Science.gov

Sample records for m2-f1 lifting body

  1. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  2. M2-F1 lifting body aircraft on a flatbed truck

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After the grounding of the M2-F1 in 1966, it was kept in outside storage on the Dryden complex. After several years, its fabric and plywood structure was damaged by the sun and weather. Restoration of the vehicle began in February 1994 under the leadership of NASA retiree Dick Fischer, with other retirees who had originally worked on the M2-F1's construction and flight research three decades before also participating. The photo shows the now-restored M2-F1 returning to the site of its flight research, now called the Dryden Flight Research Center, on 22 August 1997. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available

  3. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  4. Proposed Ames M2-F1, M1-L half-cone, and Langley lenticular bodies.

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Dale Reed, who inaugurated the lifting-body flight research at NASA's Flight Research Center (later, Dryden Flight Research Center, Edwards, CA), originally proposed that three wooden outer shells be built. These would then be attached to the single internal steel structure. The three shapes were (viewer's left to right) the M2-F1, the M1-L, and a lenticular shape. Milt Thompson, who supported Reed's advocacy for a lifting-body research project, recommended that only the M2-F1 shell be built, believing that the M1-L shape was 'too radical,' while the lenticular one was 'too exotic.' Although the lenticular shape was often likened to that of a flying saucer, Reed's wife Donna called it the 'powder puff.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  5. M2-F1 cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photo shows the cockpit configuration of the M2-F1 wingless lifting body. With a top speed of about 120 knots, the M2-F1 had a simple instrument panel. Besides the panel itself, the ribs of the wooden shell (left) and the control stick (center) are also visible. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47

  6. M2-F1 in Tow

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 lifting body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric re-entry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle.

  7. M2-F1 In Tow Flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 lifting body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 feet where free flights back to Rogers Dry Lake began.

  8. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow by an unseen C-47 at the NASA Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The low-cost vehicle was the first piloted lifting body to be test flown. The lifting-body concept originated in the mid-1950s at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Mountain View California. By February 1962, a series of possible shapes had been developed, and R. Dale Reed was working to gain support for a research vehicle. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at

  9. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The M2-F1 Lifting Body is seen here under tow, high above Rogers Dry Lake near the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. R. Dale Reed effectively advocated the project with the support of NASA research pilot Milt Thompson. Together, they gained the support of Flight Research Center Director Paul Bikle. After a six-month feasibility study, Bikle gave approval in the fall of 1962 for the M2-F1 to be built. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL

  10. M2-F1 simulator cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This early simulator of the M2-F1 lifting body was used for pilot training, to test landing techniques before the first ground tow attempts, and to test new control configurations after the first tow attempts and wind-tunnel tests. The M2-F1 simulator was limited in some ways by its analog simulator. It had only limited visual display for the pilot, as well. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne

  11. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 25-second clip shows Milt Thompson being towed in the M2-F1 behind a C-47 aircraft. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2-F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their rocket

  12. M2-F1 in flight on tow line

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting-body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The M2-F1 project had limited goals. They were to show that a piloted lifting body could be built, that it could not only fly but be controlled in flight, and that it could make a successful landing. While the M2-F1 did prove the concept, with a wooden fuselage and fixed landing gear, it was far from an operational spacecraft. The next step in the lifting-body development was to build a heavyweight, rocket-powered vehicle that was more like an operational lifting body, albeit one without the thermal protection system that would be needed for reentry into the atmosphere from space at near-orbital speeds. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to

  13. M2-F1 on lakebed with pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA Flight Research Pilot Milt Thompson, shown here on the lakebed with the M2-F1 lifting body, was an early backer of R. Dale Reed's lifting-body proposal. He urged Flight Research Center director Paul Bikle to approve the M2-F1's construction. Thompson also made the first glide flights in both the M2-F1 and its successor, the heavyweight M2-F2. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved

  14. M2-F1 in hangar with Pontiac tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  15. M2-F1 ejection seat test at South Edwards

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 was fitted with an ejection seat before the airtow flights began. The project selected the seat used in the T-37 as modified by the Weber Company to use a rocket rather than a ballistic charge for ejection. To test the ejection seat, the Flight Research Center's Dick Klein constructed a plywood mockup of the M2-F1's top deck and canopy. On the first firings, the test was unsuccessful, but on the final test the dummy in the seat landed safely. The M2-F1 ejection seat was later used in the two Lunar Landing Research Vehicles and the three Lunar Landing Training Vehicles. Three of them crashed, but in each case the pilot ejected from the vehicle successfully. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with

  16. Internal steel structure of M2-F1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The internal steel structure for the M2-F1 was built at the Flight Research Center (predecessor of the Dryden Flight Research Center, Edwards, CA) in a section of the calibration hangar dubbed 'Wright Bicycle Shop.' Visible are the stick, rudder pedals, and ejection seat. The external wooden shell was attached to the steel structure. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly

  17. M2-F1 under tow across lakebed by car

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 20-second clip shows the M2-F1 being towed by the Pontiac across Rogers Dry Lakebed. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2`F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their

  18. M2-F1 in flight being towed by a C-47

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. In this rear view, the M2-F1 is flying above and to one side of the C-47. This was done to avoid wake turbulence from the towplane. Lacking wings, the M2-F1 used an unusual configuration for its control surfaces. It had two rudders on the fins, two elevons (called 'elephant ears') mounted on the outsides of the fins, and two body flaps on the upper rear fuselage. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and

  19. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and

  20. M2-F1 on lakebed with Pontiac convertible tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the space shuttle and the X-38 Technology Demonstrator for crew return from the International Space Station. The early tow tests were done using the 1963 Pontiac Catalina convertible modified for the purpose. The first flight attempt occurred on 1 March 1963 but was unsuccessful due to control-system problems. It was not until 5 April 1963, after tests in the Ames Research Center wind tunnel, that Milt Thompson made the first M2-F1 tow flight. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, Calif., in the mid-1950s, the M2-F1 came to be built over a four-month period in 1962-63 for a cost of only about $30,000 plus perhaps an additional $8,000-$10,000 for an ejection seat and $10,000 for solid-propellant rockets to add time to the landing flare. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed until it was airborne by a souped-up Pontiac convertible. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina

  1. Wooden shell of M2-F1 being assembled at El Mirage

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Wooden shell of the M2-F1 being assembled at El Mirage, CA. While Flight Research Center technicians built the internal steel structure of the M2-F1, sailplane builder Gus Briegleb built the vehicle's outer wooden shell. Its skin was 3/32-inch mahogany plywood, with 1/8-inch mahogany rib sections reinforced with spruce. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to

  2. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  3. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After initial ground-tow flights of the M2-F1 using the Pontiac as a tow vehicle, the way was clear to make air tows behind a C-47. The first air tow took place on 16 August 1963. Pilot Milt Thompson found that the M2-F1 flew well, with good control. This first flight lasted less than two minutes from tow-line release to touchdown. The descent rate was 4,000 feet per minute. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got

  4. M2-F1 in flight during low-speed car tow

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  5. M2-F1 fabrication by Grierson Hamilton, Bob Green, and Ed Browne

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Flight Research Center discretionary funds paid for the M2-F-1's construction. NASA mechanics, sheet-metal smiths, and technicians did much of the work in a curtained-off area of a hangar called the 'Wright Bicycle Shop.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests

  6. Dale Reed with model in front of M2-F1

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the 'Mothership.' A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the

  7. M2-F1 on lakebed with pilots Milt Thompson, Chuck Yeager, Don Mallick, and Bruce Peterson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After the initial M2-F1 airtow flights, the NASA Flight Research Center used the vehicle to check out other pilots. Bruce Peterson was scheduled to take over as the M2-F1 project pilot from Milt Thompson, while Don Mallick was to be his backup. Col. (later Brig. Gen.) Charles (Chuck) Yeager, then commandant of the Air Force's Aerospace Research Pilots School, wanted to evaluate a possible lifting-body trainer for the school. This photo shows all of these distinguished pilots on or in the M2-F1, with Col. Yeager in the pilot's seat. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the Briegleb Glider Company. The budget was $30,000. NASA craftsmen and engineers built the tubular steel interior frame. Its mahogany plywood shell was hand

  8. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  9. Lifting Bodies on Lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 22, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC-now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  10. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  11. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  12. Three Lifting Bodies on Lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC--now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  13. Wingless Flight: The Lifting Body Story

    NASA Technical Reports Server (NTRS)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  14. Heating Analysis of the Lockheed Lifting Body

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Henline, Bill; Olynick, Dave; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Computational fluid dynamic (CFD) analysis is performed on the Lockheed Lifting Body Single-Stage-to-Orbit vehicle to determine the heat transfer to the vehicle during its descent trajectory. Seven species, chemical nonequilibriurn computations using the GASP code will be completed at several trajectory points to assess the thermal protection requirements of the vehicle. Sophisticated surface boundary conditions including in-depth conduction, catalycity, and a variable temperature wall have been incorporated into the flow solver.

  15. The Lifting Body Legacy...X-33

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1999-01-01

    NASA has a technology program in place to enable the development of a next generation Reusable Launch Vehicle that will carry our future payloads into orbit at a much-reduced cost. The VentureStar, Lifting Body (LB) flight vehicle, is one of the potential reusable launch vehicle configurations being studied. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines the flight stability and control aspects of our LB heritage which was utilized in the design of the VentureStar LB and its test version, the X-33. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. In the initial LB Program, eight LB's were built and over 225 LB test flights were conducted through 1975. Three LB series were most significant in the advancement of today's LB technolocy: the M2-F; the HL-10; and the X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the U. S. Air Force. LB vehicles are alive again today with the X- 33, X-38, and VentureStar.

  16. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  17. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  18. Aerodynamic development of a lifting body launch vehicle

    SciTech Connect

    Reaser, J.S.

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described. {copyright} {ital 1997 American Institute of Physics.}

  19. Unsteady compressible potential flow around lifting bodies - General theory.

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1973-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green's function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. This representation reduces properly to the lifting surface theories as well as to other classical mathematical formulas. Under small perturbation assumption, the potential at any point P in the field depends only upon the values of the potential and its normal derivative on the surface of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integrodifferential equation relating the potential and its normal derivative on the surface of the body.

  20. The Personnel Launch System - A lifting body approach

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Stone, Howard W.

    1991-01-01

    A lifting-body approach to the sign of a Personnel Launch System spacecraft for Space Station crew missions is defined. This paper reviews the characteristics and capabilities of this spacecraft the HL-20. Launch vehicle options are examined and recent findings from wind tunnel tests, tests of landing dynamics and handling qualities, and human factors research using a full-scale research model are reviewed.

  1. HL-10 pilots assist with pilot entry into lifting body

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once 'Captain Midnight' (Gentry) and the 'Midnight skulkers' sneaked into the NASA hangar and put 'U.S. Air Force' on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was 'borrowed' from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting

  2. In vivo loads on a vertebral body replacement during different lifting techniques.

    PubMed

    Dreischarf, Marcel; Rohlmann, Antonius; Graichen, Friedmar; Bergmann, Georg; Schmidt, Hendrik

    2016-04-11

    The repeated lifting of heavy weights has been identified as a risk factor for low back pain (LBP). Whether squat lifting leads to lower spinal loads than stoop lifting and whether lifting a weight laterally results in smaller forces than lifting the same weight in front of the body remain matters of debate. Instrumented vertebral body replacements (VBRs) were used to measure the in vivo load in the lumbar spine in three patients at level L1 and in one patient at level L3. Stoop lifting and squat lifting were compared in 17 measuring sessions, in which both techniques were performed a total of 104 times. The trunk inclination and amount of knee bending were simultaneously estimated from recorded images. Compared with the aforementioned lifting tasks, the patients additionally lifted a weight laterally with one hand 26 times. Only a small difference (4%) in the measured resultant force was observed between stoop lifting and squat lifting, although the knee-bending angle (stoop 10°, squat 45°) and trunk inclination (stoop 52°, squat 39°) differed considerably at the time points of maximal resultant forces. Lifting a weight laterally caused 14% less implant force on average than lifting the same weight in front of the body. The current in vivo biomechanical study does not provide evidence that spinal loads differ substantially between stoop and squat lifting. The anterior-posterior position of the lifted weight relative to the spine appears to be crucial for spinal loading. PMID:26603872

  3. Lifting Entry & Atmospheric Flight (LEAF) Applications at Solar System Bodies.

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Polidan, R. S.

    2015-12-01

    Introduction: Northrop Grumman and L'Garde have continued the development of a hypersonic entry, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere. The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieve this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the "habitable layers" of Venus' atmosphere at night. Titan also offers an attractive operating environment, allowing LEAF designs that can target low, medium, or high altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  4. Thermal Management Design for the X-33 Lifting Body

    NASA Technical Reports Server (NTRS)

    Bouslog, S.; Mammano, J.; Strauss, B.

    1998-01-01

    The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33

  5. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  6. Supporting the upper body with the hand on the thigh reduces back loading during lifting.

    PubMed

    Kingma, Idsart; Faber, Gert S; van Dieën, Jaap H

    2016-04-11

    When picking objects from the floor, low back pain patients often tend to support the upper body by leaning with one hand on a thigh. While this strategy may reduce back load, this has not yet been assessed, probably due to the difficulty of measuring the forces between hand and thigh. Ten healthy male subjects lifted a pencil and a crate from the floor, with four lifting techniques (free, squat, stoop and a Weight Lifters Technique (WLT)), each of which was performed with and without supporting with one hand on the thigh. A six Degrees of Freedom force transducer, with a comfortable surface to support the hand on, was mounted just above the subject׳s left knee. Hand forces, ground reaction forces, full body kinematics, and trunk EMG were measured. Using inverse dynamics and taking the forces between hand and thigh into account, we calculated 3D L5S1 joint moments, and subsequently estimated spine forces using an EMG-assisted trunk model. For lifting a pencil, hand support reduced average peak total moments by 17-25%, dependent on lifting technique. For crate lifting, hand support reduced total moments by 13-19% compared with one-handed lifting and by 14-26% compared to two-handed lifting. Hand support slightly increased asymmetric motions and caused a substantial increase in asymmetric moments in crate lifting. For compression forces, reductions (up to 28%) were seen in all techniques except in stoop lifts. It is concluded that leaning with a hand on the thigh can lead to substantial reductions of low back loading during lifting. PMID:26475223

  7. The lift-off velocity on the surface of an arbitrary body

    NASA Astrophysics Data System (ADS)

    Van wal, S.; Scheeres, D. J.

    2016-05-01

    An expression is developed for the velocity at which a particle, moving tangentially on the surface of a body with an arbitrary shape, rotation, and gravitational field, will lift off from that surface and enter orbit. The osculating departure plane in which this lift-off motion occurs is defined by the net particle acceleration and the desired lift-off direction. The body surface is approximated within this plane, at the departure point, with some radius and center of curvature, allowing for a universal, frame-independent lift-off velocity expression. Applying the geometry of plane-ellipsoid intersections, we perform a validation of the full lift-off velocity expression on a number of rotating ellipsoids. Finally, we derive a limit expression for the case of lift-off from a rotating plane, and compare this with the results on curved bodies. This theory has numerous applications to lander/rover surface mobility operations on asteroids, comets, and small moons, as well as to geophysical processes encountered on these bodies.

  8. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  9. Two Cases of Lower Body Contouring with a Spiral and Vertical Medial Thigh Lift

    PubMed Central

    Kim, Sang Wha; Han, Hyun Ho; Seo, Je Won; Lee, Jung Ho; Oh, Deuk Young; Ahn, Sang Tae

    2012-01-01

    Massive weight loss results in skin excess, leading to an unsatisfying body contour. Various thigh lift procedures can correct flabby skin in the lower leg. We present a lower body contouring technique with a report on two patients. The procedure is determined by the body contour of the patient. As the skin excess in the thigh area tended to appear mostly on the medial side, a vertical medial thigh lift was considered. Moreover, for patients with a pear/guitar-shaped body contour, we added the spiral thigh lift for skin excess in the buttocks and the lateral thigh area. The extent of tissue to excise was determined by pinching the patient in a standing position. The inferior skin flap was fixed to non-movable tissue, which was helpful for lifting the tissue and preventing the widening of the scar. After the operation, a drain was kept for 3 to 4 days. A compressive garment was used after removing the drain. There were no complications. The patients were discharged 6 to 8 days after the operation. In conclusion, skin excess, especially in the lower body, can be corrected by a thigh lift combining several procedures, varying from person to person. PMID:22783496

  10. Two cases of lower body contouring with a spiral and vertical medial thigh lift.

    PubMed

    Kim, Sang Wha; Han, Hyun Ho; Seo, Je Won; Lee, Jung Ho; Oh, Deuk Young; Ahn, Sang Tae; Rhie, Jong Won

    2012-01-01

    Massive weight loss results in skin excess, leading to an unsatisfying body contour. Various thigh lift procedures can correct flabby skin in the lower leg. We present a lower body contouring technique with a report on two patients. The procedure is determined by the body contour of the patient. As the skin excess in the thigh area tended to appear mostly on the medial side, a vertical medial thigh lift was considered. Moreover, for patients with a pear/guitar-shaped body contour, we added the spiral thigh lift for skin excess in the buttocks and the lateral thigh area. The extent of tissue to excise was determined by pinching the patient in a standing position. The inferior skin flap was fixed to non-movable tissue, which was helpful for lifting the tissue and preventing the widening of the scar. After the operation, a drain was kept for 3 to 4 days. A compressive garment was used after removing the drain. There were no complications. The patients were discharged 6 to 8 days after the operation. In conclusion, skin excess, especially in the lower body, can be corrected by a thigh lift combining several procedures, varying from person to person. PMID:22783496

  11. In-Flight Subsonic Lift and Drag Characteristics Unique to Blunt-Based Lifting Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2007-01-01

    Lift and drag measurements have been analyzed for subsonic flight conditions for seven blunt-based reentry-type vehicles. Five of the vehicles are lifting bodies (M2-F1, M2-F2, HL-10, X-24A, and X-24B) and two are wing-body configurations (the X-15 and the Space Shuttle Enterprise). Base pressure measurements indicate that the base drag for full-scale vehicles is approximately three times greater than predicted by Hoerner's equation for three-dimensional bodies. Base drag and forebody drag combine to provide an optimal overall minimum drag (a drag "bucket") for a given configuration. The magnitude of this optimal drag, as well as the associated forebody drag, is dependent on the ratio of base area to vehicle wetted area. Counter-intuitively, the flight-determined optimal minimum drag does not occur at the point of minimum forebody drag, but at a higher forebody drag value. It was also found that the chosen definition for reference area for lift parameters should include the projection of planform area ahead of the wing trailing edge (i.e., forebody plus wing). Results are assembled collectively to provide a greater understanding of this class of vehicles than would occur by considering them individually.

  12. Aero-thermal analysis of lifting body configurations in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Mahulikar, Shripad P.

    2016-09-01

    The aero-thermal analysis of a hypersonic vehicle is of fundamental interest for designing its thermal protection system. The aero-thermal environment predictions over several critical regions of the hypothesized lifting body vehicle, including the stagnation region of the nose-cap, cylindrically swept leading edges, fuselage-upper, and fuselage-lower surfaces, are discussed. The drag (Λ=70°) and temperature (Λ=80°) minimized sweepback angles are considered in the configuration design of the two hypothesized lifting body shape hypersonic vehicles. The main aim of the present study is to analyze and compare the aero-thermal characteristics of these two lifting body configurations at same heat capacity. Accordingly, a Computational Fluid Dynamics simulation has been carried out at Mach number (M∞=7), H=35 km altitude with zero Angle of Attack. Finally, the material selection for thermal protection system based on these predictions and current methodology is described.

  13. Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.

    1994-01-01

    The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.

  14. Theoretical lift due to wing incidence of slender wing-body-tail combinations at zero angle of attack

    NASA Technical Reports Server (NTRS)

    Sacks, Alvin H

    1956-01-01

    The theoretical lift of a cylindrical afterbody at zero angle of attack due to incidence of the wing is calculated by means of slender-body theory. It is assumed that the vortex sheet becomes fully rolled up ahead of the tail, and the vortex paths in the presence of the body are determined analytically. The total lift of a variety of slender wing-body-tail combinations due to wing incidence is also calculated.

  15. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  16. Test Pilot John A. Manke and M2-F3 Lifting Body

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA research pilot John A. Manke is seen here in front of the M2-F3 lifting body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F-5D, F-111 and C-47. The M2-F3 reached a top speed of l,064 mph (Mach 1.6). Highest altitude reached by the vehicle was 7l,500 feet on December 21, 1972, the date of its last flight with NASA pilot John Manke at the controls. The information the lifting body program generated contributed to the data base that led to development of today's Space Shuttle program. NASA donated The M2-F3 vehicle to the Smithsonian Institution in December 1973.

  17. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  18. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  19. Drag and lift reduction of a 3D bluff-body using active vortex generators

    NASA Astrophysics Data System (ADS)

    Aider, Jean-Luc; Beaudoin, Jean-François; Wesfreid, José Eduardo

    2010-05-01

    In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429-434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices

  20. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  1. Generic multi-body formulation of heavy lift airship equations of motion

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Tischler, M. B.; Ashkenas, I. L.; Jex, H. R.

    1980-01-01

    This paper describes the formulation of a comprehensive set of equations which describe the dynamic behavior of a generic heavy lift airship (HLA). They are being used in a digital computer simulation to investigate the response dynamics and flying qualities of HLAs operating with various payloads in a variety of operational environments. A key feature is the separate treatment of each component body making up the HLA. This allows the analyst to vary the configuration (e.g., number of lift-propulsion units, presence or absence of slung payload, etc.) without rewriting the equations. It further provides measures of key structural and control loads acting on the HLA and eases the task of modeling wind disturbances.

  2. Lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Pitts, William C; Nielsen, Jack N; Kaattari, George E

    1957-01-01

    A method is presented for calculating the lift and centers of pressure of wing-body and wing-body-tail combinations at subsonic, transonic, and supersonic speeds. A set of design charts and a computing table are presented which reduce the computations to routine operations. Comparison between the estimated and experimental characteristics for a number of wing-body and wing-body-tail combinations shows correlation to within + or - 10 percent on lift and to within about + or - 0.02 of the body length on center of pressure.

  3. Whole-body lift and ground effect during pectoral fin locomotion in the northern spearnose poacher (Agonopsis vulsa).

    PubMed

    Nowroozi, Bryan N; Strother, James A; Horton, Jaquan M; Summers, Adam P; Brainerd, Elizabeth L

    2009-01-01

    The northern spearnose poacher, Agonopsis vulsa, is a benthic, heavily armored fish that swims primarily using pectoral fins. High-speed kinematics, whole-body lift measurements, and flow visualization were used to study how A. vulsa overcomes substantial negative buoyancy while generating forward thrust. Kinematics for five freely swimming poachers indicate that individuals tend to swim near the bottom (within 1cm) with a consistently small (less than 1 degrees ) pitch angle of the body. When the poachers swam more than 1cm above the bottom, however, body pitch angles were higher and varied inversely with speed, suggesting that lift may help overcome negative buoyancy. To determine the contribution of the body to total lift, fins were removed from euthanized fish (n=3) and the lift and drag from the body were measured in a flume. Lift and drag were found to increase with increasing flow velocity and angle of attack (ANCOVA, p<0.0001 for both effects). Lift force from the body was found to supply approximately half of the force necessary to overcome negative buoyancy when the fish were swimming more than 1cm above the bottom. Lastly, flow visualization experiments were performed to examine the mechanism of lift generation for near-bottom swimming. A vortex in the wake of the pectoral fins was observed to interact strongly with the substratum when the animals approached the bottom. These flow patterns suggest that, when swimming within 1cm of the bottom, poachers may use hydrodynamic ground effect to augment lift, thereby counteracting negative buoyancy. PMID:19501494

  4. Three Lifting Bodies on Lakebed (X-24A, M2-F3, HL-10)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC--now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March

  5. Three Lifting Bodies on Lakebed (X-24A, M2-F3, HL-10)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  6. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  7. Statistical analysis of landing contact conditions for three lifting body research vehicles

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1972-01-01

    The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.

  8. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  9. The application of some lifting-body reentry concepts to missile design

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1985-01-01

    The aerodynamic characteristics of some lifting-body concepts are examined with a view to the applicability of such concepts to the design of missiles. A considerable amount of research has been done in past years with vehicle concepts suitable for manned atmospheric-entry and atmospheric flight. Some of the concepts appear to offer some novel design approaches for missiles for a variety of missions and flight profiles, including long-range orbital/reentry with transatmospheric operation for strategic penetration, low altitude penetration, and battlefield tactical. The concepts considered include right triangular pyramidal configurations, a lenticular configuration, and various 75-degree triangular planform configurations with variations in body camber and control systems. The aerodynamic features are emphasized but some observations are also made relative to other factors such as heat transfer, structures, carriage, observability, propulsion, and volumetric efficiency.

  10. A simple demonstration of Einstein's lift: a body thrown upwards moves rectilinearly and uniformly relative to a free-falling model of the lift

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.

    2015-09-01

    The educational model of Einstein's lift consists of a table suspended from an electromagnet. A flexible support is attached to the table. A metal ball is on the support and deforms it. When the electromagnet is deenergized, the table falls, the system goes to a weightless state and the support throws the ball up. A camera carries out frame-by-frame photography of the free-falling model. The resulting photographs are imported into a computer, projected on to a screen with a multimedia projector and analyzed in a lecture with the audience. The experiment proves that a thrown up body moves rectilinearly and uniformly relative to the free-falling model of Einstein's lift. In the second version of the experiment we replace the ball with a water drop lying on the unwettable surface of the table of the model.

  11. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  12. HFL-10 lifting body flight control system characteristics and operational experience

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1974-01-01

    A flight evaluation was made of the mechanical hydraulic flight control system and the electrohydraulic stability augmentation system installed in the HL-10 lifting body research vehicle. Flight tests performed in the speed range from landing to a Mach number of 1.86 and the altitude range from 697 meters (2300 feet) to 27,550 meters (90,300 feet) were supplemented by ground tests to identify and correct structural resonance and limit-cycle problems. Severe limit-cycle and control sensitivity problems were encountered during the first flight. Stability augmentation system structural resonance electronic filters were modified to correct the limit-cycle problem. Several changes were made to control stick gearing to solve the control sensitivity problem. Satisfactory controllability was achieved by using a nonlinear system. A limit-cycle problem due to hydraulic fluid contamination was encountered during the first powered flight, but the problem did not recur after preflight operations were improved.

  13. Launch-pad abort capabilities of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1994-01-01

    The capability of the HL-20 lifting body to perform an abort maneuver from the launch pad to a horizontal landing was studied. The study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Langley Visual/Motion Simulator in the fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry with an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch-site abort capability of the HL-20 and dictates requirements for nominal abort-motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  14. Real-time simulation model of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-01-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  15. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  16. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  17. Trajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications

    NASA Astrophysics Data System (ADS)

    Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan

    2012-11-01

    A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.

  18. Comparison of the Experimental and Theoretical Distribution of Lift on a Slender Inclined Body of Revolution at M = 2

    NASA Technical Reports Server (NTRS)

    Perkins, Edward W; Kuehn, Donald M

    1953-01-01

    Pressure distributions and force characteristics have been determined for a body of revolution consisting of a fineness ratio 5.75, circular-arc, ogival nose tangent to a cylindrical afterbody for an angle-of-attack range of 0 degrees to 35.5 degrees. The free-stream Mach number was 1.98 and the free-stream Reynolds number was approximately 0.5 x 10 sup 6, based on body diameter. Comparison of the theoretical and experimental pressure distributions shows that for zero lift, either slender-body theory or higher-order theories yield results which are in good agreement with experiment. For the lifting case, good agreement with theory is found only for low angles of attack and for the region in which the body cross-sectional area is increasing in the downstream direction. Because of the effects of cross-flow separation and the effects of compressibility due to the high cross-flow Mach numbers at large angles of attack, the experimental pressure distributions differ from those predicted by potential theory. Although the flow about the inclined body was, in general, similar to that assumed as the basis for Allen's method of estimating the forces resulting from viscous effects (NACA RM A91I26), the distribution of the forces was significantly different from that assumed. Nevertheless, the lift and pitching-moment characteristics were in fair agreement with the estimated value.

  19. Control of propulsion and body lift during the first two stances of sprint running: a simulation study.

    PubMed

    Debaere, Sofie; Delecluse, Christophe; Aerenhouts, Dirk; Hagman, Friso; Jonkers, Ilse

    2015-01-01

    The aim of this study was to relate the contribution of lower limb joint moments and individual muscle forces to the body centre of mass (COM) vertical and horizontal acceleration during the initial two steps of sprint running. Start performance of seven well-trained sprinters was recorded using an optoelectronic motion analysis system and two force plates. Participant-specific torque-driven and muscle-driven simulations were conducted in OpenSim to quantify, respectively, the contributions of the individual joints and muscles to body propulsion and lift. The ankle is the major contributor to both actions during the first two stances, with an even larger contribution in the second compared to the first stance. Biarticular gastrocnemius is the main muscle contributor to propulsion in the second stance. The contribution of the hip and knee depends highly on the position of the athlete: During the first stance, where the athlete runs in a forward bending position, the knee contributes primarily to body lift and the hip contributes to propulsion and body lift. In conclusion, a small increase in ankle power generation seems to affect the body COM acceleration, whereas increases in hip and knee power generation tend to affect acceleration less. PMID:25798644

  20. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  1. Guidance and control analysis of the entry of a lifting body personnel launch vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cruz, Christopher I.

    1991-01-01

    NASA is currently involved in definition studies of a Personnel Launch System (PLS) that could be used to transport people to and from low-earth orbit. This vehicle would serve both to complement the Space Shuttle and to provide alternative access to space in the event the Space Shuttle fleet were unavailable for a prolonged period. The PLS would consist of a manned spacecraft launched by an expendable vehicle, e.g., Titan 4. One promising candidate for the manned component of the PLS is the NASA Langley Research Center HL-20 lifting body. Many studies are currently underway to assess this vehicle, and one of the main areas of study is the development of the capability to successfully enter, glide to the landing site, and land. To provide this capability, guidance and control algorithms have been developed, incorporated into a six-degree-of-freedom simulation, and evaluation in the presence of off-nominal atmospheric conditions, consisting of both density variations and steady-state winds. In addition, the impact of atmospheric turbulence was examined for the portion of flight from Mach 3.5 to touchdown. This analysis showed that the vehicle remained controllable and could successfully land even in the presence of off-nominal atmospheric conditions.

  2. Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Penland, J. A.

    1975-01-01

    An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.

  3. Flight-determined aerodynamic stability and control derivatives of the M2-F2 lifting body vehicle at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Thompson, R. C.

    1971-01-01

    Aerodynamic derivatives were obtained for the M2-F2 lifting body flight vehicle in the subsonic flight region between Mach numbers of 0.41 and 0.64 and altitudes of 7000 feet to 45,000 feet. The derivatives were determined by a flight time history curve-fitting process utilizing a hybrid computer. The flight-determined derivatives are compared with wind-tunnel and predicted values. Modal-response characteristics, calculated from the flight derivatives, are presented.

  4. Estimation of aerodynamics for slender bodies alone and with lifting surfaces at alpha's from 0 deg to 90 deg.

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    Expressions are derived, according to a method developed by the author (1972), for bodies in which the cross-sectional shape (but not necessarily the area) is constant along the longitudinal axis. For the more general case of a body alone or with lifting surfaces where the cross-sectional shape varies along the length, a similar procedure is suggested. The specific case for an elliptic cone with a triangular wing is considered, and formulas for winged elliptic cross sections are developed. For the limited test conditions shown, the agreement between computed and experimental results is very good.

  5. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  6. Flight evaluation of HL-10 lifting body handling qualities at Mach numbers from 0.30 to 1.86

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Manke, J. A.

    1974-01-01

    The longitudinal and lateral-directional handling qualities of the HL-10 lifting body vehicle were evaluated in flight at Mach numbers up to 1.86 and altitudes up to approximately 27,450 meters (90,000 feet). In general, the vehicle's handling qualities were considered to be good. Approximately 91 percent of the pilot ratings were 3.5 or better, and 42.4 percent were 2.0. Handling qualities problems were encountered during the first flight due to problems with the control system and vehicle aerodynamics. Modifications of the flight vehicle corrected all deficiencies, and no other significant handling qualities problems were encountered.

  7. Comparison between prediction and experiment for all-movable wing and body combinations at supersonic speeds : lift, pitching moment, and hinge moment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Kaattari, George E; Drake, William C

    1952-01-01

    A simple method is presented for estimating lift, pitching-moment, and hinge-moment characteristics of all-movable wings in the presence of a body as well as the characteristics of wing-body combinations employing such wings. In general, good agreement between the method and experiment was obtained for the lift and pitching moment of the entire wing-body combination and for the lift of the wing in the presence of the body. The method is valid for moderate angles of attack, wing deflection angles, and width of gap between wing and body. The method of estimating hinge moment was not considered sufficiently accurate for triangular all-movable wings. An alternate procedure is proposed based on the experimental moment characteristics of the wing alone. Further theoretical and experimental work is required to substantiate fully the proposed procedure.

  8. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  9. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  10. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  11. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  12. Solution of an optimal control lifting body entry problem by an improved method of perturbation functions

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.

    1975-01-01

    This paper presents a solution to a complex lifting reentry three-degree-of-freedom problem by using the calculus of variations to minimize the integral of the sum of the aerodynamics loads and heat rate input to the vehicle. The entry problem considered does not have state and/or control constraints along the trajectory. The calculus of variations method applied to this problem gives rise to a set of necessary conditions which are used to formulate a two point boundary value (TPBV) problem. This TPBV problem is then numerically solved by an improved method of perturbation functions (IMPF) using several starting co-state vectors. These vectors were chosen so that each one had a larger norm with respect to show how the envelope of convergence is significantly increased using this method and cases are presented to point this out.

  13. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  14. Hydrodynamic forces during the initial stage of body lifting from water surface

    NASA Astrophysics Data System (ADS)

    Vega-Martínez, Patricia; Rodríguez-Rodríguez, Javier; Korobkin, A.; Khabakhpasheva, Tatyana

    2015-11-01

    We consider the flow induced by a rigid flat plate, initially touching a horizontal water surface, when it starts to move upwards with constant acceleration. Negative hydrodynamic pressures on the wetted surface of the plate are allowed, thus the water follows the plate due to the resulting suction force. The acceleration of the plate and the plate length are such that gravity, surface tension and viscous effects can be neglected. Under these assumptions, the potential flow caused by the plate lifting is obtained by using the small-time expansion of the velocity potential. This small-time solution fails close to the plate edges, as it predicts there singular velocities and unbounded displacements of the free surface. It is shown that close to the plate edges the flow is non-linear and self-similar in the leading order. This nonlinear flow is computed by the boundary element method combined with a time-marching scheme. We also present the results of an experimental investigation aimed at measuring the hydrodynamic force felt by the plate. This force seems to be very weak, what suggests that cavitation occurs during these initial stages. Supported by the NICOP research grant N62909-13-1-N274, and the Spanish Ministry of Economy and Competitiveness, grant DPI2014-59292-C3-1-P.

  15. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  16. Some Research on the Lift and Stability of Wing-Body Combinations

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Fields, E. M.

    1959-01-01

    The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.

  17. Steady incompressible potential flow around lifting bodies immersed in a fluid. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chiuchiolo, E. A.

    1974-01-01

    The refinement was investigated of a method for evaluating the pressure distribution on a body surface of arbitrary shape in incompressible flow. The solution was obtained in terms of the velocity potential, through numerical approximations which require the use of a high speed digital computer. The box method and the modal method are described in detail, and were applied to a very thin, rectangular wing in incompressible, steady flow. The box method is found to be more practical as it is applicable to more general geometries (the modal method requires a new set of functions for each geometry), and requires less computer time (fifty percent of that required by the modal method for the same problem).

  18. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  19. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  20. Comparison of Experimental and Theoretical Zero-Lift Wave-Drag Results for Various Wing-Body-Tail Combinations at Mach Numbers up to 1.9

    NASA Technical Reports Server (NTRS)

    Petersen, R. B.

    1957-01-01

    Comparisons are made of experimental and theoretical zero-lift wave drag for several nose shapes, wing-body combinations, and models of current airplanes at Mach numbers up to 1.0. The experimental data were obtained from tests in the Ames 6- by6-foot supersonic wind tunnel and at the NACA Wallops Island facility. The theoretical drag was found by use of linear theory utilizing model area distributions. The agreement between theoretical and experimental zero-lift wave-drag coefficients was generally very good, especially for a fuselage or for fuselage-wing combinations that were vertically symmetrical. For other models that had rapid changes in body shape and/or were not vertically symmetrical, the agreement of theory with experiment ranged from fair to poor, depending on the severity of the change in shape.

  1. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  2. Breast lift

    MedlinePlus

    ... enable JavaScript. A breast lift, or mastopexy, is cosmetic breast surgery to lift the breasts. The surgery ... the position of the areola and nipple. Description Cosmetic breast surgery can be done at an outpatient ...

  3. Eyelid lift

    MedlinePlus

    Eyelid lift surgery is done to repair sagging or drooping upper eyelids ( ptosis ). The surgery is called blepharoplasty. Sagging ... An eyelid lift is needed when eyelid drooping reduces your vision. You may be asked to have your eye doctor test ...

  4. Forehead lift

    MedlinePlus

    ... both sides even. If you have already had plastic surgery to lift your upper eyelids, a forehead lift ... Managing the cosmetic patient. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013:chap ...

  5. A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1956-01-01

    Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.

  6. Lift and Pitching-moment Interference Between a Pointed Cylindrical Body and Triangular Wings of Various Aspect Ratios at Mach Numbers of 1.50 and 2.02

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Katzen, Elliott D; Tang, Kenneth K

    1956-01-01

    The lift and pitching-moment characteristics of a body alone, six triangular wings of various aspect ratios, and the combinations were measured at Mach numbers of 1.50 and 2.02 at a Reynolds number of 5.5 million (based on the body length) for angles of attack up to 5.5 degrees. The total lift and pitching-moment interference were determined and compared with theory. The agreement was found to be good.

  7. Approximate method for calculating transonic flow about lifting wing-body configurations: Computer program and user's manual

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Davis, R. M.

    1975-01-01

    A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.

  8. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    PubMed Central

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-01-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested. PMID:27118083

  9. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus).

    PubMed

    Johansson, L Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-01-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested. PMID:27118083

  10. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  11. Development of an efficient computer code to solve the time-dependent Navier-Stokes equations. [for predicting viscous flow fields about lifting bodies

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.; Oatway, T. P.

    1975-01-01

    A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.

  12. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  13. Study of belly-flaps to enhance lift and pitching moment coefficient of a Blended-Wing-Body airplane in landing and takeoff configuration

    NASA Astrophysics Data System (ADS)

    Staelens, Yann Daniel

    During the first century of flight few major changes have been made to the configuration of subsonic airplanes. A distinct fuselage with wings, a tail, engines and a landing gear persists as the dominant arrangement. During WWII some companies developed tailless all-wing airplanes. However the concept failed to advance till the late 80's when the B-2, the only flying wing to enter production to date, illustrated its benefits at least for a stealth platform. The advent of the Blended-Wing-Body (BWB) addresses the historical shortcomings of all-wing designs, specifically poor volume utility and excess wetted area as a result. The BWB is now poised to become the new standard for large subsonic airplanes. Major aerospace companies are studying the concept for next generation of passenger airplanes. But there are still challenges. One is the BWB's short control lever-arm pitch. This affects rotation and go-around performances. This study presents a possible solution by using a novel type of control surface, a belly-flap, on the under side of the wing to enhance its lift and pitching moment coefficient during landing, go-around and takeoff. Increases of up to 30% in lift-off CL and 8% in positive pitching moment have been achieved during wind tunnel tests on a generic BWB-model with a belly-flap. These aerodynamic improvements when used in a mathematical simulation of landing, go-around and takeoff procedure were showing reduction in landing-field-length by up to 22%, in takeoff-field-length by up to 8% and in loss in altitude between initiation of rotation and actual rotation during go-around by up to 21.5%.

  14. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  15. Lift enhancement in flying snakes

    NASA Astrophysics Data System (ADS)

    Krishnan, Anush; Socha, John; Vlachos, Pavlos; Barba, Lorena

    2013-11-01

    Flying snakes use a unique method of aerial locomotion: they jump from tree branches, flatten their bodies and undulate through the air to produce a glide. The shape of their body cross-section during the glide plays an important role in generating lift. We present a computational investigation of the aerodynamics of the cross-sectional shape. We performed two-dimensional simulations of incompressible flow past the anatomically correct cross-section of the species Chrysopelea paradisi, which show that a significant enhancement in lift appears at an angle of attack of 35 degrees, for Reynolds numbers 2000 and above. Previous experiments on physical models also demonstrated an increased lift and at the same angle of attack. The simulations point to the lift enhancement arising from the early separation of the boundary layer on the dorsal surface of the snake profile, without stall. The separated shear layer rolls up and interacts with secondary vorticity in the near-wake, inducing the primary vortex to remain closer to the body and thus cause enhanced suction, resulting in higher lift. In physical experiments, the flow is inherently 3-D due to fluid instabilities, and it is intriguing that the enhanced lift also appears in the two-dimensional simulations.

  16. An aerodynamic design study of a series of lifting bodies at angles of attack from 10 to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Torres, Abel O.

    1992-01-01

    The aerodynamic characteristics in the transition from high to low angles of attack at supersonic speeds have been experimentally and theoretically studied for a series of lifting bodies with various upper and lower surface camber designs. The configurations under consideration have a 75-degree swept delta planform with a rounded nose. Data obtained indicate that changes in the camber design cause some distinct changes in the aerodynamic characteristics that shoud be taken into account in the selection of a lifting body shape. The flat bottom designs with upper surface camber are found to provide greater drag for retardation at high angles of attack but are considerably out of trim longitudinally. The flat top designs with lower surface camber provide less drag at high angles of attack but can be more easily trimmed. Calculated results are found to be in good agreement with the experimental data.

  17. Calculation of potential flow past non-lifting bodies at angle of attack using axial and surface singularity methods. M.S. Thesis. Contractor Report, 1 Jan. 1981 - 31 Aug. 1982

    NASA Technical Reports Server (NTRS)

    Shu, J. Y.

    1983-01-01

    Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers.

  18. Total Facelift: Forehead Lift, Midface Lift, and Neck Lift

    PubMed Central

    2015-01-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

  19. Simulated lift testing using computerized isokinetics.

    PubMed

    Porterfield, J A; Mostardi, R A; King, S; Ariki, P; Moats, E; Noe, D

    1987-09-01

    Eighty-four volunteer asymptomatic men between 18 and 40 years of age were evaluated as to their ability to lift. An innovative isokinetic device was used to measure lifting force. This device does not isolate any specific body part, yet it measures the muscular force of lifting an object whose speed of ascent is controlled. Two lifting methods (bent knee, straight leg) and two foot positions were used. The results indicate the bent-knee lift method and forward-foot position was the position of optimal force production. Force production increase was inversely proportional to age. The authors concluded that the isokinetic lift device has promising capabilities to produce repeatable data and may be advantageous in generating standards for rehabilitation and specific job criteria. PMID:3686220

  20. Variable Lifting Index (VLI)

    PubMed Central

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2015-01-01

    Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300

  1. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  2. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  3. Lift and wakes of flying snakes

    NASA Astrophysics Data System (ADS)

    Krishnan, Anush; Socha, John J.; Vlachos, Pavlos P.; Barba, L. A.

    2014-03-01

    Flying snakes use a unique method of aerial locomotion: they jump from tree branches, flatten their bodies, and undulate through the air to produce a glide. The shape of their body cross-section during the glide plays an important role in generating lift. This paper presents a computational investigation of the aerodynamics of the cross-sectional shape. Two-dimensional simulations of incompressible flow past the anatomically correct cross-section of the species Chrysopelea paradisi show that a significant enhancement in lift appears at a 35° angle of attack, above Reynolds numbers 2000. Previous experiments on physical models also obtained an increased lift, at the same angle of attack. The flow is inherently three-dimensional in physical experiments, due to fluid instabilities, and it is thus intriguing that the enhanced lift also appears in the two-dimensional simulations. The simulations point to the lift enhancement arising from the early separation of the boundary layer on the dorsal surface of the snake profile, without stall. The separated shear layer rolls up and interacts with secondary vorticity in the near-wake, inducing the primary vortex to remain closer to the body and thus cause enhanced suction, resulting in higher lift.

  4. Lifting BLS Power Supplies

    SciTech Connect

    Sarychev, Michael

    2007-08-01

    This note describes BLS power supplies lifting techniques and provides stress calculations for lifting plate and handles bolts. BLS power supply weight is about 120 Lbs, with the center of gravity shifted toward the right front side. A lifting plate is used to attach a power supply to a crane or a hoist. Stress calculations show that safety factors for lifting plate are 12.9 (vs. 5 required) for ultimate stress and 5.7 (vs. 3 required) for yield stress. Safety factor for shackle bolt thread shear load is 37, and safety factor for bolts that attach handles is 12.8.

  5. Aerodynamic interactions from reaction controls for lateral control of the M2-F2 lifting-body entry configuration at transonic and supersonic and supersonic Mach numbers. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Brownson, J. J.

    1979-01-01

    Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.

  6. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  7. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  8. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  9. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  10. Interior of lift mechanism area of eastern lift span, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of lift mechanism area of eastern lift span, looking northwest. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  11. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  12. Control effectiveness and tip-fin dihedral effects for the HL-20 lifting-body configuration at Mach numbers from 1.6 to 4.5

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1995-01-01

    Wind tunnel tests were made with a scale model of the HL-20 in the Langley Unitary Plan Wind Tunnel. Pitch control was investigated by deflecting the elevon surfaces on the outboard fins and body flaps on the fuselage. Yaw control tests were made with the all movable center fin deflected 5 deg. Almost full negative body flap deflection (-30 deg) was required to trim the HL-20 (moment reference center at 0.54-percent body length from nose) to positive values of life in the Mach number range from 1.6 to 2.5. Elevons were twice as effective as body flaps as a longitudinal trim device. The elevons were effective as a roll control, but because of tip-fin dihedral angle, produced about as much adverse yawing moment as rolling moment. The body flaps were less effective in producing rolling moment, but produced little adverse yawing moment. The yaw effectiveness of the all movable center fin was essentially constant over the angle-of-attack range at each Mach number. The value of yawing moment, however, was small. Center-fin deflection produced almost no rolling moments. The model was directionally unstable over most of the Mach number range with tip-fin dihedral angles less than the baseline value of 50 deg.

  13. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  14. Dubai gas lift automation

    SciTech Connect

    Coltharp, E.D.; Khokhar, M.

    1984-09-01

    Dubai Petroleum Company has recently installed a computer gas lift surveillance and gas lift gas injection control system in the Fateh and S.W. Fateh Fields located in the southern part of the Arabian Gulf. This system is the fourth generation of the computer control system installed in California in 1971 by Conoco, Inc. This paper describes the advantages and problems in this system to monitor and control the gas lift operation of 116 wells through 30 intelligent remote terminal units (RTU). In addition, this system monitors the condition of critical operational

  15. Understanding wing lift

    NASA Astrophysics Data System (ADS)

    Silva, J.; Soares, A. A.

    2010-05-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky (2003 Phys. Educ. 38 497-503). However, in Babinsky's explanation, the air friction forces are ignored and the flow-field curvature introduced by the aerofoil shape is understood intuitively. In this article, a simple analysis of the lift with friction forces incorporated is presented to give a more precise qualitative explanation.

  16. Free-Flight Zero-Lift Drag Results from a 1/5-Scale Model and Several Small-Scale Equivalent Bodies of Revolution of the Convair F-102 Configuration at Mach Numbers up to 1.34

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.

  17. Maximum acceptable weights for asymmetric lifting of Chinese females.

    PubMed

    Wu, Swei-Pi

    2003-05-01

    This study used the psychophysical approach to evaluate the effects of asymmetric lifting on the maximum acceptable weight of lift (MAWL) and the resulting heart rate, oxygen uptake and rating of perceived exertion (RPE). A randomized complete block factorial design was employed. Twelve female college students lifted weights at three different lifting frequencies (one-time maximum, 1 and 4 lifts/min) in the sagittal plane and at three different asymmetric angles (30 degrees, 60 degrees, and 90 degrees ) from the floor to a 68-cm height pallet. This lifting experiment was conducted for a 1-h work period using a free-style lifting technique. The MAWLs for asymmetric lifting were significantly lower than those for symmetric lifting in the sagittal plane. The MAWL decreased with the increase in the angle of asymmetry. However, the heart rate, oxygen uptake and RPE remained unchanged. Though the MAWL decreased significantly with lifting frequency, both the physiological costs (heart rate and oxygen uptake) and rating of perceived exertion increased with the increase in lift frequency. The most stressed body part was the arm. Lifting frequency had no significant effect on the percentage decrease in MAWL from the sagittal plane values. On average, decreases of 5%, 9% and 14% for MAWL at 30 degrees, 60 degrees and 90 degrees asymmetric lifting, respectively, were revealed. This result was in agreement with the findings of Chinese males studied by Wu [Int. J. Ind. Ergonom. 25 (2000) 675]. The percentage decrease in MAWL with twisting angle for the Chinese participants was somewhat lower than those for Occidental participants. In addition, even though there was an increase in heart rate and RPE with the increase in the symmetrical lift angle for Occidental participants, it was different from the Chinese participants. Lastly, the 1991 NIOSH equation asymmetry multiplier is more conservative in comparison with the results of the present study. PMID:12737921

  18. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  19. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  20. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  1. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  2. Back injury prevention: a lift team success story.

    PubMed

    Hefti, Kelly S; Farnham, Richard J; Docken, Lisa; Bentaas, Ruth; Bossman, Sharon; Schaefer, Jill

    2003-06-01

    Work related back injuries among hospital personnel account for high volume, high cost workers' compensation claims. These injuries can be life altering experiences, affecting both the personal and professional lives of injured workers. Lifting must be viewed as a skill involving specialized training and mandated use of mechanical equipment, rather than as a random task performed by numerous health care providers. The use of a lift team specially trained in body mechanics, lifting techniques, and the use of mandated mechanical equipment can significantly affect injury data, financial outcomes, and employee satisfaction. The benefits of a lift team extend beyond the effect on injury and financial outcomes--they can be used for recruitment and retention strategies, and team members serve as mentors to others by demonstrating safe lifting techniques. Ultimately, a lift team helps protect a valuable resource--the health care worker. PMID:12846457

  3. Effects of jets, wakes, and vortices on lifting surfaces

    NASA Technical Reports Server (NTRS)

    Margason, R. J.

    1976-01-01

    The interaction of jets, wakes, and vortices on lifting bodies represents a broad spectrum of aerodynamic flow phenomena. A literature survey is presented of 79 research activities in related aerodynamic situations.

  4. Waste Package Lifting Calculation

    SciTech Connect

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  5. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  6. Interior view of lift mechanism area of eastern lift span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of lift mechanism area of eastern lift span, showing trunion gears at left and right, and counterweight above. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  7. Interior view of lift mechanism area of eastern lift span ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of lift mechanism area of eastern lift span looking south, showing trunion gears at left and right, and counterweight above. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  8. Obesity-related changes in prolonged repetitive lifting performance.

    PubMed

    Ghesmaty Sangachin, Mahboobeh; Cavuoto, Lora A

    2016-09-01

    Despite the rising prevalence of obesity, little is known about its moderating effects on injury risk factors, such as fatigue, in occupational settings. This study investigated the effect of obesity, prolonged repetitive lifting and their interaction on lifting performance of 14 participants, 7 obese (mean body mass index (BMI): 33.2 kg m(-2)) and 7 non-obese (mean BMI: 22.2 kg m(-2)) subjects. To present a physically challenging task, subjects performed repetitive lifting for 1 h at 120% of their maximum acceptable weight of lift. Generalized linear mixed models were fit to posture and acceleration data. The obese group bent to a ∼10° lower peak trunk sagittal flexion angle, had 17% lower root mean square (RMS) jerk and took 0.8 s longer per lift. Over time, the obese group increased their trunk transverse and sagittal posterior accelerations while the non-obese maintained theirs. Although the majority of lifting variables were unaffected by BMI or its interaction with prolonged lifting duration, the observed differences, combined with a greater upper body mass, necessitate a more cautious use of existing psychophysical lifting limits for individuals who are obese, particularly when fatigued. PMID:27184307

  9. JWST Lifting System

    NASA Technical Reports Server (NTRS)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  10. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  11. [Subperiosteal midface lifting].

    PubMed

    Bonnefon, A

    2006-04-01

    Since 1990, when we had found the solutions about the oval of the face and the neck problems by the vertical lift, our whole attention was focused on the midface. We have been through the "cheek lift", high SMAS incision. We followed Oscar Ramirez and Richard Anderson in the subperiosteal undermining of the mid face under endoscopic control by a buccal and temporal incision. The actual technic made possible by Paul Tessier's work who initiated the subperiosteal undermining and Oscar Ramirez who initiated the endoscopy. The endoscopy allowed us to go through this technic, but now we don't use it anymore. We have to credit Thierry Besins who mixed these concepts alltogether to obtain a complete and effective technic. The idea is to move up the centrofacial structures and to secure them reliably because of the perioste strengh. This technic solve in an unparallel way, all the stigmata of the centrofacial aging; so, we have a scarless lifting. For the one who have a neck problem, we associate the deep vertical lift. PMID:16631299

  12. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  13. Helicopter Toy and Lift Estimation

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2013-05-01

    A1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight.

  14. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  15. Frequency response of lift control in Drosophila.

    PubMed

    Graetzel, Chauncey F; Nelson, Bradley J; Fry, Steven N

    2010-11-01

    The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed. PMID:20462877

  16. Frequency response of lift control in Drosophila

    PubMed Central

    Graetzel, Chauncey F.; Nelson, Bradley J.; Fry, Steven N.

    2010-01-01

    The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed. PMID:20462877

  17. [Subperiosteal face-lift].

    PubMed

    Tessier, P

    1989-01-01

    The "facial mask" is composed of all of the tissues lying on top of the skeleton: periosteum, deep adipose tissue, superficial musculo-aponeurotic tissue and skin. The periosteum is the intermediate zone between the skeleton, responsible for the shape of the face, and the more superficial tissues which complete the shapes and, most importantly, represent the mobile part of the face and consequently the site of facial expression. The secret of an effective "mask-lift" depends on complete subperiosteal dissection of the malar bones, zygomatic arches and orbital margins. This dissection can be performed via a coronal approach, but it is easier to start the subperiosteal dissection via a short vestibular incision. Subperiosteal dissection via a coronal incision is not only useful to lift the facial mask; it is also useful for remodelling the orbital margins and to obtain bone grafts from the parietal area in order to reinforce the glabella, check bones and nasogenial folds. PMID:2473674

  18. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  19. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  20. Detail of lift wire rope attachment to lift span at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lift wire rope attachment to lift span at southeast corner. Note rope-adjustment turnbuckle with strap keepers to prevent its rotation, which could pull the bridge out of alignment. A single rope and light-gauge attachment at each corner were adequate for lifting the span because most of its weight was balanced by the two counterweights. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  1. On the relationship between discrete and repetitive lifting performance in military tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J; Doyle, Tim L A

    2014-03-01

    Military manual handling requirements range from discrete lifts to continuous and repetitive lifting tasks. For the military to introduce a discrete lifting assessment, the assessment must be predictive of the various submaximum lifting tasks personnel are required to perform. This study investigated the relationship between discrete and repetitive military lifting to assess the validity of implementing a discrete lifting test. Twenty-one soldiers from the Australian Army completed a whole-body box-lifting assessment as a one repetition maximum (1RM) and a series of submaximal lifting repetitions (% 1RM). Performance was measured between the number of lifting repetitions that could be performed at different intensities between 58 and 95% 1RM. A strong curvilinear relationship existed across the entire submaximal lifting range (r = 0.72, p ≤ 0.05). The model developed demonstrated a low predictive error (standard error of the estimate = 7.2% 1RM) with no differences detected in the relationship when comparing individuals of high and low strength. Findings support the use of a discrete functional lifting assessment in providing coverage of a broad range of military lifting tasks. Parallels can be drawn between the trend reported in the current study and weight-training exercises reported in the literature. PMID:23897024

  2. Biomechanical exploration on dynamic modes of lifting.

    PubMed

    Gagnon, M; Smyth, G

    1992-03-01

    Whatever the lifting method used, dynamic factors appear to have an effect on the safe realization of movement, and NIOSH guidelines recommend smooth lifting with no sudden acceleration effects. On the other hand, inertial forces may play an important role in the process of transfer of momentum to the load. The direction by which these inertial forces may affect the loadings on body structures and processes of energy transfers cannot be determined a priori. A biomechanical experiment was performed to examine if there were differences in the execution processes between a slow-continuous lift and an accelerated-continuous lift, and also between accelerated lifts either executed continuously or interrupted with a pause. The lifts were executed from a height of 15 cm to a height of 185 cm above the head and with two different loads (6.4 and 11.6 kg). Five experienced workers in manual materials handling were used as subjects. Films and force platforms recordings supplied the data; dynamic segmental analyses were performed to calculate net muscular moments at each joint; a planar single-muscle equivalent was used to estimate compression loadings at L5/S1; total mechanical work, joint work distribution, and energy transfers were determined from a kinetic approach based on the integration of joint power as a function of time. Analyses of variance with repeated measures were applied to the three treatments. The results showed that joint muscular moments, spinal loadings, mechanical work, and muscular utilization ratios were generally increased by the presence of acceleration without inducing benefits of improved energy transfers; therefore slower lifts with reduced acceleration may be safer when handling moderately heavy loads. The maximum values of kinematic and kinetic factors were generally not affected by the pause, but the occurrence of jerks in the movement (acceleration, ground forces, and muscular moments) suggests that the pause may not be indicated when

  3. Endoscopic brow lifts: have they replaced coronal lifts?

    PubMed

    Javidnia, Hedyeh; Sykes, Jonathan

    2013-05-01

    This article describes the use of the endoscopic brow-lifting technique in addressing periorbital aging. This article discusses the advantages and disadvantage of the endoscopic versus traditional techniques of brow lifting and gives our treatment algorithm depending on patient needs. PMID:23731581

  4. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    NASA Technical Reports Server (NTRS)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  5. Effects of range and mode on lifting capability and lifting time.

    PubMed

    Lee, Tzu-Hsien

    2012-01-01

    This study examined the effects of 3 lifting ranges and 3 lifting modes on maximum lifting capability and total lifting time. The results demonstrated that the maximum lifting capability for FK (from floor to knuckle height) was greater than that for KS (from knuckle height to shoulder height) or FS (from floor to shoulder height). Additionally, asymmetric lifting with initial trunk rotation decreased maximum lifting capability compared with symmetric lifting or asymmetric lifting with final trunk rotation. The difference in total lifting time between KS and FS was not significant, while FK increased total lifting time by ~20% compared with FS even though the travel distance was 50% shorter. PMID:22995136

  6. Lifting Loads With Two Helicopters

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Kanning, G.

    1992-01-01

    Report discusses theoretical equilibrium characteristics of dual-helicopter lifting system. Analysis presented provides mathematical basis for selection of lifting configurations and flight parameters. Force-balance equations serve as basis for coordination in flight. Employed in both military and civilian sectors to deliver weapons, vehicles, and construction materials.

  7. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  8. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  9. Project LIFT: Year 1 Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  10. Investigation of advanced thrust vectoring exhaust systems for high speed propulsive lift

    NASA Technical Reports Server (NTRS)

    Hutchison, R. A.; Petit, J. E.; Capone, F. J.; Whittaker, R. W.

    1980-01-01

    The paper presents the results of a wind tunnel investigation conducted at the NASA-Langley research center to determine thrust vectoring/induced lift characteristics of advanced exhaust nozzle concepts installed on a supersonic tactical airplane model. Specific test objectives include: (1) basic aerodynamics of a wing body configuration, (2) investigation of induced lift effects, (3) evaluation of static and forward speed performance, and (4) the effectiveness of a canard surface to trim thrust vectoring/induced lift forces and moments.

  11. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  12. Lifting and wound closure with barbed sutures.

    PubMed

    Mulholland, R Stephen; Paul, Malcolm D

    2011-07-01

    The advent of barbed sutures has been a novel and useful adjunct for the aesthetic plastic surgeon in properly selected patients. The deployment of a barbed suture minimizes the risks of cheese wiring and stress relaxation, facilitating the minimally invasive repositioning of soft tissue in the head and neck, as well as optimizing and enhancing traditionally long and potentially tedious procedures in body contouring. This article highlights the advances, advantages, and efficacy associated with the use of barbed sutures in lifting and wound closure. PMID:21824547

  13. Lift force of delta wings

    SciTech Connect

    Lee, M.; Ho, Chihming )

    1990-09-01

    On a delta wing, the separation vortices can be stationary due to the balance of the vorticity surface flux and the axial convection along the swept leading edge. These stationary vortices keep the wing from losing lift. A highly swept delta wing reaches the maximum lift at an angle of attack of about 40, which is more than twice as high as that of a two-dimensional airfoil. In this paper, the experimental results of lift forces for delta wings are reviewed from the perspective of fundamental vorticity balance. The effects of different operational and geometrical parameters on the performance of delta wings are surveyed.

  14. Air-cushion lift pad

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Dane, D. H.

    1969-01-01

    Mathematical model is formulated for an air pad which is capable of lifting a structure to a height of 0.125 inch. Design is superior to conventional air cushion devices because it eliminates flutter, vibration, heaving, and pitching.

  15. Heavy Lift Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.

  16. Face lift postoperative recovery.

    PubMed

    Mottura, A Aldo

    2002-01-01

    The purpose of this paper is to describe what I have studied and experienced, mainly regarding the control and prediction of the postoperative edema; how to achieve an agreeable recovery and give positive support to the patient, who in turn will receive pleasant sensations that neutralize the negative consequences of the surgery.After the skin is lifted, the drainage flow to the flaps is reversed abruptly toward the medial part of the face, where the flap bases are located. The thickness and extension of the flap determines the magnitude of the post-op edema, which is also augmented by medial surgeries (blepharo, rhino) whose trauma obstruct their natural drainage, increasing the congestion and edema. To study the lymphatic drainage, the day before an extended face lift (FL) a woman was infiltrated in the cheek skin with lynfofast (solution of tecmesio) and the absorption was observed by gamma camera. Seven days after the FL she underwent the same study; we observed no absorption by the lymphatic, concluding that a week after surgery, the lymphatic network was still damaged. To study the venous return during surgery, a fine catheter was introduced into the external jugular vein up to the mandibular border to measure the peripheral pressure. Following platysma plication the pressure rose, and again after a simple bandage, but with an elastic bandage it increased even further, diminishing considerably when it was released. Hence, platysma plication and the elastic bandage on the neck augment the venous congestion of the face. There are diseases that produce and can prolong the surgical edema: cardiac, hepatic, and renal insufficiencies, hypothyroidism, malnutrition, etc. According to these factors, the post-op edema can be predicted, the surgeon can choose between a wide dissection or a medial surgery, depending on the social or employment compromises the patient has, or the patient must accept a prolonged recovery if a complex surgery is necessary. Operative

  17. Summary of Free-Flight Zero-Lift Drag Results from Tests of 1/5-Scale Models of the Convair YF-102 and F-102A Airplanes and Several Related Small Equivalent Bodies at Mach Numbers from 0.70 to 1.46

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    One-fifth-scale rocket-propelled models of the Convair YF-102 and F-102A airplanes were tested to determine free-flight zero-lift drag coefficients through the transonic speed range at Reynolds numbers near those to be encountered by the full-scale airplane. Trim and duct characteristics were obtained along with measurements of total-, internal-, and base-drag coefficients. Additional zero-lift drag tests involved a series of small equivalent-body-of-revolution models which were launched to low supersonic speeds by means of a helium gun. The several small models tested corresponded to the following full-scale airplanes: basic, YF-102, 2-foot (full-scale) fuselage extension, F-102A, F-102A (relocated inlets), F-102A (faired nose), and F-102A (parabolic nose) . Equivalent-body models corresponding to the normal area distribution (derived for Mach number 1.0) of each of these airplane shapes were flown and, in addition, equivalent-body models designed to represent the YF-102 and F-102A airplanes at Mach number 1.2 were tested. External-drag coefficients obtained from the 115-scale tests ranged from 0.0094 to 0.0273 for the YF-102 model and from 0.0100 to 0.0255 for the F-102A model. Forebody external-pressure-drag coefficients (drag rise) at Mach number 1.05 of 0.0183 and 0.0134 were obtained from the 115-scale models of the YF-102 and F-102A, respectively, a 16-percent reduction for the F-102A model. Values of drag rise at Mach number 1.05 from the small equivalent-body tests were nearly the same for the basic, YF-102, and 2-foot-fuselage-extension airplane shapes. Equivalent-body tests of the YF-102 and F-102A shapes showed the latter to have about 25 percent less drag rise as compared with a 16-percent reduction illustrated by the 1/5-scale tests. Additional equivalent-body tests illustrating effects of modifications to the F-102A airplane shape shared that relocating the inlets on the fuselage or altering the nose shape to provide a smoother cross-sectional area

  18. Lifting China's water spell.

    PubMed

    Guan, Dabo; Hubacek, Klaus; Tillotson, Martin; Zhao, Hongyan; Liu, Weidong; Liu, Zhu; Liang, Sai

    2014-10-01

    China is a country with significant but unevenly distributed water resources. The water stressed North stays in contrast to the water abundant and polluted South defining China's current water environment. In this paper we use the latest available data sets and adopt structural decomposition analysis for the years 1992 to 2007 to investigate the driving forces behind the emerging water crisis in China. We employ four water indicators in China, that is, freshwater consumption, discharge of COD (chemical oxygen demand) in effluent water, cumulative COD and dilution water requirements for cumulative pollution, to investigate the driving forces behind the emerging crisis. The paper finds water intensity improvements can effectively offset annual freshwater consumption and COD discharge driven by per capita GDP growth, but that it had failed to eliminate cumulative pollution in water bodies. Between 1992 and 2007, 225 million tones of COD accumulated in Chinese water bodies, which would require 3.2-8.5 trillion m(3) freshwater, depending on the water quality of the recipient water bodies to dilute pollution to a minimum reusable standard. Cumulative water pollution is a key driver to pollution induced water scarcity across China. In addition, urban household consumption, export of goods and services, and infrastructure investment are the main factors contributing to accumulated water pollution since 2000. PMID:25226569

  19. Subperiosteal brow lifts without fixation.

    PubMed

    Troilius, Carl

    2004-11-01

    Most surgeons today advocate an endoscopic subperiosteal brow lift for surgical correction of the upper third of the face. At the author's clinic, this operation has been performed since 1994 and the subgaleal bicoronal brow lift is no longer used. In earlier investigations, the author showed that the subperiosteal approach (n = 60) gives a better result than the subgaleal method (n = 60) when compared 1 year after surgery. In the literature, however, there are no published data regarding the long-term results of subperiosteal brow lifts. The author took material from his earlier investigations and looked at the same patients 5 years postoperatively. He compared the subperiosteal approach (n = 30) with the subgaleal brow lift (n = 15) and found that after 5 years the brows of the subgaleal patients were on the same level as they were before surgery, but in the group of subperiosteal brow lifts, almost all of the brows were higher 5 years after surgery than they were 1 year after surgery, with a mean increase in height of 2.5 mm. These findings led the author to the question whether scalp fixation was necessary at all when performing a subperiosteal brow lift. He performed 20 subperiosteal endoscopic brow lifts where scalp fixation was not used at all, relying only on changing the balance of muscle vectors around the eyebrows. Using a computerized instrument, measurements were made of the distance between the medial canthus and the top of the eyebrow, the midpupil and the top of the eyebrow, and the lateral canthus and the top of the eyebrow. All patients were measured before and 1 year after surgery. The author found an increase of the vertical height from the midpupil to the top of the brow, with an average increase of 3.9 mm. There were no differences between patients who had only a brow lift and those who had a brow lift and an upper blepharoplasty at the same time. The author concludes that for most cases where an increased vertical height of the brows of more

  20. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    PubMed Central

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  1. Mist lift analysis summary report

    SciTech Connect

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  2. Serrated-Planform Lifting-Surfaces

    NASA Technical Reports Server (NTRS)

    McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

    1999-01-01

    A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

  3. Slug bucket lifting yoke analysis

    SciTech Connect

    McElfresh, A.J.

    1994-11-14

    There are baskets of fuel in the storage pools in the Purex facility (202-A). These baskets (called slug buckets) need to be removed from Purex and taken to the K-Basins. The current slug bucket lifting yoke is of sufficient age to be in question structurally. Therefore new yokes need to be fabricated. Prior to fabricating new yokes, the slug bucket lifting yoke DWG needs to be updated for fabrication. However, the design needs to be refined so that the yoke will be easier to fabricate. These calculations are prepared to demonstrate the adequacy of the new design. The objective of these calculations is to select appropriately sized structural members and weld sizes to serve as components in the slug bucket lifting yoke.

  4. Three-Dimensional Effects on Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

    2002-01-01

    In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

  5. Lifting Mechanism for the Mars Explorer Rover

    NASA Technical Reports Server (NTRS)

    Melko, Joseph; Iskenderian, Theodore; Harrington, Brian; Voorhees, Christopher

    2005-01-01

    A report discusses the design of a rover lift mechanism (RLM) -- a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

  6. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  7. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  8. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lift, except in case of emergency. (x) Climbers shall not be worn while performing work from an aerial... 29 Labor 8 2010-07-01 2010-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a)...

  9. Lift distribution in a rectangular jet

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1971-01-01

    Computer programs predict effect of slipstream-wing flow interaction on aerodynamic characteristics of deflected slipstream and tilt aircraft. One program calculates lift distribution, lift, and drag of wing in wide slipstream. Results permit development of simplified lifting surface theory for circular jet.

  10. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift maintenance. 37.203 Section 37.203... DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish a system of regular and frequent maintenance checks of lifts sufficient to determine if they are...

  11. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  12. 30 CFR 57.16016 - Lift trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 57.16016 Section 57.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... § 57.16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the:...

  13. 30 CFR 56.16016 - Lift trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 56.16016 Section 56.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the— (a)...

  14. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Seung Yeun (Paul)

    2010-01-01

    The streamwise lift distribution of a wing-canard-stabilator-body configuration was varied to study its effect on the near-field sonic boom signature. The investigation was carried out via solving the three-dimensional Euler equation with the OVERFLOW-2 flow solver. The computational meshes were created using the Chimera overset grid topology. The lift distribution was varied by first deflecting the canard then trimming the aircraft with the wing and the stabilator while maintaining constant lift coefficient of 0.05. A validation study using experimental results was also performed to determine required grid resolution and appropriate numerical scheme. A wide range of streamwise lift distribution was simulated. The result shows that the longitudinal wave propagation speed can be controlled through lift distribution thus controlling the shock coalescence.

  15. Influences on lifetime of wire ropes in traction lifts

    NASA Astrophysics Data System (ADS)

    Vogel, W.

    2016-05-01

    Traction lifts are complex systems with rotating and translating moving masses, springs and dampers and several system inputs from the lifts and the users. The wire ropes are essential mechanical elements. The mechanical properties of the ropes in use depend on the rope construction, the load situation, nonlinearities and the lift dimensions. The mechanical properties are important for the proper use in lifts and the ride quality. But first of all the wire ropes (for all other suspension means as well) have to satisfy the safety relevant requirements sufficient lifetime, reliable determination of discard and sufficient and limited traction capacity. The lifetime of the wire ropes better the number of trips until rope discard depends on a lot of parameters of the rope and the rope application eg use of plastic deflection sheaves and reverse bending layouts. New challenges for rope lifetime are resulting from the more or less open D/d-ratio limits possible by certificates concerning the examination of conformity by notified bodies. This paper will highlight the basics of wire rope technology, the endurance and lifetime of wire ropes running over sheaves, and the different influences from the ropes and more and more important from the lift application parameters. Very often underestimated are the influences of transport, storage, installation and maintenance. With this background we will lead over to the calculation methods of wire rope lifetime considering the actual findings of wire rope endurance research. We'll show in this paper new and innovative facts as the influence of rope length and size factor in the lifetime formular, the reduction of lifetime caused by traction grooves, the new model for the calculation in reverse bending operations and the statistically firmed possibilities for machine roomless lifts (MRL) under very small bending conditions.

  16. Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W. (Inventor); Howard, Floyd G. (Inventor); Bushnell, Dennis M. (Inventor); Holmes, Bruce J. (Inventor)

    1992-01-01

    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.

  17. Quiet powered-lift propulsion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

  18. Sex differences in lifting strategies during a repetitive palletizing task.

    PubMed

    Plamondon, A; Larivière, C; Denis, D; St-Vincent, M; Delisle, A

    2014-11-01

    Forty-five manual material handlers (15 females, 15 expert males and 15 novice males) performed series of box transfers under conditions similar to those of large distribution centers. The objective of the study was to verify whether sex differences in joint motions and in back loading variables (L5/S1 moments) exist during multiple box transfers. The task consisted in transferring 24 15-kg boxes from one pallet to another (4 layers of boxes; 6 boxes/layer: 3 in the front row, 3 in the back) at a self-determined pace and then at an imposed pace of 9 lifts/min. Full-body 3D kinematic data were collected as well as external foot forces. A dynamic 3D linked segment model was used to estimate the net moments at L5/S1. The results show that the peak L5/S1 moment during lifting for females was significantly lower than for males, but once normalized to body size the difference disappeared. In general, the female workers were very close to the posture adopted by the novice males at the instant of the peak resultant moment. However, females were closer to the box than the male workers. One major sex difference was seen when lifting from the ground, with the use of interjoint coordination analyses. Female workers showed a sequential motion initiated by the knees, followed by the hip and the back, while expert males showed a more synchronized motion. The lifting strategy of females likely stretches lumbar spine passive tissues, which in turn put them at greater risk of back injuries. As observed in our previous studies, these differences between expert males, novice males and females are especially notable when the box is lifted from the ground. PMID:24931477

  19. [Lifting procedures in cosmetic facial surgery].

    PubMed

    Jansma, J; Schepers, R H; Vissink, A

    2014-10-01

    A prominent characteristic of the aging face is the descent of skin and subcutaneous tissues. In order to reduce this and create a more youthful appearance, several lifting procedures can be employed. In the forehead and eyebrow region the transblepharoplastic brow lift, the direct brow lift, the temporal brow lift, the coronal brow lift and the endoscopic brow lift can be distinguished. For the mid-face, the facelift is known to be an effective treatment for aging characteristics. Classic facelifts can be divided into the one layer-, two layer- and the deep plane facelift. Nowadays the minimal access cranial suspension lift is popular. The lifting capacity of this lift may be less, but the risk of complications is lower and the result is often more natural. A neck lift improves the chin-neck angle and a submental liposuction/lipectomy can contribute to this. Complications in lifting procedures are rare. Hematoma is the most frequent complication. Skin necrosis of the wound edges and laceration of the end branches of the facial nerve can also occur. There is a tendency towards minimally invasive procedures with smaller risk of complications and shorter recovery periods. PMID:26185994

  20. Lift enhancement by bats' dynamically changing wingspan.

    PubMed

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-12-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  1. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  2. The Kutta-Zhukovsky Lift Theorem revisited: Alteration due to the Viscous Wake

    NASA Astrophysics Data System (ADS)

    Schmitz, Sven

    2011-11-01

    The circulation theory of lift comprised in the classical Kutta-Zhukovsky Lift Theorem forms the foundation of modern aerodynamic wing theory. The theorem has been applied ever since in lifting-line models of aircraft and rotary wings. Reynolds numbers larger than one million support its validity, yet the effect of a viscous wake on a change in the functional relationship between lift and circulation is not taken into account in standard lifting-line analyses. A discrepancy in circulation of more than six percent in comparison to the classical Kutta-Zhukovsky Lift Theorem has been demonstrated by the author (Schmitz & Chattot, Computers & Fluids, 36) for moderately separated flow around a wind turbine airfoil by means of a control volume analysis governed by the Navier-Stokes equations. The present work extends the previous analysis to general three-dimensional flow around a lifting body. An analytical expression is presented that extends the classical Kutta-Zhukovsky Lift Theorem by adding terms to the theorem due to chord- and spanwise vorticity transport. An integrated solution for induced drag is given that has not been documented in previous literature on the subject. The generalized theorem will find future application and quantification in actuator-line methods used to predict wind farm wake interactions with Atmospheric Boundary Layer flow.

  3. The relationship between maximal lifting capacity and maximum acceptable lift in strength-based soldiering tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J

    2012-07-01

    Psychophysical assessments, such as the maximum acceptable lift, have been used to establish worker capability and set safe load limits for manual handling tasks in occupational settings. However, in military settings, in which task demand is set and capable workers must be selected, subjective measurements are inadequate, and maximal capacity testing must be used to assess lifting capability. The aim of this study was to establish and compare the relationship between maximal lifting capacity and a self-determined tolerable lifting limit, maximum acceptable lift, across a range of military-relevant lifting tasks. Seventy male soldiers (age 23.7 ± 6.1 years) from the Australian Army performed 7 strength-based lifting tasks to determine their maximum lifting capacity and maximum acceptable lift. Comparisons were performed to identify maximum acceptable lift relative to maximum lifting capacity for each individual task. Linear regression was used to identify the relationship across all tasks when the data were pooled. Strong correlations existed between all 7 lifting tasks (rrange = 0.87-0.96, p < 0.05). No differences were found in maximum acceptable lift relative to maximum lifting capacity across all tasks (p = 0.46). When data were pooled, maximum acceptable lift was equal to 84 ± 8% of the maximum lifting capacity. This study is the first to illustrate the strong and consistent relationship between maximum lifting capacity and maximum acceptable lift for multiple single lifting tasks. The relationship developed between these indices may be used to help assess self-selected manual handling capability through occupationally relevant maximal performance tests. PMID:22643137

  4. Influences of the position of the head on posture while lifting.

    PubMed

    Ishida, H; Watanabe, S; Eguchi, A; Kobara, K

    2008-01-01

    In clinical training of some lower back pain patients, teaching them to control their lumbar lordosis during lifting may be difficult. Therefore, another effective method for lifting technique is required. In standing, head cannot move without some compensating postural adjustment. The purpose of this study was to examine the influence of head position on lifting posture. Fourteen healthy male volunteers (22.6 +/- 4.4 years old) lifted a case while maintaining two different head positions; a downward position and an upright position. In the upright position, activities of the latissimus dorsi and vastus lateralis significantly increased, and these of the biceps femoris significantly decreased during the initial 100 msec phase of lifting. There were no differences in the activities of the upper trapezius, lumbar extensor muscles (L3, L5), and obliquus abdominis under the two conditions. There were also no differences in the lumbar angle when the case was lifted. The flexion angles of the hip, knee, and ankle significantly increased, and the lumbar spine moved closer to the case. Lifting posture was influenced by the head position. Advantages included being able to shift loads on the body from the lower back to the legs, to move the lumbar spine closer to the case, and to relatively increase the moment of lumbar extension. The weight of the head as it moved upward and back, and the weight of the rear part of the body as it moved downward and forward helped to maintain balance. PMID:18551836

  5. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  6. Health care concerns related to lifting: an inside look at intervention strategies.

    PubMed

    Laflin, K; Aja, D

    1995-01-01

    As members of injury prevention and injury management teams, physical therapists and occupational therapists have the opportunity to evaluate back stress associated with patient-lifting activities. In this study, three mathematical formulas are presented that can be used to objectively assess health care workers' maximum safe lifting capacity for moving patients. Recommendations to reduce the rate of back injury in health care workers include the use of lifting machines for moving patients, mandatory in-service education on body mechanics, and employee assistance programs that improve job satisfaction and worker morale. PMID:7892903

  7. New and expected developments in artificial lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1994-12-31

    Artificial lift is a broad subject. This paper discusses some of the new developments in the major areas of artificial lift. These are (1) beam lift, (2) electrical submersible pumping, (3) gas lift, (4) hydraulic pumping and (5) miscellaneous topics. The beam lift discussion concerns a new rod material, downhole measurements for rod loading, unit design and some miscellaneous topics. The ESP (Electrical Submersible Pump) section includes a discussion on solids handling, downhole sensor technology, new motor temperature limitations, motor efficiency, and other topics. The gas lift discussion includes mention of coiled tubing with gas lift valves internal, a surface controlled gas lift valve concept, and gas lift valve testing and modeling. Hydraulic pumping is used in many locations with deep pay and fairly small production rates. New hydraulic developments include a wider availability of power fluid pumps other than positive displacement pumps, and small jet pumps specifically designed for de-watering gas wells. Some miscellaneous developments include an insertable PC (progressing cavity) pump and improved plunger lift algorithms and equipment.

  8. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  9. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  10. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  11. Three-Dimensional Effects in Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.

    2003-01-01

    In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.

  12. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (the effects of some rotor feedback systems on rotor-body dynamics), Phase 7-A

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Yin, S. K.

    1973-01-01

    The effects of three gyroless rotor feedback systems: (1) coning feedback, (2) proportional tilting feedback, and (3) a combination of these on the rotor-body dynamics of hingeless rotorcraft are studied with a simplified analytical model in the advance ratio range from 0 to .8. Combinations of feedback phase angles and control phase angles are selected to minimize control cross coupling and control sensitivity changes between low and high speed flight. For the feedback systems thus selected the effects of feedback gain and control actuator time lag on the stability both with fixed hub and in free flight is studied, whereby the rotorcraft is free in pitch, roll and vertical motion but otherwise restrained. For the free flight is studied, whereby the rotorcraft is free in pitch, roll and vertical motion but otherwise restrained. For the free flight conditions the effects of a horizontal tail are also determined in itself and in combination with the rotor feedback systems.

  13. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  14. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  15. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  16. Artificial lift: Many new developments are emerging

    SciTech Connect

    Lea, J.F.

    1984-03-01

    Methods of artificially lifting oil production are almost countless, testifying to the ingenuity of inventors, engineers, technicians, etc., that have worked in this area. And, artificial lift improvements continue to be important, especially now that product prices are nearly constant and production costs are under closer scruitiny. Some methods of artificial lift thought to be new to industry are mentioned in this article, including: Aluminum sucker rods, Graphite composite lift system, Unique pumping unit geometry, Chain drive pumping unit, Two types of pump-off control, Downhole gas pump, Hydraulic-centrifugal pump, Improvements in submersible pumps, and Submersible pump gas separators.

  17. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  18. Facial emphysema after sinus lift.

    PubMed

    Sakakibara, Akiko; Suzuki, Hiroaki; Yamashita, Atsuya; Hasegawa, Takumi; Minamikawa, Tsutomu; Furudoi, Shungo; Komori, Takahide

    2015-01-01

    An 80-year-old man with a history of en bloc resection of squamous cell carcinoma of the hard palate (T4aN0M0) was performed a lateral-window sinus lift of the edentulous area of the left maxillary molar region to facilitate future placement of dental implants.Two hours after the surgery, the patient complained of sudden malar swelling. Marked swelling was present from the left infraorbital region to the buccal region. The swelling was associated with air pockets at the alar base and in the angulus oculi medialis region and subcutaneous malar tissue. Emphysema appeared after the patient blew his nose. Therefore, the mucous membrane of the maxillary sinus might have had a small hole, and air might have entered the subcutaneous tissue via the bone window when the air pressure in the maxillary sinus increased with nose blowing. It is important to advise patients to avoid increasing the intraoral pressure after sinus-lift procedure. PMID:26088054

  19. Facial emphysema after sinus lift

    PubMed Central

    Sakakibara, Akiko; Suzuki, Hiroaki; Yamashita, Atsuya; Hasegawa, Takumi; Minamikawa, Tsutomu; Furudoi, Shungo; Komori, Takahide

    2015-01-01

    An 80-year-old man with a history of en bloc resection of squamous cell carcinoma of the hard palate (T4aN0M0) was performed a lateral-window sinus lift of the edentulous area of the left maxillary molar region to facilitate future placement of dental implants. Two hours after the surgery, the patient complained of sudden malar swelling. Marked swelling was present from the left infraorbital region to the buccal region. The swelling was associated with air pockets at the alar base and in the angulus oculi medialis region and subcutaneous malar tissue. Emphysema appeared after the patient blew his nose. Therefore, the mucous membrane of the maxillary sinus might have had a small hole, and air might have entered the subcutaneous tissue via the bone window when the air pressure in the maxillary sinus increased with nose blowing. It is important to advise patients to avoid increasing the intraoral pressure after sinus-lift procedure. PMID:26088054

  20. New life for heavy lift

    NASA Astrophysics Data System (ADS)

    Demeis, Richard

    1991-03-01

    The advisory committee to NASA on overall approaches for implementing the U.S. space program in the years ahead has concluded that Shuttle missions should only be flown when a human presence is necessary. It was noted that reducing the number of missions would extend the life of the existing fleet and retain the number of orbiters required at the presently planned four and any funding for a fifth orbiter should be utilized instead for the development of a new heavy lift launch vehicle. These recommendations have led to increased design proposals under the Advanced Launch Development (ADLP) Program such as the Shuttle C (cargo), an unmanned version that could orbit 100,00 to 150,000 lb for two- and three-engine versions, respectively, and would make maximum utilization of present Shuttle processing and pad facilities. Other concepts under investigation by ADLP include electromechanical actuators to replace hydraulic systems, advanced modular avionics and common avionics/payload interfaces, and laser-initiated ordnance for component separation and staging. It is noted that the drive to evolve a heavy lift system will fully employ the total quality management approach, with producibility and operability built into the system from the start.

  1. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  2. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... vehicles with lift systems must comply with objective safety requirements in order to be sold. \\1\\ 67 FR... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AJ93 Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift Installations in Motor Vehicles AGENCY:...

  3. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  4. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  5. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  6. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  8. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van lift. In the…

  9. Measuring lifting forces in rock climbing: effect of hold size and fingertip structure.

    PubMed

    Bourne, Roger; Halaki, Mark; Vanwanseele, Benedicte; Clarke, Jillian

    2011-02-01

    This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge ("strength") does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers. PMID:21451181

  10. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Aerial lifts. 1926.453 Section 1926.453 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Scaffolds § 1926.453 Aerial lifts. (a) General requirements. (1) Unless otherwise provided...

  11. Improving Grading Consistency through Grade Lift Reporting

    ERIC Educational Resources Information Center

    Millet, Ido

    2010-01-01

    We define Grade Lift as the difference between average class grade and average cumulative class GPA. This metric provides an assessment of how lenient the grading was for a given course. In 2006, we started providing faculty members individualized Grade Lift reports reflecting their position relative to an anonymously plotted school-wide…

  12. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  13. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  14. Heavy-lift airship dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  15. Air Bearing Lift Pad (ABLP)

    NASA Technical Reports Server (NTRS)

    Dane, Dan H.; Blaise, Herman T.

    1968-01-01

    Typical air bearings float on air films of only a few thousandths of an inch and so will only operate above very smooth, even surfaces. For the mechanical simulation of space, the small drag of the bladder type air pads is much more than can be coped with, and the practicality of large floor areas being machined for precision air bearings is nonexistent. To enable operation above surfaces that undulate slightly or feature cracks and discontinuities, an ABLP has been developed. It consists of a rigid pad beneath which an inflatable bladder is mounted. The bladder is inflated with air which then escapes through passages into a cavity in the center of the bladder to produce the lifting energy. As the air escapes about the perimeter of the bladder, a certain degree of balance and equilibrium is imparted to the pad as it is able to move a limited weight across slightly uneven surfaces.

  16. Post-bariatric body contouring: oue experience.

    PubMed

    Grieco, Michele; Grignaffini, Eugenio; Simonacci, Francesco; Di Mascio, Donatello; Raposio, Edoardo

    2016-01-01

    Obesity is a growing socio-economic problem especially in the western population. Patients who are undergoing bariatric surgery after a significant weight loss have an altered body profile which may have an important psychological impact. These patients may be candidates for surgical body-lifting. The aim of body-lifting is to obtain a firmer, tighter, rejuvenated appearance for patients who have lax, ptotic tissues. In this paper we describe our experience with two techniques currently practiced by our team, brachioplasty and thigh lift, reporting the indications, the surgical technique and possible complications. PMID:27163898

  17. Prompting correct lifting posture using signs.

    PubMed

    Burt, C D; Henningsen, N; Consedine, N

    1999-08-01

    The use of a symbol to prompt the adoption of correct lifting posture was examined in three studies. Study 1 used an Appropriateness Test to evaluate nine symbols designed to encourage the adoption of correct lifting posture. Four symbols met the appropriateness criteria and were tested for comprehension in Study 2. Study 3 examined the effect of the best performing symbol from Study 2 in a field setting which involved subjects lifting a small box. Results indicate significant increases in the adoption of the use of correct lifting posture when the symbol was present compared to a control condition. The study also identified the placement of a lifting criterion symbol onto packaging as a useful technique for communicating safety information. PMID:10416848

  18. THE IMPORTANCE OF NEGATIVE ACCELERATION OF THE LOAD IN FREE-STYLE LIFTING.

    PubMed

    Trafimow, Jordan; Xaygnaraj, Joseph; Trafimow, David; Aruin, Alexander S

    2015-08-01

    Lifters may use negative acceleration in lifting a very light load. Body kinematic data were recorded in 10 participants lifting a 114 g box. Vertical position and acceleration of the center of mass and angle of the thigh to a vertical line were calculated. Acceleration data between the positions of the body when the thighs were horizontal and as the knees extended to an angle of 45° indicated that negative acceleration was present at 68.9% of time points, more than predicted by chance. PMID:26302192

  19. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  20. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  1. Advanced wind turbine with lift canceling aileron for shutdown

    SciTech Connect

    Coleman, C.; Juengst, T.M.; Zuteck, M.D.

    1996-06-18

    An advanced aileron configuration is described for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration. 24 figs.

  2. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  3. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  4. Rotating cylinder design as a lifting generator

    NASA Astrophysics Data System (ADS)

    Asrokin, Azharrudin; Rizal Ramly, Mohammad; Halim Ahmad, Abdul

    2013-12-01

    The airfoil shape of a wing has always been the design to generate lift. But few realized that a simple rotating cylinder can also create lift. However, the explanation and study of how a rotating cylinder creates lift are still complex. In remote area where it is difficult for air vehicle to access, the exploration and discovery of different configuration for design concept is rather important. Due to this reason, there is a need to think of a lift generator that can produce better lift (few fold better than conventional airfoil) at lower speed to take off in a short distance of time. This paper will explain the conditions and the design of such a wing using the rotating cylinder concept that will take off in a short time and requires little takeoff and landing strip. Spokes will be attached to the cylinder to force the surrounding air to rotate along with the cylinder. This will create a vortex that hastens the speed of the air on top of the cylinder and at the same time retarding the speed of air below the cylinder. From the results, the rougher surface cylinder produces more lift when rotating and also, higher speed rotation of the cylinder greatly changes the speed of the surrounding air, thus better lift.

  5. Lift-Enhancing Tabs on Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

    1995-01-01

    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

  6. Dynamic ECA lift-off compensation

    NASA Astrophysics Data System (ADS)

    Lepage, Benoit; Brillon, Charles

    2015-03-01

    Good control on lift-off is crucial in Eddy Current Testing (ECT) as the signal amplitude, directly affected by lif-toff changes, can potentially lead to reduced detection performance and/or false positives. This is especially true in automated inspections with Eddy Current Array (ECA) technology, where lift-off cannot be mechanically compensated for at each coil position. Here, we report on a novel method for compensating sensitivity variations induced by varying lift-off for an ECA probe. This method makes use of a single ECA probe operated in two different ways: One is to create a set of detection channels and the other is to create a set of lift-off measurement channels. Since a simple relationship exists between the two measurements, an improved calibration process can be used which combines the calibration of both detection and lift-off measurement channels on a simple calibration block exhibiting a reference indication, thus eliminating the need for a predefined lift-off condition. In this work, we will show results obtained on a weld cap, where lift-off condition is known to vary significantly over the scanning area.

  7. Lift and thrust generation by a butterfly-like 3D flapping wing model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Inamuro, Takaji

    2013-11-01

    The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.

  8. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  9. Remote lift fan study program, volume 4

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study program to select and conduct preliminary design of advanced technology lift fan systems to meet low noise goals of future V/STOL transport aircraft is discussed. This volume contains results of additional studies conducted to support the main preliminary design effort done under the Remote Lift Fan Study Program (Contract NAS3-14406) and a companion effort, the Integral Lift Fan Study (NAS3-14404). These results cover engine emission study, a review of existing engines for research aircraft application and support data for aircraft studies.

  10. Airfoil Lift with Changing Angle of Attack

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1927-01-01

    Tests have been made in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics to determine the effects of pitching oscillations upon the lift of an airfoil. It has been found that the lift of an airfoil, while pitching, is usually less than that which would exist at the same angle of attack in the stationary condition, although exceptions may occur when the lift is small or if the angle of attack is being rapidly reduced. It is also shown that the behavior of a pitching airfoil may be qualitatively explained on the basis of accepted aerodynamic theory.

  11. Geometry program for aerodynamic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1973-01-01

    A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.

  12. Midface lift: our current approaches.

    PubMed

    Botti, G; Botti, C

    2014-08-01

    In the last few years, surgery of the ageing face seems to have shifted from tissue uplifting and tightening to mere filling. We do not agree with this trend. We are positive that ageing brings about 2 basic phenomena: on one hand bone and fat volume reduction, whilst on the other a deterioration of the skin lining (elastosis) leading to an increase in its compliance and extension. We therefore deem of the utmost importance to couple soft tissue filling with indispensable tightening and repositioning together with resection of overabundant skin. For what concerns the mid-face area in particular, we suggest to resort to 3 different lifting techniques, according to the kind of defect to be treated. It is important to take the right pulling vector into consideration as well as the need of skin excess removal. The procedures can be tailored to suit any peculiar need such as malar bag, lower lid border malposition, tear trough deformity, etc. Different cases will be taken into consideration as examples of the various indications and techniques. PMID:25162240

  13. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight.

    PubMed

    Behrendt, Frank; de Lussanet, Marc H E; Zentgraf, Karen; Zschorlich, Volker R

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer's motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature. PMID:27336751

  14. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight

    PubMed Central

    Behrendt, Frank; de Lussanet, Marc H. E.; Zentgraf, Karen; Zschorlich, Volker R.

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer’s motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature. PMID:27336751

  15. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Video Gallery

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  16. Bernoulli's Law and Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Explains the lifting force based on Bernoulli's law and as a reaction force. Discusses the interrelation of both explanations. Considers accelerations in line with stream lines and perpendicular to stream lines. (YP)

  17. How good is jet lift VTOL technology

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Petersen, R. H.

    1977-01-01

    The status of technologies for jet-lift V/STOL aircraft is examined, and a critical review of the performance of jet-lift VTOL aircraft built to date is made. Most jet-lift aircraft have suffered from adverse propulsion-induced effects during takeoff and landing. Flight dynamics of jet-lift aircraft have suffered from shortcomings in static and dynamic stability, control characteristics, and flight path control. Some of the main problems to be considered during the selection of a propulsion system arrangement for a V/STOL fighter are discussed. At present, experimental and analytical data on supersonic V/STOL configurations are insufficient to permit evaluating propulsion system arrangements.

  18. More Americans Opting for Butt Implants, Lifts

    MedlinePlus

    ... Overall, the number of U.S. plastic surgery procedures rose 115 percent between 2000 and 2015, and the ... example, the rate of people undergoing buttock lifts rose 252 percent between 2000 and 2015 -- from 1, ...

  19. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  20. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  1. Lifted Partially Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Lock, Andrew J.; Ganguly, Ranjan; Puri, Ishwar K.; Aggarwal, Suesh K.; Hegde, Uday

    2004-01-01

    Lifted Double and Triple flames are established in the UIC-NASA Partially Premixed microgravity rig. The flames examined in this paper are established above a coannular burner because its axisymmetric geometry allows for future implementation of other non-intrusive optical diagnostic techniques easily. Both burner-attached stable flames and lifted flames are established at normal and microgravity conditions in the drop tower facility.

  2. Lift/cruise fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Franklin, J. A.

    1977-01-01

    The paper gives an overview of the technology related to lift/cruise fan VTOL aircraft, covering propulsion systems, thrust deflection, flight dynamics, controls, displays, aerodynamics, and configurations. Piloting problems are discussed, and the need for integration of power management and thrust-vector controls is pointed out. Major components for a high-bypass-ratio lift/cruise fan propulsion system for VTOL aircraft have been tested.

  3. Numerical modeling of the gas lift process in gas lift wells

    NASA Astrophysics Data System (ADS)

    Temirbekov, N. M.; Turarov, A. K.; Baigereyev, D. R.

    2016-06-01

    In this paper, one-dimensional and two-dimensional axisymmetric motion of gas, liquid and a gas-liquid mixture in a gas-lift well is studied. Numerical simulation of the one-dimensional model of gas-lift process is considered where the movement in a gas-lift well is described by partial differential equations of hyperbolic type. Difference schemes for the gas-lift model of the process are developed on a nonuniform grid condensing in subdomains with big gradients of the solution. The results of the proposed algorithm are illustrated on the example of a real well.

  4. A Method for Calculation of Hydrodynamic Lift for Submerged and Planing Rectangular Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Wadlin, Kenneth L; Christopher, Kenneth W

    1958-01-01

    A method is presented for the calculation of lift coefficients for rectangular lifting surfaces of aspect ratios from 0.125 to 10 operating at finite depths beneath the water surface, including the zero depth or planing condition. Theoretical values are compared with experimental values obtained at various depths of submergence with lifting surfaces of aspect ratios from 0.125 to 10. The method can also be applied to hydrofoils with dihedral. Lift coefficients computed by this method are in good agreement with existing experimental data for aspect ratios from 0.125 to 10 and dihedral angles up to 10 degrees.

  5. Training for lifting; an unresolved ergonomic issue?

    PubMed

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification. PMID:9703354

  6. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  7. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model

    NASA Technical Reports Server (NTRS)

    Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.

    2008-01-01

    Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.

  8. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.

    PubMed

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2014-09-01

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small. PMID:25008082

  9. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird

    PubMed Central

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L.

    2014-01-01

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing–wake interaction also contribute significantly to the lift asymmetry. Though the wing–wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing–wing interaction and wing–body interaction are small. PMID:25008082

  10. 49 CFR 178.1050 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.1050 Section 178.1050... Containers § 178.1050 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Flexible Bulk Containers design types to be lifted from the top. (b) Special...

  11. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  12. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  13. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  14. 49 CFR 178.1050 - Top lift test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Top lift test. 178.1050 Section 178.1050... Containers § 178.1050 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Flexible Bulk Containers design types to be lifted from the top. (b) Special...

  15. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  16. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  17. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  18. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  19. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.812 Section 178.812... Testing of IBCs § 178.812 Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the...

  20. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  1. Lifting Safety: Tips To Help Prevent Back Injuries

    MedlinePlus

    MENU Return to Web version Lifting Safety: Tips to Help Prevent Back Injuries Lifting Safety: Tips to Help Prevent Back Injuries Have you checked the object before you try to lift it? Test every load before you lift by pushing the object lightly with your hands or feet to see how easily ...

  2. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...

  3. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...

  4. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...

  5. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...

  6. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...

  7. Modification of the Douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Grose, G. G.

    1978-01-01

    The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.

  8. Heavy Lift for Exploration: Options and Utilization

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  9. Design of a portable powered seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.

  10. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  11. Experimental Study of Lift-Generated Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1998-01-01

    The flow fields of vortices, whether bouyancy-driven or lift-generated, are fascinating fluid-dynamic phenomena which often possess intense swirl velocities and complex time-dependent behavior. As part of the on-going study of vortex behavior, this paper presents a historical overview of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. It is pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The primary purpose of the research to be described is to find a way to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from aerospace journals that are available publicly.

  12. Prediction of biomechanical parameters in the lumbar spine during static sagittal plane lifting.

    PubMed

    Kong, W Z; Goel, V K; Gilbertson, L G

    1998-04-01

    A combined approach involving optimization and the finite element technique was used to predict biomechanical parameters in the lumbar spine during static lifting in the sagittal plane. Forces in muscle fascicles of the lumbar region were first predicted using an optimization-based force model including the entire lumbar spine. These muscle forces as well as the distributed upper body weight and the lifted load were then applied to a three-dimensional finite element model of the thoracolumbar spine and rib cage to predict deformation, the intradiskal pressure, strains, stresses, and load transfer paths in the spine. The predicted intradiskal pressures in the L3-4 disk at the most deviated from the in vivo measurements by 8.2 percent for the four lifting cases analyzed. The lumbosacral joint flexed, while the other lumbar joints extended for all of the four lifting cases studied (rotation of a joint is the relative rotation between its two vertebral bodies). High stresses were predicted in the posterolateral regions of the endplates and at the junctions of the pedicles and vertebral bodies. High interlaminar shear stresses were found in the posterolateral regions of the lumbar disks. While the facet joints of the upper two lumbar segments did not transmit any load, the facet joints of the lower two lumbar segments experienced significant loads. The ligaments of all lumbar motion segments except the lumbosacral junction provided only marginal moments. The limitations of the current model and possible improvements are discussed. PMID:10412390

  13. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  14. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects. PMID:25871040

  15. Unsteady lifting-line theory with applications

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1982-01-01

    Unsteady lifting-line theory is developed for a flexible unswept wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The theory is formulated in terms of the acceleration potential and treated by the method of matched asymptotic expansions. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. Sample numerical calculations are presented. The present work identifies and resolves errors in the unsteady lifting-line theory of James and points out a limitation in that of Van Holten. Comparison of the results of Reissner's approximate unsteady lifting-surface theory with those of the present work shows favorable agreement. The present work thus provides some formal justification for Reissner's ad hoc theory. For engineering purposes, the region of applicability of the theory in the reduced frequency-aspect ratio domain is identified approximately and found to cover most cases of practical interest.

  16. Coriolis effects enhance lift on revolving wings

    NASA Astrophysics Data System (ADS)

    Jardin, T.; David, L.

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  17. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  18. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine.

    PubMed

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2015-01-01

    In the present study we observed whether infants show online adjustments to the mother's incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants' waist (delayed pick-up). In both Normal and Delayed conditions infant's body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants' head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers' face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  19. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine

    PubMed Central

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2016-01-01

    In the present study we observed whether infants show online adjustments to the mother’s incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants’ waist (delayed pick-up). In both Normal and Delayed conditions infant’s body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants’ head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers’ face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  20. [Anesthetic maintenance during circular face lifting].

    PubMed

    Parshin, V I; Pastukhova, N K

    2010-01-01

    The paper deals with the specific features of anesthetic maintenance (ketamine, diprivan, dormicum, perfalgan, promedol) during circular face lifting without artificial ventilation. All intravenous anesthesia procedures have yielded good results. Narcotic analgesics may be removed from the anesthetic maintenance scheme, ruling out the necessity of their licensing, storing, and recording. The use of perfalgan causes no hallucinogenic reactions and offers the optimum level of anesthesia. During face lifting, 2.3 +/- 0.6-hour anesthesia with spontaneous breathing is possible, safe, and warranted. PMID:20524331

  1. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  2. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models

    PubMed Central

    Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.

    2016-01-01

    Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902

  3. Motor control of the trunk during a modified clean and jerk lift.

    PubMed

    Eriksson Crommert, M; Ekblom, M M; Thorstensson, A

    2014-10-01

    The purpose of the present study was to investigate the pattern of trunk muscle activation and intra-abdominal pressure (IAP) in a somewhat modified version of the clean and jerk lift. Nine healthy physically active male amateurs performed the exercise with a 30-kg barbell. Muscle activity was registered with electromyography from transversus abdominis (TrA) and obliquus internus (OI) using intramuscular electrodes and from rectus abdominis (RA) and erector spinae (ES) with surface electrodes. IAP was recorded with a nasogastric catheter. Measurements were made in various static positions throughout the lift and in the transitional phases separating them, both during lifting and lowering. The results demonstrated that the innermost abdominal muscle, TrA, showed increased activation levels in the two highest positions, whereas ES was most active, together with the highest IAP, in the lowest position. OI and RA showed generally little activation and no obvious trend throughout the lift. The results strengthen the view of a contributing role of TrA to the upright control of the trunk and indicate that the clean and jerk lift might constitute a whole-body exercise, still targeting the TrA muscle, in late-stage rehabilitation, especially for athletes during return to sports. PMID:23489349

  4. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  5. Lift and Drag of Wings with Small Span

    NASA Technical Reports Server (NTRS)

    Weinig, F.

    1947-01-01

    The lift coefficient of!a wing of small span at first shows a linear increase for the increasing angle of attack, but to a lesser degree then was to be expected according to the theory of the lifting line; thereafter the lift coefficient increases more rapidly than linearity, as contrasted with the the theory of the lifting line. The induced drag coefficient for a given lift coefficient, on the other hand, is obviously much smaller than it would be according to the theory. A mall change in the theory of the lifting line will cover these deviations.

  6. The lift-fan powered-lift aircraft concept: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1993-01-01

    This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified.

  7. Postural responses triggered by multidirectional leg lifts and surface tilts.

    PubMed

    Hughey, Lucinda K; Fung, Joyce

    2005-08-01

    movement generation and the recovery of postural equilibrium during leg lifting. In conclusion, regardless of the type (voluntary versus involuntary) or direction of perturbation, the strategy employed by the central nervous system to control the body COM displacement concerns mainly trunk stabilization. PMID:15940494

  8. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  9. Evaluation of hydraulic lift in cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydraulic lift (HL) in plants is defined as the redistribution of water from wetter to drier soil through the plant roots in response to soil water potential gradients. Water is released from the roots into the dry soil when transpiration is low (night) and reabsorbed by the plant when higher transp...

  10. The Monoplane as a Lifting Vortex Surface

    NASA Technical Reports Server (NTRS)

    Blenk, Hermann

    1947-01-01

    In Prandtl's airfoil theory the monoplane was replaced by a single lifting vortex line and yielded fairly practical results. However, the theory remained restricted to the straight wing. Yawed wings and those curved in flight direction could not be computed with this first approximation; for these the chordwise lift distribution must be taken into consideration. For the two-dimensional problem the transition from the lifting line to the lifting surface has been explained by Birnbaum. In the present report the transition to the three-dimensional problem is undertaken. The first fundamental problem involves the prediction of flow, profile, and drag for prescribed circulation distribution on the straight rectangular wing, the yawed wing for lateral boundaries parallel to the direction of flight, the swept-back wing, and the rectangular wing in slipping, with the necessary series developments for carrying through the calculations, the practical range of convergence of which does not comprise the wing tips or the break point of the swept-back wing. The second problem concerns the calculation of the circulation distribution with given profile for a slipping rectangular monoplane with flat profile and aspect ratio 6, and a rectangular wing with cambered profile and variable aspect ratio-the latter serving as check of the so-called conversion formulas of the airfoil theory.

  11. Computation of Lifting Wing-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  12. Complications of lower blepharoplasty and midface lifting.

    PubMed

    Schwarcz, Robert M; Kotlus, Brett

    2015-01-01

    Lower eyelid blepharoplasty and midface lifting share a complex anatomy, which should be mastered before attempting these types of surgeries. In recent years, there have been significant contributions to rejuvenating this area. A thorough understanding of the rejuvenative approaches and their outcomes is imperative. Thus, the problem must be preoperatively evaluated to offer the appropriate technique and minimize complications. PMID:25440742

  13. Infants' grip strength predicts mu rhythm attenuation during observation of lifting actions with weighted blocks.

    PubMed

    Upshaw, Michaela B; Bernier, Raphael A; Sommerville, Jessica A

    2016-03-01

    Research has established that the body is fundamentally involved in perception: bodily experience influences activation of the shared neural system underlying action perception and production during action observation, and bodily characteristics influence perception of the spatial environment. However, whether bodily characteristics influence action perception and its underlying neural system is unknown, particularly in early ontogeny. We measured grip strength in 12-month-old infants and investigated relations with mu rhythm attenuation, an electroencephalographic correlate of the neural system underlying action perception, during observation of lifting actions performed with differently weighted blocks. We found that infants with higher grip strength exhibited significant mu attenuation during observation of lifting actions, whereas infants with lower grip strength did not. Moreover, a progressively strong relation between grip strength and mu attenuation during observation of lifts was found with increased block weight. We propose that this relation is attributable to differences in infants' ability to recognize the effort associated with lifting objects of different weights, as a consequence of their developing strength. Together, our results extend the body's role in perception by demonstrating that bodily characteristics influence action perception by shaping the activation of its underlying neural system. PMID:25939632

  14. GENERAL VIEW LOOKING WEST SHOWING LIFT BRIDGE. COUNTER WEIGHTS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW LOOKING WEST SHOWING LIFT BRIDGE. COUNTER WEIGHTS ARE LARGE SQUARES VISIBLE ABOVE BRIDGE - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  15. 3. GENERAL VIEW LOOKING WEST, SHOWING LIFT BRIDGE. COUNTER WEIGHTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW LOOKING WEST, SHOWING LIFT BRIDGE. COUNTER WEIGHTS ARE LARGE SQUARES VISIBLE ABOVE BRIDGE. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  16. 6. DETAIL OF VERTICAL LIFT SPAN AND FIXED SPAN IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF VERTICAL LIFT SPAN AND FIXED SPAN IMMEDIATELY NORTH OF VERTICAL LIFT SPAN, LOOKING SOUTHEAST. - Shippingsport Bridge, Spanning Illinois River at State Route 51, La Salle, La Salle County, IL

  17. Interior view of eastern lift span, with decking above, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of eastern lift span, with decking above, looking back from center of span, toward lift mechanism area. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  18. 6. DETAIL VIEW OF 210' 9' LIFT SPAN TOWER SHEAVES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF 210' 9' LIFT SPAN TOWER SHEAVES AND BEARINGS WITH HOUSING AND SHEAVE HOODS REMOVED - Central Railroad of New Jersey, Newark Bay Lift Bridge, Spanning Newark Bay, Newark, Essex County, NJ

  19. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  20. Analysis of lifting beam and redesigned lifting lugs for 241-AZ-01A decant pump

    SciTech Connect

    Coverdell, B.L.

    1994-11-29

    This supporting document details calculations for the proper design of a lifting beam and redesigned lifting lugs for the 241AZO1A decant pump. This design is in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and is safety class three. The design and fabrication is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989) and the Hanford Hoisting and Rigging Manual (DOE-RL 1993).

  1. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran

    PubMed Central

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun

    2015-01-01

    Introduction In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. Methods This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. Results The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey’s post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey’s post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p

  2. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  3. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift and securement use. 37.165 Section 37.165... DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. (a) This section applies to public... with disabilities with the use of securement systems, ramps and lifts. If it is necessary for...

  4. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC... IBC must be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed. (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the...

  5. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...

  6. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...

  7. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...

  8. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...

  9. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...

  10. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a)...

  11. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a)...

  12. Aerodynamic characteristics of some lifting reentry concepts applicable to transatmospheric vehicle design studies

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The aerodynamic characteristics of some lifting reentry concepts are examined with a view to the applicability of such concepts to the design of possible transatmospheric vehicles (TAV). A considerable amount of research has been done in past years with vehicle concepts suitable for manned atmospheric-entry, atmospheric flight, and landing. Some of the features of these concepts that permit flight in or out of the atmosphere with maneuver capability should be useful in the mission requirements of TAV's. The concepts illustrated include some hypersonic-body shapes with and without variable geometry surfaces, and a blunt lifting-body configuration. The merits of these concepts relative to the aerodynamic behavior of a TAV are discussed.

  13. The lift force on a drop in unbounded plane Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Wohl, P. R.

    1976-01-01

    The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.

  14. Method for the determination of the spanwise lift distribution

    NASA Technical Reports Server (NTRS)

    Lippisch, A

    1935-01-01

    The method for determination of the spanwise lift distribution is based on the Fourier series for the representation of the lift distribution. The lift distribution, as well as the angle of attack, is split up in four elementary distributions. The insertion of the angle-of-attack distribution in the Fourier series for the lift distribution gives a compound third series which is of particular advantage for the determination of the lift distribution. The method is illustrated in an example and supplemented by a graphical method. Lastly, the results of several comparative calculations with other methods are reported.

  15. Hypersonic aerodynamics and entry-maneuver: Aerothermodynamic interactions for two lifting entry vehicles

    NASA Technical Reports Server (NTRS)

    Arrington, J. P.; Woods, W. C.

    1972-01-01

    The longitudinal, directional, and lateral static stability and control characteristics of a delta lifting body and a delta-wing body were obtained at a Mach number of 20 in helium for operational Reynolds numbers over an angle-of-attack range of -4 deg to 55 deg. The aerodynamic characteristics of the wing body were then evaluated in an entry study to examine the effects of vehicle performance on the aerothermodynamic parameters associated with constant and variable angle-of-attack modes for a 1500-n. mi. cross range. The experimental results indicated that the vehicles were stable, except for neutral directional stability for the wing-body shape, and could be trimmed over the operational angle-of-attack range; however, the wing-body vehicle had adverse yaw due to roll control. This roll-yaw coupling was not examined for the lifting body. The trajectory analysis indicated that a 17-percent decrease in performance required little change in the constant angle-of-attack entry mode and, in turn, resulted in a small decrease in the total heat load. For the pitch-modulated entry, the performance decrease required the pitch maneuver to begin earlier during entry and to last longer in order to meet the 1500-n. mi. cross range without a major heating penalty. The performance reduction also had little effect on the maximum laminar radiation equilibrium temperature over a major portion of the lower surface of the wing-body vehicle regardless of the entry mode.

  16. Drag and lift forces in granular media

    NASA Astrophysics Data System (ADS)

    Guillard, F.; Forterre, Y.; Pouliquen, O.

    2013-09-01

    Forces exerted on obstacles moving in granular media are studied. The experiment consists in a horizontal cylinder rotating around the vertical axis in a granular medium. Both drag forces and lift forces experienced by the cylinder are measured. The first striking result is obtained during the first half rotation, before the cylinder crosses its wake. Despite the symmetry of the object, a strong lift force is measured, about 20 times the buoyancy. The scaling of this force is studied experimentally. The second remarkable observation is made after several rotations. The drag force dramatically drops and becomes independent of depth, showing that it no longer scales with the hydrostatic pressure. The rotation of the cylinder induces a structure in the packing, which screens the weight of the grains above

  17. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  18. [Face lift--indications, contraindications and operation].

    PubMed

    Tschopp, H

    1999-04-01

    The face lift procedure is often performed in aesthetic plastic surgery. It corrects the stigmata of age, i.e. the multiple facial wrinkles and the sagging of the atrophic soft tissues by undermining and retensioning the superficial and deeper facial and cervical structures. Since the public can not fully appreciate the extent and the inconveniences involved with this operation, emphasis must be laid on an exact preoperative information of the patient with regards to possible complications, the pros and cons of this procedure and the results to be expected. In this paper the face lift operation is explained in detail and the indications and contraindications given. The most frequent postoperative complications are outlined and the preventive measures and modalities of treatment discussed. From the medico-legal point of view it is important that such an operation is performed by a certified and well experienced plastic surgeon. PMID:10330880

  19. LIFT Tenant Is Off and Running

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Lewis Incubator for Technology (LIFT) tenant, Analiza Inc., graduated from the incubator July 2000. Analiza develops technology and products for the early diagnosis of diseases, quality control of bio-pharmaceutical therapeutics, and other applications involving protein analyses. Technology links with NASA from existing and planned work are in areas of microfluidics and laser light scattering. Since their entry in LIFT in May, 1997, Analiza has: Received a $750,000 grant from the National Institutes of Health. Collaborated with a Nobel Prize winner on drug design. Collaborated with Bristol-Myers Squibb on the characterization of biological therapeutics. Added a Ph.D. senior scientist and several technicians. Received significant interest from major pharmaceutical companies about collaborating and acquiring Analiza technology.

  20. Induction factor optimization through variable lift control

    NASA Astrophysics Data System (ADS)

    Cooney, John; Corke, Thomas; Nelson, Robert; Williams, Theodore

    2011-11-01

    Due to practical design limitations coupled with the detrimental effects posed by complex wind regimes, modern wind turbines struggle to maintain or even reach ideal operational states. With additional gains through traditional approaches becoming more difficult and costly, active lift control represents a more attractive option for future designs. Here, plasma actuators have been explored experimentally in trailing edge applications for use in attached flow regimes. This authority would be used to drive the axial induction factor toward the ideal given by the Betz limit through distributed lift control thereby enhancing energy capture. Predictions of power improvement achievable by this methodology are made with blade - element momentum theory but will eventually be demonstrated in the field at the Laboratory for Enhanced Wind Energy Design, currently under construction at the University of Notre Dame.

  1. High-Lift Separated Flow About Airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1982-01-01

    TRANSEP Calculates flow field about low-speed single-element airfoil at high-angle-of-attack and high-lift conditions with massive boundary-layer separation. TRANSEP includes effects of weak viscous interactions and can be used for subsonic/transonic airfoil design and analysis. The approach used in TRANSEP is based on direct-inverse method and its ability to use either displacement surface or pressure as airfoil boundary condition.

  2. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  3. Heavy-lift launch vehicle propulsion considerations

    NASA Technical Reports Server (NTRS)

    Ordway, Wayne L.

    1991-01-01

    Information on heavy-lift launch vehicle (HLLV) propulsion is given in viewgraph form. The objective was to investigate Earth to orbit options which minimize on-orbit operations and impacts to Space Station Freedom, have a reasonable capability to support Mars missions, and minimize mass in low Earth orbit. Potential synergism with the Space Transportation System is considered. Launch vehicle sizing results, HLLV thrust requirements, and propulsion system reliability are covered.

  4. Lift production in the hovering hummingbird

    PubMed Central

    Warrick, Douglas R.; Tobalske, Bret W.; Powers, Donald R.

    2009-01-01

    Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energy of the LEV is re-captured in the subsequent half-cycle translation. We here show that while the hummingbird wing is strongly influenced by similar sharp-leading-edge aerodynamics, leading edge vorticity is inconsistent, varying from 0.7 to 26 per cent (mean 16%) of total lift production, is always generated within 3 mm of the dorsal surface of the wing, showing no retrograde (trailing to leading edge) flow, and does not increase from proximal to distal wing as would be expected with a conical vortex (class III LEV) described for hawkmoths. Further, the bound circulation is not shed as a vortex at the end of translation, but instead remains attached and persists after translation has ceased, augmented by the rotation (pronation, supination) of the wing that occurs between the wing-translation half-cycles. The result is a near-continuous lift production through wing turn-around, previously unknown in vertebrates, able to contribute to weight support as well as stability and control during hovering. Selection for a planform suited to creating this unique flow and nearly-uninterrupted lift production throughout the wingbeat cycle may help explain the relatively narrow hummingbird wing. PMID:19656789

  5. Unified treatment of lifting atmospheric entry

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Lehman, L. L.

    1980-01-01

    This paper presents a unified treatment of the effect of lift on peak acceleration during atmospheric entry. Earlier studies were restricted to different regimes because of approximations invoked to solve the same transcendental equation. This paper shows the connection between the earlier studies by employing a general expression for the peak acceleration and obtains solutions to the transcendental equation without invoking the earlier approximations. Results are presented and compared with earlier studies where appropriate.

  6. Aerodynamic principles of the direct lifting propeller

    NASA Technical Reports Server (NTRS)

    Schrenk, Martin

    1934-01-01

    The purpose of this report is to make the complicated processes on the direct-lift propeller amenable to analysis and observation. This is accomplished by placing the physical phenomena, starting with the most elementary process, in the foreground, while limiting the mathematical treatment to the most essential in view of the fundamental defects of the theorems. Comparison with model experiments supplements and corroborates the theoretical results.

  7. Hanger-lifting procedure in knee arthroscopy.

    PubMed

    Maeno, Shinichi; Hashimoto, Daijo; Otani, Toshiro; Masumoto, Ko; Matsumoto, Hideo; Enomoto, Hiroyuki; Niki, Yasuo; Yuzawa, Itsuki; Fukui, Yasuyuki; Ishikawa, Masayuki; Fujita, Nobuyuki; Okubo, Masashi

    2008-12-01

    We propose a unique arthroscopic technique, the "hanger-lifting procedure." Unlike conventional arthroscopy, the space in which the arthroscope is placed is not a joint space filled with water but a subcutaneous space filled with air. The space is kept lifted by a semi-loop-shaped hanger and a retraction system by use of a wire. In general, arthroscopes are unable to be applied outside the joint because of the lack of a cavity. However, this method can provide extra-articular visualization of the knee in addition to standard intra-articular visualization. This approach is useful for lateral release of the knee extensor and bipartite patellae, allowing direct vision from both outside and inside the joint. One possible complication is subcutaneous effusion or interstitial edema. Compressive dressings should be applied to prevent subcutaneous effusion after surgery. However, the combination of conventional arthroscopy by use of saline solution and the hanger-lifting technique by use of air arthroscopy can provide an excellent view inside and outside the joint. This technique may continue to evolve, and although some points in the technique can be improved, this method is useful in joint surgeries. PMID:19038715

  8. Analysis of particulates on tape lift samples

    NASA Astrophysics Data System (ADS)

    Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

    2014-09-01

    Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

  9. Progress in high-lift aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1993-01-01

    The current work presents progress in the effort to numerically simulate the flow over high-lift aerodynamic components, namely, multi-element airfoils and wings in either a take-off or a landing configuration. The computational approach utilizes an incompressible flow solver and an overlaid chimera grid approach. A detailed grid resolution study is presented for flow over a three-element airfoil. Two turbulence models, a one-equation Baldwin-Barth model and a two equation k-omega model are compared. Excellent agreement with experiment is obtained for the lift coefficient at all angles of attack, including the prediction of maximum lift when using the two-equation model. Results for two other flap riggings are shown. Three-dimensional results are presented for a wing with a square wing-tip as a validation case. Grid generation and topology is discussed for computing the flow over a T-39 Sabreliner wing with flap deployed and the initial calculations for this geometry are presented.

  10. The subperiosteal, drill hole, midface lift.

    PubMed

    Perry, C Blake; Allen, Richard C

    2016-10-01

    This article describes a surgical technique using drill holes through the inferior orbital rim and fixation with permanent sutures as a functional subperiosteal midface lift and compares it to other standard midface elevation techniques. This was a retrospective, comparative, non-randomized study. Charts of all patients undergoing midface elevation between 2009 and 2013 were reviewed. Pre- and post-operative photos were graded on a scale 0 to 3 with 0 representing normal lower lid position and lid/cheek junction and 3 representing the most severe malposition. Twenty-seven patients (35 sides) underwent midface lift. Twelve sides had the subperiosteal drill hole midface lift; 9 preperiosteal with Vicryl suture fixation to periosteum; 14 subperiosteal with Endotine midface B device. All groups had similar demographics and indications for surgery. Average follow-up time was greater than 4 months in all groups. No significant complications were seen in any of the patients. The average post-operative grade of the drill hole group was 0.65 compared to 0.75 of the preperiosteal Vicryl group and 0.7 of the Endotine group. The drill hole group had the most severe pre-operative malposition. Overall, the drill hole group demonstrated the largest improvement score. The subperiosteal drill hole technique proved to be an effective method for functional midface elevation. This technique achieves adequate and durable vertical elevation without relying on the strength of the periosteum or use of a commercial device. PMID:27486865

  11. SPA face lift: SMAS plication-anchoring.

    PubMed

    Mottura, A Aldo

    2011-08-01

    A variation of the superficial musculoaponeurotic system (SMAS) plication called SPA face lift is here described. An axial line and then two medial and lateral parallel lines are penciled on the skin from the lateral canthus to the earlobe to show the future plication area. The undermining zone is delimited 1 cm beyond the medial line. In face- and neck-lifting, such marks extend vertically to the neck. Once the skin is undermined up to the delimiting marks, the three lines are penciled again on the fat layer, and a running lock suture is used for plication, with big superficial bites between the two distal lines. In fatty faces, a strip of fat is removed along the axial line to avoid bulging that can be seen through the skin. Because the undermining is limited, minor swelling occurs, and the postoperative recovery is shorter and faster. The same three lines can be marked in the contralateral side or can differ in cases of asymmetry. This report describes 244 face-lifts without any facial nerve problems. The author managed five hematoma cases in which surgery to the neck was performed. Three patients had to be touched up for insufficient skin tension. The SPA technique is consistent and easy to learn. PMID:21298514

  12. Dynamic response of Hovercraft lift fans

    NASA Astrophysics Data System (ADS)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  13. Lift and Drag Measurements of Superhydrophobic Hydrofoils

    NASA Astrophysics Data System (ADS)

    Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000lift coefficients along with changes to separation point at high angles of attack are observed when the hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.

  14. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  15. LiftingWiSe: a lifting-based efficient data processing technique in wireless sensor networks.

    PubMed

    Aboelela, Emad

    2014-01-01

    Monitoring thousands of objects which are deployed over large-hard-to-reach areas, is an important application of the wireless sensor networks (WSNs). Such an application requires disseminating a large amount of data within the WSN. This data includes, but is not limited to, the object's location and the environment conditions at that location. WSNs require efficient data processing and dissemination processes due to the limited storage, processing power, and energy available in the WSN nodes. The aim of this paper is to propose a data processing technique that can work under constrained storage, processing, and energy resource conditions. The proposed technique utilizes the lifting procedure in processing the disseminated data. Lifting is usually used in discrete wavelet transform (DWT) operations. The proposed technique is referred to as LiftingWiSe, which stands for Lifting-based efficient data processing technique for Wireless Sensor Networks. LiftingWiSe has been tested and compared to other relevant techniques from the literature. The test has been conducted via a simulation of the monitored field and the deployed wireless sensor network nodes. The simulation results have been analyzed and discussed. PMID:25116902

  16. LiftingWiSe: A Lifting-Based Efficient Data Processing Technique in Wireless Sensor Networks

    PubMed Central

    Aboelela, Emad

    2014-01-01

    Monitoring thousands of objects which are deployed over large-hard-to-reach areas, is an important application of the wireless sensor networks (WSNs). Such an application requires disseminating a large amount of data within the WSN. This data includes, but is not limited to, the object's location and the environment conditions at that location. WSNs require efficient data processing and dissemination processes due to the limited storage, processing power, and energy available in the WSN nodes. The aim of this paper is to propose a data processing technique that can work under constrained storage, processing, and energy resource conditions. The proposed technique utilizes the lifting procedure in processing the disseminated data. Lifting is usually used in discrete wavelet transform (DWT) operations. The proposed technique is referred to as LiftingWiSe, which stands for Lifting-based efficient data processing technique for Wireless Sensor Networks. LiftingWiSe has been tested and compared to other relevant techniques from the literature. The test has been conducted via a simulation of the monitored field and the deployed wireless sensor network nodes. The simulation results have been analyzed and discussed. PMID:25116902

  17. Space Shuttle and Launch Pad Computational Fluid Dynamics Model for Lift-off Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew

    2006-01-01

    This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.

  18. Incremental dynamic analysis of concrete gravity dams including base and lift joints

    NASA Astrophysics Data System (ADS)

    Alembagheri, Mohammad; Ghaemian, Mohsen

    2013-03-01

    The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis (IDA) with higher accuracy in less time. In an IDA study, a series of earthquake records are applied to a structure at successively increasing intensity levels, which causes the structure to shift from the elastic state into the inelastic state and finally into collapse. In this way, the limit-states and capacity of a structure can be determined. In the present research, the IDA of a concrete gravity dam considering a nonlinear concrete behavior, and sliding planes within the dam body and at the dam-foundation interface, is performed. The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized. It is observed that by introducing a lift joint, the tensile damage can be avoided for the dam structure. The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes.

  19. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Compton, William B, III

    2015-01-01

    Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

  20. Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

    2014-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

  1. Application of a Full Reynolds Stress Model to High Lift Flows

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  2. Group Lifting Structures For Multirate Filter Banks, I: Uniqueness Of Lifting Factorizations

    SciTech Connect

    Brislawn, Christopher M

    2008-01-01

    This paper studies two-channel finite impulse response (FIR) perfect reconstruction filter banks. The connection between filter banks and wavelet transforms is well-known and will not be treated here. Figure 1 depicts the polyphase-with-advance representation of a filter bank [6]. A lifting factorization, is a factorization of polyphase matrices into upper and lower triangular lifting matrices. The existence of such decompositions via the Euclidean algorithm was shown for general FIR perfect reconstruction filter banks in [9] and was subsequently refined for linear phase filter banks in [10], [6]. These latter works were motivated by the ISO JPEG 2000 image coding standard [11], [12], [10], which specifies whole-sample symmetric (WS, or FIR type 1 linear phase) filter banks, as in Figure 2(a), in terms of half-sample symmetric (RS, or FIR type 2) lifting filters.

  3. Three-dimensional kinematic analysis of the snatch technique for lifting different barbell weights.

    PubMed

    Hadi, Gökhan; Akkuş, Hasan; Harbili, Erbil

    2012-06-01

    The purpose of this study was to investigate the effects of increased barbell loads on barbell and body kinematics of the snatch lifts at 60, 80, and 100% of 1 repetition maximum and to evaluate the biomechanics of snatch technique. The study was performed on 7 elite male weightlifters of the Turkish national team. Four cameras operating at 50 fields per second were used to record the lifts. For 3D kinematic analysis of center of gravity (CG) and barbell movement, the points on the body and the barbell were digitized by using an Ariel Performance Analysis System. There were significant differences between the vertical work values (p < 0.05). The power values of the 3 snatch lifts were also found to be significantly different (p < 0.05). Another significant difference (p < 0.05) was observed between maximum vertical displacement of the barbell, maximum vertical velocity of the barbell, maximum vertical displacement of CG, the vertical velocity of CG during the turnover under the barbell. The results demonstrated that vertical and horizontal kinematics of the barbell and body decreased at the pull phase of the snatch technique as the barbell load increased. The power output during the second pull increased although the work done did not change, whereas work and power output increased during the first pull phase depending on the increase in the barbell weight. The finding of this study suggested that weightlifters had to perform the turnover under the barbell and the catch phase faster, because when the barbell weight was increased at snatch lift, vertical kinematics of the barbell decreased. PMID:22614145

  4. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  5. Circulation control lift generation experiment: Hardware development

    NASA Technical Reports Server (NTRS)

    Panontin, T. L.

    1985-01-01

    A circulation control airfoil and its accompanying hardware were developed to allow the investigation of lift generation that is independent of airfoil angle of attack and relative flow velocity. The test equipment, designed for use in a water tunnel, includes the blown airfoil, the support systems for both flow visualization and airfoil load measurement, and the fluid control system, which utilizes hydraulic technology. The primary design tasks, the selected solutions, and the unforseen problems involved in the development of these individual components of hardware are described.

  6. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  7. Variable-Compliance Couplings For Heavy Lifting

    NASA Technical Reports Server (NTRS)

    Kerley, James; Eklund, Wayne; Burkhardt, Raymond; Richardson, George W.

    1992-01-01

    New coupling devices contain manual or electronically controlled, motorized drives that vary stiffnesses. Short, clamped lengths of cable provide compliance. Using threaded rods, cables stretched, relaxed, or folded to make coupling more or less stiff. In more-advanced device, brackets holding cables moved by stepping motor via gearbox and ball screw. Motor operates under computer control with position feedback. Control computer commands greater stiffness during operations requiring precise positioning, and greater compliance to accommodate manufacturing tolerances. Intended for use in wrist joints of robotic manipulators and other industrial equipment that must lift heavy objects.

  8. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  9. APOLLO 14: Lift off from lunar surface

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 14: The lunar module 'Falcon' lifts off from the lunar surface From the film documentary 'APOLLO 14: 'Mission to Fra Mauro'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 14: Third manned lunar landing with Alan B. Shepard, Jr.,Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra Mauro area on Ferurary 5, 1971; performed EVA, deployed lunar experiments, returned lunar samples. Mission Duration 216 hrs 1 min 58 sec

  10. Aerodynamic characteristics of a propeller powered high lift semispan wing

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Gentry, G. L., Jr.

    1992-01-01

    An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

  11. Determining safe limits for significant task parameters during manual lifting.

    PubMed

    Singh, Ravindra Pratrap; Batish, Ajay; Singh, Tejinder Pal

    2014-04-01

    This experimental study investigated the effect of lifting task parameters (i.e., lifting weight, frequency, coupling, asymmetric angle, and vertical, horizontal, and travel distances) for various dynamic human lifting activities on the ground reaction forces of workers. Ten male workers loaded containers from different levels asymmetrically during experimental trials. The experimental design evolved using Taguchi's Fractional Factorial Experiments. Three factors (lifting weight, frequency, and vertical distance) were observed to be significant. The results showed that vertical reaction forces increase when workers lift weight from floor to shoulder height frequently. It was also observed that instantaneous loading rate increases with more weight, vertical distance, and frequency; a significant extra loading rate is required to change the lower level of load, frequency, and vertical distance to higher levels. Safe limits for significant factors were determined to result in optimal performance of the manual lifting task. PMID:24702682

  12. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship.

    PubMed

    Akkuş, Hasan

    2012-04-01

    The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters. PMID:22450233

  13. Lift system and fan performance of air cushion supported vehicles

    NASA Astrophysics Data System (ADS)

    Moran, D. D.; Jennings, A. N.

    1982-02-01

    An analysis of the AALC JEFF lift systems and fans from the viewpoints of performance and structural design is performed. A summary of performance data related to the JEFF lift systems is presented, and suggested approaches for JEFF (A) lift fan design, for which these data provided the baseline information, are provided. Published methods of scaling fan performance data from model to full-scale are evaluated. Finally, the structural design characteristics of the JEFF fans are discussed.

  14. Interference of multiplane wings having elliptical lift distribution

    NASA Technical Reports Server (NTRS)

    Von Sanden, H

    1924-01-01

    In calculating the self-induction of a wing surface, elliptical lift distribution is assumed, while in calculating the mutual induction or interference of two wing surfaces, a uniform distribution of the lift along the wing has hitherto been assumed. Whether the results of these calculations are substantially altered by assuming an elliptical lift distribution (which is just as probable as uniform distribution) is examined here.

  15. HSR High Lift Program and PCD2 Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Coen, Peter; Meredith, Paul; Clark, Roger; Hahne, Dave; Smith, Brian

    1999-01-01

    The mission of High-Lift Technology is to develop technology allowing the design of practical high lift concepts for the High-Speed Civil Transport (HSCT) in order to: 1) operate safely and efficiently; and 2) reduce terminal control area and community noise. In fulfilling this mission, close and continuous coordination will be maintained with other High-Speed Research (HSR) technology elements in order to support optimization of the overall airplane (rather than just the high lift system).

  16. Experiences with optimizing airfoil shapes for maximum lift over drag

    NASA Technical Reports Server (NTRS)

    Doria, Michael L.

    1991-01-01

    The goal was to find airfoil shapes which maximize the ratio of lift over drag for given flow conditions. For a fixed Mach number, Reynolds number, and angle of attack, the lift and drag depend only on the airfoil shape. This then becomes a problem in optimization: find the shape which leads to a maximum value of lift over drag. The optimization was carried out using a self contained computer code for finding the minimum of a function subject to constraints. To find the lift and drag for each airfoil shape, a flow solution has to be obtained. This was done using a two dimensional Navier-Stokes code.

  17. Interior room within eastern lift span, showing auxiliary electric generator. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior room within eastern lift span, showing auxiliary electric generator. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  18. Boundary Layer Relaminarization and High-Lift Aerodynamics

    NASA Astrophysics Data System (ADS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    1998-11-01

    Modern high-lift devices are complicated systems that exhibit a variety of complex flow physics phenomena. Thomas( Thomas, F.O., Liu, X., & Nelson, R.C., 1997, ``Experimental Investigation of the Confluent Boundary Layer of a High-Lift System,'' AIAA Paper 97-1934.) outlines several critical flow phenomena, dubbed ``high-lift building block flows'', that can be found in a typical multi-element high-lift system. One such high-lift building block flow is turbulent boundary layer relaminarization, which may be responsible for such phenomena as ``inverse Reynolds number effects.'' Flight test experiments on leading edge transition and relaminarization conducted by Yip, et al(Yip, et al), ``The NASA B737-100 High-Lift Flight Research Program--Measurements and Computations,'' Aeronautical Journal, Paper No. 2125, Nov. 1995. using the NASA Transport Systems Research Vehicle, a Boeing 737-100, have provided tantalizing evidence but not proof of the existence of relaminarization in high-lift systems. To investigate the possibility of boundary layer relaminarization occuring on a high-lift system, a joint wind tunnel/flight test program is in progress with the NASA Dryden Flight Research Center to determine the role, if any, that turbulent boundary layer relaminarization plays in high-lift aerodynamics. Sponsored under NASA grant No. NAG4-123

  19. Does Malleolus non-Lifting Tympanoplasty have any Advantage Over Malleus Lifting Techniques?

    PubMed Central

    Vahidi, Mohammad Reza; Mollasadeghi, Abolfazl; Shahbazian, Honeyeh; Behniafard, Nasim; Dadgarnia, Mohammad Hossein

    2016-01-01

    Introduction: In order to achieve a higher success rate for tympanoplasty, different techniques have been developed, and a wide variety of grafting materials have been developed. One of the techniques currently receiving considerable attention involves not lifting the remaining of eardrum from the malleus and embedding the graft underneath in order to repair the eardrum correctly in its original position, as well as minimizing graft lateralization leading to progression of hearing rehabilitation. We compared the effects of tympanoplasty with and without malleus lifting on hearing loss in patients with chronic otitis media. Materials and Methods: In this study, 30 consecutive patients diagnosed as having chronic otitis media without cholesteatoma were randomly assigned to two tympanoplasty groups; with or without malleus lifting. Air and bone conduction thresholds were recorded before and 45 days after the intervention. Results: In groups, except for 8000 Hz, the air conduction was significantly improved following surgery. According to air conduction there was no difference between the groups before surgery at different frequencies, although it was improved to a greater degree in the group without lifting at 250 Hz postoperatively. The average post-operative air-bone gap (ABG) gain was significantly higher in all study frequencies in the target group. One of the effects of this technique is inner-ear protection from physical trauma to the ossicular chain, and prevention of damage to bone conduction. Conclusion: A higher hearing threshold and also higher ABG gain can be achieved by not lifting the remaining eardrum from the malleus and embedding the graft undereath it, especially at lower frequencies. PMID:26877998

  20. Modification of integrated partial payload lifting assembly

    NASA Technical Reports Server (NTRS)

    Groah, Melodie; Haddock, Michael; Woodworth, Warren

    1986-01-01

    The Integrated Partial Payload Lifting Assembly (IPPLA) is currently used to transport and load experimental payloads into the cargo bay of the Space Shuttle. It is unable to carry the astronaut/passenger tunnel without a structural modification. The purpose of this design is to create a removalbe modification that will allow the IPPLA to lift and carry the passenger tunnel. Modifications evaluated were full-length insert beams which would extend through the existing strongback arms. These beam proposals were eliminated because of high cost and weight. Other proposals evaluated were attachments of cantilever beams to the existing strongback areas. The cantilever proposals reduced cost and weight compared to the full-length modifications. A third method evaluated was to simply make modifications to one side of the IPPLA therefore reducing the materials of the cantilever proposals by 40 percent. The design of the modification selected was completed with two channel beams jointly welded to a centered steel plate. The extension arm modification is inserted into the existing strongback channel beams and bolted into place. Two extension arms are added to one side of the IPPLA to provide the extra length needed to accommodate the passenger tunnel. The center counterbalance will then be offset about 20 inches to center gravity and therefore maintain horizontal status. The extension arm modification was selected because of minimum cost, low weight, and minimal installation time.

  1. The Random Motion/ Lift-Off Simulator

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed 'The Arm Farm', the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.

  2. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  3. Method for calculating lift distributions for unswept wings with flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Westrick, Gertrude C

    1952-01-01

    A method is presented which allows the use of nonlinear section lift data in the calculation of the spanwise lift distribution of unswept wings with flaps or ailerons. This method is based upon lifting line theory and is an extension to the method described in NACA rep. 865. The mathematical treatment of the discontinuity in absolute angle of attack at the end of the flap or aileron involves the use of a correction factor which accounts for the inability of a limited trigonometric series to represent adequately the spanwise lift distribution. A treatment of the apparent discontinuity in maximum section lift coefficient is also described. Simplified computing forms containing detailed examples are given for both symmetrical and asymmetrical lift distributions. A few comparisons of calculated characteristics with those obtained experimentally are also presented.

  4. Occupational Lifting, Fetal Death and Preterm Birth: Findings from the Danish National Birth Cohort Using a Job Exposure Matrix

    PubMed Central

    Mocevic, Emina; Svendsen, Susanne Wulff; Jørgensen, Kristian Tore; Frost, Poul; Bonde, Jens Peter

    2014-01-01

    Objective We examined the association between occupational lifting during pregnancy and risk of fetal death and preterm birth using a job exposure matrix (JEM). Methods For 68,086 occupationally active women in the Danish National Birth Cohort, interview information on occupational lifting was collected around gestational week 16. We established a JEM based on information from women, who were still pregnant when interviewed. The JEM provided mean total loads lifted per day within homogeneous exposure groups as informed by job and industry codes. All women were assigned an exposure estimate from the JEM. We used Cox regression models with gestational age as underlying time variable and adjustment for covariates. Results We observed 2,717 fetal deaths and 3,128 preterm births within the study cohort. No exposure-response relation was observed for fetal death, but for women with a prior fetal death, we found a hazard ratio (HR) of 2.87 (95% CI 1.37, 6.01) for stillbirth (fetal death ≥22 completed gestational weeks) among those who lifted >200 kg/day. For preterm birth, we found an exposure-response relation for primigravid women, reaching a HR of 1.43 (95% CI 1.13, 1.80) for total loads >200 kg per day. These findings correspond to an excess fraction of 11% for stillbirth and 10% for preterm birth. Conclusion We found an increased risk of stillbirth among women with a prior fetal death, who lifted >200 kg/day, and an exposure-response relationship between occupational lifting and preterm birth among primigravid women. The study adds to a large body of prospective studies on occupational lifting and adverse pregnancy outcomes by refined exposure assessment. PMID:24614129

  5. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off

    NASA Astrophysics Data System (ADS)

    Qu, Liangti; Dai, Liming; Stone, Morley; Xia, Zhenhai; Wang, Zhong Lin

    2008-10-01

    The ability of gecko lizards to adhere to a vertical solid surface comes from their remarkable feet with aligned microscopic elastic hairs. By using carbon nanotube arrays that are dominated by a straight body segment but with curly entangled top, we have created gecko-foot mimetic dry adhesives that show macroscopic adhesive forces of ~100 newtons per square centimeter, almost 10 times that of a gecko foot, and a much stronger shear adhesion force than the normal adhesion force, to ensure strong binding along the shear direction and easy lifting in the normal direction. This anisotropic force distribution is due to the shear-induced alignments of the curly segments of the nanotubes. The mimetic adhesives can be alternatively binding-on and lifting-off over various substrates for simulating the walking of a living gecko.

  6. High lift function of the pteroid bone and forewing of pterosaurs

    PubMed Central

    Wilkinson, Matthew T; Unwin, David M; Ellington, Charles P

    2005-01-01

    The pteroid bone is a rod-like element found only in pterosaurs, the flying reptiles of the Mesozoic. It articulated at the wrist, and supported a membranous forewing in front of the inner part of the wing spar. The function of this bone, particularly its orientation, has been much debated. It is widely believed that it pointed towards the body, and that the forewing was relatively narrow. An alternative hypothesis states that it was directed forwards during flight, resulting in a much broader forewing that acted as a leading edge flap. We tested scale models in a wind tunnel to determine the aerodynamic consequences of these conflicting hypotheses, and found that performance is greatly improved if the pteroid is directed forwards: the lift : drag ratios are superior and the maximum lift is exceptionally high in comparison with conventional aerofoils. This high lift capability may have enabled even the largest pterosaurs to take off and land without difficulty. PMID:16519243

  7. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably

  8. On drag and lift forces in two-dimensional flows of a particulate mixture: A theoretical study

    SciTech Connect

    Massoudi, M.

    2006-06-01

    In this paper we propose and derive expressions for the drag and lift forces in a two-phase particulate mixture. The analysis is limited to two-dimensional laminar flows. In the Section after the Introduction, a brief review of the single particle approach is provided; it is then shown that in most multiphase flow problems some generalization of these forces acting on a single particle is used. We then describe a different way of defining the lift force and the drag force, an approach used in non-Newtonian fluid mechanics. In the following Section, the essential equations of Mixture Theory are provided and the specific approach of [1] is used. In this scheme, the lift force is part of the interaction mechanisms, which are to be modeled as constitutive parameters. In the final Section, we derive an expression for the lift force, whereby it is shown that the normal component of the force acting on the body, obtained by integrating the traction vector of the mixture acting on a single isolated particle, will give us the desired expression for the lift force in multi-component flows.

  9. Liposuction-Assisted Medial Thigh Lift in Obese and Non Obese Patients

    PubMed Central

    Aboueldahab, Abdelmohsen Khalaf

    2013-01-01

    Introduction: The abdomen, thighs and buttocks are often the areas of greatest concern to patients following massive weight loss due to bariatric surgery. The typical appearance of the patient who has lost a massive amount of weight derives from a combination of factors, including gender-dependent body morphology and a change in body mass index, which lead to skin and soft-tissue excess and poor skin tone. Thigh laxity and redundancy represents a great challenge to both patients and surgeons. Not only because of the difficulty to satisfy the patients, but also due to the higher incidence of complications especially, with those obese patients who have not undergone bariatric surgery before. The problems with such patients are due to the heavy thighs that require both debulking and tight anchorage to prevent scar migration or labial distortion. Aim of the Work: The aim of the present study is to improve the aesthetic outcome and avoid the complications of medial thigh lifting with simultaneous liposuction in obese and non-obese. Patients and Methods: A total of 25 female patients presented during the period from January 2007 to July 2011 complaining of moderate to severe thigh laxity with or without lipodystrophy. In 20 patients medial transverse thigh lift was performed, to treat medial thigh friction and laxity particularly in the upper half. Whereas, in the other five patients were suffering from upper and lower medial thigh bulkiness, vertical thigh lift was performed. Results: All patients recovered well in 2 weeks and showed improvement of thigh contour. Scar downward displacement in one patient. No skin necrosis or seroma. No labial distortion or separation encountered. Conclusion: Simultaneous liposuction and thigh lift gave good results provided proper patients selection, appropriate technique to each patient, meticulous, cautious liposuction and handling of the tissues and most importantly is the deep tight anchorage sutures to guard against the effect of

  10. Sensorimotor Memory Biases Weight Perception During Object Lifting

    PubMed Central

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory) and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in a proportional manner

  11. Levator plate upward lift and levator muscle strength

    PubMed Central

    Rostaminia, Ghazaleh; Peck, Jennifer; Quiroz, Lieschen; Shobeiri, S. Abbas

    2016-01-01

    Objective The aim of study was to compare digital palpation with the levator plate lift measured by endovaginal and transperineal dynamic ultrasound. Methods Dynamic transperineal and endovaginal ultrasound were performed as part of multicompartmental pelvic floor functional assessment. Patients were instructed to perform Kegels while a probe captured the video clip of the levator plate movement at rest and during contraction in 2D mid-sagittal posterior view. We measured the distance between the levator plate and the probe on endovaginal ultrasound as well as the distance between the levator plate and the gothic arch of the pubis in transperineal ultrasound. The change in diameter (lift) and a levator plate lift ratio (lift / rest) x 100) were calculated. Pelvic floor muscle strength was assessed by digital palpation and divided into functional and non-functional groups using the Modified Oxford Scale (MOS). Mean differences in levator plate upward lifts were compared by MOS score using student t-tests and analysis of variance (ANOVA). Results 74 women were available for analysis. The mean age was 55 (SD±11.9). When measured by vaginal dynamic ultrasound, mean values of the lift and lift/rest ratio increased with increasing MOS score (ANOVA p=0.09 and p=0.04, respectively). When MOS scores were categorized to represent non-functional (MOS 0-1) and functional (MOS 2-5) muscle strength groups, the mean values of the lift (3.2 mm vs. 4.6 mm, p=0.03) and lift/rest ratio (13% vs 20%, p=0.01) were significantly higher in women with functional muscle strength. All patients with ≥ 30% lift detected by vaginal ultrasound had functional muscle strength. Conclusions Greater levator plate lift ratio detected by dynamic endovaginal ultrasound was associated with higher muscle strength as determined by MOS. This novel measurement can be incorporated into ultrasound evaluation of the levator ani function. PMID:26333568

  12. AFC-Enabled Simplified High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  13. Current Status of NASA's Heavy Lift Plans

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2010-01-01

    Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of - and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA's most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA's Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA's priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch Numerous studies

  14. UF{sub 6} cylinder lifting equipment enhancements

    SciTech Connect

    Hortel, J.M.

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  15. Optimization of the lithographic performance for lift-off processing

    NASA Astrophysics Data System (ADS)

    Yin, Wenyan; Fillmore, Ward; Dempsey, Kevin J.

    1999-06-01

    Shipley MICROPOSIT LOL lift-off technology exploits a develop rate difference in a resist, LOL1000 bi-layer system to generate retrograde profiles. This is an enabling technology for 'additive' processing. Deposition follows lithography and the resist is then 'lifted off' to generate a patterned layer.

  16. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  17. 662-E solid waste silo-plug lifting analysis

    SciTech Connect

    Mertz, G.E.

    1993-03-01

    The Intermediate Level Tritium Vault No. 1, 662-E, Cell No. 1 contains 140 waste silos. Each silo is approximately 25 feet deep, 30 inches in diameter at the top and covered by a reinforced concrete plug. Two No. 4 reinforcing bars project from the top of each plug for lifting. During lifting operations, the 1.5 inch concrete cover over the lifting bars spelled off 16% of the silo plugs. The No. 4 reinforcing bars were also distorted on many of the silo plugs. Thirteen of the plugs have been repaired to date. The existing silo plug lifting bars have a safe working load of 480 pounds per plug, which is less than 1/3 of the dead weight of the silo plug. The safe working load was calculated using the minimum design factor of 3 based on the yield strength or 5 based on the ultimate strength of the material, as per the Savannah River Site Hoisting and Rigging Manual. The existing design calculations were reviewed, and the following items are noted: (1) Adequate concrete cover was not provided over the horizontal portion of the lifting bars. (2) The lifting bars were allowed to yield in bending, which violates the requirements of the Savannah River Site Hoisting and Rigging Manual. (3) The ultimate strain of the lifting bars would be exceeded before the calculated ultimate strength was achieved. Alternative lifting devices are also identified.

  18. 34. ALTERNATE DESIGN USING BATTERED AND UNSHEATHED LIFT TOWERS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. ALTERNATE DESIGN USING BATTERED AND UNSHEATHED LIFT TOWERS, WITH DEEPENED TRUSS ON LIFT SPAN. Pen-and-ink drawing by project architect Alfred Eichler, 1934. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  19. 49 CFR 178.970 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conducted for the qualification of all Large Packagings design types designed to be lifted from the base. (b) Special preparation for the bottom lift test. The Large Packaging must be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design...

  20. The Lift Distribution of Swept-Back Wings

    NASA Technical Reports Server (NTRS)

    Weissinger, J.

    1947-01-01

    Two procedures for calculating the lift distribution along the span are given in which a better account is taken of the distribution of circulation over te area than in the Prandtl lifting-line theory. The methods are also applicable to wing sweepback. Calculated results for the two methods were in agreement.

  1. A Lighter-Than-Air System Enhanced with Kinetic Lift

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2002-01-01

    A hybrid airship system is proposed in which the buoyant lift is enhanced with kinetic lift. The airship would consist of twin hulls in which the buoyant gas is contained. The twin hulls would be connected in parallel by a wing having an airfoil contour. In forward flight, the wing would provide kinetic lift that would add to the buoyant lift. The added lift would permit a greater payload/altitude combination than that which could be supported by the buoyant lift alone. The buoyant lift is a function of the volume of gas and the flight altitude. The kinetic lift is a function of the airfoil section, wing area, and the speed and altitude of flight. Accordingly there are a number of factors that can be manipulated to arrive at a particular design. Particular designs could vary from small, lightweight systems to very large, heavy-load systems. It will be the purpose of this paper to examine the sensitivity of such a design to the several variables. In addition, possible uses made achievable by such a hybrid system will be suggested.

  2. Does hydraulic lift or nighttime transpiration facilitate nitrogen acquistion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that plant species that hydraulically lift water to dry shallow soil layers should have improved nutrient relations. Yet, this idea has not been adequately tested. We choose ten Sarcobatus vermiculatus plants with different magnitudes of hydraulic lift to examine the hypothesis...

  3. 14 CFR 23.345 - High lift devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High lift devices. 23.345 Section 23.345 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.345 High lift devices. (a) If flaps or...

  4. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... qualification of all IBC design types designed to be lifted from the base. (b) Special preparation for the bottom lift test. The IBC must be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed. (c) Test method. All IBC design types must be raised and lowered twice by a...

  5. Status of LaRC HSCT high-lift research

    NASA Technical Reports Server (NTRS)

    Coe, Paul L.

    1992-01-01

    The viewgraphs for a status report of the NASA Langley Reseach Center High Speed Civil Transport (HSCT) High-Lift Research Program are provided. A listing of available models and previous wind tunnel studies are presented. Objectives and approach of the piloted simulation program are given. The HSCT High-Lift Research plans are listed and briefly described.

  6. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup shows the workers, standing on lifts, who are checking the bolts on the apparatus holding the orbiter Atlantis. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  7. Solid state lift for micrometering in a fuel injector

    DOEpatents

    Milam, David M.; Carroll, Thomas S.; Lee, Chien-Chang; Miller, Charles R.

    2002-01-01

    A fuel injector performs main fuel injection by raising fuel pressure in a nozzle chamber to lift a check valve member to a fully open position, and performs preinjection or microinjection by operating a solid state motor to lift the check valve member a much smaller distance.

  8. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Flexible Large Packaging design types must be filled to six times the maximum permissible gross mass, the load being evenly distributed. (c) Test method. (1) A Large Packaging must be lifted in the manner for... minutes. (2) Rigid plastic Large Packaging design types must be: (i) Lifted by each pair of...

  9. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  10. Offshore desulfurization unit permits gas lift operations

    SciTech Connect

    Cabes, A.; Elgue, J.; Tournier-Lasserve, J. )

    1992-01-13

    This paper reports on the installation of a desulfurization unit for the Tchibouela oil field, offshore Congo, which allowed produced low-pressure associated gas containing CO{sub 2} to be kept for gas lift operations while, for safety reasons, the large volume of H{sub 2}S at low pressure was removed prior to compression. Since October 1989, the world's first offshore amine sweetening unit has worked satisfactorily and continues to prove that it is an attractive production alternative. For desulfurization, a selective methyldiethanolamine (MDEA) process, developed by Elf Aquitaine, was chosen because it was the only process that met the required specifications at a low pressure of 3.5 bar (51 psi).

  11. Optimum reentry trajectories of a lifting vehicle

    NASA Technical Reports Server (NTRS)

    Chern, J. S.; Vinh, N. X.

    1978-01-01

    The optimum maneuver of a space shuttle vehicle reentering a spherical, stationary, and locally exponential atmosphere was investigated. The use of Chapman's modified variables and a rescaled lift-drag polar leads to the formulation of a set of dimensionless equations of motion for flight analysis. The resulting equations are exact in the sense that they are also valid for flight in the vacuum. For planar flight several typical optimum maneuvers are investigated at different altitude ranges, low, moderate and very high. For three-dimensional flight, the procedure to solve the optimum trajectory for maximum cross range is discussed. Finally, using the equilibrium glide condition the maximum cross ranges for entry from circular speed, for several values of E*, and the footprint for E* = 1.5 are computed in this reduced problem.

  12. Force-controlled lifting of molecular wires

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Wagner, C.; Weiss, C.; Temirov, R.; Tautz, F. S.

    2011-07-01

    Lifting a single molecular wire off the surface with a combined frequency-modulated atomic force and tunneling microscope it is possible to monitor the evolution of both the wire configuration and the contacts simultaneously with the transport conductance experiment. In particular, critical points where individual bonds to the surface are broken and instabilities where the wire is prone to change its contact configuration can be identified in the force gradient and dissipation responses of the junction. This additional mechanical information can be used to unambiguously determine the conductance of a true molecular wire, that is, of a molecule that is contacted via a pointlike “crocodile clip” to each of the electrodes but is otherwise free.

  13. Oblique waves lift the flapping flag.

    PubMed

    Hœpffner, Jérôme; Naka, Yoshitsugu

    2011-11-01

    The flapping of the flag is a classical model problem for the understanding of fluid-structure interaction: How does the flat state lose stability? Why do the nonlinear effects induce hysteretic behavior? We show in this Letter that, in contrast with the commonly studied model, the full three-dimensional flag with gravity has no stationary state whose stability can be formally studied: The waves are oblique and must immediately be of large amplitude. The remarkable structure of these waves results from the interplay of weight, geometry, and aerodynamic forces. This pattern is a key element in the force balance which allows the flag to hold and fly in the wind: Large amplitude oblique waves are responsible for lift. PMID:22181612

  14. Correlation of Puma airloads: Lifting-line and wake calculation

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Young, Colin; Gilbert, Neil; Toulmay, Francois; Johnson, Wayne; Riley, M. J.

    1989-01-01

    A cooperative program undertaken by organizations in the United States, England, France, and Australia has assessed the strengths and weaknesses of four lifting-line/wake methods and three CFD methods by comparing their predictions with the data obtained in flight trials of a research Puma. The Puma was tested in two configurations: a mixed bladed rotor with instrumented rectangular tip blades, and a configuration with four identical swept tip blades. The results are examined of the lifting-line predictions. The better lifting-line methods show good agreement with lift at the blade tip for the configuration with four swept tips; the moment is well predicted at 0.92 R, but deteriorates outboard. The predictions for the mixed bladed rotor configuration range from fair to good. The lift prediction is better for the swept tip blade than for the rectangular tip blade, but the reasons for this cannot be determined because of the unmodeled effects of the mixed bladed rotor.

  15. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  16. Mathematical analysis of actuator forces in a scissor lift

    NASA Astrophysics Data System (ADS)

    Spackman, H.

    1994-05-01

    In 1985, NCCOSC began development of a tele-operated vehicle as part of the U.S. Marine Corps' Ground-Air Tele-Robotics Systems Program. One of the required vehicle components was a rigid, light-weight, and compact lift mechanism capable of deploying a surveillance package 10 feet above the vehicle bed. The lift mechanism that was eventually built and implemented was a 3-level scissor lift. In order to analyze the forces throughout the lift structure, a set of mathematical equations was derived. From these equations it was discovered that prudent placement of a lift's actuator can significantly reduce the forces required of the actuator and the stress levels in the adjacent scissor members. The purpose of this paper is to present the equations that were derived for analyzing the actuator forces. Using these equations, a designer can quickly determine the optimal locations for mounting an actuator and the resulting forces.

  17. Suicide reconstruction by glue-lift of gunshot residue.

    PubMed

    Basu, S; Ferriss, S; Horn, R

    1984-07-01

    Based upon the recently developed glue-lift collection of gunshot residue particles for examination in the scanning electron microscope with energy dispersive X-rays, this laboratory has undertaken a research program to determine if reconstruction of gunshot deaths is feasible. Because undisturbed conditions of suicide victims may help in securing unambiguous results and high success rates, the program has been carried out to reconstruct suicides only. Data obtained from 13 firearms suicides and their laboratory reconstruction which involved primarily shotguns and handguns, indicate that reconstruction can be immensely useful to interpretation of the gunshot residue distributions on a suspect's or victim's hands. This reports outlines the basic experiments performed to relate the residue emission from the gun to the deposits found on the firing hand(s) and a description of the reconstruction technique that uses a target to simulate a human body. The technique can determine the specifics of a victim's hand position at the time of firing and which hand was used to pull the trigger. Because the technique is sensitive to the nature of the grasp of the firing hand and of the supporting hand, in the case of a shotgun, it has been possible in all cases to date, to determine which one of the potential eight hand positions existed at the time of shooting. PMID:6747586

  18. General equilibrium characteristics of a dual-lift helicopter system

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Kanning, G.

    1986-01-01

    The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

  19. A contrarotative aircraft lifting concept for a future Titan mission

    NASA Astrophysics Data System (ADS)

    Duquesnay, P.; Coustenis, A.; Lebreton, J.-P.; Tavel, J.

    2008-09-01

    Titan has a thick and cold atmosphere (surface pressure 1.5 bar and surface temperature 94 K) and the surface gravity is about 1/7 of Earth's. Surface wind velocities are low. These unique characteristics make Titan's atmosphere an ideal place for an helicopter type of aircraft with vertical lift capability. Here we present a conceptual idea of a Titan helicopter designed as a student project. Two cases have been considered: a 100-kg helicopter and a 2-kg one. The concept is based on a contra-rotating double rotor. The device would be powered by a combination of rechargeable batteries and a low-power radioisotope source. The double rotor and the body of the helicopter would be protected by a mesh structure. It would carry a science payload at its base that would allow surface sampling and analysis each time it would land. During landing, it would also recharge its batteries to allow flying to the next stop. The concept has been inspired by studying modelaircraft- making devices. Various concepts developed for industrial and military applications have also been a source of inspiration. The following web sites were consulted: • www.onera.fr/conferences/drones • www.aurora.aero • www.sikorsky.com/sik/index.asp • www.microdrones.com The poster will present a preliminary design of the device. Its capability to contribute to the exploration of Titan's surface will be illustrated.

  20. The impact of lift and drag on 6DOF motion of LEO objects : formation control and debris behaviour

    NASA Astrophysics Data System (ADS)

    Smith, Brenton; Boyce, Russell; Brown, Melrose

    2016-07-01

    Perturbing forces on spacecraft are a challenge for the establishment and maintenance of satellite formations. For large satellites, the use of thrusters is a practical means of countering perturbing forces. However, long-term thrusting is not currently feasible for miniaturised satellites due to volume and mass constraints. Astrodynamics effects - in particular, passive aerodynamic lift and drag forces - are possible means for miniaturised satellites to maintain a formation in Low Earth Orbit (LEO). Currently, lift and drag for rendezvous have been considered in the presence of simplified orbital models, namely two body motion with the J2 effect. Given the small magnitude of lift and drag in LEO, it is unclear as to the control effectiveness of these aerodynamic forces under all orbital perturbations including solar radiation pressure, third body gravitation, and the non-spherical gravity. The work presented here will explore the extent to which aerodynamic lift and drag can be utilised for formation establishment and maintenance under changing operating conditions, including altitude, orbital inclination, space weather, sensor errors, and all-encompassing orbital perturbations. This work applies an in-house developed orbital propagation code to simulate the motion of formation flying spacecraft under differing conditions. The results will help miniaturised satellite formation flight planners better plan and operate future formation missions, and will also feed into improved understanding of the 6DOF motion of near-Earth orbit objects, including that of uncontrolled objects such as space debris.

  1. Numerical simulation of a powered-lift landing, tracking flow features using overset grids, and simulation of high lift devices on a fighter-lift-and-control wing

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1993-01-01

    Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.

  2. 75 FR 31803 - Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    .... Customs and Border Protection (``CBP'') has issued a final determination concerning the country of origin... in the final determination that Sweden is the country of origin of the lift unit for purposes of U.S... issued a final determination concerning the country of origin of the lift unit which may be offered...

  3. Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1992-01-01

    UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined and applied to a lifted hydrogen jet diffusion flame. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (H2, O2, N2, H2O), and absolute hydroxyl radical concentration (OH) are obtained with a 'single' excimer laser for the first time. For OH measurements, the use of LIPF makes quenching corrections unnecessary. Results demonstrate that fuel and oxidizer are in a rich, premixed, and unignited condition in the center core of the lifted flame base. In the lifted zone, combustion occurs in an intermittent annular turbulent flame brush and strong finite-rate chemistry effects result in nonequilibrium values of temperature, major species, and OH radicals. Downstream in the slow three-body recombination zone, the major species concentrations are in partial equilibrium, the OH concentrations are in superequilibrium, and the temperatures are in subequilibrium. Far downstream in the flame, equilibrium values of temperature, OH radical, and major species are found.

  4. Splitting of liftings in products of probability spaces II

    NASA Astrophysics Data System (ADS)

    Macheras, N. D.; Musial, K.; Strauss, W.

    2007-11-01

    For a probability measure R on a product of two probability spaces that is absolutely continuous with respect to the product measure we prove the existence of liftings subordinated to a regular conditional probability and the existence of a lifting for R with lifted sections which satisfies in addition a rectangle formula. These results improve essentially some of the results from the former work of the authors [W. Strauss, N.D. Macheras, K. Musial, Splitting of liftings in products of probability spaces, Ann. ProbabE 32 (2004) 2389-2408], by weakening considerably the assumptions and by presenting more direct and shorter proofs. In comparison with [W. Strauss, N.D. Macheras, K. Musial, Splitting of liftings in products of probability spaces, Ann. Probab. 32 (2004) 2389-2408] it is crucial for applications intended that we can now prescribe one of the factor liftings completely freely. We demonstrate the latter by applications to [tau]-additive measures, transfer of strong liftings, and stochastic processes.

  5. Lift Enhancement Using Pulsed Blowing At Compressible Flow Conditions

    NASA Astrophysics Data System (ADS)

    Hites, Michael; Nagib, Hassan; Sytsma, Brian; Wygnanski, Israel; Seifert, Avi; Bachar, Tomer

    1997-11-01

    Oscillatory wall-jets were introduced through spanwise slots along a NACA 0015 airfoil to establish lift augmentation by the unsteady forcing of the wall layer. Pressure coefficients, lift coefficients, and wake velocity profiles were measured for experiments where the oscillatory blowing momentum coefficient was held constant at various frequencies up to M=0.4. At high angles of attack, it was observed that lift coefficient increased by as much as 80% due to the pulsed blowing and that supercritical flow was detected near the leading edge. Measurements at low angles of attack with the flap set at 20^o (an aft loaded airfoil near cruise conditions) showed that low amplitude pulsed forcing from the flap provided a 27% increasing in lift while steady blowing from the flap reduced lift by as much as 15% even at blowing coefficients as high as 3.5%. Wake profiles showed that not only was the lift enhanced due to the oscillatory blowing, but the drag was reduced, demonstrating the effectiveness of pulsed blowing as a tool to increase lift and reduce drag, especially when compared to the relative ineffectiveness of steady blowing under similar conditions.

  6. Early Postoperative Pain After Keyless Abdominal Rope-Lifting Surgery

    PubMed Central

    Hüseyınoğlu, Ürfettin; Çıçek, Melek

    2015-01-01

    Background and Objectives: Keyless abdominal rope-lifting surgery is a novel, gasless, single-incision laparoscopic surgical technique. In this study we aimed to compare the postoperative pain from keyless abdominal rope-lifting surgery with carbon dioxide laparoscopy performed for benign ovarian cysts. Methods: During a 20-month period, 77 women underwent surgery for a benign ovarian cyst. Keyless abdominal rope-lifting surgery and conventional carbon dioxide laparoscopy techniques were used for the operations in 32 women and 45 women, respectively. The 2 operative techniques were compared with regard to demographic characteristics; preoperative, intraoperative, and postoperative data including early postoperative pain scores; and frequency of shoulder pain and analgesic requirements. Results: Data regarding demographic characteristics, preoperative findings, cyst diameters and rupture rates, intra-abdominal adhesions, intraoperative blood loss, and postoperative hospital stay did not differ between groups (P > .05). However, the mean operative and abdominal access times were significantly longer in the keyless abdominal rope-lifting surgery group (P < .05). Visual analog scale pain scores at initially and at the second, fourth, and 24th hours of the postoperative period were significantly lower in the keyless abdominal rope-lifting surgery group (P < .05). Similarly, keyless abdominal rope-lifting surgery caused significantly less shoulder pain and additional analgesic use (P < .05). Conclusion: Keyless abdominal rope-lifting surgery seems to cause less pain in the management of benign ovarian cysts in comparison with conventional carbon dioxide laparoscopy. PMID:25848177

  7. Isokinetic lifting strength and occupational injury. A prospective study.

    PubMed

    Mostardi, R A; Noe, D A; Kovacik, M W; Porterfield, J A

    1992-02-01

    One hundred seventy-one nurses had their back strength evaluated on an isokinetic lifting device and filled out an epidemiologic questionnaire. They were then followed prospectively for 2 years to determine the incidence of job-related low-back injuries. The data were analyzed to determine if the injury incidence correlated with any of the strength or epidemiologic variables collected during the original evaluation. Average peak force measured during the isokinetic lift was 63.8 kg + 13.6 kg at a lift speed of 30.5 cm/sec and 59.1 kg + 14.9 kg at a lift speed of 45.7 cm/sec. Sixteen nurses reported an occurrence of job-related low-back pain or injury during the 2-year prospective period. Discriminate statistical techniques showed that none of the strength or epidemiologic variables correlated with the incidence of pain or injury or explained significant amounts of variance when the variables were regressed on strength or work calculated from the lift force/lift height data. It was concluded that in this high risk population, in which loads are heavy and lifting postures are variable, the use of low-back strength or prior history of pain or injury are poor predictors as to subsequent low-back pain or injury. PMID:1532461

  8. The Liquid Lift: Looking Natural Without Lumps

    PubMed Central

    de Felipe, Iñigo; Redondo, Pedro

    2015-01-01

    Context: Hyaluronic acid (HA) is the most common filler used to rejuvenate. Today, a three-dimensional approach prevails over previous techniques in which this material was used in specific areas of the face such as the nasolabial fold, the marionette line, and the eye trough giving a strange appearance that does not look natural. Even with a volumizing purpose, the injection of HA can sometimes produce clinically detectable nodules or lumps where the filler is deposited. Aims: To develop a new technique of injecting HA that can provide more natural results and avoid the lumpiness and nodular appearance that sometimes occurs with the injection of HA. To detect whether mixing HA with diluted anesthetic agent modifies its behavior. Settings and Design: Prospective, case control, single-center study on a private clinic setting. Materials and Methods: Eighty six patients were enrolled in this study. All of them had a previous treatment with nondiluted HA using a needle at least a year before. Patients were injected with 8 mL of reticulated HA (RHA) mixed with 6 mL of saline and 2 mL of anesthetic agent. The mixture was administered through a cannula inserted in the face, one at mid-cheek and another at frontal-temporal point of entry. Owing to the lifting effect of this mixture we called this procedure liquid lift (LL). Patients were evaluated 1 month, 6 months, and a year later and asked to compare the LL with previous experiences in terms of natural look, pain, and appearance of nodules. Statistical Analysis Used: Student's t-test. Results: One month after the treatment, 83 out of 86 patients (96.5%) thought LL produced a more natural look than the previous treatment with the needle. Sixty two (72%) considered LL less painful than the previous treatment and only eight (9.3%) could detect lumps or nodules 1 month after LL was performed compared with 46 (53.5%) that described this problem with previous needle injections. The incidence of bruising was also clearly lower

  9. Equations of motion of slung load systems with results for dual lift

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1990-01-01

    General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.

  10. Lifting strategies of expert and novice workers during a repetitive palletizing task.

    PubMed

    Plamondon, A; Delisle, A; Bellefeuille, S; Denis, D; Gagnon, D; Larivière, C

    2014-05-01

    Thirty manual material handlers (15 experts and 15 novices) were invited to perform series of box transfers under conditions similar to those of large distribution centers. The objective of the present study was to verify whether multiple box transfers leading to fatigue would also lead to differences between expert and novice workers in joint motions and in back loading variables (L5/S1 moments). The task consisted in transferring 24 15-kg boxes from one pallet to another (4 layers of boxes; 6 boxes/layer: 3 in the front row, 3 in the back) at a self-determined pace and then at an imposed pace of 9 lifts/min for a total of 240 lifts. The underlying idea was to set a challenging task that would force the experts to use their skills. Full-body 3D kinematic data were collected as well as external foot forces. A dynamic 3D linked segment model was used to estimate the net moments at L5/S1. The results clearly show that the experts bent their lumbar spine less (10° less) and were closer (4 cm) to the box than novice workers. Knee flexions were similar in both groups except when the box was lifted from ground level (expert ≈ 71°, novice ≈ 48°). The peak resultant moment was not statistically different (expert = 168 Nm, novice = 184 Nm) although experts had lower values on average than novices when lifting heights (and deposit heights) of the boxes increased. Therefore, experts differed from novice workers mostly in the posture-related variables. These differences are especially important to consider when the box is located on the ground, as the back posture and back loading are then at their greatest magnitude and could have a major impact on the distribution of internal forces on the spine. PMID:23891462

  11. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  12. Exploration of Titan using Vertical Lift Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    2001-01-01

    Autonomous vertical lift aerial vehicles (such as rotorcraft or powered-lift vehicles) hold considerable potential for supporting planetary science and exploration missions. Vertical lift aerial vehicles would have the following advantages/attributes for planetary exploration: low-speed and low-altitude detailed aerial surveys; remote-site sample return to lander platforms; precision placement of scientific probes; soft landing capability for vehicle reuse (multiple flights) and remote-site monitoring; greater range, speed, and access to hazardous terrain than a surface rover; greater resolution of surface details than an orbiter or balloons. Exploration of Titan presents an excellent opportunity for the development and usage of such vehicles.

  13. Lifting surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Tai, H.; Runyan, H. L.

    1985-01-01

    A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  14. Two-dimensional unsteady lift problems in supersonic flight

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  15. Propulsion integration for a hybrid propulsive-lift system

    NASA Technical Reports Server (NTRS)

    Bowden, M. K.; Renshaw, J. H.; Sweet, H. S.

    1974-01-01

    In a discussion of STOL vehicles with conventional high-lift devices, the need for efficient power-augmented lift systems is presented, and the implications of quiet operation are noted. The underlying philosophy of a promising hybrid lift system with major interactions between aerodynamic, thermodynamic, acoustic, and configuration design technologies is derived. The technique by which engine and airframe-related characteristics for this application may be matched in an optimum manner is described and illustrated by describing the features of a particular short-haul commercial STOL vehicle.

  16. Drag and lift coefficients evolution of a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Benghrib, D.

    1989-10-01

    The lift and drag coefficients of the rotating Savonius wind machine are determined from the pressure difference measured between the upper plane and the lower plane of a blade. Pressure measurements have been performed for two sets of experiments; the first one for U ∞ = 10 m/s and the second one for U ∞ = 12.5 m/s. In each case it is to be noted that a negative lift effect is present for low values of the tip speed ratio λ. The lift coefficient becomes positive when λ increases. The drag coefficient is of course always negative.

  17. Moderate lift-to-drag aeroassist

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1984-01-01

    Significant performance benefits are realized via aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low Earth orbit. This approach substantially reduces the mission propellant requirements by using the aerodynamic drag, D, to brake the vehicle to near circular velocity and the aerodynamic lift, L, to null out accumulated errors as well as change the orbital inclination to that required for rendezvous with the Space Shuttle Orbiter. Broad concept evaluations were performed and the technology requirements and sensitivities for aeroassisted OTV's over a range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and assessed. The aeroassisted OTV is capable of evolving from an initial delivery only system to one eventually capable of supporting manned roundtrip missions to geosynchronous orbit. Concept screening was conducted on numerous configurations spanning the L/D = 0.75 to 1.5 range, and several with attractive features were identified. Initial payload capability was evaluated for a baseline of delivery to GEO, six hour polar, and Molniya (12 hours x 63.4 deg) orbits with return and recovery of the aeroassist orbit transfer vehicle (AOTV) at LEO. Evolutionary payload requirements that were assessed include a GEO servicing mission (6K up and 2K return) and a manned GEO mission (14K roundtrip).

  18. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  19. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  20. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  1. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  2. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Thousands of gallons of water released as part of the sound suppression system at the launch pad create clouds of steam and exhaust as Space Shuttle Discovery lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  3. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Against a curtain of blue sky, the Space Shuttle Discovery spews clouds of exhaust as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on the 9-day mission STS-95. On board Discovery are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  4. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  5. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  6. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  7. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  8. 51. FRONT VIEW OF ELEVATOR LIFT IN 'CATFISH' SILO Everett ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. FRONT VIEW OF ELEVATOR LIFT IN 'CATFISH' SILO Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  9. Status of NASA advanced LFC airfoil high-lift study

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.

    1982-01-01

    The design of a high lift system for the NASA advanced LFC airfoil designed by Pfenninger is described. The high lift system consists of both leading and trailing edge flaps. A 3 meter semispan, 1 meter chord wing model using the above airfoil and high lift system is under construction and will be tested in the NASA Langley 4 by 7 meter tunnel. This model will have two separate full span leading edge flaps (0.10c and 0.12c) and one full span trailing edge flap (0.25c). The performance of this high lift system was predicted by the NASA two dimensional viscous multicomponent airfoil program. This program was also used to predict the characteristics of the LFC airfoils developed by the Douglas Aircraft Company and Lockheed-Georgia Aircraft Company.

  10. Detail view of fourth level platform winch used to lift ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of fourth level platform winch used to lift platform segments away from the Shuttle assembly during testing. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  11. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  12. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  13. 4. DETAIL VIEW OF LIFTING GEAR ON MULE AND RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF LIFTING GEAR ON MULE AND RACK ATTACHMENT BOOKS, LOOKING EAST - Nine Mile Hydroelectric Development, Powerhouse, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  14. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  15. 53. VIEW SHOWING THE PLACEMENT OF SHEAVES FOR LIFT SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW SHOWING THE PLACEMENT OF SHEAVES FOR LIFT SPAN OF SHOOFLY BRIDGE, January 10, 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  16. 19. DETAIL VIEW OF LIFT CABLES ON INSIDE FACE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL VIEW OF LIFT CABLES ON INSIDE FACE OF YOLO COUNTY TOWER, LOOKING NORTH - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  17. 15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION WITH TAINTER GATE SECTION OF SPILLWAY TO THE LEFT. VIEW TO SOUTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  18. 20. Vertical lift span, north tower, bascule span, and Warren ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Vertical lift span, north tower, bascule span, and Warren truss spans, facing north - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  19. Transonic wind-tunnel tests of a lifting parachute model

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Reed, J. F.; Wynne, E. C.

    1976-01-01

    Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included.

  20. 3. VIEW OF MOVEABLE SPAN IN LIFT POSITION, FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF MOVEABLE SPAN IN LIFT POSITION, FROM SOUTH SIDE OF RIVER LOOKING NORTHEAST. - Pennsylvania Railroad, South Branch Chicago River Bridge, Spanning South Branch of Chicago River Bridge east of Canal Street, Chicago, Cook County, IL

  1. Unsteady transonic flow calculations for interfering lifting surface configurations

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations are presented for aerodynamically interfering lifting surface configurations. Calculations are performed by extending the XTRAN3S (Version 1.5) unsteady transonic small-disturbance code to allow the treatment of an additional lifting surface. The research was conducted as a first-step toward developing the capability to treat a complete flight vehicle. Grid generation procedures for swept tapered interfering lifting surface applications of XTRAN3S are described. Transonic calculations are presented for wing-tail and canard-wing configurations for several values of mean angle of attack. The effects of aerodynamic interference on transonic steady pressure distributions and steady and oscillatory spanwise lift distributions are demonstrated. Results due to wing, tail, or canard pitching motions are presented and discussed in detail.

  2. Interior view of eastern lift span, looking south, showing internal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of eastern lift span, looking south, showing internal truss work. River visible below through chain-link fence. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  3. Interior room within eastern lift span, showing auxiliary electric and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior room within eastern lift span, showing auxiliary electric and gas generators. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  4. Interior view of eastern lift span, looking south, showing internal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of eastern lift span, looking south, showing internal truss work. - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  5. Low cost lift-off process optimization for MEMS applications

    NASA Astrophysics Data System (ADS)

    Pandey, Shilpi; Bansal, Deepak; Panwar, Deepak; Shukla, Neha; Kumar, Arvind; Kothari, Prateek; Verma, Seema; Rangra, K. J.

    2016-04-01

    The patterning of thin films play major role in the performance of MEMS devices. The wet etching gives an isotropic profile and etch rate depends on the temperature, size of the microstructures and repetitive use of the solution. Even with the use of selective etchants, it significantly attacks the underlying layer. On the other side, dry etching is expensive process. In this paper, double layer of photoresist is optimized for lift-off process. Double layer lift-off technique offers process simplicity, low cost, over conventional single layer lift-off or bilayer lift-off with LOR. The problem of retention and flagging is resolved. The thickness of double coat photoresist is increased by 2.3 times to single coat photo resist.

  6. Control of turbofan lift engines for VTOL aircraft.

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    This paper presents the results of an analytical study of the dynamics and control of turbofan lift engines, and proposes methods of meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed.

  7. The unsteady lift of a wing of finite aspect ratio

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1940-01-01

    Unsteady-lift functions for wings of finite aspect ratio have been calculated by correcting the aerodynamic inertia and the angle of attack of the infinite wing. The calculations are based on the operational method.

  8. Wind tunnel study of slot spoilers for direct lift control

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Gentry, G. L., Jr.; Stickle, J. W.

    1972-01-01

    An investigation was conducted in a 300-mph 7- by 10- foot tunnel to obtain data for a slot spoiler direct lift control system. Slot spoilers are believed to have advantages over flap-type direct lift control (DLC) systems because of the small amount of power required for actuation. These tests, run at a Reynolds number of 1,400,000 showed that up to 78 percent of the lift due to flap deflection could be spoiled by opening several spanwise slots within the flaps. For a given lift change the drag change was significantly less than that which would be obtained by a variable flap DLC system. A nozzle-shaped slot was the most effective of the slot shapes tested.

  9. 14 CFR 25.345 - High lift devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.345 High lift... level flight. Gust loads resulting on each part of the structure must be determined by rational...

  10. 32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT LOW LINE CANAL ON LOWER EMBANKMENT. VIEW TO SOUTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  11. 13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT NAMPA CANAL ON UPPER EMBANKMENT. VIEW TO SOUTHWEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  12. CUPOLA, CENTER RIGHT; GONDOLA LIFT MECHANISM, CENTER LEFT. NOTE PARTIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CUPOLA, CENTER RIGHT; GONDOLA LIFT MECHANISM, CENTER LEFT. NOTE PARTIAL VIEW OF LAMELLA DOME FRAMING COMPRESSION RING AT CROWN AT LOWER RIGHT. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  13. Generalizing Lifted Tensor-Product Wavelets to Irregular Polygonal Domains

    SciTech Connect

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2002-04-11

    We present a new construction approach for symmetric lifted B-spline wavelets on irregular polygonal control meshes defining two-manifold topologies. Polygonal control meshes are recursively refined by stationary subdivision rules and converge to piecewise polynomial limit surfaces. At every subdivision level, our wavelet transforms provide an efficient way to add geometric details that are expanded from wavelet coefficients. Both wavelet decomposition and reconstruction operations are based on local lifting steps and have linear-time complexity.

  14. Lift augmentation via spanwise tip blowing - A numerical study

    NASA Technical Reports Server (NTRS)

    Childs, R. E.

    1986-01-01

    Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.

  15. Moving base simulation of an ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.

  16. Subcutaneous lateral brow lift (“Z-lift”)

    PubMed Central

    Ueberreiter, Klaus; Tanzella, Ursula; Surlemont, Yves; Krapohl, Björn Dirk

    2015-01-01

    Surgical eyebrow lift has been described by using many different open and endoscopic methods. Difficult techniques and only short time benefits oft lead to patients’ complaints. We present a safe and simple temporal Z-incision technique for eyebrow lift in 37 patients. Besides simplicity and safety, our technique shows long lasting aesthetic results with hidden scars and a high rate of patient satisfaction. PMID:26734537

  17. Shuttle Derived In-Line Heavy Lift Vehicle

    NASA Technical Reports Server (NTRS)

    Greenwood, Terry; Twichell, Wallace; Ferrari, Daniel; Kuck, Frederick

    2005-01-01

    This paper introduces an evolvable Space Shuttle derived family of launch vehicles. It details the steps in the evolution of the vehicle family, noting how the evolving lift capability compares with the evolving lift requirements. A system description is given for each vehicle. The cost of each development stage is described. Also discussed are demonstration programs, the merits of the SSME vs. an expendable rocket engine (RS-68), and finally, the next steps needed to refine this concept.

  18. NASA safety standard for lifting devices and equipment

    NASA Astrophysics Data System (ADS)

    1990-09-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  19. The lift distribution of wings with end plates

    NASA Technical Reports Server (NTRS)

    Mangler, W

    1938-01-01

    The object of the present report is to ascertain the relationship of the circulation distribution over the wing and of the lift to the height and position of the end plate. The side forces and moments on the end plates were also determined. It is found that moving an end plate of certain length up from the symmetrical position, is followed by a slight increase of the total lift.

  20. NASA safety standard for lifting devices and equipment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  1. Noise of fan designed to reduce stator lift fluctuations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Stakolich, E. G.

    1977-01-01

    An existing fan stage was redesigned to reduce stator lift fluctuations and was acoustically tested at three nozzle sizes for reduced noise generation. The lift fluctuations on the stator were reduced by increasing the stator cord, adjusting incidence angles, and adjusting the rotor velocity diagrams. Broadband noise levels were signficantly reduced in the middle to high frequencies. Blade passage tone sound power was not lessened, but decreases in the harmonics were observed. Aerodynamic improvements in both performance and efficiency were obtained.

  2. Civil markets for buoyant heavy-lift vehicles

    NASA Technical Reports Server (NTRS)

    Mettam, P. J.; Hansen, D.; Ardema, M. D.

    1981-01-01

    Worldwide civil markets for heavy lift airships were investigated. Substantial potential market demand was identified for payloads of from 13 to 800 tons. The largest markets appear to be in applications to relieve port congestion, construction of power generating plants, and, most notably, logging. Because of significant uncertainties both in vehicle and market characteristics, further analysis will be necessary to verify the identified market potential of heavy lift airship concepts.

  3. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, the orbiter Atlantis is being lifted from a transporter after rolling over from Orbiter Processing Facility bay 3. The orbiter will be raised to a vertical position, rotated and lifted into high bay 1, and stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  4. CT gas lift captures last of field reserves

    SciTech Connect

    Tran, T.B.; Miller, J.; Woodell, M.E.; Johnson, H.

    1996-06-01

    Texaco Exploration and Production Inc.`s (TEPI) Brookeland Field in Newton County, Texas, produces from 30, mostly dual-horizontal, wells in the Austin Chalk reservoir. The wells are typically drilled vertically and casing is set to the top of the Austin Chalk at about 10,000 ft. Building at 15{degree}/100 ft, 4,000-ft laterals are drilled to the northwest and southeast to intersect the natural fractures of the Austin Chalk. The horizontal sections of the wellbore are openhole completions that average 700 b/d of oil and 5 MMcfd of gas. Within 1 year of initial production, the wells require compression to sustain flow and conventional gas lift is used when the wells load up with fluid. Typically, when production declines to 200 Mcfd and 100 b/d of fluid, the gas lift injection point is at 8,000 ft and average gas lift usage is 500 Mcfd. Coiled tubing-conveyed artificial lift was suggested, but first other concerns had to be addressed. The long, horizontal lateral sections functioned as a natural gas and fluid separator, resulting in a distinct slug flow pattern. During a 24-hour period, slug flow caused the wells to produce 100% gas or 100% fluid. For cost reasons TEPI chose conventional, field-installed coiled tubing (CT) gas lift equipment over spoolable equipment. Texaco then formed a team alliance with McMurry-Macco Lift Systems and Dowell to evaluate and complete trial wells with coiled tubing gas lift equipment. This paper reviews the case history of the field, the design considerations of the coiled tubing gas lift, and the surface support equipment used.

  5. Profound Impacts of AN Arctic Face Lift

    NASA Astrophysics Data System (ADS)

    Nghiem, Son

    Son Nghiem, son.v.nghiem@jpl.nasa.gov Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States The ice cover on the Arctic Ocean has undergone a face lift that removes much of the older and thicker perennial ice and replaces it with the younger and thinner seasonal ice. Although the sea ice cover is a thin skin compared to the depth of the Arctic Ocean, this face lift exerts profound change in the Arctic environment. Here, we present scatterometer remote sensing of Arctic sea ice change and its implication on chemical processes from the ice surface to the troposphere extending into the internal continental land. In the context of a half century change, the extent of perennial ice declines at rate of 0.5 million km2 per decade in the 1970s-1990s while there is no discernable trend in the 1950s-1960s. Abruptly, the rate of decrease has tripled to 1.5 million km2 per decade in the 2000s. A record was set in the reduction of Arctic perennial ice extent in winter 2008. By 1 March 2008, perennial ice extent was reduced by one million km2 compared to that at the same time in 2007. On 1 May 2009, perennial ice extent was reduced to 2.1 million km2 , which is a virtual tie to 2.2 million km2 of perennial ice extent on 1 May 2008 given the uncertainty of ±0.2 million km2 . Although the extent of perennial ice extent is similar, its distribution is quite different, with a significant perennial ice pack in the Beaufort Sea in 2008, and in contrast a large expanse of perennial ice along the Transpolar Drift Stream in 2009. The continuing drastic reduction of perennial ice significantly decreases the overall surface albedo, resulting in enhanced solar heat absorption in spring and summer, which further decreases the Arctic ice pack through the ice-albedo feedback mechanism and ice melt from the underside due to oceanic thermodynamic interactions. Satellite maps of sea ice class distribution show the closely conformation with patterns of

  6. Insulation-Testing Cryostat With Lifting Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Dokos, Adam; Scholtens, Brekke; Nagy, Zoltan; Augustynowicz, Stanislaw

    2010-01-01

    The figure depicts selected aspects of an apparatus for testing thermal-insulation materials for cryogenic systems at temperatures and under vacuum or atmospheric conditions representative of those encountered in use. This apparatus, called "Cryostat-100," is based on the established cryogen-boil-off calorimeter method, according to which the amount of heat that passes through an insulation specimen to a cryogenic fluid in a container, and thus the effective thermal conductance of the specimen, is taken to be proportional to the amount of the cryogenic fluid that boils off from the container. The design of Cryostat-100 is based partly on, and incorporates improvements over, the design of a similar prior apparatus called "Cryostat-1" described in "Improved Methods of Testing Cryogenic Insulation Materials" (KSC-12107 & KSC- 12108), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 46. The design of Cryostat-100 also incorporates the best features of two other similar prior apparatuses called "Cryostat-2" (also described in the cited prior article) and "Cryostat- 4." Notable among the improvements in Cryostat-100 is the addition of a lifting mechanism that enables safe, rapid, reliable insertion and removal of insulation specimens and facilitates maintenance operations that involve lifting. As in Cryostat-1, the cold mass is a vertical stainless-steel cylindrical vessel subdivided into a larger measurement vessel with smaller thermal-guard vessels at both ends. During operation, all three vessels are kept filled with liquid nitrogen near saturation at ambient pressure (temperature .77.4 K). The cold mass of Cryostat-100 has a length of 1 m and diameter of 168 mm. Each specimen has a corresponding nominal length and inner diameter and a nominal thickness of 25.4 mm. Specimens that are shorter and have thicknesses between 0 and 50 mm are also acceptable. Bulk-fill, foam, clam-shell, multilayer insulation, and layered materials can be tested over a very wide range

  7. Control of turbofan lift engines for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    The use of turbofan engines as lift units for VTOL aircraft poses new engine control problems. At low flight speeds, the lift units must provide the fast thrust response needed for aircraft attitude and height control. The results are presented of an analytical study of the dynamics and control of turbofan lift engines, and methods are proposed for meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed. Both methods are shown to have thrust response near the required levels.

  8. Classification of similar medical images in the lifting domain

    NASA Astrophysics Data System (ADS)

    Sallee, Chad W.; Tashakkori, Rahman

    2002-03-01

    In this paper lifting is used for similarity analysis and classification of sets of similar medical images. The lifting scheme is an invertible wavelet transform that maps integers to integers. Lifting provides efficient in-place calculation of transfer coefficients and is widely used for analysis of similar image sets. Images of a similar set show high degrees of correlation with one another. The inter-set redundancy can be exploited for the purposes of prediction, compression, feature extraction, and classification. This research intends to show that there is a higher degree of correlation between images of a similar set in the lifting domain than in the pixel domain. Such a high correlation will result in more accurate classification and prediction of images in a similar set. Several lifting schemes from Calderbank-Daubechies-Fauveue's family were used in this research. The research shows that some of these lifting schemes decorrelates the images of similar sets more effectively than others. The research presents the statistical analysis of the data in scatter plots and regression models.

  9. The Six Track Scherzer Rolling Lift Bridge…Two double track spans ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Six Track Scherzer Rolling Lift Bridge…Two double track spans closed. One double-track span open. Photocopy of plate xvi in Scherzer Rolling Lift Bridge Company, Scherzer Rolling Lift Bridges. - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  10. Body Hair

    MedlinePlus

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  11. The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1950-01-01

    The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.

  12. AORN Ergonomic Tool 6: lifting and carrying supplies and equipment in the perioperative setting.

    PubMed

    Waters, Thomas; Baptiste, Andrea; Short, Manon; Plante-Mallon, Lori; Nelson, Audrey

    2011-08-01

    Perioperative team members often are required to lift and carry heavy supplies and equipment into and around the OR; this includes lifting equipment such as hand tables, fluoroscopy boards, stirrups, Wilson frames, irrigation containers for lithotripsy, and heavy instrument pans. Lifting heavy objects creates considerable risk for musculoskeletal injuries to the back and shoulders. AORN Ergonomic Tool 6: Lifting and Carrying Supplies and Equipment in the Perioperative Setting can help caregivers evaluate lifting and carrying tasks and take measures to protect themselves from injury. Caregivers can use the revised National Institute for Occupational Safety and Health lifting equation to assess whether a specific lifting task can be performed safely. PMID:21802544

  13. Surface fitting three-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Ford, C. P., III

    1975-01-01

    The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.

  14. 49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be... Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.5Platform Lighting on public...

  15. 49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be... Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.5Platform Lighting on public...

  16. 49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be... Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.5Platform Lighting on public...

  17. Aerodynamic characteristics, including effect of body shape, of a Mach 6 aircraft concept

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.

    1983-01-01

    Longitudinal aerodynamic characteristics for a hydrogen-fueled hypersonic transport concept at Mach 6 are presented. The model components consist of four bodies with identical longitudinal area distributions but different cross-sectional shapes and widths, a wing, horizontal and vertical tails, and a set of wing-mounted nacelles simulated by slid bodies on the wing upper surface. Lift-drag ratios were found to be only sightly affected by fuselage planform width or cross sectional shape. Relative distribution of fuselage volume above and below the wing was found to have an effect on the lift-drag ratio, with a higher lift drag ratio produced by the higher wing position.

  18. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  19. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  20. Summary of Rocket-Model Tests at Zero Lift of the Northrop MX-775B Missile Configuration from Mach Numbers of 0.9 to 1.8

    NASA Technical Reports Server (NTRS)

    Arbic, Richard G.; Gillespie, Warren, Jr.

    1953-01-01

    Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five 1/4-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.