suqiu; Chen, Qilue

    2003-06-01

    Gas poisoning tests of cathode emission were carried out with four kinds of thermal cathodes: W+Sc 2O 3 mixed matrix cathode, impregnated scandate cathode, Ir-coated cathode, Os-coated cathode. As a result, M-type cathodes are more sensitive to O 2, but can recover absolutely in a short time; scandate-type cathodes react slowly and recover partly after a long time. Compared to O 2, ambient air leaked into the vacuum chamber has a smaller influence on the cathode emission; H 2 has a little effect of activation on the four cathodes, especially on the Os-coated cathode.

  19. Consideration of cysteine protease activity for serological M-typing of clinical Streptococcus pyogenes isolates.

    PubMed

    Morita, Masatomo; Ikebe, Tadayoshi; Watanabe, Haruo

    2004-01-01

    Clinical isolates of Streptococcus pyogenes were classified by serological typing of their surface M protein. Non-M typeable strains with the emm1 gene were characterized as the degradation of M protein caused by overproduction of the extracellular cysteine protease, SpeB. These events are dependent on the growth phase. M protein produced prior to expression of SpeB is degraded in the stationary phase when the active form of SpeB is detected. The proteolytic degradation of M protein should be considered for precise M typing analysis. PMID:15502412

  20. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    PubMed Central

    Gupta, Pankaj; Debi, Uma; Sinha, Saroj Kant; Prasad, Kaushal Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract (GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence, a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities. PMID:25170399

  1. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  2. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  3. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  4. Solar eclipse sign of intussusception on barium enema.

    PubMed

    Raveenthiran, V

    2002-01-01

    The colographic appearance of intussusception is variously described as a claw sign, pincer defect, shouldering effect, and coiled-spring pattern. This report adds a new radiographic sign to the list. An end-on view of an intussusception on barium enema shows a ring of contrast resembling a solar eclipse. Familiarity with this bizarre appearance is desirable, lest it may be mistaken for spillage of barium due to a colonic perforation. PMID:11793074

  5. A search for technetium (Tc II) in barium stars

    NASA Technical Reports Server (NTRS)

    Little-Marenin, Irene R.; Little, Stephen J.

    1987-01-01

    The authors searched without success for the lines of Tc II at 2647.02, 2610.00 and 2543.24 A in IUE spectra of the barium stars HR 5058, Omicron Vir, and Zeta Cap. The lack of Tc II implies that the observed s-process enhancements were produced more than half a million years ago and supports the suggestion that the spectral peculiarities of barium stars are probably related to the binary nature of the stars.

  6. 'Skidding' of the CRRES G-9 barium release

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Mitchell, H. G.; Fedder, J. A.; Bernhardt, P. A.

    1992-01-01

    A simulation study and experimental data of the CRRES G-9 ionospheric barium release are presented. The simulation study is based on a 2D electrostatic code that incorporates time-dependent coupling to the background plasma. It is shown that the densest portion of the barium ion cloud 'skids' about 15 km within the first three seconds following the release, consistent with the optical data analyses.

  7. Planar millimeter wave band-stop filters based on the excitation of confined magnetostatic waves in barium hexagonal ferrite thin film strips

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Song, Young-Yeal; Bevivino, Joshua; Wu, Mingzhong

    2011-05-01

    A planar millimeter wave band-stop filter based on confined magnetostatic wave (MSW) excitations in an M-type barium hexagonal ferrite (BaM) film strip was demonstrated. The device consists of a BaM film strip on the top of a coplanar waveguide with the strip length along the signal line. For zero magnetic fields, the device shows a band-stop filtering response at 53 GHz. This response originates from the excitation of confined MSW modes across the BaM strip width. The filter operation frequency is tunable with low fields. This tuning relies on the change in the MSW dispersion with field.

  8. Hα as a Luminosity Class Diagnostic for K- and M-type Stars

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Levesque, Emily M.

    2016-04-01

    We have identified the Hα absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for Hα and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. Hα shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in Hα has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  9. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    PubMed

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons. PMID:22674722

  10. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.