Science.gov

Sample records for machine tools bore

  1. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  2. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  3. Tunnel boring machine

    SciTech Connect

    Snyder, L. L.

    1985-07-09

    A tunnel boring machine for controlled boring of a curvilinear tunnel including a rotating cutter wheel mounted on the forward end of a thrust cylinder assembly having a central longitudinal axis aligned with the cutter wheel axis of rotation; the thrust cylinder assembly comprising a cylinder barrel and an extendable and retractable thrust arm received therein. An anchoring assembly is pivotally attached to the rear end of the cylinder barrel for anchoring the machine during a cutting stroke and providing a rear end pivot axis during curved cutting strokes. A pair of laterally extending, extendable and retractable arms are fixedly mounted at a forward portion of the cylinder barrel for providing lateral displacement in a laterally curved cutting mode and for anchoring the machine between cutting strokes and during straight line boring. Forward and rear transverse displacement and support assemblies are provided to facilitate cutting in a transversely curved cutting mode and to facilitate machine movement between cutting strokes.

  4. Tunnel boring machine

    SciTech Connect

    Turner, J.

    1985-10-22

    A tunnel boring machine including the following elements: a full face rotary cutterhead; a cutterhead support on which the cutterhead is mounted; a gripper system carried by a gripper support frame for reacting thrust, steering, roll correction, and torque forces; a conveyor system for transporting muck from behind the rotary cutterhead to a dump point rearwardly of the machine; primary propel cylinders for advancing the cutterhead which are mounted between the gripper support frame and the cutterhead support, the primary propel cylinders consisting of a series of at least three pairs of double acting hydraulic cylinders arranged annularly in equally spaced apart locations and in a series of V-shaped configurations between the gripper support frame and the cutterhead support, each such pair of primary propel cylinders having an included angle between the cylinders of about 15/sup 0/ and 60/sup 0/ and with a line bisecting the included angle between the cylinders extending generally parallel to the longitudinal centerline of the machine; and a hydraulic control system for controlling the pairs of primary propel cylinders to effect axial forward thrust on the cutterhead by simultaneous actuation of all the primary propel cylinders while transmitting the reaction torque exerted on the cutterhead support by rotation of the cutterhead, steering of the cutterhead support and the cutterhead by selective actuation of only a portion of the primary propel cylinders, and roll corrections of the cutterhead support and the cutterhead by selective actuation of alternate members of the primary propel cylinders.

  5. Guided earth boring tool

    SciTech Connect

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.; Wasson, M.R.; Herben, W.C.

    1987-09-22

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe, a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.

  6. Well bore tools

    SciTech Connect

    Burge, E.V.

    1984-08-28

    Well bore tools configured as centralizers/stabilizers, well bore reamers, and keyseat wipers each of which includes an elongate tubular body having a generally cylindrical outer surface and a diameter approximately equal to the diameter of the borehole being drilled are disclosed. Each tool affords an improved mode of drilling a borehole by increasing downhole directional control and stability, increasing tool wear reliability, and reducing return mud flow resistance. The outer surface of each tool has a plurality of longitudinal passages formed in pairs of upright intersecting right and left hand helicies or spirals about the exterior of said tool and extending from one end to the other end thereof. The intersecting right and left hand helical or spiral channels form raised pad areas therebetween to provide 360/sup 0/ contiguous well bore contact by each tool for enhanced stability and efficiency. In addition, the intersecting right and left hand helical channels afford greater surficial engagement area while providing unobstructed return mud flow paths between each tool and the wall of the borehole. The raised pad areas may have wear resistant surfaces which are arranged in a configuration for affording constant 360/sup 0/ contiguous contact with the wall of the borehole. Preferably, the wear resistance surfaces are provided by replaceable inserts mounted in recesses in the pad areas.

  7. Tunnel boring machine

    SciTech Connect

    Dillingham, R.G.; Hamburger, H.

    1982-09-14

    A tunneling machine is disclosed which includes a hollow shield, a nonrotatable outer housing mounted in the shield for longitudinal movement, and inner housing rotatably mounted within the outer housing, an excavator including a boom and bucket pivotally mounted on the forward end of the inner housing, and a boom cylinder having a forward portion pivotally engaged with the boom and a rear portion mounted at the rearward portion of the inner housing.

  8. Method and tool for machining a transverse slot about a bore

    NASA Technical Reports Server (NTRS)

    David-Malig, M. A.

    1980-01-01

    A method and apparatus for cutting a transverse slot about a bore of smaller diameter than that of the slot are disclosed. The invention consists of introducing a cutting head facing transversely to the bore, through the bore opening its distance from the mill shaft being progressively extended by the addition of spacers between the head and the shaft until the desired slot depth is obtained. The spacers are held in position by a cable passing from the cutting head through the series of spacers and out along the mill shaft. The mill shaft carrying the cutting head is moved transversely into the object wherein the slot is being cut as the object is being rotated thereabout by the mill table to which it is affixed.

  9. Tunnel boring machine performance in sedimentary rock

    SciTech Connect

    Nelson, P.

    1983-01-01

    Full-face tunnel boring machine (TBM) performance during the excavation of six tunnels is considered in terms of utilization, penetration rate, and cutter wear. Construction records for over 75,000 ft (22,860m) of tunnel in sedimentary rock are analyzed, and the results are used to investigate factors affecting TBM performance. Machine utilization is strongly affected by site specific conditions, including geology, construction planning, and contractor practice. The relative importance of each of 21 downtime causes is discussed, and recommendations are made for modifications in excavation system design which could help to reduce delays. Effects of machine operation rate were investigated. The interrelationship among penetration, thrust, and rolling force is analyzed with a three-dimensional model which provides a rational basis for explaining variations in cutter forces and penetration rate as a function of rock type. The most useful rock index for estimating TBM performance in sedimentary rock is shown to be a combination of Schmidt Hammer rebound and abrasion hardness. Variation in cutter wear is considered as a function of position on the cutterhead and the rock type being excavated. Rolling distances for center cutters are less sensitive to rock type than for other positions. A fracture mechanics approach, of use in modeling the process chip formation, is proposed. The use of fracture material properties for empirical prediction of TBM performance is reported. Recommendations are made for future work, and observations and records required for future performance evaluations are summarized.

  10. Rectangular tunnel boring machine and method

    SciTech Connect

    Snyder, L.L.

    1984-12-04

    A machine for boring a tunnel having an end face wall, a roof wall, a bottom wall, and opposite side walls. The machine comprises a rotatable cutting wheel means having an annular peripheral wall supporting a plurality of cutting devices and a generally convex-shaped upper wall supporting a plurality of cutting devices. The cutting wheel means is rotatable about an axis of rotation which is inclined in a forward direction relative to a plane perpendicular to the longitudinal axis of the tunnel for simultaneously cutting the tunnel face along two intersecting surfaces defined by the cutting devices on the annular peripheral wall and the cutting devices on the convex-shape upper wall. Support shoe means are mounted beneath the cutting wheel means for movably supporting the cutting wheel means on the tunnel floor. Drive motor means are mounted on the support shoe means and are operatively associated with the cutting wheel means for causing rotation of the cutting wheel means relative to the tunnel face and the support shoe means. Thrust means are connected to the support shoe means for advancing the cutting wheel means and the support shoe means toward the tunnel face. Gripping means are associated with the thrust means for gripping engagement with the opposite tunnel side walls to prevent axial rearward movement as the cutting wheel means and the support shoe means are advanced toward the tunnel face. Vertical and horizontal steering means for changing the direction of advance of the machine are described. Paddle means and conveyor means for removing rock cuttings from the end face of the tunnel are disclosed. Shield means for shielding workers from dust and debris and for containing the cuttings are also described.

  11. Machine vision system for the control of tunnel boring machines

    NASA Astrophysics Data System (ADS)

    Habacher, Michael; O'Leary, Paul; Harker, Matthew; Golser, Johannes

    2013-03-01

    This paper presents a machine vision system for the control of dual-shield Tunnel Boring Machines. The system consists of a camera with ultra bright LED illumination and a target system consisting of multiple retro-reflectors. The camera mounted on the gripper shield measures the relative position and orientation of the target which is mounted on the cutting shield. In this manner the position of the cutting shield relative to the gripper shield is determined. Morphological operators are used to detect the retro-reflectors in the image and a covariance optimized circle fit is used to determine the center point of each reflector. A graph matching algorithm is used to ensure a robust matching of the constellation of the observed target with the ideal target geometry.

  12. A bi-axial active boring tool for chatter mitigation

    SciTech Connect

    Redmond, J.M.; Barney, P.S.

    1998-08-01

    This paper summarizes results of metal cutting tests using an actively damped boring bar to suppress regenerative chatter. PZT stack actuators were integrated into a commercially available two-inch diameter boring bar to suppress bending vibrations. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on a variety of machines. A cutting test using the prototype bar to remove metal from a hardened steel workpiece verifies that the authors actively damped tool yields significant vibration reduction and improved surface finish as compared to the open-loop case. In addition, the overall performance of the prototype bar is compared to that of an unmodified bar of pristine geometry, revealing that a significant enlargement of the stable machining envelope is obtained through application of feedback control.

  13. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  14. Earth boring tool with improved inserts

    SciTech Connect

    Dill, H.; Scales, S.

    1980-07-08

    A description is given of an improved earth boring tool of the type having at least one sintered tungsten carbide insert with a substantially cylindrical retaining surface interferringly secured to the wall of a retaining hole, the improvement comprising said retaining surface roughened such that in any lineal increment of at least 010 inch, there are at least three asperities at least 0.001 in ch long and at least 0.00005 inch deep when measured with a stylus point with a 0.00005 inch radius. An improved method of retaining tungsten carbide inserts in an earth boring tool, said method comprising the steps of: drilling and reaming a plurality of holes in selected locations on the earth boring tool; sintering a plurality of tungsten carbide inserts with a binder selected from the group consisting of cobalt, nickel or iron; grinding a substantially cylindrical wall surface on the inserts that are nominally larger in diameter than the drilled and reamed holes; roughening the wall surface of the inserts such that any lineal increment of at least 0.010 inch has at least three asperities which are at least 0.001 inch long and at least 00005 inch deep when measured with a stylus point with a 0.00005 inch radius; and forcing the inserts interferringly into the mating drilled and reamed holes.

  15. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  16. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  17. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  18. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  19. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boring-type machines equipped for auxiliary... AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for auxiliary face ventilation. Each boring-type continuous-mining machine that is submitted for approval...

  20. Adaptronic tools for superfinishing of cylinder bores

    NASA Astrophysics Data System (ADS)

    Roscher, Hans-Jürgen; Hochmuth, Carsten; Hoffmann, Michael; Praedicow, Michael

    2012-04-01

    Today in the production of internal combustion engines it is possible to make pistons as well as cylinders, for all practical purposes, perfectly round. The negative consequences of the subsequent assembly processes and operation of the engine is that the cylinders and pistons are deformed, resulting in a loss of power and an increase in fuel consumption. This problem can be solved by using an adaptronic tool, which can machine the cylinder to a predetermined nonround geometry, which will deform to the required geometry during assembly and operation of the engine. The article describes the actuatory effect of the tool in conjunction with its measuring and controlling algorithms. The adaptronic tool consists out the basic tool body and three axially-staggered floating cutter groups, these cutter groups consist out of guides, actuators and honing stones. The selective expansion of the tool is realised by 3 piezoelectric multilayer-actuators deployed in a series - parallel arrangement. It is also possible to superimpose actuator expansion on the conventional expansion. A process matrix is created during the processing of the required and actual contour data in a technology module. This is then transferred over an interface to the machine controller where it is finally processed and the setting values for the piezoelectric actuators are derived, after which an amplifier generates the appropriate actuator voltages. A slip ring system on the driveshaft is used to transfer the electricity to the actuators in the machining head. The functioning of the adaptronic form-honing tool and process were demonstrated with numerous experiments. The tool provides the required degrees of freedom to generate a contour that correspond to the inverse compound contour of assembled and operational engines.

  1. System safety analysis of the Yucca Mountain tunnel boring machine

    SciTech Connect

    Smith, M.G.; Booth, L.; Eisler, L.

    1995-12-01

    The purpose of this analysis was to systematically identify and evaluate hazards related to the tunnel boring machine to be used at Yucca Mountain. This analysis required three steps to complete the risk evaluation: hazard/scenario identification, consequence assessment, and frequency assessment. The result was a `risk evaluation` of the scenarios identified in this analysis in accordance with MIL-STD-882C. The risk assessment in this analysis characterized the accident scenarios associated with the TBM in terms of relative risk and included recommendations for mitigating all identified risks.

  2. Grinding tool for making hemispherical bores in hard materials

    DOEpatents

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  3. Tunnel boring machine and method of operating same

    SciTech Connect

    Snyder, L.L.

    1983-02-01

    A tunneling machine adapted to cut tunnels on a continuous basis and to apply continuous pressure on the tunnel face even during repositioning of the gripping legs is disclosed. The machine includes at least two supporting frames having a plurality of extendible feet which are adapted to grip the tunnel wall. The support frames are provided with axial bores therethrough, and a hollow piston extends through all of the bores for longitudinal movement along the axis of the tunnel. In accordance with the method, a tunneling operation is carried out by extending at least one pair of extendible feet against the walls of the tunnel to securely hold at least one of the support frames relative to the tunnel wall. The piston chamber of each support frame which is clamped to the wall is pressurized to drive the cutter head against the face of the tunnel. While the cutter head is being advanced in this manner, unclamped support feet are moved forward to a clamping position to take over when the first-mentioned support feet reach the end of their effective stroke. This operation is repeated to apply continuous thrust pressure to the cutting head.

  4. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  5. Tunnel boring machine applications; Yucca Mountain Exploratory Studies Facility

    SciTech Connect

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-11-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM.

  6. Boring and Drilling Tools. Pre-Apprenticeship Phase 1 Training.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on boring and drilling tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to enable students to identify, select, and understand the proper use of many common awls, bits, and drilling tools. The module may contain some or all of the following: a…

  7. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  8. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    NASA Astrophysics Data System (ADS)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  9. Construction of a cylindrical brine test room using a tunnel boring machine

    SciTech Connect

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing, technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs.

  10. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  11. Slide system for machine tools

    DOEpatents

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  12. Slide system for machine tools

    DOEpatents

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  13. Machine tool evaluation and machining operation development

    SciTech Connect

    Morris, T.O.; Kegg, R.

    1997-03-15

    The purpose of this CRADA was to support Cincinnati Milacron`s needs in fabricating precision components, from difficult to machine materials, while maintaining and enhancing the precision manufacturing skills of the Oak Ridge Complex. Oak Ridge and Cincinnati Milacron personnel worked in a team relationship wherein each contributed equally to the success of the program. Process characterization, control technologies, machine tool capabilities, and environmental issues were the primary focus areas. In general, Oak Ridge contributed a wider range of expertise in machine tool testing and monitoring, and environmental testing on machining fluids to the defined tasks while Cincinnati Milacron personnel provided equipment, operations-specific knowledge and shop-floor services to each task. Cincinnati Milacron was very pleased with the results of all of the CRADA tasks. However, some of the environmental tasks were not carried through to a desired completion due to an expanding realization of need as the work progressed. This expansion of the desired goals then exceeded the time length of the CRADA. Discussions are underway on continuing these tasks under either a Work for Others agreement or some alternate funding.

  14. Tool grinding machine

    DOEpatents

    Dial, Sr., Charles E.

    1980-01-01

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  15. Improved tool grinding machine

    DOEpatents

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  16. Design of a machine to bore and line a long horizontal hole in tuff: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Friant, J.E.; Dowden, P.B.

    1987-09-01

    This report describes an engineering design for equipment capable of simultaneously drilling and lining deep horizontal bore holes. The ultimate use of the equipment is to bore up to 600 ft long, 3 ft diameter emplacement holes for a nuclear waste repository. The specific system designed is referred to as a Development Prototype Boring Machine (DPBM) which will be used to demonstrate the drilling/lining capability in field development tests. The system utilizes as in-hole electric drive and a vacuum chip removal and handling system. The drilling unit is capable of active directional control and uses laser-type alignment equipment. The system combines the features of a small steerable tunnel boring machine, combined with a horizontally-oriented raise drill, thereby utilizing current technology. All elements of the system are compact and mobile as required for a shaft entry, underground mining environment. 3 refs., 35 figs., 1 tab.

  17. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    NASA Astrophysics Data System (ADS)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  18. Machine Tool Operation, Course Description.

    ERIC Educational Resources Information Center

    Denny, Walter E.; Anderson, Floyd L.

    Prepared by an instructor and curriculum specialists, this course of study was designed to meet the individual needs of the dropout and/or hard-core unemployed youth by providing them skill training, related information, and supportive services knowledge in machine tool operation. The achievement level of each student is determined at entry, and…

  19. Load-sharing characteristic of multiple pinions driving in tunneling boring machine

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Sun, Qinchao; Sun, Wei; Ding, Xin; Tu, Wenping; Wang, Qingguo

    2013-05-01

    The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM.

  20. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  1. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  2. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  3. Machine tools and fixtures: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.

  4. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    SciTech Connect

    N /A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  5. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  6. Wear analysis of disc cutters of full face rock tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2014-11-01

    Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.

  7. Design theory of full face rock tunnel boring machine transition cutter edge angle and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2013-05-01

    At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutter head gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.

  8. National Machine Tool Partnership (NMTP) FY 1998

    SciTech Connect

    1997-12-01

    The Department of Energy (DOE) Defense Programs (DP) National Machine Tool Partnership (NMTP) program has been active since February 1993. The NMTP program is an element of the DP Technology Partnership Program. The NMTP has assisted the Association of Manufacturing Technology (AMT) in the formulation of a technology roadmap for the machine tool industry. This roadmap has been developed to provide a clearer step-by-step plan for technology development and implementation to help close the gap between user requirements and industry implementation. The document outlines a suggested path for the development of technologies for the machine tool industry. The plan details the technology issues or needs analysis facing the machine tool industry. In a parallel effort, the NMTP has prepared a needs analysis of machine tool related technologies needed in various DP laboratory weapons core programs, including the Advanced Design and Production Technologies (ADaPT) initiative.

  9. The use of a Tunnel Boring Machine (TBM) as a seismic source

    NASA Astrophysics Data System (ADS)

    Kreutzer, Ingrid; Chwatal, Werner; Radinger, Alexander; Brückl, Ewald

    2014-05-01

    The Tunnel Seismic While Drilling (TSWD) method uses the Tunnel Boring Machine (TBM) as the seismic source. The method has been developed to predict the geological situation from reflections ahead of the tunnel face without disturbing the tunneling. The vibrations of the TBM are continuously monitored near the drilling head (pilot signal) as well as the direct and reflected seismic wave field at borehole geophones (geophone signal) situated in the tunnel wall behind the TBM. During the processing these signals are correlated and result in excellent seismic traces comparable to conventional seismic methods. The interpretation of the reflections leads to a nearly daily prognosis about 100 m ahead of the TBM. This system was successfully implemented at three different construction sites in Austria and is currently operating at one further. The cutters on front of the TBM head are pressed against the tunnel face and split the rock during rotating which is called the chipping process. This cutting process generates seismic waves radiated into the rock mass and results also in vibrations of the TBM itself. On the one hand it is important to know the source mechanism of the TBM and the radiation pattern of the seismic waves in all directions. Until now this is not well understood. To investigate this 3C-geophones were installed at the surface above the tunnel axis at different construction sites. The obtained seismograms show the forward and backward radiated seismic wave field of the TBM, for the present without consideration of the influence of the free surface. We compare this data with modelled seismograms in which we use different possible source mechanism, like single force or force due to tensile cracks. First results are shown in the scope of this work. On the other hand it is essential to know how good the recorded pilot signal represents the entire chipping process. Due to technically reasons the pilot signal has been registered so far on the non-rotating part

  10. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  11. Method for machining steel with diamond tools

    DOEpatents

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  12. Speed-Selector Guard For Machine Tool

    NASA Technical Reports Server (NTRS)

    Shakhshir, Roda J.; Valentine, Richard L.

    1992-01-01

    Simple guardplate prevents accidental reversal of direction of rotation or sudden change of speed of lathe, milling machine, or other machine tool. Custom-made for specific machine and control settings. Allows control lever to be placed at only one setting. Operator uses handle to slide guard to engage or disengage control lever. Protects personnel from injury and equipment from damage occurring if speed- or direction-control lever inadvertently placed in wrong position.

  13. Numerically Controlled Machine Tools and Worker Skills.

    ERIC Educational Resources Information Center

    Keefe, Jeffrey H.

    1991-01-01

    Analysis of data from "Industry Wage Surveys of Machinery Manufacturers" on the skill levels of 57 machining jobs found that introduction of numerically controlled machine tools has resulted in a very small reduction in skill levels or no significant change, supporting neither the deskilling argument nor argument that skill levels increase with…

  14. Machine Tool Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course to prepare machine tool, drill press, grinding machine, lathe, mill, and/or power saw operators. The listing is divided into six sections, with each one outlining the tasks required to perform the duties that have been identified for the given occupation.…

  15. Refrigerated cutting tools improve machining of superalloys

    NASA Technical Reports Server (NTRS)

    Dudley, G. M.

    1971-01-01

    Freon-12 applied to tool cutting edge evaporates quickly, leaves no residue, and permits higher cutting rate than with conventional coolants. This technique increases cutting rate on Rene-41 threefold and improves finish of machined surface.

  16. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  17. Upgrading the capabilities of existing machine tools for precision machining

    SciTech Connect

    Barkman, W.E.

    1982-05-01

    A number of two-axis turning machines at the Oak Ridge Y-12 Plant have undergone upgrading as a means of meeting the needs for parts with tolerances that were more restrictive than the capability of the basic machine. The level of upgrading has ranged from changing a single machine characteristic to doing a complete overhaul of the slides, drives, spindle, and control system. The features available for the up-grading process include: tool setters, air bearing spindles and slides, pressurized oil bearing slides, electric dc torque motor drives, linear motor slide drives, eddy current spindle drives, laser feedback, vibration-isolation machine platforms, and computer numerical control (CNC) systems. Actual case histories are presented which show the levels of performance achieved with the various modifications. A discussion of the advantages and disadvantages of the various options is included.

  18. Portable Chamfering Tool

    NASA Technical Reports Server (NTRS)

    Berson, Leo A.

    1987-01-01

    Portable machine tool precisely cuts chamfer on valve seat. With tool, delicate machining operation done without removing part to machine shop. Taken to part and used wherever pressurized air and electric power available. Plug and bushing nest in bore chamfered. They guide steady cutter rod as it cuts 15 degrees chamfer on top edge of bore.

  19. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  20. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  1. 2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by Simmons Machine Tool Corporation, Albany, New York, and Betts Company, a division of Niles Tool Company, Hamilton, Ohio. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  2. Advanced machine tools, loading systems viewed

    NASA Astrophysics Data System (ADS)

    Kharkov, V. I.

    1986-03-01

    The machine-tooling complex built from a revolving lathe and a two-armed robot designed to machine short revolving bodies including parts with curvilinear and threaded surfaces from piece blanks in either small-series or series multiitem production is described. The complex consists of: (1) a model 1V340F30 revolving lathe with a vertical axis of rotation, 8-position revolving head on a cross carriage and an Elektronika NTs-31 on-line control system; (2) a gantry-style two-armed M20-Ts robot with a 20-kilogram (20 x 2) load capacity; and (3) an 8-position indexable blank table, one of whose positions is for initial unloading of finished parts. Subsequently, machined parts are set onto the position into which all of the blanks are unloaded. Complex enclosure allows adjustment and process correction during maintenance and convenient observation of the machining process.

  3. Machine-Tool Technology Instructor's Sourcebook.

    ERIC Educational Resources Information Center

    Tammer, Anthony M.

    This document lists and annotates commercial and noncommercial resources pertaining to machine-tool technology. Following an introduction that explains how the document came to be written, the subjects of succeeding chapters are (1) periodicals; (2) associations; (3) audiovisual resources, including a subject index; (4) publishers, including a…

  4. Improving the performance of tunnel, raise, and shaft boring machines for coal-mine applications. Open File Report, 1 September 1980-1 September 1985

    SciTech Connect

    Ozdemir, L.

    1986-03-15

    A 6-ft-diam laboratory tunnel, raise, and shaft-boring machine was designed and constructed to carry out research investigations to enhance the performance of mechanical rock-excavation equipment. The machine is operated with a computer-control system and features extensive instrumentation to monitor and record various test parameters, including triaxial cutter forces, machine thrust, torque, revolutions per minute, and penetration rate. An extensive laboratory testing program was conducted using this machine, demonstrating the feasibility of attaining high rates of penetration in various sedimentary geologies.

  5. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  6. An investigation of chatter and tool wear when machining titanium

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.

  7. Low-cost boring mill

    NASA Technical Reports Server (NTRS)

    Hibdon, R. A.

    1979-01-01

    Portable unit and special fixture serve as boring mill. Machine, fabricated primarily from scrap metal, was designed and set up in about 12 working days. It has reduced setup and boring time by 66 percent as compared with existing boring miles, thereby making latter available for other jobs. Unit can be operated by one man.

  8. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  9. BORE II

    Energy Science and Technology Software Center (ESTSC)

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  10. Automatic tool path generation for finish machining

    SciTech Connect

    Kwok, Kwan S.; Loucks, C.S.; Driessen, B.J.

    1997-03-01

    A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch diameter CBN grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm.

  11. Web-based machine tool condition monitoring

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Victory, J. L.

    2000-12-01

    This paper looks at the advantages of using the Internet, as the basis for the implementation of low-cost condition monitoring systems, in the manufacturing industry. A model based condition monitoring system, is presented where a number of machining stations dispersed at different physical locations can be inspected via Internet access and the signals from the process analyzed in a dedicated condition monitoring center. Incentive for the new approach to the system health monitoring, logging and surveillance are presented. These extend into advantages of using model-based techniques and the need for an appropriate mathematical model of the machine tool. Finally, the data acquisition and communication system to be used in this application for Internet access will be explained.

  12. Circular machine design techniques and tools

    SciTech Connect

    Servranckx, R.V.; Brown, K.L.

    1986-04-01

    Some of the basic optics principles involved in the design of circular accelerators such as Alternating Gradient Synchrotrons, Storage and Collision Rings, and Pulse Stretcher Rings are outlined. Typical problems facing a designer are defined, and the main references and computational tools are reviewed that are presently available. Two particular classes of problems that occur typically in accelerator design are listed - global value problems, which affect the control of parameters which are characteristic of the complete closed circular machine, and local value problems. Basic mathematical formulae are given that are considered useful for a first draft of a design. The basic optics building blocks that can be used to formulate an initial machine design are introduced, giving only the elementary properties and transfer matrices only in one transverse plane. Solutions are presented for some first-order and second-order design problems. (LEW)

  13. Processing and Damping Properties of Sputtered NiTi Thin Films for Tools in Machining Processes

    NASA Astrophysics Data System (ADS)

    Kahleyss, F.; de Miranda, R. Lima; Surmann, T.; Zamponi, C.; Machai, C.; Biermann, D.; Quandt, E.

    2011-07-01

    Nowadays, many manufacturing processes require the machining of complex forms with a high aspect ratio or cavities. Tools with a long overhang length are a common method to meet these requirements. Typical examples for this are boring bars for bore-turning and the milling with very long cutters. These tools tend to vibrate strongly due to their slender shape. The stress-induced transformation of austenite to martensite and the distinctive hysteresis loop allow the NiTi shape memory alloys (SMA) to absorb vibration energy. This article describes the innovative approach to dampen process vibrations by coating the tool shafts of cutting tools with long overhang with NiTi thin films. It explores how these thin films can be applied on polished tungsten carbide shafts and how their modal parameters are modified by these coatings. In a further step, this knowledge is used to calculate stability charts of corresponding machining processes. The study reported in this article identified the stabilizing effects of coatings with a thickness of 2-4 μm on milling processes. The minimum stability limit was increased by up to 200%.

  14. Coordinate measurement machines as an alignment tool

    SciTech Connect

    Wand, B.T.

    1991-03-01

    In February of 1990 the Stanford Linear Accelerator Center (SLAC) purchased a LEITZ PM 12-10-6 CMM (Coordinate measurement machine). The machine is shared by the Quality Control Team and the Alignment Team. One of the alignment tasks in positioning beamline components in a particle accelerator is to define the component's magnetic centerline relative to external fiducials. This procedure, called fiducialization, is critical to the overall positioning tolerance of a magnet. It involves the definition of the magnetic center line with respect to the mechanical centerline and the transfer of the mechanical centerline to the external fiducials. To perform the latter a magnet coordinate system has to be established. This means defining an origin and the three rotation angles of the magnet. The datum definition can be done by either optical tooling techniques or with a CMM. As optical tooling measurements are very time consuming, not automated and are prone to errors, it is desirable to use the CMM fiducialization method instead. The establishment of a magnet coordinate system based on the mechanical center and the transfer to external fiducials will be discussed and presented with 2 examples from the Stanford Linear Collider (SLC). 7 figs.

  15. A New Approach to Precision Design for Machine Tools

    NASA Astrophysics Data System (ADS)

    Li, Baodong; Jiao, Aisheng; Yi, Xiangbin; Xu, Yanwei

    Precision of the NC axes is an important aspect of machine tool design. Conventionally, the precision specification of machine tools is empirically determined, resulting in poor designs with insufficient or excessive precision. To provide a cost-effective precision specification for machine tools, an active precision design approach is proposed to generate the specification of the positioning repeatability of NC axes to meet the designated working precision requirements of the machine tools. Finally, the approach is demonstrated and validated through a case study of precision design for a gear milling machine.

  16. 13. TOOL ROOM SHOWING W. ROBERTSON MACHINE & FOUNDRY CO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOOL ROOM SHOWING W. ROBERTSON MACHINE & FOUNDRY CO. NO. 5 POWER HACKSAW (FOREGROUND) AND WELLS METAL BAND SAW (BACKGROUND). VIEW SOUTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  17. Interpolator for numerically controlled machine tools

    DOEpatents

    Bowers, Gary L.; Davenport, Clyde M.; Stephens, Albert E.

    1976-01-01

    A digital differential analyzer circuit is provided that depending on the embodiment chosen can carry out linear, parabolic, circular or cubic interpolation. In the embodiment for parabolic interpolations, the circuit provides pulse trains for the X and Y slide motors of a two-axis machine to effect tool motion along a parabolic path. The pulse trains are generated by the circuit in such a way that parabolic tool motion is obtained from information contained in only one block of binary input data. A part contour may be approximated by one or more parabolic arcs. Acceleration and initial velocity values from a data block are set in fixed bit size registers for each axis separately but simultaneously and the values are integrated to obtain the movement along the respective axis as a function of time. Integration is performed by continual addition at a specified rate of an integrand value stored in one register to the remainder temporarily stored in another identical size register. Overflows from the addition process are indicative of the integral. The overflow output pulses from the second integration may be applied to motors which position the respective machine slides according to a parabolic motion in time to produce a parabolic machine tool motion in space. An additional register for each axis is provided in the circuit to allow "floating" of the radix points of the integrand registers and the velocity increment to improve position accuracy and to reduce errors encountered when the acceleration integrand magnitudes are small when compared to the velocity integrands. A divider circuit is provided in the output of the circuit to smooth the output pulse spacing and prevent motor stall, because the overflow pulses produced in the binary addition process are spaced unevenly in time. The divider has the effect of passing only every nth motor drive pulse, with n being specifiable. The circuit inputs (integrands, rates, etc.) are scaled to give exactly n times the

  18. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  19. Experimental investigation of active machine tool vibration control

    NASA Astrophysics Data System (ADS)

    Rojas, J.; Liang, Chen; Geng, Zheng J.

    1996-05-01

    The successful vibration reduction of machine tools during machining process can improve productivity, increase quality, and reduce tool wear. This paper will present our initial investigation in the application of smart material technologies in machine tool vibration control using magnetostrictive actuators and electrorheological elastomer dampers on an industrial Sheldon horizontal lathe. The dynamics of the machining process are first studied, which reveals the complexity in the machine tool vibration response and the challenge to the active control techniques. The active control experiment shows encouraging results. The use of electrorheological elastomer damping device for active/passive vibration control provides significant vibration reduction in the high frequency range and great improvement in the workpiece surface finishing. The research presented in this paper demonstrates that the combination of active and active/passive vibration control techniques is very promising for successful machine tool vibration control.

  20. [Research on infrared safety protection system for machine tool].

    PubMed

    Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De

    2008-04-01

    In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc. PMID:18619302

  1. Tool force evaluation of lathe machined high explosives

    SciTech Connect

    Flowers, G.L.

    1980-04-01

    The purpose of this study was to develop a better understanding of the effects of machining properties upon tool forces encountered during lathe machining of high explosives, in order to optimize machining conditions for mechanical properties test specimens. Monetary considerations dictated that the tooling either already exist or be fabricated in-house using limited machine shop capability. The design chosen which fit between the tool holder and the tool post and interfaced to existing signal conditioners was easily fabricated. The study evaluated all forces on the cutter during machining of two types of high explosives at four cutter radii, four feed rates, three depths of cut and two cutting speeds. The study pointed out design problems, instrumentation drift, tool chatter and detection levels. It also showed that the type of high explosive was more significant than first thought toward influencing tool force levels.

  2. An Expert Machine Tools Selection System for Turning Operation

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The turning machining process is an important process in the manufacturing industry. It is important to select the right tool for the turning process so that the manufacturing cost will be decreased. The main objective of this research is to select the most suitable machine tools with respect to user input requirement. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Machine Tool Selection Module, User Interface Module and Help Module. The system capable of selecting the most suitable machine along with its full specification and ranks the machines based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate machine tools to suit one requirement in the turning process for manufacturing industry.

  3. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2011-05-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  4. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2010-12-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  5. Market for multiaxis laser machine tools

    NASA Astrophysics Data System (ADS)

    Ream, Stanley L.

    1991-03-01

    While it's true that this is an exciting topic, it niay be more exciting than profitable, but it certainly has captured the attention of a lot of us laser folks, and it keeps growing almost because it wants to. First of all let me comment briefly with a word from our sponsor that GE Fanuc is one of the several ways the Fanuc laser product gets into the United States. We market it, GM Fanuc also markets it, and of course it shows up on Japanese machine tool built products. The information in this little presentation came from discussions with you folks wherever possible. In some cases I was unable to make contact with the horse's mouth as it were, but we got roundabout information so it's not gospel, but it's close. We've also had some updated information at the show here updated rumors maybe that suggest that some of the numbers may be high or low. I think in the aggregate it's not too far off.

  6. Information Model for Machine-Tool-Performance Tests

    PubMed Central

    Lee, Y. Tina; Soons, Johannes A.; Donmez, M. Alkan

    2001-01-01

    This report specifies an information model of machine-tool-performance tests in the EXPRESS [1] language. The information model provides a mechanism for describing the properties and results of machine-tool-performance tests. The objective of the information model is a standardized, computer-interpretable representation that allows for efficient archiving and exchange of performance test data throughout the life cycle of the machine. The report also demonstrates the implementation of the information model using three different implementation methods.

  7. Application of accelerated tool life tests to machining of titanium

    SciTech Connect

    Stagner, R.T.

    1980-09-01

    The tool life of several commercial C-2 grade cutting tools used in machining titanium was estimated using two experimental techniques, the quick facing test and the multipass facing test. Comparisons among the tools tested were made statistically by analyzing differences in regression equations derived from test data. Tool life end points were determined by operator judgement, tool force analysis, and tool wear measurement. Of the ten tools tested, nine had the same life under the test conditions.

  8. Graphite fiber reinforced structure for supporting machine tools

    DOEpatents

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  9. Study on machining mechanism of nanotwinned CBN cutting tool

    NASA Astrophysics Data System (ADS)

    Chen, Junyun; Jin, Tianye; Wang, Jinhu; Zhao, Qingliang; Lu, Ling

    2014-08-01

    The latest developed nanotwinned cubic boron nitride (nt-CBN) with isotropic nano-sized microstructure possesses an extremely high hardness (~100GPa Hv), very large fracture toughness (>12Mpa m1/2) and excellent high temperature stability. Thus nt-CBN is a promising tool material to realize ultra-precision cutting of hardened steel which is widely used in mold insert of optical and opto-electrical mass products. In view of its hard machinability, the machining mechanism is studied in this paper. Three feasible methods of mechanical lapping, laser machining as well as ion beam sputtering are applied to process nt-CBN. The results indicate that among the three kinds of methods, mechanical lapping not only can achieve the highest machining accuracy because of material removing at ductile mode completely, but also has satisfactory high material removal rate. Thus mechanical lapping method is appropriate to finish machining of nt-CBN cutting tool. Moreover, laser machining method can be only used in contour machining or rough machining of cutting tool as worse machined surface quality. With regard to ion beam sputtering method, the material remove rate is too low in spite of high machining accuracy. Additionally, no phase transition was found in any machining process of nt-CBN.

  10. Modeling of cumulative tool wear in machining metal matrix composites

    SciTech Connect

    Hung, N.P.; Tan, V.K.; Oon, B.E.

    1995-12-31

    Metal matrix composites (MMCs) are notoriously known for their low machinability because of the abrasive and brittle reinforcement. Although a near-net-shape product could be produced, finish machining is still required for the final shape and dimension. The classical Taylor`s tool life equation that relates tool life and cutting conditions has been traditionally used to study machinability. The turning operation is commonly used to investigate the machinability of a material; tedious and costly milling experiments have to be performed separately; while a facing test is not applicable for the Taylor`s model since the facing speed varies as the tool moves radially. Collecting intensive machining data for MMCs is often difficult because of the constraints on size, cost of the material, and the availability of sophisticated machine tools. A more flexible model and machinability testing technique are, therefore, sought. This study presents and verifies new models for turning, facing, and milling operations. Different cutting conditions were utilized to assess the machinability of MMCs reinforced with silicon carbide or alumina particles. Experimental data show that tool wear does not depend on the order of different cutting speeds since abrasion is the main wear mechanism. Correlation between data for turning, milling, and facing is presented. It is more economical to rank machinability using data for facing and then to convert the data for turning and milling, if required. Subsurface damages such as work-hardened and cracked matrix alloy, and fractured and delaminated particles are discussed.

  11. Influence of Tool Balancing in High Speed Machining

    NASA Astrophysics Data System (ADS)

    Bašovská, Klaudia; Peterka, Jozef

    2014-12-01

    The high speed machining (HSM) is now considered as one of the key manufacturing technologies for higher throughput and productivity. HSM used higher rotational speed of the spindle (40,000 min-1 and higher). With increasing high speed spindle rotations raises a number of dynamic forces. Even a small mass unbalance in the spindle and tooling generates tool vibration. Tool vibration shortens tool life and lowers the quality of the machined surface. It is necessary to minimize this vibration by balancing tool and tool holder. The balancing process improves the mass distribution of a cutting tool and its holder, allowing the combination of the two to rotate with the minimum amount of unbalanced centrifugal forces. Machining with balanced tool will provide better surface quality, accuracy and less tool and machine wear. In this study is focused on unbalance cutting tools, definitions, balancing techniques, sources, effects, processes and machineries. The aim of this article was to examine the relationship between unbalance and tool holders used in high speed metalworking machine tools

  12. Study of on-machine error identification and compensation methods for micro machine tools

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-08-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  13. RHIC warm-bore systems

    SciTech Connect

    Welch, K.M.

    1994-07-01

    Pressure profiles, in time, are calculated as a consequence of anticipated outgassing of various beam components (e.g., rf cavities, etc.) and warm-bore beam pipes. Gold beam lifetimes and transverse beam emittance growth are given for calculated average pressures. Examples of undesirable warm-bore conditions are presented such as contaminated experimental beam pipes and warm-bore magnets (i.e., DX). These examples may prove instructive. The methods used in making these calculations are presented in Section 2. They are applicable to all linear systems. The calculations given apply to the RHIC accelerator and more specifically to warm-bore regions of the machine.

  14. Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker

    PubMed Central

    Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744

  15. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  16. Job Grading Standard for Machine Tool Operator, WG-3431.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  17. 27. View within machine room showing water tank, tool chest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View within machine room showing water tank, tool chest and oil/grease cans used for maintenance. (Nov. 25, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY

  18. Reducing tool wear when machining austenitic stainless steels

    SciTech Connect

    Magee, J.H.; Kosa, T.

    1998-07-01

    Austenitic stainless steels are considered more difficult to machine than carbon steels due to their high work hardening rate, large spread between yield and ultimate tensile strength, high toughness and ductility, and low thermal conductivity. These characteristics can result in a built-up edge or excessive tool wear during machining, especially when the cutting speed is too high. The practical solution is to lower the cutting speed until tool life reaches an acceptable level. However, lower machining speed negatively impacts productivity. Thus, in order to overcome tool wear at relatively high machining speeds for these alloys, on-going research is being performed to improve cutting fluids, develop more wear-resistant tools, and to modify stainless steels to make them less likely to cause tool wear. This paper discusses compositional modifications to the two most commonly machined austenitic stainless steels (Type 303 and 304) which reduced their susceptibility to tool wear, and allowed these grades to be machined at higher cutting speeds.

  19. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  20. Toward a metrology for precision-machine-tool control systems

    SciTech Connect

    Pomernacki, C.L.; McCue, H.K.; Newton, L.E.

    1982-07-20

    The difficulty of determining the source of an error in the performance of the control system of a computer numerically controlled (CNC) precision machine tool is discussed and recommendations are made for error isolation using the Machine Control System Meterology Tree. These recommendations refer to types of tests for specific errors and to a possible architecture for a CNC performance tester. It is concluded that there is a need for both a control system metrology and for establishing standards of performance and testing methods for precision machine tool control systems. (LCL)

  1. Lathe tool bit and holder for machining fiberglass materials

    NASA Technical Reports Server (NTRS)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  2. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  3. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  4. NUMERICAL CONTROL OF MACHINE TOOLS, AN INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    IN A SUMMER WORKSHOP, JUNIOR COLLEGE INSTRUCTORS AND INDUSTRIAL SUPERVISORS DEVELOPED THIS GUIDE FOR TEACHER USE IN A 3-SEMESTER-HOUR COURSE AT THE JUNIOR COLLEGE LEVEL. THE COURSE OBJECTIVES ARE TO (1) UPGRADE JOURNEYMEN IN MACHINE TOOL OPERATION, MAINTENANCE, AND TOOLING, AND (2) ACQUAINT MANUFACTURING, SUPERVISORY, PLANNING, AND MAINTENANCE…

  5. Hard turning micro-machine tool

    DOEpatents

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  6. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  7. 25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF THE MACHINE TOOL LAYOUT IN ROOMS 244 AND 296. MACHINES WERE USED FOR STAINLESS STEEL FABRICATION (THE J-LINE). THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  8. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, Carl J.

    1985-01-01

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: A tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  9. Method for producing hard-surfaced tools and machine components

    DOEpatents

    McHargue, C.J.

    1981-10-21

    In one aspect, the invention comprises a method for producing tools and machine components having superhard crystalline-ceramic work surfaces. Broadly, the method comprises two steps: a tool or machine component having a ceramic near-surface region is mounted in ion-implantation apparatus. The region then is implanted with metal ions to form, in the region, a metastable alloy of the ions and said ceramic. The region containing the alloy is characterized by a significant increase in hardness properties, such as microhardness, fracture-toughness, and/or scratch-resistance. The resulting improved article has good thermal stability at temperatures characteristic of typical tool and machine-component uses. The method is relatively simple and reproducible.

  10. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  11. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    SciTech Connect

    Outeiro, Jose C.; Pina, Jose C.; Umbrello, Domenico; Rizzuti, Stefania

    2007-05-17

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  12. Behavior of some sealing arrangements for machine tool spindles

    SciTech Connect

    Philpott, M.L.; Colton, M.W.; Cusano, C.

    1995-09-01

    A test stand has been built and instrumented to simulate conditions in the spindle cavity of production machine tools, such as high-speed transfer machines, machining centers, milling machines, etc. The purpose of the simulation is to better understand causes of premature support rolling element bearing failures due to grease degradation and corrosion, from the ingress of coolant vapor. Performance characteristics based on coolant vapor in the test chamber, as measured by relative humidity, chamber temperature and chamber pressure relative to the lab atmosphere were obtained for a radial double-lip seal, labyrinth seal, viscoseal/face seal combination and a mechanical face seal. For the operating conditions considered, the best performance was obtained from the viscoseal/face combination followed by the labyrinth seal. 14 refs., 15 figs.

  13. Educational Resources for the Machine Tool Industry. Executive Summary.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This document describes the MASTER (Machine Tool Advanced Skills Educational Resources) program, a geographic partnership of seven of the nation's best 2-year technical and community colleges located in seven states. The project developed and disseminated a national training model for manufacturing processes and new technologies within the…

  14. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  15. Portable power tool machines weld joints in field

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1966-01-01

    Portable routing machine for cutting precise weld joints required by nonstandard pipe sections used in the field for transfer of cryogenic fluids. This tool is adaptable for various sizes of pipes and has a selection of router bits for different joint configurations.

  16. Tool nos. 277 and 2201, details for bending machine, Johnson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Tool nos. 277 and 2201, details for bending machine, Johnson Company, Johnstown, Pa. Scale 3 inches - 1 ft, Feb 13th 1893, drawing number 15098. (Photograph of drawing held at the Johnstown Corporation General Office, Johnstown, Pennsylvania) - Johnson Steel Street Rail Company, 525 Central Avenue, Johnstown, Cambria County, PA

  17. A Real-Time Tool Positioning Sensor for Machine-Tools

    PubMed Central

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472

  18. Laboratory directed research and development final report: Intelligent tools for on-machine acceptance of precision machined components

    SciTech Connect

    Christensen, N.G.; Harwell, L.D.; Hazelton, A.

    1997-02-01

    On-Machine Acceptance (OMA) is an agile manufacturing concept being developed for machine tools at SNL. The concept behind OMA is the integration of product design, fabrication, and qualification processes by using the machining center as a fabrication and inspection tool. This report documents the final results of a Laboratory Directed Research and Development effort to qualify OMA.

  19. Vision-based on-machine measurement for CNC machine tool

    NASA Astrophysics Data System (ADS)

    Xia, Ruixue; Han, Jiang; Lu, Rongsheng; Xia, Lian

    2015-02-01

    A vision-based on-machine measurement system (OMM) was developed to improve manufacturing effectiveness. It was based on a visual probe to enable the CNC machine tool itself to act as a coordinate measuring machine (CMM) to inspect a workpiece. The proposed OMM system was composed of a visual probe and two software modules: computer-aided inspection planning (CAIP) module and measurement data processing (MDP) module. The auto-focus function of the visual probe was realized by using astigmatic method. The CAIP module was developed based on a CAD development platform with Open CASCADE as its kernel. The MDP module includes some algorithms for determination of inspection parameters, for example, the chamfered hole was measured through focus variation. The entire system was consequently verified on a CNC milling machine.

  20. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  1. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop and Tool and Die Making Technology Cluster (Program CIP: 48.0507--Tool and Die Maker/Technologist) (Program CIP: 48.0503--Machine Shop Assistant). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…

  2. Machine Tool User Cylindrical Die Rolling Performance Support System

    SciTech Connect

    Bohley, M.C.; Grothe, V.D.

    1998-08-06

    This project was initiated to provide the machine tool industry and the DOE a method for evaluating educating potential users about various aspects of the cylindrical die rolling process including: characteristics of the cylindrical die rolling processes, major productivity and material savings benefits, advantages for use in the fastener industry, production capabilities based on part parameters, and production capabilities based on machine specifications. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) utilized data provided by Kinefac Corporation to develop an interactive performance support system. AlliedSignal developed one complete branch of the program and Kinefac will develop the remaining two branches. Macromedia Authorware version 3.5 and Microsoft Access version 7.0 were selected for development tools. These software tools maximize continued program development ease and program management with future machine technology advancements. Using this authoring tool and the external database resulted in development of a product that has many potential uses within the manufacturing industry. Source code for the product can be used as a template for other applications is reusable and can provide potential solutions to non-manufacturing needs. The final product will be released on CD-ROM.

  3. Calibration of rotary joints in multi-axis machine tools

    NASA Astrophysics Data System (ADS)

    Khan, Abdul Wahid; Liu, Fei; Chen, Wuyi

    2009-05-01

    A novel technique is developed and implemented for error quantification in a rotary joint of a multi-axis machine tool by using a calibrated double ball bar (DBB) system as a working standard. This technique greatly simplified the measurement setup requirement and accelerated the calibration of rotary joints. In addition it is highly economical by reducing the complex optics and eliminating the usage of various tooling, instrumentation and accessories. This methodology is capable of measuring the five degree of freedom (DOF) errors out of 6DOF of a rotary joint by using the calibrated DBB system and a point locating fixture. The methodology is implemented on rotary joints of a five axis CNC machine tools. Equation solvers and error modeling technique are implemented and validity of the methodology and authenticity of the results obtained are tested through simulation in UG and Matlab software. The methodology is found extremely feasible pragmatic, quite simple, efficient and easy to use for error characterization of rotary joints of multi axis machine tools.

  4. Error compensation for thermally induced errors on a machine tool

    SciTech Connect

    Krulewich, D.A.

    1996-11-08

    Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.

  5. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  6. Decorating Cutting as New Approach to Machine Tool System Dynamics

    NASA Astrophysics Data System (ADS)

    Murcinkova, Zuzana; Vasilko, Karol

    2014-12-01

    The paper presents so called decorating cutting focused on turning. It uses self-excited vibrations that are typical for turning and other types of cutting operations. The decorating turning do not utilize setting of unstable technological conditions of cutting process but it actively use the acting of cutting force on machine tool without generation of unwanted chatter vibrations. The special tool fixture was developed to utilize self-excited vibrations invoked by periodical changeability of cutting force by cutting process itself. Thus the typical texture of surface appears. The various macro/micro-textures of surfaces can be applied either for decorating purpose or for better holding of oil film.

  7. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  8. Selected aspects of microelectronics technology and applications: Numerically controlled machine tools. Technology trends series no. 2

    NASA Astrophysics Data System (ADS)

    Sigurdson, J.; Tagerud, J.

    1986-05-01

    A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.

  9. Experimental Choice of Suitable Cutting Tool for Machining of Plastic

    NASA Astrophysics Data System (ADS)

    Sokova, Dagmar; Cep, Robert; Cepova, Lenka; Kocifajova, Simona

    2014-12-01

    In today's competitive times overall development of the technology is moving somewhere further, including automotive industry, which went toward relieving material. One of the many materials which are applied in the automotive industry, are polymers. The aim of the article was to test three different types of cutters for machining material group N - nonferrous metals. The article was tested three different types of cutters from different vendors on electro material SKLOTEXTIT G 11 and samples size 12x100x500mm. The entire experiment was conducted in a company Slavík- Technické plasty on the machine tool SCM RECORD 220. In the conclusion are technical-evaluation, experimental results and conclusions for company.

  10. Water jet assisted tunnel boring

    SciTech Connect

    Ozdemir, L.

    1984-06-21

    Mechanical tunnel boring has experienced significant growth over the last two decades. Improved machine design and performance coupled with a better understanding of factors affecting boreability have contributed to a dramatic increase in the number of machine bored tunnels. Today, tunnel boring machines (TBMs) are finding widespread application in various sectors of underground construction industry, both civil and mining. Most of the hard rock formations considered unsuited to mechanical boring only a few years ago are now excavated with TBMs with favorable economics compared to conventional drill and blast methods. Despite the advancements accomplished, TBMs need further improvements in design and operation to exend their capabilities and to reduce excavation costs, particularly in hard, abrasive rocks. The design of TBMs has presently reached a state where no additional major breakthroughs are anticipated in the near future. The cutter material appears to be the major obstacle to achieving further performance improvements. The amount of load which the cutters can sustain with acceptable levels of wear is the limiting factor determining the magnitude of the power that can be placed on a TBM. In fact, most present day TBMs can generate more thrust and torque than the individual cutters are capable of supporting.

  11. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  12. On Electro Discharge Machining of Inconel 718 with Hollow Tool

    NASA Astrophysics Data System (ADS)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep

    2012-06-01

    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  13. Modeling of Passive Forces of Machine Tool Covers

    NASA Astrophysics Data System (ADS)

    Kolar, Petr; Hudec, Jan; Sulitka, Matej

    The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.

  14. Universal Tool Grinder Operator Instructor's Guide. Part of Single-Tool Skills Program Machine Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Curriculum Development.

    The document is an instructor's guide for a course on universal tool grinder operation. The course is designed to train people in making complicated machine setups and precision in the grinding operations and, although intended primarily for adult learners, it can be adapted for high school use. The guide is divided into three parts: (1) the…

  15. Use of open source distribution for a machine tool controller

    NASA Astrophysics Data System (ADS)

    Shackleford, William P.; Proctor, Frederick M.

    2001-02-01

    In recent years a growing number of government and university las, non-profit organizations and even a few for- profit corporations have found that making their source code public is good for both developers and users. In machine tool control, a growing number of users are demanding that the controllers they buy be `open architecture,' which would allow third parties and end-users at least limited ability to modify, extend or replace the components of that controller. This paper examines the advantages and dangers of going one step further, and providing `open source' controllers by relating the experiences of users and developers of the Enhanced Machine Controller. We also examine some implications for the development of standards for open-architecture but closed-source controllers. Some of the questions we hope to answer include: How can the quality be maintained after the source code has been modified? Can the code be trusted to run on expensive machines and parts, or when the safety of the operator is an issue? Can `open- architecture' but closed-source controllers ever achieve the level of flexibility or extensibility that open-source controllers can?

  16. Machine tool accuracy characterization workshops. Final report, May 5, 1992--November 5 1993

    SciTech Connect

    1995-01-06

    The ability to assess the accuracy of machine tools is required by both tool builders and users. Builders must have this ability in order to predict the accuracy capability of a machine tool for different part geometry`s, to provide verifiable accuracy information for sales purposes, and to locate error sources for maintenance, troubleshooting, and design enhancement. Users require the same ability in order to make intelligent choices in selecting or procuring machine tools, to predict component manufacturing accuracy, and to perform maintenance and troubleshooting. In both instances, the ability to fully evaluate the accuracy capabilities of a machine tool and the source of its limitations is essential for using the tool to its maximum accuracy and productivity potential. This project was designed to transfer expertise in modern machine tool accuracy testing methods from LLNL to US industry, and to educate users on the use and application of emerging standards for machine tool performance testing.

  17. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    NASA Astrophysics Data System (ADS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-12-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant.

  18. Prospects for chaos control of machine tool chatter

    SciTech Connect

    Hively, L.M.; Protopopescu, V.A.; Clapp, N.E.; Daw, C.S.

    1998-06-01

    The authors analyze the nonlinear tool-part dynamics during turning of stainless steel in the nonchatter and chatter regimes, toward the ultimate objective of chatter control. Their previous work analyzed tool acceleration in three dimensions at four spindle speeds. In the present work, the authors analyze the machining power and obtain nonlinear measures of this power. They also calculate the cycle-to-cycle energy for the turning process. Return maps for power cycle times do not reveal fixed points or (un)stable manifolds. Energy return maps do display stable and unstable directions (manifolds) to and from an unstable period-1 orbit, which is the dominant periodicity. Both nonchatter and chatter dynamics have the unusual feature of arriving at the unstable period-1 fixed point and departing from that fixed point of the energy return map in a single step. This unusual feature makes chaos maintenance, based on the well-known Ott-Grebogi-Yorke scheme, a very difficult option for chatter suppression. Alternative control schemes, such as synchronization of the tool-part motion to prerecorded nonchatter dynamics or dynamically damping the period-1 motion, are briefly discussed.

  19. Multi-sensor Doppler radar for machine tool collision detection

    NASA Astrophysics Data System (ADS)

    Wächter, T. J.; Siart, U.; Eibert, T. F.; Bonerz, S.

    2014-11-01

    Machine damage due to tool collisions is a widespread issue in milling production. These collisions are typically caused by human errors. A solution for this problem is proposed based on a low-complexity 24 GHz continuous wave (CW) radar system. The developed monitoring system is able to detect moving objects by evaluating the Doppler shift. It combines incoherent information from several spatially distributed Doppler sensors and estimates the distance between an object and the sensors. The specially designed compact prototype contains up to five radar sensor modules and amplifiers yet fits into the limited available space. In this first approach we concentrate on the Doppler-based positioning of a single moving target. The recorded signals are preprocessed in order to remove noise and interference from the machinery hall. We conducted and processed system measurements with this prototype. The Doppler frequency estimation and the object position obtained after signal conditioning and processing with the developed algorithm were in good agreement with the reference coordinates provided by the machine's control unit.

  20. Modeling of tool path for the CNC sheet cutting machines

    NASA Astrophysics Data System (ADS)

    Petunin, Aleksandr A.

    2015-11-01

    In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.

  1. 38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. METAL WORKING TOOLS AND MACHINES ADJACENT TO THE CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS NEAR THE CENTER OF THE FACTORY BUILDING. AT THE LEFT FOREGROUND IS A MOVABLE TIRE BENDER FOR SHAPING ELI WINDMILL WHEEL RIMS. AT THE CENTER IS A FLOOR-MOUNTED CIRCA 1900 SNAG GRINDER OF THE TYPE USED FOR SMOOTHING ROUGH CASTINGS. ON THE WHEELED WORK STATION IS A SUNNEN BUSHING GRINDER, BEHIND WHICH IS A TRIPOD CHAIN VICE. IN THE CENTER BACKGROUND IS A WOODEN CHEST OF DRAWERS WHICH CONTAINS A 'RAG DRAWER' STILL FILLED WITH CLOTH RAGS PLACED IN THE FACTORY BUILDING AT THE INSISTENCE OF LOUISE (MRS. ARTHUR) KREGEL FOR THE CONVENIENCE AND CLEANLINESS OF WORKERS. IN THE LEFT BACKGROUND IS A CIRCA 1900 CROSS-CUTOFF CIRCULAR SAW. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  2. Small-size measuring gauges for metal cutting machine tools

    NASA Astrophysics Data System (ADS)

    Levin, B. M.; Lyapkov, V. N.; Myasnikov, Y. A.; Kirsanova, L. N.

    1984-02-01

    Recently two new models of suspension type optical measuring gauges have been developed with a 0.01 mm scale division, for measuring displacements of movable parts in metal cutting machine tools. The first one is the IG-98 consisting of an STs-80 incandescent lamp, a light filter, two reference rulers, two objectives, a light splitter cube, four plane mirrors, two condenser lenses, a graduated circle and a magnifying glass. The second one is the IG-119 consisting of an STs-61 incandescent lamp, a light filter, a rectangular prism with cover, two reference rulers, two objectives, a light splitter cube, one mirror, one condenser lens, a cylindrical shield and a magnifying glass. A complete accuracy analysis of both instruments indicates that two out of the seven principal error components are negligible, namely the angular error of the null adjustment guides and the temperature error referred to the plane of one of the reference rulers.

  3. Identification of kinematic errors of five-axis machine tool trunnion axis from finished test piece

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Fu, Jianzhong; Chen, Zichen

    2014-09-01

    Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.

  4. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    NASA Astrophysics Data System (ADS)

    Shaharun, M. A.; Yusoff, A. R.; Reza, M. S.; Jalal, K. A.

    2012-09-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  5. AN EIGHT WEEK SEMINAR IN AN INTRODUCTION TO NUMERICAL CONTROL ON TWO- AND THREE-AXIS MACHINE TOOLS FOR VOCATIONAL AND TECHNICAL MACHINE TOOL INSTRUCTORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOLDT, MILTON; POKORNY, HARRY

    THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…

  6. Cutting tool performance characteristics in the machining of a nickel aluminide intermetallic compound

    SciTech Connect

    Chatterjee, S.; Srivatsan, T.S.; Giusti, P.

    1994-05-01

    Ductile nickel aluminide, Ni{sub 3}Al, containing traces of boron, is an intermetallic compound with high strength, making it a promising structural material for elevated, ambient and cryogenic temperature applications. In order to be able to use alloys, they must be capable of being fabricated by machining. The machinability of a cast nickel aluminide, Ni{sub 3}Al, alloy containing boron was studied by conventional machining using the lathe. Three different cutting tool inserts and two types of coolants, namely kerosene oil mist and soluble oil, were chosen. The machining performance of the cutting tool insert and the influence of coolant type were established through measurements of volume of material removed and tool wear. The tool wear analysis was made using microscopic examination of the cutting tool insert in order to elucidate information of the influence of machining parameters and choice of coolant on performance capability of the insert. The overall machinability performance of these materials is rationalized.

  7. Fuel injection valve having a burnished guide bore and seat

    SciTech Connect

    Sasao, I.; Takaoka, Y.

    1987-03-24

    A method is described of producing a fuel injection valve which comprises a main fuel injection valve body; a valve rod slidable in the body and having an end with a valve body; and a valve seat-forming member attached to the main fuel injection valve body with the valve rod guidably received therein; the valve seat forming member having an interior including a guide bore for guiding opening and closing displacements of the valve rod. The guide bore has a uniform diameter throughout its entire length. A valve seat connected to the guide bore by an intermediate connecting portion, the valve seat having a smaller diameter than that of the guide bore and a fuel discharge port formed in continuation of the valve seat. The method comprises: forming a starting bore in the valve seat-forming member by boring, the starting bore having a straight, rectilinear bore portion leading into a lower tapered bore portion, and thereafter concurrently forming the guide bore and the valve seat from the starting bore by simultaneously subjecting the surfaces of the straight, rectilinear portion of the lower tapered bore portion of the starting bore to a burnishing operation by a single and common burnishing tool. This leaves a non-barnished portion between the burnished guide bore and the burnished valve seat, the non-burnished portion forming the intermediate connecting portion which provides a smoothly stepped configuration from the guide bore to the valve seat.

  8. Active chatter control system for long-overhang boring bars

    NASA Astrophysics Data System (ADS)

    Browning, Douglas R.; Golioto, Igor; Thompson, Norman B.

    1997-05-01

    Some machining processes, such as boring, have been historically limited by excessive bar vibration, often resulting in poor surface finish and reduced tool life. A unique boring bar system has been developed to suppress bar vibration, or chatter, during machining using active control technology. Metal cutting test programs have shown proven, repeatable performance on hard-to-cut, aircraft industry high-temperature nickel alloys as well as more easily cut carbon steels. Critical bar length-to-diameter (L/D) ratios, depths-of-cuts, feed rates and cutting speeds far exceed those attainable from the best available passively-damped boring bars. This industry-ready system consists of three principle subsystems: active clamp, instrumented bar, and control electronics. The active clamp is a lathe-mountable body capable of supporting bars of varying sizes and articulating them in orthogonal directions from the base of the bar shank. The instrumented bar consists of a steel shank, standard insert head and imbedded accelerometers. Wire harnesses from both the bar and clamp connect to control electronics comprised of highly-efficient switched- capacitor amplifiers that drive the piezoelectric actuators, sensor signal conditioning, a PC-based program manager and two 32-bit floating-point DSPs. The program manager code runs on the host PC and distributes system identification and control functions to the two DSPs. All real-time signal processing is based on the principles of adaptive filter minimization. For the described system, cutting performance has extended existing chatter thresholds (cutting parameter combinations) for nickel alloys by as much as 400% while maintaining precision surface finish on the machined part. Bar L/D ratios as high as 11 have enabled deep boring operations on nickel workpieces that otherwise could not be performed free of chatter.

  9. Fluctuation as a tool of biological molecular machines.

    PubMed

    Yanagida, Toshio

    2008-01-01

    The mechanism for biological molecular machines is different from that of man-made ones. Recently single molecule measurements and other experiments have revealed unique operations where biological molecular machines exploit thermal fluctuation in response to small inputs of energy or signals to achieve their function. Understanding and applying this mechanism to engineering offers new artificial machine designs. PMID:18583025

  10. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Liu, Yi; Zhou, Zude; Liu, Mingyao

    2015-10-01

    The deformation of machine tool base is one of main error elements of heavy-duty CNC machine tool. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors is developed in this study. Experiment is implemented on a real moving beam gantry machine tool. 16 FBG strain sensors are installed on the side-surface of the machine tool base. Moving the machine tool column to different positions, varying strain signals are collected. The testing results show that this distributed measurement method based on FBG sensors can effectively detect the deformation of the machine tool base. The largest deflection in vertical direction (axis Z) can be 75μm. This work is of great significance to the structure optimizing of machine tool base and real-time error compensation of heavy-duty CNC machine tool.

  11. Coupling for joining a ball nut to a machine tool carriage

    DOEpatents

    Gerth, Howard L.

    1979-01-01

    The present invention relates to an improved coupling for joining a lead screw ball nut to a machine tool carriage. The ball nut is coupled to the machine tool carriage by a plurality of laterally flexible bolts which function as hinges during the rotation of the lead screw for substantially reducing lateral carriage movement due to wobble in the lead screw.

  12. Plans and resources required for a computer numerically controlled machine tool tester

    SciTech Connect

    Newton, L.E.; Burleson, R.R.; McCue, H.K.; Pomernacki, C.L.; Mansfield, A.R.; Childs, J.J.

    1982-07-19

    Precision computer numerically controlled (CNC) machine tools present unique and especially difficult problems in the areas of qualification and fault isolation. In this report, we examine and classify these problems, discuss methods to resolve them effectively, and present estimates of the resources needed to design and build a CNC/machine tool tester.

  13. Machine and Woodworking Tool Safety. Module SH-24. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on machine and woodworking tool safety is one of 50 modules concerned with job safety and health. This module discusses specific practices and precautions concerned with the efficient operation and use of most machine and woodworking tools in use today. Following the introduction, 13 objectives (each keyed to a page in the…

  14. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    ERIC Educational Resources Information Center

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  15. 21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM LEFT TO RIGHT, PULLEY'S ABOVE FOR THE LATHE BELOW, ENTRANCE TO THE ELECTRICAL MOTOR ROOM, BORING MACHINE, PLANER, TOOL, BENCH AGAINST THE BACK WALL, DOORWAY INTO THE ANNEX, LONG LATHE. WOOD STOVE IN THE FOREGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  16. Tool wear mechanisms in the machining of Nickel based super-alloys: A review

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sun, Jianfei; Sun, Pengfei; Chen, Wuyi; Saleem, Zawar

    2014-06-01

    Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

  17. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  18. An iterative learning control method with application for CNC machine tools

    SciTech Connect

    Kim, D.I.; Kim, S.

    1996-01-01

    A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one of the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.

  19. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  20. Analytical Prediction of Temperature Distribution in Cylinder Liner during Various Boring Operations

    NASA Astrophysics Data System (ADS)

    Tang, Yulong; Sasahara, Hiroyuki

    During the boring process of the engine cylinder liner in automotive manufacturing, the heat at the cutting point flows into the cylinder liner and causes it to thermally expand, which is an inescapable machining issue. This affects the machining accuracy of the machined liner. However, the thermal expansion can be minimized under suitable cutting conditions and boring operations. The boring operation of an engine cylinder liner usually has two stages, semi-finishing boring and finishing. Different from the conventional boring operation, a new boring operation which can perform semi-finishing boring and finishing boring in one stage is explored in this paper. By this boring operation, the influence of the thermal expansion of the machined liner can be minimized. This boring operation is called a “simultaneous boring operation” in this paper. To prove the validity of the simultaneous boring operation, a finite element method (FEM) model was developed to predict the thermal behavior in the cylinder liner during the simultaneous boring operation/conventional boring operation. The results show that the machining errors caused by the thermal expansion of the cylinder liner during the simultaneous boring operation are smaller than those of the cylinder liner during the conventional boring operation. To investigate the influence of the cutting conditions on temperature distribution in the cylinder liner during simultaneous boring operation, FEM analysis of the temperature and thermal expansion on the cylinder liner under three levels of cutting speeds (300,600, and 900m/min) combined with two types of cutting fluid (dry, wet) during simultaneous boring was performed. The results showed that the temperature rise of the cylinder liner during a high-speed, wet simultaneous boring operation is small.

  1. Haptics-Augmented Simple-Machine Educational Tools.

    ERIC Educational Resources Information Center

    Williams, Robert L., II; Chen, Meng-Yun; Seaton, Jeffrey M.

    2003-01-01

    Describes a unique project using commercial haptic interfaces to augment the teaching of simple machines in elementary school. Suggests that the use of haptics in virtual simple-machine simulations has the potential for deeper, more engaging learning. (Contains 13 references.) (Author/YDS)

  2. Multimode vibration reduction concept for machine tools and automotive applications

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Drossel, Welf-Guntram; Kranz, Burkhard; Kunze, Holger

    2005-05-01

    This paper reports a numerical and experimental study on a new multi mode vibration reduction concept for struts of machine tools or shafts of automotives. The example described in detail validates this new concept for high dynamic parallel kinematic struts. The structural advantages of parallel kinematic mechanisms are undisputed. However statical and dynamical bending and torsional loads must be considered during the design process of the structure and thus effect the shape of the strut geometry. The here described new actuator concept for multi mode vibration reduction is to influence these bending and torsional loads. It uses piezopatches based on the MFC technology licensed by NASA. Initial simulation and experimental tests were done at an one side clamped aluminium beam with applicated 45°-MFC's on both sides. Simulation results show, that driving the piezos in opposite direction leads to a bending deflection of the beam, driving them in the same phase leads to a torsional deflection of the aluminium beam. Experimental measurements confirm the simulation results. The benefit we get is a decreased number of actuators for multimode vibration reduction. Likewise these actuators allow the separation or selective combination of bending and torsion. This new actuation concept is not limited on beams. Further simulations for cylindrical struts result in a design of a MFC-ring with eight segments with changing fiber orientation for separation of bending and torsion on struts and shafts. The selective controlled activation of each of the segments leads to bending in x-direction, bending in y-direction or torsion.

  3. Performance investigation of capillary tubes for machine tool coolers retrofitted with HFC-407C refrigerant

    NASA Astrophysics Data System (ADS)

    Wang, Fujen; Chang, Tongbou; Chiang, Weiming; Lee, Haochung

    2012-09-01

    The machine tool coolers are the best managers of coolant temperature in avoiding the deviation of spindle centerline for machine tools. However, the machine coolers are facing the compressed schedule to phase out the HCFC (hydro-chloro-floro-carbon) refrigerant and little attention has been paid to comparative study on sizing capillary tube for retrofitted HFC (hydro-floro-carbon) refrigerant. In this paper, the adiabatic flow in capillary tube is analyzed and modeled for retrofitting of HFC-407C refrigerant in a machine tool cooler system. A computer code including determining the length of sub-cooled flow region and the two phase region of capillary tube is developed. Comparative study of HCFC-22 and HFC-407C in a capillary tube is derived and conducted to simplify the traditional trial-and-error method of predicting the length of capillary tubes. Besides, experimental investigation is carried out by field tests to verify the simulation model and cooling performance of the machine tool cooler system. The results from the experiments reveal that the numerical model provides an effective approach to determine the performance data of capillary tube specific for retrofitting a HFC-407C machine tool cooler. The developed machine tool cooler system is not only directly compatible with new HFC-407C refrigerant, but can also perform a cost-effective temperature control specific for industrial machines.

  4. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  5. Machine Tool Technology. Automatic Screw Machine Troubleshooting & Set-Up Training Outlines [and] Basic Operator's Skills Set List.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This set of two training outlines and one basic skills set list are designed for a machine tool technology program developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The first troubleshooting training outline lists the categories of problems that develop…

  6. A Machine Tool Controller using Cascaded Servo Loops and Multiple Feedback Sensors per Axis

    SciTech Connect

    Weinert, G F; Hopkins, D J; Wulff, T A

    2004-03-19

    In the past, several of LLNL precision machine tools have been built with custom in-house designed machine tool controllers (CNC). In addition, many of these controllers have reached the end of their maintainable lifetime, limit future machine application enhancements, have poor operator interfaces and are a potential single point of failure for the machine tool. There have been attempts to replace some of these custom controllers with commercial controller products, unfortunately, this has occurred with only limited success. Many commercial machine tool controllers have the following undesirable characteristics, a closed architecture (use as the manufacturer intended and not as LLNL would desire), allow only a single feedback device per machine axis and have limited servo axis compensation calculations. Technological improvements in recent years have allowed for the development of some commercial machine tool controllers that are more open in their architecture and have the power to solve some of these limitations. In this paper, we exploit the capabilities of one of these controllers to allow it to process multiple feedback sensors for tool tip calculations in real time and to extend the servo compensation capabilities by cascading several standard motor compensation loops.

  7. 6. VIEW OF BORING MILL. Chuck action of locomotive wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BORING MILL. Chuck action of locomotive wheel Wheel weight 1200 pounds, 3'-0' diameter. Table 53' in diameter Wheel is 48'. Largest hole that can be bored is 9-1/2' plus (GE axle is 10'). - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  8. Remediation, General Education, and Technical Mathematics. Educational Resources for the Machine Tool Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This document contains descriptions of adult education courses in remediation, general education, and technical mathematics. They are part of a program developed by the Machine Tool Advanced Skills Technology Educational Resources (MASTER) program to help workers become competent in the skills needed to be productive workers in the machine tools…

  9. 12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TOOL ROOM SHOWING LANDIS MACHINE CO. BOL/T THREADER (L), OSTER MANUFACTURING CO. PIPE MASTER (R), AND OLDMAN KINK, A SHOP-MADE WELDING STRENGTH TESTER (L, BACKGROUND). VIEW NORTHEAST - Oldman Boiler Works, Office/Machine Shop, 32 Illinois Street, Buffalo, Erie County, NY

  10. Effect of Flexural Rigidity of Tool on Machining Accuracy during Microgrooving by Ultrasonic Vibration Cutting Method

    NASA Astrophysics Data System (ADS)

    Furusawa, Toshiaki

    2010-12-01

    It is necessary to form fine holes and grooves by machining in the manufacture of equipment in the medical or information field and the establishment of such a machining technology is required. In micromachining, the use of the ultrasonic vibration cutting method is expected and examined. In this study, I experimentally form microgrooves in stainless steel SUS304 by the ultrasonic vibration cutting method and examine the effects of the shape and material of the tool on the machining accuracy. As a result, the following are clarified. The evaluation of the machining accuracy of the straightness of the finished surface revealed that there is an optimal rake angle of the tools related to the increase in cutting resistance as a result of increases in work hardening and the cutting area. The straightness is improved by using a tool with low flexural rigidity. In particular, Young's modulus more significantly affects the cutting accuracy than the shape of the tool.

  11. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  12. New Accessory for Cleaning the Inside of the Machine Tool Cavity

    SciTech Connect

    Lazarus, Lloyd

    2009-04-21

    The best way to extend the life of a metalworking fluid (MWF) is to make sure the machine tool and MWF delivery system are properly cleaned at least once per year. The dilemma the MWF manager is faced with is: How does one clean the machine tool and the MWF system on a large machine tool with an enclosure in a timely manner without impacting production schedules? Remember the walls and roof of the machine enclosure are coated with a film of dried contaminated MWF that must also be removed. If not removed, the deposits on these surfaces can recontaminate the fresh charge of MWF. I have found a product that with this revised procedure helps to shorten the machine tool down time involved with machine cleaning. (1) Discuss with your MWF supplier if they have a machine cleaning product that can be used with your current water based MWF during normal machining operations. Most MWF manufacturers have a machine cleaner that can be used at a lower concentration (1-2% vs. 5%) and can be used while still making production parts for a short period of time (usually 24-48 hours). (2) Make sure this machine cleaner is compatible with the work-piece material you are machining into product. Most cleaners are compatible with ferrous alloys. Because of the increased alkalinity of the fluid you might experience staining if you are machining copper or aluminum alloys. (3) Remove the chips from the chips pans and fluid channels. (4) During off shift hours circulate the MWF using a new product marketed by Rego-Fix called a 'Hydroball'. This device has a 5/8 inch diameter straight shank which allows it to be installed in any collet or solid quick change tool holder. It has multiple nozzles so that the user can control the spray pattern generated when the MWF is circulated. It allows the user to utilize the high pressure, through spindle MWF delivery capability of your machine tool for cleaning purposes. The high pressure MWF system can now be effectively used for cleaning purposes. This

  13. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-06-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  14. Atwood's Machine as a Tool to Introduce Variable Mass Systems

    ERIC Educational Resources Information Center

    de Sousa, Celia A.

    2012-01-01

    This article discusses an instructional strategy which explores eventual similarities and/or analogies between familiar problems and more sophisticated systems. In this context, the Atwood's machine problem is used to introduce students to more complex problems involving ropes and chains. The methodology proposed helps students to develop the…

  15. A Comparative Study of Teacher Education Institutions and Machine Tool Manufacturers to Determine Course Content for a Machine Tool Maintenance Course in the Woodworking Area.

    ERIC Educational Resources Information Center

    Polette, Douglas Lee

    To determine what type of maintenance training the prospective industrial arts teacher should receive in the woodworking area and how this information should be taught, a research instrument was constructed using information obtained from a review of relevant literature. Specific data on machine tool maintenance was gathered by the use of two…

  16. Investigation on the Surface Integrity and Tool Wear in Cryogenic Machining

    SciTech Connect

    Dutra Xavier, Sandro E.; Delijaicov, Sergio; Farias, Adalto de; Stipkovic Filho, Marco; Ferreira Batalha, Gilmar

    2011-01-17

    This work aimed to study the influences of cryogenic cooling on tool wear, comparing it to dry machining during on the surface integrity of test circular steel SAE 52100 hardened to 62 HRC, during the turning of the face, with the use of special PcBN, using liquid nitrogen with cooler. The surface integrity parameters analyzed were: surface roughness and white layer and tool wear. The results of the present work indicated reduction in tool wear, which enhance the tool life.

  17. The error analysis and online measurement of linear slide motion error in machine tools

    NASA Astrophysics Data System (ADS)

    Su, H.; Hong, M. S.; Li, Z. J.; Wei, Y. L.; Xiong, S. B.

    2002-06-01

    A new accurate two-probe time domain method is put forward to measure the straight-going component motion error in machine tools. The characteristics of non-periodic and non-closing in the straightness profile error are liable to bring about higher-order harmonic component distortion in the measurement results. However, this distortion can be avoided by the new accurate two-probe time domain method through the symmetry continuation algorithm, uniformity and least squares method. The harmonic suppression is analysed in detail through modern control theory. Both the straight-going component motion error in machine tools and the profile error in a workpiece that is manufactured on this machine can be measured at the same time. All of this information is available to diagnose the origin of faults in machine tools. The analysis result is proved to be correct through experiment.

  18. Bores In The Mesosphere

    NASA Astrophysics Data System (ADS)

    Smith, S. M.

    Bores are a special type of propagating hydraulic jump. They are a relatively common wave phenomenon in the Earth's oceans, rivers and lower atmosphere but they have been observed only rarely in the mesosphere. We will review the mesospheric bore phenomenon and present wide-field imaging observations of one particularly bright bore event seen at two widely-spaced (500 km) locations in the south-western United States: McDonald Observatory (MDO), Texas and the Starfire Optical Range (SOR), New Mexico. The measurements were supplemented with radar wind measurements, also made at the SOR, and by Na resonance lidar temperature measurements made at Fort Collins, Colorado, approximately 1100 km to the north of MDO. The multi- diagnostic observations provided evidence that mesospheric bores are associated with ducting regions in the mesosphere which allow them to travel distances of over 1500 km and exhibit lifetimes of over 6 hours.

  19. A Catalog of Performance Objectives, Performance Conditions, and Performance Guides for Machine Tool Operations.

    ERIC Educational Resources Information Center

    Stadt, Ronald; And Others

    This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…

  20. Atwood's machine as a tool to introduce variable mass systems

    NASA Astrophysics Data System (ADS)

    de Sousa, Célia A.

    2012-03-01

    This article discusses an instructional strategy which explores eventual similarities and/or analogies between familiar problems and more sophisticated systems. In this context, the Atwood's machine problem is used to introduce students to more complex problems involving ropes and chains. The methodology proposed helps students to develop the ability needed to apply relevant concepts in situations not previously encountered. The pedagogical advantages are relevant for both secondary and high school students, showing that, through adequate examples, the question of the validity of Newton's second law may even be introduced to introductory level students.

  1. Modeling the dynamic properties of conventional and high-damping boring bars

    NASA Astrophysics Data System (ADS)

    Sortino, M.; Totis, G.; Prosperi, F.

    2013-01-01

    Nowadays, the availability of reliable mathematical models of machining system dynamics is a key issue for achieving high quality standards in precision machining. Dynamic models can indeed be applied for tooling system design, preventive evaluation of cutting process stability and optimization of cutting parameters. This is of particular concern in internal turning, where the cutting process is greatly affected by the compliance of the tooling system. In this paper, an innovative hybrid dynamic model of the tooling system in internal turning, based on FE beams and empirical models, is presented. The model was based on physical and geometrical assumptions and it was refined by using experimental observations derived from modal testing of boring bars with different geometries and made of different materials, i.e. alloy steel and high-damping carbide. The predicted modal parameters of the tooling system (tool tip static compliance, natural frequency and damping coefficient of the dominant mode) are in good accordance with experimental values.

  2. Development and testing of an active boring bar for increased chatter immunity

    SciTech Connect

    Redmond, J.; Barney, P.

    1997-12-01

    Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining. Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.

  3. Acoustic emission from single point machining: Source mechanisms and signal changes with tool wear

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.; McManigle, A.P.

    1994-05-01

    Acoustic emission (AE) was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Heat treatments that increase the strength of 4340 steel substantially increase the amount of AE produced during deformation, while heat treatments that increase the strength of Ti-6Al-4V dramatically decrease the amount of AE produced during deformation. There was little change in root-mean-square (rms) AE level during machining for either alloy as a function of prior heat treatment, demonstrating that chip deformation is not a major source of AE in single point machining. Additional data from a variety of materials suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of AE. Changes in AE signal characteristics with tool wear were also monitored during single point machining. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristics with wear for a given material may be sufficient to be used to monitor tool wear.

  4. The study of opened CNC system of turning-grinding composite machine tool based on UMAC

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Han, Qiushi; Wu, Guoxin; Ma, Chao

    2010-12-01

    The general function analysis of a turning-grinding composite machine tool (TGCM) is done. The structure of the TGCM based on 'process integration with one setup' theory in this paper is presented. The CNC system functions of TGCM are analyzed and the CNC framework of TGCM is discussed. Finally the opened-CNC system for this machine tool is developed based on UMAC (Universal Motion and Automation Controller) included hardware system and software system. The hardware structure layout is put forward and the software system is implemented by using VC++6.0. The hardware system was composed of IPC and UMAC. The general control system meets the requirement of integrity machining and matches the hardware structure system of TGCM. The practical machining experiment results showed that the system is valid with high accuracy and high reliability.

  5. The study of opened CNC system of turning-grinding composite machine tool based on UMAC

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Han, Qiushi; Wu, Guoxin; Ma, Chao

    2011-05-01

    The general function analysis of a turning-grinding composite machine tool (TGCM) is done. The structure of the TGCM based on 'process integration with one setup' theory in this paper is presented. The CNC system functions of TGCM are analyzed and the CNC framework of TGCM is discussed. Finally the opened-CNC system for this machine tool is developed based on UMAC (Universal Motion and Automation Controller) included hardware system and software system. The hardware structure layout is put forward and the software system is implemented by using VC++6.0. The hardware system was composed of IPC and UMAC. The general control system meets the requirement of integrity machining and matches the hardware structure system of TGCM. The practical machining experiment results showed that the system is valid with high accuracy and high reliability.

  6. INL Review of Fueling Machine Inspection Tool Development Proposal

    SciTech Connect

    Griffith, George

    2015-03-01

    A review of a technical proposal for James Fischer Nuclear. The document describes an inspection tool to examine the graphite moderator in an AGR reactor. The system is an optical system to look at the graphite blocks for cracks. INL reviews the document for technical value.

  7. The use of machine learning and nonlinear statistical tools for ADME prediction.

    PubMed

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future. PMID:19239395

  8. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    2001-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  9. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    1999-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  10. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    SciTech Connect

    Segalman, D.J.; Redmond, J.M.

    1999-09-28

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof are disclosed. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  11. Compensation of Gravity-Induced Errors on a Hexapod-Type Parallel Kinematic Machine Tool

    NASA Astrophysics Data System (ADS)

    Ibaraki, Soichi; Okuda, Toshihiro; Kakino, Yoshiaki; Nakagawa, Masao; Matsushita, Tetsuya; Ando, Tomoharu

    This paper presents a methodology to compensate contouring errors introduced by the gravity on a Hexapod-type parallel kinematic machine tool with the Stewart platform. Unlike conventional serial kinematic feed drives, the gravity imposes a critical effect on the positioning accuracy of a parallel kinematic feed drive, and its effect significantly varies depending on the position and the orientation of the spindle. We first present a kinematic model to predict the elastic deformation of struts caused by the gravity. The positioning error at the tool tip is given as the superposition of the deformation of each strut. It is experimentally verified for a commercial parallel kinematic machine tool that the machine's contouring error is significantly reduced by compensating gravity-induced errors on a reference trajectory.

  12. Of Genes and Machines: Application of a Combination of Machine Learning Tools to Astronomy Data Sets

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Kumar, S.; Gezari, S.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Waters, C.

    2016-04-01

    We apply a combination of genetic algorithm (GA) and support vector machine (SVM) machine learning algorithms to solve two important problems faced by the astronomical community: star-galaxy separation and photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to classify or regress, in the process of which we avoid overfitting. We apply our method to star-galaxy separation in Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to {i}{{P1}}=24.5, with a completeness (or true positive rate) of 99% for galaxies and 88% for stars. By combining colors with morphology, our star-galaxy separation method yields better results than the new SExtractor classifier spread_model, in particular at the faint end ({i}{{P1}}\\gt 22). We also use our method to derive photometric redshifts for galaxies in the COSMOS bright multiwavelength data set down to an error in (1+z) of σ =0.013, which compares well with estimates from spectral energy distribution fitting on the same data (σ =0.007) while making a significantly smaller number of assumptions.

  13. Of Genes and Machines: Application of a Combination of Machine Learning Tools to Astronomy Data Sets

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Kumar, S.; Gezari, S.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Waters, C.

    2016-04-01

    We apply a combination of genetic algorithm (GA) and support vector machine (SVM) machine learning algorithms to solve two important problems faced by the astronomical community: star–galaxy separation and photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to classify or regress, in the process of which we avoid overfitting. We apply our method to star–galaxy separation in Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to {i}{{P1}}=24.5, with a completeness (or true positive rate) of 99% for galaxies and 88% for stars. By combining colors with morphology, our star–galaxy separation method yields better results than the new SExtractor classifier spread_model, in particular at the faint end ({i}{{P1}}\\gt 22). We also use our method to derive photometric redshifts for galaxies in the COSMOS bright multiwavelength data set down to an error in (1+z) of σ =0.013, which compares well with estimates from spectral energy distribution fitting on the same data (σ =0.007) while making a significantly smaller number of assumptions.

  14. Hardening effect on machined surface for precise hard cutting process with consideration of tool wear

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Liu, Xianli; Ma, Jing; Liu, Zhaojing; Liu, Fei; Yang, Yongheng

    2014-11-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  15. Machining conditions and the wear of TiC-coated carbide tools

    SciTech Connect

    Lim, C.Y.H.; Lim, S.C.; Lee, K.S.

    1998-07-01

    This paper examines the wear behavior of TiC-coated cemented carbide tools in turning. Experimental data from dry turning tests, together with similar data from the open literature, are used to construct wear maps depicting the flank and crater wear characteristics of these tools over a wide range of machining conditions. The maps show that both flank and crater wear rates vary according to the cutting speeds and feed rates used. An overall wear-damage map for this class of coated tools is also presented for the first time. The presence of the safety zone and the least-wear regime, within which the overall wear damage to the tools is low, suggests the possibility of selecting the machining conditions to achieve a compromise between the rates of material removal and tool wear.

  16. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  17. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation

    PubMed Central

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  18. Indirect measurement of machine tool motion axis error with single laser tracker

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoyong; Li, Liangliang; Du, Zhengchun

    2015-02-01

    For high-precision machining, a convenient and accurate detection of motion error for machine tools is significant. Among common detection methods such as the ball-bar method, the laser tracker approach has received much more attention. As a high-accuracy measurement device, laser tracker is capable of long-distance and dynamic measurement, which increases much flexibility during the measurement process. However, existing methods are not so satisfactory in measurement cost, operability or applicability. Currently, a plausible method is called the single-station and time-sharing method, but it needs a large working area all around the machine tool, thus leaving itself not suitable for the machine tools surrounded by a protective cover. In this paper, a novel and convenient positioning error measurement approach by utilizing a single laser tracker is proposed, followed by two corresponding mathematical models including a laser-tracker base-point-coordinate model and a target-mirror-coordinates model. Also, an auxiliary apparatus for target mirrors to be placed on is designed, for which sensitivity analysis and Monte-Carlo simulation are conducted to optimize the dimension. Based on the method proposed, a real experiment using single API TRACKER 3 assisted by the auxiliary apparatus is carried out and a verification experiment using a traditional RENISHAW XL-80 interferometer is conducted under the same condition for comparison. Both results demonstrate a great increase in the Y-axis positioning error of machine tool. Theoretical and experimental studies together verify the feasibility of this method which has a more convenient operation and wider application in various kinds of machine tools.

  19. Cam-controlled boring bar

    DOEpatents

    Glatthorn, Raymond H.

    1986-01-01

    A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.

  20. Acoustic emission from single point machining: Part 2, Signal changes with tool wear. Revised

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.; McManigle, A.P.

    1989-12-31

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  1. Acoustic emission from single point machining: Part 2, Signal changes with tool wear

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.; McManigle, A.P.

    1989-01-01

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  2. Electrical machine

    DOEpatents

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  3. Description of a unique machine tool permitting achievement of < 15-A rms diamond-turned surfaces

    SciTech Connect

    Miller, D.M.; Hauver, G.H.; Culverhouse, J.N.; Greenwell, E.N.

    1980-01-01

    A new machine tool now in the final stages of development at the Pacific Northwest Laboratory uses a unique tool motion to produce diamond-turned surfaces of exceptionally high quality. The cutting tool is programmed to move in 4-nm increments along two axes: an X axis and an Omega axis. Exceptionally stiff and accurate control of the tool is possible with this Omega-X system. Copper surfaces of revolution have been produced with a 12.3-A rms surface finish and a contour accuracy of 75 nm. In conjunction with a unique, thermally stabilized air bearing spindle and machine calibration equipment, the Omega-X system permits a significant advance in the fabrication of optical-quality surfaces for use with the visible spectrum.

  4. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  5. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.

    PubMed

    Tao, L; Zhang, P; Qin, C; Chen, S Y; Zhang, C; Chen, Z; Zhu, F; Yang, S Y; Wei, Y Q; Chen, Y Z

    2015-06-23

    In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties. Recent efforts have been directed at the broadening of application scopes and the improvement of predictive performance with particular focuses on the coverage of ADME properties, and exploration of more diversified training data, appropriate molecular features, and consensus modeling. Moreover, several online machine learning ADME prediction servers have emerged. Here we review these progresses and discuss the performances, application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME and ADME regulatory properties. PMID:26037068

  6. Clean Electrical-Discharge Machining Of Delicate Honeycomb

    NASA Technical Reports Server (NTRS)

    Johnson, Clarence S.

    1993-01-01

    Precise recesses in fragile metal honeycomb blocks formed in special electrical-discharge machining process. Special tooling used, and recesses bored with workpiece in nonstandard alignment. Cutting electrode advances into workpiece along x axis to form pocket of rectangular cross section. Deionized water flows from fitting, along honeycomb tubes of workpiece, to electrode/workpiece interface.

  7. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    ERIC Educational Resources Information Center

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  8. Placement of the material temperature sensor during measuring the accuracy of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Dong-sheng; Jia, Min-qiang; Zhang, Jian; Sun, Lei; Li, Wei-jun

    2013-10-01

    In view of the dispute on the placement of material sensor when measuring the positional accuracy of a linear axis of a CNC machine tool, this paper presents the method and principle of deciding where to put the material temperature sensor. The positional accuracy of the linear axis of the machine tool is one of the most important performance parameters, and it must be measured when setup and check. The placement of the material temperature sensor has great influence on the measurement accuracy. At present, there are two main views on this issue: one is to place the sensor on the table of the machine tool, the other is to place it on the feedback system. This conflict between these two debates often makes the measurers feel confused and as a result influences the measure quality, sometimes. This thesis attempts to classify the CNC machine tools positional accuracy measurement according to its different purposes, then further presents the best placement. The thesis also elaborates other relevant questions of the placement of the material temperature sensor.

  9. Mathematics for the Workplace. Applications from Machine Tool Technology (Michelin Tire Corporation). A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wallace, Johnny M.; Stewart, Grover

    This module presents a real-world context in which mathematics skills (geometry and trigonometry) are used as part of a daily routine. The context is the machine tool technology field, and the module aims to help students develop the ability to analyze diagrams in order to make mathematical computations. The modules, which features applications…

  10. MACHINE TOOL OPERATOR--GENERAL, ENTRY, SUGGESTED GUIDE FOR A TRAINING COURSE.

    ERIC Educational Resources Information Center

    RONEY, MAURICE W.; AND OTHERS

    THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST THE ADMINISTRATOR AND INSTRUCTOR IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE MACHINE TOOL OPERATORS FOR ENTRY-LEVEL POSITIONS. THE COURSE OUTLINE PROVIDES UNITS IN -- (1) ORIENTATION, (2) BENCH WORK, (3) SHOP MATHEMATICS, (4) BLUEPRINT READING AND SKETCHING, (5)…

  11. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  12. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  13. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated...

  14. A novel vending machine for supplying root canal tools during surgery.

    PubMed

    Nelson, Carl A; Hossain, S G M; Al-Okaily, Ala'a; Ong, Jason

    2012-02-01

    A root canal surgery involves the successive use of several tools one after another. Typically dozens of tools are laid out for possible use, and the process of tool selection is done manually. This is a rather inefficient process and uses up a large area on the mobile cart or cabinet of the dental chair due to the large number of tools. In this article, a novel 'tool vending machine' is introduced which will be capable of solving those problems and at the same time move a step closer to robot-assisted dental surgery. The tool vending machine was designed considering the needs of the dentists and also from the perspective of the entire product life cycle. For these reasons the design process was implemented using a rigorous analysis of effective manufacturing processes and product quality. To show the feasibility of using such a machine in improving work efficiency during operations, a study of the associated motion patterns and the required time increments were demonstrated. PMID:22268997

  15. Research on test techniques of fault forewarning and diagnosis for high-end CNC machine tool

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Xu, Xiaoli

    2010-12-01

    With the progress of modern science and technique, the manufacturing industry becomes more and more complex and intelligent. It is the challenge for stable, safe running and economical efficiency of machining equipment such as high-quality numerical control because of its complex structure and integrated functions, and the potential faults are easy to happen. How to ensure the equipment runs stably and reliably becomes the key problem to improve the machining precision and efficiency. In order to prolong the average no-fault time, stable running and machining precision of numerical control, it is very important to make relative test and research on acquisition of data of numerical control sample and establishment of sample database. Take high-end CNC Machine Tool for example, the research on test techniques for data acquisition of sample of typical functional parts in CNC Machine Tool will be made and test condition will be set up; the test methods for sample acquisition on running state monitoring and fault forewarning and diagnosis of numerical control is determined; the test platform for typical functional parts of numerical control is established; the sample database is designed and the sample base and knowledge mode is made. The test and research provide key test techniques to disclosure dynamic performance of fault and precision degeneration, and analyze the impact factors to fault.

  16. Defining and Testing the Influence of Servo System Response on Machine Tool Compliance

    SciTech Connect

    Hopkins, D J

    2004-03-24

    Compliance can be defined as the measurement of displacement per unit of force applied e.g. nano-meters per Newton (m/N). Compliance is the reciprocal of stiffness. High stiffness means low compliance and visa versa. It is an important factor in machine tool characteristics because it reflects the ability of the machine axis to maintain a desired position as it encounters a force or torque. Static compliance is a measurement made with a constant force applied e.g. the average depth of cut. Dynamic compliance is a measurement made as a function of frequency, e.g. a fast too servo (FTS) that applies a varying cutting force or load, interrupted cuts and external disturbances such as ground vibrations or air conditioning induced forces on the machine. Compliance can be defined for both a linear and rotary axis of a machine tool. However, to properly define compliance for a rotary axis, the axis must allow a commanded angular position. Note that this excludes velocity only axes. In this paper, several factors are discussed that affect compliance but emphasis is placed on how the machine servo system plays a key role in compliance at low to mid frequency regions. The paper discusses several techniques for measuring compliance and provides examples of results from these measurements.

  17. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  18. Language and Tool Support for Class and State Machine Refinement in UML-B

    NASA Astrophysics Data System (ADS)

    Said, Mar Yah; Butler, Michael; Snook, Colin

    UML-B is a ‘UML-like’ graphical front end for Event-B that provides support for object-oriented modelling concepts. In particular, UML-B supports class diagrams and state machines, concepts that are not explicitly supported in plain Event-B. In Event-B, refinement is used to relate system models at different abstraction levels. The same abstraction-refinement concepts can also be applied in UML-B. This paper introduces the notions of refined classes and refined state machines to enable refinement of classes and state machines in UML-B. Together with these notions, a technique for moving an event between classes to facilitate abstraction is also introduced. Our work makes explicit the structures of class and state machine refinement in UML-B. The UML-B drawing tool and Event-B translator are extended to support the new refinement concepts. A case study of an auto teller machine (ATM) is presented to demonstrate application and effectiveness of refined classes and refined state machines.

  19. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.

    PubMed

    Geng, Daxi; Zhang, Deyuan; Xu, Yonggang; He, Fengtao; Liu, Dapeng; Duan, Zuoheng

    2015-05-01

    The rotary ultrasonic elliptical machining (RUEM) has been recognized as a new effective process to machining circular holes on CFRP materials. In CFRP face machining, the application of grinding tools is restricted for the tool clogging and the machined surface integrity. In this paper, we proposed a novel approach to extend the RUEM process to side milling of CFRP for the first time, which kept the effect of elliptical vibration in RUEM. The experiment apparatus was developed, and the preliminary experiments were designed and conducted, with comparison to conventional grinding (CG). The experimental results showed that when the elliptical vibration was applied in RUEM, a superior cutting process can be obtained compared with that in CG, including providing reduced cutting forces (2-43% decrement), an extended tool life (1.98 times), and improved surface integrity due to the intermittent material removal mechanism and the excellent chip removal conditions achieved in RUEM. It was concluded that the RUEM process is suitable to mill flat surface on CFRP composites. PMID:25708349

  20. Design of piezo-based AVC system for machine tool applications

    NASA Astrophysics Data System (ADS)

    Aggogeri, F.; Al-Bender, F.; Brunner, B.; Elsaid, M.; Mazzola, M.; Merlo, A.; Ricciardi, D.; de la O Rodriguez, M.; Salvi, E.

    2013-03-01

    The goal of machine tools for Ultra High Precision Machining is to guarantee high specified performances and to maintain them over life cycle time. In this paper the design of an innovative mechatronic subsystem (platform) for Active Vibration Control (AVC) of Ultra High Precision micromilling Machines is presented. The platform integrates piezoelectric stack actuators and a novel sensor concept. During the machining process (e.g. milling), the contact between the cutting tool and the workpiece surface at the tool tip point generates chattering vibrations. Any vibration is recorded on the workpiece surface, directly affecting its roughness. Consequently, uncontrolled vibrations lead to poor surface finishing, unacceptable in high precision milling. The proposed Smart Platform aims to improve the surface finishing of the workpiece exploiting a broadband AVC strategy. The paper describes the steps throughout the design phase of the platform, beginning from the actuator/sensor criteria selection taking into account both performance and durability. The novel actuation principle and mechanism and the related FE analysis are also presented. Finally, an integrated mechatronic model able to predict in closed-loop the active damping and vibration-suppression capability of the integrated system is presented and simulation results are discussed.

  1. Vibration suppression in multi-tool ultrasonic machining to multi-external and parametric excitations

    NASA Astrophysics Data System (ADS)

    Kamel, M. M.; El-Ganaini, W. A. A.; Hamed, Y. S.

    2009-06-01

    Ultrasonic machining (USM) is of particular interest for the machining of non-conductive, brittle materials such as engineering ceramics. In this paper, a multi-tool technique is used in USM to reduce the vibration in the tool holder and have reasonable amplitude for the tools. This can be done via dynamic absorbers. The coupling of four non-linear oscillators of the tool holder and tools representing ultrasonic cutting process are investigated. This leads to a four-degree-of-freedom system subjected to multi-external and multi-parametric excitation forces. The aim of this work is to control the tool holder behavior at simultaneous primary, sub-harmonic and internal resonance condition. Multiple scale perturbation method is used to obtain the solution up to the second order approximations. The different resonance cases are reported and studied numerically. The stability of the system is investigated by using both phase-plane and frequency response techniques. The effects of the different parameters of the tools on the system behavior are studied numerically. Comparison with the available published work is reported.

  2. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.

    PubMed

    Zhu, Zhiwei; To, Suet

    2015-08-10

    Fast tool servo/ slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of freeform optics. However, the currently adopted constant scheme for azimuth sampling and side-feeding motion possesses no adaptation to surface shape variation, leading to the non-uniform surface quality and low machining efficiency. To overcome this defect, this paper reports on a novel adaptive tool servo (ATS) diamond turning technique which is essentially based on the novel two-degree-of-freedom (2-DOF) FTS/STS. In the ATS, the sampling interval and the side-feeding motion are actively controlled at any cutting point to adapt the machining process to shape variation of the desired surface, making both the sampling induced interpolation error and the side-feeding induced residual tool mark be within the desired tolerances. Characteristic of the required cutting motion suggests that besides the conventional z-axis servo motion, another servo motion along the x-axis synthesizing by the c-axis is mandatory for implementing the ATS. Comparative studies of surface generation of typical micro-structured surfaces in FTS/STS and ATS are thoroughly conducted both theoretically and experimentally. The result demonstrates that the ATS outperforms the FTS/STS with improved surface quality while simultaneously enhanced machining efficiency. PMID:26367879

  3. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    SciTech Connect

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-17

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si{sub 3}N{sub 4} in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  4. Calculation and analysis for stiffness of the thrust aerostatic bearing of ultra-precision machine tools

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhao, Ziqiang; Liang, Yingchun; Zhang, Longjiang

    2010-10-01

    The single point diamond turning (SPDT) lathe of vertical flying cutting milling style is one important ultra-precision machining method for Large-aperture optics. To realize ultra-precision machining with SPDT technology, the turning spindle of the machine tools should be with higher stiffness and stability. In this paper, based on finite element method (FEM), an iterative procedure is proposed and implemented to solve the fluid dynamic model and structure model for simulation the couple of air pressure and structure flexibility. Simulation results show that pressure in the air gap makes the plate deform and this deformation produced by the pressure adversely modifies the pressure distribution. Experimental results indicate that the method can predict the aerostatic spindle stiffness accurately, the prediction error is about 2.04%. These results show a relevant influence of the structural flexibility of the bearing on its static performance.

  5. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-01

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si3N4 in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  6. Integrated test plan for directional boring

    SciTech Connect

    Volk, B.W.

    1993-02-10

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing.

  7. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    NASA Astrophysics Data System (ADS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  8. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  9. Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions

    NASA Astrophysics Data System (ADS)

    Liu, Guanglei; Chang, Kai; Liu, Zeliang

    2013-05-01

    Although a great deal of research has been dedicated to the synthesis of spiral bevel gears, little related to reverse engineering can be found. An approach is proposed to reverse the machine-tool settings of the pinion of a spiral bevel gear drive on the basis of the blank and tooth surface data obtained by a coordinate measuring machine(CMM). Real tooth contact analysis(RTCA) is performed to preliminary ascertain the contact pattern, the motion curve, as well as the position of the mean contact point. And then the tangent to the contact path and the motion curve are interpolated in the sense of the least square method to extract the initial values of the bias angle and the higher order coefficients(HOC) in modified roll motion. A trial tooth surface is generated by machine-tool settings derived from the local synthesis relating to the initial meshing performances and modified roll motion. An optimization objective is formed which equals the tooth surface deviation between the real tooth surface and the trial tooth surface. The design variables are the parameters describing the meshing performances at the mean contact point in addition to the HOC. When the objective is optimized within an arbitrarily given convergence tolerance, the machine-tool settings together with the HOC are obtained. The proposed approach is verified by a spiral bevel pinion used in the accessory gear box of an aviation engine. The trial tooth surfaces approach to the real tooth surface on the whole in the example. The results show that the convergent tooth surface deviation for the concave side on the average is less than 0.5 μm, and is less than 1.3 μm for the convex side. The biggest tooth surface deviation is 6.7 μm which is located at the corner of the grid on the convex side. Those nodes with relative bigger tooth surface deviations are all located at the boundary of the grid. An approach is proposed to figure out the machine-tool settings of a spiral bevel pinion by way of reverse

  10. Development of an active boring bar for increased chatter immunity

    SciTech Connect

    Redmond, J.; Barney, P.; Smith, D.

    1997-03-01

    The development and initial evaluation of a prototype boring bar featuring active vibration control for increased chatter immunity is described. The significance of active damping both normal and tangential to the workpiece surface is evaluated, indicating the need for two axis control to ensure adequate performance over expected variations in tool mounting procedures. The prototype tool features a commercially available boring bar modified to accommodate four PZT stack actuators for two axis bending control. Measured closed-loop dynamics are combined with a computer model of the boring process to simulate increased metal removal rate and improved workpiece surface finish through active control.

  11. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  12. Bayesian reliability modeling and assessment solution for NC machine tools under small-sample data

    NASA Astrophysics Data System (ADS)

    Yang, Zhaojun; Kan, Yingnan; Chen, Fei; Xu, Binbin; Chen, Chuanhai; Yang, Chuangui

    2015-11-01

    Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.

  13. Bore hole navigator

    SciTech Connect

    Hoffman, G.J.

    1987-09-29

    A bore hole navigator is described comprising a two axis platform for lowering down a bore hole on a cable with its longitudinal axis parallel to the local bore hole direction. The two axis platform has an outer gimbal, bearing supported on the outer gimbal axis for rotation about the longitudinal axis of the platform, and an inner gimbal axis orthogonal the the outer gimbal axis. The inner gimbal axis has multiple axis segments spaced along the longitudinal axis of the platform and each bearing supported on the outer gimbal. The inner gimbal axis segment has a two axis gyro mounted thereon with its spin axis orthogonal to the respective inner gimbal axis segment, a first gyro sensitive axis parallel to the respective inner gimbal axis segment and a second gyro sensitive axis orthogonal to the spin axis. The second inner gimbal axis segment has a pitch torquer thereon operative to provide a controllable torque about the respective inner gimbal axis segment. The third inner gimbal axis segment has a pitch resolver thereon operative to measure rotation of the respective inner gimbal axis segment with respect to the outer gimbal. The first, second and third inner gimbal axis segments are coupled to rotate together. The outer gimbal has a yaw torquer thereon to provide a controllable torque about the outer gimbal axis, and a yaw resolver thereon to measure rotation of the outer gimbal about the outer gimbal axis. The outer gimbal also has a single axis accelerometer therein having its sensitive axis orthogonal to the outer gimbal axis and the inner gimbal axis segments.

  14. Maneuvering impact boring head

    DOEpatents

    Zollinger, W.T.; Reutzel, E.W.

    1998-08-18

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure. 8 figs.

  15. Maneuvering impact boring head

    DOEpatents

    Zollinger, W. Thor; Reutzel, Edward W.

    1998-01-01

    An impact boring head may comprise a main body having an internal cavity with a front end and a rear end. A striker having a head end and a tail end is slidably mounted in the internal cavity of the main body so that the striker can be reciprocated between a forward position and an aft position in response to hydraulic pressure. A compressible gas contained in the internal cavity between the head end of the striker and the front end of the internal cavity returns the striker to the aft position upon removal of the hydraulic pressure.

  16. Tunnel boring waste test plan

    SciTech Connect

    Patricio, J.G. . Rockwell Hanford Operations)

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs.

  17. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    NASA Astrophysics Data System (ADS)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  18. Can carbon fibres work as tool electrodes in micro electrical discharge machining?

    NASA Astrophysics Data System (ADS)

    Trych-Wildner, Anna; Kudla, Leszek

    2016-07-01

    This paper presents a basic study of the possible application of carbon fibres as tool electrodes in micro electrical discharge machining. The purpose of the experiments with this novel material was to gain knowledge about the operation of the new tool electrode. In the paper, the procedure for adapting a single fibre to such a function is described, with detailed steps on preparing the shanks essential for the mounting operation in the experimental setup. The design setup is also presented and the experimental conditions of each test are shown. Furthermore, tests with the prepared electrodes concerning the general observations of the process and the results on the machined surface and on the tool are presented. The shape cavity fabrication and tests with the reverse polarity of the electrodes are also introduced. Next, the influence of single discharge energy is considered and the geometry of the obtained microholes is discussed. Detailed data about the wear of the tool, which can be up to 90% of the entire eroded material, in comparison with the material removal rate from the workpiece, which can be at a level of 10%, is gathered. Then, the geometrical analysis of the cavities is described showing that their depths are in the range of a few micrometres.

  19. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). PMID:24007752

  20. Modal identification of spindle-tool unit in high-speed machining

    NASA Astrophysics Data System (ADS)

    Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal

    2011-10-01

    The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic

  1. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  2. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    SciTech Connect

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie

    2011-02-15

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy {approx}80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  3. Simulation and experimental research on modal analysis for a new 5-axis superalloy blade machine tool

    NASA Astrophysics Data System (ADS)

    Zhao, H. P.; Tang, X. Q.; Chen, X.; Wang, L. P.

    2011-05-01

    This paper considers a new type of 5-axis machine tool which is used to cut superalloy blades specially. Referring to this new structure system, this study presents modal simulation in detail to calculate the structure vibration resistance. The modal simulation include building suitable finite element models, considering boundary constraints and interpreting results. The physical impact test of prototype is conducted to validate the simulation results. The modal simulation also reveals that some important partial characteristics that affects the structure performance are ignored in the physical test data. The validated model can be used to complement the experimental test.

  4. Simulation and experimental research on modal analysis for a new 5-axis superalloy blade machine tool

    NASA Astrophysics Data System (ADS)

    Zhao, H. P.; Tang, X. Q.; Chen, X.; Wang, L. P.

    2010-12-01

    This paper considers a new type of 5-axis machine tool which is used to cut superalloy blades specially. Referring to this new structure system, this study presents modal simulation in detail to calculate the structure vibration resistance. The modal simulation include building suitable finite element models, considering boundary constraints and interpreting results. The physical impact test of prototype is conducted to validate the simulation results. The modal simulation also reveals that some important partial characteristics that affects the structure performance are ignored in the physical test data. The validated model can be used to complement the experimental test.

  5. Apparatus for correcting precision errors in slide straightness in machine tools

    DOEpatents

    Robinson, Samuel C.; Gerth, Howard L.

    1981-01-01

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path so as to readily compensate for slight deviations in the straightness and roll of the slide path.

  6. Apparatus for correcting precision errors in slide straigntness in machine tools

    DOEpatents

    Robinson, S.C.; Gerth, H.L.

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path soa as to readily compensate for slight deviations in the straightness and roll of the slide path.

  7. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    NASA Astrophysics Data System (ADS)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  8. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    SciTech Connect

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-04-07

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  9. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  10. Applying Machine Learning Tools to the Identification of Foreshock Transient Events

    NASA Astrophysics Data System (ADS)

    Beyene, F.; Murr, D.

    2015-12-01

    Our previous research attempted to establish the relationship between foreshock transient events and transients in the ionosphere observed with ground magnetometers. This earlier work relied on foreshock transient event lists that were generated by a visual survey of the THEMIS data near the bowshock/foreshock. Our aim is to extend our earlier work, and the overall understanding of foreshock transients, by employing machine learning tools to identify foreshock transient events. Successful application of these tools would allow use to survey much more data. We first present results of automated classification of THEMIS data into the three primary regions of solar wind, magnetosheath, and magnetosphere. We then present our initial results of training an SVM classifier using the human generated event list and applying it to a more extensive data set.