Science.gov

Sample records for machining edm process

  1. An on-line monitoring system for a micro electrical discharge machining (micro-EDM) process

    NASA Astrophysics Data System (ADS)

    Liao, Y. S.; Chang, T. Y.; Chuang, T. J.

    2008-03-01

    A pulse-type discriminating system to monitor the process of micro electrical discharge machining (micro-EDM) is developed and implemented. The specific features are extracted and the pulses from a RC-type power source are classified into normal, effective arc, transient short circuit and complex types. An approach to discriminate the pulse type according to three durations measured at three pre-determined voltage levels of a pulse is proposed. The developed system is verified by using simulated signals. Discrimination of the pulse trains in actual machining processes shows that the pulses are mainly the normal type for micro wire-EDM and micro-EDM milling. The pulse-type distribution varies during the micro-EDM drilling process. The percentage of complex-type pulse increases monotonically with the drilling depth. It starts to drop when the gap condition is seriously deteriorated. Accordingly, an on-line monitoring strategy for the micro-EDM drilling process is proposed.

  2. Modeling and optimizing electrodischarge machine process (EDM) with an approach based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zabbah, Iman

    2011-12-01

    Electro Discharge Machine (EDM) is the commonest untraditional method of production for forming metals and the Non-Oxide ceramics. The increase of smoothness, the increase of the remove of filings, and also the decrease of proportional erosion tool has an important role in this machining. That is directly related to the choosing of input parameters.The complicated and non-linear nature of EDM has made the process impossible with usual and classic method. So far, some methods have been used based on intelligence to optimize this process. At the top of them we can mention artificial neural network that has modelled the process as a black box. The problem of this kind of machining is seen when a workpiece is composited of the collection of carbon-based materials such as silicon carbide. In this article, besides using the new method of mono-pulse technical of EDM, we design a fuzzy neural network and model it. Then the genetic algorithm is used to find the optimal inputs of machine. In our research, workpiece is a Non-Oxide metal called silicon carbide. That makes the control process more difficult. At last, the results are compared with the previous methods.

  3. Modeling and optimizing electrodischarge machine process (EDM) with an approach based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zabbah, Iman

    2012-01-01

    Electro Discharge Machine (EDM) is the commonest untraditional method of production for forming metals and the Non-Oxide ceramics. The increase of smoothness, the increase of the remove of filings, and also the decrease of proportional erosion tool has an important role in this machining. That is directly related to the choosing of input parameters.The complicated and non-linear nature of EDM has made the process impossible with usual and classic method. So far, some methods have been used based on intelligence to optimize this process. At the top of them we can mention artificial neural network that has modelled the process as a black box. The problem of this kind of machining is seen when a workpiece is composited of the collection of carbon-based materials such as silicon carbide. In this article, besides using the new method of mono-pulse technical of EDM, we design a fuzzy neural network and model it. Then the genetic algorithm is used to find the optimal inputs of machine. In our research, workpiece is a Non-Oxide metal called silicon carbide. That makes the control process more difficult. At last, the results are compared with the previous methods.

  4. Fast and stable electrical discharge machining (EDM)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyang; Zhou, Ming; Xu, Xiaoyi; Yang, Jianwei; Zeng, Xiangwei; Xu, Donghui

    2016-05-01

    In order to improve EDM performances, the most important issue is to develop a highly stable control system. As a serious defect in EDM adaptive control system by minimum-variance control law, the occasional instability deterred its full applications in industries. This paper focuses on stabilizing EDM process by establishing a new minimum-variance and pole-placement coupled control law. Based on real-time estimation of EDM process model parameters, this adaptive control system directly controls electrode discharging cycle not only to follow a specified gap state for fast machining but also to track the dynamical response of a reference model for stabilizing EDM process. Confirmation experiment demonstrates that this control system can timely adjust electrode discharging cycle in terms of different machining situations quantified as a series of varied gap states to maintain a stable and fast fabrication. The adaptive control system by this newly developed control law exhibits its superior machining ability and capability of stabilizing sparking process to those of the adaptive control system by minimum-variance control law. The adaptive system has actually theoretically and technically solved the stability issue puzzled EDM circle for decades.

  5. Mechanical characterization of Cu-Zn wire electrode base used in EDM and study of influence of the process of machining on its properties

    SciTech Connect

    Sedjal, H. Amirat, B.; Aichour, M.; Marouf, T.; Chitroub, M.

    2015-03-30

    This work is part of a Research National project (PNR) carried out by the group of research of the engineering and material sciences laboratory of the polytechnic national school at Algiers in collaboration with company BCR, which relates to “the characterization of the wire intended for the EDM of matrices metal. The goal of this work is to bring metallographic explanations on the wire electrode used by the machine ROBOFIL 290P, mechanically characterized this wire as of knowing of advantage about the process of its manufacturing (wiredrawing, .) The methods of studies used are it micro Vickers pyramid hardness, the tensile test, optical microscopy and scan electronic microscopy SEM.

  6. EDM Machine Modified For Micro Drilling In DAC Experiments

    NASA Astrophysics Data System (ADS)

    Lonappan, Dayana; Shekar, N. V. Chandra; Sundaram, L. M.; Edwin, T.; Sahu, P. Ch.

    2011-07-01

    A JOEMARS Electric discharge machine (EDM) has been modified for micro drilling of gasket holes for high pressure experiments using a diamond anvil cell. We were able to use normal tungsten carbide drill bits that are used for drilling micro holes manually with the EDM. The drilled holes were free of burr formation and had a nice surface finish.

  7. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sari, M. M.; Noordin, M. Y.; Brusa, E.

    2012-09-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  8. A fatigue study of electrical discharge machine (EDM) strain-gage balance materials

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1989-01-01

    A fatigue study was undertaken to determine how much electrical-discharge-machine (EDM) processing affected the fatigue life of balance materials: EDM and regular milling-machine (MM) samples were compared. Simulation of a typical balance stress configuration was devised for the fatigue testing in order to obtain results more closely related to balance situations. The fatigue testing of the EDM and MM specimens has indicated that the EDM technique does indeed reduce the fatigue life of 15-5PH steel, the first balance material tested. This conclusion was based on comparisons of the specimen fatigue lives with theoretical and manufacturer's data. Hence the EDM surface effects are detrimental to the fatigue life of this balance material.

  9. Study on ultra-fine w-EDM with on-machine measurement-assisted

    SciTech Connect

    Chen Shuntong; Yang Hongye

    2011-01-17

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-{mu}m diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  10. Development of an Eco-Friendly Electrical Discharge Machine (E-EDM) Using TRIZ Approach

    NASA Astrophysics Data System (ADS)

    Sreebalaji, V. S.; Saravanan, R.

    Electrical Discharge Machine (EDM) is one of the non-traditional machining processes. EDM process is based on thermoelectric energy between the work and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporization. The electrode and the work piece must have an electrical conductivity in order to generate the spark. Dielectric fluid acts as a spark conductor, concentrating the energy to a very narrow region. There are various types of products can be produced and finished using EDM such as Moulds, Dies, Parts of Aerodynamics, Automotives and Surgical components. This research work reveals how an Eco friendly EDM (E-EDM) can be modeled to replace die electric fluid and introducing ozonised oxygen in to EDM to eliminate harmful effects generated while machining by using dielectric, to make pollution free machining environment through a new design of EEDM using TRIZ (a Russian acronym for Theory of Inventive Problem Solving) approach, since Eco friendly design is the need of the hour.

  11. Vertical EDM (electric discharge machining) using modular programming

    SciTech Connect

    Fuller, J.E.

    1989-01-01

    The usual function of computer numerically controlled (CNC) machining programs is to specify a sequence of machining operations. When CNC is applied to electric discharge machining (EDM), the possibilities and needs are much greater. This paper describes a modular system of programming in which various functions are carried out by subroutines contained in the controller memory. The subroutines are made more versatile by using variables. Such functions as orbiting, cavity inspection, electrode wear measurement and compensation, and multiple cavities are possible. 3 refs., 9 figs.

  12. A machine vision system for micro-EDM based on linux

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Wansheng; Li, Gang; Li, Zhiyong; Zhang, Yong

    2006-11-01

    Due to the high precision and good surface quality that it can give, Electrical Discharge Machining (EDM) is potentially an important process for the fabrication of micro-tools and micro-components. However, a number of issues remain unsolved before micro-EDM becomes a reliable process with repeatable results. To deal with the difficulties in micro electrodes on-line fabrication and tool wear compensation, a micro-EDM machine vision system is developed with a Charge Coupled Device (CCD) camera, with an optical resolution of 1.61μm and an overall magnification of 113~729. Based on the Linux operating system, an image capturing program is developed with the V4L2 API, and an image processing program is exploited by using OpenCV. The contour of micro electrodes can be extracted by means of the Canny edge detector. Through the system calibration, the micro electrodes diameter can be measured on-line. Experiments have been carried out to prove its performance, and the reasons of measurement error are also analyzed.

  13. Study on Expansion Process of EDM Arc Plasma

    NASA Astrophysics Data System (ADS)

    Natsu, Wataru; Shimoyamada, Mayumi; Kunieda, Masanori

    In order to understand the phenomena of electrical discharge machining (EDM), the characteristics of transition arc plasma in EDM were investigated. The arc plasma was directly observed with a high speed video camera. In addition, to learn more about arc plasma expansion, plasma temperature was measured by spectroscopy. The arc plasma temperature was obtained by measuring the radiant fluxes of two different wavelengths from the arc plasma and applying the line pair method. Furthermore, a new expansion model for EDM arc plasma was proposed based on the observations, and validated by comparing experimental and computed results of the discharge crater.

  14. Fabrication Of Micro-Nozzles Via {mu}-EDM Process

    SciTech Connect

    Modica, F.; Trotta, G.; Fassi, I.

    2011-01-17

    Since traditional handling mechanisms have an unpredictable behavior at micro scale, micro-assembly is a bottleneck in the development of hybrid micro-systems, and the development of new approaches is strongly demanded. In this paper, a recent study of the fabrication of a ceramics vacuum micro-gripper to handle parts in the range of hundreds of microns (300-1000) is presented. Among the possible micro manufacturing processes, micro-EDM has been selected as proving to be a very competitive fabrication technology for the manufacturing of ultra miniature components and micro sized features. The influence of the process parameters on the machining performance of interest is firstly investigated; then, the experimental results on machining the micro gripper are presented, finally concluding remarks are given.

  15. Assessing the effects of different dielectrics on environmentally conscious powder-mixed EDM of difficult-to-machine material (WC-Co)

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Sharma, Rajiv Kumar

    2016-06-01

    Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.

  16. EDM machinability of SiCw/Al composites

    NASA Technical Reports Server (NTRS)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  17. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    NASA Technical Reports Server (NTRS)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  18. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    SciTech Connect

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  19. Simultaneous Processing Method for Micro-Rods and Holes Using EDM

    NASA Astrophysics Data System (ADS)

    Yamazaki, Minoru; Mori, Noritosi; Suzuki, Takemi; Kunieda, Masanori

    This paper describes a new method for micro-EDM drilling which utilizes the wear of rod electrodes. With this method, a pair of micro rod and micro hole can be machined in a single process, while with conventional methods, the micro rod electrode needs to be formed before machining the micro hole. Processing conditions were optimized for the new method to obtain higher aspect ratio for the micro rods. Results of experiments also showed the following: 1) This method can be applied to AISI1045, AISI304 and Kovar and any electrode diameter size. 2) From the second process, if machining many holes using the same electrode, the electrode shape can be regenerated with excellent repeatability and holes processed efficiently. 3) The influence of carbon adhering to the tip region of the rod electrode is large, which is why the rod electrode becomes needle sharp.

  20. Electrical Discharge Machining.

    ERIC Educational Resources Information Center

    Montgomery, C. M.

    The manual is for use by students learning electrical discharge machining (EDM). It consists of eight units divided into several lessons, each designed to meet one of the stated objectives for the unit. The units deal with: introduction to and advantages of EDM, the EDM process, basic components of EDM, reaction between forming tool and workpiece,…

  1. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    NASA Astrophysics Data System (ADS)

    Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao

    2014-10-01

    In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action.

  2. Monitor For Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1993-01-01

    Circuit monitors electrical-discharge-machining (EDM) process to detect and prevent abnormal arcing, which can produce unacceptable "burn" marks on workpiece. When voltage between EDM electrode and workpiece behaves in manner indicative of abnormal arcing, relay made to switch off EDM power, which remains off until operator attends to EDM setup and resets monitor.

  3. Characterization of nanoparticles from abrasive waterjet machining and electrical discharge machining processes.

    PubMed

    Ling, Tsz Yan; Pui, David Y H

    2013-11-19

    Abrasive Waterjet Machining (AWM) and Electrical Discharge Machining (EDM) processes are found to produce nanoparticles during operation. Impacts of engineered nanoparticles released to the environment and biological system have caused much concern. Similarly, the nanoparticles unintentionally produced by the AWM and EDM can lead to comparable effects. By application of the Nanoparticle Tracking Analysis (NTA) technique, the size distribution and concentration of nanoparticles in the water used in AWM and EDM were measured. The particles generally have a peak size of 100-200 nm. The filtration systems of the AWM and EDM processes were found to remove 70% and 90% the nanoparticles present, respectively. However, the particle concentration of the filtered water from the AWM was still four times higher than that found in regular tap water. These nanoparticles are mostly agglomerated, according to the microscopy analysis. Using the electron dispersive spectroscopy (EDS) technique, the particles are confirmed to come from the debris of the materials cut with the equipment. Since AWM and EDM are widely used, the handling and disposal of used filters collected with nanoparticles, release of nanoparticles to the sewer, and potential use of higher performance filters for these processes will deserve further consideration. PMID:24144041

  4. Fabrication of high aspect ratio micro electrode by using EDM

    NASA Astrophysics Data System (ADS)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Umar Alkali, Adam

    2016-02-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated.

  5. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  6. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718

    SciTech Connect

    Newton, Thomas R; Melkote, Shreyes N; Watkins, Thomas R; Trejo, Rosa M; Riester, Laura

    2009-01-01

    Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present and are due in large part to the formation of the recast layer. An experimental investigation was conducted to determine the main EDM parameters which contribute to recast layer formation in Inconel 718. It was found that average recast layer thickness increased primarily with energy per spark, peak discharge current, and current pulse duration. Over the range of parameters tested, the recast layer was observed to be between 5 and 9 {micro}m in average thickness, although highly variable in nature. The recast material was found to possess in-plane tensile residual stresses, as well as lower hardness and elastic modulus than the bulk material.

  7. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  8. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  9. Electrical-Discharge Machining Of Curved Passages

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal S.

    1993-01-01

    Electrical-discharge machining (EDM) used to cut deep hole with bends. EDM process done with articulating segmented electrode. Originally straight, electrode curved as it penetrates part, forming long, smoothly curving hole. After hole cut, honed with slurry to remove thin layer of recast metal created by EDM. Breakage of tools, hand deburring, and drilling debris eliminated.

  10. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  11. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining.

    PubMed

    Yamaki, Koichi; Kataoka, Yu; Ohtsuka, Fukunaga; Miyazaki, Takashi

    2012-01-01

    Titanium surfaces processed by wire-type electric discharge machining (EDM) are microfabricated surfaces with an irregular morphology, and they exhibited excellent in vitro bone biocompatibility. In this study, the efficiency of in vivo osteogenesis on EDM surfaces was investigated by surgically placing screw-shaped EDM-processed and machined-surface implants into the femurs of four Japanese white rabbits. The volume and process of new bone formation were evaluated by an X-ray micro-CT scanner, coupled with histopathological observations at 1, 2, and 4 weeks post-implantation. Before surgical implantation, the surface topography and contact angle of each implant surface were examined. Bone formation increased over time on both implant surfaces, with both implant types yielding statistically equivalent bone volume at 4 weeks post-implementation. However, at 1 week post-implantation, amount of new bone at EDM-processed implant was markedly greater than that at machined-surface implant. Moreover, new bone appeared to initiate directly from the EDM surfaces, while new bone appeared to generate from pre-existing host bone to the machined surfaces. Thus, EDM seemed to be a promising method for surface modification of titanium implants to support enhanced osteogenesis. PMID:22673455

  12. Micro-EDM for silicon microstructure fabrication

    NASA Astrophysics Data System (ADS)

    Song, Xiaozhong; Reynaerts, Dominiek; Meeusen, Wim; Van Brussel, Hendrik

    1999-03-01

    Currently, most silicon microstructures used in microstructures are produced by photolithographic methods. The reason for this is the well-developed etching technology, used in microelectronics, that has been transferred to the microsystem domain. But since the making of an arbitrary shape or angle on silicon mainly depends on the crystal orientation, some severe limits exist in the production of 3D structures. Electro-discharge machining (EDM) is basically a thermal process. During the EDM process material is removed by electric sparking. It is therefore completely different from etching. In this work, micro-EDM is introduce as a potential approach for solving the above mentioned drawbacks. First, this work presents several testing experiments with different process parameters to investigate the influence of the micro-EDM process on the silicon structure. Main emphasis is put on the surface roughness and on avoiding microcracks generated by the sparking process. It is found that microstructures with a sufficiently low surface roughness and with small microcracks can be produced. The remainder of the work concentrates on making small beam structures, which is a common structure in many microsensor designs. It is found that for a wafer thickness of 650 micrometers , the thinnest beam that can be produced is about 30 micrometers wide. This means that micro-EDM can offer an aspect ratio of 20 in combination with a god dimensional control.

  13. Making EDM Electrodes By Stereolithography

    NASA Technical Reports Server (NTRS)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  14. Experimental Study on Influence of Process Variables on Crater Dimensions in Micro- EDM of {gamma}-Titanium Aluminide

    SciTech Connect

    Mitra, S.; Paul, G.; Sarkar, S.; Nagahanumaiah

    2011-01-17

    In the present work the effect of different dielectric mediums in micro-EDM of {gamma}-Titanium Aluminide alloy have been investigated. Experiments were conducted both in the absence (dry conditions) and in presence of dielectric (EDM oil).Circular craters were produced both in the presence and absence of dielectric fluid using varying micro-EDM process variables i.e. open circuit voltage, discharge capacitance, pulse frequency and pulse-on-time. Over cut was measured from optical microscope images using Image Analyzer software. Influences of process variables and optimal conditions for minimum over cut on crater dimensions were investigated. ANOVA test which shows that capacitance of RC circuit contributes significantly in crater formation followed by pulse frequency. Optical photographs exhibit that over cut are less in air medium compared to oil medium.

  15. Use of in-process EDM truing to generate complex contours on metal-bond, superabrasive grinding wheels for precision grinding structural ceramics

    SciTech Connect

    Piscotty, M. A., LLNL

    1997-08-01

    This paper presents recent work performed at Lawrence Livermore National Laboratory to develop cost-effective, versatile and robust manufacturing methods for grinding precision features in structural ceramics using metal-bond, superabrasive grinding wheels. The developed processes include utilizing specialized, on-machine hardware to generate precision profiles onto grinding wheels using electrical-discharge machining (EDM) and a contoured rotating electrode. The production grinding processes are described, which were developed and used to grind various precision details into a host of structural ceramics such as Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, and BeO. The methodologies, hardware and results of both creep-feed and cylindrical grinding are described. A discussion of imparted grinding damage and wheel wear is also presented.

  16. Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process

    NASA Astrophysics Data System (ADS)

    Choudhary, Rajesh; Kumar, Harmesh; Singh, Shankar

    2013-12-01

    The aim of this study is to establish optimum machining conditions for EDSG of AISI D2 die steel through an experimental investigation using Taguchi Methodology. To achieve combined grinding and electrical discharge machining, metal matrix composite electrodes (Cu-SiCp) were processed through powder metallurgy route. A rotary spindle attachment was developed to perform the EDSG experimental runs on EDM machine. Relationships were developed between various input parameters such as peak current, speed, pulse-on time, pulse-off time, abrasive particle size, and abrasive particle concentration, and output characteristics such as material removal rate and surface roughness. The optimized parameters were further validated by conducting confirmation experiments.

  17. Study of the Productivity and Surface Quality of Hybrid EDM

    NASA Astrophysics Data System (ADS)

    Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal

    2016-01-01

    The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

  18. Unsteady processes in machines.

    PubMed

    Pfeiffer, Friedrich

    1994-12-01

    Couplings in machines and mechanisms always have play and friction. While under loading, stick-slip phenomena and impact events can take place. Such processes are modeled as multibody systems whose structure is time variant or unsteady. The time-variant number of degrees of freedom is due to stick-slip contacts. The coupling characteristics become unsteady, for instance there exist jumps in the loads, if impacts occur. For establishing a uniform theory for such phenomena we use a Lagrangian approach connecting the additional constraint equations and the equations of motion by Lagrange multipliers, which are proportional to the constraint forces. Stick-slip and impact events are evaluated by indicator functions leading to special numerical algorithms for the search of switching points. Contact problems are formulated as a complementarity problem which can be solved by efficient algorithms. The theory is applied to rattling in gears, impact drilling machines, turbine blade dampers, and a woodpecker toy. In some of these applications, chaos as a result of bifurcations is possible, which results from variations in the parameters. (c) 1994 American Institute of Physics. PMID:12780146

  19. The EDM surface: Topography, chemistry, and metallurgy

    SciTech Connect

    Fuller, J.E.

    1991-01-01

    The surface created by the electric discharge machining (EDM) process is of special interest because it has been shown to have a negative effect on the fatigue properties of many alloys. An understanding of the surface metallurgy and chemistry is important in predicting those alloys which are most susceptible to failure. Remedial actions, including thickness minimization, alteration, or removal of the surface layer are addressed.

  20. Effects of Heat Treatments on the On-Line Service Life of a Press Die Manufactured by W-Edm

    NASA Astrophysics Data System (ADS)

    Choi, Kye-Kwang; Lee, Yong-Shin

    Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.

  1. Experimental Investigations during Dry EDM of Inconel - 718

    NASA Astrophysics Data System (ADS)

    BHANDARE, A. S.; DABADE, U. A.

    2016-02-01

    Dry EDM is a modification of the conventional EDM process in which the liquid dielectric is replaced by a gaseous medium. Tubular tool electrodes are used and as the tool rotates, high velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. It is now known that apart from being an environment- friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone. Keeping literature review into consideration, in this paper, an attempt has been made by selecting compressed air as a dielectric medium, with Inconel - 718 as a work piece material and copper as a tool electrode. Experiments are performed using Taguchi DoE orthogonal array to observe and analyze the effects of different process parameters to optimize the response variables such as material removal rate (MRR), surface roughness (Ra) and tool wear rate (TWR). In the current work, a unit has been developed to implement dry EDM process on existing oil based EDM machine.

  2. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    PubMed

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted. PMID:25607880

  3. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2010-12-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  4. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  5. Gaussian processes for machine learning.

    PubMed

    Seeger, Matthias

    2004-04-01

    Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided. PMID:15112367

  6. Corrosion Resistance Analysis of Sintered NdFeB Magnets Using Ultrasonic-Aided EDM Method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wei, X. T.; Li, Z. Y.; Cheng, X.

    2015-01-01

    Sintered neodymium-iron-boron (NdFeB) permanent magnets are widely used in many fields because of their excellent magnetic property. However, their poor corrosion resistance has been cited as a potential problem that limits their extensive application. This paper presents an experimental investigation into the improvement of surface corrosion resistance with the ultrasonic-aided electrical discharge machining (U-EDM) method. A scanning electron microscope was used to analyze the surface morphology of recast layers formed through the EDM and U-EDM processes. The chemical structure and elements of these recast layers were characterized using x-ray diffraction and energy dispersive spectroscopy. Corrosion resistance was also studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion tests in 0.5 mol/L H2SO4 solution. Experimental results show that an amorphous structure was formed in the recast layer during the EDM and U-EDM processes and that this structure could improve the corrosion resistance of sintered NdFeB magnets. Moreover, the corrosion resistance of U-EDM-treated surface was better than that of the EDM-treated surface.

  7. Mathematical modeling and analysis of EDM process parameters based on Taguchi design of experiments

    NASA Astrophysics Data System (ADS)

    Laxman, J.; Raj, K. Guru

    2015-12-01

    Electro Discharge Machining is a process used for machining very hard metals, deep and complex shapes by metal erosion in all types of electro conductive materials. The metal is removed through the action of an electric discharge of short duration and high current density between the tool and the work piece. The eroded metal on the surface of both work piece and the tool is flushed away by the dielectric fluid. The objective of this work is to develop a mathematical model for an Electro Discharge Machining process which provides the necessary equations to predict the metal removal rate, electrode wear rate and surface roughness. Regression analysis is used to investigate the relationship between various process parameters. The input parameters are taken as peak current, pulse on time, pulse off time, tool lift time. and the Metal removal rate, electrode wear rate and surface roughness are as responses. Experiments are conducted on Titanium super alloy based on the Taguchi design of experiments i.e. L27 orthogonal experiments.

  8. Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol

    NASA Astrophysics Data System (ADS)

    Huang, H.; Zhang, H.; Zhou, L.; Zheng, H. Y.

    2003-09-01

    An ultrasonic vibration has been superposed on the normal electrode movement to increase the flushing effect during a micro electro-discharge machining (EDM) process. A systematic study on the effects of ultrasonic vibration on the EDM performance for fabricating microholes in Nitinol has been completed. The introduction of ultrasonic vibration to the micro-EDM process has increased the machining efficiency more than 60 times, without significantly increasing the electrode wear. Numerical simulation reveals that the efficiency improvement is attributed to the strong stirring effect caused by ultrasonic vibration, which results in an excellent flushing in the micro-EDM process.

  9. The Evolution of CERN EDMS

    NASA Astrophysics Data System (ADS)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  10. Investigation of Wire Electrical Discharge Machining of Thin Cross-Sections and Compliant Mechanisms

    SciTech Connect

    Miller, Scott F.; Kao, Chen C.; Shih, Albert J.; Qu, Jun

    2005-01-01

    The wire electrical discharge machining (EDM) of cross-section with minimum thickness and compliant mechanisms is studied. Effects of EDM process parameters, particularly the spark cycle time and spark on-time on thin cross-section cutting of Nd-Fe-B magnetic material, carbon bipolar plate, and titanium are investigated. An envelope of feasible wire EDM process parameters is generated for the commercially pure titanium. The application of such envelope to select suitable EDM process parameters for micro feature generation is demonstrated. Scanning electron microscopy (SEM) analysis of EDM surface, subsurface, and debris are presented. SEM observations lead to a hypothesis based on the thermal and electrostatic stress induced fracture to explain the limiting factor for wire EDM cutting of thin-sections. Applications of the thin cross-section EDM cutting for manufacture of compliant mechanisms are discussed.

  11. Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces

    PubMed Central

    Fernández, Pedro; Blanco, David; Rico, Carlos; Valiño, Gonzalo; Mateos, Sabino

    2014-01-01

    Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM. PMID:24662452

  12. Influence of surface position along the working range of conoscopic holography sensors on dimensional verification of AISI 316 wire EDM machined surfaces.

    PubMed

    Fernández, Pedro; Blanco, David; Rico, Carlos; Valiño, Gonzalo; Mateos, Sabino

    2014-01-01

    Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM. PMID:24662452

  13. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.

    PubMed

    Hakumai, Yuichi; Shimomoto, Kouko; Ashiuchi, Makoto

    2015-05-15

    Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance. PMID:25843804

  14. Storage Ring EDM Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-04-01

    Dedicated storage ring electric dipole moment (EDM) methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  15. High-speed micro-electro-discharge machining.

    SciTech Connect

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  16. Multi-Objective Optimization of Green EDM: An Integrated Theory

    NASA Astrophysics Data System (ADS)

    Jagadish; Ray, A.

    2015-01-01

    Electrical Discharge Machining (EDM) generates toxic substances, results in serious occupational health, and environmental issues, which influence the process parameters of EDM. These process parameters are multi-response parameters. The aim of this research is to solve the multi-response optimization problems and selection of optimum process parameters of green EDM using an integrated methodology comprising of entropy and Grey Relational Analysis (GRA). In this work, initially, an experiment was performed using Taguchi experimental technique. Thereafter, Entropy-GRA has been used to convert the multi-response parameters into single response parameter. Finally, the ranking of the parameter decides the best experimental set up and optimizes the input process parameters. In this work, Entropy method has been used to extract the precise value of each of the output parameters, which influences the gray relational grades for finding the optimal experimental set up. The justification of optimal input process parameters has been made using Analysis of Variance (ANOVA) analysis. An attempt has been made to compare the proposed methodology with the Fuzzy-TOPSIS and Taguchi-VIKOR methodology. The numerical result shows that the optimum process parameters are peak current (4.5 A), pulse duration (261 μs), dielectric level (80 mm) and flushing pressure (0.3 kg/cm2).

  17. Entering the operative correction machining processes CNC

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Yu; Starikov, A. I.; Lasukov, A. A.

    2015-09-01

    The article describes the solution to the problem of compensation of errors occurring during machining on CNC machines. We propose a method of mathematical modeling of processes diagnostics and control of technological equipment. The results of the diagnosis of the CNC machine, as well as the mathematical model describing the dependence of the positioning error of the executive bodies of operating component of cutting force PZ, in the range of movement OX.

  18. Machine Process Capability Information Through Six Sigma

    SciTech Connect

    Lackner, M.F.

    1998-03-13

    A project investigating details concerning machine process capability information and its accessibility has been conducted. The thesis of the project proposed designing a part (denoted as a machine capability workpiece) based on the major machining features of a given machine. Parts are machined and measured to gather representative production, short-term variation. The information is utilized to predict the expected defect rate, expressed in terms of a composite sigma level process capability index, for a production part. Presently, decisions concerning process planning, particularly what machine will statistically produce the minimum amount of defects based on machined features and associated tolerances, are rarely made. Six sigma tools and methodology were employed to conduct this investigation at AlliedSignal FM and T. Tools such as the thought process map, factor relationship diagrams, and components of variance were used. This study is progressing toward completion. This research study was an example of how machine process capability information may be gathered for milling planar faces (horizontal) and slot features. The planning method used to determine where and how to gather variation for the part to be designed is known as factor relationship diagramming. Components-of-variation is then applied to the gathered data to arrive at the contributing level of variation illustrated within the factor relationship diagram. The idea of using this capability information beyond process planning to the other business enterprise operations is proposed.

  19. A novel power source for high-precision, highly efficient micro w-EDM

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-07-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance-capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts.

  20. Dry Machining Process of Milling Machine using Axiomatic Green Methodology

    NASA Astrophysics Data System (ADS)

    Puspita Andriani, Gita; Akbar, Muhammad; Irianto, Dradjad

    2016-02-01

    Most of companies know that there are strategies to become green industry, and they realize that green efforts have impacts on product quality and cost. Axiomatic Green Methodology models the relationship between green, quality, and cost. This methodology starts with determining the green improvement objective and then continues with mapping the functional, economic, and green requirements. From the mapping, variables which affect the requirements are identified. Afterwards, the effect of each variable is determined by performing experiments and regression modelling. In this research, axiomatic green methodology was implemented to dry machining of milling machine in order to reduce the amount of coolant. Dry machining will be feasible if it is not worse than the minimum required quality. As a result, dry machining is feasible without producing any defect. The proposed machining parameter is to reduce the coolant flow rate from 6.882 ml/minute to 0 ml/minute, set the depth of cut at 1.2 mm, spindle rotation speed at 500 rpm, and feed rate at 128 mm/minute. This solution is also resulted in reduction of cost for 200.48 rupiahs for each process.

  1. Optimisation of EDM fast hole drilling for aerospace applications

    NASA Astrophysics Data System (ADS)

    Leao, F. N.

    Electrical discharge machining (EDM) fast hole drilling is a thermo-electric manufacturing process in which material removal is achieved by sparks taking place between a tool electrode and the workpiece being drilled; both covered in dielectric fluid and connected to a generator delivering periodic pulses of energy at very high frequencies. There is no physical contact between the workpiece and the electrode, and the small gap separating them is maintained under servo control. EDM fast hole drilling plays a vital role in the aerospace industry. The operating temperatures of aero-engine often exceed the melting point of the materials used in its components. Hence, it is required to artificially cool different types of components including turbine blades. This is accomplished by directing bypass air into internal passages of the blade; the air flows continuality through small holes, having diameters ranging from 0.4 to 3mm and are drilled at steep angles to the baled surfaces. With EDM it is possible to drill these holes. The EDM drilling, however, operates with very high levels of relative electrode wear and high variations in cycle times making the process rather inconsistent. Using the DOE (Design of Experiments) approach, a series of studies have been carried out with the purpose of optimising the drilling process through the evaluation of water-based dielectric fluids and electrode materials, via analysis of drilling time, electrode wear, surface integrity, dimensional accuracy and costs. Factors such as the electrode length, geometry and dielectric flushing have also been studied. This work has shown that drilling times and electrode wear can be reduced by 50% and 35% respectively depending on the type of dielectric fluid/electrode material used and on the optimisation criteria employed. Significant reductions in the variations of drilling times have also been observed. Moreover, drilling time and electrode wear can be decreased by 165% and 25% respectively

  2. Micro-Hole Multi-Point Punching System Using Punch and Die Made by EDM

    NASA Astrophysics Data System (ADS)

    Broomfield, Mark; Mori, Toshihiko; Mikuriya, Teruaki; Tachibana, Kazushi

    In this research a multi-point micro punch and die system was developed. The process of electric discharge machining (EDM) was used to produce both the punch and die. The punches were machined from a 5 mm diameter tungsten and a 10 mm diameter tool steel round rods by wire electric discharge machining (WEDM), using a 200 µm diameter wire electrode. The die holes were made using the punch as the electrode. The EDM process of the holes was carried out on a newly developed desktop EDM machine. The punch and die placed on a micro-die set and then on a micro press were used to produce micro-holes using an automatic control system developed for this process. Experiments to produce 50 µm to 67 µm square micro-holes on 50 µm thick aluminum, 30 µm thick copper and 20 µm thick stainless steel foils were conducted. The capabilities of multi-point punching using the tungsten punch and a tool steel punch were examined and tungsten was chosen as the material of choice for making the punch tool. A scanning electron microscope confirmed that the holes produced are clean, and the sheared surfaces smooth. The punch tool showed no signs of deformation or cracks even after repeated punching.

  3. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sudhakara, Dara; Prasanthi, Guvvala

    2016-08-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  4. Simulation of the electrochemical machining process

    SciTech Connect

    Gray, L.J.; Serbin, C.A.; Dietrich, W.C.

    1984-11-01

    An algorithm for simulating a two-dimensional electrochemical machining process is presented. A major part of the calculation, the solution of Laplace's equation, is accomplished by a boundary element method based upon Green's formula. Polarization, in the form of the Tafel equation, is included in the model. The computer program is discussed in detail.

  5. Combining human and machine processes (CHAMP)

    NASA Astrophysics Data System (ADS)

    Sudit, Moises; Sudit, David; Hirsch, Michael

    2015-05-01

    Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.

  6. Characterisation of integrated WAAM and machining processes

    NASA Astrophysics Data System (ADS)

    Adebayo, Adeyinka

    This research describes the process of manufacturing and machining of wire and arc additive manufactured (WAAM) thin wall structures on integrated and non-integrated WAAM systems. The overall aim of this thesis is to obtain a better understanding of deposition and machining of WAAM wall parts through an integrated system. This research includes the study of the comparison of deposition of WAAM wall structures on different WAAM platforms, namely an Integrated SAM Edgetek grinding machine, an ABB robot and a Friction Stir Welding (FSW) machine. The result shows that WAAM is a robustly transferable technique that can be implemented across a variety of different platforms typically available in industry.. For WAAM deposition, a rise in output repeatedly involves high welding travel speed that usually leads to an undesired humping effect. Part of the objectives of this work was to study the travel speed limit for humping. The findings from this research show that the travel speed limit falls within a certain region at which humping starts to occur. One of the objectives of this thesis was to study the effect of lubricants during sequential and non-sequential machining/deposition of the WAAM parts. Conventional fluid lubricants and solid lubricants were used. In addition, the effect of cleaning of deposited wall samples with acetone was also studied. A systematic study shows that a significant amount of solid lubricant contamination can be found in the deposited material. Furthermore, the results indicate that even cleaning of the wire and arc additive manufactured surfaces with acetone prior to the weld deposition can affect the microstructure of the deposited material..

  7. Electroformed Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Werner, A.; Cassidenti, M.

    1984-01-01

    Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.

  8. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  9. On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2015-11-01

    Microelectrical discharge machining (micro-EDM) performance of a Zr-based bulk metallic glass was investigated experimentally. Various discharge voltages and capacitances were used to study their effects on the material removal rate, cross-sectional profile, surface morphology and roughness, carbonization, and crystallization. Experimental results indicated that many randomly overlapped craters were formed on the EDMed surfaces, and their size and distribution were strongly dependent of the applied voltage and capacitance as well as their positions (center region or outer region), which further affected the surface roughness. Raman spectra and energy dispersive X-ray spectroscopy demonstrated that amorphous carbons originating from the decomposition of the EDM oil were deposited on the EDMed surface. Although some small sharp peaks appeared in the X-ray diffraction patterns of the micro-EDMed surfaces, a broad hump was maintained in all patterns, suggesting a dominant amorphous characteristic. Furthermore, crystallization was also affected by experimental conditions and machining positions. Results in this study indicate that micro-EDM under low discharge energy is useful for fabricating bulk metallic glass microstructures or components because of the ability to retain an amorphous structure.

  10. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  11. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  12. Micro Electro Discharge Machining of Electrically Nonconductive Ceramics

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Zeidler, H.; Wolf, N.; Hackert, M.

    2011-05-01

    EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials. Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature. At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO2 ceramic workpieces. A starting layer, in literature often referred to as `assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 μm diameter Tungsten carbide tool electrode and Y2O3- and MgO- stabilized ZrO2 worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are

  13. Micro Electro Discharge Machining of Electrically Nonconductive Ceramics

    SciTech Connect

    Schubert, A.; Zeidler, H.; Hackert, M.; Wolf, N.

    2011-05-04

    EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO{sub 2} ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 {mu}m diameter Tungsten carbide tool electrode and Y{sub 2}O{sub 3}- and MgO- stabilized ZrO{sub 2} worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the

  14. Electrical-Discharge Machining With Additional Axis

    NASA Technical Reports Server (NTRS)

    Malinzak, Roger M.; Booth, Gary N.

    1991-01-01

    Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.

  15. Process-based tolerance assessment of connecting rod machining process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Surendra Babu, B.

    2016-01-01

    Process tolerancing based on the process capability studies is the optimistic and pragmatic approach of determining the manufacturing process tolerances. On adopting the define-measure-analyze-improve-control approach, the process potential capability index ( C p) and the process performance capability index ( C pk) values of identified process characteristics of connecting rod machining process are achieved to be greater than the industry benchmark of 1.33, i.e., four sigma level. The tolerance chain diagram methodology is applied to the connecting rod in order to verify the manufacturing process tolerances at various operations of the connecting rod manufacturing process. This paper bridges the gap between the existing dimensional tolerances obtained via tolerance charting and process capability studies of the connecting rod component. Finally, the process tolerancing comparison has been done by adopting a tolerance capability expert software.

  16. The study on the atomic force microscopy base nanoscale electrical discharge machining.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-µm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused. PMID:21898457

  17. Characterisation of TiC layers deposited using an electrical discharge coating process

    NASA Astrophysics Data System (ADS)

    Algodi, S. J.; Murray, J. W.; Clare, A. T.; Brown, P. D.

    2015-10-01

    Electrical discharge machining (EDM) is a non-conventional, high-accuracy machining process for the manufacture of complex shapes, regardless of hardness of the workpiece. There is interest to develop the EDM technique for coating or surface modification by using a powder metallurgy (PM) tool electrode and/or added powder suspended within the dielectric fluid. We report on the EDM deposition of TiC coatings onto stainless steel, using either Cu or TiC electrodes, with and without Ti powder in the working oil. EDM processed layers exhibited hardness values ∼ 3-4 times higher than the substrate, emphasising the ability of EDM to impart improved mechanical performance to the surface of austenitic stainless steel.

  18. Fabrication of high-density micro holes by upward batch micro EDM

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Tong

    2008-08-01

    A large number of micro holes are needed for biomedical parts, ink-jet nozzles and micro droplet spraying parts. In this study, an inexpensive machining approach for producing a batch of micro holes is proposed. A set of previously introduced w-EDM mechanisms is employed to horizontally cut the batch micro electrodes precisely. Through the process arrangement, the micro electrodes and workpiece are not unloaded, repositioned and re-corrected until all the tasks are completed. The micro workpiece is clamped onto the specially designed jig and moved above the micro electrodes to perform machining of the mass micro holes by upward batch micro EDM. The entire procedure is carried out on a developed multifunctional tabletop CNC machine tool. An array of 400 through holes of the identical sizes is successfully fabricated on a stainless-steel plate with a thickness of 30 µm by using the modified peck-drilling method. Experimental results confirmed that the proposed approach could accelerate the removal of debris, reduce the occurrence of abnormal discharges and decrease the machining time.

  19. RSM model to evaluate material removal rate in EDM of Ti-5Al-2.5Sn using graphite electrode

    NASA Astrophysics Data System (ADS)

    Ashikur Rahman Khan, Md; Rahman, M. M.; Kadirgama, K.; Ismail, A. R.

    2012-09-01

    The usage of electrical discharge machining (EDM) is increasing gradually owing to its capability to cut precisely, geometrically complex material regardless hardness. Many process parameters greatly affect the EDM performance and complicated mechanism of the process result the lag of established theory. Hence, it becomes important to select the proper parameter set for different machining stages in order to promote efficiency. In view of these barriers, it is attempted to establish a model which can accurately predict the material removal rate (MRR) of titanium alloy by correlating the process parameter. Effect of the parameters on MRR is investigated as well. Experiment is conducted utilizing the graphite electrode maintaining negative polarity. Analysis and modelling is carried out based on design of experiment as well as response surface methodology. The agreeable accuracy is obtained and thus the model can become a precise tool setting the EDM process cost effective and efficient. Moreover, high ampere, short pulse-off time and low servo-voltage combined with about 250 μs pulse-on time generate the highest MRR.

  20. Numerical study on the hydrodynamic behavior of the dielectric fluid around an electrical discharge generated bubble in EDM

    NASA Astrophysics Data System (ADS)

    Shervani-Tabar, Mohammad T.; Mobadersany, Nima

    2013-09-01

    In the process of EDM, due to the electrical current, very small bubbles are created within the gap. These bubbles are connected to each other and generate a single bubble. The vapor bubble continues to grow until it finally collapses to small bubbles. The bubble behavior can be ascertained on the distribution of the pressure in the dielectric fluid around the bubble. In this paper, velocity fields and pressure distribution in the dielectric fluid around the bubble that is generated in the process of EDM are investigated numerically. The tool and the workpiece are assumed as two parallel rigid boundaries with dielectric liquid between them. The boundary integral equation method is applied for the numerical solution of the problem. This study can lead to better understanding of the bubble importance in the performance of the electrical discharge machining process.

  1. Application of Taguchi technique coupled with grey relational analysis for multiple performance characteristics optimization of EDM parameters on ST 42 steel

    NASA Astrophysics Data System (ADS)

    Prayogo, Galang Sandy; Lusi, Nuraini

    2016-04-01

    The optimization technique of machining parameters considering multiple performance characteristics of non conventional machining EDM process using Taguchi method combined with grey relational analysis (GRA) is presented in this study. ST 42 steel was chosen as material work piece and graphite as electrode during this experiment. Performance characteristics such as material removal rate and overcut are selected to evaluated the effect of machining parameters. Current, pulse on time, pulse off time and discharging time/ Z down were selected as machining parameters. The experiments was conducted by varying that machining parameters in three different levels. Based on the Taguchi quality design concept, a L27 orthogonal array table was chosen for the experiments. By using the combination of GRA and Taguchi, the optimization of complicated multiple performance characteristics was transformed into the optimization of a single response performance index. Optimal levels of machining parameters were identified by using Grey Relational Analysis method. The statistical application of analysis of variance was used to determine the relatively significant machining parameters. The result of confirmation test indicted that the determined optimal combination of machining parameters effectively improve the performance characteristics of the machining EDM process on ST 42 steel.

  2. Hadronic EDMs in SUSY GUTs

    SciTech Connect

    Kakizaki, Mitsuru

    2005-12-02

    We investigate the constraints from the null results of the hadronic electric dipole moment (EDM) searches on supersymmetric grand unified theories (SUSY GUTs). Especially we focus on (i) SUSY SU(5) GUTs with right-handed neutrinos and (ii) orbifold GUTs, where the GUT symmetry and SUSY are both broken by boundary conditions in the compactified extra dimensions. We demonstrate that the hadronic EDM experiments severely constrain SUSY GUT models. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism.

  3. Testing of new banknotes for machines that process currency

    NASA Astrophysics Data System (ADS)

    Foster, Eugenie E.

    2000-04-01

    Banknotes are now frequently use din machines. The Federal Reserve Board and the US Department of the Treasury have identified a need to produce notes that are reliably accepted in a variety of machine applications. This paper describes the steps that led to identifying requirements of manufacturers of machines that process banknotes for test notes, and the program developed for the Bureau of Engraving and Printing to address those requirements.

  4. Feature Based Machining Process Planning V5.1

    Energy Science and Technology Software Center (ESTSC)

    2001-07-30

    The purpose of the FB-Machining Advisor product is to provide industry with an end user product that will enable end users to more effectively interact with a solid model for manufacturing applications. The product allows end users to visualize and organize their manufacturing process plans as they are being conceived; avoid redundant and time consuming geometric construction and calculation; automate geometric reasoning processes, and automate downstream manufacturing applications. The product augments a solid model representationmore » of the part with a set of machining features (e.g., pockets, steps, holes, cutouts). The product also enables end users to interact with a solid model to create process plans. It will automatically recognize, or interactively create and modify surface based machining features (represented by sets of faces on the solid model) and volumetric machining features which are represented by delta volumes (solid bodies representing volumes of material to be removed from the part). The FB-Machining Advisor will generate “in process shapes” that represent the shape of the work piece prior or subsequent to a material removal operation. It is designed to facilitate process change propagation in order to minimize rework resulting from process modifications. The machining features will provide vital shape and tolerance information (i.e. depth of pocket, minimum side radius of pocket, diameter of hole, maximum surface finish of side walls). The FB-Machining Advisor also integrates solid model based (3 Dimensional) tolerance information with the machining feature representations.« less

  5. Searching for the electron EDM in a storage ring

    NASA Astrophysics Data System (ADS)

    Kawall, D.

    2011-05-01

    Searches for permanent electric dipole moments (EDM) of fundamental particles have been underway for more than 50 years with null results. Still, such searches are of great interest because EDMs arise from radiative corrections involving processes that violate parity and time-reversal symmetries, and through the CPT theorem, are sensitive to CP-violation. New models of physics beyond the standard model predict new sources of CP-violation leading to dramatically enhanced EDMs possibly within the reach of a new generation of experiments. We describe a new approach to electron EDM searches using molecular ions stored in a tabletop electrostatic storage ring. Molecular ions with long-lived paramagnetic states such as tungsten nitride WN+ can be injected and stored in larger numbers and with longer coherence times than competing experiments, leading to high sensitivity to an electron EDM. Systematic effects mimicking an EDM such as those due to motional magnetic fields and geometric phases are found not to limit the approach in the short term, and sensitivities of δ|de| ≈ 10-30 e·cm/day appear possible under conservative conditions.

  6. Process for laser machining and surface treatment

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2004-10-26

    An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.

  7. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  8. Application of Hollow Sphere Structures and Composites in Processing Machines

    NASA Astrophysics Data System (ADS)

    Schöler, Martin; Mauermann, Marc; Majschak, Jens-Peter

    The term processing machines refers to a large variety of machines and equipment for the mass production of consumer goods. Processing machines are often specially tailored according to the particular processing task they have to fulfill, such as pasteurising milk or packing goods. Furthermore the vast majority is characterised by large production outputs, demanding high processing velocities and fast moving parts. A special application is that of the food and drug processing area. Due to high quality standards there are special requirements for material surfaces to be considered if surfaces are in contact with the manufactured product. This chapter deals with the special demands concerning dedicated engineering materials that occur from state of the art processing machines. Specific requirements ranging from high damping abilities for support components to high stiffness and low weight for fast moving tools are presented by means of a general classification of processing machines into four functional areas. Accordingly, the proposed hollow sphere structures and similar material classes are presented and applied on each of these four areas.

  9. Learning Processes in Man, Machine and Society

    ERIC Educational Resources Information Center

    Malita, Mircea

    1977-01-01

    Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)

  10. Edme Mariotte and Newton's Cradle

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    The first recorded experiments describing the phenomena made popular by Newton's cradle appear to be those conducted by Edme Mariotte around 1670. He was quoted in Newton's "Principia," along with Wren, Wallis, and Huygens, as having conducted pioneering experiments on the collisions of pendulum balls. Each of these authors concluded that momentum…

  11. An experimental study of electrochemical polishing for micro-electro-discharge-machined stainless-steel stents.

    PubMed

    Lappin, Derry; Mohammadi, Abdolreza Rashidi; Takahata, Kenichi

    2012-02-01

    This paper reports electrochemical polishing (EP) of 316L stainless-steel structures patterned using micro-electro-discharge machiningEDM) for application to stents including intelligent stents based on micro-electro-mechanical-systems technologies. For the process optimization, 10 μm deep cavities μEDMed on the planar material were polished in a phosphoric acid-based electrolyte with varying current densities and polishing times. The EP condition with a current density of 1.5 A/cm(2) for an EP time of 180 s exhibited the highest surface quality with an average roughness of 28 nm improved from~400 nm produced with high-energy μEDM. The EP of μEDMed surfaces was observed to produce almost constant smoothness regardless of the initial roughness determined by varying discharge energies. Energy-dispersive X-ray spectroscopy was performed on the μEDMed surfaces before and after EP. A custom rotational apparatus was used to polish tubular test samples including stent-like structures created using μEDM, demonstrating uniform removal of surface roughness and sharp edges from the structures. PMID:22183790

  12. Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Newman, John A.; Piascik, Robert S.

    2003-01-01

    Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.

  13. EDM Electrode for Internal Grooves

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  14. Innovative machine designs for radiation processing

    NASA Astrophysics Data System (ADS)

    Vroom, David

    2007-12-01

    In the 1990s Raychem Corporation established a program to investigate the commercialization of several promising applications involving the combined use of its core competencies in materials science, radiation chemistry and e-beam radiation technology. The applications investigated included those that would extend Raychem's well known heat recoverable polymer and wire and cable product lines as well as new potential applications such as remediation of contaminated aqueous streams. A central part of the program was the development of new accelerator technology designed to improve quality, lower processing costs and efficiently process conformable materials such at liquids. A major emphasis with this new irradiation technology was to look at the accelerator and product handling systems as one integrated, not as two complimentary systems.

  15. Controlled English to facilitate human/machine analytical processing

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  16. Review of "Conceptual Structures: Information Processing in Mind and Machine."

    ERIC Educational Resources Information Center

    Smoliar, Stephen W.

    This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of a…

  17. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  18. Agricultural inventory capabilities of machine processed LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    Dietrick, D. L.; Fries, R. E.; Egbert, D. D.

    1975-01-01

    Agricultural crop identification and acreage determination analysis of LANDSAT digital data was performed for two study areas. A multispectral image processing and analysis system was utilized to perform the manmachine interactive analysis. The developed techniques yielded crop acreage estimate results with accuracy greater than 90% and as high as 99%. These results are encouraging evidence of agricultural inventory capabilities of machine processed LANDSAT digital data.

  19. Electric dipole moments (EDM) of ionic atoms

    NASA Astrophysics Data System (ADS)

    Oshima, Sachiko

    2010-03-01

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  20. Electric dipole moments (EDM) of ionic atoms

    SciTech Connect

    Oshima, Sachiko

    2010-03-15

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  1. MATERIAL PROCESSING FOR SELF-ASSEMBLING MACHINE SYSTEMS

    SciTech Connect

    K. LACKNER; D. BUTT; C. WENDT

    1999-06-01

    We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial use of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.

  2. Intellectual Control System of Processing on CNC Machines

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  3. Six-Axis Electrical-Discharge Machine

    NASA Technical Reports Server (NTRS)

    Werner, A. R.

    1983-01-01

    Electrical discharge machine (EDM) of unusual versitility made by conversion of radial drill. Drilling head is replaced by ram that holds and positions electrode. Tank and recirculation system for coolant are added. EDM has six independent motions and drastically reduced cost of manufacturing. New applications are constantly being found.

  4. CNC electrical discharge machining centers

    SciTech Connect

    Jaggars, S.R.

    1991-10-01

    Computer numerical control (CNC) electrical discharge machining (EDM) centers were investigated to evaluate the application and cost effectiveness of establishing this capability at Allied-Signal Inc., Kansas City Division (KCD). In line with this investigation, metal samples were designed, prepared, and machined on an existing 15-year-old EDM machine and on two current technology CNC EDM machining centers at outside vendors. The results were recorded and evaluated. The study revealed that CNC EDM centers are a capability that should be established at KCD. From the information gained, a machine specification was written and a shop was purchased and installed in the Engineering Shop. The older machine was exchanged for a new model. Additional machines were installed in the Tool Design and Fabrication and Precision Microfinishing departments. The Engineering Shop machine will be principally used for the following purposes: producing deep cavities in small corner radii, machining simulated casting models, machining difficult-to-machine materials, and polishing difficult-to-hand polish mold cavities. 2 refs., 18 figs., 3 tabs.

  5. Galaxy Image Processing and Morphological Classification Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian

    2012-03-01

    This work uses data from the Sloan Digital Sky Survey (SDSS) and the Galaxy Zoo Project for classification of galaxy morphologies via machine learning. SDSS imaging data together with reliable human classifications from Galaxy Zoo provide the training set and test set for the machine learning architectures. Classification is performed with hand-picked, pre-computed features from SDSS as well as with the raw imaging data from SDSS that was available to humans in the Galaxy Zoo project. With the hand-picked features and a logistic regression classifier, 95.21% classification accuracy and an area under the ROC curve of 0.986 are attained. In the case of the raw imaging data, the images are first processed to remove background noise, image artifacts, and celestial objects other than the galaxy of interest. They are then rotated onto their principle axis of variance to guarantee rotational invariance. The processed images are used to compute color information, up to 4^th order central normalized moments, and radial intensity profiles. These features are used to train a support vector machine with a 3^rd degree polynomial kernel, which achieves a classification accuracy of 95.89% with an ROC area of 0.943.

  6. Microelectro discharge machining: an innovative method for the fabrication of 3D microdevices

    NASA Astrophysics Data System (ADS)

    Lesche, Claudia; Krah, Thomas; Büttgenbach, Stephanus

    2011-06-01

    This paper reports on the potential of microelectro discharge machiningEDM) as an innovative method for the fabrication of 3D microdevices. To demonstrate the wide capabilities of μEDM two different high-potential 3D microsystems - a microfluidic device for the dispersion of nanoparticles and a star probe for microcoordinate metrology - are presented. For the fabrication of these microdevices a μEDM-milling machine with integrated microwire electro discharge grinding (μWEDG) module is utilized. To gain optimized process conditions as well as a high surface quality an adequate adaption of the single erosion parameters such as energy, pulse frequency and spark gap has to be carried out and are discussed below. The dispersion micromodule is used for pharmaceutical screening applications in a high pressure range up to 2000 bar. At the channel bottom a surface roughness of Ra = 80 nm is achieved. In case of the star probe it is possible to produce shaft and sphere out of one piece. The fabricated stylus elements have sphere diameters of 40-200 μm. For both applications μEDM offers a flexible, precise, effective and cost-efficient fabrication method for the machining of hard and resistant materials.

  7. Design and Implementation of Process Migrating among Multiple Virtual Machines

    NASA Astrophysics Data System (ADS)

    Shen, Si; Zhang, Zexian; Yang, Shuangxi; Guo, Ruilin; Jiang, Murong

    Process migrating technology usually is used to solve the problems like user process death, system crash or lower executing efficiency because of the load unbalancing among the multi-processors. Virtual machine can supply system level backup and migration. But it is too much overhead sometimes. In this paper, a process migration technology on program level is put forward and a demo program has been developed for validation. It possesses high performance, low cost and pertinence. Aiming at the information involved in process migration, obtain process data from JVM by calling Java JDI API, and transmit them to the node having idle computing resources. This technology is platform-independent, and the efficiency of distributed system would be enhanced with it. It also has the advantages such as strong commonality, protecting local environment from intrusion, and preventing from malicious code filching local information.

  8. Research on machine vision system of monitoring injection molding processing

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Zheng, Huifeng; Wang, Yuebing; Wang, Cheng; Liao, Si'an

    2016-01-01

    With the wide development of injection molding process, the embedded monitoring system based on machine vision has been developed to automatically monitoring abnormality of injection molding processing. First, the construction of hardware system and embedded software system were designed. Then camera calibration was carried on to establish the accurate model of the camera to correct distortion. Next the segmentation algorithm was applied to extract the monitored objects of the injection molding process system. The realization procedure of system included the initialization, process monitoring and product detail detection. Finally the experiment results were analyzed including the detection rate of kinds of the abnormality. The system could realize the multi-zone monitoring and product detail detection of injection molding process with high accuracy and good stability.

  9. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  10. Cylindrical Wire Electrical Discharge Machining of Metal Bond Diamond Wheels- Part II: Wheel Wear Mechanism

    SciTech Connect

    McSpadden, SB

    2002-01-22

    The use of stereo scanning Electron Microscopy (SEM) to investigate the wear mechanism of the wire EDM true metal bond diamond wheel for ceramic grinding is presented. On the grinding wheel, a wedge-shape removal part was machined to enable the examination and measurement of the worn wheel surfaces using the stereo SEM. The stereo SEM was calibrated by comparing results of depth profile of a wear groove with the profilometer measurements. On the surface of the grinding wheel after wire EDM truing and before grinding, the diamond protruding heights were measured in the level of 35 {micro}m, comparing to the 54 {micro}m average size of the diamond in the grinding wheel. The gap between the EDM wire and rotating grinding wheel is estimated to be about 35 to 40 {micro}m. This observation indicates that, during the wire EDM, electrical sparks occur between the metal bond and EDM wire, which leaves the diamond protruding in the gap between the wire and wheel. The protruding diamond is immediately fractured at the start of the grinding process, even under a light grinding condition. After heavy grinding, the grinding wheel surface and the diamond protrusion heights are also investigated using the stereo SEM. The height of diamond protrusion was estimated in the 5 to 15 {micro}m range. This study has demonstrated the use of stereo SEM as a metrology tool to study the grinding wheel surface.

  11. Statistical process control (SPC) for coordinate measurement machines

    SciTech Connect

    Escher, R.N.

    2000-01-04

    The application of process capability analysis, using designed experiments, and gage capability studies as they apply to coordinate measurement machine (CMM) uncertainty analysis and control will be demonstrated. The use of control standards in designed experiments, and the use of range charts and moving range charts to separate measurement error into it's discrete components will be discussed. The method used to monitor and analyze the components of repeatability and reproducibility will be presented with specific emphasis on how to use control charts to determine and monitor CMM performance and capability, and stay within your uncertainty assumptions.

  12. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    NASA Astrophysics Data System (ADS)

    Shaharun, M. A.; Yusoff, A. R.; Reza, M. S.; Jalal, K. A.

    2012-09-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  13. Electrical-Discharge Machining Of Perpendicular Passages

    NASA Technical Reports Server (NTRS)

    Malinzak, R. Michael; Booth, Gary N.

    1996-01-01

    Perpendicular telescoping electrode used to perform electrical-discharge machining (EDM) of internal passage through previously inaccessible depth of metal workpiece. More specifically, used to make internal passage perpendicular to passage entering from outer surface.

  14. Contamination-Free Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Schmidt, Mark G.

    1987-01-01

    Contamination of parts by electrical-discharge machining (EDM) almost completely eliminated by reversing flow of coolant. Flow reversed from usual direction so coolant carries contaminants out through passage in electrode. Coolant for reverse flow is pressurized dichlorodifluoromethane vapor.

  15. nEDM at SNS

    SciTech Connect

    Clayton, Steven

    2014-07-30

    This PowerPoint presentation covered the following topics: Overview; participants in the collaboration; the experimental method and Free Precession Method descriptions; and then experimental design elements, ending with a summary. A new nEDM experiment is under development with a goal sensitivity 90% CL σd < (3-5) x 10-28 e-cm in 300 live-days; Free precession method: SQUIDS to read out the 3He precession frequency, Scintillation signal for the n relative precession frequency; Dressed spin method: Strong RF field to match n and 3He effective magnetic moments; Modulation/feedback of dressing parameter based on scintillation signal; and, Ongoing development/demonstration of many aspects of the apparatus (a subset was shown here).

  16. High resolution lithography-compatible micro-electro-discharge machining of bulk metal foils for micro-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Richardson, Mark Thomas

    The application of batch mode micro-electro-discharge machining (microEDM) to the fabrication of micro-electro-mechanical systems has opened the door to lithographically compatible precision machining of all bulk metals. High volume applications in biomedical, communications, and consumer electronics devices are enabled by this technology. This dissertation explores the capabilities, limitations, and further improvement of high density batch mode microEDM. There are four parts to this effort described below. A machining resolution study of high density features in stainless steel identifies the design space. Lithographically fabricated copper tools with single cross, parallel line, and circle/square array features of 5--100microm width and 5--75microm spacing were used. The observed discharge gap varies with shape, spacing, and feature location from 3.8--8microm. As tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two new techniques for mitigating this debris build-up are separately investigated. The first is a silicon passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, for high density batch machining, mean tool wear rate decreases from a typical rate of about 34% to 1.7% and machining non-uniformity reduces from 4.9microm to 1.1microm across the workpiece. The second involves a two-step machining process that enhances the hydraulic removal of machining debris and therefore throughput. Wireless RF signals are inherently emitted by the micro-discharge process. This thesis describes the first reported wireless detection of debris accumulation during microEDM, enabling direct monitoring of machining quality in real time with 5dBm signal drop. The first wireless detection of the interface between two stacked metals during microEDM is also reported giving a 10dBm signal change. The technique enables direct monitoring of

  17. Design and Testing of a Friction Stir Processing Machine for Laboratory Research

    SciTech Connect

    Karen S. Miller; Rodney J. Bitsoi; Eric D. Larsen; Herschel B. Smartt

    2006-08-01

    This presentation describes the design, fabrication and testing of a friction stir processing machine. The machine is intended to be a flexible research tool for a broad range of friction stir processing studies. The machine design also addresses the need for an affordable, robust design for general laboratory use.

  18. The finite element machine: An experiment in parallel processing

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.

    1982-01-01

    The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.

  19. 3 He Co-magnetometer Readout for the SNS nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Clayton, Steven

    2014-09-01

    A search for a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new experimental search of neutron EDM, to be conducted at the Spallation Neutron Source (SNS) at ORNL, has been proposed with a goal of 100-fold improvement in the present experimental limit of 10-26e .cm The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the Larmor frequency when placed in a static magnetic field; a non-zero EDM would be evident as a difference in precession frequency when a strong electric field is applied parallel vs. anti-parallel to the magnetic field. In addition to its role as neutron spin-analyzer via the spin-dependent n+3He nuclear capture process, polarized helium-3 (which has negligible EDM) will serve as co-magnetometer to correct for drifts in the magnetic field. The helium-3 co-magnetometer will be directly read out by superconducting gradiometers coupled to SQUIDs. We describe a proposed SQUID system suitable for the complex neutron EDM apparatus, and demonstrate that the field noise in the SQUID system, tested in an environment similar to the EDM apparatus, meets the nEDM requirement. We also present a test of the compatibility of low-noise SQUID operation with other devices, potential sources of electromagnetic interference, which are necessarily operating during the EDM measurement period and effective ambient magnetic field noise cancellation with an implementation of reference channels.

  20. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  1. A Study on the Optimization Performance of Fireworks and Cuckoo Search Algorithms in Laser Machining Processes

    NASA Astrophysics Data System (ADS)

    Goswami, D.; Chakraborty, S.

    2014-11-01

    Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.

  2. Parallel astronomical data processing with Python: Recipes for multicore machines

    NASA Astrophysics Data System (ADS)

    Singh, Navtej; Browne, Lisa-Marie; Butler, Ray

    2013-08-01

    High performance computing has been used in various fields of astrophysical research. But most of it is implemented on massively parallel systems (supercomputers) or graphical processing unit clusters. With the advent of multicore processors in the last decade, many serial software codes have been re-implemented in parallel mode to utilize the full potential of these processors. In this paper, we propose parallel processing recipes for multicore machines for astronomical data processing. The target audience is astronomers who use Python as their preferred scripting language and who may be using PyRAF/IRAF for data processing. Three problems of varied complexity were benchmarked on three different types of multicore processors to demonstrate the benefits, in terms of execution time, of parallelizing data processing tasks. The native multiprocessing module available in Python makes it a relatively trivial task to implement the parallel code. We have also compared the three multiprocessing approaches-Pool/Map, Process/Queue and Parallel Python. Our test codes are freely available and can be downloaded from our website.

  3. the finite element machine: An experiment in parallel processing

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.

    1982-01-01

    The Finite Element Machine at the NASA Langley Research Center is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described. Directions for future work are presented.

  4. Electrical Discharge Machining Techniques for Evaluating the Effects of Tritium on Materials

    SciTech Connect

    IMRICH, KENNETH

    2004-03-24

    In this investigation, new ways to evaluate the long-term effects of tritium on the structural properties of components were developed. Electric discharge machining (EDM) techniques for cutting tensile and fracture toughness samples from the tritium-exposed regions of returned reservoirs were demonstrated. An existing electric discharge machine was used to cut sub-size tensile and fracture toughness samples from the inside walls of reservoir mock-ups. Tensile properties from the EDM tensile samples were similar to those measured using full-size samples cut from similar stock. Although the existing equipment could not be used for machining tritium-exposed hardware, off-the-shelf EDM units are available that could. With the right equipment and the required radiological controls in place, similar machining and testing techniques could be used to directly measure the effects of tritium on the properties of material cut from reservoir returns. Stress-strain property data from tritium-exposed reservoirs would improve finite-element modeling of reservoir performance because the data are representative of the true state of the reservoir material in the field. Tensile data from samples cut directly from reservoirs complement existing shelf storage and burst test data of the Life Storage Program and help answer questions about a specific reservoir's processing history and properties.

  5. Electric-Discharge Machining Techniques for Evaluating Tritium Effects on Materials

    SciTech Connect

    Morgan, M.J.

    2003-11-07

    In this investigation, new ways to evaluate the long-term effects of tritium on the structural properties of components were developed. Electric-discharge machining (EDM) techniques for cutting tensile and fracture toughness samples from tritium exposed regions of returned reservoirs were demonstrated. An existing electric discharge machine was used to cut sub-size tensile and fracture toughness samples from the inside surfaces of reservoir mockups. Tensile properties from the EDM tensile samples were similar to those measured using full-size samples cut from similar stock. Although the existing equipment could not be used for machining tritium-exposed hardware, off-the shelf EDM units are available that could. With the right equipment and the required radiological controls in place, similar machining and testing techniques could be used to directly measure the effects of tritium on the properties of material cut from reservoir returns. Stress-strain properties from tritium-exposed reservoirs would improve finite element modeling of reservoir performance because the data would be representative of the true state of the reservoir material in the field. Tensile data from samples cut directly from reservoirs would also complement existing shelf storage and burst test data of the Life Storage Program and help answer questions about a specific reservoir's processing history and properties.

  6. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  7. Surface integrity evolution from main cut mode to finish trim cut mode in W-EDM of shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liu, J. F.; Li, L.; Guo, Y. B.

    2014-07-01

    Shape memory alloys such as Nitinol are widely used in medical, aerospace, actuator, and machine tool industries. However, Nitinol is a very difficult-to-machine material due to the superelasticity, high ductility, and severe strain-hardening. The machined surface should have tailored micro texture to enhance cell adhesion. This study explores the process capability of W-EDM (DI-water based dielectric) in machining Ni50.8Ti49.2 by one main cut (MC) mode followed by four trim cut (TC) modes. Experimental results show that the 6-sigma distributions of Ra are very different between MC mode and finish TC mode. Thick white layers (2-8 μm) with microcracks in MC mode and very thin white layers (0-2 μm) free of those defects in finish TC mode can be observed. However, microcracks would not propagate into the heat affected zone (HAZ) below the white layer. The microhardness of white layer by TC mode is about 50% higher than that by MC mode. In addition, Ni is the dominant element for the measured microhardness.

  8. Shared and service-oriented CNC machining system for intelligent manufacturing process

    NASA Astrophysics Data System (ADS)

    Li, Yao; Liu, Qiang; Tong, Ronglei; Cui, Xiaohong

    2015-11-01

    To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.

  9. A SQUID-based 3He Co-magnetometer Readout for the SNS nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Clayton, Steven

    2014-03-01

    A discovery of a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new experimental neutron EDM search, to be conducted at the Spallation Neutron Source (SNS) at ORNL, has been proposed to improve the present experimental limit of 10-26 e .cm by two orders of magnitude. The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the Larmor frequency when placed in a static magnetic field; a non-zero EDM would be evident as a difference in precession frequency when a strong electric field is applied parallel vs. anti-parallel to the magnetic field. In addition to its role as neutron spin-analyzer via the spin-dependent n+3He nuclear capture process, polarized helium-3 (which has negligible EDM) will serve as co-magnetometer to correct for drifts in the magnetic field. The helium-3 magnetization signal will be read out by superconducting gradiometers coupled to SQUIDs. We describe a proposed SQUID system suitable for the complex neutron EDM apparatus, and demonstrate that the field noise in the SQUID system, tested in an environment similar to the EDM apparatus, meets the nEDM requirement.

  10. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

    1997-02-11

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

  11. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

    1995-12-05

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other mineral particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

  12. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.

    1995-01-01

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

  13. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.

    1997-01-01

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

  14. Progress in the Radium EDM Experiment

    NASA Astrophysics Data System (ADS)

    Parker, R. H.; Dietrich, M. R.; Kalita, M. R.; Lemke, N.; Bailey, K.; Greene, J. P.; Holt, R. J.; Korsch, W.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Singh, J.; Trimble, W.

    2014-05-01

    Ra-225 (half-life = 15 d, nuclear spin = 1/2) is a promising isotope for a measurement of the EDM of a diamagnetic atom. Due to its large nuclear octupole deformation and high atomic mass, the EDM sensitivity of Ra-225 is expected to be 2-3 orders of magnitude larger than that of Hg-199. We demonstrate an efficient multiple-stage apparatus in which radium atoms are first loaded into a MOT, then transferred into a movable optical-dipole trap (ODT) that carries the atoms over 1 m to a magnetically-shielded science chamber, loaded into a standing-wave ODT, polarized, and then allowed to precess in magnetic and electric fields. We will discuss the results of our first attempt to measure the EDM of Ra-225, as well as plans for future improvements. This work is supported by DOE, Office of Nuclear Physics (DE-AC02-06CH11357).

  15. Progress of the JILA electron EDM experiment

    NASA Astrophysics Data System (ADS)

    Gresh, Daniel; Cairncross, William; Cossel, Kevin; Grau, Matt; Ng, Kia Boon; Zhou, Yan; Ni, Yiqi; Ye, Jun; Cornell, Eric

    2016-05-01

    A nonzero permanent electric dipole moment of the electron (eEDM) would have important implications for extensions to the Standard Model of particle physics. The JILA eEDM experiment uses trapped HfF+ ions to attain large effective electric fields and long measurement coherence times. In our ion trap we prepare HfF+ in a low-lying, metastable 3Δ1 state and perform Ramsey spectroscopy between two Zeeman sub-levels in the presence of rotating electric and magnetic bias fields with free-evolution times of > 500 ms. Using this technique, we have thoroughly investigated sources of systematic error and have recently suppressed several of our leading systematics to the 10-30 e . cm level. Here, we present the results from our systematic error investigations and from a high-precision eEDM-sensitive 100-hour data run.

  16. In-Process And Post-Process Measurement And Control In Precision Machining

    NASA Astrophysics Data System (ADS)

    McKeown, P. A.

    1983-08-01

    For cost effective control of quality, dimensional size and profile in precision machining, closed loop error feed-back techniques are essential. In other words, maximum efficiency of quality control occurs when the highest speed of response is achieved at the closest possible point of application to the manufacturing process. Optical displacement measuring transducers (grating and CW laser based), coupled with high precision and hiyh response closed loop servo systems under microprocessor control, will be described in the precision machining of high precision engineering components such as cam rings, camshafts, gears and non-conventional optical components. The principles of on-line error compensation techniques will be described in relation to the diamond machining of X-ray telescope mirrors and 3D coordinate measuring machines. The application of laser scanning to the automatic inspection of automotive cylinder bores will also be briefly described, showing how the high costs of visual inspection by human operators can be greatly reduced whilst improving consistency of quality control in detecting of single and cluster surface defects in i.c. engine cylinders.

  17. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  18. Search for permanent EDM using laser cooled Fr atoms

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Aoki, T.; Arikawa, H.; Ezure, S.; Furukawa, T.; Harada, K.; Hatakeyama, A.; Hatanaka, K.; Hayamizu, T.; Imai, K.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-03-01

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  19. Application of neural network method to process planning in ship pipe machining

    NASA Astrophysics Data System (ADS)

    Zhong, Yu-Guang; Qiu, Chang-Hua; Shi, Dong-Yan

    2004-12-01

    Based on artificial neural network for process planning decision in ship pipe manufacturing, a novel method is established by analyzing process characteristics of the ship pipe machining. The process knowledge of pipe machining is shifted from the expression of the external rules to the description of the internal net weight value in order for the net inferring engine to decide the process route of pipe machining rapidly and rightly. Simulation shows that the method can resolve problems of process decision, and overcome the drawbacks of “matching difficulty” and “combination explosion” in traditional intelligent CAPP based on symbol reasoning.

  20. Efficient dielectric fluid approach in electrodischarge finish machining on the material surface roughness of titanium alloy Ti-621/0.8

    NASA Astrophysics Data System (ADS)

    Mihai, N. V.; Brabie, G.

    2015-11-01

    This study was developed to reveal the correlation between current intensity and pulse off time with surface roughness of Ti-621/0.8 in fine EDM machining, in a unique manner of dielectric fluid approach. Depth of cut was taken in consideration to be not as high 1 gm due to the fact that good results were taken for more less heights before. In the case of Ti alloy (Ti-621/0.8) bar, EDM machining with low parameters (limited 110 V) is a delicate process, in which reaching SR under 1 gm is a challenge. Cooper and Graphite electrodes were used, die sinker oil dielectric from machine manufacture was used, without thermal modification to workpiece or electrode, just active dielectric compensatory fluid pumping solution with 0.5 MPa.

  1. Progress of the Jila Electron Edm Experiment

    NASA Astrophysics Data System (ADS)

    Loh, Huanqian; Cossel, Kevin C.; Grau, Matt; Gresh, Daniel N.; Ni, Kang-Kuen; Ye, Jun; Cornell, Eric A.

    2013-06-01

    Molecules can be advantageous for the search for the electron electric dipole moment (eEDM) due to the large effective electric field experienced by a bound, unpaired electron. Furthermore, the closely-spaced states of opposite parity make the molecules easy to polarize in the lab frame. The JILA eEDM experiment currently uses HfF^+ molecules in an ion trap to achieve long coherence times to reduce systematics. When an electric field is applied the eEDM signal is proportional to the shift in energy splitting between two Zeeman levels in a low-lying, metastable ^3Δ_1 state. We have previously shown efficient preparation of trapped HfF^+ molecules in the rovibronic ground state, X^1Σ^+(v=0,J=0). Here, we demonstrate coherent transfer of population from the ground state to the a^3Δ_1(v=0, J=1) state through an intermediate ^3Π_{0+} state and efficient state read-out using photodissociation. In addition, we have begun to take spectroscopy data of the hyperfine and Zeeman structure of the eEDM science state in the presence of a rotating bias electric field and a magnetic field. A. E. Leanhardt et. al., Journal of Molecular Spectroscopy 270, 1-25 (2011). H. Loh et. al., Journal of Chemical Physics 135, 154308 (2011).

  2. Preset Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  3. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm

    PubMed Central

    Huang, Kuo-Yi

    2008-01-01

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  4. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.

    PubMed

    Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling

    2016-01-01

    Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (p<0.05) and were significantly higher than other glass ceramics (p<0.05). Machining speeds dropped more rapidly with increased removal rates than other glass ceramics (p<0.05). Two material machinability indices associated with the hardness, Young's modulus and fracture toughness were derived based on the normal force-removal rate relations, which ranked LDGC the most difficult to machine among glass ceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments. PMID:26318569

  5. Enhanced osteoblast response to electrical discharge machining surface.

    PubMed

    Otsuka, Fukunaga; Kataoka, Yu; Miyazaki, Takashi

    2012-01-01

    The purpose of this study is to investigate the surface characteristics and biocompatibility of titanium (Ti) surfaces modified by wire electrical discharge machining (EDM). EDM surface characteristics were evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thin-film X-ray diffractometry (XRD) and contact angle measurements. MC3T3-E1 cell morphology, attachment and proliferation, as well as analysis of osteoblastic gene expressions, on machined surfaces and EDM surfaces were also evaluated. EDM surfaces exhibited high super hydrophilicity, due to high surface energy. XPS and XRD revealed that a passive oxide layer with certain developing thickness onto. EDM surfaces promoted cell attachment, but restrained proliferation. Counted cell numbers increased significantly on the machined surfaces as compared to the EDM surfaces. Real-time PCR analyses showed significantly higher relative mRNA expression levels of osteoblastic genes (ALP, osteocalcin, Runx2, Osterix) in cells cultured on the EDM surfaces as compared to cells cultured on the machined surfaces. PMID:22447066

  6. Processing and Damping Properties of Sputtered NiTi Thin Films for Tools in Machining Processes

    NASA Astrophysics Data System (ADS)

    Kahleyss, F.; de Miranda, R. Lima; Surmann, T.; Zamponi, C.; Machai, C.; Biermann, D.; Quandt, E.

    2011-07-01

    Nowadays, many manufacturing processes require the machining of complex forms with a high aspect ratio or cavities. Tools with a long overhang length are a common method to meet these requirements. Typical examples for this are boring bars for bore-turning and the milling with very long cutters. These tools tend to vibrate strongly due to their slender shape. The stress-induced transformation of austenite to martensite and the distinctive hysteresis loop allow the NiTi shape memory alloys (SMA) to absorb vibration energy. This article describes the innovative approach to dampen process vibrations by coating the tool shafts of cutting tools with long overhang with NiTi thin films. It explores how these thin films can be applied on polished tungsten carbide shafts and how their modal parameters are modified by these coatings. In a further step, this knowledge is used to calculate stability charts of corresponding machining processes. The study reported in this article identified the stabilizing effects of coatings with a thickness of 2-4 μm on milling processes. The minimum stability limit was increased by up to 200%.

  7. Direct selective laser sintering of high performance metals: Machine design, process development and process control

    NASA Astrophysics Data System (ADS)

    Das, Suman

    1998-11-01

    This dissertation describes the development of an advanced manufacturing technology known as Direct Selective Laser Sintering (Direct SLS). Direct SLS is a laser based rapid manufacturing technology that enables production of functional, fully dense, metal and cermet components via the direct, layerwise consolidation of constituent powders. Specifically, this dissertation focuses on a new, hybrid net shape manufacturing technique known as Selective Laser Sintering/Hot Isostatic Pressing (SLS/HIP). The objective of research presented in this dissertation was to establish the fundamental machine technology and processing science to enable direct SLS fabrication of metal components composed of high performance, high temperature metals and alloys. Several processing requirements differentiate direct SLS of metals from SLS of polymers or polymer coated powders. Perhaps the most important distinguishing characteristic is the regime of high temperatures involved in direct SLS of metals. Biasing the temperature of the feedstock powder via radiant preheat prior to and during SLS processing was shown to be beneficial. Preheating the powder significantly influenced the flow and wetting characteristics of the melt. During this work, it was conclusively established that powder cleanliness is of paramount importance for successful layerwise consolidation of metal powders by direct SLS. Sequential trials were conducted to establish optimal bake-out and degas cycles under high vacuum. These cycles agreed well with established practices in the powder metallurgy industry. A study of some of the important transport mechanisms in direct SLS of metals was undertaken to obtain a fundamental understanding of the underlying process physics. This study not only provides an explanation of phenomena observed during SLS processing of a variety of metallic materials but also helps in developing selection schemes for those materials that are most amenable to direct SLS processing. The

  8. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  9. Spallation UCN Production for nEDM

    NASA Astrophysics Data System (ADS)

    Masuda, Yasuhiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    A new superthermal UCN production in He-II, which is placed in a spallation neutron source, is discussed. In the new UCN source, the production rate is expected to be 200 UCN/cm3/s at a proton beam power of 500 MeV×40 μA and the UCN maximum energy of Ec = 210 neV. The γ heating in the He-II can be removed by means of 3He pumping according to calculations. For an EDM measurement, UCN are extracted from a He-II bottle through an aluminum window by using a superconducting magnet. The possibility of a 129Xe magnetometer for the EDM measurement is also discussed.

  10. CryoEDM: A cryogenic experiment to measure the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    van der Grinten, M. G. D.; CryoEDM Collaboration; Balashov, S. N.; Francis, V.; Green, K.; Iaydjiev, P. S.; Ivanov, S. N.; Khazov, A.; Tucker, M. A. H.; Wark, D. L.; Davidson, A.; Hardiman, M.; Harris, P. G.; Katsika, K.; Pendlebury, J. M.; Peeters, S. J. M.; Shiers, D. B.; Smith, P.; Townsley, C.; Wardell, I.; Clarke, C.; Henry, S.; Kraus, H.; McCann, M.; Geltenbort, P.; Yoshiki, Y.

    2009-12-01

    CryoEDM is an experiment that aims to measure the electric dipole moment (EDM) of the neutron to a precision of 10 -28 e cm. A description of CryoEDM, the apparatus, technologies and commissioning is presented.

  11. Search for electron EDM with laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-05-01

    The permanent electric dipole moment (EDM) of the elementary particle has the sensitivity to the CP violation in the theories beyond the standard model (SM). The search for the EDM constitutes the stringent test to discriminate between the SM and beyond it. We plan to perform the electron EDM search by using the laser cooled francium (Fr) atom which has the largest enhancement factor of the electron EDM in the alkali atoms. In this paper, the present status of the laser cooled Fr factory that is being constructed at Cyclotron and Radioisotope Center (CYRIC), Tohoku University are reported.

  12. An Investigation of Machining Characteristics in Micro-scale Milling Process

    SciTech Connect

    Ku, Min-Su; Kang, Ik-Soo; Kim, Jeong-Suk

    2011-01-17

    In this paper, an analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.

  13. An Investigation of Machining Characteristics in Micro-scale Milling Process

    NASA Astrophysics Data System (ADS)

    Ku, Min-Su; Kang, Ik-Soo; Kim, Jeong-Suk

    2011-01-01

    In this paper, an analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.

  14. Hardening effect on machined surface for precise hard cutting process with consideration of tool wear

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Liu, Xianli; Ma, Jing; Liu, Zhaojing; Liu, Fei; Yang, Yongheng

    2014-11-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  15. Installation and Implementation of an In-Process Coordinate Measuring Machine (CMM)

    SciTech Connect

    Johnston, Derek

    2008-06-16

    This report documents the work accomplished during the installation and implementation of the in-process Coordinate Measuring Machine (CMM) in Department A. A wealth of knowledge has been gained in solving the many technical issues that delayed the partial implementation of this CMM. The work completed thus far lead to the successfully calibrated in-process CMM workstation. A great deal of current and future work has been outlined in the following pages that shall be used as a guide for the full implementation of this CMM with machining processes in Department A.

  16. Product Model for Integrated Machining and Inspection Process Planning

    NASA Astrophysics Data System (ADS)

    Gutiérrez Rubert, S.; Bruscas Bellido, G. M.; Rosado Castellano, P.; Romero Subirón, F.

    2009-11-01

    In the product-process development closed-loop an integrated product and process plan model is essential for structuring and interchanging data and information. Many of the currently existing standards (STEP) provide an appropriate solution for the different stages of the closed-loop using a clear feature-based approach. However, inspection planning is not undertaken in the same manner and detailed inspection (measurement) planning is performed directly. In order to carry out inspection planning, that is both integrated and at the same level as process planning, the Inspection Feature (InspF) is proposed here, which is directly related with product and process functionality. The proposal includes an InspF library that makes it possible part interpretation from an inspection point of view, while also providing alternatives and not being restricted to the use of just one single type of measurement equipment.

  17. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    NASA Astrophysics Data System (ADS)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  18. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  19. Direct processing of continuous fibers onto injection molding machines

    NASA Astrophysics Data System (ADS)

    Truckenmueller, F. M.

    1993-06-01

    A new injection molding process 'DIF' (Direct Incorporation of Continuous Fibers) is proposed whereby roving strands are directly incorporated into the polymer melt by using a reciprocating-screw-plasticating unit. The DIF-technology offers the possibility to substitute the relatively expensive pultrusion process which is used to produce long fiber pellets. Furthermore it can be used as a fast and flexible R&D tool. In order to improve fiber dispersion with minimum fiber breakage a new mixing non-return-valve 'LFMR' (Long Fiber Mixing Ring) was developed based on the 'Twente Mixing Ring'; Its mixing capacity and influence on processing characteristics, fiber breakage and property profile of the injection molded parts is examined and compared to a general purpose non-return-valve of the ring type. The results of fundamental mechanical and physical property investigations are presented including dispersion of fiber clusters and bundles, fiber length distribution and fiber orientation.

  20. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    SciTech Connect

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-17

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  1. Micromechanical Machining Processes and their Application to Aerospace Structures, Devices and Systems

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.

    1995-01-01

    Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.

  2. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  3. An improved limit on the EDM of 225 Ra

    NASA Astrophysics Data System (ADS)

    Bishof, Michael; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Kalita, Mukut R.; Korsch, Wolfgang; Lemke, Nathan D.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Parker, Richard H.; Rabga, Tenzin; Singh, Jaideep T.

    2016-05-01

    Searches for permanent electric dipole moments (EDMs) are sensitive probes of symmetry violation that could explain the dominance of matter over anti-matter. The 225 Ra (t1/2 = 15 days, I = 1/2) atom is a particularly attractive system to use for an EDM measurement because its octupole-deformed nucleus, closely spaced ground-state parity doublet, and large nuclear charge make 225 Ra uniquely sensitive to symmetry-violating interactions in the nuclear medium. In 2015, we reported the first ``proof of principle'' measurement of the 225 Ra EDM, giving a 95% confidence upper limit of 5* 10-22 e-cm; representing the first EDM measurement using laser-trapped atoms as well as the first EDM measurement of an atom with an octupole-deformed nucleus. After implementing upgrades to our apparatus, we now observe nuclear spin coherence after 20 s of free evolution - a factor of ten improvement. A new EDM measurement based on the upgraded system improved the 95% confidence upper limit by a factor of 36. We also report on the progress of current experimental upgrades that have the potential to further improve our EDM sensitivity by many orders of magnitude, allowing us to test symmetry violation at an unprecedented level. This work is supported by U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  4. Monocular depth perception using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Hombali, Apoorv; Gorde, Vaibhav; Deshpande, Abhishek

    2011-10-01

    This paper primarily exploits some of the more obscure, but inherent properties of camera and image to propose a simpler and more efficient way of perceiving depth. The proposed method involves the use of a single stationary camera at an unknown perspective and an unknown height to determine depth of an object on unknown terrain. In achieving so a direct correlation between a pixel in an image and the corresponding location in real space has to be formulated. First, a calibration step is undertaken whereby the equation of the plane visible in the field of view is calculated along with the relative distance between camera and plane by using a set of derived spatial geometrical relations coupled with a few intrinsic properties of the system. The depth of an unknown object is then perceived by first extracting the object under observation using a series of image processing steps followed by exploiting the aforementioned mapping of pixel and real space coordinate. The performance of the algorithm is greatly enhanced by the introduction of reinforced learning making the system independent of hardware and environment. Furthermore the depth calculation function is modified with a supervised learning algorithm giving consistent improvement in results. Thus, the system uses the experience in past and optimizes the current run successively. Using the above procedure a series of experiments and trials are carried out to prove the concept and its efficacy.

  5. Neural-net Processed Electronic Holography for Rotating Machines

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This report presents the results of an R&D effort to apply neural-net processed electronic holography to NDE of rotors. Electronic holography was used to generate characteristic patterns or mode shapes of vibrating rotors and rotor components. Artificial neural networks were trained to identify damage-induced changes in the characteristic patterns. The development and optimization of a neural-net training method were the most significant contributions of this work, and the training method and its optimization are discussed in detail. A second positive result was the assembly and testing of a fiber-optic holocamera. A major disappointment was the inadequacy of the high-speed-holography hardware selected for this effort, but the use of scaled holograms to match the low effective resolution of an image intensifier was one interesting attempt to compensate. This report also discusses in some detail the physics and environmental requirements for rotor electronic holography. The major conclusions were that neural-net and electronic-holography inspections of stationary components in the laboratory and the field are quite practical and worthy of continuing development, but that electronic holography of moving rotors is still an expensive high-risk endeavor.

  6. Effect of processing parameters on surface finish for fused deposition machinable wax patterns

    NASA Technical Reports Server (NTRS)

    Roberts, F. E., III

    1995-01-01

    This report presents a study on the effect of material processing parameters used in layer-by-layer material construction on the surface finish of a model to be used as an investment casting pattern. The data presented relate specifically to fused deposition modeling using a machinable wax.

  7. e-Learning Application for Machine Maintenance Process using Iterative Method in XYZ Company

    NASA Astrophysics Data System (ADS)

    Nurunisa, Suaidah; Kurniawati, Amelia; Pramuditya Soesanto, Rayinda; Yunan Kurnia Septo Hediyanto, Umar

    2016-02-01

    XYZ Company is a company based on manufacturing part for airplane, one of the machine that is categorized as key facility in the company is Millac 5H6P. As a key facility, the machines should be assured to work well and in peak condition, therefore, maintenance process is needed periodically. From the data gathering, it is known that there are lack of competency from the maintenance staff to maintain different type of machine which is not assigned by the supervisor, this indicate that knowledge which possessed by maintenance staff are uneven. The purpose of this research is to create knowledge-based e-learning application as a realization from externalization process in knowledge transfer process to maintain the machine. The application feature are adjusted for maintenance purpose using e-learning framework for maintenance process, the content of the application support multimedia for learning purpose. QFD is used in this research to understand the needs from user. The application is built using moodle with iterative method for software development cycle and UML Diagram. The result from this research is e-learning application as sharing knowledge media for maintenance staff in the company. From the test, it is known that the application make maintenance staff easy to understand the competencies.

  8. Improved quality prediction model for multistage machining process based on geometric constraint equation

    NASA Astrophysics Data System (ADS)

    Zhu, Limin; He, Gaiyun; Song, Zhanjie

    2016-03-01

    Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.

  9. PLANS FOR A NEUTRON EDM EXPERIMENT AT SNS

    SciTech Connect

    ITO, TAKEYASU

    2007-01-31

    The electric dipole moment of the neutron, leptons, and atoms provide a unique window to Physics Beyond the Standard Model. They are currently developing a new neutron EDM experiment (the nEDM Experiment). This experiment, which will be run at the 8.9 {angstrom} Neutron Line at the Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory, will search for the neutron EDM with a sensitivity two orders of magnitude higher than the present limit. In this paper, the motivation for the experiment, the experimental method, and the present status of the experiment are discussed.

  10. MUON EDM EXPERIMENT USING STAGE II OF THE NEUTRINO FACTORY.

    SciTech Connect

    FERNOW,R.C.; GALLARDO,J.C.; MORSE,W.M.; SEMERTZIDIS,Y.K.

    2002-07-01

    During the second stage of a future neutrino factory unprecedented numbers of bunched muons will become available. The cooled medium-energy muon beam could be used for a high sensitivity search for an electric dipole moment (EDM) of the muon with a sensitivity better than 10{sup -24}e {center_dot} cm. This will make the sensitivity of the EDM experiment to non-standard physics competitive and in many models more sensitive than the present limits on edms of the electron and nucleons. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.

  11. Progress toward an EDM measurement in {sup225}Ra.

    SciTech Connect

    Holt, R. J.; Ahmad, I.; Bailey, K.; Graner, B.; Greene, J. P.; Korsch, W.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Sulai, I. A.; Trimble, W. L.

    2010-11-01

    Permanent electric dipole moments (EDMs) in atoms or molecules are a signature of time-reversal and parity violation and represent an important window onto physics beyond the Standard Model. We are developing a next generation EDM search based on laser-cooled and trapped {sup 225}Ra atoms. Due to octupole deformation of the nucleus, {sup 225}Ra is predicted to be two to three orders of magnitude more sensitive to T-violating interactions than {sup 199}Hg, which currently sets the most stringent limits in the nuclear sector. We will discuss progress toward realizing a first EDM measurement for {sup 225}Ra.

  12. Search for a permanent EDM using laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Nataraj, H. S.; Sato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    The search for the electric-dipole moment (EDM) of laser-cooled francium (Fr) atoms could lead to a measurement for the electron EDM. It is predicted that the electron EDM would be enhanced by approximately three orders of magnitude in heavy atoms such as Fr. Laser-cooling and trapping techniques are expected to suppress statistical and systematic errors in precision measurements. The magneto-optical trap was achieved using stable rubidium in a developing factory of laser-cooled radioactive atoms. In light of the results from the rubidium experiments, we found that an upgrade of each apparatus is preferred for Fr trapping.

  13. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  14. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  15. Microstructure, Morphology, and Nanomechanical Properties Near Fine Holes Produced by Electro-Discharge Machining

    SciTech Connect

    Blau, Peter Julian; Howe, Jane Y; Coffey, Dorothy W; Trejo, Rosa M; Kenik, Edward A; Jolly, Brian C; Yang, Nan

    2012-01-01

    Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emissions diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross-sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.

  16. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  17. Processing of rock core microtomography images: Using seven different machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Chauhan, Swarup; Rühaak, Wolfram; Khan, Faisal; Enzmann, Frieder; Mielke, Philipp; Kersten, Michael; Sass, Ingo

    2016-01-01

    The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore size distribution was found to be strongly affected by the feature vectors selected. Relative porosity average value of 15.92±1.77% retrieved from all the seven machine learning algorithm is in very good agreement with the experimental results of 17±2%, obtained using gas pycnometer. Of the supervised techniques, the least square support vector machine technique is superior to feed forward artificial neural network because of its ability to identify a generalized pattern. In the ensemble classification techniques boosting technique converged faster compared to bragging technique. The k-means technique outperformed the fuzzy c-means and self-organized maps techniques in terms of accuracy and speed.

  18. XCUT: A rule-based expert system for the automated process planning of machined parts

    SciTech Connect

    Brooks, S.L.; Hummel, K.E.; Wolf, M.L.

    1987-06-01

    Automated process planning is becoming a popular research and development topic in engineering and applied artificial intelligence. It is generally defined as the automatic planning of the manufacturing procedures for producing a part from a CAD based product definition. An automated process planning system, XCUT, is currently being developed using rule-based expert system techniques. XCUT will generate process plans for the production of machined piece-parts, given a geometric description of a part's features. The system currently is focused on operation planning for prismatic parts on multi-axis CNC milling machines. To date, moderately complex 2-1/2D prismatic parts have successfully been planned for with approximately 300 rules in the knowledge base. This paper will describe the XCUT system, system architecture, knowledge representation, plan development sequence, and issues in applying expert system technology to automated process planning. 16 refs.

  19. Magnetic field uniformity for the nEDM experiment

    NASA Astrophysics Data System (ADS)

    Slutsky, Simon; nEDM Collaboration

    2013-10-01

    The nEDM experiment at the Spallation Neutron Source (SNS) will search for a neutron electric dipole moment (EDM) with a sensitivity of < 5 .10-28 e-cm. Neutrons will precess in a constant magnetic field and variable electric field, and non-zero neutron EDM will appear as a variation in the precession frequency. Gradients in the magnetic field lead to spurious EDM signals through a geometric phase effect. The volume averaged magnetic gradient must be below 0.1 μG/cm to reach the desired sensitivity. In this talk, we describe an effort to produce such a uniform magnetic field in a laboratory using a cos (θ) coil operated at cryogenic temperatures inside a superconducting lead shield.

  20. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    NASA Astrophysics Data System (ADS)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-06-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  1. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  2. Application of machine learning and expert systems to Statistical Process Control (SPC) chart interpretation

    NASA Technical Reports Server (NTRS)

    Shewhart, Mark

    1991-01-01

    Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.

  3. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  4. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    SciTech Connect

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-04-07

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  5. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining

    PubMed Central

    Salehi, Mojtaba

    2010-01-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020

  6. Optimization of Machining Process Parameters for Surface Roughness of Al-Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2013-10-01

    Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.

  7. Methodological Issues in Predicting Pediatric Epilepsy Surgery Candidates Through Natural Language Processing and Machine Learning

    PubMed Central

    Cohen, Kevin Bretonnel; Glass, Benjamin; Greiner, Hansel M.; Holland-Bouley, Katherine; Standridge, Shannon; Arya, Ravindra; Faist, Robert; Morita, Diego; Mangano, Francesco; Connolly, Brian; Glauser, Tracy; Pestian, John

    2016-01-01

    Objective: We describe the development and evaluation of a system that uses machine learning and natural language processing techniques to identify potential candidates for surgical intervention for drug-resistant pediatric epilepsy. The data are comprised of free-text clinical notes extracted from the electronic health record (EHR). Both known clinical outcomes from the EHR and manual chart annotations provide gold standards for the patient’s status. The following hypotheses are then tested: 1) machine learning methods can identify epilepsy surgery candidates as well as physicians do and 2) machine learning methods can identify candidates earlier than physicians do. These hypotheses are tested by systematically evaluating the effects of the data source, amount of training data, class balance, classification algorithm, and feature set on classifier performance. The results support both hypotheses, with F-measures ranging from 0.71 to 0.82. The feature set, classification algorithm, amount of training data, class balance, and gold standard all significantly affected classification performance. It was further observed that classification performance was better than the highest agreement between two annotators, even at one year before documented surgery referral. The results demonstrate that such machine learning methods can contribute to predicting pediatric epilepsy surgery candidates and reducing lag time to surgery referral. PMID:27257386

  8. Use of maximum entropy method with parallel processing machine. [for x-ray object image reconstruction

    NASA Technical Reports Server (NTRS)

    Yin, Lo I.; Bielefeld, Michael J.

    1987-01-01

    The maximum entropy method (MEM) and balanced correlation method were used to reconstruct the images of low-intensity X-ray objects obtained experimentally by means of a uniformly redundant array coded aperture system. The reconstructed images from MEM are clearly superior. However, the MEM algorithm is computationally more time-consuming because of its iterative nature. On the other hand, both the inherently two-dimensional character of images and the iterative computations of MEM suggest the use of parallel processing machines. Accordingly, computations were carried out on the massively parallel processor at Goddard Space Flight Center as well as on the serial processing machine VAX 8600, and the results are compared.

  9. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  10. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  11. Kinematic Analysis of Cpm Machine Supporting to Rehabilitation Process after Surgical Knee Arthroscopy and Arthroplasty

    NASA Astrophysics Data System (ADS)

    Trochimczuk, R.; Kuźmierowski, T.

    2014-11-01

    Existing commercial solutions of the CPM (Continuous Passive Motion) machines are described in the paper. Based on the analysis of existing solutions we present our conceptual solution to support the process of rehabilitation of the knee joint which is necessary after arthroscopic surgery. For a given novel structure we analyze and present proprietary algorithms and the computer application to simulate the operation of our PCM device. In addition, we suggest directions for further research.

  12. Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns

    PubMed Central

    Lei, Mingguang; La, Honggui; Lu, Kun; Wang, Pengcheng; Miki, Daisuke; Ren, Zhizhong; Duan, Cheng-Guo; Wang, Xingang; Tang, Kai; Zeng, Liang; Yang, Lan; Zhang, Heng; Nie, Wenfeng; Liu, Pan; Zhou, Jianping; Liu, Renyi; Zhong, Yingli; Liu, Dong; Zhu, Jian-Kang

    2014-01-01

    DNA methylation is important for the silencing of transposons and other repetitive elements in many higher eukaryotes. However, plant and mammalian genomes have evolved to contain repetitive elements near or inside their genes. How these genes are kept from being silenced by DNA methylation is not well understood. A forward genetics screen led to the identification of the putative chromatin regulator Enhanced Downy Mildew 2 (EDM2) as a cellular antisilencing factor and regulator of genome DNA methylation patterns. EDM2 contains a composite Plant Homeo Domain that recognizes both active and repressive histone methylation marks at the intronic repeat elements in genes such as the Histone 3 lysine 9 demethylase gene Increase in BONSAI Methylation 1 (IBM1) and is necessary for maintaining the expression of these genes by promoting mRNA distal polyadenylation. Because of its role in maintaining IBM1 expression, EDM2 is required for preventing CHG methylation in the bodies of thousands of genes. Our results thus increase the understanding of antisilencing, genome methylation patterns, and regulation of alternative RNA processing by intronic heterochromatin. PMID:24248388

  13. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  14. Mechanical properties of white layers formed by different machining processes on nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Proust, Edouard

    Nickel-based superalloys are widely used in the aerospace industry in the production of turbine discs and blades because of their good mechanical properties and great corrosion resistance at high temperature. Although very useful, these alloys are hard to machine. Their structure is responsible for rapid wear of cutting tools. Moreover, under certain machining conditions, near-surface regions of the material undergo a phase transformation resulting in the formation of a thin layer called "white etching layer" at the surface of the machined workpiece. Because turbine discs are safety critical components, no defects can be tolerated on the workpiece. Therefore, efforts should be made to ensure that this white etching layer can't influence the operating life of the workpiece and make its operation unsafe. Even if the existence of the white etching layer is well known, its mechanical properties have never been assessed in detail. In this thesis, we present a study of the mechanical (hardness and Young's modulus) and microstructural properties of white etching layers formed at the surface of nickel-based superalloy IN100 turbine discs fabricated by different machining processes. This work aims at evaluating the impact of the machining process and of fatigue on the properties of the white etching layers under study. The originality of this study primarily lies in the employed characterization technique. Using nanoindentation has allowed us to very precisely assess the variations of both the hardness and the Young's modulus along the white etching layers. Also, the use of a sophisticated indentation system has enabled the acquisition of very precise surface images of the samples and therefore to study the microstructure of the white etching layers. This research has demonstrated that the mechanical and microstructural properties of the white etching layers are closely linked to the machining conditions of the material. Therefore, our study will help researchers gain a

  15. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    PubMed Central

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451

  16. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    PubMed

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-01

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451

  17. Machine platform and software environment for rapid optics assembly process development

    NASA Astrophysics Data System (ADS)

    Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Zontar, Daniel

    2016-03-01

    The assembly of optical components for laser systems is proprietary knowledge and typically done by well-trained personnel in clean room environment as it has major impact on the overall laser performance. Rising numbers of laser systems drives laser production to industrial-level automation solutions allowing for high volumes by simultaneously ensuring stable quality, lots of variants and low cost. Therefore, an easy programmable, expandable and reconfigurable machine with intuitive and flexible software environment for process configuration is required. With Fraunhofer IPT's expertise on optical assembly processes, the next step towards industrializing the production of optical systems is made.

  18. Improved experimental limit on the EDM of 225Ra

    NASA Astrophysics Data System (ADS)

    Bishof, Michael; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Kalita, Mukut R.; Korsch, Wolfgang; Lemke, Nathan D.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Tom P.; Parker, Richard H.; Rabga, Tenzin; Singh, Jaideep T.

    2015-10-01

    Searches for permanent electric dipole moments (EDMs) in fundamental and composite particles are sensitive probes of beyond-standard-model symmetry violation that could explain the dominance of matter over anti-matter. The 225Ra (t1/2 = 15d, I = 1/2) atom is a particularly attractive system to use for an EDM measurement because its large nuclear octupole deformation, closely spaced ground-state parity doublet, and large atomic mass make 225Ra uniquely sensitive to symmetry-violating interactions in the nuclear medium. We have developed an experiment to measure the EDM of 225Ra and demonstrated the first ``proof-of-principle'' measurement, giving a 95% confidence upper limit of 5E-22 e-cm. After implementing a vacuum upgrade, we have observed nuclear spin coherence after 20 s of free evolution - a factor of ten improvement over our earlier results - and have lowered the 225Ra EDM limit by over an order of magnitude. Upcoming experimental upgrades have the potential to further improve our EDM sensitivity by many orders of magnitude, allowing us to test symmetry violation at an unprecedented level. This work is supported by U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  19. Automatic Mapping Of Large Signal Processing Systems To A Parallel Machine

    NASA Astrophysics Data System (ADS)

    Printz, Harry; Kung, H. T.; Mummert, Todd; Scherer, Paul M.

    1989-12-01

    Since the spring of 1988, Carnegie Mellon University and the Naval Air Development Center have been working together to implement several large signal processing systems on the Warp parallel computer. In the course of this work, we have developed a prototype of a software tool that can automatically and efficiently map signal processing systems to distributed-memory parallel machines, such as Warp. We have used this tool to produce Warp implementations of small test systems. The automatically generated programs compare favorably with hand-crafted code. We believe this tool will be a significant aid in the creation of high speed signal processing systems. We assume that signal processing systems have the following characteristics: •They can be described by directed graphs of computational tasks; these graphs may contain thousands of task vertices. • Some tasks can be parallelized in a systolic or data-partitioned manner, while others cannot be parallelized at all. • The side effects of each task, if any, are limited to changes in local variables. • Each task has a data-independent execution time bound, which may be expressed as a function of the way it is parallelized, and the number of processors it is mapped to. In this paper we describe techniques to automatically map such systems to Warp-like parallel machines. We identify and address key issues in gracefully combining different parallel programming styles, in allocating processor, memory and communication bandwidth, and in generating and scheduling efficient parallel code. When iWarp, the VLSI version of the Warp machine, becomes available in 1990, we will extend this tool to generate efficient code for very large applications, which may require as many as 3000 iWarp processors, with an aggregate peak performance of 60 gigaflops.

  20. Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework.

    PubMed

    Liu, Wenbo; Li, Ming; Yi, Li

    2016-08-01

    The atypical face scanning patterns in individuals with Autism Spectrum Disorder (ASD) has been repeatedly discovered by previous research. The present study examined whether their face scanning patterns could be potentially useful to identify children with ASD by adopting the machine learning algorithm for the classification purpose. Particularly, we applied the machine learning method to analyze an eye movement dataset from a face recognition task [Yi et al., 2016], to classify children with and without ASD. We evaluated the performance of our model in terms of its accuracy, sensitivity, and specificity of classifying ASD. Results indicated promising evidence for applying the machine learning algorithm based on the face scanning patterns to identify children with ASD, with a maximum classification accuracy of 88.51%. Nevertheless, our study is still preliminary with some constraints that may apply in the clinical practice. Future research should shed light on further valuation of our method and contribute to the development of a multitask and multimodel approach to aid the process of early detection and diagnosis of ASD. Autism Res 2016, 9: 888-898. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. PMID:27037971

  1. Applications of Machine Learning Techniques in Digital Processing of Images of the Martian Surface

    NASA Astrophysics Data System (ADS)

    Plesko, Catherine S.; Brumby, Steven P.; Armstrong, John C.; Ginder, Elliot A.; Leovy, Conway B.

    2002-11-01

    NASA spacecraft have now returned many thousands of images of the surface of Mars. It is no longer practical to analyze such a large dataset by hand, while the development of handwritten feature extraction tools is expensive and laborious. This project investigates the application of machine learning techniques to problems of feature extraction and digital image processing within the Mars dataset. The Los Alamos GENIE machine learning software system uses a genetic algorithm to assemble feature extraction tools from low-level image operators. Each generated tool is evaluated against training data provided by the user. The best tools in each generation are allowed to "reproduce" to produce the next generation, and the population of tools evolves until it converges to a solution or reaches a level of performance specified by the user. Craters are one of the most scientifically interesting and most numerous features on Mars, and present a wide range of shapes at many spatial scales. We now describe results on development of crater finder algorithms using voting sets of simple classifiers evolved by a machine learning/genetic programming system (the Los Alamos GENIE software).

  2. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability

    NASA Astrophysics Data System (ADS)

    Song, Jin-long; Xu, Wen-ji; Liu, Xin; Lu, Yao; Sun, Jing

    2012-09-01

    Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6∘ water contact angle and 2∘ tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.

  3. Magnetic field uniformity for the nEDM experiment

    NASA Astrophysics Data System (ADS)

    Slutsky, Simon; nEDM Collaboration

    2014-09-01

    The nEDM experiment at the Spallation Neutron Source (SNS) will search for a neutron electric dipole moment (EDM) with a sensitivity of <5*10-28 e-cm. Neutrons will precess in a constant magnetic field and variable electric field, and non-zero neutron EDM will appear as a variation in the precession frequency correlated with the changing electric field. Geometric phase and neutron polarization lifetime effects constrain the allowed magnetic field gradient to below 0.1 uG/cm. Gradients nearly satisfying this requirement have been achieved using a cos(θ) coil inside an open-ended superconducting lead shield operated at cryogenic temperatures and using the design electric fields. I will describe efforts to further improve the magnet design using a superconducting endcap.

  4. Hybrid Processing: the Impact of Mechanical and Surface Thermal Treatment Integration onto the Machine Parts Quality

    NASA Astrophysics Data System (ADS)

    Skeeba, V. Yu; Ivancivsky, V. V.; Kutyshkin, A. V.; Parts, K. A.

    2016-04-01

    The comparative analysis of the two hybrid process technologies, which are based on the integration of mechanical treatment (abrasive grinding or turning) and a surface heat strengthening by high frequency current on the same processing equipment, is given in the paper. The acquired results demonstrate that the suggested integrating approach allows carrying out the processing on the one technological base, which leads to the increase in the quality of the machine parts surface layer. The conducted experimental research proves that a minor stock allowance value for the final mechanical processing (sparking out or diamond smoothing) ensures the absence of defects such as local abatement zones and provides strain hardening of the work piece surface. This leads to the formation of the work-hardened layer of 0.01 - 0.03 mm, increase in microhardness value by 12 - 17% and the level of residual compressive stress in the surface layer by 10 - 21 % respectively.

  5. The multiphysics analysis of the metallic bipolar plate by the electrochemical micro-machining fabrication process

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Ming; Lee, Shuo-Jen; Lee, Chi-Yuan; Chang, Dar-Yuan

    In this study, the flow channels of a PEM fuel cell are fabricated by the EMM process. The parametric effects of the process are studied by both numerical simulation and experimental tests. For the numerical simulation, the multiphysics model, consisting of electrical field, convection, and diffusion phenomena is applied using COMSOL software. COMSOL software is used to predict the parametric effects of the channel fabrication accuracy such as pulse rate, pulse duty cycle, inter-electrode gap and electrolytic inflow velocity. The proper experimental parameters and the relationship between the parameters and the distribution of metal removal are established from the simulated results. The experimental fabrication tests showed that a shorter pulse rate and a higher pulse current improved the fabrication accuracy, and is consistent with the numerical simulation results. The proposed simulation model could be employed as a predictive tool to provide optimal parameters for better machining accuracy and process stability of the EMM process.

  6. Gaussian Process Regression as a machine learning tool for predicting organic carbon from soil spectra - a machine learning comparison study

    NASA Astrophysics Data System (ADS)

    Schmidt, Andreas; Lausch, Angela; Vogel, Hans-Jörg

    2016-04-01

    Diffuse reflectance spectroscopy as a soil analytical tool is spreading more and more. There is a wide range of possible applications ranging from the point scale (e.g. simple soil samples, drill cores, vertical profile scans) through the field scale to the regional and even global scale (UAV, airborne and space borne instruments, soil reflectance databases). The basic idea is that the soil's reflectance spectrum holds information about its properties (like organic matter content or mineral composition). The relation between soil properties and the observable spectrum is usually not exactly know and is typically derived from statistical methods. Nowadays these methods are classified in the term machine learning, which comprises a vast pool of algorithms and methods for learning the relationship between pairs if input - output data (training data set). Within this pool of methods a Gaussian Process Regression (GPR) is newly emerging method (originating from Bayesian statistics) which is increasingly applied to applications in different fields. For example, it was successfully used to predict vegetation parameters from hyperspectral remote sensing data. In this study we apply GPR to predict soil organic carbon from soil spectroscopy data (400 - 2500 nm). We compare it to more traditional and widely used methods such as Partitial Least Squares Regression (PLSR), Random Forest (RF) and Gradient Boosted Regression Trees (GBRT). All these methods have the common ability to calculate a measure for the variable importance (wavelengths importance). The main advantage of GPR is its ability to also predict the variance of the target parameter. This makes it easy to see whether a prediction is reliable or not. The ability to choose from various covariance functions makes GPR a flexible method. This allows for including different assumptions or a priori knowledge about the data. For this study we use samples from three different locations to test the prediction accuracies. One

  7. Search for a permanent EDM using laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Sakemi, Y.; Harada, K.; Hayamizu, T.; Itoh, M.; Kawamura, H.; Liu, S.; Nataraj, H. S.; Oikawa, A.; Saito, M.; Sato, T.; Yoshida, H. P.; Aoki, T.; Hatakeyama, A.; Murakami, T.; Imai, K.; Hatanaka, K.; Wakasa, T.; Shimizu, Y.; Uchida, M.

    2011-07-01

    An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A non-zero EDM shows the violation of the time reversal symmetry, and under the CPT invariance it means the CP violation. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ~ 895. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to perform the search for the EDM of Fr with the accuracy of 10-29 e · cm. The important points to overcome the current accuracy limit of the EDM are to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ~106 ions/s with the primary beam intensity 200 nA. The developments of the laser system and optical equipments are in progress, and the present status and future plan of the experimental project is reported.

  8. Search for a permanent EDM with laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Sakemi, Yasuhiro

    2014-09-01

    To explore the mechanism for the generation of the matter-antimatter asymmetry in the universe, the study on fundamental symmetry violation using the trapped radioactive atoms with laser cooling techniques is being promoted. An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A finite value of EDM means the violation of the time reversal symmetry, and the CP violation under the CPT invariance. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ~ 895 in atomic system. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to search for the EDM of Fr with the accuracy of 10-29 e cm. To overcome the current accuracy limit of the EDM, it is necessary to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap (MOT) and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ~ 10 6 ions/s with the primary beam intensity 200 nA. The extracted Fr ion beam is transported to the neutralizer, which is located 10 m downstream, and the produced neutral Fr atoms are introduced into the MOT to load the next trapping system such as the optical dipole force trap and optical lattice. The coherence time will be increased in the laser trapping system, and the present status of the experiment will be reported.

  9. Cold header machine process monitoring using a genetic algorithm designed neural network approach

    NASA Astrophysics Data System (ADS)

    dos Reis, Henrique L. M.; Voegele, Aaron C.; Cook, David B.

    1999-12-01

    In cold heading manufacturing processes, complete or partial fracture of the punch-pin leads to production of out-of-tolerance parts. A process monitoring system has been developed to assure that out-of-tolerance parts do not contaminate the batch of acceptable parts. A four-channel data acquisition system was assembled to collect and store the acoustic signal generated during the manufacturing process. A genetic algorithm was designed to select the smallest subset of waveform features necessary to develop a robust artificial neural network that could differentiate among the various cold head machine conditions, including complete or partial failure of the punch pin. The developed monitoring system is able to terminate production within seconds of punch pin failure using only four waveform features.

  10. Research on ultrasonic vibration aided femtosecond laser machining process of transparent materials

    NASA Astrophysics Data System (ADS)

    Dai, Yutang; Liu, Bin; Yin, Guanglin; Li, Tao; Karanja, Joseph M.

    2015-08-01

    A new process of femtosecond laser micromachining with ultrasonic vibration aided is proposed. An ultrasonic aided device has been designed, and the laser micromachining experiments of transparent materials have been carried out. The effects of the ultrasonic vibration with different power on surface quality and the drilling depth have been investigated, and the mechanism of the ultrasonic vibration aided laser machining has been analyzed. After introducing the ultrasonic vibration device, the residue debris on surface of the ablated trench is significantly reduced, and the drilling depth is increased. These results show that, ultrasonic vibration can effectively improve the surface quality of material processing, increase the depth of the drilling hole and promote the processing efficiency of the femtosecond laser.

  11. Machine and Process System Diagnostics Using One-Step Prediction Maps

    SciTech Connect

    Breeding, J.E.; Damiano, B.; Tucker, R.W., Jr.

    1999-05-10

    This paper describes a method for machine or process system diagnostics that uses one-step prediction maps. The method uses nonlinear time series analysis techniques to form a one-step prediction map that estimates the next time series data point when given a sequence of previously measured time series data point. The difference between the predicted and measured time series values is a measure of the map error. The average value of this error should remain within some bound as long as both the dynamic system and its operating condition remain unchanged. However, changes in the dynamic system or operating condition will cause an increase in average map error. Thus, for a constant operating condition, monitoring the average map error over time should indicate when a change has occurred in the dynamic system. Furthermore, the map error itself forms a time series that can be analyzed to detect changes in system dynamics. The paper provides technical background in the nonlinear analysis techniques used in the diagnostic method, describes the creation of one-step prediction maps and their application to machine or process system diagnostics, and then presents results obtained from applying the diagnostic method to simulated and measured data.

  12. Prediction and analysis of radial overcut in holes drilled by electrochemical machining process

    NASA Astrophysics Data System (ADS)

    Tajdari, Mehdi; Chavoshi, Saeed

    2013-09-01

    Radial overcut predictive models using multiple regression analysis, artificial neural network and co-active neurofuzzy inference system are developed to predict the radial overcut during electrochemical drilling with vacuum extraction of electrolyte. Four process parameters, electrolyte concentration, voltage, initial machining gap and tool feed rate, are selected to develop the models. The comparison between the results of the presented models shows that the artificial neural network and co-active neuro-fuzzy inference system models can predict the radial overcut with an average relative error of nearly 5%. Main effect and interaction plots are generated to study the effects of process parameters on the radial overcut. The analysis shows that the voltage, electrolyte concentration and tool feed rate have significant effect on radial overcut, respectively, while initial machining gap has a little effect. It is also found that the increase of the voltage and electrolyte concentration increases the radial overcut and the increase of the tool feed rate decreases the radial overcut.

  13. Study on the Optimization and Process Modeling of the Rotary Ultrasonic Machining of Zerodur Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Pitts, James Daniel

    Rotary ultrasonic machining (RUM), a hybrid process combining ultrasonic machining and diamond grinding, was created to increase material removal rates for the fabrication of hard and brittle workpieces. The objective of this research was to experimentally derive empirical equations for the prediction of multiple machined surface roughness parameters for helically pocketed rotary ultrasonic machined Zerodur glass-ceramic workpieces by means of a systematic statistical experimental approach. A Taguchi parametric screening design of experiments was employed to systematically determine the RUM process parameters with the largest effect on mean surface roughness. Next empirically determined equations for the seven common surface quality metrics were developed via Box-Behnken surface response experimental trials. Validation trials were conducted resulting in predicted and experimental surface roughness in varying levels of agreement. The reductions in cutting force and tool wear associated with RUM, reported by previous researchers, was experimentally verified to also extended to helical pocketing of Zerodur glass-ceramic.

  14. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    NASA Astrophysics Data System (ADS)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  15. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    SciTech Connect

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

  16. Reverse time migration: A seismic processing application on the connection machine

    NASA Technical Reports Server (NTRS)

    Fiebrich, Rolf-Dieter

    1987-01-01

    The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.

  17. Process Modeling In Cold Forging Considering The Process-Tool-Machine Interactions

    NASA Astrophysics Data System (ADS)

    Kroiss, Thomas; Engel, Ulf; Merklein, Marion

    2010-06-01

    In this paper, a methodic approach is presented for the determination and modeling of the axial deflection characteristic for the whole system of stroke-controlled press and tooling system. This is realized by a combination of experiment and FE simulation. The press characteristic is uniquely measured in experiment. The tooling system characteristic is determined in FE simulation to avoid experimental investigations on various tooling systems. The stiffnesses of press and tooling system are combined to a substitute stiffness that is integrated into the FE process simulation as a spring element. Non-linear initial effects of the press are modeled with a constant shift factor. The approach was applied to a full forward extrusion process on a press with C-frame. A comparison between experiments and results of the integrated FE simulation model showed a high accuracy of the FE model. The simulation model with integrated deflection characteristic represents the entire process behavior and can be used for the calculation of a mathematical process model based on variant simulations and response surfaces. In a subsequent optimization step, an adjusted process and tool design can be determined, that compensates the influence of the deflections on the workpiece dimensions leading to high workpiece accuracy. Using knowledge on the process behavior, the required number of variant simulations was reduced.

  18. Quantification of geologic lineaments by manual and machine processing techniques. [in Oklahoma and the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Moik, J. G.; Shoup, W. C.

    1975-01-01

    A study was conducted to investigate the effect of operator variability and subjectivity in lineament mapping and to examine methods to minimize or eliminate these problems by use of several machine preprocessing methods. LANDSAT scenes from the Anadarko Basin of Oklahoma and the Colorado Plateau were analyzed as test cases. Four geologists mapped lineaments on an Anadarko Basin scene, using transparencies of MSS bands 4-7, and their results are compared statistically. The total number of fractures mapped by the operators and their average lengths varied considerably, although comparison of lineament directions revealed some consensus. A summary map (785 linears) produced by overlaying the maps generated by the four operators showed that only 0.4% were recognized by all four operators, 4.7% by three, 17.8% by two and 77% by one operator. Two methods of machine aided mapping were tested, both simulating directional filters. One consists of computer (digital) processing of CCTs using edge enhancement algorithms, the other employs a television (analog) scanning of an image transparency which superimposes the original image and one offset in the direction of the scan line.

  19. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  20. UCN n-EDM experimental developments at RCNP

    NASA Astrophysics Data System (ADS)

    Matsuta, Kensaku

    2009-10-01

    Our KEK-RCNP-Osaka-ICEPP collaboration group led by Y. Masuda of IPNS, KEK and K. Hatanaka of RCNP, Osaka Univ. is developing a new type high intensity UCN (ultracold neutron) source at RCNP, Osaka Univ., for the future experiments on fundamental physics including n-EDM (neutron electric dipole moment) precision measurements, which may disclose origin of the baryon asymmetry in the present universe by providing active evidence of the violation of the time reversal invariance. Our UCN source produces 15 UCN/cm^3 at the exit, by the compact combination of the spallation neutron source and the super-fluid He-II moderator, which provides with the best power efficiency. In the present stage, we are trying to establish Ramsey resonance technique for the n-EDM measurements, by studying behavior of UCN and the polarization, using abundant UCNs produced in this source, in addition to the improvement of the source performance. The energy spectrum of UCN, i.e. the velocity distribution, is an important information in the estimation of the false EDM effect such as Bloch-Siegert shift and is found to be well reproduced by the uniform production in phase space. We tried to polarize UCN by the magnetic potential in pure ion foil. The production of polarization itself is found rather easy, namely, the polarization could reach as high as 100% in the beginning. Average polarization, however, is dominated by the relaxation of polarization during transportation and storage. For the n-EDM measurements in the next generation, our effort should be devoted to the understanding of the geometric phase such as Bloch-Siegert shift which dominates systematic error in the EDM measurements. Our next step will be demonstration of Ramsey resonance and the installation of the co-magnetometer and electric field, to detect geometric phase.

  1. Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10 metallic glass by using laminated 3D micro-electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wu, Xiao-yu; Ma, Jiang; Liang, Xiong; Lei, Jian-guo; Wu, Bo; Ruan, Shuang-chen; Wang, Zhen-long

    2016-03-01

    For obtaining 3D micro-molds with better surface quality (slight ridges) and mechanical properties, in this paper 3D micro-electrodes were fabricated and applied to micro-electrical discharge machining (micro-EDM) to process Pd40Cu30P20Ni10 metallic glass. First, 100 μm-thick Cu foil was cut to obtain multilayer 2D micro-structures and these were connected to fit 3D micro-electrodes (with feature sizes of less than 1 mm). Second, under the voltage of 80 V, pulse frequency of 0.2MHZ, pulse width of 800 ns and pulse interval of 4200 ns, the 3D micro-electrodes were applied to micro-EDM for processing Pd40Cu30P20Ni10 metallic glass. The 3D micro-molds with feature within 1 mm were obtained. Third, scanning electron microscope, energy dispersive spectroscopy and x-ray diffraction analysis were carried out on the processed results. The analysis results indicate that with an increase in the depth of micro-EDM, carbon on the processed surface gradually increased from 0.5% to 5.8%, and the processed surface contained new phases (Ni12P5 and Cu3P).

  2. Restricted Boltzmann machine: a non-linear substitute for PCA in spectral processing

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Zhao, Gang; Luo, A.-li; Pan, Jingchang; Chen, Yuqin

    2015-04-01

    Context. Principal component analysis (PCA) is widely used to repair incomplete spectra, to perform spectral denoising, and to reduce dimensionality. Presently, no method has been found to be comparable to PCA on these three problems. New methods have been proposed, but are often specific to one problem. For example, locally linear embedding outperforms PCA in dimensionality reduction. However, it cannot be used in spectral denoising and spectral reparing. Wavelet transform can be used to denoise spectra; however, it cannot be used in dimensionality reduction. Aims: We provide a new method that can substitute PCA in incomplete spectra repairing, spectral denoising and spectral dimensionality reduction. Methods: A new method, restricted Boltzmann machine (RBM), is introduced in spectral processing. RBM is a particular type of Markov random field with two-layer architecture, and use Gibbs sampling method to train the algorithm. It can be used in spectral denoising, dimensionality reduction and spectral repairing. Results: The performance of RBM is comparable to PCA in spectral processing. It can repair the incomplete spectra better: the difference between the RBM repaired spectra and the original spectra is smaller than that between the PCA repaired spectra and the original spectra. The denoised spectra given by RBM is similar to those given by PCA. In dimensionality reduction, RBM performs better than PCA: the classification results of RBM+ELM (i.e. the extreme learning machine) is higher than those of PCA+ELM. This shows that RBM can extract the spectral features more efficiently than PCA. Thus, RBM is a good alternative method for PCA in spectral processing. The source code of RBM algorithm is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A96

  3. Machine vision process monitoring on a poultry processing kill line: results from an implementation

    NASA Astrophysics Data System (ADS)

    Usher, Colin; Britton, Dougl; Daley, Wayne; Stewart, John

    2005-11-01

    Researchers at the Georgia Tech Research Institute designed a vision inspection system for poultry kill line sorting with the potential for process control at various points throughout a processing facility. This system has been successfully operating in a plant for over two and a half years and has been shown to provide multiple benefits. With the introduction of HACCP-Based Inspection Models (HIMP), the opportunity for automated inspection systems to emerge as viable alternatives to human screening is promising. As more plants move to HIMP, these systems have the great potential for augmenting a processing facilities visual inspection process. This will help to maintain a more consistent and potentially higher throughput while helping the plant remain within the HIMP performance standards. In recent years, several vision systems have been designed to analyze the exterior of a chicken and are capable of identifying Food Safety 1 (FS1) type defects under HIMP regulatory specifications. This means that a reliable vision system can be used in a processing facility as a carcass sorter to automatically detect and divert product that is not suitable for further processing. This improves the evisceration line efficiency by creating a smaller set of features that human screeners are required to identify. This can reduce the required number of screeners or allow for faster processing line speeds. In addition to identifying FS1 category defects, the Georgia Tech vision system can also identify multiple "Other Consumer Protection" (OCP) category defects such as skin tears, bruises, broken wings, and cadavers. Monitoring this data in an almost real-time system allows the processing facility to address anomalies as soon as they occur. The Georgia Tech vision system can record minute-by-minute averages of the following defects: Septicemia Toxemia, cadaver, over-scald, bruises, skin tears, and broken wings. In addition to these defects, the system also records the length and

  4. A batch-mode micromachining process for spherical structures

    NASA Astrophysics Data System (ADS)

    Li, Tao; Visvanathan, Karthik; Gianchandani, Yogesh B.

    2014-02-01

    This paper reports a self-aligned three-dimensional process (3D-SOULE) that incorporates batch-mode micro ultrasonic machining (µUSM), lapping and micro electro-discharge machiningEDM) for fabrication of concave and mushroom-shaped spherical structures from hard and brittle materials. To demonstrate the process, 1 mm structures are fabricated from glass and ruby spheres. The µEDM technique is used to create the tool for μUSM from stainless steel spheres. Stainless steel 440, which provides a tool wear ratio <5%, is chosen as the tool material. A 2 × 2 array is used for batch processing. For an ultrasound generator frequency of 20 kHz and a vibration amplitude of 15 µm, machining rates of 24 and 12 µm min-1 are obtained for glass and ruby spheres, respectively. An approximate linear relationship is observed between the measured roughness (Ra) of the machined surface and the product of the fracture toughness (KIC) and the hardness (H) of the workpiece material (KIC3/2H1/2).

  5. Dynamic Process Analysis In Cutting Zone During Machining Of Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Šajgalík, Michal; Martikáň, Anton; Mrázik, Jozef

    2015-12-01

    To generally improve effectivity of parts production and metal cutting process, there are used process models of super alloys together with finite element modeling simulations. Advanced measurement methods of the process could improve and verify the accuracy of these models. These methods cause many error sources when using empiric or exact methods such as infrared radiation thermography to measure the temperature distribution of the tool, workpiece, and chip during metal cutting. Measuring of metal machining is challenging due to factors such as the high magnification required, high surface speeds and deformations, micro-blackbody effects, changing emissivity and deformations present at metal cutting. As part of an ongoing effort to improve our understanding of uncertainties associated with these measurement methods, multimeasurement sets of experiments were performed. First set of measurements observed connection between surface temperature and the internal temperature of the cutting tool. This was accomplished by measuring the temperature using a thermal camera in cutting zone. Second set performed high-speed scan of dynamic processes such as formation of elastic and plastic deformation. During this operation was applied high-speed scannning system using macro conversion lens for monitoring of micro-structural changes in deformation areas. Next necessary applied set is recording of dynamic processes by implementation of piezoelectric measurement device for monitoring of cutting forces. The outputs from multimeasuring system are the basis for verification of theoretical knowledge from this field and elimination of uncertainties, which arise by using computer simulation systems.

  6. Simple, low-cost planar flow casting machine for rapid solidification processing

    NASA Astrophysics Data System (ADS)

    Smith, M. T.; Saletore, M.

    1986-08-01

    The design, fabrication, and operation of a relatively simple low-cost planar flow casting (PFC) machine optimized for small-batch processing were investigated by the Bureau of Mines. Several design features found beneficial to PFC process operation include: a ground nozzle stopper to retain the alloy charge during melting; a remote, large-volume pressure vessel connected to the crucible gas system to reduce temperature-induced pressure fluctuations; and the use of a nested induction coil that allows both the melt charge and the crucible reservoir to be located close to the cooling wheel. The results of several PFC process runs are provided showing typical values of the cooling wheel surface velocity, crucible ejection pressure, and crucible nozzle clearance gap. Examination of the rapidly solidified, Fe-based ribbons for thickness, dimensional uniformity, and atomic structure indicated that good quality glassy ribbon could be produced with proper selection of the controllable process variables. In addition, single-variable linear regression analysis was used to determined the effect of each process variable on the resulting ribbon thickness.

  7. An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines

    PubMed Central

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    The excavation and production in underground mines are complicated processes which consist of many different operations. The process of underground mining is considerably constrained by the geometry and geology of the mine. The various mining operations are normally performed in series at each working face. The delay of a single operation will lead to a domino effect, thus delay the starting time for the next process and the completion time of the entire process. This paper presents a new approach to the process control for underground mining operations, e.g. drilling, bolting, mucking. This approach can estimate the working time and its probability for each operation more efficiently and objectively by improving the existing PERT (Program Evaluation and Review Technique) and CPM (Critical Path Method). If the delay of the critical operation (which is on a critical path) inevitably affects the productivity of mined ore, the approach can rapidly assign mucking machines new jobs to increase this amount at a maximum level by using a new mucking algorithm under external constraints. PMID:26062092

  8. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  9. Evaluation of surface water resources from machine-processing of ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.

    1976-01-01

    The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.

  10. Image processing with genetic algorithm in a raisin sorting system based on machine vision

    NASA Astrophysics Data System (ADS)

    Abbasgholipour, Mahdi; Alasti, Behzad Mohammadi; Abbasgholipour, Vahdi; Derakhshan, Ali; Abbasgholipour, Mohammad; Rahmatfam, Sharmin; Rahmatfam, Sheyda; Habibifar, Rahim

    2012-04-01

    This study was undertaken to develop machine vision-based raisin detection technology. Supervised color image segmentation using a Permutation-coded Genetic Algorithm (GA) identifying regions in Hue-Saturation-Intensity (HSI) color space (GAHSI) for desired and undesired raisin detection was successfully implemented. Images were captured to explore the possibility of using GAHSI to locate desired raisin and undesired raisin regions in color space simultaneously. In this research, images were processed separately using three segmentation method, K-Means clustering in L*a*b* color space and GAHSI for single image, GA for single image in Red-Green-Blue (RGB) color space (GARGB). The GAHSI results provided evidence for the existence and separability of such regions. When compared with cluster analysis-based segmentation results, the GAHSI method showed no significant difference.

  11. Hybrid metaheuristics for solving a fuzzy single batch-processing machine scheduling problem.

    PubMed

    Molla-Alizadeh-Zavardehi, S; Tavakkoli-Moghaddam, R; Lotfi, F Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  12. Man-machine interactive imaging and data processing using high-speed digital mass storage

    NASA Technical Reports Server (NTRS)

    Alsberg, H.; Nathan, R.

    1975-01-01

    The role of vision in teleoperation has been recognized as an important element in the man-machine control loop. In most applications of remote manipulation, direct vision cannot be used. To overcome this handicap, the human operator's control capabilities are augmented by a television system. This medium provides a practical and useful link between workspace and the control station from which the operator perform his tasks. Human performance deteriorates when the images are degraded as a result of instrumental and transmission limitations. Image enhancement is used to bring out selected qualities in a picture to increase the perception of the observer. A general purpose digital computer, an extensive special purpose software system is used to perform an almost unlimited repertoire of processing operations.

  13. 29 CFR 570.61 - Occupations in the operation of power-driven meat-processing machines and occupations involving...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Occupations in the operation of power-driven meat-processing machines and occupations involving slaughtering, meat and poultry packing, processing, or... to Their Health or Well-Being § 570.61 Occupations in the operation of power-driven...

  14. 29 CFR 570.61 - Occupations in the operation of power-driven meat-processing machines and occupations involving...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Occupations in the operation of power-driven meat-processing machines and occupations involving slaughtering, meat and poultry packing, processing, or... to Their Health or Well-Being § 570.61 Occupations in the operation of power-driven...

  15. 29 CFR 570.61 - Occupations in the operation of power-driven meat-processing machines and occupations involving...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Occupations in the operation of power-driven meat-processing machines and occupations involving slaughtering, meat and poultry packing, processing, or... to Their Health or Well-Being § 570.61 Occupations in the operation of power-driven...

  16. Comparison of support vector machine-based processing chains for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Rojas, Marta; Dópido, Inmaculada; Plaza, Antonio; Gamba, Paolo

    2010-08-01

    Many different approaches have been proposed in recent years for remotely sensed hyperspectral image classification. Despite the variety of techniques designed to tackle the aforementioned problem, the definition of standardized processing chains for hyperspectral image classification is a difficult objective, which may ultimately depend on the application being addressed. Generally speaking, a hyperspectral image classification chain may be defined from two perspectives: 1) the provider's viewpoint, and 2) the user's viewpoint, where the first part of the chain comprises activities such as data calibration and geo-correction aspects, while the second part of the chain comprises information extraction processes from the collected data. The modules in the second part of the chain (which constitutes our main focus in this paper) should be ideally flexible enough to be accommodated not only to different application scenarios, but also to different hyperspectral imaging instruments with varying characteristics, and spatial and spectral resolutions. In this paper, we evaluate the performance of different processing chains resulting from combinations of modules for dimensionality reduction, feature extraction/ selection, image classification, and spatial post-processing. The support vector machine (SVM) classifier is adopted as a baseline due to its ability to classify hyperspectral data sets using limited training samples. A specific classification scenario is investigated, using a reference hyperspectral data set collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Indian Pines region in Indiana, USA.

  17. Synthesis CNTs Particle Based Abrasive Media for Abrasive Flow Machining Process

    NASA Astrophysics Data System (ADS)

    Kumar, Sonu; Murtaza, Q.; Walia, R. S.; Dhull, S.; Tyagi, P. K.

    2016-02-01

    Abrasive flow machining (AFM) is a modem fine finishing process used for intricate and internal finishing of components or parts. It is based on flowing of viscoelastic abrasive media over the surface to be fine finished. The abrasive media is the important parameter in the AFM process because of its ability to accurately abrade the predefined area along it flow path. In this study, an attempt is made to develop a new abrasive, alumina with Carbon non tubes (CNTs) in viscoelastic medium. CNT s in house produced through chemical vapour deposition technique and characterize through TEM. Performance evaluation of the new abrasive media is carried out by increasing content of CNT s with fixed extrusion pressure, viscosity of media and media flow rate as process parameters and surface finish improvement and material removal as process responses in AFM setup. Significantly improvement has been observed in material removal and maximum improvement of 100% has been observed in the surface finish on the inner cylindrical surface of the cast iron work piece.

  18. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction.

    PubMed

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga(+) liquid ion sources towards higher resolution gas field ion sources (He(+) and Ne(+)). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic 'gold' standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne(+) beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. PMID:25580777

  19. Butt weld inspection and weld machine diagnostic system for continuous coil processing lines

    SciTech Connect

    Lang, D.D.; Geier, D.; Shultz, B.L.

    1995-07-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed and installed a weld process control system which monitors the key variables of the welding process and determines the quality of welds generated by flash-butt welding equipment. The TEMATE 2000 System utilizes Electro-Magnetic Acoustic Transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the TEMATE 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  20. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    NASA Astrophysics Data System (ADS)

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga+ liquid ion sources towards higher resolution gas field ion sources (He+ and Ne+). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne+ beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  1. Machine processing of S-192 and supporting aircraft data: Studies of atmospheric effects, agricultural classifications, and land resource mapping

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1975-01-01

    Two tasks of machine processing of S-192 multispectral scanner data are reviewed. In the first task, the effects of changing atmospheric and base altitude on the ability to machine-classify agricultural crops were investigated. A classifier and atmospheric effects simulation model was devised and its accuracy verified by comparison of its predicted results with S-192 processed results. In the second task, land resource maps of a mountainous area near Cripple Creek, Colorado were prepared from S-192 data collected on 4 August 1973.

  2. Sentence-processing in echo state networks: a qualitative analysis by finite state machine extraction

    NASA Astrophysics Data System (ADS)

    Frank, Stefan L.; Jacobsson, Henrik

    2010-06-01

    It has been shown that the ability of echo state networks (ESNs) to generalise in a sentence-processing task can be increased by adjusting their input connection weights to the training data. We present a qualitative analysis of the effect of such weight adjustment on an ESN that is trained to perform the next-word prediction task. Our analysis makes use of CrySSMEx, an algorithm for extracting finite state machines (FSMs) from the data about the inputs, internal states, and outputs of recurrent neural networks that process symbol sequences. We find that the ESN with adjusted input weights yields a concise and comprehensible FSM. In contrast, the standard ESN, which shows poor generalisation, results in a massive and complex FSM. The extracted FSMs show how the two networks differ behaviourally. Moreover, poor generalisation is shown to correspond to a highly fragmented quantisation of the network's state space. Such findings indicate that CrySSMEx can be a useful tool for analysing ESN sentence processing.

  3. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    PubMed

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process. PMID:27120649

  4. Derivation of Process Path Functions in Machining of Al Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Shih, D. S.; Garmestani, H.; Liang, S. Y.

    2015-11-01

    The evolution of micro-texture below the machined surface is computationally modeled and experimentally verified. The orientation distribution functions of the grains below the surface were represented in spectral form. The microstructure descriptor coefficients were derived, and their change with respect to the change in the cutting feed rate was computationally calculated and monitored. Micro-texture experimental observations conducted by electron back-scatter diffraction technique verify the modeling outputs. Continuation of changing the process parameter was done by finite element method, and the evolution in texture was investigated by computational modeling. The process path function which correlates micro-texture evolution and cutting feed rate, was obtained by applying the principle of orientation conservation in the Euler space. As a result of the major finding of this work, i.e., derivation of process path functions, the evolution of texture as a function of the material feed rate is numerically determined without any need to texture modeling or finite element analyses.

  5. Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon

    NASA Astrophysics Data System (ADS)

    Joshi, Kamlesh; Sharma, Gaurav; Dongre, Ganesh; Joshi, Suhas Sitaram

    2016-05-01

    Recently, a lot of work is carried out in photovoltaic industry for slicing Si ingots using non-conventional technique like wire-EDM apart from conventional techniques like inner diameter saw and multi-wire saw. It is an emerging technology in field of Si wafer slicing and has a potential to be cost efficient. It reduces the kerf-loss and produces crack-free Si wafers. In general, the process of Si wafer cutting using wire-EDM is less understood due to its complex nature. In this work, the complex phenomena like formation of plasma channel, melting and erosion of Si material has been modelled mathematically. Further, the effect of input energy parameters like current, open voltage and pulse on-time on plasma and plasma-ingot interface temperature has been studied. The model is further extended along the length of the wire to evaluate the erosion depth and rate. The effect of process parameters on erosion depth and rate was validated experimentally. The model considers variation in material removal through the `plasma flushing efficiency'.

  6. Exploring the CP-violating NMSSM: EDM constraints and phenomenology

    NASA Astrophysics Data System (ADS)

    King, S. F.; Mühlleitner, M.; Nevzorov, R.; Walz, K.

    2015-12-01

    The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) features extra new sources for CP violation. In contrast to the MSSM CP violation can already occur at tree level in the Higgs sector. We investigate the range of possible allowed CP-violating phases by taking into account the constraints arising from the measurements of the Electric Dipole Moments (EDMs) and the latest LHC Higgs data. Our analysis shows that large CP-violating phases, that are NMSSM-specific, are not in conflict with the EDMs. They are dominantly constrained by the Higgs data in this case. We use our results to investigate the prospects of measuring CP violation through the combined measurement of Higgs rates, on the one hand, and in observables based on CP-violating Higgs couplings to tau leptons on the other hand.

  7. Magnetic Field Stabilization for 129Xe EDM Search Experiment

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeshi; Inoue, Takeshi; Nanao, Tsubasa; Yoshimi, Akihiro; Tsuchiya, Masato; Hayashi, Hironori; Uchida, Makoto; Asahi, Koichiro

    2011-09-01

    Magnetic field stabilization is a crucial condition parameter for many kinds of ultra-high precision measurements such as a search for an electric dipole moment (EDM). The instability of magnetic field strength often arises from the drift of current flow in a solenoid coil to generate the magnetic field. For our EDM search experiment with maser oscillating diamagnetic 129Xe atoms, we have developed a new stabilized current source based on a feedback system which is devised to correct the amount of current flow measured precisely with high-precision digital multimeter and standard resistor. Using this new current source, we have successfully reduced the drifts of coil current by at least a factor of 100 compared to commercially available current sources.

  8. Development of NMOR magnetometer for spin-maser EDM experiment

    NASA Astrophysics Data System (ADS)

    Yoshimi, A.; Nanao, T.; Inoue, T.; Furukawa, T.; Uchida, M.; Tsuchiya, M.; Hayashi, H.; Chikamori, M.; Asahi, K.

    We have been developing a high sensitivity atomic magnetometer for atomic EDM experiments using a lowfrequency nuclear spin maser. In the developed nuclear spin maser of 129Xe, suppression of drift and fluctuation in the magnetic field is one of the important issues. The magnetometer being developed for spin maser EDM experiments utilizes the nonlinear magneto optical rotation (NMOR) e_ect in Rb atomic vapor. The enhancement of the optical rotation in a small magnetic field relies on the long spin-coherence time of Rb atoms in a vapor cell. The NMOR spectrum was measured by using fabricated Rb cells coated with an anti-relaxation material. The NMOR spectrum dependence on laser frequency, cell coating, and laser beam diameter were investigated. The magnetic sensitivity at present is 0:2 μG/√Hz from observed NMOR and noise spectra.

  9. The status of the Storage Ring EDM experiment

    SciTech Connect

    Semertzidis, Yannis K.

    2009-12-17

    The status of the storage ring experiment capable of probing the proton and deuteron EDM at the 10{sup -29} e.cm level is presented here. At this level it will be sensitive to a new physics mass scale of {approx}300 TeV. If there is new physics at the LHC, it will be sensitive to 10{mu}rad CP-violating phase level making it the most sensitive experiment for CP-violation beyond the SM.

  10. Mathematical modeling and multi-criteria optimization of rotary electrical discharge machining process

    NASA Astrophysics Data System (ADS)

    Shrinivas Balraj, U.

    2015-12-01

    In this paper, mathematical modeling of three performance characteristics namely material removal rate, surface roughness and electrode wear rate in rotary electrical discharge machining RENE80 nickel super alloy is done using regression approach. The parameters considered are peak current, pulse on time, pulse off time and electrode rotational speed. The regression approach is very much effective in mathematical modeling when the performance characteristic is influenced by many variables. The modeling of these characteristics is helpful in predicting the performance under a given set of combination of input process parameters. The adequacy of developed models is tested by correlation coefficient and Analysis of Variance. It is observed that the developed models are adequate in establishing the relationship between input parameters and performance characteristics. Further, multi-criteria optimization of process parameter levels is carried using grey based Taguchi method. The experiments are planned based on Taguchi's L9 orthogonal array. The proposed method employs single grey relational grade as a performance index to obtain optimum levels of parameters. It is found that peak current and electrode rotational speed are influential on these characteristics. Confirmation experiments are conducted to validate optimal parameters and it reveals the improvements in material removal rate, surface roughness and electrode wear rate as 13.84%, 12.91% and 19.42% respectively.

  11. A Superfluid Film Burner for the nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Maxwell, James; nEDM Collaboration

    2013-10-01

    A planned measurement of the neutron electric dipole moment (nEDM) to 10-28 e .cm using the Golub-Lamoreaux method presents complex cryogenic challenges. One such hurdle is the injection of 3He from a polarized atomic beam source into a liquid 4He bath while maintaining the temperature gradient from the cold bath to the warm beam source and minimizing the vapor above the bath. The feasible temperature range for the experiment falls around 400 mK and is constrained from below by the achievable magnetic field gradients, and above by the spin relaxation time of 3He and rate of ultracold neutron up-scattering. The superfluid behavior of 4He below 2.1 K means superfluid film will tend to climb, or ``creep,'' up the sides of the beam tube to reach the warmer space above, creating vapor, resulting in convection and scattering of incident 3He. To stop the superfluid film creep and contain the vapor, a ``film burner'' is under development by the nEDM collaboration. We will describe the effort toward developing a suitable film burner for nEDM, and show preliminary results of a prototype film burner in operation.

  12. 129Xe EDM Search Experiment Using Active Nuclear Spin Maser

    NASA Astrophysics Data System (ADS)

    Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Shirai, Hazuki; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher P.; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    An active nuclear spin maser, which enables a precision measurement of spin precession frequency, is employed in the experimental search for permanent electric dipole moment (EDM) in the diamagnetic atom 129Xe. In order to eliminate systematic errors which limit the sensitivity of the experiment to an EDM, the following tactics are adopted: (i) 3He comagnetometry for the cancellation of long-term drifts in the external magnetic fields and (ii) double-cell geometry for the mitigation of frequency shifts due to interaction of 129Xe spin with polarized Rb atoms. In the present work, the design for the double-cell has been changed and a magnetic shield-coil system to provide a highly homogeneous magnetic field has been newly introduced. Thanks to increased polarization and longer 3He spin relaxation time, the dual-species maser of 129Xe and 3He in a double-cell geometry operated successfully. Our experiment is now at the stage of assembling these separate technical elements in order to start the measurement of 129Xe EDM in the 10-28 ecm region.

  13. Preliminary Measurements for an Electron EDM Experiment in Thorium Monoxide

    NASA Astrophysics Data System (ADS)

    Gurevich, Yulia Vsevolodovna

    The ACME collaboration aims to measure the eEDM via Ramsey spectroscopy of a cryogenic beam of ThO molecules in their metastable H state. This thesis describes the launch of this new experimental effort. A set of diode lasers has been built to address all the necessary ThO transitions. The laser frequencies were stabilized to a stable reference laser via a Fabry-Perot transfer cavity. A measurement of the magnetic dipole moment of the H state has been performed that is complementary to a previous measurement by the collaboration. This value is important for determining the sensitivity of the H state to magnetic fields, which can be a source of noise and systematic errors in the eEDM measurement. Experimental efforts to prepare the coherent superposition of the M=+/-1 Zeeman sublevels in the H, J=1 state that is the starting point of the eEDM experiment using transitions to the G state resulted in a better understanding of transitions between O-doublet states in an electric field. This led to a new technique for normalizing out shot-to-shot fluctuations in the molecular beam flux, which has also been demonstrated experimentally.

  14. A Voltage Multiplier for the nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Bouman, Nathaniel; Stanislaus, Shirantha; Valpo nEDM Team

    2015-10-01

    The nEDM experiment at Oak Ridge National Laboratory aims to search for the electric dipole moment of the neutron (nEDM) at the 10-28 level. The experiment is currently at the research and development phase. One of the variables proportional to the sensitivity of the measurement is the strength of the electric field in the measurement cell where the effect of an nEDM is to be generated. The design of the experiment calls for an electric field of 75 kV/cm in this cell. A unique voltage multiplier involving a variable capacitor has been proposed to achieve this large required electric field. Electrostatic calculations using two independent software packages, COMSOL and Field Precision, were carried out to study the feasibility of the proposed voltage multiplier. A prototype of the electrodes and the voltage multiplier whose size was 25% of full size was also built to verify the predictions of the electrostatic calculations. Results of the tests with the prototype and the electrostatic calculations, will be presented.

  15. A search engine for the engineering and equipment data management system (EDMS) at CERN

    NASA Astrophysics Data System (ADS)

    Tsyganov, A.; Amérigo, S. M.; Petit, S.; Pettersson, T.; Suwalska, A.

    2008-07-01

    CERN, the European Laboratory for Particle Physics, located in Geneva -Switzerland, is currently building the LHC (Large Hadron Collider), a 27 km particle accelerator. The equipment life-cycle management of this project is provided by the Engineering and Equipment Data Management System (EDMS [1] [2]) Service. Using an Oracle database, it supports the management and follow-up of different kinds of documentation through the whole life cycle of the LHC project: design, manufacturing, installation, commissioning data etc... The equipment data collection phase is now slowing down and the project is getting closer to the 'As-Built' phase: the phase of the project consuming and exploring the large volumes of data stored since 1996. Searching through millions of items of information (documents, equipment parts, operations...) multiplied by dozens of points of view (operators, maintainers...) requires an efficient and flexible search engine. This paper describes the process followed by the team to implement the search engine for the LHC As-built project in the EDMS Service. The emphasis is put on the design decision to decouple the search engine from any user interface, potentially enabling other systems to also use it. Projections, algorithms, and the planned implementation are described in this paper. The implementation of the first version started in early 2007.

  16. Intensification of the Students' Self-Development Process When Performing Design and Settlement Works on the "Machine Parts" Course

    ERIC Educational Resources Information Center

    Timerbaev, Rais Mingalievich; Muhutdinov, Rafis Habreevich; Danilov, Valeriy Fedorovich

    2015-01-01

    The article addresses issues related to the methodology of intensifying self-development process when performing design and settlement works on the "Machine Parts" course for the students studying in such areas of training as "Technology" and "Vocational Education" with the use of computer technologies. At the same…

  17. Seismic interpretation using Support Vector Machines implemented on Graphics Processing Units

    SciTech Connect

    Kuzma, H A; Rector, J W; Bremer, D

    2006-06-22

    Support Vector Machines (SVMs) estimate lithologic properties of rock formations from seismic data by interpolating between known models using synthetically generated model/data pairs. SVMs are related to kriging and radial basis function neural networks. In our study, we train an SVM to approximate an inverse to the Zoeppritz equations. Training models are sampled from distributions constructed from well-log statistics. Training data is computed via a physically realistic forward modeling algorithm. In our experiments, each training data vector is a set of seismic traces similar to a 2-d image. The SVM returns a model given by a weighted comparison of the new data to each training data vector. The method of comparison is given by a kernel function which implicitly transforms data into a high-dimensional feature space and performs a dot-product. The feature space of a Gaussian kernel is made up of sines and cosines and so is appropriate for band-limited seismic problems. Training an SVM involves estimating a set of weights from the training model/data pairs. It is designed to be an easy problem; at worst it is a quadratic programming problem on the order of the size of the training set. By implementing the slowest part of our SVM algorithm on a graphics processing unit (GPU), we improve the speed of the algorithm by two orders of magnitude. Our SVM/GPU combination achieves results that are similar to those of conventional iterative inversion in fractions of the time.

  18. Cost minimizing of cutting process for CNC thermal and water-jet machines

    NASA Astrophysics Data System (ADS)

    Tavaeva, Anastasia; Kurennov, Dmitry

    2015-11-01

    This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.

  19. Decoding semi-constrained brain activity from FMRI using support vector machines and gaussian processes.

    PubMed

    Schrouff, Jessica; Kussé, Caroline; Wehenkel, Louis; Maquet, Pierre; Phillips, Christophe

    2012-01-01

    Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. PMID:22563410

  20. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  1. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  2. Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Final report

    SciTech Connect

    Wallace, J.F.; Wang, Y.; Schwam, D.

    1997-06-01

    The objective of this study was to improve average die life by optimizing die steel composition and the die processing. Four different steels, K,Q,C and Premium Grade H-13 have been investigated for thermal fatigue resistance and toughness. Optimum heat treatment processing has been determined for each steel with respect to austenitizing temperature and tempering conditions. The effect of the quenching rate on the thermal fatigue resistance and toughness of the die steels and the effect of Electro-Discharge Machining (EDM) on the thermal fatigue resistance were also determined. The immersion thermal fatigue specimen developed at CWRU was used to determine the thermal fatigue resistance as characterized by the two parameters of average maximum crack length and total crack area. The Charpy V-notch impact test was used over a -100{degrees}F to 450{degrees}F testing temperature range to evaluate the toughness and the brittle-ductile transition behavior. K steel has been identified as superior in performance compared to Premium Grade H-13. Q and C provide lower toughness and thermal fatigue resistance than H-13. Faster cooling rates provide higher thermal fatigue resistance and toughness. Higher austenitizing temperatures such as 1925{degrees}F compared to 1875{degrees}F provide better thermal fatigue resistance, but lower austenitizing temperatures of 1875{degrees}F provide better toughness. Higher hardness improves thermal fatigue resistance, but reduces toughness. A minimum of Rc 46 hardness is desired for aluminum die casting dies. EDM reduces the thermal fatigue resistance compared to conventional machining operations. When the EDM process of multiple small steps of decreasing energy and post-EDM treatments are employed, the effect can be reduced to a very slight amount. Preliminary evidence of the superior performance of the K steel has been provided by ongoing field testing of inserts in multiple cavity dies.

  3. Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Lee, Chi-Yuan; Yang, Kung-Ting; Kuan, Feng-Hui; Lai, Ping-Hung

    In order to take better advantage of metallic bipolar plates for producing metallic fuel cells and make it a feasible technology, it is essential that we have an efficient and cost effective fabrication process for creating micro-scaled flow channels. In this study, an electrochemical micro-machining (EMM) process is developed. In order to have better process control a finite element analysis is employed to ensure machine tool platform rigidity; an electric field analysis is applied for the electrode design; and an electrolytic flow analysis is carried out for the fixture design and the selection of the operational parameter. Finally, flow channels measuring 200 μm in depth and 500 μm in width are fabricated on SS316 stainless steel sheets measuring 50 mm × 0.6 mm thick.

  4. Architecture For The Optimization Of A Machining Process In Real Time Through Rule-Based Expert System

    NASA Astrophysics Data System (ADS)

    Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús

    2009-11-01

    Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.

  5. Modelling of the radial forging process of a hollow billet with the mandrel on the lever radial forging machine

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Pugin, A. I.; Fedulov, A. A.

    2016-04-01

    The finite-element method (FEM) has been used in scientific research of forming technological process modelling. Among the others, the process of the multistage radial forging of hollow billets has been modelled. The model includes both the thermal problem, concerning preliminary heating of the billet taking into account thermal expansion, and the deformation problem, when the billet is forged in a special machine. The latter part of the model describes such features of the process as die calibration, die movement, initial die temperature, friction conditions, etc. The results obtained can be used to define the necessary process parameters and die calibration.

  6. Color machine vision system for process control in the ceramics industry

    NASA Astrophysics Data System (ADS)

    Penaranda Marques, Jose A.; Briones, Leoncio; Florez, Julian

    1997-08-01

    This paper is focused on the design of a machine vision system to solve a problem found in the manufacturing process of high quality polished porcelain tiles. This consists of sorting the tiles according to the criteria 'same appearance to the human eye' or in other words, by color and visual texture. In 1994 this problem was tackled and led to a prototype which became fully operational at production scale in a manufacturing plant, named Porcelanatto, S.A. The system has evolved and has been adapted to meet the particular needs of this manufacturing company. Among the main issues that have been improved, it is worth pointing out: (1) improvement to discern subtle variations in color or texture, which are the main features of the visual appearance; (2) inspection time reduction, as a result of algorithm optimization and the increasing computing power. Thus, 100 percent of the production can be inspected, reaching a maximum of 120 tiles/sec.; (3) adaptation to the different types and models of tiles manufactured. The tiles vary not only in their visible patterns but also in dimensions, formats, thickness and allowances. In this sense, one major problem has been reaching an optimal compromise: The system must be sensitive enough to discern subtle variations in color, but at the same time insensitive thickness variations in the tiles. The following parts have been used to build the system: RGB color line scan camera, 12 bits per channel, PCI frame grabber, PC, fiber optic based illumination and the algorithm which will be explained in section 4.

  7. Quantification of Geologic Lineaments by Manual and Machine Processing Techniques. [Landsat satellites - mapping/geological faults

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Moik, J. G.; Shoup, W. C.

    1975-01-01

    The effect of operator variability and subjectivity in lineament mapping and methods to minimize or eliminate these problems by use of several machine preprocessing methods was studied. Mapped lineaments of a test landmass were used and the results were compared statistically. The total number of fractures mapped by the operators and their average lengths varied considerably, although comparison of lineament directions revealed some consensus. A summary map (785 linears) produced by overlaying the maps generated by the four operators shows that only 0.4 percent were recognized by all four operators, 4.7 percent by three, 17.8 percent by two, and 77 percent by one operator. Similar results were obtained in comparing these results with another independent group. This large amount of variability suggests a need for the standardization of mapping techniques, which might be accomplished by a machine aided procedure. Two methods of machine aided mapping were tested, both simulating directional filters.

  8. Analysis of the effects of different machining processes on sealing using multiscale topography

    NASA Astrophysics Data System (ADS)

    Deltombe, Raphael; Bigerelle, Maxence; Jourani, Abdeljalil

    2016-03-01

    This study characterizes seal performance using a multiscale analysis of surface topography. The performance of two surface morphologies is compared: the first one is obtained with machining only and leads to leakage while the second one is obtained with machining and superfinishing and prevents leakage. It is shown that conventional roughness analysis does not enable to identify the differences between both surfaces. Only the use of a new parameter, the order parameter, and the use of a multiscale analysis of surfaces enable to distinguish the studied surfaces and to identify leakage causes. These causes are checked using a numerical contact simulation. It is shown that microroughness plays a major role in leakage.

  9. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    SciTech Connect

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided.

  10. An Insight to the Modeling of 1 × 1 Rib Loop Formation Process on Circular Weft Knitting Machine using Computer

    NASA Astrophysics Data System (ADS)

    Ray, Sadhan Chandra

    2015-10-01

    The mechanics of single jersey loop formation is well-reported is literature. However, as the concept of any model of double jersey loop formation process is not available in accessible international literature. Therefore, it was planned to develop a model of 1 × 1 rib loop formation process on dial and cylinder machine using computer so that the influence of various input variables on the final loop length as well on the profile of tension on the yarn inside Knitting Zone (KZ) can be understood. The model provides an insight into the mechanics of 1 × 1 rib loop formation system on dial and cylinder machine. Besides, the degree of agreement between predicted and measured values of loop length and cam forces as well as theoretical analysis of the model have justified the acceptability of the model.

  11. Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Muttamara, Apiwat; Kanchanomai, Chaosuan

    2016-06-01

    Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

  12. EDM 1.0: electron direct methods.

    PubMed

    Kilaas, R; Marks, L D; Own, C S

    2005-02-01

    A computer program designed to provide a number of quantitative analysis tools for high-resolution imaging and electron diffraction data is described. The program includes basic image manipulation, both real space and reciprocal space image processing, Wiener-filtering, symmetry averaging, methods for quantification of electron diffraction patterns and two-dimensional direct methods. The program consists of a number of sub-programs written in a combination of C++, C and Fortran. It can be downloaded either as GNU source code or as binaries and has been compiled and verified on a wide range of platforms, both Unix based and PC's. Elements of the design philosophy as well as future possible extensions are described. PMID:15639355

  13. Elevating Virtual Machine Introspection for Fine-Grained Process Monitoring: Techniques and Applications

    ERIC Educational Resources Information Center

    Srinivasan, Deepa

    2013-01-01

    Recent rapid malware growth has exposed the limitations of traditional in-host malware-defense systems and motivated the development of secure virtualization-based solutions. By running vulnerable systems as virtual machines (VMs) and moving security software from inside VMs to the outside, the out-of-VM solutions securely isolate the anti-malware…

  14. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  15. Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.

  16. Experimental Study of Re-impregnation Characteristics for Aged DC Machine and Effect of Application of Far Infrared Radiation to the process

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shin; Inoue, Haruo; Hirose, Haruo; Morita, Noboru

    Recently hundreds of large dc machines manufactured for steel rolling mills at the high growing period are on the verge of replacement due to insulation deterioration of their armature windings after more than thirty years of service operation. Insulation technologies for aged machine are different from those for new machine, including varnish impregnation technologies. In this paper, experimental study of basic impregnation characteristics for aged dc machine to extend its life is described. Experimental study of application of far infrared radiation for the process is also presented.

  17. SQUID-based beam position monitoring for proton EDM experiment

    NASA Astrophysics Data System (ADS)

    Haciomeroglu, Selcuk

    2014-09-01

    One of the major systematic errors in the proton EDM experiment is the radial B-field, since it couples the magnetic dipole moment and causes a vertical spin precession. For a proton with EDM at the level of 10-29 e.cm, 0.22 pG of B-field and 10.5 MV/m of E-field cause same vertical spin precession. On the other hand, the radial B-field splits the counter-rotating beams depending on the vertical focusing strength in the ring The magnetic field due to this split modulated at a few kHz can be measured by a SQUID-magnetometer. This measurement requires the B-field to be kept less than 1 nT everywhere around the ring using shields of mu-metal and aluminum layers. Then, the SQUID measurements involve noise from three sources: outside the shields, the shields themselves and the beam. We study these three sources of noise using an electric circuit (mimicking the beam) inside a magnetic shielding room which consists two-layers of mu-metal and an aluminum layer.

  18. GPS and EDM monitoring of Unzen volcano ground deformation

    NASA Astrophysics Data System (ADS)

    Matsushima, Takeshi; Takagi, Akimichi

    2000-11-01

    Following 198 years of dormancy, an eruption started at Mt. Fugen, the main peak of Unzen volcano, in Kyushu, Japan, in November 1990. A dacite lava dome began to grow in May 1991. We installed the surveying points of GPS in 1992 around the lava dome in order to observe the ground deformation that accompanied the growth of the lava dome. In the winters of 1993 and 1994, we observed swift ground deformations that radiated from the vent of the volcano. It was presumed that rising magma accumulated and expanded the volcano body. After the lava effusion stopped in 1995, we also installed surveying points on the lava dome. EDM mirrors were permanently fixed to the large rocks with bolts. A GPS survey was carried out 2 or 3 times each year to estimate the 3-dimensional displacement. The result of the EDM survey showed that the baselines from the flank of the volcano were shortening 5 mm per day, and the result of the GPS survey showed that the displacement vector of the dome was parallel to the direction of the steepest slope of the old volcano body. This indicates that the inside of the lava dome is still very hot, and that deformation of the dome is viscous.

  19. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  20. Electrical discharge machining of type-N(f) microwave connectors

    SciTech Connect

    Haushalter, R.J.

    1996-07-01

    A particular out-of-specification mechanical dimension on Type-N(f) [Type-N(female)] microwave connectors sometimes disqualifies otherwise perfectly acceptable microwave devices from being used in calibration systems. The Miniature Machining Group at Sandia National Laboratories applied a technique called Electrical Discharge Machining (EDM) to quickly and economically machine these devices without disassembly. In so doing, they facilitated the use of existing components without the need to purchase new devices. The technique also improves an uncertainty of calibration known as Mismatch Uncertainty by optimizing the reflection coefficient of the calibration test port. This effects a reduction in overall calibration uncertainties.

  1. A Search for the Electron EDM using Europium-Barium Titanates

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen P.

    The discovery of a permanent electric dipole moment (EDM) of a fundamental particle would prove a great discovery in modern physics; such an EDM would violate two or three of the core symmetries of the fundamental forces of nature. Many models that go beyond the standard model of particle physics produce EDMs with magnitudes approaching the level detectable by the next generation of experiments. One possibility for such an experiment involves the use of a solid sample at low temperatures. In a paramagnetic material, the unpaired electrons, if they possess an EDM, can interact with the polarization of the sample and produce a magnetization that can be detected. This dissertation discusses an incarnation of such an experiment based on mixed europium-barium titanates. Such an experiment offers several advantages over other solid-state and atomic EDM searches including larger electron EDM induced interactions and the ability to measure without an applied electric field. This experiment has produced the world's best limit on the electron EDM to date from a solid sample, at |de| < 6.05 × 10-25 ecm (90% confidence limit). While this limit represents an improvement in the realm of solid-state experiments, it is not yet competitive with similar molecular and atomic experiments. However, there are many possibilities that could produce a superior solid-state experiment, and these will be discussed.

  2. On Electro Discharge Machining of Inconel 718 with Hollow Tool

    NASA Astrophysics Data System (ADS)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep

    2012-06-01

    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  3. Femtosecond laser ablation properties of transparent materials: impact of the laser process parameters on the machining throughput

    NASA Astrophysics Data System (ADS)

    Matylitsky, V. V.; Hendricks, F.; Aus der Au, J.

    2013-03-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for bio-medical and material processing applications. With the introduction of femtosecond laser systems such as the SpiritTM platform developed by High Q Lasers and Spectra-Physics, micro-processing of solid targets with femtosecond laser pulses have obtained new perspectives for industrial applications [1]. The unique advantage of material processing with subpicosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. The study on the impact of the laser processing parameters on the removal rate for transparent substrate using femtosecond laser pulses will be presented. In particular, examples of micro-processing of poly-L-lactic acid (PLLA) - bio-degradable polyester and XensationTM glass (Schott) machined with SpiritTM ultrafast laser will be shown.

  4. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  5. Updated measurement of the permanent electric dipole moment (EDM) of 199Hg

    NASA Astrophysics Data System (ADS)

    Graner, Brent; Chen, Yi; Lindahl, Eric; Heckel, Blayne

    2016-03-01

    A permanent electric dipole moment (EDM) in an atom or particle would prove that time reversal symmetry is broken. In addition, an atomic EDM may provide evidence of new physics or CP symmetry violation in the strong sector. We have recently completed an improved measurement of the EDM of 199Hg utilizing a set of vapor cells containing isotopically-enriched 199Hg optically pumped and probed with UV laser light. I will discuss the most recent iteration of the experiment, and present unblinded results. This work was supported by NSF Grant 1306743 and DOE Award No. DE-FG02-97ER41020.

  6. Updated measurement of the permanent electric dipole moment (EDM) of 199 Hg

    NASA Astrophysics Data System (ADS)

    Graner, Brent; Chen, Yi; Lindahl, Eric; Heckel, Blayne

    2016-05-01

    A permanent electric dipole moment (EDM) in an atom or particle would prove that time reversal symmetry is broken. In addition, an atomic EDM may provide evidence of new physics or CP symmetry violation in the strong sector. We have recently completed an improved measurement of the EDM of 199 Hg utilizing a set of vapor cells containing isotopically-enriched 199 Hg optically pumped and probed with UV laser light. I will discuss the most recent iteration of the experiment, and present unblinded results. This work was supported by NSF Grant 1306743 and DOE Award No. DE-FG02-97ER41020.

  7. Automatic Inspection During Machining

    NASA Technical Reports Server (NTRS)

    Ransom, Clyde L.

    1988-01-01

    In experimental manufacturing process, numerically-controlled machine tool temporarily converts into inspection machine by installing electronic touch probes and specially-developed numerical-control software. Software drives probes in paths to and on newly machined parts and collects data on dimensions of parts.

  8. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    SciTech Connect

    Rajabifar, Bahram; Maschmann, Matthew R.; Kim, Sanha; Hart, A. John; Slinker, Keith; Ehlert, Gregory J.

    2015-10-05

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  9. Process studies of odour emissions from effluent ponds using machine-based odour measurement

    NASA Astrophysics Data System (ADS)

    Sohn, J. H.; Smith, R. J.; Yoong, E.

    Replicable experimental studies using a novel experimental facility and a machine-based odour quantification technique were conducted to demonstrate the relationship between odour emission rates and pond loading rates. The odour quantification technique consisted of an electronic nose, AromaScan A32S, and an artificial neural network. Odour concentrations determined by olfactometry were used along with the AromaScan responses to train the artificial neural network. The trained network was able to predict the odour emission rates for the test data with a correlation coefficient of 0.98. Time averaged odour emission rates predicted by the machine-based odour quantification technique, were strongly correlated with volatile solids loading rate, demonstrating the increased magnitude of emissions from a heavily loaded effluent pond. However, it was not possible to obtain the same relationship between volatile solids loading rates and odour emission rates from the individual data. It is concluded that taking a limited number of odour samples over a short period is unlikely to provide a representative rate of odour emissions from an effluent pond. A continuous odour monitoring instrument will be required for that more demanding task.

  10. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    NASA Astrophysics Data System (ADS)

    Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.

    2015-10-01

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  11. EDM sinker cutting of a ceramic particulate composite, SiC-TiB sub 2

    SciTech Connect

    Ramulu, M. )

    1988-07-01

    An experimental investigation of the machinability of the ceramic particulate composite SiC-TiB{sub 2} was conducted using an electrical discharge machine sinker cutting process. Machinability was evaluated in terms of material removal rates, tool wear, wear ratio, and surface finish, using copper and brass electrodes under rapid, medium, and very slow cutting conditions. Copper was found to machine SiC-TiB{sub 2} material faster with less tool wear but with a poorer surface finish than brass. A comparison of the percent of electrode wear in machining of steel to that of SiC-TiB{sub 2} under very slow cutting conditions showed that machining of SiC-TiB{sub 2} is much more efficient than of mild steel.

  12. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    SciTech Connect

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-17

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930 deg. C for 90 min and then austempered in fluidized bed at 380 deg. C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  13. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    NASA Astrophysics Data System (ADS)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  14. A Contact-Imaging Based Microfluidic Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing

    PubMed Central

    Huang, Xiwei; Guo, Jinhong; Wang, Xiaolong; Yan, Mei; Kang, Yuejun; Yu, Hao

    2014-01-01

    Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution. PMID:25111497

  15. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing

    PubMed Central

    Sjöström, Hans-Erik; Englund, Claire

    2016-01-01

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990

  16. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    PubMed

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990

  17. Development of a neutralizer and the magneto optical trap system toward the EDM search

    NASA Astrophysics Data System (ADS)

    Aoki, Takahiro; Ando, Shun; Arikawa, Hiroshi; Ezure, Saki; Harada, Ken-Ichi; Hayamizu, Tomohiro; Inoue, Takeshi; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Sakemoto, Kosuke; Uchiyama, Aiko; Sakami, Yasuhiro

    2014-09-01

    If a non-zero electric dipole moment (EDM) is discovered, it suggests a CP violation that is important to explain the generation of matter dominant universe. To search for the electron EDM, we use Fr atoms that have a relatively simple electronic structure and a large enhancement factor of electron EDM. It is necessary to trap Fr atoms in a magneto-optical trap for EDM experiment. At present, searching for the resonance frequency of Fr atoms is undertaken. The experimental technique to trap and observe a small number of atoms is needed to search the resonance frequency. We have searched for parameters for trapping and observing the small number of atoms using Rb atoms whose resonance frequency is able to be fixed by using reference cell. In addition to this, studying of an yttrium neutralizer that is used for changing ions to neutral atoms is needed to trap as much Fr atoms as possible.

  18. Spectroscopic approach for an electron EDM measurement using neutral cesium atoms

    NASA Astrophysics Data System (ADS)

    Zhu, Kunyan; Solmeyer, Neal; Weiss, David S.

    2012-06-01

    Observation of a permanent electric dipole moment of the electron (eEDM) would imply CP violating effects not contained in the Standard Model. We describe the state preparation and spectroscopy that will be used to measure the eEDM. Cesium atoms are guided into a measurement chamber, where they are laser-cooled and trapped in a pair of parallel one-dimensional optical lattices. The lattices thread three specially coated glass electric field plates. The measurement chamber is surrounded by a four layer magnetic shield inside of which eight magnetic field coils control the bias and gradient magnetic fields. A series of microwave and low frequency magnetic field pulses transfer the atoms into a superposition state that is sensitive to the eEDM signal. A measurement of the eEDM using neutral cesium atoms can obtain an ultimate shot noise limit of 3x10-30 e-cm.

  19. A discrepancy within primate spatial vision and its bearing on the definition of edge detection processes in machine vision

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1990-01-01

    The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.

  20. [Optimization of extraction process of compound Clematidis Radix spray by support vector machine].

    PubMed

    Zhao, Li; Li, Hui; Liu, Yi-fan; Fu, Yan; Liu, Yu-ling; Zhang, Xiao-li

    2015-04-01

    L9 (3(4)) orthogonal experiment was used to design the extraction technology of compound Clematidis Radix spray. Weight coefficients of active ingredients and dry extract rate were solved by information entropy. Support vector machine (SVM) was established and the model parameters were optimized through the genetic algorithm. Grid search algorithm was used for optimization of extraction technology of Clematidis Radix spray. The optimal extraction technology was to extract Clematidis Radix spray in water with 6 times the weight of herbal medicine for 3 times, with 2 h once. Bias of value between real and predicted by SVM was 1.23%. SVM was compared with traditional intuitive analysis of orthogonal design. It indicates that the new method used to optimize the extraction parameters of compound Clematidis Radix spray is more accurate and reliable. PMID:26281549

  1. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOEpatents

    Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  2. Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing.

    PubMed

    Li, Yanxin; Knoll, Joan H; Wilkins, Ruth C; Flegal, Farrah N; Rogan, Peter K

    2016-05-01

    Dose from radiation exposure can be estimated from dicentric chromosome (DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC detection by extracting features in Giemsa-stained metaphase chromosome images and classifying objects by machine learning (ML). DC detection involves (i) intensity thresholded segmentation of metaphase objects, (ii) chromosome separation by watershed transformation and elimination of inseparable chromosome clusters, fragments and staining debris using a morphological decision tree filter, (iii) determination of chromosome width and centreline, (iv) derivation of centromere candidates, and (v) distinction of DCs from monocentric chromosomes (MC) by ML. Centromere candidates are inferred from 14 image features input to a Support Vector Machine (SVM). Sixteen features derived from these candidates are then supplied to a Boosting classifier and a second SVM which determines whether a chromosome is either a DC or MC. The SVM was trained with 292 DCs and 3135 MCs, and then tested with cells exposed to either low (1 Gy) or high (2-4 Gy) radiation dose. Results were then compared with those of 3 experts. True positive rates (TPR) and positive predictive values (PPV) were determined for the tuning parameter, σ. At larger σ, PPV decreases and TPR increases. At high dose, for σ = 1.3, TPR = 0.52 and PPV = 0.83, while at σ = 1.6, the TPR = 0.65 and PPV = 0.72. At low dose and σ = 1.3, TPR = 0.67 and PPV = 0.26. The algorithm differentiates DCs from MCs, overlapped chromosomes and other objects with acceptable accuracy over a wide range of radiation exposures. Microsc. Res. Tech. 79:393-402, 2016. © 2016 Wiley Periodicals, Inc. PMID:26929213

  3. Protein-polymer nano-machines. Towards synthetic control of biological processes.

    PubMed

    Pennadam, Sivanand S; Firman, Keith; Alexander, Cameron; Górecki, Dariusz C

    2004-09-01

    The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition.The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4. PMID:15350203

  4. New two-loop contributions to hadronic EDMs in the MSSM

    SciTech Connect

    Nagai, Minoru

    2007-11-20

    We discuss the quark EDMs and CEDMs in the MSSM with general flavor-changing terms in the squark mass matrices. In particular, the charged-Higgs mediated contributions to the down-quark EDM and CEDM are evaluated at two-loop level. We point out that these two-loop contributions may dominate over the one-loop induced gluino contribution even when the squark and gluino masses are around few TeV and tan {beta} is moderate.

  5. Towards the measurement of the electron EDM with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Sakamoto, K.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Yoshida, H. P.; Wakasa, T.; Sakemi, Y.

    2014-09-01

    The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. Supported by MEXT/JSPS KAKENHI Grants (21104005, 25610112 and 26220705) and Tohoku University's Focused Research Project.

  6. Business Machines

    ERIC Educational Resources Information Center

    Pactor, Paul

    1970-01-01

    The U.S. Department of Labor has projected a 106 percent increase in the demand for office machine operators over the next 10 years. Machines with a high frequency of use include printing calculators, 10-key adding machines, and key punch machines. The 12th grade is the logical time for teaching business machines. (CH)

  7. Magnetic Field R&D for the neutron EDM experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Mammei, Russell R.

    2014-09-01

    The neutron EDM experiment at TRIUMF aims to constrain the EDM with a precision of 1 ×10-27 e-cm by 2018. The experiment will use a spallation ultracold neutron (UCN) source employing superfluid helium coupled to a room-temperature EDM apparatus. In the previous best experiment, conducted at ILL, effects related to magnetic field homogeneity and instability were found to dominate the systematic error. This presentation will cover our R&D efforts on passive and active magnetic shielding, magnetic field generation within shielded volumes, and precision magnetometry. The neutron EDM experiment at TRIUMF aims to constrain the EDM with a precision of 1 ×10-27 e-cm by 2018. The experiment will use a spallation ultracold neutron (UCN) source employing superfluid helium coupled to a room-temperature EDM apparatus. In the previous best experiment, conducted at ILL, effects related to magnetic field homogeneity and instability were found to dominate the systematic error. This presentation will cover our R&D efforts on passive and active magnetic shielding, magnetic field generation within shielded volumes, and precision magnetometry. Supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and the Canada Research Chairs program.

  8. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  9. Machine processing of remotely sensed data; Proceedings of the Conference, Purdue University, West Lafayette, Ind., October 16-18, 1973

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Topics discussed include the management and processing of earth resources information, special-purpose processors for the machine processing of remotely sensed data, digital image registration by a mathematical programming technique, the use of remote-sensor data in land classification (in particular, the use of ERTS-1 multispectral scanning data), the use of remote-sensor data in geometrical transformations and mapping, earth resource measurement with the aid of ERTS-1 multispectral scanning data, the use of remote-sensor data in the classification of turbidity levels in coastal zones and in the identification of ecological anomalies, the problem of feature selection and the classification of objects in multispectral images, the estimation of proportions of certain categories of objects, and a number of special systems and techniques. Individual items are announced in this issue.

  10. Triboplasma - the main component of plasma-chemical processes occurring in the friction units of machines and mechanisms in the presence of these drugs Tribo

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Sharifullin, S. N.

    2015-06-01

    In this paper, a technology capable of repairing worn surfaces of the friction units of machines and mechanisms. This technology can successfully be used in any production of engineering products. The proposed technology is low-cost, efficient and easy to use. It is shown that the processes occurring in the friction units of machines and mechanisms in the presence of these drugs tribo triboplasma plays a fundamental role, which arises in the contact mating surfaces.

  11. Current breathomics--a review on data pre-processing techniques and machine learning in metabolomics breath analysis.

    PubMed

    Smolinska, A; Hauschild, A-Ch; Fijten, R R R; Dallinga, J W; Baumbach, J; van Schooten, F J

    2014-06-01

    We define breathomics as the metabolomics study of exhaled air. It is a strongly emerging metabolomics research field that mainly focuses on health-related volatile organic compounds (VOCs). Since the amount of these compounds varies with health status, breathomics holds great promise to deliver non-invasive diagnostic tools. Thus, the main aim of breathomics is to find patterns of VOCs related to abnormal (for instance inflammatory) metabolic processes occurring in the human body. Recently, analytical methods for measuring VOCs in exhaled air with high resolution and high throughput have been extensively developed. Yet, the application of machine learning methods for fingerprinting VOC profiles in the breathomics is still in its infancy. Therefore, in this paper, we describe the current state of the art in data pre-processing and multivariate analysis of breathomics data. We start with the detailed pre-processing pipelines for breathomics data obtained from gas-chromatography mass spectrometry and an ion-mobility spectrometer coupled to multi-capillary columns. The outcome of data pre-processing is a matrix containing the relative abundances of a set of VOCs for a group of patients under different conditions (e.g. disease stage, treatment). Independently of the utilized analytical method, the most important question, 'which VOCs are discriminatory?', remains the same. Answers can be given by several modern machine learning techniques (multivariate statistics) and, therefore, are the focus of this paper. We demonstrate the advantages as well the drawbacks of such techniques. We aim to help the community to understand how to profit from a particular method. In parallel, we hope to make the community aware of the existing data fusion methods, as yet unresearched in breathomics. PMID:24713999

  12. Annual Symposium on Machine Processing of Remotely Sensed Data, 4th, Purdue University, West Lafayette, Ind., June 21-23, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Morrison, D. B. (Editor); Scherer, D. J.

    1977-01-01

    Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.

  13. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  14. Non-traditional machining techniques

    SciTech Connect

    Day, Robert D; Fierro, Frank; Garcia, Felix P; Hatch, Douglass J; Randolph, Randall B; Reardon, Patrick T; Rivera, Gerald

    2008-01-01

    During the course of machining targets for various experiments it sometimes becomes necessary to adapt fixtures or machines, which are designed for one function, to another function. When adapting a machine or fixture is not adequate, it may be necessary to acquire a machine specifically designed to produce the component required. In addition to the above scenarios, the features of a component may dictate that multi-step machining processes are necessary to produce the component. This paper discusses the machining of four components where adaptation, specialized machine design, or multi-step processes were necessary to produce the components.

  15. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  16. Computer-Aided TRIZ Ideality and Level of Invention Estimation Using Natural Language Processing and Machine Learning

    NASA Astrophysics Data System (ADS)

    Adams, Christopher; Tate, Derrick

    Patent textual descriptions provide a wealth of information that can be used to understand the underlying design approaches that result in the generation of novel and innovative technology. This article will discuss a new approach for estimating Degree of Ideality and Level of Invention metrics from the theory of inventive problem solving (TRIZ) using patent textual information. Patent text includes information that can be used to model both the functions performed by a design and the associated costs and problems that affect a design’s value. The motivation of this research is to use patent data with calculation of TRIZ metrics to help designers understand which combinations of system components and functions result in creative and innovative design solutions. This article will discuss in detail methods to estimate these TRIZ metrics using natural language processing and machine learning with the use of neural networks.

  17. Machine Vision for High Precision Volume Measurement Applied to Levitated Containerless Materials Processing

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. C.; Schmidt, D. P.; Rogers, J. R.; Kelton, K. F.; Hyers, R. W.

    2005-01-01

    By combining the best practices in optical dilatometry with new numerical methods, a high-speed and high precision technique has been developed to measure volume of levitated, containerlessly processed samples with sub- pixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermo-physical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermo-ophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the sub-pixel locations of sample edges and, in turn produce high precision measurements.

  18. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  19. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    SciTech Connect

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  20. An analysis of metropolitan land-use by machine processing of earth resources technology satellite data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.

    1976-01-01

    A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.

  1. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    SciTech Connect

    Horwood, W A

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90/sup 0/ included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly.

  2. Electron EDM measurement in a beam of ThO: Demonstrated and planned upgrades

    NASA Astrophysics Data System (ADS)

    Lasner, Zack; Andreev, Vitaly; Ang, Daniel; Baron, Jacob; Demille, David; Doyle, John; Gabrielse, Gerald; Hutzler, Nicholas; O'Leary, Brendon; Panda, Cristian; Petrik, Elizabeth; Weber, Christian; West, Adam; Wilburn, Grey; ACME Collaboration

    2016-05-01

    The permanent electric dipole moment (EDM) d of a particle with spin S is characterized by a linear interaction H ~ d S-> . E-> with an electric field E-> . This Hamiltonian is inherently P- and T-odd, making it a powerful probe of fundamental physics. To date, no EDM of a fundamental particle has been observed, but limits placed for several particles have significantly constrained theories beyond the Standard Model in the TeV range. In 2014, the ACME collaboration set a new upper limit on the electron EDM (eEDM) of | d | < 1 ×10-28 e . cm by means of a spin-precession measurement in a beam of thorium monoxide (ThO). We present our measurement scheme and demonstrated apparatus upgrades designed to suppress known systematic errors and achieve an order of magnitude greater statistical sensitivity in a next-generation measurement of the eEDM. In addition, we describe upgrades currently in development to improve our statistical sensitivity beyond next-generation levels.

  3. Development of an optical co-magnetometer for a neutron EDM experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Momose, Takamasa

    2014-09-01

    TRIUMF is now constructing a new facility that will produce high density ultracold neutrons (UCN). One of the important experiments for the new facility is the measurement of the neutron electric dipole moment (nEDM), an experiment that exploits the fundamental symmetries of nature to search for new physics beyond the Standard Model. In order to improve the present world's best experimental result for the nEDM by more than an order of magnitude, it is indispensable to develop an extremely sensitive co-magnetometer, which measures the magnetic field inside the nEDM cell while the nEDM measurement is being conducted. For this purpose, our group is proposing to use a dual-species comagnetometer with 199Hg and 129Xe. In this method, polarized 199Hg and 129Xe atoms will be introduced into the nEDM cell at the same time as the neutrons, and the spin-precession frequencies of both species are measured simultaneously. The Xe and Hg atoms are probed continuously by observing the modulation of transmitted probe light, at 253.7 nm, for Hg, and emission in the near infrared (823 nm and 895 nm) for Xe by exciting a two-photon transition at 252.4 nm. This talk will present our progress on the development of the dual-species comagnetometer.

  4. Machine learning for molecular scattering dynamics: Gaussian Process models for improved predictions of molecular collision observables

    NASA Astrophysics Data System (ADS)

    Krems, Roman; Cui, Jie; Li, Zhiying

    2016-05-01

    We show how statistical learning techniques based on kriging (Gaussian Process regression) can be used for improving the predictions of classical and/or quantum scattering theory. In particular, we show how Gaussian Process models can be used for: (i) efficient non-parametric fitting of multi-dimensional potential energy surfaces without the need to fit ab initio data with analytical functions; (ii) obtaining scattering observables as functions of individual PES parameters; (iii) using classical trajectories to interpolate quantum results; (iv) extrapolation of scattering observables from one molecule to another; (v) obtaining scattering observables with error bars reflecting the inherent inaccuracy of the underlying potential energy surfaces. We argue that the application of Gaussian Process models to quantum scattering calculations may potentially elevate the theoretical predictions to the same level of certainty as the experimental measurements and can be used to identify the role of individual atoms in determining the outcome of collisions of complex molecules. We will show examples and discuss the applications of Gaussian Process models to improving the predictions of scattering theory relevant for the cold molecules research field. Work supported by NSERC of Canada.

  5. Economic Decision Making Model for Geothermal Sludge Disposal alternatives (EDM-GSD): Version 1. 0

    SciTech Connect

    Not Available

    1987-09-01

    The Economic Decision Making Model for Geothermal Sludge Disposal Alternatives-Version 1.0'' (EDM-GSD 1.0) is a microcomputer-based dynamic model developed to assist in determining the benefits and costs of various geothermal solid waste treatment procedures. It is intended for use by geothermal managers in dealing with geothermal waste and treatment process issues as a means to assist in overcoming the technical and economic barriers to expanded geothermal energy utilization. The model is based on a 50MW flash plant. However, it is designed to provide the user with sufficient flexibility when inputing data to analyze all types of geothermal plants. Default values for economic and technical parameters can be overridden by the user through the input of specific data. In addition, data can be changed for any year of an analysis to account for desired changes in input parameters such as costs and distance to disposal sites. The results of the model will allow the user to: Determine current geothermal plant disposal costs; Evaluate the cost-effectiveness of alternative treatment techniques; and Evaluate the economic effects of changes in disposal regulations.

  6. SIMD machine using cube connected cycles network architecture for vector processing

    SciTech Connect

    Wagner, R.A.; Poirier, C.J.

    1986-11-04

    This patent describes a single instruction multiple data processor comprising: processing elements, interconnected in a Cube Connected Cycle Network design and using interprocessor communication links which carry one bit at a time in both directions simultaneously; controller means for controlling processor elements which feeds each of the processor elements identical local memory addresses, identical switching control bits, identical Boolean function selection codes, and distinct activation control bits, depending on each of the processor's position in the cube Connected Cycles Network in a prescribed fashion; and input/output devices connected to the network by switching devices wherein, each of the processing element comprises: two single-bit accumulator registors (A, B); two Boolean function generator units, each of which computes any one of 2/sup 8/ possible Boolean functions of three Boolean variables as specified by Boolean function codes sent 2 at a time by the controller to each of the processing elements; and switching circuit means controlled by the controller which select the three inputs to the logic function generators.

  7. Superfamily I helicases as modular components of DNA-processing machines.

    PubMed

    Dillingham, Mark S

    2011-04-01

    Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions. PMID:21428912

  8. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    PubMed Central

    Pelletier, Mathew G.

    2008-01-01

    One of the main hurdles standing in the way of optimal cleaning of cotton lint is the lack of sensing systems that can react fast enough to provide the control system with real-time information as to the level of trash contamination of the cotton lint. This research examines the use of programmable graphic processing units (GPU) as an alternative to the PC's traditional use of the central processing unit (CPU). The use of the GPU, as an alternative computation platform, allowed for the machine vision system to gain a significant improvement in processing time. By improving the processing time, this research seeks to address the lack of availability of rapid trash sensing systems and thus alleviate a situation in which the current systems view the cotton lint either well before, or after, the cotton is cleaned. This extended lag/lead time that is currently imposed on the cotton trash cleaning control systems, is what is responsible for system operators utilizing a very large dead-band safety buffer in order to ensure that the cotton lint is not under-cleaned. Unfortunately, the utilization of a large dead-band buffer results in the majority of the cotton lint being over-cleaned which in turn causes lint fiber-damage as well as significant losses of the valuable lint due to the excessive use of cleaning machinery. This research estimates that upwards of a 30% reduction in lint loss could be gained through the use of a tightly coupled trash sensor to the cleaning machinery control systems. This research seeks to improve processing times through the development of a new algorithm for cotton trash sensing that allows for implementation on a highly parallel architecture. Additionally, by moving the new parallel algorithm onto an alternative computing platform, the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up of over 6.5 times, over optimized code running on the PC's central processing unit “CPU”, was gained. The new

  9. Advanced measurement and analysis of surface textures produced by micro-machining processes

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.; Hafiz, Abdullah M. K.

    2014-09-01

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (Ra) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, Ra(λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness Sa(λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile.

  10. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    SciTech Connect

    Seiz, J.B.

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  11. Proceedings of the International Conference on Educational Data Mining (EDM) (2nd, Cordoba, Spain, July 1-3, 2009)

    ERIC Educational Resources Information Center

    Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed.

    2009-01-01

    The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…

  12. Proceedings of the International Conference on Educational Data Mining (EDM) (5th, Chania, Greece, June 19-21, 2012)

    ERIC Educational Resources Information Center

    International Educational Data Mining Society, 2012

    2012-01-01

    The 5th International Conference on Educational Data Mining (EDM 2012) is held in picturesque Chania on the beautiful Crete island in Greece, under the auspices of the International Educational Data Mining Society (IEDMS). The EDM 2012 conference is a leading international forum for high quality research that mines large data sets of educational…

  13. [Proceedings of the] International Conference on Educational Data Mining (EDM) (3rd, Pittsburgh, PA, July 11-13, 2010)

    ERIC Educational Resources Information Center

    Baker, Ryan S. J. d., Ed.; Merceron, Agathe, Ed.; Pavlik, Philip I., Jr., Ed.

    2010-01-01

    The Third International Conference on Data Mining (EDM 2010) was held in Pittsburgh, PA, USA. It follows the second conference at the University of Cordoba, Spain, on July 1-3, 2009 and the first edition of the conference held in Montreal in 2008, and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences. EDM 2011…

  14. Horizontal strain and precision of EDM from repeated surveys of the Precise Geodetic Net of Japan

    NASA Astrophysics Data System (ADS)

    Mizuno, Hiroo

    1994-09-01

    A simple statistical approach has been applied to the repeated electro-optical distance measurements (EDM) of 1,358 lines in the Tohoku district of Japan to obtain knowledge about the precision of EDM and the possible accumulation of strain. The average time interval between measurements is about seven or eight years. It is shown that the whole data of the difference between distance measurements repeated over a given line δD are interpreted in terms of EDM errors comprising distance proportional systematic errors and standard errors expressed by the usual formsqrt {α ^2 + β ^2 D^2 } . The rate of horizontal deformation must therefore be much smaller than the strain rates of about 0.7 ˜ 0.8 ppm over 7 to 8 years which have been hitherto expected.

  15. Emissions and dispersion modeling system (EDMS). Its development and application at airports and airbases

    SciTech Connect

    Moss, M.T. ); Segal, H.M. )

    1994-06-01

    A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada. The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations. On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model. 12 refs., 4 figs., 1 tab.

  16. Search for Electric dipole moment (EDM) in laser cooled and trapped 225Ra atoms

    NASA Astrophysics Data System (ADS)

    Kalita, Mukut; Bailey, Kevin; Dietrich, Matthew; Green, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Lemke, Nathan; Mueller, Peter; O'Connor, Tom; Parker, Richard; Singh, Jaideep; Trimble, Will; Argonne National Laboratory Collaboration; University Of Chicago Collabration; University Of Kentucky Collaboration

    2014-05-01

    We are searching for an EDM of the diamagnetic 225Ra atom. 225Ra has nuclear spin I =1/2. Experimental sensitivity to its EDM is enhanced due to its heavy mass and the increased Schiff moment of its octupole deformed nucleus. Our experiment involves collecting laser cooled Ra atoms in a magneto-optical trap (MOT), transporting them 1 meter with a far off-resonant optical dipole trap (ODT) and then transferring the atoms to a second standing-wave ODT in our experimental chamber. We will report our recent experiences in polarizing and observing Larmor precession of 225Ra atoms in parallel electric and magnetic fields in a magnetically shielded region and progress towards a first measurement of the EDM of 225Ra. This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and contract No. DE-FG02-99ER41101.

  17. Experimental search for EDM in diamagnetic atom 129Xe using active nuclear spin maser

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yuichi; Sato, Tomoya; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Hirao, Chika; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiko; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) which directly means T-violation attracts much attention, because an unknown CP-violating phase which is necessary to understand the present matter-dominated Universe is expected to be probed by EDM. The present study aims at measuring the EDM in the diamagnetic atom 129Xe to a size of 10-28 ecm, stepping into a domain below the present upper limit by one order of magnitude. In the present experiment, we employ an active nuclear spin maser which has characteristics of the optical detection of the spin precession and the artificial production of the feedback field to sustain the spin precession over a long measurement duration. For the magnetometry in the measurement, a comagnetometer using 3He is incorporated to the spin maser system. In this presentation, the current status of our experiment will be given.

  18. Large-scale cell production of stem cells for clinical application using the automated cell processing machine

    PubMed Central

    2013-01-01

    Background Cell-based regeneration therapies have great potential for application in new areas in clinical medicine, although some obstacles still remain to be overcome for a wide range of clinical applications. One major impediment is the difficulty in large-scale production of cells of interest with reproducibility. Current protocols of cell therapy require a time-consuming and laborious manual process. To solve this problem, we focused on the robotics of an automated and high-throughput cell culture system. Automated robotic cultivation of stem or progenitor cells in clinical trials has not been reported till date. The system AutoCulture® used in this study can automatically replace the culture medium, centrifuge cells, split cells, and take photographs for morphological assessment. We examined the feasibility of this system in a clinical setting. Results We observed similar characteristics by both the culture methods in terms of the growth rate, gene expression profile, cell surface profile by fluorescence-activated cell sorting, surface glycan profile, and genomic DNA stability. These results indicate that AutoCulture® is a feasible method for the cultivation of human cells for regenerative medicine. Conclusions An automated cell-processing machine will play important roles in cell therapy and have widespread use from application in multicenter trials to provision of off-the-shelf cell products. PMID:24228851

  19. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

    2015-12-01

    Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

  20. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    SciTech Connect

    Serebrov, A. P. Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  1. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-01

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM |dn| < 5.5 × 10-26 e cm at the 90% confidence level.

  2. Recent Results and Progress on Leptonic and Storage Ring EDM Searches

    NASA Astrophysics Data System (ADS)

    Kawall, David

    2016-02-01

    The Standard Model is incomplete and unable to explain the matter-antimatter asymmetry in the universe. Many extensions of the Standard Model predict new particles and interactions with additional CP-violating phases that can explain this imbalance. Electric dipole moments (EDMs) of fundamental particles, which are generated by CP-violating interactions, can be enhanced by many orders of magnitude by contributions from this new physics to a magnitude within reach of current and planned experiments. New approaches to EDM searches using storage rings, and their sensitivity to new physics are presented.

  3. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  4. Interim results from the characterization testing of the Engineering Development (EDM) rubidium clocks for satellite applications

    NASA Technical Reports Server (NTRS)

    Powers, Edward D., Jr.; Danzy, Fredrick

    1990-01-01

    Some interim results from the environmental testing program to evaluate the Engineering Design Model (EDM) of the EG and G Spaceborne Rubidium Clock are presented. This effort is in support of the Global Positioning System (GPS) BLOCK IIR program and is intended to characterize the performance of EG and G design for BLOCK IIR satellite applications. Two EG and G EDM units are currently under test at NRL's Clock Test Facility to measure the long-term frequency stability, drift, and frequency versus temperature characteristics.

  5. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  6. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  7. Machining heavy plastic sections

    NASA Technical Reports Server (NTRS)

    Stalkup, O. M.

    1967-01-01

    Machining technique produces consistently satisfactory plane-parallel optical surfaces for pressure windows, made of plexiglass, required to support a photographic study of liquid rocket combustion processes. The surfaces are machined and polished to the required tolerances and show no degradation from stress relaxation over periods as long as 6 months.

  8. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  9. Database machines

    NASA Technical Reports Server (NTRS)

    Stiefel, M. L.

    1983-01-01

    The functions and performance characteristics of data base machines (DBM), including machines currently being studied in research laboratories and those currently offered on a commerical basis are discussed. The cost/benefit considerations that must be recognized in selecting a DBM are discussed, as well as the future outlook for such machines.

  10. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    NASA Astrophysics Data System (ADS)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  11. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  12. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.

    PubMed

    Wang, Yiwen; She, Xiwei; Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang; Principe, Jose

    2016-08-01

    Classic brain-machine interface (BMI) approaches decode neural signals from the brain responsible for achieving specific motor movements, which subsequently command prosthetic devices. Brain activities adaptively change during the control of the neuroprosthesis in BMIs, where the alteration of the preferred direction and the modulation of the gain depth are observed. The static neural tuning models have been limited by fixed codes, resulting in a decay of decoding performance over the course of the movement and subsequent instability in motor performance. To achieve stable performance, we propose a dual sequential Monte Carlo adaptive point process method, which models and decodes the gradually changing modulation depth of individual neuron over the course of a movement. We use multichannel neural spike trains from the primary motor cortex of a monkey trained to perform a target pursuit task using a joystick. Our results show that our computational approach successfully tracks the neural modulation depth over time with better goodness-of-fit than classic static neural tuning models, resulting in smaller errors between the true kinematics and the estimations in both simulated and real data. Our novel decoding approach suggests that the brain may employ such strategies to achieve stable motor output, i.e., plastic neural tuning is a feature of neural systems. BMI users may benefit from this adaptive algorithm to achieve more complex and controlled movement outcomes. PMID:26584486

  13. Decoding Semi-Constrained Brain Activity from fMRI Using Support Vector Machines and Gaussian Processes

    PubMed Central

    Wehenkel, Louis; Maquet, Pierre; Phillips, Christophe

    2012-01-01

    Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. PMID:22563410

  14. Geodetic monitoring of Mt. Vesuvius Volcano, Italy, based on EDM and GPS surveys

    NASA Astrophysics Data System (ADS)

    Pingue, Folco; Troise, Claudia; De Luca, Gaetano; Grassi, Vittorio; Scarpa, Roberto

    1998-06-01

    The geophysical monitoring system of Mt. Vesuvius volcano includes a geodetic EDM network having average basis lengths amounting to 6 km. This trilateration network is localised around the central crater and consists of 21 stations with a geometry allowing measurement of 60 slope distances. In order to relate this network to more stable areas and to other networks in the Apennines, the EDM net has been extended using GPS methods. In summer 1993 four GPS receivers (Leica System 200) were used on the same points measured with EDM method. During this survey two long bases from the volcano to the more stable limestone platform located in the S direction were measured. The same baselines were previously measured by using an AGA 600 laser geodimeter. In January 1995 a new survey was performed by using two infrared distantiometers (1 DISTOMAT DI3000 and an AGA 142). The comparison with the data since 1975 does not show any significant ground deformation to be ascribed to the volcanic activity. Moreover the consistency between GPS and EDM data allows to exclude systematic differences between these two methodologies for volcano monitoring.

  15. How fine-tuned is a large Muon EDM from Flavor?

    SciTech Connect

    Rueppell, Timo

    2010-02-10

    We study the possibility of having a large muon electric dipole moment (EDM) of the order 10{sup -24}-10{sup -22} ecm. We quantify how natural such a value is within the general minimal supersymmetric extension of the Standard Model with CP violation from lepton flavor violation.

  16. Development of Techniques for a Precision Neutron EDM Measurement at RCNP

    NASA Astrophysics Data System (ADS)

    Matsumiya, Ryohei; Masuda, Yasuhiro; Kawasaki, Shinsuke; Jeong, Sun-Chan; Watanabe, Yutaka; Hatanaka, Kichiji; Pierre, Edgard; Shin, Yunchang; Matsuta, Kensaku; Mihara, Mototsugu

    2014-09-01

    A non-zero neutron electric dipole moment (nEDM) breaks the time-reversal symmetry. A precision measurement of the nEDM is expected to be a good probe to search for theories beyond the standard model. We have been developing techniques for a nEDM measurement, using a high intensity ultra-cold neutron (UCN) source developed by the collaboration between KEK and RCNP. We have succeeded to polarize UCNs by a super conducting polarizer, and stored them in a cell. This cell will be installed in static magnetic and electric fields for a nEDM observation by the Ramsey separated-oscillatory-field magnetic resonance method. The homogeneity of the magnetic field is being improved aiming to increase the transverse relaxation time T2. A multilayered magnetic shielding and a compensation coil system was developed to cancel the geomagnetic field. Some materials around the cell which were not completely non-magnetic were replaced. We are developing a 129Xe co-magnetometer for the high precision field monitoring, and a high voltage system including electrodes with minimum UCN losses. In this talk, the present status of these apparatuses will be discussed.

  17. OPTICAM machine design

    NASA Astrophysics Data System (ADS)

    Liedes, Jyrki T.

    1992-01-01

    Rank Pneumo has worked with the Center of Optics Manufacturing to design a multiple-axis flexible machining center for spherical lens fabrication. The OPTICAM/SM prototype machine has been developed in cooperation with the Center's Manufacturing Advisory Board. The SM will generate, fine grind, pre-polish, and center a spherical lens surface in one setup sequence. Unique features of the design incorporate machine resident metrology to provide RQM (Real-time Quality Management) and closed-loop feedback control that corrects for lens thickness, diameter, and centering error. SPC (Statistical Process Control) software can compensate for process drift and QA data collection is provided without additional labor.

  18. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  19. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy; Moorman, Helene; Gowda, Suraj; Carmena, Jose M

    2014-01-01

    Brain-machine interface (BMI) performance has been improved using Kalman filters (KF) combined with closed-loop decoder adaptation (CLDA). CLDA fits the decoder parameters during closed-loop BMI operation based on the neural activity and inferred user velocity intention. These advances have resulted in the recent ReFIT-KF and SmoothBatch-KF decoders. Here we demonstrate high-performance and robust BMI control using a novel closed-loop BMI architecture termed adaptive optimal feedback-controlled (OFC) point process filter (PPF). Adaptive OFC-PPF allows subjects to issue neural commands and receive feedback with every spike event and hence at a faster rate than the KF. Moreover, it adapts the decoder parameters with every spike event in contrast to current CLDA techniques that do so on the time-scale of minutes. Finally, unlike current methods that rotate the decoded velocity vector, adaptive OFC-PPF constructs an infinite-horizon OFC model of the brain to infer velocity intention during adaptation. Preliminary data collected in a monkey suggests that adaptive OFC-PPF improves BMI control. OFC-PPF outperformed SmoothBatch-KF in a self-paced center-out movement task with 8 targets. This improvement was due to both the PPF's increased rate of control and feedback compared with the KF, and to the OFC model suggesting that the OFC better approximates the user's strategy. Also, the spike-by-spike adaptation resulted in faster performance convergence compared to current techniques. Thus adaptive OFC-PPF enabled proficient BMI control in this monkey. PMID:25571483

  20. Introduction to machine learning.

    PubMed

    Baştanlar, Yalin; Ozuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning approaches for this application area. In this chapter, we first review the fundamental concepts of machine learning such as feature assessment, unsupervised versus supervised learning and types of classification. Then, we point out the main issues of designing machine learning experiments and their performance evaluation. Finally, we introduce some supervised learning methods. PMID:24272434

  1. A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing

    PubMed Central

    Lin, Ching-Miao; Lai, Feipei; Ho, Yi-Lwun; Hung, Chi-Sheng

    2015-01-01

    Background Telehealth care is a global trend affecting clinical practice around the world. To mitigate the workload of health professionals and provide ubiquitous health care, a comprehensive surveillance system with value-added services based on information technologies must be established. Objective We conducted this study to describe our proposed telesurveillance system designed for monitoring and classifying electrocardiogram (ECG) signals and to evaluate the performance of ECG classification. Methods We established a telesurveillance system with an automatic ECG interpretation mechanism. The system included: (1) automatic ECG signal transmission via telecommunication, (2) ECG signal processing, including noise elimination, peak estimation, and feature extraction, (3) automatic ECG interpretation based on the support vector machine (SVM) classifier and rule-based processing, and (4) display of ECG signals and their analyzed results. We analyzed 213,420 ECG signals that were diagnosed by cardiologists as the gold standard to verify the classification performance. Results In the clinical ECG database from the Telehealth Center of the National Taiwan University Hospital (NTUH), the experimental results showed that the ECG classifier yielded a specificity value of 96.66% for normal rhythm detection, a sensitivity value of 98.50% for disease recognition, and an accuracy value of 81.17% for noise detection. For the detection performance of specific diseases, the recognition model mainly generated sensitivity values of 92.70% for atrial fibrillation, 89.10% for pacemaker rhythm, 88.60% for atrial premature contraction, 72.98% for T-wave inversion, 62.21% for atrial flutter, and 62.57% for first-degree atrioventricular block. Conclusions Through connected telehealth care devices, the telesurveillance system, and the automatic ECG interpretation system, this mechanism was intentionally designed for continuous decision-making support and is reliable enough to reduce the

  2. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  3. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications. PMID:24647836

  4. Nonplanar machines

    SciTech Connect

    Ritson, D. )

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs.

  5. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  6. 29 CFR 570.61 - Occupations in the operation of power-driven meat-processing machines and occupations involving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meat packing establishments, rendering plants, or wholesale, retail or service establishments are... by these machines (including, for example, the slicing in a retail delicatessen of meat, poultry..., or killed, and the carcasses are dressed prior to chilling. Retail/wholesale or...

  7. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems. PMID:27383067

  8. Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Hisano, Junji; Kitahara, Teppei; Tobioka, Kohsaku

    2014-01-01

    We calculate all gauge invariant Barr-Zee type contributions to fermionic electric dipole moments (EDMs) in the two-Higgs doublet models (2HDM) with softly broken Z 2 symmetry. We start by studying the tensor structure of h → VV ' part in the Barr-Zee diagrams, and we calculate the effective couplings in a gauge invariant way by using the pinch technique. Then we calculate all Barr-Zee diagrams relevant for electron and neutron EDMs. We make bounds on the parameter space in type-I, type-II, type-X, and type-Y 2HDMs. The electron and neutron EDMs are complementary to each other in discrimination of the 2HDMs. Type-II and type-X 2HDMs are strongly constrained by recent ACME experiment's result, and future experiments of electron and neutron EDMs may search (10) TeV physics.

  9. A New Search for the Atomic EDM of 129Xe at FRM-II (Munich Research Reactor)

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Fierlinger, Peter; Kraegeloh, Eva; Kuchler, Florian; Lins, Tobias; Marino, Mike; Meinel, Jonas; Neissen, Benjamin; Stuiber, Stefan; Burghoff, Martin; Fan, Isaac; Kilian, Wolfgang; Knappe-Grueneberg, Silvia; Schnabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Chupp, Tim; Degenkolb, Skyler; Gong, Fei; Sachdeva, Natasha; Babcock, Earl

    2014-09-01

    Electric dipole moments (EDMs) arise due to the breaking of time-reversal or, equivalently, CP -symmetry. Although all searches have so far only set upper limits on EDMs, the motivation for more sensitive searches is stronger than ever. The present limit of 6 ×10-27 e * cm (95% CL) for the 129Xe EDM helps constrain CP -violating parameters within nuclei. A new effort at FRM-II incorporating a 3He comagnetometer can potentially improve this limit by over three orders of magnitude. The noble gas mixture is polarized by spin-exchange optical pumping and then transferred into a high-performance magnetically shielded room. A SQUID magnetometer array measures the precession frequencies in the presence of applied electric- & magnetic-fields. Recent test runs indicate that the experiment is capable of an EDM sensitivity of 10-28 e * cm in one day.

  10. A New Search for the Atomic EDM of 129 Xe at FRM-II (Munich Research Reactor)

    NASA Astrophysics Data System (ADS)

    Kuchler, Florian; Fierlinger, Peter; Kraegeloh, Eva; Lins, Tobias; Marino, Mike; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Burghoff, Martin; Fan, Isaac; Kilian, Wolfgang; Knappe-Grueneberg, Silvia; Schnabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Chupp, Tim; Degenkolb, Skyler; Gong, Fei; Sachdeva, Natasha; Babcock, Earl; Singh, Jaideep

    2015-04-01

    Electric dipole moments (EDMs) arise due to the breaking of time-reversal or, equivalently, CP-symmetry. Although all searches have so far only set upper limits on EDMs, the motivation for more sensitive searches is stronger than ever. The present limit of 6 × 10-27 e*cm (95 % CL) for the 129 Xe EDM helps constrain CP-violating parameters within nuclei. A new effort at FRM-II incorporating a 3 He comagnetometer can potentially improve this limit by over three orders of magnitude. The noble gas mixture is polarized by spin-exchange optical pumping and then transferred into a high-performance magnetically shielded room. A SQUID magnetometer array measures the precession frequencies in the presence of applied electric- and magnetic-fields. Recent test runs indicate that the experiment is capable of an EDM sensitivity of 10-28 e*cm in one day.

  11. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  12. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  13. Human-machine interactions

    DOEpatents

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  14. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  15. CATSI EDM: recent advances in the development and validation of a ruggedized passive standoff CWA sensor

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul

    2008-04-01

    Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.

  16. Characterization of a gene from the EDM1-PSACH region of human chromosome 19p

    SciTech Connect

    Lennon, G.G.; Giorgi, D.; Martin, J.R.

    1994-09-01

    Genetic linkage mapping has indicated that both multiple epiphyseal dysplasia (EDM1), a dominantly inherited chondrodysplasia, and pseudoachondroplasia (PSACH), a skeletal disorder associated with dwarfism, map to a 2-3 Mb region of human chromosome 19p. We have isolated a partial cDNA from this region using hybrid selection, and report on progress towards the characterization of the genomic structure and transcription of the corresponding gene. Sequence analysis of the cDNA to date indicates that this gene is likely to be expressed within extracellular matrix tissues. Defects in this gene or neighboring gene family members may therefore lead to EDM1, PSACH, or other connective tissue and skeletal disorders.

  17. Progress Toward a Ten-Times Better Measurement of the Electron's EDM with ThO

    NASA Astrophysics Data System (ADS)

    O'Leary, Brendon; Andreev, Vitaly; Ang, Daniel; Baron, Jacob; Demille, David; Doyle, John; Gabrielse, Gerald; Hutzler, Nicholas; Lasner, Zack; Panda, Cristian; Petrik, Elizabeth; Weber, Christian; West, Adam; Wilburn, Grey; ACME Collaboration

    2016-05-01

    The ACME experiment recently improved the limit on the electron's electric dipole moment (EDM) by a factor of 10 by performing spin-precession measurements on a molecular beam of ThO. Since that measurement, we have implemented and demonstrated a series of improvements that will increase the statistical sensitivity to the EDM by another factor of 10, including methods to increase the efficiency of molecular state preparation and detection. Additional improvements are projected to suppress known systematic errors to a level below the new target statistical uncertainty. The largest systematic errors in our first measurement arose due to thermal stress-induced birefringence and an E1-M1 interference effect; we will describe our approach to dramatically reduce each of these effects.

  18. Accessing Interior Vector Magnetic Field Components in Neutron EDM Experiments via Boundary Value Techniques

    NASA Astrophysics Data System (ADS)

    Plaster, Brad

    2012-10-01

    We propose a new technique for the determination and monitoring of the interior vector magnetic field components during the operation of neutron EDM experiments. If a suitable three-dimensional volume surrounding the fiducial volume of an experiment can be defined which contains no interior currents or magnetization, each of the interior vector field components will satisfy the Laplace Equation within this volume. Therefore, if the field components can be measured on the boundary, the interior vector field components can be determined uniquely via numerical solution of the Laplace Equation. We discuss the applicability of this technique to the determination of the magnetic field components and magnetic field gradients in the fiducial volumes of neutron EDM experiments.

  19. Search for muon EDM with ultra-cold muon beam at J-PARC

    NASA Astrophysics Data System (ADS)

    Mibe, Tsutomu; J-PARC muon g-2/EDM Collaboration

    2014-09-01

    The J-PARC experiment E34 aims to measure the anomalous magnetic moment (g-2) and electric dipole moment (EDM) of the positive muon with a novel technique utilizing an ultra-cold muons accelerated to 300 MeV/ c and a 66 cm-diameter compact muon storage ring without focusing-electric field. This measurement will be complementary to the previous BNL E821 experiment and upcoming FNAL E989 experiment with the muon beam at the magic momentum 3.1 GeV/ c in a 14 m-diameter storage ring. The experiment aims to achieve the sensitivity down to 0.1 ppm for g-2, and 10-21 e . cm for EDM. In this presentation, I'd like to discuss the technical achievements and prospects for realization of the experiment.

  20. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  1. Broadband Velocity Modulation Spectroscopy of Molecular Ions for Use in the Jila Electron Edm Experiment

    NASA Astrophysics Data System (ADS)

    Gresh, Daniel N.; Cossel, Kevin C.; Cornell, Eric A.; Ye, Jun

    2013-06-01

    The JILA electron electric dipole moment (eEDM) experiment will use a low-lying, metastable ^3Δ_1 state in trapped molecular ions of HfF^+ or ThF^+. Prior to this work, the low-lying states of these molecules had been investigated by PFI-ZEKE spectroscopy. However, there were no detailed studies of the electronic structure. The recently developed technique of frequency comb velocity modulation spectroscopy (VMS) provides broad-bandwidth, high-resolution, ion-sensitive spectroscopy, allowing the acquisition of 150 cm^{-1} of continuous spectra in 30 minutes over 1500 simultaneous channels. By supplementing this technique with cw-laser VMS, we have investigated the electronic structure of HfF^+ in the frequency range of 9950 to 14600 cm^{-1}, accurately fitting and assigning 16 rovibronic transitions involving 8 different electronic states including the X^1Σ^+ and a^3Δ_1 states. In addition, an observed ^3Π_{0+} state with coupling to both the X and a states has been used in the actual eEDM experiment to coherently transfer population from the rovibronic ground state of HfF^+ to the eEDM science state. Furthermore, we report on current efforts of applying frequency comb VMS at 700 - 900 nm to the study of ThF^+, which has a lower energy ^3Δ_1 state and a greater effective electric field, and will provide increased sensitivity for a measurement of the eEDM. A. E. Leanhardt et. al., Journal of Molecular Spectroscopy 270, 1-25 (2011). B. J. Barker, I. O. Antonov, M. C. Heaven, K. A. Peterson, Journal of Chemical Physics 136, 104305 (2012). L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, E. A. Cornell, Physical Review Letters 107, 093002 (2011). K.C. Cossel et. al., Chemical Physics Letters 546, 1-11 (2012).

  2. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  3. Lepton Flavour Violation and electron EDM in SUSY with a non-abelian flavour symmetry

    SciTech Connect

    Calibbi, Lorenzo

    2008-11-23

    We present the lepton sector phenomenology of a supersymmetric flavour model based on a SU(3) horizontal symmetry. This model successfully reproduces the observed fermion masses and mixings, without introducing unacceptably large SUSY sources of flavour and CP violation. We show that the model, which is at present weakly constrained, predicts the electron EDM and {mu}{yields}e,y to be within the final sensitivity of the currently running experiments, at least for SUSY masses within the reach of the LHC.

  4. Mining machine

    SciTech Connect

    Parrott, G.A.

    1985-05-07

    A haulage system for a mining machine comprises a mining machine mounted on and/or guided by a conveyor and reciprocable with respect thereto, the conveyor being provided with a rack having plural rows of teeth of identical pitch, with the teeth of one row staggered with respect to an adjacent row(s), and the machine being provided with at least one power driven haulage sprocket comprising plural sets of peripherally arranged teeth of identical pitch, one set being angularly staggered with respect to an adjacent set(s), whereby one set is engageable with each row of teeth of the rack. The invention also includes a mining machine provided with such a power driven haulage sprocket, and a rack as above described and provided with end fittings for securing in articulated manner to an adjacent rack.

  5. New Results from a Search for the Electric Dipole Moment (EDM) of 99Hg

    NASA Astrophysics Data System (ADS)

    Heckel, Blayne

    2015-05-01

    The measurement of a nonzero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the Standard Model. Additional sources of CP violation have been proposed to help explain the matter-antimatter asymmetry observed in our universe and the magnitude of ΘQCD, the strength of CP-violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD.The experiment compares the phase accumulated by precessing Hg atom spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. The statistical sensitivity of new measurements represents a factor of 3 to 4 improvement over previous results. A description of the EDM experiment and the data, along with the current state of the systematic error analysis, will be presented. This work was supported by NSF Grant PHY-1306743 and by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  6. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    SciTech Connect

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-04

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10{sup -27} e{center_dot}cm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  7. Development of high-sensitivity NMOR magnetometry for an EDM experiment

    NASA Astrophysics Data System (ADS)

    Nanao, T.; Yoshimi, A.; Inoue, T.; Furukawa, T.; Tsuchiya, M.; Hayashi, H.; Uchida, M.; Asahi, K.

    2011-09-01

    Developments are in progress aiming at the search for a permanent Electric Dipole Moment (EDM) in 129Xe atom using a low-frequency nuclear spin maser. In the EDM experiment, drifts in the applied static magnetic field in a long time scale are the dominating source of errors in frequency determination. The stability of the applied field and its monitoring by use of a high sensitivity magnetometer are thus the indispensable part of the EDM experiment. We are developing a magnetometer based on the Nonlinear Magneto-Optical Rotation (NMOR) effect in Rb atom. The sharp response to the magnetic field in this apparatus relies on a long relaxation time of the atomic spin alignment induced by linearly polarized laser light, and thus the suppression of the atomic decoherence should be essential for its sensitivity. Coating the inner walls of the cell with an antirelaxation layer, introducing a buffer gas in the cell and cancelling the transverse magnetic field should be effective in preventing atoms from depolarization. We obtained several NMOR spectra for Rb in cylindrical cells in such attempts. Up to now a sensitivity of δB=1.5 × 10-5 G has been attained in the present setup.

  8. Challenges and opportunities in the search for electric dipole moment (EDM) in 225Ra atom

    NASA Astrophysics Data System (ADS)

    Kalita, Mukut; Bailey, Kevin; Dietrich, Matthew; Greene, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas; Parker, Richard; Sulai, Ibrahim; Singh, Jaideep

    2011-10-01

    The observation of a permanent electric dipole moment (EDM) in a non-degenerate system would indicate violation of time reversal symmetry. 225Ra atom is a particularly attractive candidate for this search since it has a nuclear spin I = 1/2 and has a significant nuclear octupole deformation. This property increases the Schiff moment of the nucleus and therefore enhances the atomic EDM. The half life (t1/2 = 14.9 days) of 225Ra is sufficiently long to perform EDM searches. Our group has already demonstrated the trapping of laser cooled Ra atoms in a magneto-optical trap (MOT) and transferring them to a far off resonant optical dipole trap (ODT). We will discuss our recent progress on manipulation of ultra cold Ra atoms in the ODT, efforts in improving our laser systems and generation of electric and magnetic fields required for the measurement. This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and contract No. DE-FG02-99ER41101.

  9. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    NASA Astrophysics Data System (ADS)

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-01

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10-27 eṡcm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  10. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  11. Micro Machining Enhances Precision Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.

  12. The effect of electro-discharge machined sonotrode topology on interlaminar bonding in ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Edmonds, H. C.; Harris, R. A.

    2011-04-01

    Ultrasonic Consolidation (UC) is a solid state additive manufacturing process which fabricates three-dimensional objects by ultrasonically joining metal foils together, layer-by-layer, to form a solid part. This study investigates the effect of sonotrode surface texture on the bond strength, interlaminar microstructure and sample surface texture of parts fabricated by UC. White light interferometry was used to characterize the surface of two sonotrodes, textured by Electro-Discharge Machining (EDM). Aluminum 3003-H18 UC samples were fabricated using both sonotrodes under identical processing conditions. The surface texture of the UC samples produced is a reduced amplitude version of the parent sonotrodes texture. Peel testing was used to evaluate the bond strength and failure mode of the samples. The interlaminar microstructure of the parts was examined and linear weld density measured. The rougher sonotrode samples exhibited higher weld strength and brittle failure modes compared to the less rough sonotrode samples which demonstrated ductile failure and lower weld strength. This paper examines the influence of sonotrode texture on interlaminar bonding in UC and how this could be controlled and exploited to optimize bonding in UC.

  13. Preliminary study of high-speed machining

    SciTech Connect

    Jordan, R.E.

    1980-07-01

    The feasibility of a high speed machining process has been established for application to Bendix aluminum products, based upon information gained through visits to existing high speed machining facilities and by the completion of a representative Bendix part using this process. The need for an experimental high speed machining capability at Bendix for further process evaluation is established.

  14. Effect of Processing of HIPERCO® 50 Alloy Laminates on Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Jayaraman, Tanjore V.

    2015-11-01

    Fe-Co-based soft-magnetic materials form an important class of high-induction alloys that are widely used in energy conversion applications in the aerospace industry. In this work, the effect of processing—cut method [stamping and wire-electrical discharge machining (EDM)] and annealing (cut unannealed, cut followed by annealing, and annealing followed by cut)—on the magnetic properties of the HIPERCO® 50 Alloy laminates was investigated. A cold-rolled ˜0.006-in (˜150-μm)-thick strip of HIPERCO® 50 Alloy was cut into ring laminations and final-annealed in dry hydrogen. Scanning electron microscopy (SEM) and x-ray diffraction analysis indicated the presence of extraneous Cu on the cut edge of the wire-EDM cut ring laminates, along with the expected Fe-Co phase for HIPERCO® 50 alloy. SEM micrographs of the cut edge showed the typical sheared surface and irregular surface for stamped and wire-EDM cut ring laminates respectively. The rings that were stamped followed by annealing (STfA) showed superior direct current (DC) and alternating current (AC) magnetic properties. The presence of Cu (diamagnetic) in wire-EDM cut rings adversely affects induction ( B) and core loss ( P T), compared to the stamped rings for corresponding annealing conditions. The difference in the DC magnetic properties between the ring laminates STfA and annealed followed by stamping (AfST) was significantly large compared to that between the ring laminates that were wire-EDM cut followed by annealing (EDfA) and annealing followed by wire-EDM (AfED). This suggests that, for certain applications where the differences in DC magnetic properties between EDfA and AfED are acceptable, the AfED rings may be put to application/service after the wire-EDM cut operation, i.e. wire-EDM may be performed after `final-annealing'. However, the AC properties between EDfA and AfED rings were significantly different, hence for AC applications, the `final annealing', post-cutting, is critical irrespective

  15. Preliminary results of processing of Pulkovo series of photographic observations of double star 61 Cygni measured by automatic machine "Fantasy"

    NASA Astrophysics Data System (ADS)

    Gorshanov, D. L.; Shakht, N. A.; Kisselev, A. A.; Polyakov, E. V.; Bronnikova, A. A.; Kanaev, I. I.

    2003-11-01

    Two long-term series of photographic observations of one of the nearest double star 61 Cygni have been obtained at Pulkovo by means of normal astrograph in 1895-2000 (I) and by means of 26'' refractor in 1958-2000 (II). All these observations have been measured by means automatic machine "Fantasy" with mean error of yearly positions 0.016'' and 0.008'' for I and II series correspondly. The periodic deviations with period 6.4 +/- 0.5 yr in the residuals in relative distances between components are noticed for series II.

  16. Machining in Microgravity

    NASA Astrophysics Data System (ADS)

    Vincent, Graylan

    2003-01-01

    A CNC mill was flown aboard NASA's KC-135 ``Weightless Wonder'' microgravity research aircraft to investigate the effect of gravity on the machining process and to demonstrate the feasibility and functionality of a CNC mill in a weightless environment, such as aboard the International Space Station. The experiment hypothesis was that the surface roughness of milling cuts made in microgravity would be of higher quality than cuts made in a gravitational environment due to increased chip removal. The technical problems associated with microgravity machining (such as the chip removal and collection process), and the engineering solutions to these problems were also evaluated in this experiment.

  17. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    PubMed

    Takino, Hideo; Hosaka, Takahiro

    2016-06-20

    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm. PMID:27409126

  18. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  19. Calculation of net emission coefficient of electrical discharge machining arc plasmas in mixtures of nitrogen with graphite, copper and tungsten

    NASA Astrophysics Data System (ADS)

    Adineh, V. R.; Coufal, O.; Bartlova, M.

    2015-10-01

    This work reports theoretical calculations of electrical discharge machining (EDM) radiative properties for mixture systems of N2-C, N2-Cu and N2-W arc plasmas, in the temperature range of 3000-10 000 K, and at 1 and 10 bar pressures. Radiative properties are computed for various plasma sizes as well as vapour proportions. Calculations consider line overlapping with spectrum coverage from 30 to 10 000 nm. Doppler, Natural, Van-der-Waals, Resonance and Stark broadening are taken into account as the line broadening mechanisms. Besides, continuum calculations consider bound-free and free-free emissions along with molecular bands radiation for selected molecular systems. Results show that contamination vapours of EDM electrode have strong influence on the amount of EDM plasma radiation to the surrounding environment. However, comparison of impurities from workpiece with electrode one indicates that Fe vapour has stronger impact on modifying the EDM arc plasma radiative properties, compared to the C, Cu and W species studied in this research.

  20. Zgoubi vs. the machines

    SciTech Connect

    Meot, Francois

    2015-05-03

    The presentation covered the following areas: Stepwise tracking numerical machinery; Polarization at RHIC complex; Polarization in eRHIC; Dynamical acceptance of eRHIC FFAG ring; Polarization in the MEIC Figure-8 collider ring; and, p-EDM ring, prospects.

  1. Machine tool evaluation and machining operation development

    SciTech Connect

    Morris, T.O.; Kegg, R.

    1997-03-15

    The purpose of this CRADA was to support Cincinnati Milacron`s needs in fabricating precision components, from difficult to machine materials, while maintaining and enhancing the precision manufacturing skills of the Oak Ridge Complex. Oak Ridge and Cincinnati Milacron personnel worked in a team relationship wherein each contributed equally to the success of the program. Process characterization, control technologies, machine tool capabilities, and environmental issues were the primary focus areas. In general, Oak Ridge contributed a wider range of expertise in machine tool testing and monitoring, and environmental testing on machining fluids to the defined tasks while Cincinnati Milacron personnel provided equipment, operations-specific knowledge and shop-floor services to each task. Cincinnati Milacron was very pleased with the results of all of the CRADA tasks. However, some of the environmental tasks were not carried through to a desired completion due to an expanding realization of need as the work progressed. This expansion of the desired goals then exceeded the time length of the CRADA. Discussions are underway on continuing these tasks under either a Work for Others agreement or some alternate funding.

  2. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  3. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  4. Machine-Aided Indexing for NASA STI.

    ERIC Educational Resources Information Center

    Wilson, John

    1987-01-01

    Describes the use of machine aided indexing as part of NASA's information systems. The discussion covers reasons for incorporating machine aided indexing, the lexical dictionary used, subject switching, natural language processing, benefits to the system, and possible future developments. (CLB)

  5. Formal modeling of virtual machines

    NASA Technical Reports Server (NTRS)

    Cremers, A. B.; Hibbard, T. N.

    1978-01-01

    Systematic software design can be based on the development of a 'hierarchy of virtual machines', each representing a 'level of abstraction' of the design process. The reported investigation presents the concept of 'data space' as a formal model for virtual machines. The presented model of a data space combines the notions of data type and mathematical machine to express the close interaction between data and control structures which takes place in a virtual machine. One of the main objectives of the investigation is to show that control-independent data type implementation is only of limited usefulness as an isolated tool of program development, and that the representation of data is generally dictated by the control context of a virtual machine. As a second objective, a better understanding is to be developed of virtual machine state structures than was heretofore provided by the view of the state space as a Cartesian product.

  6. Cleaning of Free Machining Brass

    SciTech Connect

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  7. Self-Adjusting Teaching Machines.

    ERIC Educational Resources Information Center

    Dovgyallo, A. M.

    A study was made on the synthesis of teaching machine elements to ensure the stabilization of the chi indicator of the teaching process of each student. At first, a procedure was developed for calculating the chi indicator for the case when the teaching machine predicts the magnitude of this indicator based on probabilities derived from an…

  8. Man Machine Systems in Education.

    ERIC Educational Resources Information Center

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  9. Electric breakdown and ionization detection in normal liquid and superfluid 4He for the SNA nEDM experiment

    NASA Astrophysics Data System (ADS)

    Karcz, Maciej

    A new experiment to search for the neutron electric dipole moment (nEDM) is under construction at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. The SNS nEDM experiment is a national collaboration spanning over 20 universities and laboratories with more than 100 physicists and engineers contributing to the research and development. The search for a nEDM is a precision test of time reversal symmetry in particle physics, in the absence of a discovery, the SNS nEDM experiment seeks to improve the present limit on the nEDM value by two orders of magnitude. A non-zero value of the nEDM would help to explain the asym- metry between matter and anti-matter in the universe by providing an additional source of charge conjugation and parity symmetry violation, a necessary ingredient in the theory of baryogenesis in the early universe. The nEDM experiment will measure the Larmor precession frequency of neutrons by detecting scintillation from neutron capture by a dilute concentration of 3He inside a bath of superfluid 4He. Neutron capture by 3He is spin-dependent and the magnetic moments of the neutron and the 3He nucleus are comparable. A direct measurement of the precession frequency of polarized 3He and scintillation from neutron capture allows for the relative precession frequencies of 3He and the neutron to be determined. The experiment will then look for changes in the relative precession of 3He and neutrons under the influence of strong electric fields. 3He has negligible EDM and therefore any deviation due to an applied electric field would be from a nEDM. The nEDM experiment will need to apply strong electric fields inside superfluid (SF) 4He and it was necessary to investigate the ability of SF 4He to sustain electric fields. An experiment to study electric breakdown in superfluid 4He was constructed at the Indiana University Center for Exploration of Energy and Matter (CEEM). The experiment studied the electric breakdown behavior of liquid

  10. The Answer Machine.

    ERIC Educational Resources Information Center

    Feldman, Susan

    2000-01-01

    Discusses information retrieval systems and the need to have them adapt to user needs, integrate information in any format, reveal patterns and trends in information, and answer questions. Topics include statistics and probability; natural language processing; intelligent agents; concept mapping; machine-aided indexing; text mining; filtering;…

  11. Introduction to Exploring Machines

    ERIC Educational Resources Information Center

    Early Childhood Today, 2006

    2006-01-01

    Young children are fascinated by how things "work." They are at a stage of development where they want to experiment with the many ways to use an object or take things apart and put them back together. In the process of exploring tools and machines, children use the scientific method and problem-solving skills. They observe how things work, wonder…

  12. Search for an Atomic EDM with Optical-Coupling Nuclear Spin Oscillator

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, N.; Yoshimi, A.

    2007-06-13

    We have constructed a nuclear spin oscillator of a new type, that employs a feedback scheme based on an optical spin detection and suceeding spin control by a transverse field application. This spin oscillator parallels the conventional spin maser in many points, but exhibits advantages and requirements that are different from those with the spin maser. By means of the optical-coupling nuclear spin oscillator, an experimental setup to search for an electric dipole moment (EDM) in a spin 1/2 diamagnetic atom 129Xe is being developed.

  13. Multi-objective optimization of process parameters in Electro-Discharge Diamond Face Grinding based on ANN-NSGA-II hybrid technique

    NASA Astrophysics Data System (ADS)

    Yadav, Ravindra Nath; Yadava, Vinod; Singh, G. K.

    2013-09-01

    The effective study of hybrid machining processes (HMPs), in terms of modeling and optimization has always been a challenge to the researchers. The combined approach of Artificial Neural Network (ANN) and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) has attracted attention of researchers for modeling and optimization of the complex machining processes. In this paper, a hybrid machining process of Electrical Discharge Face Grinding (EDFG) and Diamond Face Grinding (DFG) named as Electrical Discharge Diamond face Grinding (EDDFG) have been studied using a hybrid methodology of ANN-NSGA-II. In this study, ANN has been used for modeling while NSGA-II is used to optimize the control parameters of the EDDFG process. For observations of input-output relations, the experiments were conducted on a self developed face grinding setup, which is attached with the ram of EDM machine. During experimentation, the wheel speed, pulse current, pulse on-time and duty factor are taken as input parameters while output parameters are material removal rate (MRR) and average surface roughness ( R a). The results have shown that the developed ANN model is capable to predict the output responses within the acceptable limit for a given set of input parameters. It has also been found that hybrid approach of ANN-NSGAII gives a set of optimal solutions for getting appropriate value of outputs with multiple objectives.

  14. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Marashi, Houriyeh; Sarhan, Ahmed A. D.; Hamdi, Mohd

    2015-12-01

    Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (Ton) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except Ton = 340 μs. Of these parameters, maximum enhancement was observed at Ton = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  15. Drilling Machines: Vocational Machine Shop.

    ERIC Educational Resources Information Center

    Thomas, John C.

    The lessons and supportive information in this field tested instructional block provide a guide for teachers in developing a machine shop course of study in drilling. The document is comprised of operation sheets, information sheets, and transparency masters for 23 lessons. Each lesson plan includes a performance objective, material and tools,…

  16. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  17. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  18. Machine performance assessment and enhancement for a hexapod machine

    SciTech Connect

    Mou, J.I.; King, C.

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  19. Tool & Die and EDM Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 2-year vocational training program to prepare students for entry-level employment as tool and die makers. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume begins with…

  20. Brown coal preparation machines

    SciTech Connect

    Bleckmann, H.; Sitte, W.; Kellerwessel, H.

    1981-05-01

    Lignite usually requires comminuting and screening before being used as a fuel in power plants. Reduction machines normally used for coarse crushing bituminous coal, such as jaw crushers, roll crushers, and impact crushers, are not generally suitable for lignite as they require a brittle feed and large grain size. In contrast to these requirements, lignite can be easily compressed and has a small grain size. Therefore, special crusher types have been developed for the coarse reduction of lignite. These machines resemble roll crushers but subject the feed to shearing and tearing forces rather than to compressive stress. It is often necessary to screen the lignite to remove the undersize or to limit the maximum particle size before the next comminution process. Screening the lignite is a particularly difficult operation due to the high water content and the presence of clay minerals which tend to clog the screening machines. These problems can be overcome with multi-roll sizers.

  1. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Fullerenes possess remarkable properties and many investigators have examined the mechanical, electronic and other characteristics of carbon SP2 systems in some detail. In addition, C-60 can be functionalized with many classes of molecular fragments and we may expect the caps of carbon nanotubes to have a similar chemistry. Finally, carbon nanotubes have been attached to t he end of scanning probe microscope (Spill) tips. Spills can be manipulated with sub-angstrom accuracy. Together, these investigations suggest that complex molecular machines made of fullerenes may someday be created and manipulated with very high accuracy. We have studied some such systems computationally (primarily functionalized carbon nanotube gears and computer components). If such machines can be combined appropriately, a class of materials may be created that can sense their environment, calculate a response, and act. The implications of such hypothetical materials are substantial.

  2. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash

    1998-01-01

    Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically accessible and of great interest. We have computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Preliminary results suggest that these gears can be cooled by a helium atmosphere and a laser motor can power fullerene gears if a positive and negative charge have been added to form a dipole. In addition, we have unproven concepts based on experimental and computational evidence for support structures, computer control, a system architecture, a variety of components, and manufacture. Combining fullerene machines with the remarkable mechanical properties of carbon nanotubes, there is some reason to believe that a focused effort to develop fullerene nanotechnology could yield materials with tremendous properties.

  3. Surface characterization and in vivo evaluation of laser sintered and machined implants followed by resorbable-blasting media process: A study in sheep

    PubMed Central

    Bowers, Michelle; Yoo, Daniel; Marin, Charles; Gil, Luiz; Shabaka, Nour; Goldstein, Matt; Janal, Malvin; Tovar, Nick; Bonfante, Estevam; Coelho, Paulo

    2016-01-01

    Background This study aimed to compare the histomorphometric and histological bone response to laser-sintered implants followed by resorbable-blasting media (RBM) process relative to standard machined/RBM surface treated implants. Material and Methods Six male sheep (n=6) received 2 Ti-6Al-4V implants (1 per surface) in each side of the mandible for 6 weeks in vivo. The histomorphometric parameters bone-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated. Results Optical interferometry revealed higher Sa and Sq values for the laser-sintered/RBM surface in relation to standard/RBM implants. No significant differences in BIC were observed between the two groups (p>0.2), but significantly higher BAFO was observed for standard/RBM implants (p<0.01). Conclusions The present study demonstrated that both surfaces were biocompatible and osseoconductive, and the combination of laser sintering and RBM has no advantage over the standard machined implants with subsequent RBM. Key words:Dental implants, osseointegration, resorbable- blasting media, sheep, in vivo. PMID:26827064

  4. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  5. Fast Booting Many Similar Virtual Machines

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Wang, Zhenlin; Liang, Shuang; Zhang, Zhengyi; Luo, Yingwei; Li, Xiaoming

    Virtual Machines have been commonly used for server consolidation in data centers, network classrooms, and cloud computing environments. Although booting up a virtual machine takes much less time than booting up a physical computer, booting up multiple virtual machines on a single physical server still takes a lot of time. We propose a method to speed up the booting process when a set of similar virtual machines share a snapshot enabled storage. Our method exploits massive memory page sharing stemming from the reads to common disk blocks by these virtual machines. Our experiments show that the second virtual machine may reduce the booting time by half.

  6. Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Libersky, Matthew; nEDM Collaboration

    2013-10-01

    An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.

  7. Probing charged matter through h → γγ, gamma ray lines, and EDMs

    NASA Astrophysics Data System (ADS)

    Fan, JiJi; Reece, Matthew

    2013-06-01

    Numerous experiments currently underway offer the potential to indirectly probe new charged particles with masses at the weak scale. For example, the tentative excess in h → γγ decays and the tentative gamma-ray line in Fermi-LAT data have recently attracted attention as possible one-loop signatures of new charged particles. We explore the interplay between such signals, dark matter direct detection through Higgs exchange, and measurements of the electron EDM, by studying the size of these effects in several models. We compute one-loop effects to explore the relationship among couplings probed by different experiments. In particular, models in which dark matter and the Higgs both interact with charged particles at a detectable level typically induce, at loop level, couplings between dark matter and the Higgs that are around the level of current direct detection sensitivity. Intriguingly, one-loop h → γγ and DM DM → γγ, two-loop EDMs, and loop-induced direct detection rates are all coming within range of existing experiments for approximately the same range of charged particle masses, offering the prospect of an exciting coincidence of signals at collider, astrophysical, underground and atomic physics measurements.

  8. Performance check of cell with newly designed electrode for 129Xe EDM measurement

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yu; Bidinosti, Christopher; Ichikawa, Yuichi; Sato, Tomoya; Ohtomo, Yuichi; Kojima, Shuichiro; Funayama, Chikako; Suzuki, Takahiro; Tsuchiya, Masato; Furukawa, Takeshi; Yoshimi, Akihiro; Ino, Takashi; Ueno, Hideki; Matuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) can be detected as a difference between the spin precession frequencies measured with an electric field applied parallel and antiparallel to a magnetic field. We aim to make a measurement of the 129Xe EDM at a level of d ~10-28 e cm by using a nuclear spin maser. The amplitude of the maser signal is proportional to the nuclear spin polarization. The polarization of 3He that acts as a co-magnetometer, is sensitive to the interactions with the electrodes used to generate the electric field. Previously, we used a transparent electrode made of ITO (Indium Tin Oxide) to allow transmission linearly polarized laser light into the cell. However, 3He polarization in a cell with such electrodes was measured to be ~0.1%, which is ten times smaller than no electrodes. In order to solve the problem, we adopted an electrode made from a mesh of Molybdenum. The geometry also reduces the contact area between 3He gas and the electrode. We measured 3He polarization at a cell with the mesh electrode by means of adiabatic fast passage NMR.

  9. Progress of the 129Xe EDM search using active feedback nuclear spin maser

    NASA Astrophysics Data System (ADS)

    Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Tsuchiya, Masato; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle is an extremely sensitive probe for physics beyond the Standard Model. The objective of the present study is to search for the 129Xe EDM at a level of 10-28 ecm, beyond the current upper limit. In this experiment, an active-feedback nuclear spin maser is employed to achieve a precision measurement. Systematic instability sets a limit on the precision in our study. Co-magnetometry using 3He spin maser was incorporated into the maser system to eliminate the frequency drift caused by magnetic field fluctuations. Moreover, a double-cell geometry with linearly polarized laser was introduced to reduce frequency drifts arising from contact interactions with polarized Rb atoms. Having integrated these improvements, the 3He/129Xe dual spin maser was successfully operated. In the presentation, recent progress will be reported, including an analysis of spin maser frequencies, a study of electrode designs, and an estimation of possible systematic uncertainties.

  10. Study of the Effects of Edm Notch Width on Eddy Current Signal Response

    NASA Astrophysics Data System (ADS)

    Nakagawa, N.; Yang, M.; Larson, B. F.; Madison, E. M.; Raulerson, D.

    2009-03-01

    A sometimes stated rule of thumb is that the eddy current signal from a fatigue crack can be 60% of the strength produced by a similarly sized, rectangular EDM notch. A study was conducted to explore the effect that the width of a discontinuity has on signal strength when inspecting low conductivity materials for small cracks with eddy current surface probes. EDM notches of different sizes and shapes were planted in Ti-6246 and IN-100 specimens. Each of the two materials received six 0.020 inch long by 0.010 inch deep notches and six 0.030 inch and 0.015 inch deep notches. Three of the notches of each size were rectangular shaped and three were semicircular shaped. One of the notches in each material size group was 0.005 inch wide, one was 0.003 inch wide and one was 0.001 inch wide. Each of the notches was scanned using absolute and differential pencil probes driven at several different frequencies. The experimental results were compared with numerically generated results, which allowed for a zero width notch to be considered. The results indicated that the signal reduction factor from a 0.005 inch wide, rectangular notch to a theoretical zero-width notch of the same size ranged from 25 to 42%.

  11. An evaluation of machine processing techniques of ERTS-1 data for user applications. [urban land use and soil association mapping in Indiana

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.

    1974-01-01

    A broad study is described to evaluate a set of machine analysis and processing techniques applied to ERTS-1 data. Based on the analysis results in urban land use analysis and soil association mapping together with previously reported results in general earth surface feature identification and crop species classification, a profile of general applicability of this procedure is beginning to emerge. Put in the hands of a user who knows well the information needed from the data and also is familiar with the region to be analyzed it appears that significantly useful information can be generated by these methods. When supported by preprocessing techniques such as the geometric correction and temporal registration capabilities, final products readily useable by user agencies appear possible. In parallel with application, through further research, there is much potential for further development of these techniques both with regard to providing higher performance and in new situations not yet studied.

  12. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  13. Applications of Machine Learning in Information Retrieval.

    ERIC Educational Resources Information Center

    Cunningham, Sally Jo; Witten, Ian H.; Littin, James

    1999-01-01

    Introduces the basic ideas that underpin applications of machine learning to information retrieval. Describes applications of machine learning to text categorization. Considers how machine learning can be applied to the query-formulation process. Examines methods of document filtering, where the user specifies a query that is to be applied to an…

  14. Artificial neural networks to model formulation-property correlations in the process of inline-compounding on an injection moulding machine

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Müller, Ellen; Martin, Yannick; Kleeschulte, Rainer

    2015-05-01

    Today the global market poses great challenges for industrial product development. Complexity, diversity of variants, flexibility and individuality are just some of the features that products have to offer today. In addition, the product series have shorter lifetimes. Because of their high capacity for adaption, polymers are increasingly able to displace traditional materials such as wood, glass and metals from various fields of application. Polymers can only be used to substitute other materials, however, if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important. Integrating the compounding step in the injection moulding process permits a more efficient and faster development process for a new polymer formulation, making it possible to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. The entire process sequence is supported by software from Bayer Technology called Product Design Workbench (PDWB), which provides assistance in all the individual steps from data management, via analysis and model compilation, right through to the optimization of the formulation and the design of experiments. The software is based on artificial neural networks and can model the formulation-property correlations and thus enable different formulations to be optimized. In the study presented, the workflow and the modelling with the software are presented.

  15. TEMPO machine

    SciTech Connect

    Rohwein, G.J.; Lancaster, K.T.; Lawson, R.N.

    1986-06-01

    TEMPO is a transformer powered megavolt pulse generator with an output pulse of 100 ns duration. The machine was designed for burst mode operation at pulse repetition rates up to 10 Hz with minimum pulse-to-pulse voltage variations. To meet the requirement for pulse duration a nd a 20-..omega.. output impedance within reasonable size constraints, the pulse forming transmission line was designed as two parallel water-insulated, strip-type Blumleins. Stray capacitance and electric fields along the edges of the line elements were controlled by lining the tank with plastic sheet.

  16. Electrical machine

    DOEpatents

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  17. Experimental study of micro electrical discharge machining discharges

    SciTech Connect

    Braganca, I. M. F.; Rosa, P. A. R.; Martins, P. A. F.; Dias, F. M.; Alves, L. L.

    2013-06-21

    Micro electrical discharge machining ({mu}EDM) is an atmospheric-pressure plasma-assisted technology that uses point-to-plane discharges in liquid dielectrics to remove microscopic quantities of electrically conductive materials. In this work, an innovative {mu}EDM prototype machine was specifically designed and fabricated to produce and control single spark discharges, thus, resolving the typical limitations of (multi-discharge) commercial machines. The work analyses the type of discharge and the micro-plasma electron-density values obtained for 0.5-38 {mu}m gap sizes, 3-10 000 {mu}s pulse durations, 75-250 V low breakdown voltages, and 1-20 A discharge currents, using different combinations of metallic electrodes in oil and in water. Results allow fitting, for micro-scale and low voltages, an empirical law between the maximum gap-size for breakdown, the breakdown voltage, and the effective stress-time. The electron density n{sub e} is obtained by optical emission spectroscopy diagnostics of the H{sub {alpha}}-line Stark broadening (yielding n{sub e}{approx}10{sup 16}-10{sup 17} cm{sup -3}, i.e., ionization degrees of {approx}2 Multiplication-Sign 10{sup -5}-10{sup -4}) and by a semi-empirical resistive plasma model. The model uses the experimental values of several electrical and geometrical quantities, and of the gas pressure estimated as {approx}60 bar-2 kbar from measurements of the plasma mechanical action, obtained using a force sensor. The quantitative information of this phenomenological study can assist the optimization of this micro-fabrication technique.

  18. Experimental study of micro electrical discharge machining discharges

    NASA Astrophysics Data System (ADS)

    Bragança, I. M. F.; Rosa, P. A. R.; Dias, F. M.; Martins, P. A. F.; Alves, L. L.

    2013-06-01

    Micro electrical discharge machiningEDM) is an atmospheric-pressure plasma-assisted technology that uses point-to-plane discharges in liquid dielectrics to remove microscopic quantities of electrically conductive materials. In this work, an innovative μEDM prototype machine was specifically designed and fabricated to produce and control single spark discharges, thus, resolving the typical limitations of (multi-discharge) commercial machines. The work analyses the type of discharge and the micro-plasma electron-density values obtained for 0.5-38 μm gap sizes, 3-10 000 μs pulse durations, 75-250 V low breakdown voltages, and 1-20 A discharge currents, using different combinations of metallic electrodes in oil and in water. Results allow fitting, for micro-scale and low voltages, an empirical law between the maximum gap-size for breakdown, the breakdown voltage, and the effective stress-time. The electron density ne is obtained by optical emission spectroscopy diagnostics of the Hα-line Stark broadening (yielding ne˜1016-1017 cm-3, i.e., ionization degrees of ˜2×10-5-10-4) and by a semi-empirical resistive plasma model. The model uses the experimental values of several electrical and geometrical quantities, and of the gas pressure estimated as ˜60 bar-2 kbar from measurements of the plasma mechanical action, obtained using a force sensor. The quantitative information of this phenomenological study can assist the optimization of this micro-fabrication technique.

  19. Processive ATP-driven Substrate Disassembly by the N-Ethylmaleimide-sensitive Factor (NSF) Molecular Machine*♦

    PubMed Central

    Cipriano, Daniel J.; Jung, Jaemyeong; Vivona, Sandro; Fenn, Timothy D.; Brunger, Axel T.; Bryant, Zev

    2013-01-01

    SNARE proteins promote membrane fusion by forming a four-stranded parallel helical bundle that brings the membranes into close proximity. Post-fusion, the complex is disassembled by an AAA+ ATPase called N-ethylmaleimide-sensitive factor (NSF). We present evidence that NSF uses a processive unwinding mechanism to disassemble SNARE proteins. Using a real-time disassembly assay based on fluorescence dequenching, we correlate NSF-driven disassembly rates with the SNARE-activated ATPase activity of NSF. Neuronal SNAREs activate the ATPase rate of NSF by ∼26-fold. One SNARE complex takes an average of ∼5 s to disassemble in a process that consumes ∼50 ATP. Investigations of substrate requirements show that NSF is capable of disassembling a truncated SNARE substrate consisting of only the core SNARE domain, but not an unrelated four-stranded coiled-coil. NSF can also disassemble an engineered double-length SNARE complex, suggesting a processive unwinding mechanism. We further investigated processivity using single-turnover experiments, which show that SNAREs can be unwound in a single encounter with NSF. We propose a processive helicase-like mechanism for NSF in which ∼1 residue is unwound for every hydrolyzed ATP molecule. PMID:23775070

  20. Integrated Processing: Quality Assurance Procedure of the Surface Layer of Machine Parts during the Manufacturing Step "Diamond Smoothing"

    NASA Astrophysics Data System (ADS)

    Skeeba, V. Yu; Ivancivsky, V. V.; Lobanov, D. V.; Zhigulev, A. K.; Skeeba, P. Yu

    2016-04-01

    The present study has found that during the integrated processing after the diamond smoothing, in the surface-hardened sample a cold-worked layer 0.01 ... 0.02 mm in thickness, the microhardness value of which reaches 868 HV, is formed. The intensity of compressive stresses on the part surface increases to στ = -678 MPa. The analysis of the experimental data has shown the relationship between the parameter Ra and the processing modes that can be used during diamond smoothing, based on the high performance and the desired surface roughness. It has been found that the minimum value of roughness Ra = 0.18±0.08 μm is reliably achieved by smoothing processing when the smoothing force Py ranges from 100 N to 150 N.

  1. Proceedings of the International Conference on Educational Data Mining (EDM) (6th, Memphis, TN., USA, July 6-9, 2013)

    ERIC Educational Resources Information Center

    D'Mello, S. K., Ed.; Calvo, R. A., Ed.; Olney, A., Ed.

    2013-01-01

    Since its inception in 2008, the Educational Data Mining (EDM) conference series has featured some of the most innovative and fascinating basic and applied research centered on data mining, education, and learning technologies. This tradition of exemplary interdisciplinary research has been kept alive in 2013 as evident through an imaginative,…

  2. Proceedings of the International Conference on Educational Data Mining (EDM) (4th, Eindhoven, the Netherlands, July 6-8, 2011)

    ERIC Educational Resources Information Center

    Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John

    2011-01-01

    The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…

  3. Proceedings of the International Conference on Educational Data Mining (EDM) (8th, Madrid, Spain, June 26-29, 2015)

    ERIC Educational Resources Information Center

    Santos, Olga Cristina, Ed.; Boticario, Jesus Gonzalez, Ed.; Romero, Cristobal, Ed.; Pechenizkiy, Mykola, Ed.; Merceron, Agathe, Ed.; Mitros, Piotr, Ed.; Luna, Jose Maria, Ed.; Mihaescu, Cristian, Ed.; Moreno, Pablo, Ed.; Hershkovitz, Arnon, Ed.; Ventura, Sebastian, Ed.; Desmarais, Michel, Ed.

    2015-01-01

    The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the International Educational Data Mining Society at UNED, the National University for Distance Education in Spain. The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014, Memphis 2013, Chania 2012,…

  4. Tunneling machine

    SciTech Connect

    Snyder, L.L.

    1980-02-19

    A diametrically compact tunneling machine for boring tunnels is disclosed. The machine includes a tubular support frame having a hollow piston mounted therein which is movable from a retracted position in the support frame to an extended position. A drive shaft is rotatably mounted in the hollow piston and carries a cutter head at one end. The hollow piston is restrained against rotational movement relative to the support frame and the drive shaft is constrained against longitudinal movement relative to the hollow piston. A plurality of radially extendible feet project from the support frame to the tunnel wall to grip the tunnel wall during a tunneling operation wherein the hollow piston is driven forwardly so that the cutter head works on the tunnel face. When the hollow piston is fully extended, a plurality of extendible support feet, which are fixed to the rearward and forward ends of the hollow piston, are extended, the radially extendible feet are retracted and the support frame is shifted forwardly by the piston so that a further tunneling operation may be initiated.

  5. Artificial Molecular Machines.

    PubMed

    Balzani; Credi; Raymo; Stoddart

    2000-10-01

    The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field

  6. Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students' Command Process through Instrumental Orchestrations

    ERIC Educational Resources Information Center

    Trouche, Luc

    2004-01-01

    After an introduction which addresses some basic questions, this article is organized around three points: (1) The theoretical framework of the so-called "instrumental approach" which has been a theme in the last two CAME symposia; (2) A consideration of two processes ("instrumentalization" and "instrumentation") which interact in the…

  7. Urban land use mapping by machine processing of ERTS-1 multispectral data: A San Francisco Bay area example

    NASA Technical Reports Server (NTRS)

    Ellefsen, R.; Swain, P. H.; Wray, J. R.

    1973-01-01

    The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.

  8. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  9. Electrical Evaluation Of Welding Machines Based On The Arc Properties. Application To SMAW, GMAW And GTAW Processes

    NASA Astrophysics Data System (ADS)

    Miguel, V.; Martínez, A.; Manjabacas, M. C.; Coello, J.; Calatayud, A.

    2009-11-01

    In this work, a methodology to obtain the electrical behavior of arc welding equipments is presented. The method is based on the electrical arc fundamentals and it is applied to Shielding Metal Arc Welding and to Gas Metal Arc Welding processes. For the first one, different arc points are achieved by practicing several arc lengths. For MIG process, different arc lengths are made by changing the feel wire velocity. Arc current and voltage are measured for the different arc length in both cases. Finally, a Gas Tungsten Arc Welding equipment has been used to obtain the electrical arc characteristics as a function of arc length. Different considerations about the thermal and electrical principles related to the arc behavior have been made.

  10. Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Ind., June 29-July 1, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers are presented on the applicability of Landsat data to water management and control needs, IBIS, a geographic information system based on digital image processing and image raster datatype, and the Image Data Access Method (IDAM) for the Earth Resources Interactive Processing System. Attention is also given to the Prototype Classification and Mensuration System (PROCAMS) applied to agricultural data, the use of Landsat for water quality monitoring in North Carolina, and the analysis of geophysical remote sensing data using multivariate pattern recognition. The Illinois crop-acreage estimation experiment, the Pacific Northwest Resources Inventory Demonstration, and the effects of spatial misregistration on multispectral recognition are also considered. Individual items are announced in this issue.

  11. Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression

    NASA Astrophysics Data System (ADS)

    Colkesen, Ismail; Sahin, Emrehan Kutlug; Kavzoglu, Taskin

    2016-06-01

    Identification of landslide prone areas and production of accurate landslide susceptibility zonation maps have been crucial topics for hazard management studies. Since the prediction of susceptibility is one of the main processing steps in landslide susceptibility analysis, selection of a suitable prediction method plays an important role in the success of the susceptibility zonation process. Although simple statistical algorithms (e.g. logistic regression) have been widely used in the literature, the use of advanced non-parametric algorithms in landslide susceptibility zonation has recently become an active research topic. The main purpose of this study is to investigate the possible application of kernel-based Gaussian process regression (GPR) and support vector regression (SVR) for producing landslide susceptibility map of Tonya district of Trabzon, Turkey. Results of these two regression methods were compared with logistic regression (LR) method that is regarded as a benchmark method. Results showed that while kernel-based GPR and SVR methods generally produced similar results (90.46% and 90.37%, respectively), they outperformed the conventional LR method by about 18%. While confirming the superiority of the GPR method, statistical tests based on ROC statistics, success rate and prediction rate curves revealed the significant improvement in susceptibility map accuracy by applying kernel-based GPR and SVR methods.

  12. Laser machining of explosives

    DOEpatents

    Perry, Michael D.; Stuart, Brent C.; Banks, Paul S.; Myers, Booth R.; Sefcik, Joseph A.

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  13. Copying Machine Improvement

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Manufacturer of the Model 2210 copying machine was looking for a plastic valve bushing material that could be produced by a low-cost injection molding process to replace the unsuitable valve bushing they were using. NERAC conducted a computer search of the NASA database and was able to supply Nashua Corporation with several technical reports in their area of interest. Information aided the company's development of a urethane valve bushing which solved the problem and created a dramatic reduction in unit cost.

  14. Review of machine learning and signal processing techniques for automated electrode selection in high-density microelectrode arrays.

    PubMed

    Van Dijck, Gert; Van Hulle, Marc M

    2014-08-01

    Recently developed CMOS-based microprobes contain hundreds of electrodes on a single shaft with interelectrode distances as small as 30 µm. So far, neuroscientists manually select a subset of those electrodes depending on their appraisal of the "usefulness" of the recorded signals, which makes the process subjective but more importantly too time consuming to be useable in practice. The ever-increasing number of recording electrodes on microelectrode probes calls for an automated selection of electrodes containing "good quality signals" or "signals of interest." This article reviews the different criteria for electrode selection as well as the basic signal processing steps to prepare the data to compute those criteria. We discuss three of them. The first two select the electrodes based on "signal quality." The first criterion computes the penalized signal-to-noise ratio (SNR); the second criterion models the neuroscientist's appraisal of signal quality. Last, our most recent work allows the selection of electrodes that capture particular anatomical cell types. The discussed algorithms perform what is called in the literature "electronic depth control" in contrast to the mechanical repositioning of the electrode shafts in search of "good quality signals" or "signals of interest." PMID:24231119

  15. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  16. Interior Vector Magnetic Field Monitoring via External Measurements for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Brown, Michael; Carr, Robert; Filippone, Bradley; Osthelder, Charles; Plaster, Bradley; Slutsky, Simon; Swank, Christopher

    2015-10-01

    A prototype of a magnetic field monitoring system designed to reconstruct the vector magnetic field components (and, hence, all nine of the ∂Bi / ∂xj field gradients) within the interior measurement fiducial volume solely from external measurements is under development for the SNS neutron EDM experiment. A first-generation room-temperature prototype array has already been tested. A second-generation prototype array consisting of 12 cryogenic-compatible fluxgate magnetometer probes will be deployed within the cold region of the experiment's 1 / 3 -scale cryogenic magnet testing apparatus. We will report progress towards the development of this second-generation prototype. This work was supported in part by the U. S. Department of Energy Office of Nuclear Physics under Award No. DE-FG02-08ER41557.

  17. Muonium production target for the muon g-2/EDM experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Kanda, Sohtaro

    2014-08-01

    There is more than three standard-deviations discrepancy between measurement and theoretical prediction of the muon anomalous magnetic moment. We are going to measure the precision value of muon g - 2 and search for physics beyond standard model. In addition, we can search for muon EDM which violates CP symmetry. CP violation in charged lepton sector is currently not found. We are developing the 'Ultra Cold Muon Beam' instead of tertiary muon beam with electric focusing. Ultra cold muon is realized by laser ionization of muonium (bound state of a muon and an electron) from the production target. Increase of muonium yield is essential for our experimental goal; 0.1ppm statistical precision. Muonium production experiment at J-PARC MLF MUSE is planned in 2012 autumn. In this paper, we discuss the development of muonium production target and positron detector for the study.

  18. Studies of Systematic Limitations in the EDM Searches at Storage Rings

    NASA Astrophysics Data System (ADS)

    Saleev, Artem; Nikolaev, Nikolai; Rathmann, Frank

    2016-02-01

    Searches of the electric dipole moment (EDM) at a pure magnetic ring, like COSY, encounter strong background coming from magnetic dipole moment (MDM). The most troubling issue is the MDM spin rotation in the so-called imperfection, radial and longitudinal, B-fields. To study the systematic effects of the imperfection fields at COSY we proposed the original method which makes use of the two static solenoids acting as artificial imperfections. Perturbation of the spin tune caused by the spin kicks in the solenoids probes the systematic effect of cumulative spin rotation in the imperfection fields all over the ring. The spin tune is one of the most precise quantities measured presently at COSY at 10‑10 level. The method has been successfully tested in September 2014 run at COSY, unravelling strength of spin kicks in the ring’s imperfection fields at the level of 10‑3rad.

  19. The effects of latent print processing on questioned documents produced by office machine systems utilizing inkjet technology and toner.

    PubMed

    LaPorte, Gerald M; Ramotowski, Robert S

    2003-05-01

    Counterfeiting of currency and identity documents, death threats, illegitimate business transactions, and terrorist-related activities are some examples of the types of crimes that often involve documents produced from printers and copiers. Although standard protocol typically requires a questioned document (QD) examination prior to latent print (LP) processing, occasionally, items of evidence may be submitted for a QD examination following the application of a series chemicals utilized in the development of latent fingerprints. In such cases, the forensic examiner must take into account any previous treatments prior to initiating an examination on documents produced with a printer or copier. This study was devised to examine the effects of a latent print development technique [ninhydrin, physical developer, and a bleach enhancer] on the physical and chemical examination of documents produced from copiers and printers. PMID:12762543

  20. An intelligent CNC machine control system architecture

    SciTech Connect

    Miller, D.J.; Loucks, C.S.

    1996-10-01

    Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications using platform-independent software.

  1. Interior Vector Magnetic Field Monitoring for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Plaster, Brad

    2014-09-01

    A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. This work was supported in part by the U.S. Department of Energy Office of

  2. Natural Language Processing and Machine Learning (NLP/ML): Applying Advances in Biomedicine to the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Duerr, R.; Myers, S.; Palmer, M.; Jenkins, C. J.; Thessen, A.; Martin, J.

    2015-12-01

    Semantics underlie many of the tools and services available from and on the web. From improving search results to enabling data mashups and other forms of interoperability, semantic technologies have proven themselves. But creating semantic resources, especially re-usable semantic resources, is extremely time consuming and labor intensive. Why? Because it is not just a matter of technology but also of obtaining rough consensus if not full agreement amongst community members on the meaning and order of things. One way to develop these resources in a more automated way would be to use NLP/ML techniques to extract the required resources from large corpora of subject-specific text such as peer-reviewed papers where presumably a rough consensus has been achieved at least about the basics of the particular discipline involved. While not generally applied to Earth Sciences, considerable resources have been spent in other fields such as medicine on these types of techniques with some success. The NSF-funded ClearEarth project is applying the techniques developed for biomedicine to the cryosphere, geology, and biology in order to spur faster development of the semantic resources needed in these fields. The first area being addressed by the project is the cryosphere, specifically sea ice nomenclature where an existing set of sea ice ontologies are being used as the "Gold Standard" against which to test and validate the NLP/ML techniques. The processes being used, lessons learned and early results will be described.

  3. Biosleeve Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  4. RISMA: A Rule-based Interval State Machine Algorithm for Alerts Generation, Performance Analysis and Monitoring Real-Time Data Processing

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2013-04-01

    The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory

  5. New spectroscopic constants from high-resolution Stark spectroscopy of the PbF molecule: Implications for state-selection in an e-EDM measurement

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Coker, James; Furneaux, John; Shafer-Ray, Neil

    2012-06-01

    Lead mono-fluoride (PbF) is ideally suited to carry out a search for an e-EDM: PbF has relatively large molecular dipole moment (making it easy to polarize), a strong effective internal field (making it sensitive to an e-EDM), ground-state sensitivity to the e-EDM (allowing for long coherence time), a small magnetic moment (making it less sensitive to stray magnetic fields) and convenient optical spectroscopy. Here we use a sensitive multi-photon ionization technique (pseudo-continuous-REMPI) to carry out A<-X1 spectroscopic measurements. New dipole moments and spectroscopic constants for the A state are presented. With these new data we have isolated an e-EDM sensitive Stark transition at a magic electric field that both polarizes the molecule and allows for sharp transitions that are immune to variations in electric field.

  6. Machine musicianship

    NASA Astrophysics Data System (ADS)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  7. Machine wanting.

    PubMed

    McShea, Daniel W

    2013-12-01

    Wants, preferences, and cares are physical things or events, not ideas or propositions, and therefore no chain of pure logic can conclude with a want, preference, or care. It follows that no pure-logic machine will ever want, prefer, or care. And its behavior will never be driven in the way that deliberate human behavior is driven, in other words, it will not be motivated or goal directed. Therefore, if we want to simulate human-style interactions with the world, we will need to first understand the physical structure of goal-directed systems. I argue that all such systems share a common nested structure, consisting of a smaller entity that moves within and is driven by a larger field that contains it. In such systems, the smaller contained entity is directed by the field, but also moves to some degree independently of it, allowing the entity to deviate and return, to show the plasticity and persistence that is characteristic of goal direction. If all this is right, then human want-driven behavior probably involves a behavior-generating mechanism that is contained within a neural field of some kind. In principle, for goal directedness generally, the containment can be virtual, raising the possibility that want-driven behavior could be simulated in standard computational systems. But there are also reasons to believe that goal-direction works better when containment is also physical, suggesting that a new kind of hardware may be necessary. PMID:23792091

  8. Machine vision for digital microfluidics.

    PubMed

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future. PMID:20113117

  9. Development of an electric field application system with transparent electrodes towards the electron EDM measurement with laser-cooled Fr atoms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Taisuke; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Inoue, Takeshi; Itoh, Masatoshi; Kawamura, Hirokazu; Kato, Ko; Sakamoto, Kosuke; Uchiyama, Aiko; Sakemi, Yasuhiro

    2014-09-01

    The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. This work is supported by Grants-in-Aid for Scientific Research (No. 26220705) and Tohoku University's Focused Research Project.

  10. Calibration of catalyst temperature in automotive engines over coldstart operation in the presence of different random noises and uncertainty: Implementation of generalized Gaussian process regression machine

    NASA Astrophysics Data System (ADS)

    Azad, Nasser L.; Mozaffari, Ahmad

    2015-12-01

    The main scope of the current study is to develop a systematic stochastic model to capture the undesired uncertainty and random noises on the key parameters affecting the catalyst temperature over the coldstart operation of automotive engine systems. In the recent years, a number of articles have been published which aim at the modeling and analysis of automotive engines' behavior during coldstart operations by using regression modeling methods. Regarding highly nonlinear and uncertain nature of the coldstart operation, calibration of the engine system's variables, for instance the catalyst temperature, is deemed to be an intricate task, and it is unlikely to develop an exact physics-based nonlinear model. This encourages automotive engineers to take advantage of knowledge-based modeling tools and regression approaches. However, there exist rare reports which propose an efficient tool for coping with the uncertainty associated with the collected database. Here, the authors introduce a random noise to experimentally derived data and simulate an uncertain database as a representative of the engine system's behavior over coldstart operations. Then, by using a Gaussian process regression machine (GPRM), a reliable model is used for the sake of analysis of the engine's behavior. The simulation results attest the efficacy of GPRM for the considered case study. The research outcomes confirm that it is possible to develop a practical calibration tool which can be reliably used for modeling the catalyst temperature.

  11. Upgrading the capabilities of existing machine tools for precision machining

    SciTech Connect

    Barkman, W.E.

    1982-05-01

    A number of two-axis turning machines at the Oak Ridge Y-12 Plant have undergone upgrading as a means of meeting the needs for parts with tolerances that were more restrictive than the capability of the basic machine. The level of upgrading has ranged from changing a single machine characteristic to doing a complete overhaul of the slides, drives, spindle, and control system. The features available for the up-grading process include: tool setters, air bearing spindles and slides, pressurized oil bearing slides, electric dc torque motor drives, linear motor slide drives, eddy current spindle drives, laser feedback, vibration-isolation machine platforms, and computer numerical control (CNC) systems. Actual case histories are presented which show the levels of performance achieved with the various modifications. A discussion of the advantages and disadvantages of the various options is included.

  12. The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides.

    PubMed

    Tsuchiya, Tokuji; Eulgem, Thomas

    2014-01-01

    Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain. PMID:25763495

  13. Systematic errors in the measurement of the permanent electric dipole moment (EDM) of the 199Hg atom

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Graner, Brent; Lindahl, Eric; Heckel, Blayne

    2016-03-01

    This talk provides a discussion of the systematic errors that were encountered in the 199Hg experiment described earlier in this session. The dominant systematic error, unseen in previous 199Hg EDM experiments, arose from small motions of the Hg vapor cells due to forces exerted by the applied electric field. Methods used to understand this effect, as well as the anticipated sources of systematic errors such as leakage currents, parameter correlations, and E2 and v × E / c effects, will be presented. The total systematic error was found to be 72% as large as the statistical error of the EDM measurement. This work was supported by NSF Grant 1306743 and by DOE Grant DE-FG02-97ER41020.

  14. CATSI EDM: a new sensor for the real-time passive stand-off detection and identification of chemicals

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Lacasse, Paul; Lavoie, Hugo; Bouffard, François; Montembeault, Yan; Farley, Vincent; Belhumeur, Louis; Lagueux, Philippe

    2010-04-01

    DRDC Valcartier recently completed the development of the CATSI EDM (Compact Atmospheric Sounding Interferometer Engineering Development Model) for the Canadian Forces (CF). It is a militarized sensor designed to meet the needs of the CF in the development of area surveillance capabilities for the detection and identification of chemical Warfare Agents (CWA) and toxic industrial chemicals (TIC). CATSI EDM is a passive infrared double-beam Fourier spectrometer system designed for real-time stand-off detection and identification of chemical vapours at distances up to 5 km. It is based on the successful passive differential detection technology. This technique known as optical subtraction, results in a target gas spectrum which is almost free of background, thus making possible detection of weak infrared emission in strong background emission. This paper summarizes the system requirements, achievements, hardware and software characteristics and test results.

  15. Systematic errors in the measurement of the permanent electric dipole moment (EDM) of the 199 Hg atom

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Graner, Brent; Heckel, Blayne; Lindahl, Eric

    2016-05-01

    This talk provides a discussion of the systematic errors that were encountered in the 199 Hg experiment described earlier in this session. The dominant systematic error, unseen in previous 199 Hg EDM experiments, arose from small motions of the Hg vapor cells due to forces exerted by the applied electric field. Methods used to understand this effect, as well as the anticipated sources of systematic errors such as leakage currents, parameter correlations, and E2 and v × E / c effects, will be presented. The total systematic error was found to be 72% as large as the statistical error of the EDM measurement. This work was supported by NSF Grant 1306743 and by DOE Grant DE-FG02-97ER41020.

  16. Universal Memcomputing Machines.

    PubMed

    Traversa, Fabio Lorenzo; Di Ventra, Massimiliano

    2015-11-01

    We introduce the notion of universal memcomputing machines (UMMs): a class of brain-inspired general-purpose computing machines based on systems with memory, whereby processing and storing of information occur on the same physical location. We analytically prove that the memory properties of UMMs endow them with universal computing power (they are Turing-complete), intrinsic parallelism, functional polymorphism, and information overhead, namely, their collective states can support exponential data compression directly in memory. We also demonstrate that a UMM has the same computational power as a nondeterministic Turing machine, namely, it can solve nondeterministic polynomial (NP)-complete problems in polynomial time. However, by virtue of its information overhead, a UMM needs only an amount of memory cells (memprocessors) that grows polynomially with the problem size. As an example, we provide the polynomial-time solution of the subset-sum problem and a simple hardware implementation of the same. Even though these results do not prove the statement NP = P within the Turing paradigm, the practical realization of these UMMs would represent a paradigm shift from the present von Neumann architectures, bringing us closer to brain-like neural computation. PMID:25667360

  17. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  18. Study of on-machine error identification and compensation methods for micro machine tools

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-08-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  19. Applied machine vision

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on robot vision. Topics considered at the conference included the link between fixed and flexible automation, general applications of machine vision, the development of a specification for a machine vision system, machine vision technology, machine vision non-contact gaging, and vision in electronics manufacturing.

  20. Machine Shop Lathes.

    ERIC Educational Resources Information Center

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  1. Extensive Frequency Comb Velocity Modulation Spectroscopy of ThF^+ for Use in the Jila Electron Edm Experiment

    NASA Astrophysics Data System (ADS)

    Gresh, Dan; Cossel, Kevin; Ye, Jun; Cornell, Eric

    2014-06-01

    The metastable ^3Δ_1 state in trapped HfF^+ is being used for an ongoing measurement of the electron electric dipole moment (eEDM) ThF^+, which has a larger effective electric field and a longer-lived ^3Δ_1 state, offers increased sensitivity for an eEDM measurement. Recently, the Heaven group has spectroscopically studied the low-lying states of ThF^+. However, to date there is no detailed information available about technically-accessible laser transitions in the near-infrared region of the spectrum, which are necessary for state preparation and detection in an eEDM experiment. By applying the technique of frequency comb velocity modulation spectroscopy (VMS) to ThF^+ we can acquire 150 cm-1 of continuous, ion-sensitive spectra with 150 MHz resolution in 25 minutes. Here, we report on extensive broadband, high-resolution survey spectroscopy of ThF^+ in the near-IR where we have observed and accurately fit several rovibronic transitions. In addition, we have observed and characterized numerous rovibronic transitions from an unknown thoriated species of molecular ions. H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, E. A. Cornell, Science 342, 1220 (2013). B. J. Barker, I. O. Antonov, M. C. Heaven, K. A. Peterson, J. Chem. Phys. 136, 104305 (2012). L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, E. A. Cornell, PRL 107, 093002 (2011).

  2. 3He comagnetometer readout using SQUIDs in the neutron electric dipole moment (nEDM) experiment at SNS

    NASA Astrophysics Data System (ADS)

    Clayton, Steven; Kim, Young; nEDM Collaboration

    2013-04-01

    The nEDM collaboration is developing a new experiment to measure the neutron's electric dipole moment to ~10-28 e-cm. A non-zero neutron EDM would be the first observation of CP violation in a baryon containing only light quarks, while a null result would be inconsistent with predictions from most variants of supersymmetry. The experiment will measure the difference in spin precession, of polarized ultracold neutrons (UCN) produced and stored in a superfluid-helium-filled cell, when the magnetic and electric fields are parallel and antiparallel. A key feature of the experimental method is the use of polarized 3He atoms within the cell acting as both spin analyzer and comagnetometer to the UCN. In one mode of running, the 3He precession signal is detected by SQUID gradiometers adjacent to the cell. This talk will cover recent experimental studies of a prototype SQUID gradiometer suitable for the nEDM experiment. This work was supported by DOE Office Of Science, Nuclear Physics.

  3. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    PubMed

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. PMID:26322589

  4. From human-machine interaction to human-machine cooperation.

    PubMed

    Hoc, J M

    2000-07-01

    Since the 1960s, the rapid growth of information systems has led to the wide development of research on human-computer interaction (HCI) that aims at the designing of human-computer interfaces presenting ergonomic properties, such as friendliness, usability, transparency, etc. Various work situations have been covered--clerical work, computer programming, design, etc. However, they were mainly static in the sense that the user fully controls the computer. More recently, public and private organizations have engaged themselves in the enterprise of managing more and more complex and coupled systems by the means of automation. Modern machines not only process information, but also act on dynamic situations as humans have done in the past, managing stock exchange, industrial plants, aircraft, etc. These dynamic situations are not fully controlled and are affected by uncertain factors. Hence, degrees of freedom must be maintained to allow the humans and the machine to adapt to unforeseen contingencies. A human-machine cooperation (HMC) approach is necessary to address the new stakes introduced by this trend. This paper describes the possible improvement of HCI by HMC, the need for a new conception of function allocation between humans and machines, and the main problems encountered within the new forms of human-machine relationship. It proposes a conceptual framework to study HMC from a cognitive point of view in highly dynamic situations like aircraft piloting or air-traffic control, and concludes on the design of 'cooperative' machines. PMID:10929820

  5. Multicutter machining of compound parametric surfaces

    NASA Astrophysics Data System (ADS)

    Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.

    2000-10-01

    Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.

  6. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    SciTech Connect

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J{sub Ic} and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate.

  7. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  8. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    SciTech Connect

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then

  9. Development of high-homogeneity magnetic field coil for 129Xe EDM experiment

    NASA Astrophysics Data System (ADS)

    Sakamoto, Y.; Bidinosti, C. P.; Ichikawa, Y.; Sato, T.; Ohtomo, Y.; Kojima, S.; Funayama, C.; Suzuki, T.; Tsuchiya, M.; Furukawa, T.; Yoshimi, A.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.

    2015-04-01

    We search for 129Xe EDM by using an active nuclear spin maser. In this experiment, the amplitude of the maser oscillation signal is one of the most important parameters that eventually determine the frequency precision. The amplitude is proportional to the ratio of the transverse spin relaxation time T 2 to the effective longitudinal spin relaxation time . In particular, for a spin maser of 3He (a co-magnetometer) for which typically reaches ˜50 h, a long T 2 is needed. T 2 depends on the homogeneity of the magnetic field which is applied with coils in order to keep the spins under precession. In the present report, we discuss on the design and construction of a new coil which provided a root-mean square (rms) field gradient of less than 5.0 μG/cm. The result of the field measurement has shown that the field gradient in the cell fulfills the target condition , and in fact T 2 of 3He has been measured to be as long as 11,000 s.

  10. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  11. Machine vision systems using machine learning for industrial product inspection

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  12. Interaction with Machine Improvisation

    NASA Astrophysics Data System (ADS)

    Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo

    We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.

  13. Fabrication of micro end mills by wire EDM and some micro cutting tests

    NASA Astrophysics Data System (ADS)

    Yan, Jiwang; Uchida, Kazuyoshi; Yoshihara, Nobuhito; Kuriyagawa, Tsunemoto

    2009-02-01

    Extremely fine end mills with noncircular cross-sectional profiles have been fabricated utilizing wire electro discharge machining. By using suitable electro discharging conditions, the geometrical error of the end mill and the roundness of the cutting edge were both controlled below 1 µm. Micro grooving tests were performed on electroless nickel plating using these end mills, and the machining behavior was investigated. Nearly burr-free precision machining was realized. Until a total cutting distance of 1000 mm, no remarkable change was found in the cutting force and chip formation, demonstrating the high anti-wear ability of the tools. It can be presumed that the electro discharge-induced micro asperities on the tool surface play an important role in machining by improving the tribological properties of the tool-workpiece interface.

  14. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  15. Hard Machinable Machining of Cobalt Super Alloys

    NASA Astrophysics Data System (ADS)

    Čep, Robert; Janásek, Adam; Petrů, Jana; Čepová, Lenka; Sadílek, Marek; Kratochvíl, Jiří

    2012-12-01

    The article deals with difficult-to-machine cobalt super alloys. The main aim is to test the basic properties of cobalt super alloys and propose suitable cutting materials and machining parameters under the designation 188 when machining. Although the development of technology in chipless machining such as moulding, precision casting and other manufacturing methods continues to advance, machining is still the leading choice for piece production, typical for energy and chemical engineering. Nowadays, super alloys are commonly used in turbine engines in regions that are subject to high temperatures, which require high strength, high temperature resistance, phase stability, as well as corrosion or oxidation resistance.

  16. On-machine dimensional verification. Final report

    SciTech Connect

    Rendulic, W.

    1993-08-01

    General technology for automating in-process verification of machined products has been studied and implemented on a variety of machines and products at AlliedSignal Inc., Kansas City Division (KCD). Tests have been performed to establish system accuracy and probe reliability on two numerically controlled machining centers. Commercial software has been revised, and new cycles such as skew check and skew machining, have been developed to enhance and expand probing capabilities. Probe benefits have been demonstrated in the area of setup, cycle time, part quality, tooling cost, and product sampling.

  17. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  18. Women, Men, and Machines.

    ERIC Educational Resources Information Center

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  19. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  20. Development of a high intensity laser for efficient spin exchange optical pumping in a spin maser measurement of the 129Xe EDM

    NASA Astrophysics Data System (ADS)

    Funayama, Chikako; Furukawa, Takeshi; Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Tsuchiya, Masato; Yoshimi, Akihiro; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    We aim to search for an atomic electric dipole moment (EDM) in 129Xe beyond the present upper limit at the level of 10-28 e cm. The enhancement of the spin polarization through the efficient spin-exchange optical pumping process is important for stable maser operation. Previously, a distributed feedback (DFB) laser and a spatially separated tapered amplifier (TA) were used for the optical pumping. The characteristics of the TA-DFB laser, such as its narrow line width and high frequency stability, enable us to produce a large spin polarization. However, the power of the TA-DFB laser was not sufficient for stable operation of the 3He spin-maser comagnetometer. Recently, we have been preparing a new laser system containing an external cavity laser diode (ECLD) and a more intense TA for more efficient pumping. In the presentation, we discuss the Rb and noble gases polarizations achieved with our new ECLD compared to that with the DFB laser, and evaluate the advantages gained by employing the ECLD.