Science.gov

Sample records for macro-residual strains due

  1. Lattice Strain Due to an Atomic Vacancy

    PubMed Central

    Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.

    2009-01-01

    Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230

  2. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing...

  3. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing...

  4. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing...

  5. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing...

  6. 38 CFR 4.58 - Arthritis due to strain.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Arthritis due to strain... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.58 Arthritis due to strain. With service incurred lower extremity amputation or shortening, a disabling arthritis, developing...

  7. Are quantum dots in unexpected locations due to strain?

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil; Thorbeck, Ted

    It is a fairly common occurrence that, in top-gated Si quantum dots, the dots appear in reproducible but unexpected positions. For instance, sometimes a group will make gates in order to electrostatically generate tunnel barriers, but discover that the quantum dot is formed underneath the gate rather than between two barrier gates. We will discuss the possibility that such quantum dots arise from the mechanical strain induced by the gate. The model is simple: i) We simulate metal or polysilicon gates on top of a Si/SiO2 wafer, and calculate the stress and strain from differential thermal contraction of the materials; ii) Using the fact that the energy of the Si conduction band depends on strain through the deformation potential, we then convert the strain modulation to a potential energy modulation. As an example, we find that, for a single Al gate, there is a potential well directly underneath the gate with the size of a few meV, in agreement with recent experimental results. We also show that polysilicon gates will not produce such strain-induced quantum dots.

  8. Meltwater production due to strain heating in Storglaciären, Sweden

    NASA Astrophysics Data System (ADS)

    Aschwanden, Andy; Blatter, Heinz

    2005-12-01

    Storglaciären, northern Sweden, is temperate in most parts except for a cold surface layer in the ablation zone. One of four possible sources for liquid water in temperate ice is melting due to strain heating. Velocity fields are calculated with an ice flow model, so that calculated and observed surface velocities agree. Meltwater accumulation is computed by integrating strain heating along trajectories starting at the surface in the accumulation area and ending at the cold-temperate transition surface in the ablation zone. The distribution of moisture content due to strain heating alone is mapped in a longitudinal section of Storglaciären. Values reach more than 10 g of water per kilogram ice-water mixture in the lowest parts of the temperate domain. For this moisture content the rate factor is more than 3 times higher than for water-free ice, and therefore water production by strain heating is important for the modeling of temperate and polythermal glaciers.

  9. Atomistic mechanisms of strain relaxation due to ductile void growth in ultrathin films of face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Gungor, M. Rauf; Maroudas, Dimitrios

    2005-06-01

    A comprehensive computational analysis is reported of the atomistic mechanisms of strain relaxation and failure in free-standing Cu thin films under applied biaxial tensile strain for strain levels up to 6%. The analysis focuses on nanometer-scale-thick films with a preexisting void extending across the film thickness and the film plane oriented normal to the [111] crystallographic direction. Our computational study is based on isothermal-isostrain large-scale molecular-dynamics simulations within an embedded-atom-method parametrization for Cu. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Within the considered strain range, after an elastic response at a low strain (<2%), void growth is the major strain relaxation mechanism mediated by the emission of perfect screw dislocation pairs from the void surface and subsequent dislocation propagation; as a result, a plastic zone forms around the void. Plastic deformation is accompanied by the glide motion of the dislocations emitted from the void surface, void surface morphological transitions, formation of a step pattern on the film's surfaces, dislocation jogging, vacancy generation due to gliding jogged dislocations, dislocation-vacancy interactions, vacancy pipe diffusion along dislocation cores, as well as dislocation-dislocation interactions. The increase in film surface roughness with increasing strain eventually leads to nucleation and propagation from the film surfaces of threading dislocation loops, which ultimately break up when they reach the opposite free surface of the thin film.

  10. Group A Escherichia coli-Related Purpura Fulminans: an Unusual Manifestation Due to an Unusual Strain?

    PubMed Central

    Amara, Marlène; Bonacorsi, Stéphane; Bedel, Jérôme; Mira, Jean-Paul; Laurent, Virginie; Socha, Koryna; Bruneel, Fabrice; Pangon, Béatrice; Bédos, Jean-Pierre

    2014-01-01

    We describe an exceptional case of life-threatening group A Escherichia coli-induced purpura fulminans. Genotyping of common polymorphisms in genes involved in innate immunity or coagulation did not reveal known susceptibility to such a manifestation. Genetic analysis of the strain revealed an unusual conserved virulence plasmidic region, pointing out its potential virulence. PMID:25232165

  11. Topological end states due to inhomogeneous strains in wrinkled semiconducting ribbons

    NASA Astrophysics Data System (ADS)

    Pandey, Sudhakar; Ortix, Carmine

    2016-05-01

    We show that curvature-induced inhomogeneous strain distributions in nanoscale buckled semiconducting ribbons lead to the existence of end states which are topologically protected by inversion symmetry. These end-state doublets, corresponding to the so-called Maue-Shockley states, are robust against weak disorder. By identifying and calculating the corresponding topological invariants, we further show that a buckled semiconducting ribbon undergoes topological phase transitions between trivial and nontrivial insulating phases by varying its real-space geometry.

  12. Highly localized strain fields due to planar defects in epitaxial SrBi2Nb2O9 thin films

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Guinebretière, R.; Dauger, A.

    2005-04-01

    Thin films of (00l) oriented SrBi2Nb2O9 epitaxially grown on SrTiO3 by sol-gel spin coating have been studied by means of high-resolution x-ray diffraction reciprocal space mapping. It is shown that these materials contain highly localized heterogeneous strain fields due to imperfect stacking faults (i.e., faults that do not propagate throughout the crystallites building up the film). In the film plane, the strain fields are confined to 11 nm wide regions and characterized by a vertical displacement of 0.18c (where c is the cell parameter) showing that the stacking faults are mainly composed of one additional (or missing) perovskite layer. Prolonged thermal annealing at 700 °C strongly reduces the density of stacking faults and yields a more uniform strain distribution within the film volume without inducing significant grain growth.

  13. Stored energy in metallic glasses due to strains within the elastic limit

    NASA Astrophysics Data System (ADS)

    Greer, A. L.; Sun, Y. H.

    2016-06-01

    Room temperature loading of metallic glasses, at stresses below the macroscopic yield stress, raises their enthalpy and causes creep. Thermal cycling of metallic glasses between room temperature and 77 K also raises their enthalpy. In both cases, the enthalpy increases are comparable to those induced by heavy plastic deformation, but, as we show, the origins must be quite different. For plastic deformation, the enthalpy increase is a fraction (<10%) of the work done (WD) (and, in this sense, the behaviour is similar to that of conventional polycrystalline metals and alloys). In contrast, the room temperature creep and the thermal cycling involve small strains well within the elastic limit; in these cases, the enthalpy increase in the glass exceeds the WD, by as much as three orders of magnitude. We argue that the increased enthalpy can arise only from an endothermic disordering process drawing heat from the surroundings. We examine the mechanisms of this process. The increased enthalpy ('stored energy') is a measure of rejuvenation and appears as an exothermic heat of relaxation on heating the glass. The profile of this heat release (the 'relaxation spectrum') is analysed for several metallic glasses subjected to various treatments. Thus, the effects of the small-strain processing (creep and thermal cycling) can be better understood, and we can explore the potential for improving properties, in particular the plasticity, of metallic glasses. Metallic glasses can exhibit a wide range of enthalpy at a given temperature, and small-strain processing may assist in accessing this for practical purposes.

  14. Single 1 g dose of cefotaxime in the treatment of infections due to penicillinase-producing strains of Neisseria gonorrhoeae.

    PubMed Central

    de Koning, G A; Tio, D; van den Hoek, J A; van Klingeren, B

    1983-01-01

    One hundred and two patients with an uncomplicated infection due to penicillinase-producing strains of Neisseria gonorrhoeae (PPNG) were treated with a single 1 g dose of cefotaxime. At follow-up within 15 days all genital and rectal infections were cured. Pharyngeal infections also seemed to respond to this treatment. A relatively high proportion (30.9%) of patients, however, developed post-gonococcal urethritis. PMID:6299449

  15. Effects of nutritional supplementation with l-arginine on repair of injuries due to muscle strain: experimental study on rats☆

    PubMed Central

    Couto, Lauren Izabel Medeiros; Wuicik, William Luiz; Kuhn, Ivan; Capriotti, Juan Rodolfo Vilela; Repka, João Carlos

    2015-01-01

    Objective To evaluate the influence of oral supplementation with arginine on regeneration of injuries due to straining of the anterior tibial muscle of rats. Methods Twenty-four Wistar rats of weight 492.5 ± 50.45 g were used. Injuries were induced through straining the anterior tibial muscles. The rats were separated into three groups of eight rats each. In the untreated group (UTG), after induction of injuries, the rats were observed for 24 h. In the simulation group (SG) and the arginine group (AG) respectively, the rats received isotonic saline solution and arginine solution via direct gavage, over a seven-day period. At the end of the period, blood samples were collected for serum evaluations of creatine kinase (CK), lactic dehydrogenase (LDH), aspartate aminotransferase (AST) and C-reactive protein (CRP). The right and left anterior tibial muscles were resected for histopathological evaluations on the muscle injuries, investigating edema, hemorrhage and disorganization or morphometric alteration of the muscle fibers. The tissue repair was investigated in terms of proliferation of adipose tissue, angiogenesis and collagen fibers. The ANOVA and Student's t methods were used and p ≤ 0.05 was taken to be statistically significant. Results In the serum evaluations, the AG showed lower CK assay values and higher AST values. In the histopathological evaluation, the UTG presented edema and hemorrhage compatible with injuries due to strain; the SG presented edema and hemorrhage with proliferation of adipose tissue and collagen fibers; and the AG presented not only the findings of the SG but also, especially, intense angiogenesis. Conclusion Oral supplementation with arginine did not cause any significant metabolic alterations that would contraindicate its use and it induced angiogenesis during the repair of muscles injured due to strain. PMID:26401505

  16. Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2014-03-01

    The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for expansive comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The particle sizes are assumed to be distributed according to the Schuhmann power law. The condition that the rate of release of the local kinetic energy must be equal to the interface fracture energy yields a relation between the particle size, the shear strain rate, the fracture energy and the mass density. As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events, the average particle size is proportional to the (-2/3) power of the shear strain rate. The main characteristic of the comminution process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic energy of shear strain rate to the maximum possible

  17. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  18. [Epidural abscess due to a Mycobacterium tuberculosis strain with primary resistance to isoniazid and ethambutol].

    PubMed

    Sener, Alper; Akçalı, Alper; Karatağ, Ozan; Koşar, Sule; Değirmenci, Yıldız; Akman, Tarık

    2012-10-01

    Tuberculosis is primarily characterized by pulmonary involvement, however, one third of the cases exhibit extrapulmonary tuberculosis. In this report, a case of epidural abscess due to Mycobacterium tuberculosis with primary resistance to isoniazid and ethambutol was presented. A 57-year-old male patient was admitted to emergency service with ten days history of weakness in legs, disability of walking and fever. Neurological examination revealed paraplegia of lower extremities, numbness distal to T2 disc level and hyperactivity of deep tendon reflexes indicating transverse myelitis. Laboratory findings were as follows; ESR: 74 mm/hour, CRP: 22 g/L, ALT: 42 IU/L, AST: 45 IU/L and white blood cell count 23.000/mm3 (45% polymorphonuclear leukocyte, 45% lymphocyte, 10% monocyte). Spinal magnetic resonance imaging showed a fusiform abscess localized at anterior epidural space and extending along levels of C5-6 and C6-7. The longitudinal dimension of the abscess was 3 cm. The lesion was hypointense on T1 and hyperintense on T2 weighted MRI images with prominent rim shaped contrast enhancement on contrast-enhanced T1-weighted images. At fourth day of hospitalization the patient underwent neurosurgical management. M.tuberculosis was isolated from the cultures of operation material by Mycobacteria Growth Incubator Tube system (MGIT, BBL; BD, USA) on the 12th day. The isolate was found susceptible to streptomycin and rifampisin, but resistant to isoniazid and ethambutol. The treatment was initiated with rifampicin 600 mg/day, pyrazinamid 2 g/day, ethambutol 1.5 g/day and levofloxacin 500 mg/day. At the end of second month levofloxacin 500 mg/day and rifampisin 600 mg/day combination was sustained and total treatment period was planned as nine months. As far as the national literature was considered, this was the first case of extrapulmonary tuberculosis with primary resistance to isoniazid and ethambutol. PMID:23188583

  19. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  20. Impact Fragmentation and Crushing of Concrete and Other Solids Due to Kinetic Energy of High Shear Strain Rate

    NASA Astrophysics Data System (ADS)

    Bazant, Zdenek; Kirane, Kedar

    While numerous studies have dealt with dynamic crack propagation, they have not led to a macroscopic continuum model usable in FE analysis. Recent work on such a model is reviewed. The key idea is that comminution under high-rate shear is driven by the release local kinetic (rather than strain) energy of the shear strain rate field in forming finite-size fragments. At strain rates >103/s, this energy exceeds the maximum possible elastic strain energy by orders of magnitude. It is found that the particle size scales as the -2/3 power of the shear strain rate and as the 2/3 power of interface fracture energy, and the released and dissipated kinetic energy as the 2/3 power of the shear strain rate. These results explain the long debated phenomenon of ``dynamic overstress''. In FE simulations, this kinetic energy of strain rate field can be dissipated either by equivalent viscosity or by the work of increased strength limits. In simulating the impact of missiles into concrete walls, both approaches give nearly equivalent results. A dimensionless indicator of the comminution intensity is also formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  1. Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain.

    PubMed

    Abureema, Salem; Smooker, Peter; Malmo, Jakob; Deighton, Margaret

    2014-01-01

    This study was undertaken because clinicians and farmers have observed that a considerable number of cows diagnosed with Streptococcus uberis mastitis have recurrences of mastitis in the same or a different quarter. The study was an attempt to answer whether these recurring cases were due to treatment failure (in which case a search would have begun for a better treatment for Strep. uberis mastitis) or due to reinfection with a different strain of Strep. uberis. Using pulsed-field gel electrophoresis (PFGE), we determined that the majority of recurrences (20 of 27) were caused by a new strain of Strep. uberis, indicating that treatment of the initial infection had been successful. A small number of recurrences (5 of 27) were caused by the initial strain, indicating persistence. The remaining 2 recurrences occurred in a new quarter but with the initial strain of Strep. uberis, indicating either spread between quarters or reactivation of a previous subclinical infection. Analysis of the PFGE profiles failed to reveal any strain-specific propensity to persist, because strains causing recurrences occurred in most of the major clusters. PMID:24239086

  2. Change of the V I curve and critical current with applied tensile strain due to cracking of filaments in Bi2223 composite tape

    NASA Astrophysics Data System (ADS)

    Shin, J. K.; Ochiai, S.; Okuda, H.; Sugano, M.; Oh, S. S.

    2008-11-01

    The critical current at 77 K of multifilamentary Bi2223 composite tape was studied under applied tensile strain experimentally and analytically. Beyond the irreversible strain, the critical currents (IC) decreased significantly with increasing applied tensile strain (ɛc), due to the enhanced cracking of the Bi2223 filaments. The voltage generation in the voltage-current relation was calculated by the current share model in which the transport current is shared by the Bi2223 filament and Ag near the cracked portion. Then the critical current was estimated with a 1 µV cm-1 criterion. By the application of the current share model to the experimental result, the effective crack length responsible for the reduction in critical current was estimated, with which the change of critical current could be described satisfactorily as a function of applied strain.

  3. Sequential Outbreaks Due to a New Strain of Neisseria Meningitidis Serogroup C in Northern Nigeria, 2013-14

    PubMed Central

    Funk, Anna; Uadiale, Kennedy; Kamau, Charity; Caugant, Dominique A.; Ango, Umar; Greig, Jane

    2014-01-01

    Background Neisseria meningitidis serogroup C (NmC) outbreaks occur infrequently in the African meningitis belt; the most recent report of an outbreak of this serogroup was in Burkina Faso, 1979. Médecins sans Frontières (MSF) has been responding to outbreaks of meningitis in northwest Nigeria since 2007 with no reported cases of serogroup C from 2007-2012. MenAfrivac®, a serogroup A conjugate vaccine, was first used for mass vaccination in northwest Nigeria in late 2012. Reactive vaccination using polysaccharide ACYW135 vaccine was done by MSF in parts of the region in 2008 and 2009; no other vaccination campaigns are known to have occurred in the area during this period. We describe the general characteristics of an outbreak due to a novel strain of NmC in Sokoto State, Nigeria, in 2013, and a smaller outbreak in 2014 in the adjacent state, Kebbi. Methods Information on cases and deaths was collected using a standard line-list during each week of each meningitis outbreak in 2013 and 2014 in northwest Nigeria. Initial serogroup confirmation was by rapid Pastorex agglutination tests. Cerebrospinal fluid (CSF) samples from suspected meningitis patients were sent to the WHO Reference Laboratory in Oslo, where bacterial isolates, serogrouping, antimicrobial sensitivity testing, genotype characterisation and real-time PCR analysis were performed. Results In the most highly affected outbreak areas, all of the 856 and 333 clinically suspected meningitis cases were treated in 2013 and 2014, respectively. Overall attack (AR) and case fatality (CFR) rates were 673/100,000 population and 6.8% in 2013, and 165/100,000 and 10.5% in 2014. Both outbreaks affected small geographical areas of less than 150km2 and populations of less than 210,000, and occurred in neighbouring regions in two adjacent states in the successive years. Initial rapid testing identified NmC as the causative agent. Of the 21 and 17 CSF samples analysed in Oslo, NmC alone was confirmed in 11 and 10

  4. Strain evolution in Si substrate due to implantation of MeV ion observed by extremely asymmetric x-ray diffraction

    SciTech Connect

    Emoto, T.; Ghatak, J.; Satyam, P. V.; Akimoto, K.

    2009-08-15

    We studied the strain introduced in a Si(111) substrate due to MeV ion implantation using extremely asymmetric x-ray diffraction and measured the rocking curves of asymmetrical 113 diffraction for the Si substrates implanted with a 1.5 MeV Au{sup 2+} ion at fluence values of 1x10{sup 13}, 5x10{sup 13}, and 1x10{sup 14}/cm{sup 2}. The measured curves consisted of a bulk peak and accompanying subpeak with an interference fringe. The positional relationship of the bulk peak to the subpeak and the intensity variation of those peaks with respect to the wavelengths of the x rays indicated that crystal lattices near the surface were strained; the lattice spacing of surface normal (111) planes near the surface was larger than that of the bulk. Detailed strain profiles along the depth direction were successfully estimated using a curve-fitting method based on Darwin's dynamical diffraction theory. Comparing the shapes of resultant strain profiles, we found that a strain evolution rapidly occurred within a depth of approx300 nm at fluence values between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2}. This indicates that formation of the complex defects progressed near the surface when the fluence value went beyond a critical value between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2} and the defects brought a large strain to the substrate.

  5. A nosocomial outbreak due to Enterobacter cloacae strains with the E. hormaechei genotype in patients treated with fluoroquinolones.

    PubMed Central

    Davin-Regli, A; Bosi, C; Charrel, R; Ageron, E; Papazian, L; Grimont, P A; Cremieux, A; Bollet, C

    1997-01-01

    During a 7-month period, we isolated 21 highly fluoroquinolone-resistant Enterobacter cloaecae strains in units from two hospitals in Marseille, France. Random amplification of polymorphic DNA showed clonal identity between isolates which, furthermore, presented the Enterobacter hormaechei genotype on DNA-DNA hybridization. The emergence of this clone was observed only in patients treated with fluoroquinolones. PMID:9157119

  6. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  7. True polar wander of a quasi-fluid planet with a fossil shape: Effect of strain energy due to tidal deformation

    NASA Astrophysics Data System (ADS)

    Harada, Y.

    2011-12-01

    In the present study, temporal variation of a paleo-pole position due to TPW is formulated and calculated based on strain energy in a previous study. Especially, quasi-fluid approximation is suitable to deal with large-scale and long-term variation of a paleo-pole position. Thus, an orientation of a paleo-rotation axis in each time step is estimated in here by following conventional formulation with the quasi-fluid approximation for TPW, and simultaneously by taking total energy minimization into account. In practice, this procedure is physically same as to incorporate elastic torque due to tidal deformation of a lithosphere into the Liouville equation including the quasi-fluid approximation. In this study, like the previous one, only one symmetric surface load is regarded as a driving force of TPW for convenience sake. In this calculation, variable parameters are defined as follows: a location of emplacement, duration of formation, and maximum of intensity of a load. The result with strain energy is compared with that without strain energy. As a result, the case with the strain energy indicates different characteristics from that without the strain energy in the following points. First, the paleo-poles under steady states are different each other in the cases for same parameters. These results are not consistent even with the previous results concerning just the final condition. Second, also in the cases for same parameters, time scales when the paleo-poles reach the static limits are different. These results demonstrate the fact that strain energy within a lithosphere effectively weakens influence of a load on TPW. Although this kind of influence has already been pointed out by the previous results just in the cases of the steady states, the present results further revealed similar effect also on a characteristic time scale of TPW. Strictly speaking, however, it is impossible to estimate this exact time scale only by reducing an effective size of a load. This is

  8. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed Central

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-01-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease. PMID:8253953

  9. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  10. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes

    PubMed Central

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H.; Horneman, Amy; Amoroso, Anthony; Rasko, David A.; Donnenberg, Michael S.

    2015-01-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli. PMID:26410828

  11. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli. PMID:26410828

  12. Necrotizing pneumonia due to clonally diverse Staphylococcus aureus strains producing Panton-Valentine leukocidin: the Czech experience.

    PubMed

    Rájová, J; Pantůček, R; Petráš, P; Varbanovová, I; Mašlaňová, I; Beneš, J

    2016-02-01

    A prospective study (2007-2013) was undertaken to investigate clinical features and prognostic factors of necrotizing pneumonia caused by Staphylococcus aureus producing Panton-Valentine leukocidin (PVL) in the Czech Republic. Twelve cases of necrotizing pneumonia were detected in 12 patients (median age 25 years) without severe underlying disease. Eight cases occurred in December and January and the accumulation of cases in the winter months preceding the influenza season was statistically significant (P < 0·001). The course of pneumonia was very rapid, leading to early sepsis and/or septic shock in all but one patient. Seven patients died and mortality was fourfold higher in those patients presenting with primary pneumonia than with pneumonia complicating other staphylococcal/pyogenic infection elsewhere in the body. The S. aureus isolates displayed considerable genetic variability and were assigned to five lineages CC8 (n = 3), CC15 (n = 2), CC30 (n = 2), CC80 (n = 1), and CC121 (n = 3) and one was a singleton of ST154 (n = 1), all were reported to be associated with community-acquired infection. Four strains were methicillin resistant. The high case-fatality rate can only be reduced by improving the speed of diagnosis and a rapid test to detect S. aureus in the airways is needed. PMID:26201459

  13. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains

    PubMed Central

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Background: Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. Methods: A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. Results: The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like. The main type was blaOXA-114q. The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Conclusion: Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes. PMID:27242678

  14. Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations.

    PubMed

    Ruiz, C; Noailly, J; Lacroix, D

    2013-10-01

    Numerical studies of the intervertebral disc (IVD) are important to better understand the load transfer and the mechanobiological processes within the disc. Among the relevant calculations, fluid-related outputs are critical to describe and explore accurately the tissue properties. Porohyperelastic finite element models of IVD can describe accurately the disc behaviour at the organ level and allow the inclusion of fluid effects. However, results may be affected by numerical instabilities when fast load rates are applied. We hypothesized that such instabilities would appear preferentially at material discontinuities such as the annulus-nucleus boundary and should be considered when testing mesh convergence. A L4-L5 IVD model including the nucleus, annulus and cartilage endplates were tested under pure rotational loads, with different levels of mesh refinement. The effect of load relaxation and swelling were also studied. Simulations indicated that fluid velocity oscillations appeared due to numerical instability of the pore pressure spatial derivative at material discontinuities. Applying local refinement only was not enough to eliminate these oscillations. In fact, mesh refinements had to be local, material-dependent, and supplemented by the creation of a material transition zone, including interpolated material properties. Results also indicated that oscillations vanished along load relaxation, and faster attenuation occurred with the incorporation of the osmotic pressure. We concluded that material discontinuities are a major cause of instability for poromechanical calculations in multi-tissue models when load velocities are simulated. A strategy was presented to address these instabilities and recommendations on the use of IVD porohyperelastic models were given. PMID:23796430

  15. Nosocomial Outbreak Due to a Multiresistant Strain of Pseudomonas aeruginosa P12: Efficacy of Cefepime-Amikacin Therapy and Analysis of β-Lactam Resistance

    PubMed Central

    Dubois, Véronique; Arpin, Corinne; Melon, Monique; Melon, Bernard; Andre, Catherine; Frigo, Cécile; Quentin, Claudine

    2001-01-01

    Over a 3-year period, 67 patients of the Hospital of Pau (Pau, France), including 64 patients hospitalized in the adult intensive care unit (ICU), were colonized and/or infected by strains of Pseudomonas aeruginosa P12, resistant to all potentially active antibiotics except colistin. Most patients were mechanically ventilated and presented respiratory tract infections. Since cefepime and amikacin were the least inactive antibiotics by MIC determination, all ICU patients were treated with this combination, and most of them benefited. Cefepime-amikacin was found highly synergistic in vitro. Ribotyping and arbitrary primer-PCR analysis confirmed the presence of a single clonal isolate. Isoelectrofocusing revealed that the epidemic strain produced large amounts of the chromosomal cephalosporinase and an additional enzyme with a pI of 5.7, corresponding to PSE-1, as demonstrated by PCR and sequencing. Outer membrane protein profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the absence of a ca. 46-kDa protein, likely to be OprD, and increased production of two ca. 49- and 50-kDa proteins, consistent with the outer membrane components of the efflux systems, MexAB-OprM and MexEF-OprN. Thus, we report here a nosocomial outbreak due to multiresistant P. aeruginosa P12 exhibiting at least four mechanisms of β-lactam resistance, i.e., production of the penicillinase PSE-1, overproduction of the chromosomal cephalosporinase, loss of OprD, and overexpression of efflux systems, associated with a better activity of cefepime than ceftazidime. PMID:11376037

  16. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-06-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [1] [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  17. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the bla NDM-1 element and clonal spread of progenitor resistant strains.

    PubMed

    Wang, Xuan; Chen, Gongxiang; Wu, Xiaoyan; Wang, Liangping; Cai, Jiachang; Chan, Edward W; Chen, Sheng; Zhang, Rong

    2015-01-01

    This study investigated the transmission characteristics of carbapenem-resistant Enterobacteriaceae (CRE) strains collected from a hospital setting in China, in which consistent emergence of CRE strains were observable during the period of May 2013 to February 2014. Among the 45 CRE isolates tested, 21 (47%) strains were found to harbor the bla NDM-1 element, and the rest of 24 CRE strains were all positive for bla KPC-2. The 21 bla NDM-1-borne strains were found to comprise multiple Enterobacteriaceae species including nine Enterobacter cloacae, three Escherichia coli, three Citrobacter freundii, two Klebsiella pneumoniae, two Klebsiella oxytoca, and two Morganella morganii strains, indicating that cross-species transmission of bla NDM-1 is a common event. Genetic analyses by PFGE and MLST showed that, with the exception of E. coli and E. cloacae, strains belonging to the same species were often genetically unrelated. In addition to bla NDM-1, several CRE strains were also found to harbor the bla KPC-2, bla VIM-1, and bla IMP-4 elements. Conjugations experiments confirmed that the majority of carbapenem resistance determinants were transferable. Taken together, our findings suggest that transmission of mobile resistance elements among members of Enterobacteriaceae and clonal spread of CRE strains may contribute synergistically to a rapid increase in the population of CRE in clinical settings, prompting a need to implement more rigorous infection control measures to arrest such vicious transmission cycle in CRE-prevalent areas. PMID:26136735

  18. Rapid spread of Neisseria gonorrhoeae ciprofloxacin resistance due to a newly introduced resistant strain in Nuuk, Greenland, 2012–2015: a community-based prospective cohort study

    PubMed Central

    Pedersen, Michael Lynge; Poulsen, Peter; Berthelsen, Lene; Nørgaard, Christina; Hoffmann, Steen; Jensen, Jørgen Skov

    2016-01-01

    Objectives To determine the antimicrobial susceptibility and genotype distribution of Neisseria gonorrhoeae strains isolated from a cohort of patients in Nuuk, Greenland in order to assess the risk of rapid spread in the event of introduction of new strains. Methods Gonococcal isolates (n=102) obtained from a prospective cohort study of ciprofloxacin resistance were collected between March 2012 and February 2013. Etest minimal inhibitory concentrations (MICs) were determined for ciprofloxacin, azithromycin, ceftriaxone, penicillin, tetracycline, spectinomycin and gentamicin. All isolates were subjected to molecular typing using N. gonorrhoeae multiantigen sequence typing (NG-MAST). After the introduction of a ciprofloxacin-resistant strain in early 2014, an additional 18 isolates were characterised. Results During the study period, all 102 isolates were fully susceptible to ciprofloxacin (≤0.03 mg/L), azithromycin, spectinomycin, gentamicin and ceftriaxone. 10 different NG-MAST types circulated in Nuuk but 7 were found as single isolates, and 3 of the 7 belonged to 1 of the 3 major genogroups (G210, G9816 and G9817) together comprising 96% of the 102 isolates. ST210 accounted for 55% of the 102 strains. The newly introduced ciprofloxacin resistant strain belonged to ST2400 and dominated the population with 59% resistant strains within 6 months after its introduction. All G2400 strains had MICs≥2 mg/L. Conclusions Introduction of a ciprofloxacin-resistant strain into a very homogeneous N. gonorrhoeae population led to an explosive spread of the resistant clone, probably as a result of large sexual networks suggested by the strain homogeneity. Careful surveillance of antimicrobial susceptibility is essential to avoid widespread treatment failure in closed populations. PMID:27577587

  19. An attenuated Salmonella enterica serovar Typhimurium strain reduces disease severity, fecal shedding, and gastrointestinal colonization in swine due to virulent S. Typhimurium challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Salmonella serovars frequently colonize swine without causing overt disease. Pathogen interventions are needed to limit Salmonella colonization in swine. Vaccination with an attenuated Salmonella strain may reduce pathogen carriage in swine and enhance food safety. Methods: Swine study ...

  20. Evaluation of mosquito densoviruses for controlling Aedes aegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes.

    PubMed

    Hirunkanokpun, Supanee; Carlson, Jonathan O; Kittayapong, Pattamaporn

    2008-05-01

    Four mosquito densovirus strains were assayed for mortality and infectivity against Aedes aegypti larvae from different geographic regions. The viral titers were quantified by real-time PCR using TaqMan technology. Firstinstar larvae were exposed to the same titer of each densovirus strain for 48 hours. All strains of densoviruses exhibited larvicidal activity and caused more than 80% mortality and infectivity in the three mosquito strains. AalDNV-exposed larvae had the highest mortality rate. The mean time to death of AalDNV-exposed larvae was shorter than other DNVs-exposed larvae. We can conclude that different densovirus strains exhibit some variations in their pathogenicity to different populations of Ae. aegypti mosquitoes. A few mosquitoes from Chachoengsao and Bangkok exposed to AeDNV and AThDNV survived to the adult stage to lay eggs and showed 22% to 50% vertical transmission in the F1 generation. Phylogenetic analysis of four densovirus strains indicated that mosquito densoviruses are separated into two distinct clades. PMID:18458314

  1. Serological response of swine to an attenuated Salmonella enterica serovar Typhimurium strain that reduces gastrointestinal colonization, fecal shedding and disease due to virulent Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine are often asymptomatic carriers of Salmonella spp. Interventions are needed to limit Salmonella colonization of swine to enhance food safety. An attenuated Salmonella enterica serovar Typhimurium mutant strain (BBS 202) was tested in swine to determine whether vaccination could provide protect...

  2. Co-production of 3ADON and 15ADON by cultures of Fusarium graminearum 15ADON strains, but not 3ADON strains, is due to differences in acetyltransferase activity and substrate specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum strains can be assigned to chemotypes, e.g. 3ADON or 15ADON, on the basis of PCR analysis using polymorphisms in the trichothecene biosynthetic genes TRI3 and TRI12. Trichothecene production in liquid culture is consistent with the chemotype predicted with PCR analyses, i.e., ac...

  3. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate.

    PubMed

    Wang, X; Miller, E N; Yomano, L P; Zhang, X; Shanmugam, K T; Ingram, L O

    2011-08-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low K(m) for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms. PMID:21685167

  4. Neisseria gonorrhoeae strain with high-level resistance to spectinomycin due to a novel resistance mechanism (mutated ribosomal protein S5) verified in Norway.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Skogen, Vegard; Olsen, Anne Olaug; Moi, Harald; Syversen, Gaute; Hjelmevoll, Stig Ove

    2013-02-01

    Gonorrhea may become untreatable, and new treatment options are essential. Verified resistance to spectinomycin is exceedingly rare. However, we describe a high-level spectinomycin-resistant (MIC, >1,024 μg/ml) Neisseria gonorrhoeae strain from Norway with a novel resistance mechanism. The resistance determinant was a deletion of codon 27 (valine) and a K28E alteration in the ribosomal protein 5S. The traditional spectinomycin resistance gene (16S rRNA) was wild type. Despite this exceedingly rare finding, spectinomycin available for treatment of ceftriaxone-resistant urogenital gonorrhea would be very valuable. PMID:23183436

  5. Strain Localization in Thin Films of Bi(Fe,Mn)O3 Due to the Formation of Stepped Mn(4+)-Rich Antiphase Boundaries.

    PubMed

    MacLaren, I; Sala, B; Andersson, S M L; Pennycook, T J; Xiong, J; Jia, Q X; Choi, E-M; MacManus-Driscoll, J L

    2015-12-01

    The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn(4+)-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions. PMID:26474888

  6. Strain Localization in Thin Films of Bi(Fe,Mn)O3 Due to the Formation of Stepped Mn4+-Rich Antiphase Boundaries

    NASA Astrophysics Data System (ADS)

    MacLaren, I.; Sala, B.; Andersson, S. M. L.; Pennycook, T. J.; Xiong, J.; Jia, Q. X.; Choi, E.-M.; MacManus-Driscoll, J. L.

    2015-10-01

    The atomic structure and chemistry of thin films of Bi(Fe,Mn)O3 (BFMO) films with a target composition of Bi2FeMnO6 on SrTiO3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-plane lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO3 on the SrTiO3 substrate to minimise any Mn-Ti interactions.

  7. GENERAL ENHANCEMENT OF MUTAGENIC POTENCY OF VARIOUS MUTAGENS DUE TO DELETED GENES IN THE ΔuvrB STRAINS TA 98 AND TA 100 OF SALMONELLA COMPARED WITH STRAINS CONTAINING ONLY A POINT MUTATION IN uvrB

    EPA Science Inventory

    The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...

  8. Long Range Ferromagnetic Order in LaCoO3-δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    DOE PAGESBeta

    Mehta, Virat; Biskup, Nevenko; Arenholz, E; Varela del Arco, Maria; Suzuki, Yuri

    2015-04-23

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La,Sr)(Al,Ta)O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2+ and Co3+ as well as low spin Co3+ in different proportions dependingmore » on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.« less

  9. Extensional strain and displacement distribution due to mesoscale normal faults in Late Miocene-Pliocene sedimentary rocks along the northwestern side of the Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Kh. S.

    2015-09-01

    Field observations are presented on the NW-SE mesoscale, dip-slip, normal faults in the Late Miocene-Pliocene sedimentary rocks, along the northwestern part of the SW side of the Red Sea, Egypt. These faults were initiated parallel to the Red Sea, and were originated by the NE-SW extension associated with the Red Sea opening in the Late Oligocene-Early Miocene time. About 100 mesoscale normal faults were measured in the Late Miocene-Pliocene sedimentary rocks along seven scan-lines. The extensional strain determined in five scan-lines ranges from 2.6393 to 5.12% with an average of 3.53145%. The other two scan-lines have anomalous values of 6.2988 and 15.53%. The represented data demonstrate that the extensional strain varies significantly from profile to profile and even along the fault because of several surficial factors. The first factor is a difference in lithology. The second and third factors are the local stress and the difference between perpendicular to the direction of maximum lateral extension of area and strike of faults. The L-D (Length-Displacement) diagrams along twelve selected faults reveal three patterns. These patterns include a cone-shaped (C-type), meso-shaped (M-type), and a zigzag-shaped (Z-type). The remarkable variation of displacement (D) along the fault plane (L) is a result of the difference in lithology, and/or the overlapping fault segments, as well as the local stress along the faults.

  10. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.

    PubMed

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  11. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  12. Long Range Ferromagnetic Order in LaCoO3-δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    SciTech Connect

    Mehta, Virat; Biskup, Nevenko; Arenholz, E; Varela del Arco, Maria; Suzuki, Yuri

    2015-04-23

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La,Sr)(Al,Ta)O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2+ and Co3+ as well as low spin Co3+ in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.

  13. Study on the effect of etofenamate 10% cream in comparison with an oral NSAID in strains and sprains due to sports injuries.

    PubMed

    Vanderstraeten, G; Schuermans, P

    1990-01-01

    In this 60 patient study of sports traumatology due to football injuries, etofenamate gel proved equally effective as oral naproxen on the overall pain scores (65% none to mild pain for etofenamate versus 86% for naproxen; p greater than 0.05). The global clinical impression results have been rated as good or excellent in 44% in the naproxen group versus 50% in the etofenamate group. The incidence of side effects in the etofenamate group (3%) was lower than in the naproxen group (20%). This study demonstrates that etofenamate gel has equal efficacy as oral NSAIDS but a better side effect profile in sport injuries in football players. PMID:2094113

  14. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  15. Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry.

    PubMed Central

    Mori, K; Ringler, D J; Desrosiers, R C

    1993-01-01

    Virus derived from the infectious, pathogenic, molecular clone of simian immunodeficiency virus (SIV) called SIVmac239 replicates poorly in primary rhesus monkey alveolar macrophage cultures. Variants with three to nine amino acid changes in the envelope replicate 100 to 1,000 times more efficiently in these macrophage cultures than parental SIVmac239. Early events, including virus entry into cells, were analyzed by measuring the amounts of newly synthesized viral DNA 14 to 16 h after infection of macrophages by using a quantitative polymerase chain reaction method. SIVmac239 ws found to enter macrophages with an efficiency similar to that of the macrophage-tropic derivatives. The assay indeed measured newly synthesized viral DNA since detection was inhibited by the reverse transcriptase inhibitors azidothymidine and foscarnet and by heat inactivation of the virus stock prior to infection. Furthermore, entry of SIVmac239 and macrophage-tropic variant into macrophages was inhibited by monoclonal antibody against CD4. Analysis of the time course of viral DNA accumulation showed that although initial entry of SIVmac239 into cells occurred normally, subsequent logarithmic increases in the amounts of viral DNA associated with spread of virus through the macrophage cultures was blocked. Increasing the amount of SIVmac239 incubated with macrophages increased the amount of virus entering the cell, but this could not overcome the block to replication. Thus, restricted replication of SIVmac239 in macrophages is determined by the envelope, but surprisingly it is not due to restricted virus entry. Images PMID:7682627

  16. [Work strain by anaesthetic gas and surgical smoke due to tissue coagulation as well as safety measures in surgical operating rooms - what the surgeon needs to know].

    PubMed

    Boeckelmann, I; Sammito, S; Meyer, F

    2013-02-01

    Exposure of the respiratory tract during surgical interventions is an important topic of occupational medicine, which has only rarely been investigated. Based on a literature search, relevant information on the possible health risk is summarised. Within the operating room, an exposure of the respiratory tract to gas (volatile anaesthetics) and aerosols (smoking gas by coagulation) can occur. This exposure needs to be considered as a potential health risk if safety measures are not sufficient. Health risks comprise possible disturbances of gravidity and fertility, neurotoxicity and cancer generation. Such health risks can be prevented with primary preventive measures and can be early recognised/diagnosed by preventive investigations of occupational medicine (secondary prevention). Safety measures are developed according to the STOP principle (substitution, technical, organisatory and personal measures). Assessment of the potential danger begins with an appropriate description of the working procedure and detection of the toxic features of the drugs and medical products, which helps to determine individual exposure and to estimate risk potential. Required occupational safety measures can be derived from this and, subsequently, the work organisation can be optimised. In addition, employees in the operating room are to be instructed about the indicated preventive mode of behaviour. Due to better implementation of the above-mentioned basic principles, introduction of novel narcotics and technological developments, potential exposure of the respiratory tract within the operating room has been reduced over the last 10 years. Thus, risks for gravidity and possible disturbances of fertility by exposure to volatile narcotics are currently assessed to be low. However, available data on health risks of the chronic exposure to smoking gases are still deficient although toxic and cancerogenic organic pyrolysis products are generated. The protection effect of modern air

  17. Large enhancement of magnetic anisotropy and laser induced resistive switching effect in La0.7Sr0.3MnO3 films due to strain from BaTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Kalappattil, V.; Das, R.; Srikanth, H.; Phan, M. H.; Moya, X.

    Multifunctional oxide materials are interesting for their fundamental physical properties and technological applications. Epitaxial films of La0.7Sr0.3MnO3 (LSMO) on BaTiO3 (BTO) show intriguing properties such as a giant magnetoelectric effect due to strain from BTO substrate. The LSMO film shows sharp jumps in magnetization M(T) and resistance R(T) at first-order structural phase transitions of BTO (TR-O 200K and TO-T 270 K) due to strain coupling from BTO. A temperature evolution of effective in-plane anisotropy field (HK) measured using the radio-frequency transverse susceptibility (TS) shows a sharp increase in HK around TR-O, which vanishes around TO-T.The in-plane magnetic anisotropy plays an important role in changing the magnetic and resistive states around TO-T. A switchable laser-induced resistive change of up to 300 %, which is about 10 times greater than those of conventional oxide systems, has been achieved in LSMO films using a 0.5 W violet laser just below the TO-T.The repeatability and stability of the laser-induced resistive switching effect reveal potential applications of LSMO/BTO heterostructures in developing new type of temperature sensors and memory devices. Work at USF supported by ARO Grant No. W911NF-15-1-0626.

  18. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the blaNDM-1 element and clonal spread of progenitor resistant strains

    PubMed Central

    Wang, Xuan; Chen, Gongxiang; Wu, Xiaoyan; Wang, Liangping; Cai, Jiachang; Chan, Edward W.; Chen, Sheng; Zhang, Rong

    2015-01-01

    This study investigated the transmission characteristics of carbapenem-resistant Enterobacteriaceae (CRE) strains collected from a hospital setting in China, in which consistent emergence of CRE strains were observable during the period of May 2013 to February 2014. Among the 45 CRE isolates tested, 21 (47%) strains were found to harbor the blaNDM-1 element, and the rest of 24 CRE strains were all positive for blaKPC-2. The 21 blaNDM-1—borne strains were found to comprise multiple Enterobacteriaceae species including nine Enterobacter cloacae, three Escherichia coli, three Citrobacter freundii, two Klebsiella pneumoniae, two Klebsiella oxytoca, and two Morganella morganii strains, indicating that cross-species transmission of blaNDM-1 is a common event. Genetic analyses by PFGE and MLST showed that, with the exception of E. coli and E. cloacae, strains belonging to the same species were often genetically unrelated. In addition to blaNDM-1, several CRE strains were also found to harbor the blaKPC-2, blaVIM-1, and blaIMP-4 elements. Conjugations experiments confirmed that the majority of carbapenem resistance determinants were transferable. Taken together, our findings suggest that transmission of mobile resistance elements among members of Enterobacteriaceae and clonal spread of CRE strains may contribute synergistically to a rapid increase in the population of CRE in clinical settings, prompting a need to implement more rigorous infection control measures to arrest such vicious transmission cycle in CRE-prevalent areas. PMID:26136735

  19. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  20. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  1. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in an azole-naive patient in Spain.

    PubMed

    Pelaez, T; Monteiro, M C; Garcia-Rubio, R; Bouza, E; Gomez-Lopez, A; Mellado, E

    2015-07-01

    We report the first isolation of a voriconazole-resistant Aspergillus fumigatus strain harbouring the azole resistance mechanism TR46/Y121F/T289A, recovered from an azole-naive patient in Spain with chronic obstructive pulmonary disease. This new finding in Spain suggests the spread of this resistance mechanism and reinforces the need for antifungal susceptibility surveillance. PMID:26082842

  2. The multiple forms of trypsin-like activity present in various strains of Porphyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain.

    PubMed Central

    Potempa, J; Pike, R; Travis, J

    1995-01-01

    Porphyromonas gingivalis contains high concentrations of numerous cysteine proteinases with trypsin-like activity which have been implicated as important virulence factors in adult-onset periodontitis. We have analyzed the subfractions of six P. gingivalis strains for the presence of arginine-X- and lysine-X-specific proteinases (Arg-gingipain [RGP] and Lys-gingipain [KGP]) previously purified from P. gingivalis H66. Western blot (immunoblot) analysis using antibodies produced against RGP and the N-terminal peptides of RGP or the catalytic subunit of KGP indicated that these enzymes are synthesized by the strains studied and exist as multiple molecular mass species. The major forms of RGP were identified as 110-, 95-, 70- to 90-, and 50-kDa proteins, the first two being a complex of the 50-kDa catalytic subunit with hemagglutinins, with or without an added membrane anchorage peptide. The other forms are single-chain enzymes. While the 95- and 50-kDa RGP were found predominantly in culture medium, the 110- and 70- to 90-kDa forms associated with membranous fractions of the bacteria. The predominant form of KGP in all strains was a complex of the 60-kDa catalytic domain with hemagglutinins, and vesicle- and membrane-associated KGP was about 15 kDa larger than the 105-kDa enzyme present in culture media. These data explain the apparent complexity of P. gingivalis proteinases and indicate that in all strains tested there are two identical enzymes, one with arginine-X specificity and the other with lysine-X specificity, which, working in concert, are responsible for the trypsin-like activity associated with this bacterium. PMID:7890369

  3. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  4. Multiple-Antibiotic Resistance in Salmonella enterica Serotype Paratyphi B Isolates Collected in France between 2000 and 2003 Is Due Mainly to Strains Harboring Salmonella Genomic Islands 1, 1-B, and 1-C

    PubMed Central

    Weill, François-Xavier; Fabre, Laëtitia; Grandry, Bernadette; Grimont, Patrick A. D.; Casin, Isabelle

    2005-01-01

    This study was conducted to investigate the occurrence of multiple-antibiotic resistance among 261 clinical isolates of Salmonella enterica serotype Paratyphi B strains collected between 2000 and 2003 through the network of the French National Reference Center for Salmonella. The 47 multidrug-resistant (MDR) isolates identified (18%), were characterized on the basis of the presence of several resistance genes (blaTEM, blaPSE-1, blaCTX-M, floR, aadA2, qacEΔ1, and sul1), the presence of Salmonella genomic island 1 (SGI1) by PCR mapping and hybridization, and the clonality of these isolates by several molecular (ribotyping, IS200 profiling, and pulsed-field gel electrophoresis [PFGE]) and phage typing methods. The results of PCR and Southern blot experiments indicated that 39 (83%) of the 47 S. enterica serotype Paratyphi B biotype Java MDR isolates possessed the SGI1 cluster (MDR/SGI1). Among these 39 MDR/SGI1 isolates, only 3 contained variations in SGI1, SGI1-B (n = 1) and SGI1-C (n = 2). The 39 MDR/SGI1 isolates showed the same specific PstI-IS200 profile 1, which contained seven copies from 2.6 to 18 kb. Two PstI ribotypes were found in MDR/SGI1 isolates, RP1 (n = 38) and RP6 (n = 1). Ribotype RP1 was also found in two susceptible strains. Analysis by PFGE using XbaI revealed that all the MDR/SGI1 isolates were grouped in two related clusters, with a similarity percentage of 82%. Isolation of MDR/SGI1 isolates in France was observed mainly between the second quarter of 2001 and the end of 2002. The source of the contamination has not been identified to date. A single isolate possessing the extended-spectrum β-lactamase blaCTX-M-15 gene was also identified during the study. PMID:15980351

  5. Decreased fecal corticosterone levels due to domestication: a comparison between the white-backed Munia (Lonchura striata) and its domesticated strain, the Bengalese finch (Lonchura striata var. domestica) with a suggestion for complex song evolution.

    PubMed

    Suzuki, Kenta; Yamada, Hiroko; Kobayashi, Tetsuya; Okanoya, Kazuo

    2012-11-01

    The Bengalese finch (BF; Lonchura striata var. domestica) is a domesticated strain of the white-backed munia (WBM; Lonchura striata). Environmental stresses activate the hypothalamic-pituitary-adrenal (HPA) axis and release corticosterone (CORT). We hypothesized that domesticated songbirds have reduced CORT levels because of reduced levels of environmental stresses (compared to wild conditions) and reductions in the role of CORT, which is necessary for survival in the wild. However, no study has examined the effects of domestication on songbird CORT levels. To explore the domestication effects, we compared CORT levels between domesticated BFs and their wild ancestors WBMs. We also compared CORT levels between bought and aviary-raised BFs, and between wild-caught and captive-raised WBMs to examine the influence of being raised. However, blood collection causes stress, which affects endocrine dynamics and makes continuous sampling difficult in small birds. Therefore, we used a non-invasive method to measure fecal CORT. Parallelism between diluted fecal extracts and a CORT standard, extraction efficiency, and ACTH challenge demonstrated the effectiveness of this method. This study demonstrates that BFs have lower fecal CORT than do WBMs, regardless of whether the WBMs were wild-caught or captive-raised. In addition, BFs sing more complex songs than WBMs. Considerable evidence suggests that song complexity is related to CORT levels. Previously, we found that the corticosteroid receptors were expressed in song-control areas of the BF brain. Based on these results, we hypothesize that reduced CORT levels through domestication might be one factor allowing for the development of more complex songs in BFs. PMID:22927235

  6. Extended-Spectrum-β-Lactamase-Producing Escherichia coli as a Cause of Pediatric Infections: Report of a Neonatal Intensive Care Unit Outbreak Due to a CTX-M-14-Producing Strain

    PubMed Central

    Oteo, Jesús; Cercenado, Emilia; Fernández-Romero, Sara; Saéz, David; Padilla, Belén; Zamora, Elena; Cuevas, Oscar; Bautista, Verónica

    2012-01-01

    Little information is available about pediatric infections caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli. We characterized an outbreak caused by a CTX-M-14-producing E. coli isolate in a neonatal intensive care unit (NICU) and studied other infections caused by ESBL-producing E. coli in non-NICU pediatric units. All children ≤4 years old who were infected or colonized by ESBL-producing E. coli isolates between January 2009 and September 2010 were included. Molecular epidemiology was studied by phylogroup analysis, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. Antibiotic resistance genes were analyzed by PCR and sequencing. Plasmids were studied by PFGE with S1 nuclease digestion and by incompatibility group analysis using a PCR-based replicon-typing scheme. Of the ESBL-producing E. coli isolates colonizing or infecting the 30 newborns, identical PFGE results were observed for 21 (70%) isolates, which were classified as CTX-M-14-producing E. coli of ST23 phylogroup A. blaCTX-M-14a was linked to ISEcp1 and was carried on an ∼80-bp IncK plasmid. A smaller ongoing outbreak due to SHV-12-producing ST131 E. coli was also identified in the same NICU. Fifteen additional infections with ESBL-producing E. coli were identified in non-NICU pediatric units, but none was caused by the CTX-M-14-producing E. coli epidemic clone. Overall, CTX-M-14 (71.1%), CTX-M-15 (13.3%), and SHV-12 (13.3%) were the most important ESBLs causing pediatric infections in this study. Infections of newborns with CTX-M-14-producing E. coli were caused by both clonal and nonclonal isolates. PMID:21986825

  7. Inhomogeneous strains in small particles

    NASA Astrophysics Data System (ADS)

    Marks, L. D.

    1985-02-01

    This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.

  8. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  9. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  10. Enhancement of two dimensional electron gas concentrations due to Si{sub 3}N{sub 4} passivation on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure: strain and interface capacitance analysis

    SciTech Connect

    Dinara, Syed Mukulika Jana, Sanjay Kr.; Ghosh, Saptarsi; Mukhopadhyay, Partha; Kumar, Rahul; Chakraborty, Apurba; Biswas, Dhrubes; Bhattacharya, Sekhar

    2015-04-15

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’s equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.

  11. Hip flexor strain - aftercare

    MedlinePlus

    Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  12. Strainrange partitioning: A total strain range version

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range - life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  13. An experimental evaluation of apparent strain from foil strain gauges attached to carbon composite substrates

    NASA Technical Reports Server (NTRS)

    Scott, B. R.; Lanius, S. J.; Auer, C. W.

    1987-01-01

    An experimental evaluation of apparent thermal strains is conducted using various combinations of substrate/gauge/attachment structure and redundant high temperature extensometry. It is found that the extensometry could either confirm independent measurements of the substrate's thermal expansion, or quantify nonzero mechanical strains resulting from uncertain material behavior and boundary conditions. Apparent strain and thermal expansion behavior data can then be used to modify the raw strain measurements in order to determine either stress producing or total strains. Limitation of the correction procedure for the three selected strain gauges is noted which is due to relatively large gauge/attachment variability.

  14. Progress in optical strain measurement system development

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Qaqish, Walid

    1987-01-01

    A laser speckle strain measurement system has been built and tested for the NASA Lewis Research Center. The system is based on a speckle shift technique, which automatically corrects for error due to rigid body motion, and provides a near real time measure of strain. The first stage of a multiphase effort to develop an optical strain gauge capable of mapping in two dimensions the strain on the surface of a hot specimen is discussed. The objectives of this first phase have been to provide a noncontact, one-dimensional, differential strain gauge for experimental purposes, and to determine the maximum open air temperature limit of the system.

  15. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  16. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  17. Strains and Sprains

    MedlinePlus

    ... Children's Sports Injuries Computer-Related Repetitive Stress Injuries Knee Injuries Broken Bones, Sprains, and Strains Strains and Sprains ... Pain Going to a Physical Therapist Hamstring Strain Knee Injuries Sports and Exercise Safety Dealing With Sports Injuries ...

  18. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  19. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  20. Program Calibrates Strain Gauges

    NASA Technical Reports Server (NTRS)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  1. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  2. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  3. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  4. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement. PMID:26649476

  5. Papilledema Due to Mirtazapine

    PubMed Central

    Ceylan, Mehmet Emin; Evrensel, Alper; Cömert, Gökçe

    2016-01-01

    Background: Mirtazapine is a tetracyclic antidepressant that enhances both noradrenergic and serotonergic transmission. The most common cause of papilledema is increased intracranial pressure due to brain tumor. Also it may occur as a result of idiopathic intracranial hypertension (IIH, pseudo tumor cerebri). Moreover, papilledema may also develop due to retinitis, vasculitis, Graves’ disease, hypertension, leukemia, lymphoma, diabetes mellitus and radiation. Case Report: In this article, a patient who developed papilledema while under treatment with mirtazapine (30 mg/day) for two years and recovered with termination of mirtazapine treatment was discussed to draw the attention of clinicians to this side effect of mirtazapine. Conclusion: Idiopathic intracranial hypertension and papilledema due to psychotropic drugs has been reported in the literature. Mirtazapine may rarely cause peripheral edema. However, papilledema due to mirtazapine has not been previously reported. Although papilledema is a very rare side effect of an antidepressant treatment, fundoscopic examinations of patients must be performed regularly. PMID:27308085

  6. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  7. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  8. Providers get their due.

    PubMed

    Morrissey, J

    1994-11-01

    Providers are getting their due, but only after employing computer software programs to help sort through the complex managed-care contracts they've negotiated. More and more accounting departments are relying on contract management systems to ensure accurate billing. PMID:10138187

  9. Paying Their Dues.

    ERIC Educational Resources Information Center

    Scalzo, Teresa

    1995-01-01

    Some colleges and universities have found that alumni prefer to have ownership of their alumni association, and such a membership program can raise revenues for the institution while providing a valuable communication tool. A strong dues program can work well with an annual giving campaign. A variety of membership structures is possible. Details…

  10. Human due diligence.

    PubMed

    Harding, David; Rouse, Ted

    2007-04-01

    Most companies do a thorough job of financial due diligence when they acquire other companies. But all too often, deal makers simply ignore or underestimate the significance of people issues in mergers and acquisitions. The consequences are severe. Most obviously, there's a high degree of talent loss after a deal's announcement. To make matters worse, differences in decision-making styles lead to infighting; integration stalls; and productivity declines. The good news is that human due diligence can help companies avoid these problems. Done early enough, it helps acquirers decide whether to embrace or kill a deal and determine the price they are willing to pay. It also lays the groundwork for smooth integration. When acquirers have done their homework, they can uncover capability gaps, points of friction, and differences in decision making. Even more important, they can make the critical "people" decisions-who stays, who goes, who runs the combined business, what to do with the rank and file-at the time the deal is announced or shortly thereafter. Making such decisions within the first 30 days is critical to the success of a deal. Hostile situations clearly make things more difficult, but companies can and must still do a certain amount of human due diligence to reduce the inevitable fallout from the acquisition process and smooth the integration. This article details the steps involved in conducting human due diligence. The approach is structured around answering five basic questions: Who is the cultural acquirer? What kind of organization do you want? Will the two cultures mesh? Who are the people you most want to retain? And how will rank-and-file employees react to the deal? Unless an acquiring company has answered these questions to its satisfaction, the acquisition it is making will be very likely to end badly. PMID:17432159

  11. Strains and Sprains

    MedlinePlus

    ... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...

  12. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  13. High strain rate damage of Carrara marble

    NASA Astrophysics Data System (ADS)

    Doan, Mai-Linh; Billi, Andrea

    2011-10-01

    Several cases of rock pulverization have been observed along major active faults in granite and other crystalline rocks. They have been interpreted as due to coseismic pervasive microfracturing. In contrast, little is known about pulverization in carbonates. With the aim of understanding carbonate pulverization, we investigate the high strain rate (c. 100 s-1) behavior of unconfined Carrara marble through a set of experiments with a Split Hopkinson Pressure Bar. Three final states were observed: (1) at low strain, the sample is kept intact, without apparent macrofractures; (2) failure is localized along a few fractures once stress is larger than 100 MPa, corresponding to a strain of 0.65%; (3) above 1.3% strain, the sample is pulverized. Contrary to granite, the transition to pulverization is controlled by strain rather than strain rate. Yet, at low strain rate, a sample from the same marble displayed only a few fractures. This suggests that the experiments were done above the strain rate transition to pulverization. Marble seems easier to pulverize than granite. This creates a paradox: finely pulverized rocks should be prevalent along any high strain zone near faults through carbonates, but this is not what is observed. A few alternatives are proposed to solve this paradox.

  14. Nanoscale strain mapping in battery nanostructures

    SciTech Connect

    Ulvestad, A. Kim, J. W.; Dietze, S. H.; Shpyrko, O. G.; Cho, H. M.; Meng, Y. S.; Harder, R.; Fohtung, E.

    2014-02-17

    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi{sub 0.5}Mn{sub 1.5}O{sub 4−δ} cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn{sup 3+}. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process.

  15. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition

    PubMed Central

    Manthou, Evanthia; Ciolacu, Luminita; Wagner, Martin; Skandamis, Panagiotis N.

    2015-01-01

    Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential. PMID:26529510

  16. Hydraulic Calibrator for Strain-Gauge Balances

    NASA Technical Reports Server (NTRS)

    Skelly, Kenneth; Ballard, John

    1987-01-01

    Instrument for calibrating strain-gauge balances uses hydraulic actuators and load cells. Eliminates effects of nonparallelism, nonperpendicularity, and changes of cable directions upon vector sums of applied forces. Errors due to cable stretching, pulley friction, and weight inaccuracy also eliminated. New instrument rugged and transportable. Set up quickly. Developed to apply known loads to wind-tunnel models with encapsulated strain-gauge balances, also adapted for use in calibrating dynamometers, load sensors on machinery and laboratory instruments.

  17. Strain gage balances and buffet gages

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1983-01-01

    One-piece strain gage force balances were developed for use in the National Transonic Facility (NTF). This was accomplished by studying the effects of the cryogenic environment on materials, strain gages, cements, solders, and moisture proofing agents, and selecting those that minimized strain gage output changes due to temperature. In addition, because of the higher loads that may be imposed by the NTF, these balances are designed to carry a larger load for a given diameter than conventional balances. Full cryogenic calibrations were accomplished, and wind tunnel results that were obtained from the Langley 0-3-Meter Transonic Cryogenic Tunnel were used to verify laboratory test results.

  18. Stretchable and highly sensitive graphene-on-polymer strain sensors

    PubMed Central

    Li, Xiao; Zhang, Rujing; Yu, Wenjian; Wang, Kunlin; Wei, Jinquan; Wu, Dehai; Cao, Anyuan; Li, Zhihong; Cheng, Yao; Zheng, Quanshui; Ruoff, Rodney S.; Zhu, Hongwei

    2012-01-01

    The use of nanomaterials for strain sensors has attracted attention due to their unique electromechanical properties. However, nanomaterials have yet to overcome many technological obstacles and thus are not yet the preferred material for strain sensors. In this work, we investigated graphene woven fabrics (GWFs) for strain sensing. Different than graphene films, GWFs undergo significant changes in their polycrystalline structures along with high-density crack formation and propagation mechanically deformed. The electrical resistance of GWFs increases exponentially with tensile strain with gauge factors of ~103 under 2~6% strains and ~106 under higher strains that are the highest thus far reported, due to its woven mesh configuration and fracture behavior, making it an ideal structure for sensing tensile deformation by changes in strain. The main mechanism is investigated, resulting in a theoretical model that predicts very well the observed behavior. PMID:23162694

  19. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1986-01-01

    One of the goals of the HOST Program is the development of electrical resistance strain gages for static strain measurements at temperatures equal to or greater than 1273 K. Strain gage materials must have a reproducible or predictable response to temperature, time and strain. It is the objective of this research to investigate criteria for the selection of materials for such applications through electrical properties studies. The results of the investigation of two groups of materials, refractory compounds and binary alloy solid solutions are presented.

  20. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  1. Can strain magnetize light?

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Strain in photonic structures can induce pseudomagnetic fields and Landau levels. Nature Photonics spoke to Mordechai Segev, Mikael Rechtsman, Alexander Szameit and Julia Zeuner about their unique approach.

  2. Introducing lattice strain to graphene encapsulated in hBN

    NASA Astrophysics Data System (ADS)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  3. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  4. Giant Reduction of Charge Carrier Mobility in Strained Graphene

    NASA Astrophysics Data System (ADS)

    Shah, Raheel; Mohiuddin, Tariq M. G.; Singh, Ram N.

    2013-01-01

    Impact of induced strain on charge carrier mobility is investigated for a monolayer graphene sheet. The unsymmetrical hopping parameters between nearest neighbor atoms which emanate from induced strain are included in the density of states description. Mobility is then computed within the Born approximation by including three scattering mechanisms; charged impurity, surface roughness and lattice phonons interaction. Unlike its strained silicon counterpart, simulations reveal a significant drop in mobility for graphene with increasing strain. Additionally, mobility anisotropy is observed along the zigzag and armchair orientations. The prime reason for the drop in mobility can be attributed to the change in Fermi velocity due to strain induced distortions in the graphene honeycomb lattice.

  5. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  6. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  7. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation

    SciTech Connect

    Dalla Torre, Florian H.; Dubach, Alban; Siegrist, Marco E.; Loeffler, Joerg F.

    2006-08-28

    Detailed investigations were carried out on the deformation behavior of Zr-based monolithic bulk metallic glass and bulk metallic glass matrix composites. The latter, due to splitting and multiplication of shear bands, exhibits larger compressive strains than the former, without significant loss of strength. Serrated flow in conjunction with a negative strain rate sensitivity was observed in both materials. This observation, together with an increase in stress drops with increasing strain and their decrease with increasing strain rate, indicates phenomenologically close similarities with the dynamic strain aging deformation mechanism known for crystalline solids. The micromechanical mechanism of a shear event is discussed in light of these results.

  8. Determining Micromechanical Strain in Nitinol

    SciTech Connect

    Strasberg, Matthew; /SLAC

    2006-09-27

    Nitinol is a superelastic alloy made of equal parts nickel and titanium. Due to its unique shape memory properties, nitinol is used to make medical stents, lifesaving devices used to allow blood flow in occluded arteries. Micromechanical models and even nitinol-specific finite element analysis (FEA) software are insufficient for unerringly predicting fatigue and resultant failure. Due to the sensitive nature of its application, a better understanding of nitinol on a granular scale is being pursued through X-ray diffraction techniques at the Stanford Synchrotron Radiation Laboratory (SSRL) at the Stanford Linear Accelerator Center (SLAC). Through analysis of powder diffraction patterns of nitinol under increasing tensile loads, localized strain can be calculated. We compare these results with micromechanical predictions in order to advance nitinol-relevant FEA tools. From this we hope to gain a greater understanding of how nitinol fatigues under multi-axial loads.

  9. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  10. Mechanochromic polyurethane strain sensor

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Khapli, S.; Peterson, S. D.; Porfiri, M.

    2014-08-01

    In this Letter, we study the mechanical and optical response of a thermoplastic polyurethane blended with 0.5 wt. % of bis(benzoxazolyl)stilbene dye. The mechanochromic behavior of the material is characterized in a uniaxial stress-relaxation test by simultaneously acquiring the applied force, mechanical deformation, and fluorescence emission. To offer insight into the stress-strain response of the polymer-dye blend, we adapt a classical nonlinear constitutive behavior for elastomeric materials that accounts for stress-induced softening. We correlate the fluorescent response with the mechanical strain to demonstrate the possibility of accurate strain sensing for a broad range of deformations during both loading and unloading.

  11. Strain gauge installation tool

    SciTech Connect

    Conard, Lisa Marie

    1997-12-01

    A tool and a method for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  12. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes

    NASA Astrophysics Data System (ADS)

    Hsu, Ya-Ju; Chang, Yuan-Shu; Liu, Chi-Ching; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn I.; Kitagawa, Genshio; Chen, Yue-Gau

    2015-06-01

    Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30 mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since 2003. Liu et al. (2009) proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges -1 to -3 nanostrain/millibar(hPa) and -0.3 to -1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about -5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is

  13. The Course of Due Process.

    ERIC Educational Resources Information Center

    Getty, Laura A.; Summy, Sarah E.

    2004-01-01

    Discussion of due process rights for children with disabilities considers common issues leading to due process requests, due process procedures, hearing officers, procedural violations, effects of due process meetings, and areas for improvement (i.e., accountability, paperwork). Tables list categories of procedural violations with examples and…

  14. Attaching strain transducers to fragile materials

    NASA Technical Reports Server (NTRS)

    Duggan, M. F.

    1979-01-01

    A-shaped clamp prevents damage to thin, brittle specimens and supports displacement transducer away from heated zone. Also it defines reference points for strain measurement on specimen surface thus preventing specimen cracking due to unequal thermal expansion between clamp and holder.

  15. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  16. Resistance fail strain gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  17. What Are Sprains and Strains?

    MedlinePlus

    ... sprain, one or more ligaments is stretched or torn. What Causes a Sprain? Where Do Sprains Usually ... strain, a muscle or tendon is stretched or torn. What Causes Strains? A strain is caused by ...

  18. Sprains and Strains

    MedlinePlus

    ... people at risk for strains. Gymnastics, tennis, rowing, golf, and other sports that require extensive gripping can ... Trials and You was designed to help people learn more about clinical trials, why they matter, and ...

  19. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  20. A high-strain-rate superplastic ceramic.

    PubMed

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials. PMID:11565026

  1. Ecoepidemics with Two Strains: Diseased Prey.

    NASA Astrophysics Data System (ADS)

    Elena, Elisa; Grammauro, Maria; Venturino, Ezio

    2011-09-01

    In this work we present a minimal model for an ecoepidemic situation with two diseases affecting the prey population. The main assumptions are the following ones. The predators recognize and hunt only the healthy prey. An infected prey of one strain becomes immune to the other one. The major finding shows that the two strains cannot simultaneously thrive in the system, contrary to the standard assumptions in epidemiology. But this rather unexpected and remarkable result, paralleling another one when the epidemics affects the predators, is most likely due to the assumptions made.

  2. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  3. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  4. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  5. Annihilation of strained vortices

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi

    2014-11-01

    As an initial stage of vortex reconnection, approach of nearly anti-parallel vortices has often been observed experimentally and studied numerically. Inspired by the recent experiment by Kleckner and Irvine on the dynamics of knotted vortices, we have studied the motion of two anti-parellel Burgers vortices driven by an axisymmetric linear straining field. We first extend the Burgers vortex solution which is a steady exact solution of the Navier-Stokes equation to a time-dependent exact solution. Then by superposing two such solutions, we investigate the annihilation process analytically. We can demonstrate that during the annihilation process the total vorticity decays exponentially on a time-scale proportional to the inverse of the rate of strain, even as the kinematic viscosity tends to 0. The analytic results are compared with the numerical simulations of two strained vortices with the vortex-vortex nonlinear interaction by Buntine and Pullin.

  6. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  7. The apparent strain stability and repeatability of a BCL3 resistance strain gage

    NASA Astrophysics Data System (ADS)

    Lei, Jih-Fen

    1991-02-01

    Experiments were conducted at NASA-Lewis to study the effect of microstructural instability on the apparent strain stability and reproducibility of a BCL3 resistance strain gage. The resistance drift of the gage at various temperatures in the phase transition temperature range (PTTR) was measured. The effects of the heating and cooling rates with which the gage passed through the PTTR on the apparent strain characteristics of the gage were also studied. BCL3 gage, like other Fe-Cr-Al based gages, exhibited apparent strain instability in the temperature range of 700 to 1100 F due to the reversible microstructural transition the gage materials experienced in this temperature range. The BCL3 gage had a maximum apparent strain drift in the neighborhood of 770 F with an average drift rate of approx. -440 microstrain/hr in 2 hrs. The use of the BCL3 gage as well as other Fe-Cl-Al based gages for static strain measurements within the PTTR should be avoided unless the time durations in the PTTR are small enough to introduce a neglible drift. The microstructure transition that the BCL3 gage underwent occurred in the temperature range of 750 to 1050 F during heating and around 1000 to 800 F during cooling. The heating rate, and, in particular, the cooling rate with which the gage passed through the PTTR affected the shape and the repeatability of the apparent strain curve of the gage.

  8. Microstructural changes, steady-state deformation and strain localisation during large strain deformation of rocks

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.

    2012-04-01

    Ductile deformation in the Earth's crust and mantle is often concentrated in narrow shear zones. These shear zones play a fundamental role in the deformation dynamics of the earth's lithosphere during mountain building, subduction and continental break-up. Shear zones exhibit large amounts of strain with an increase in strain from the edge to the center of the shear zone. Those large strains are often accompanied with large changes in microstructure due to processes such as dynamic recrystallization, grain size refinement, development of strong foliations, development of crystallographic preferred orientations, weakening of the rock as well as progressive localisation of the deformation into more and more concentrated zones. The interplay between all those different processes produce the various microstructures that are often studied in natural shear zones to assess the deformation conditions and history of plate tectonic processes. Experimental deformation studies under controlled conditions are used to produce relationships between the different processes active in shear zones (rheology, microstructural changes, and CPO development) in order to make those quantitative inferences on natural shear zones, Here I will present the outcomes from large strain torsion experiments at elevated temperatures and pressures on monophase calcitic rocks showing that very large strains are needed before true steady-state conditions in rocks are attained. Continuous changes in crystallographic preferred orientations and continuous dynamic recrystallization by grain boundary migration and subgrain rotation recrystallization occur up to the largest shear strains achieved in the study (shear strain of 50). Dynamic recrystallization from an undeformed coarse-grained calcite rock types towards a fine-grained ultramylonite is accompanied by a modest (~20%) weakening of the rock. However, this modest weakening never caused strain localisation in the samples. In contrast to the

  9. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    PubMed Central

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P.; Nishio, Erick K.; Kobayashi, Renata K. T.; Nakazato, Gerson

    2014-01-01

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections. PMID:25170683

  10. Local Strain Evaluation of Strained-SOI Structures

    NASA Astrophysics Data System (ADS)

    Usuda, Koji; Mizuno, Tomohisa; Numata, Toshinori; Tezuka, Tsutomu; Sugiyama, Naoharu; Moriyama, Yoshihiko; Nakaharai, Shu; Takagi, Shin-Ichi

    The strain relaxation within a strained-Si on SiGe on insulator (SGOI) structure might be one of the key issues in development of strained-Si MOSFET devices for high-performance ULSIs. In order to investigate the strain relaxation within the thin strained-Si layers, a new characterization technique to directly evaluate a local strain variation in the layers is required. Hence, we have developed the nano-beam electron diffraction (NBD) method which has a lateral resolution of 10 nm and a strain resolution of 0.1%. In this paper, we discuss a detailed investigation of whether the NBD method could be utilized to clarify a strain in a strained-Si layer on the SGOI structures.

  11. ConStrains identifies microbial strains in metagenomic datasets

    PubMed Central

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-01-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived data sets provides insights into microbial community dynamics. PMID:26344404

  12. ConStrains identifies microbial strains in metagenomic datasets.

    PubMed

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-10-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived datasets provides insights into microbial community dynamics. PMID:26344404

  13. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  14. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  15. Dialysis Culture of T-Strain Mycoplasmas

    PubMed Central

    Masover, Gerald K.; Hayflick, Leonard

    1974-01-01

    Using dialyzing cultures of T-strain mycoplasmas, it was possible to make some observations relevant to the growth and metabolism of these organisms which would not be possible in nondialyzing cultures due to growth inhibition of the organisms by elevated pH and increased ammonium ion concentration in media containing urea. The rate of ammonia accumulation was found to be related to the initial urea concentration in the medium and could not be accounted for by any change in the multiplication rate of the organisms. More ammonia was generated than could be accounted for by the added urea alone, suggesting that an ammonia-producing activity other than urease may be present in T-strain mycoplasmas. Titers above 107 color change units per ml were achieved in dialysis cultures of a T-strain mycoplasma in the presence of urea, and such titers were maintained for approximately 60 h during dialysis culture in the absence of added urea. PMID:4595203

  16. Apparent-Strain Correction for Combined Thermal and Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; O'Neil, Teresa L.

    2007-01-01

    Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.

  17. Stochastic disease extinction in multistrain diseases with interacting strains

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Shaw, Leah; Schwartz, Ira

    2009-03-01

    The study of multistrain diseases, diseases with several coexisting strains, is a major challenge for mathematical biology. Examples of such diseases are influenza, HIV, dengue and ebola. In this work we present an agent-based model for multistrain diseases with strain interactions mediated by antibody-dependent enhancement. An individual infected with a strain develops antibodies which will protect him/her against all the strains. When the level of protection wanes, the presence of antibodies will enhance the infectiousness of the individual when an infection with a different strain occurs. This mechanism is called antibody-dependent enhancement (ADE). We use this model to investigate the role that fluctuations due to system size have on disease extinction paths and discuss how interactions mediated by ADE affect rates of disease fade-out. Finally, we discuss the effect that varying the number of strains has on disease extinction.

  18. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  19. Biaxial compressive strain engineering in graphene/boron nitride heterostructures.

    PubMed

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K; Taniguchi, T; Shi, Yi; Wang, Xinran

    2012-01-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time. PMID:23189242

  20. In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    PubMed Central

    Porro, Laura B.; Ross, Callum F.; Iriarte-Diaz, Jose; O'Reilly, James C.; Evans, Susan E.; Fagan, Michael J.

    2014-01-01

    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology. PMID:24577443

  1. The strained state cosmology

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-01-01

    Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.

  2. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  3. Accurate strain measurements in highly strained Ge microbridges

    NASA Astrophysics Data System (ADS)

    Gassenq, A.; Tardif, S.; Guilloy, K.; Osvaldo Dias, G.; Pauc, N.; Duchemin, I.; Rouchon, D.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Niquet, Y.-M.; Geiger, R.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.

    2016-06-01

    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to ɛ100 = 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9% corresponding to an unexpected Δω = 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.

  4. Network of flexible capacitive strain gauges for the reconstruction of surface strain

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhe; Song, Chunhui; Saleem, Hussam S.; Downey, Austin; Laflamme, Simon

    2015-05-01

    Monitoring of surface strain on mesosurfaces is a difficult task, often impeded by the lack of scalability of conventional sensing systems. A solution is to deploy large networks of flexible strain gauges, a type of large area electronics. The authors have recently proposed a soft elastomeric capacitor (SEC) as an economical skin-type solution for large-scale deployment onto mesosurfaces. The sensing principle is based on a measurable change in the sensor’s capacitance upon strain. In this paper, we study the performance of the sensor at reconstructing surface strain map and deflection shapes. A particular feature of the sensor is that it measures surface strain additively, because it is not utilized within a Wheatstone bridge configuration. An algorithm is proposed to decompose the additive in-plane strain measurements from the SEC into principal components. The algorithm consists of assuming a polynomial shape function, and deriving the strain based on Kirchhoff plate theory. A least-squares estimator (LSE) is used to minimize the error between the assumed model and the SEC signals after the enforcement of boundary conditions. Numerical simulations are conducted on a symmetric rectangular cantilever thin plate under symmetric and asymmetric static loads to demonstrate the accuracy and real-time applicability of the algorithm. The performance of the algorithm is further examined on an asymmetric cantilever laminated thin plate constituted with orthotropic materials mimicking a wind turbine blade, and subjected to a non-stationary wind load. Results from simulations show good performance of the algorithm at reconstructing the surface strain maps for both in-plane principal strain components, and that it can be applied in real time. However, its performance can be improved by strengthening assumptions on boundary conditions. The algorithm exhibits robustness in performance with respect to load and noise in signals, except when most of the sensors’ signals are

  5. [Acetobutylic fermentation: strains and regional raw materials].

    PubMed

    Benassi, F O; Bloos, R K; de Rambaldo, L A

    1983-01-01

    The purpose of the present work was to show, as a first stage, that it is possible to characterize autochtohnous strains of Clostridium acetobutilicum of a good solvent producing capacity, specially N-butanol, through the utilization of suitable techniques for isolating anaerobic microorganisms. Cassava roots were employed as raw material using suitable culture media and an anaerobic jar of cold catalyst. The fermentative capacity of the strains thus isolated was evaluated against a control strain of Clostridium acetobutilicum. Even though some of the strains showed a greater solvent producing power, most of them showed lower fermentation capacity than the control strain, which could be increased, by applying successive thermic treatments. As a second stage, and due to the low cost production of cassava in the Province of Misiones, we studied its utilization as an acetone-butanol fermentation substrate. Mashes composed of binary mixtures of cassava flour and variable amounts of integral flour maize or soy were treated with selected "starters" of Clostridium acetobutilicum, being further processed according to standardized techniques in order to obtain the already mentioned solvents. Mashes concentration influence was also studied using culture media the composition of which proved to be excellent in all experiments carried out under "static system" conditions. The highest fermentative yields (maximum value recorded: 26,20 g of total solvents, with respect to dry solids), were recorded for mashes obtained from mixtures containing integral maize flour; these showed a higher degree of nutrients utilization than those prepared with integral soy flour. PMID:6400763

  6. Crack initiation under generalized plane strain conditions

    SciTech Connect

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab.

  7. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  8. On Boreholes and PBO Borehole Strain

    NASA Astrophysics Data System (ADS)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  9. The meaning of role strain.

    PubMed

    Ward, C R

    1986-01-01

    Explicating the meaning of the concept of role strain is important in role theory formulation, an area requiring further development to provide explanations and predictions for both patient and provider roles. In this analysis, the use of the term role strain is traced from the structural-functionalist and symbolic-interactionist perspectives. Descriptive, stipulative, and connotative definitions of role strain are derived, and necessary and relevant properties are proposed. Antecedent and intervening conditions for role strain are outlined from the literature. Role strain manifestations and empirical referents are presented, and an initial step is taken toward a theoretical formulation by defining role strain within the context of role stress. PMID:3079985

  10. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGESBeta

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  11. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  12. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  13. Novel strained superjunction VDMOS

    NASA Astrophysics Data System (ADS)

    Naugarhiya, Alok; Dubey, Shashank; Kondekar, Pravin N.

    2015-09-01

    In this paper, we have proposed novel strained superjunction (s-SJ) vertical double diffused MOS (VDMOS). Through channel engineering, we have introduced strain effects in s-SJ device using thin separate p-type silicon-germanium (p-SiGe) layer over silicon p-pillar. Further, we have designed process flow for the possible fabrication of s-SJ VDMOS. The proposed s-SJ devices fitted with less input capacitance (Cin) and 1.2∼3 times higher output current density than conventional SJ VDMOS. Therefore, 40% less gate charge (Qg) is required to turn-on the s-SJ VDMOS and Ron A is optimized in between 12% and 46%.

  14. Strain Release Amination

    PubMed Central

    Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.

    2015-01-01

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372

  15. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors

    NASA Astrophysics Data System (ADS)

    Liao, Qingliang; Mohr, Markus; Zhang, Xiaohui; Zhang, Zheng; Zhang, Yue; Fecht, Hans-Jörg

    2013-11-01

    We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain.We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03536k

  16. Ultrasonic actuators: Remote strain measurements, high strain horns and ultrasonic chromatography

    NASA Astrophysics Data System (ADS)

    Lee, Chung Hoon

    In this thesis, optical diffraction strain measurement, silicon-based ultrasonic horn actuators for thin film testing, and mufluidic assay systems are presented. Optical ultrasonic strain measurement: Using optical diffraction gratings integrated on a PZT/silicon laminate actuator, the strain on the actuator was optically and remotely measured. The methodology, limitations, analytical and numerical (ANSYS) analysis are presented. This technology of diffraction grating for ultrasonic strain measurements could lead to an instrument useful for remote monitoring of strain on MEMS sensors. Design of high efficiency silicon-based ultrasonic horn, and their fabrication for thin film testing under cyclic load: A detailed ultrasonic horn design and its analysis are resented. For this application a Gaussian horn is utilized. Most ultrasonic horns have a single point maximum strain point along the horn resulting in strain gradient at all points. For the purpose of straining thin films it is desirable to have areas of spatially constant strain fields. Remarkably, the Gaussian horn has a constant strain area suitable for thin film testing. High strain values can lead to testing not only fatigue, but also fracture of thin films. We feel that the ability to generate constant ultrasonic strain areas on silicon is a technique suitable for industrial and academic material characterization. A portable high-intensity ultrasonic actuator for mufluidic separation (ultrasonic chromatography): Micro-particle manipulation in a liquid using ultrasonic fields in a micro-channel, principle of operation, and analysis are presented. Beads of different sizes could be separated within an optically viewable aperture (˜100 mum). It is found that the separation occurs due to ultrasonic radiation force and a new inertial force, acting on the beads. The key mechanism of focusing beads at the nodes of ultrasonic standing waves, and the origin of the inertial force for the separation are described. The

  17. Prolonged cyclic strain inhibits human endothelial cell growth.

    PubMed

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  18. Interfacial residual thermal strain

    NASA Astrophysics Data System (ADS)

    Kasen, M.; Santoyo, R.

    A method has been developed for assessing the influence of polymer chemical composition and of processing parameters on the magnitude of residual stress developed in glass-fibre-reinforced composites subjected to various cure cycles and subsequently cooled to cryogenic temperatures. The test method was applied to nine resin types, including epoxy, vinyl ester, polyester, cyanate ester and phenolic formulations. Results suggest that polyester resin develops substantially less overall residual strain than do the other resin systems.

  19. Ovulation and Due Date Calculator

    MedlinePlus

    ... Mom-to-be tools Ovulation and due date calculator Preconception health quiz Pregnancy know-how quiz Government ... Pregnancy > Pregnancy This information in Spanish ( en español ) Calculator Content last updated September 27, 2010. Resources last ...

  20. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  1. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  2. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  3. Construction of the Inbred Strain.

    PubMed

    Shinya, Minori

    2016-01-01

    Genetically homogeneous populations such as inbred strains are valuable experimental tools in various fields of biomedical analyses. In many animals, inbred strains are established by consecutive sib-pair mating for a minimum of 20 generations. As the generation proceeds, fitness of the population reduces usually. Therefore, in order to establish inbred strains, the important point is the selection of pairs in good condition at each generation. Here, I describe the procedure and tips for generating inbred strains in zebrafish. PMID:27464804

  4. Strain calibration of optical FBG-based strain sensors

    NASA Astrophysics Data System (ADS)

    Roths, Johannes; Wilfert, Andre; Kratzer, Peter; Jülich, Florian; Kuttler, Rolf

    2010-09-01

    A facility for strain sensitivity calibration of optical FBG-based strain sensors according to the German VDI/VDE 2660 guideline was established and characterized. Statistical analysis of several calibration measurement series performed with one single type of FBG strain sensor and application technique showed a reproducibility of 0.15%. Strain sensitivities for FBGs inscribed in two different types of optical fibres (GF1B and PR2008) showed significantly different strain sensitivities of k = 0.7885+/-0.0026 and k = 0.7758+/-0.0024, respectively.

  5. Strainrange partitioning - A total strain range version. [for creep fatigue life prediction by summing inelastic and elastic strain-range-life relations for two Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  6. Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus.

    PubMed

    Parra, E; Jiménez-Barbero, J; Bernabé, M; Leal, J A; Prieto, A; Gómez-Miranda, B

    1994-01-01

    The water-soluble cell-wall polysaccharides isolated from strains CBS 352.72 and 310.38 of Talaromyces flavus have been investigated by chemical analyses and NMR studies. Two different skeletons coexist, having the structures: [formula:see text]. The small differences between the polysaccharides isolated from both strains are probably due to slight diminution of branching in strain 352.72, as compared with strain 310.38. PMID:8149378

  7. Marble decay due to microcracking

    NASA Astrophysics Data System (ADS)

    Shushakova, V.; Fuller, E. R., Jr.; Heidelbach, F.; Siegesmund, S.

    2012-04-01

    An actual degradation phenomenon of marble structures, i.e., microcracking, is examined via computer simulations with a microstructure-based finite element modelling. Crack initiation and crack propagation were characterized, as well their dependence on grain- shape preferred orientation (SPO), lattice preferred orientation (LPO), grain size and grain-boundary fracture toughness. Calcite is used as an illustrative example. Results are expected to be general for myriad marble microstructures, as the thermophysical properties of various marbles do not differ that much. Three SPOs were analyzed: equiaxed grains; elongated grains and a mixture of equiaxed and elongated grains. Six LPOs were considered: a random orientation distribution function (ODF); an ODF with strong directional crystal texture generated via March Dollase fiber-texture; and four types of actual marble texture as measured on marble samples with electron back-scattered diffraction (EBSD). Two different grain sizes were analyzed: fine grains range up to 200μm and medium size grains of approximate 1mm. The fracture surface energy for the grain boundaries was chosen to be 20 % and 40 % of the fracture surface energy of a grain, so that both intergranular and transgranular fractures were possible. Simulations were performed for both heating and cooling by 50 °C in steps of 1 °C. Microcracking results were correlated with the thermoelastic responses (indicators) related to degradation. Certain combinations of SPO, LPO, grain size, and grain-boundary fracture toughness have a significant influence on the thermal-elastic response of marble. For instance, thermal stresses and elastic strain energy are a strong function of the LPO. With increasing LPO the strain energy density and the maximum principal stress decreases. With decreasing grain size and increasing LPO and SPO, the area of microcracking is smaller and microcracking commences at a higher temperature differential.

  8. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    PubMed Central

    2009-01-01

    Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports

  9. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed

  10. Prosthetic Valve Endocarditis and Bloodstream Infection Due to Mycobacterium chimaera

    PubMed Central

    Achermann, Yvonne; Rössle, Matthias; Hoffmann, Matthias; Deggim, Vanessa; Kuster, Stefan; Zimmermann, Dieter R.; Hombach, Michael; Hasse, Barbara

    2013-01-01

    Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected. PMID:23536407

  11. Strain relaxation in graphene grown by chemical vapor deposition

    SciTech Connect

    Troppenz, Gerald V. Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H.

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  12. Development of a high temperature static strain sensor

    NASA Astrophysics Data System (ADS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-10-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  13. Development of a high temperature static strain sensor

    NASA Technical Reports Server (NTRS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-01-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  14. Large anisotropic deformation of skyrmions in strained crystal.

    PubMed

    Shibata, K; Iwasaki, J; Kanazawa, N; Aizawa, S; Tanigaki, T; Shirai, M; Nakajima, T; Kubota, M; Kawasaki, M; Park, H S; Shindo, D; Nagaosa, N; Tokura, Y

    2015-07-01

    Mechanical control of magnetism is an important and promising approach in spintronics. To date, strain control has mostly been demonstrated in ferromagnetic structures by exploiting a change in magnetocrystalline anisotropy. It would be desirable to achieve large strain effects on magnetic nanostructures. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that anisotropic strain as small as 0.3% in a chiral magnet of FeGe induces very large deformations in magnetic skyrmions, as well as distortions of the skyrmion crystal lattice on the order of 20%. Skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction, originating from a chiral crystal structure. Our results show that the change in the modulation of the strength of this interaction is amplified by two orders of magnitude with respect to changes in the crystal lattice due to an applied strain. Our findings may provide a mechanism to achieve strain control of topological magnetic structures based on the Dzyaloshinskii-Moriya interaction. PMID:26030654

  15. Spall Response of Tantalum at Extreme Strain-Rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Germann, Tim; Meyers, Marc

    Strain-rate and microstructure play a significant role in the ultimate mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of single and nanocrystalline tantalum over multiple orders of magnitude of strain-rate. This comparison is extended to over nine orders of magnitude including experimental results from resent laser shock campaigns. Spall strength primarily follows a power law dependence with strain-rate over this extensive range. In all cases, voids nucleate heterogeneously at pre-existing defects. Predictions based on traditional theory suggest that, as strain-rate increases, tensile strength should increase. Alternatively, as grain size decreases, tensile strength may decrease due to an increased propensity to fail at a growing volume fraction of grain boundaries. Strain-rate and grain size dictate void nucleation sites by changing the type and density of available defects: vacancies, dislocations, twins, and grain boundaries.

  16. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-01

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics. PMID:26842553

  17. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  18. [Echinococcus and strain concepts].

    PubMed

    Utük, Armağan Erdem; Simsek, Sami

    2008-01-01

    Hydatid disease (echinococcosis) is one of the most important parasitic zoonoses and remains a public health and economic problem all over the world. Echinococcus granulosus includes a number of genetic variants and, up to date, analyses of mitochondrial DNA sequences have identified ten distinct genetic types (genotypes G1-10). This categorization follows closely the pattern of strain variation emerging based on biological characteristics. The extensive variation in E. granulosus may influence life-cycle patterns, host specificity, development rate, antigenicity, transmission dynamics, sensitivity to chemotherapeutic agents, and pathology. In this review, the recent genetic characterizations of Echinococcus genus have been summarized. PMID:18351549

  19. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  20. Characterization of oriented cracks with differential strain analysis

    NASA Technical Reports Server (NTRS)

    Siegfried, R.; Simmons, G.

    1978-01-01

    Linear strain of a rock sample as a function of hydrostatic pressure can be measured with a precision of 2 millionths. Such high-precision data for three orthogonal directions allow calculation of the distribution function for the porosity due to cracks' closing completely at a given pressure. Such data for at least six independent directions yield the zero-pressure strain tensor due to cracks' closing completely at a given pressure. The principal values and axes of this tensor distribution function provide information about the orientation of cracks as a function of closure pressure. The mathematical basis for the technique is developed, and the technique is illustrated with differential strain data for two samples, the Westerly (Rhode Island) granite and the Twin Sisters (Washington) dunite. Strain-tensor calculations reveal that each of these samples has a different type of anisotropic crack distribution.

  1. Economic losses due to catastrophes

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    Worldwide economic loss due to catastrophic events added up to US140 billion in 2013, with insured losses adding up to 45 billion, according to a report by the insurance provider Swiss Re. Though these numbers are down from 196 billion in economic losses and 81 billion in insurance losses in 2012, Swiss Re reports an upward trend in losses.

  2. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.; Jones, Marni Gail

    2010-01-01

    This article presents a due process hearing case study of a mother who contended that his son, D.J., has been denied of a free and appropriate public education (FAPE) of his School District after being suspended from school. D.J., an elementary student, had been described as hyperactive, inattentive, defiant, and often volatile. He was identified…

  3. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.

    2008-01-01

    Ben is a 16-year-old student who resides with his family in an unnamed School District. He is eligible for special education by reason of specific learning disability and ADHD. His parents requested a due process hearing, alleging that the District failed to provide him with a free appropriate public education (FAPE) and requesting reimbursement…

  4. Strain Analysis of the de Mattia Test

    NASA Astrophysics Data System (ADS)

    Feichter, C.; Vezer, S.; Reiter, M.; Major, Z.

    2010-06-01

    The de Mattia test is a well-known, standardized and widely used method in the rubber industry for characterizing the fatigue behaviour of rubbers. Due to the visual observation and classification of the crack initiated, high data scatter were usually observed in these tests. To improve the quality of the de Mattia test and to support the applicability of the test method in modern design procedures, two novel experimental methods were proposed. Full-field strain analysis experiments using digital image correlation technique were performed and the local strains at the notch tip determined in the first. A global displacement vs. local strain calibration curves makes the design and conduction of strain based Wöhler curves possible. The crack initiation and crack growth is detected by an image analysis system and the crack growth rate was determined in the second method. To gain more insight into the fatigue behaviour of rubbers, these two novel methods were combined and can efficiently be used for characterizing the fatigue behaviour of rubbers.

  5. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  6. Quality Control On Strained Semiconductor Devices

    SciTech Connect

    Dommann, Alex; Neels, Antonia

    2010-11-24

    New semiconductor devices are based very often on strained silicon which promises to squeeze more device performance out of current devices. With strained silicon it is possible to get the same device performance using less power. The technique is using strain as a 'design element' for silicon to improve the device performance and has become a hot topic in semiconductor research in the past years. However in the same time topics like 'System in Package'(SiP) on thin wafers are getting more and more important. The chips of thin wafers in advanced packaging are extremely sensitive to induced stresses due to packaging issues. If we are using now strain as a design element for improving device performance we increase the sensitivity again and therefore also the risk of aging of such SiP's. High Resolution X-ray diffraction (HRXRD) techniques such as Rocking Curves (RC's) and Reciprocal Space Mapping (RSM) are therefore very powerful tools to study the stresses in packaged devices.

  7. Finite Element Analysis of Brain Injury due to Head Impact

    NASA Astrophysics Data System (ADS)

    Suh, Chang Min; Kim, Sung Ho; Goldsmith, Werner

    Traumatic Brain Injury (TBI) due to head impact by external impactor was analyzed using Finite Element Method (FEM). Two-dimensiona modeling was performed according to Magnetic Resonance Imaging (MRI) data of Mongolian subject. Pressure variation in a cranium due to external impact was analyzed in order to simulate Nahum et al.'s cadaver test.6 And, analyzed results were compared with Nahum et al.'s experimental data.6 As results, stress and strain behaviors of the brain during impact were accorded with experimental data qualitatively even though there were some differences in quantitative values. In addition, they were accorded with other references about brain injury as well.

  8. Multiple Rescue Factors Within a Wolbachia Strain

    PubMed Central

    Zabalou, Sofia; Apostolaki, Angeliki; Pattas, Savvas; Veneti, Zoe; Paraskevopoulos, Charalampos; Livadaras, Ioannis; Markakis, George; Brissac, Terry; Merçot, Hervé; Bourtzis, Kostas

    2008-01-01

    Wolbachia-induced cytoplasmic incompatibility (CI) is expressed when infected males are crossed with either uninfected females or females infected with Wolbachia of different CI specificity. In diploid insects, CI results in embryonic mortality, apparently due to the the loss of the paternal set of chromosomes, usually during the first mitotic division. The molecular basis of CI has not been determined yet; however, several lines of evidence suggest that Wolbachia exhibits two distinct sex-dependent functions: in males, Wolbachia somehow “imprints” the paternal chromosomes during spermatogenesis (mod function), whereas in females, the presence of the same Wolbachia strain(s) is able to restore embryonic viability (resc function). On the basis of the ability of Wolbachia to induce the modification and/or rescue functions in a given host, each bacterial strain can be classified as belonging in one of the four following categories: mod+ resc+, mod− resc+, mod− resc−, and mod+ resc−. A so-called “suicide” mod+ resc− strain has not been found in nature yet. Here, a combination of embryonic cytoplasmic injections and introgression experiments was used to transfer nine evolutionary, distantly related Wolbachia strains (wYak, wTei, wSan, wRi, wMel, wHa, wAu, wNo, and wMa) into the same host background, that of Drosophila simulans (STCP strain), a highly permissive host for CI expression. We initially characterized the modification and rescue properties of the Wolbachia strains wYak, wTei, and wSan, naturally present in the yakuba complex, upon their transfer into D. simulans. Confocal microscopy and multilocus sequencing typing (MLST) analysis were also employed for the evaluation of the CI properties. We also tested the compatibility relationships of wYak, wTei, and wSan with all other Wolbachia infections. So far, the cytoplasmic incompatibility properties of different Wolbachia variants are explained assuming a single pair of modification and rescue

  9. Strain mapping on gold thin film buckling and siliconblistering

    SciTech Connect

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  10. Thermal conductivity of graphene mediated by strain and size

    DOE PAGESBeta

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; Huang, Baoling; Lindsay, Lucas

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less

  11. Strain hardening of metal parts with use of impulse wave

    NASA Astrophysics Data System (ADS)

    Kirichek, A. V.; Soloviev, D. L.

    2016-04-01

    This work describes a strain hardening method with the use of impulse waves. This method increases energy transfer to the strained material extending its technological capabilities with development of a deep strengthened layer and allowing formation of a heterogeneous hardened structure using plastic deformation. This structure has specified distribution of the hard and soft (visco-plastic) areas. Due to development of the heterogeneous structure in the surface layer created by strain hardening with impulse wave, durability of parts that suffer contact fatigue loading is significantly increased.

  12. Active and structural strain model for magnetostrictive transducers

    NASA Astrophysics Data System (ADS)

    Dapino, Marcelo J.; Smith, Ralph C.; Flatau, Alison B.

    1998-07-01

    We consider the modeling of strains generated by magnetostrictive materials in response to applied magnetic fields. The active or external component of the strain is due to the rotation of magnetic moments within the material to align with the applied field. This is characterized through consideration of the Jiles-Atherton mean field theory for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. The second component of the strain reflects the passive or internal dynamics of the rod as it vibrates. This is modeled through force balancing which yields a wave equation with magnetostrictive inputs. The validity of a combined transducer model is illustrated through comparison with experimental data.

  13. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  14. Severe hypercalcemia due to teriparatide

    PubMed Central

    Karatoprak, Cumali; Kayatas, Kadir; Kilicaslan, Hanifi; Yolbas, Servet; Yazimci, Nurhan Aliye; Gümüskemer, Tolga; Demirtunç, Refik

    2012-01-01

    Osteoporosis that is by far the most common metabolic bone disease, has been defined as a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture. Anabolic therapy with teriparatide, recombinant human parathyroid hormone (PTH 1-34), stimulates bone formation and resorption and improves trabecular and cortical microarchitecture. Teriparatide is indicated for the treatment of men and postmenopausal women with osteoporosis who are at high risk for fracture, including those who have failed or are intolerant of previous osteoporosis therapy. In conclusion, although teriparatide seems quite effective in the treatment of osteoporosis, it may cause life-threatening hypercalcemia. Therefore, patients should be closely monitored if symptoms of hypercalcemia are present during teriparatide treatment. Sustained hypercalcemia due to teriparatide treatment can not be seen in literature so we wanted to emphasize that severe hypercalcemia may develop due to teriperatide. PMID:22529492

  15. Parotitis due to anaerobic bacteria.

    PubMed

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  16. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T.N.; Goyal, K.P.

    1982-10-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the U.S. and elsewhere. Vertical ground displacements of upto 4.5 m and horizontal ground displacements of up t o 0.5 m have been observed at Wairakei, New Zealand that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy and Cerro Prieto, Mexico. Observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant therma mechanisms. Although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  17. Subsidence due to geothermal fluid withdrawal

    SciTech Connect

    Narasimhan, T. N.; Goyal, K. P.

    1984-12-01

    Single-phase and two-phase geothermal reservoirs are currently being exploited for power production in Italy, Mexico, New Zealand, the United States, and elsewhere. Vertical ground displacements of up to 4.5 m and horizontal ground displacements of up to 0.5 m have been observed at Wairakei, New Zealand, that are clearly attributable to the resource exploitation. Similarly, vertical displacements of about 0.13 m have been recorded at The Geysers, California. No significant ground displacements that are attributable to large-scale fluid production have been observed at Larderello, Italy, and Cerro Prieto, Mexico. In this paper, observations show that subsidence due to geothermal fluid production is characterized by such features as an offset of the subsidence bowl from the main area of production, time-lag between production and subsidence, and nonlinear stress-strain relationships. Several plausible conceptual models, of varying degrees of sophistication, have been proposed to explain the observed features. At present, relatively more is known about the physical mechanisms that govern subsidence than the relevant thermal mechanisms. Finally, although attempts have been made to simulate observed geothermal subsidence, the modeling efforts have been seriously limited by a lack of relevant field data needed to sufficiently characterize the complex field system.

  18. Ventriculitis due to Cryptococcus uniguttulatus.

    PubMed

    McCurdy, L H; Morrow, J D

    2001-01-01

    Infections due to non-neoformans cryptococci are rare. We report the first case of a human infection caused by Cryptococcus uniguttulatus. Ventriculitis caused by this organism developed in a 65-year-old woman who had had repair of an internal carotid aneurysm. In vitro sensitivity testing showed the Cryptococcus species sensitive to amphotericin B and itraconazole. Treatment with amphotericin led to resolution of the infection. PMID:11213945

  19. Oxytocin and the oxytocin receptor underlie intra-strain, but not inter-strain, social recognition

    PubMed Central

    Macbeth, Abbe H.; Lee, Heon-Jin; Edds, Jennifer; Young, W. Scott

    2009-01-01

    We studied three lines of oxytocin (Oxt) and oxytocin receptor (Oxtr) knockout (KO) male mice (Oxt−/−, total Oxtr−/−, and partial-forebrain Oxtr (OxtrFB/FB)) with established deficits in social recognition to further refine our understanding of their deficits with regard to stimulus female's strain. We used a modified social discrimination paradigm in which subjects are singly housed only for the duration of the test. Additionally, stimulus females are singly-housed throughout testing and are presented within corrals for rapid comparison of investigation by subject males. Wildtype (WT) males from all three lines discriminated between familiar and novel females of three different strains (C57BL/6, Balb/c, Swiss-Webster). No KO males discriminated between familiar and novel Balb/c or C57BL/6 females. Male Oxt−/− and Oxtr−/− mice, but not OxtrFB/FB mice, discriminated between familiar and novel Swiss-Webster females. As this might indicate a global deficit in individual recognition for OxtrFB/FB males, we examined their ability to discriminate between females from different strains and compared performance with Oxtr−/− males. WT and KO males from both lines were able to distinguish between familiar and novel females from different strains, indicating the social recognition deficit is not universal. Instead, we hypothesize that the Oxtr is involved in “fine” intra-strain recognition, but is less important in “broad” inter-strain recognition. We also present the novel finding of decreased investigation across tests, which is likely an artifact of repeated testing and not due to stimulus female's strain or age of subject males. PMID:19531157

  20. Printing of stretchable silk membranes for strain measurements.

    PubMed

    Ling, Shengjie; Zhang, Qiang; Kaplan, David L; Omenetto, Fiorenzo; Buehler, Markus J; Qin, Zhao

    2016-07-01

    Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to several limitations such as strain range, boundary conditions, surface bonding and biocompatibility. Here we propose the use of silk solutions and printing to synthesize prototype strain gauges for large strain measurements in biological tissues. The study shows that silk-based strain gauges can be stretched up to 1300% without failure, which is more than two orders of magnitude larger than conventional strain gauges, and the mechanics can be tuned by adjusting ion content. We demonstrate that the printing approach can accurately provide well bonded fluorescent features on the silk membranes using designs which can accurately measure strain in the membrane. The results show that these new strain gauges measure large deformations in the materials by eliminating the effects of sliding from the boundaries, making the measurements more accurate than direct outputs from tensile machines. PMID:27241909

  1. Strains at the myotendinous junction predicted by a micromechanical model

    PubMed Central

    Sharafi, Bahar; Ames, Elizabeth G.; Holmes, Jeffrey W.; Blemker, Silvia S.

    2011-01-01

    The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ. PMID:21945569

  2. Influence of Lysobacter enzymogenes Strain C3 on Nematodes

    PubMed Central

    Chen, J.; Moore, W. H.; Yuen, G. Y.; Kobayashi, D.; Caswell-Chen, E. P.

    2006-01-01

    Chitinolytic microflora may contribute to biological control of plant-parasitic nematodes by causing decreased egg viability through degradation of egg shells. Here, the influence of Lysobacter enzymogenes strain C3 on Caenorhabditis elegans, Heterodera schachtii, Meloidogyne javanica, Pratylenchus penetrans, and Aphelenchoides fragariae is described. Exposure of C. elegans to L. enzymogenes strain C3 on agar resulted in almost complete elimination of egg production and death of 94% of hatched juveniles after 2 d. Hatch of H. schachtii eggs was about 50% on a lawn of L. enzymogenes strain C3 on agar as compared to 80% on a lawn of E. coli. Juveniles that hatched on a lawn of L. enzymogenes strain C3 on agar died due to disintegration of the cuticle and body contents. Meloidogyne javanica juveniles died after 4 d exposure to a 7-d-old chitin broth culture of L. enzymogenes strain C3. Immersion of A. fragariae, M. javanica, and P. penetrans juveniles and adults in a nutrient broth culture of L. enzymogenes strain C3 led to rapid death and disintegration of the nematodes. Upon exposure to L. enzymogenes strain C3 cultures in nutrient broth, H. schachtii juveniles were rapidly immobilized and then lysed after three days. The death and disintegration of the tested nematodes suggests that toxins and enzymes produced by this strain are active against a range of nematode species. PMID:19259452

  3. Two-strain competition in quasineutral stochastic disease dynamics.

    PubMed

    Kogan, Oleg; Khasin, Michael; Meerson, Baruch; Schneider, David; Myers, Christopher R

    2014-10-01

    We develop a perturbation method for studying quasineutral competition in a broad class of stochastic competition models and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model. Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007)], Parsons et al. [Theor. Popul. Biol. 74, 302 (2008)], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012)]. The second model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically "typical" initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population. PMID:25375480

  4. Life cycle structural health monitoring of airframe structures by strain mapping using FBG sensors

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Takeya, H.; Iwahori, Y.; Takeda, N.; Koshioka, Y.

    2010-04-01

    The purpose of this research is to develop the structural health monitoring system for composite airframe structures by strain mapping through their life cycles. We apply FBG sensor networks to CFRP pressure bulkheads and monitor the strain through their life cycles: molding, processing, assembly, operation and maintenance. Damages, defects and deformations which occurred in each stage are detected using the strain distribution. At first, we monitored the strain of CFRP laminates during molding and processing with FBG sensors. As a result, not only the thermal strain on curing process but also strain change due to demolding was measured precisely. In addition, we analyzed the change in strain distribution due to damages of CFRP pressure bulkhead such as stringer debonding and impact damage of skin under operational load in flight. On the basis of these results, the location of FBG sensors suitable for the detection of damages was determined.

  5. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  6. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    interest in strain studies as well. Researchers in China investigated the effects of tensile strain on the thermal conductivity of graphene nanoribbons. Tuning the thermal conductivity of nanomaterials is highly desirable to optimize their functionality [5]. Wei and colleagues use computer simulations based on reverse nonequilibrium molecular dynamics (RNEMD) to demonstrate what they describe as 'a strain-induced magic flexibility of thermal engineering for carbon-based nanostructures', which may provide a new approach for tailoring nanomaterial functionality. Despite the attractions of more recently discovered carbon nanomaterials silicon remains the bedrock of the semiconductor device industry. Germanium nanostructures also hold significant interest, such as Ge nanowires, which have high mobility and a conveniently low synthesis temperature [6]. In fact the potential applications of germanium nanowires in field effect transistors and nanobridge devices prompted Jagadish and colleagues in Australia, Korea and the UK to investigate the growth of taper-free kinked Ge nanowires in silicon [7]. As they point out many recent reports have highlighted such kinked nanowires as valuable components for novel nanodevices. The work reported by Hrauda and colleagues in this issue looks at the growth of germanium islands on a silicon substrate rather than nanowires [2]. They grow islands on pre-patterned silicon with different levels of Ge deposition with the aim of better understanding how to manage the effects of strain due to lattice mismatch between the two metals. Their results show that considerably more Ge can be deposited without dislocations forming than previously thought and reveal a distinctive cycle of changing island morphologies as Ge is deposited. They add, 'Strain relaxation is revealed to be the main driving force of a rather complex evolution of island shape and Ge distribution'. In reference to his theory of atoms Bohr is once said to have told Werner Heisenberg

  7. Forming patterns and mechanical properties of austenitic chromium-nickel steel due to strain aging

    NASA Astrophysics Data System (ADS)

    Kamyshanchenko, N. V.; Krasilnikov, V. V.; Nikulin, I. S.; Gal'tsev, A. V.; Belenko, V. A.; Gal'tseva, I. N.

    2016-02-01

    The work presents the results of studies of forming patterns and mechanical properties of martensite transformation, found in the chromium-nickel steels of 08X18H10T grade, subjected to pre-heat treatment followed by deformation aging. Internal energy state is determined by using acoustic emission. The observed patterns improve the mechanical parameters of steels quenched and plastically deformed at low temperature and then subjected to temper under load in the optimum temperature being associated with obtaining a more stable condition of the structure through the processes of relaxation of internal stresses, high dispersion and uniform distribution of carbides and intermetallic particles, increasing the density of dislocations as well as through other processes occurring during deformation aging martensite. Start your abstract here...

  8. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  9. Searching for Strain Transients in PBO data

    NASA Astrophysics Data System (ADS)

    Wei, M.; McGuire, J. J.; Richardson, E.; Kraft, R. L.; Hardwig, M. D.

    2011-12-01

    We applied a recently developed strain anomaly detector, the Network Stain Filter [Ohtani et al., 2010], to the continuous GPS datasets from the PBO in Alaska and Salton Trough. The strategy of the filter is to find spatially and temporally coherent signals by processing data from the entire network simultaneously. Compared to previous Network Inversion Filter [Segall and Matthews, 1997], the new detector does not require the knowledge of potential sources, which can be either unknown and/or very numerous in a large tectonically active area. At Alaska, we find a strain anomaly between Kodiak Island and Kenai Peninsula that began in early 2010. There are earthquakes that are likely related to the strain anomaly. The physical interpretation of the strain anomaly is still in progress. The secular motion since 2006 that PBO recorded is consistent with a model that consist of two locked patches on Kodiak Island and Kenai Peninsula and a creeping patch near Cook Inlet as determined earlier by Zweck et al. [2002]. Seasonal signals dominate in the data and are highly correlated between stations in the horizontal components. The reason for this correlation in seasonal term azimuths between stations is not clear. At Salton Trough, the post-seismic deformation of the 2010 Mw 7.2 El Mayor Earthquake dominates the transient signals. The maximum post-seismic slip recorded by the GPS is 23 mm during 1.5 years after the earthquake (Site ID P494). Additionally, we are exploring using InSAR data as a complimentary method for detecting strain anomaly in areas with shallow sources, such as in the Salton Trough. A creep event on the Superstition Hills Fault in October 2006 has been observed by InSAR but missed by nearby GPS stations due to low amplitude at the location [Wei et al., 2009].

  10. Depressive disorder due to craniopharyngioma.

    PubMed Central

    Spence, S A; Taylor, D G; Hirsch, S R

    1995-01-01

    Secondary causes of depression are legion, and must always be considered in patients presenting with features atypical of primary idiopathic depressive disorder. The case described is that of a middle-aged woman presenting initially with a major depressive disorder who was subsequently found to have a craniopharyngioma, leading to a revised diagnosis of mood disorder due to the tumour. Some features of the presentation might have led to earlier diagnosis had their localizing significance been recognized. Diencephalic lesions should always be considered in patients presenting with the hypersomnic-hyperphagic variant of depressive disorder. Images Figure 1 PMID:8544149

  11. Transient hypofibrinogenemia due to allopurinol

    PubMed Central

    Yin, ZhiQiang; Xu, JiaLi; Li, YongQiang; Xia, JiPing; Luo, Dan

    2014-01-01

    This study reports a case of an 80-year-old male who suffered from drug eruption due to oral allopurinol for the treatment of gout. This patient complained of widespread erythema and maculopapule with itch, and small quantities of purplish-red rash with diffused distribution on four limbs were noted. After he was hospitalized, the area with purpuric rash increased in size, and hypofibrinogenemia was found. After treatment with intravenous infusion of fibrinogen and cryoprecipitate, and continued treatment with high-dose methylprednisolone, the skin rash gradually went away. This is the first report of purpura and hypofibrinogenemia induced by allopurinol and the pathophysiology underlying this reaction remained unknown. PMID:25214766

  12. Anaphylaxis Due to Head Injury

    PubMed Central

    Bruner, Heather C.; Bruner, David I.

    2015-01-01

    Both anaphylaxis and head injury are often seen in the emergency department, but they are rarely seen in combination. We present a case of a 30-year-old woman who presented with anaphylaxis with urticaria and angioedema following a minor head injury. The patient responded well to intramuscular epinephrine without further complications or airway compromise. Prior case reports have reported angioedema from hereditary angioedema during dental procedures and maxillofacial surgery, but there have not been any cases of first-time angioedema or anaphylaxis due to head injury. PMID:25987924

  13. Thermal strain imaging: a review

    PubMed Central

    Seo, Chi Hyung; Shi, Yan; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2011-01-01

    Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies. PMID:22866235

  14. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  15. Strain in silicon nanowire beams

    NASA Astrophysics Data System (ADS)

    Ureña, Ferran; Olsen, Sarah H.; Šiller, Lidija; Bhaskar, Umesh; Pardoen, Thomas; Raskin, Jean-Pierre

    2012-12-01

    In this work, strain in silicon free standing beams loaded in uniaxial tension is experimentally and theoretically investigated for strain values ranging from 0 to 3.6%. The fabrication method allows multiple geometries (and thus strain values) to be processed simultaneously on the same wafer while being studied independently. An excellent agreement of strain determined by two non-destructive characterization techniques, Raman spectroscopy and mechanical displacement using scanning electron microscopy (SEM) markers, is found for all the sample lengths and widths. The measured data also show good agreement with theoretical predictions of strain based upon continuum mechanical considerations, giving validity to both measurement techniques for the entire range of strain values. The dependence of Young's modulus and fracture strain on size has also been analyzed. The Young's modulus is determined using SEM and compared with that obtained by resonance-based methods. Both methods produced a Young's modulus value close to that of bulk silicon with values obtained by resonance-based methods being slightly lower. Fracture strain is analyzed in 40 sets of samples with different beam geometries, yielding values up to 3.6%. The increase in fracture strain with decreasing beam width is compared with previous reports. Finally, the role of the surface on the mechanical properties is analyzed using UV and visible lasers having different penetration depths in silicon. The observed dependence of Raman shift on laser wavelength is used to assess the thermal conductivity of deformed silicon.

  16. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  17. Strain mapping with parts-per-million resolution in synthetic type-Ib diamond plates

    SciTech Connect

    Macrander, Albert T.; Krasnicki, Szczesny; Zhong Yuncheng; Maj, Josef; Chu, Yong S.

    2005-11-07

    A general method to map strain with parts per million (ppm) resolution in single-crystal wafers and plates is demonstrated. An x-ray technique has been used to obtain separate maps of strain and tilt across synthetic diamond growth sectors. Data consisting of rocking curve maps obtained with a charge coupled device detector were analyzed. The strain results image the growth sectors and reveal a strain pileup near the sector boundaries. The diamond was yellow to the eye due to nitrogen impurities. Not only the topography of the strain map, but also the strain magnitudes, are consistent with the strain arising from nitrogen impurities. High strain resolution in the ppm range is needed to observe these effects.

  18. A Practical Data Recovery Technique for Long-Term Strain Monitoring of Mega Columns during Construction

    PubMed Central

    Choi, Se Woon; Kwon, EunMi; Kim, Yousok; Hong, Kappyo; Park, Hyo Seon

    2013-01-01

    A practical data recovery method is proposed for the strain data lost during the safety monitoring of mega columns. The analytical relations among the measured strains are derived to recover the data lost due to unexpected errors in long-term measurement during construction. The proposed technique is applied to recovery of axial strain data of a mega column in an irregular building structure during construction. The axial strain monitoring using the wireless strain sensing system was carried out for one year and five months between 23 July 2010 and 22 February 2012. During the long-term strain sensing, three different types of measurement errors occurred. Using the recovery technique, the strain data that could not be measured at different intervals in the measurement were successfully recovered. It is confirmed that the problems that may occur during long-term wireless strain sensing of mega columns during construction could be resolved through the proposed recovery method. PMID:23966189

  19. Decoherence due to Scattering Atoms

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Perreault, John; Cronin, Alex

    2004-05-01

    Coherent manipulation of a quantum system is difficult because of uncontrolled interactions with the system's environment. The study of decoherence so introduced is important for progress in quantum mechanical engineering, and for understanding the transition from quantum to classical behavior. We have observed loss of fringe contrast in a Mach-Zhender atom interferometer due to scattering background gas atoms and propose that this might be interpreted as quantum decoherence. Progress will be reported on the use of a general model of decoherence incorporating a semi-classical picture of atom scattering to explain the contrast loss [1]. A formal analogy is made to decoherence due to scattering photons from atoms in an interferometer [2]. [1] S.M. Tan, D.F. Waals, ``Loss of coherence in interferometry", Phys. Rev. A 47 p.4663 (1993) [2] D.A. Kokorowski, A.D. Cronin, T.D. Roberts, and D.E. Pritchard, ``From single- to multiple-photon decoherence in an atom interferometer", Phys. Rev. Lett. 86 p. 2191 (2001)

  20. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  1. The effects of academic and interpersonal stress on dating violence among college students: a test of classical strain theory.

    PubMed

    Mason, Brandon; Smithey, Martha

    2012-03-01

    This study examines Merton's Classical Strain Theory (1938) as a causative factor in intimate partner violence among college students. We theorize that college students experience general life strain and cumulative strain as they pursue the goal of a college degree. We test this strain on the likelihood of using intimate partner violence. Strain due to unrealistic expectations of intimate partnership and economic strain are also examined. The analysis examines the following causative factors representing strain: 1) the College Undergraduate Stress Scale (Renner & Mackin, 1998); 2) cumulative academic strain measured by college classification; 3) cumulative intimate partner strain measured as the length of time in the relationship; 4) academic strain measured by number of hours studied weekly, and 5) economic strain measured by number of hours worked weekly. Additionally, we examine the extent to which gender and race/ethnicity differentially affect intimate partner in the context of these measures of strain. The Conflict Tactics Scales II (Straus et al, 1996) are used to measure dating violence and include indicators for sexual coercion, physical aggression, injury, and psychological aggression. Data were collected from 142 students in lower-division classes from Texas Tech University. Results show that general strain and cumulative intimate partner strain increase the use of dating violence among college students. The longer dating partners are in a relationship, the higher the chances of psychological aggression, physical assault, and sexual coercion. Converse to our expectations, time spent working reduces psychological aggression due to reducing time spent together rather than reflecting economic strain. PMID:21987517

  2. Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating.

    PubMed

    Ma, Teng; Liang, Hanshuang; Chen, George; Poon, Benny; Jiang, Hanqing; Yu, Hongbin

    2013-05-20

    We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values. PMID:23736421

  3. Measured strain in Nb3Sn coils during excitation and quence

    SciTech Connect

    Caspi, S.; Barlett, S.E.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A.; Hannaford, C. R.; Hafalia, A.R.; Lietzke, A.F.; Mattafirri, S.; Nyman, M.; Sabbi, G.

    2005-06-01

    The strain in a high field Nb{sub 3}Sn coil was measured during magnet assembly, cool-down, excitation and spot heater quenches. Strain was measured with a full bridge strain gauge mounted directly over the turns and impregnated with the coil. Two such coils were placed in a 'common coil' fashion capable of reaching 11 T at 4.2 K. The measured steady state strain in the coil is compared with results obtained using the FEM code ANSYS. During quenches, the transient strain (due to temperature rise) was also measured and compared with the calculated mechanical time response to a quench.

  4. Self-affine nature of the stress-strain behavior of thin fiber networks

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Susarrey, Orlando; Bravo, Armando

    2001-12-01

    The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line roughness are characterized by the same scaling (Hurst) exponent H, which is not universal: rather it changes from sample to sample. The variations on H are mainly due to fluctuations in the paper structure, which are larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental observations.

  5. Highly Stretchable Strain Sensors Using an Electrospun Polyurethane Nanofiber/Graphene Composite.

    PubMed

    Hu, Daqing; Wang, Qinghe; Yu, Jixian; Hao, Wentao; Lu, Hongbo; Zhang, Guobing; Wang, Xianghua; Qiu, Longzhen

    2016-06-01

    A highly flexible and stretchable strain sensor has been prepared by coating chemical reduction of graphene oxide on electrospun polyurethane nanofiber mats. The sensor exhibits an ohmic behavior regardless of applied strains and the current monotonically increases with the increase of the tensile strain. The morphology and stability of electrospun polyurethane nanocomposite mats were also studied. The flexible and stretchable strain sensor has great potential for practical application such as efficient human-motion detection. This cheap and simple process of graphene layer provides an effective fabrication for graphene stretchable electronic devices and strain sensors due to excellent stability and electrical proper. PMID:27427641

  6. Collisional Aggregation Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Pumir, Alain; Wilkinson, Michael

    2016-03-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

  7. Methaemoglobinaemia due to mephedrone ('snow').

    PubMed

    Ahmed, Noor; Hoy, Brent Philip Sew; McInerney, J

    2010-01-01

    Acquired methaemoglobinaemia is a serious complication caused by many oxidising drugs. It presents as cyanosis unresponsive to oxygen therapy. The case of 33-year-old male patient who presented in our department after noticing blue lips and fingers is presented. He had sniffed 1 g of 'snow' after buying it from a head shop. His oxygen saturation by pulse oximeter on room air at presentation was 90%, which did not improve with supplemental oxygen. Arterial blood gas analyses showed partial pressure of oxygen 37 kPa while on supplemental oxygen and a methaemoglobin concentration greater than 25%. The patient denied using any other recreational drugs and was not on regular treatment. Therefore, a diagnosis of methaemoglobinaemia due to mephedrone, which is the active ingredient of 'snow', was made. Treatment is with intravenous methylene blue. Our patient started to improve so methylene blue was not used and he was discharged after 8 h. PMID:22791577

  8. Occupational injuries due to violence.

    PubMed

    Hales, T; Seligman, P J; Newman, S C; Timbrook, C L

    1988-06-01

    Each year in the United States, an estimated 800 to 1,400 people are murdered at work, and an unknown number of nonfatal injuries due to workplace violence occur. Based on Ohio's workers' compensation claims from 1983 through 1985, police officers, gasoline service station employees, employees of the real estate industry, and hotel/motel employees were found to be at the highest risk for occupational violent crime (OVC) injury and death. Grocery store employees, specifically those working in convenience food stores, and employees of the real estate industry had the most reported rapes. Four previously unidentified industries at increased risk of employee victimization were described. Identification of industries and occupations at high risk for crime victimization provides the opportunity to focus preventive strategies to promote employee safety and security in the workplace. PMID:3392614

  9. Inductance due to spin current

    SciTech Connect

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  10. Spontaneous Pneumoperitoneum due to Constipation

    PubMed Central

    Yamana, Ippei; Noritomi, Tomoaki; Takeno, Shinsuke; Tatsuya, Hashimoto; Sato, Keisuke; Shimaoka, Hideki; Yamaguchi, Ryosuke; Ishii, Fumiaki; Yamada, Teppei; Yamashita, Yuichi

    2015-01-01

    We report a rare case of spontaneous pneumoperitoneum. An 82-year-old Japanese male patient was referred to our hospital because of constipation and abdominal pain. Abdominal computed tomography revealed a large amount of feces in the colon and rectum, and free air in the abdomen. Based on these findings, the patient was diagnosed with gastrointestinal perforation. Emergency exploratory laparotomy was performed. Neither perforation nor ischemic changes were recognized in the digestive tract. The patient's defecation was managed postoperatively until discharge on the 13th postoperative day. The authors assumed that free air, which was released after a mucosal injury due to the internal pressure caused by the presence of a large amount of feces in the colon and rectum, had penetrated the bowel wall through the bowel mucosa. We herein report the present case while also reviewing the pertinent literature. PMID:26676063

  11. Single fatherhood due to cancer.

    PubMed

    Yopp, Justin M; Rosenstein, Donald L

    2012-12-01

    Cancer is a leading cause of widowed fatherhood in the USA. Fathers whose spouses have died from cancer constitute a potentially vulnerable population as they adjust to their role as sole or primary caregiver while managing their own grief and that of their children. The importance of addressing the psychological needs of widowed fathers is underscored by data showing that father's coping and emotional availability are closely tied to their bereaved children's mental health. Surprisingly, scant attention has been given to the phenomenon of widowed fatherhood with virtually no clinical resources or research studies devoted to fathers who have lost their wives to cancer. This commentary highlights key challenges facing this underserved population of widowers and calls for development of research agendas and clinical interventions for single fathers due to cancer. PMID:21830258

  12. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations. PMID:10402137

  13. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis

    PubMed Central

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E.; Horb, Marko E.; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  14. Effect of Coating on the Strain Transfer of Optical Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2011-01-01

    Optical fiber strain sensors with light weight, small dimensions and immunity to electromagnetic interference are widely used in structural health monitoring devices. As a sensor, it is expected that the strains between the optical fiber and host structure are the same. However, due to the shear deformation of the protective coating, the optical fiber strain is different from that of host structure. To improve the measurement accuracy, the strain measured by the optical fiber needs to be modified to reflect the influence of the coating. In this investigation, a theoretical model of the strain transferred from the host material to the optical fiber is developed to evaluate the interaction between the host material and coating. The theoretical predictions are validated with a numerical analysis using the finite element method. Experimental tests are performed to reveal the differential strains between the optical fiber strain sensor and test specimen. The Mach-Zehnder interferometric type fiber-optic sensor is adopted to measure the strain. Experimental results show that the strain measured at the optical fiber is lower than the true strain in the test specimen. The percentage of strain in the test specimen actually transferred to the optical fiber is dependent on the bonded length of the optical fiber and the protective coating. The general trend of the strain transformation obtained from both experimental tests and theoretical predictions shows that the longer the bonded length and the stiffer the coating the more strain is transferred to the optical fiber. PMID:22163993

  15. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis.

    PubMed

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E; Horb, Marko E; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  16. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  17. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  18. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  19. Complete Genome Sequence of Lactobacillus plantarum Strain B21, a Bacteriocin-Producing Strain Isolated from Vietnamese Fermented Sausage Nem Chua.

    PubMed

    Golneshin, Aida; Adetutu, Eric; Ball, Andrew S; May, Bee K; Van, Thi Thu Hao; Smith, Andrew T

    2015-01-01

    Lactobacillus plantarum strain B21 was isolated from Vietnamese sausage (nem chua) and demonstrated broad antimicrobial activity due to the production of bacteriocins. Here, we report the complete genome sequence of this strain (3,284,260 bp). PMID:25838470

  20. [Repetition Strain Injury

    PubMed

    Ribeiro

    1997-01-01

    Muscular-skeletal disorders of the upper limbs resulting from work involving repetition strain (RSI) are now the most frequent work-related diseases in early or late industrialized countries. The author maintains that in addition to being work-related diseases, RSIs are symbolic illnesses revealing the contradictions and social pathogenesis of the new cycle of development and crisis in capitalist production. Discussing the social and historical dimensions of this process, the author insists that the low efficacy of technical interventions by labor engineering, ergonomics, and clinical medicine in the prevention, early and adequate diagnosis, and treatment of such post-modern illnesses and the difficulty in rehabilitating and reincorporating such workers reflect precisely a broader determination of health and illness, since the appropriation, incorporation, and use of technological innovations and the new forms of work management are defined according to the exclusive interests of capital. Thus, a growing contingent of young workers (mainly females) from different labor categories are losing or under threat of losing their health and work capacity, two essential and closely linked public values. The solution to the SRI issue must be political and collective. PMID:10886940

  1. Porous silicon strain during in situ ultrahigh vacuum thermal annealing

    NASA Astrophysics Data System (ADS)

    Buttard, D.; Dolino, G.; Faivre, C.; Halimaoui, A.; Comin, F.; Formoso, V.; Ortega, L.

    1999-05-01

    In situ synchrotron radiation measurements of porous silicon (PS) strain have been performed during ultrahigh vacuum (UHV) thermal annealing. For a p+ sample, the initial lattice expansion shifts toward a contraction above 270 °C in relation with hydrogen desorption. For a p- sample, the strain variation is similar to that of a p+ one, but with effects five times larger: after hydrogen desorption, the contraction strain is large (>1.5%) and inhomogeneous. In both cases, most of these strains are elastic as an HF etch re-establishes the initial expansion with a narrow diffraction peak. For p+ samples, the lattice constant exhibited a slow variation during subsequent exposure to air due to a slow oxidation of the annealed porous samples. The origin of these strain variations is discussed in relation with the presence of hydrogen or oxide coverage. The observation of similar variations in other PS properties is also discussed. Finally, the absence of a strain effect during the introduction of water vapor in UHV is discussed as possibly due to a contamination of the PS sample by residual water during the long time passed under UHV at high temperature.

  2. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  3. Strain Discrimination of Staphylococcus aureus Using Superantigen Profiles.

    PubMed

    Tsen, Hau-Yang; Li, Sheng-Chih; Chiang, Yu-Cheng; Tsai, Shuo-Wen

    2016-01-01

    Staphylococcus aureus is one of the major bacterial species that may cause clinical infection and food-poisoning cases. Strains of this species may produce a series of superantigens (SAgs). Due to the importance of staphylococcal infections, reliable methods for the discrimination of strains of this species are important. Such data may allow us to trace the infection origins and be used for epidemiological study. For strain discrimination, genotyping methods, such as pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), and multi-locus sequence typing (MLST), etc., could be used. Recently, toxin gene profiles, which can be used for the elucidation of the genetic and pathogenic relatedness between strains, also have been used to improve the strain discrimination. For S. aureus, as more SAg genes were discovered, the SAg profiles become more useful for the strain discrimination of S. aureus. In this chapter, a method for the discrimination of S. aureus strains using superantigen profiles will be described in detail. PMID:26676035

  4. Inelastic Strain Analysis of Solder Joint in NASA Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Dasgupta, Abhijit; Oyan, Chen

    1991-01-01

    The solder fatigue specimen designed by NASA-GSFC/UNISYS is analyzed in order to obtain the inelastic strain history during two different representative temperature cycles specified by UNISYS. In previous reports (dated July 25, 1990, and November 15, 1990), results were presented of the elastic-plastic and creep analysis for delta T = 31 C cycle, respectively. Subsequent results obtained during the current phase, from viscoplastic finite element analysis of the solder fatigue specimen for delta T = 113 C cycle are summarized. Some common information is repeated for self-completeness. Large-deformation continuum formulations in conjunction with a standard linear solid model is utilized for modeling the solder constitutive creep-plasticity behavior. Relevant material properties are obtained from the literature. Strain amplitudes, mean strains, and residual strains (as well as stresses) accumulated due to a representative complete temperature cycle are obtained as a result of this analysis. The partitioning between elastic strains, time-independent inelastic (plastic) strains, and time-dependent inelastic (creep) strains is also explicitly obtained for two representative cycles. Detailed plots are presented for two representative temperature cycles. This information forms an important input for fatigue damage models, when predicting the fatigue life of solder joints under thermal cycling

  5. Reversible uniaxial strain tuning in atomically thin WSe2

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Niehues, Iris; Schneider, Robert; Drüppel, Matthias; Deilmann, Thorsten; Rohlfing, Michael; Michaelis de Vasconcellos, Steffen; Castellanos-Gomez, Andres; Bratschitsch, Rudolf

    2016-06-01

    Due to their unique band structure, single layers of transition metal dichalcogenides are promising for new atomic-scale physics and devices. It has been shown that the band structure and the excitonic transitions can be tuned by straining the material. Recently, the discovery of single-photon emission from localized excitons has put monolayer WSe2 in the spotlight. The localized light emitters might be related to local strain potentials in the monolayer. Here, we measure strain-dependent energy shifts for the A, B, C, and D excitons for uniaxial tensile strain up to 1.4% in monolayer WSe2 by performing absorption measurements. A gauge factor of -54\\tfrac{{{meV}}}{ % }, -50\\tfrac{{{meV}}}{ % }, +17\\tfrac{{{meV}}}{ % }, and -22\\tfrac{{{meV}}}{ % } is derived for the A, B, C, and D exciton, respectively. These values are in good agreement with ab initio GW-BSE calculations. Furthermore, we examine the spatial strain distribution in the WSe2 monolayer at different applied strain levels. We find that the size of the monolayer is crucial for an efficient transfer of strain from the substrate to the monolayer.

  6. Multiple-strain infections of Trypanosoma brucei across Africa.

    PubMed

    Balmer, Oliver; Caccone, Adalgisa

    2008-09-01

    It is becoming increasingly clear that parasitic infections frequently contain multiple strains of the same parasite species. This may have important consequences for the parasite dynamics in the host and thus alter disease and transmission dynamics. In Trypanosoma brucei, the causal agent of human African trypanosomiasis (sleeping sickness), multiple-strain infections have previously been demonstrated to occur. Here, we analyzed field isolates of T. b. gambiense, T. b. rhodesiense, and T. b. brucei, isolated throughout Africa to assess the commonness of multiple-strain infections across the natural range of this parasite. Using eight highly variable microsatellite loci, we found multiple strains in 8.8% of our isolates. Due to the technical challenges of detecting multiple infections this number represents a minimum estimate and the true frequency of multiple-strain infections is likely to be higher. Multiple-strain infections occurred across the entire East-West range of the parasite. Together with previous results, these findings strongly suggest that multiple-strain infections are common for this parasite and that their consequences for epidemiology and parasite evolution should be investigated in detail. PMID:18671933

  7. High-sensitivity strain visualization using electroluminescence technologies

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  8. Strained graphene Josephson junction with anisotropic d-wave superconductivity

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Khezerlou, M.; Kamalipour, H.

    2015-07-01

    Effect of proximity-induced superconductivity in the new two-dimensional structures, as graphene and topological insulator on the Andreev bound states (ABSs) and Josephson supercurrent has attracted much efforts. Motivated by this subject, we study, in particular, the influence of anisotropic Fermi velocity and unconventional d-wave pairing in a strained graphene-based superconductor/normal/ superconductor junction. Strain is applied in the zigzag direction of graphene sheet. In this process, effect of zero energy states and Fermi wavevector mismatch are investigated. It is shown, that strain up to 22% in graphene lattice differently affects Josephson currents in parallel and perpendicular directions of strain. Strain causes to exponentially decrease the supercurrent in the strain direction, whereas increase for other direction. We find that, in one hand, the ABSs strongly depend on strain and, on the other hand, a gap opens in the states with respect to non-zero incidence angle of quasiparticles, where a period of 2 π is obtained for Andreev states. Moreover, we observe no gap for θs ≠ 0 , when the zero energy states (ZESs) occur in α = π / 4 due to anisotropic superconducting gap. In this case, ABSs have a period of 4 π .S

  9. Spherical nanoindentation stress–strain curves

    DOE PAGESBeta

    Pathak, Siddhartha; Kalidindi, Surya R.

    2015-03-24

    Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength inmore » the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.« less

  10. Spherical nanoindentation stress–strain curves

    SciTech Connect

    Pathak, Siddhartha; Kalidindi, Surya R.

    2015-03-24

    Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength in the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.

  11. Dialysis culture of T-strain mycoplasmas.

    PubMed

    Masover, G K; Hayflick, L

    1974-04-01

    Using dialyzing cultures of T-strain mycoplasmas, it was possible to make some observations relevant to the growth and metabolism of these organisms which would not be possible in nondialyzing cultures due to growth inhibition of the organisms by elevated pH and increased ammonium ion concentration in media containing urea. The rate of ammonia accumulation was found to be related to the initial urea concentration in the medium and could not be accounted for by any change in the multiplication rate of the organisms. More ammonia was generated than could be accounted for by the added urea alone, suggesting that an ammonia-producing activity other than urease may be present in T-strain mycoplasmas. Titers above 10(7) color change units per ml were achieved in dialysis cultures of a T-strain mycoplasma in the presence of urea, and such titers were maintained for approximately 60 h during dialysis culture in the absence of added urea. PMID:4595203

  12. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  13. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    PubMed Central

    Shiri, Daryoush; Verma, Amit; Selvakumar, C. R.; Anantram, M. P.

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires. PMID:22708056

  14. Proposal of interband tunneling structures with strained layers

    NASA Astrophysics Data System (ADS)

    Ru, Guoping; Li, Aizhen

    1994-09-01

    A type of interband tunneling structure with strained layers is proposed. In(x)Ga(1 - x)Sb/In(x)Al(1 - x)Sb/InAs/In(x)Al(1 - x)Sb/In(x)Ga(1 - x)Sb strained resonant interband tunneling structures are theoretically studied by calculating current-voltage characteristics using realistic band structure and making comparisons to analogous unstrained structures. The results show that the interband tunneling windows of strained structures can be expanded by the introduction of strain in the InAs quantum-well layer. With a wider interband tunneling window, the peak current density is enhanced due to the broader tunneling transmission spectrum and higher bias required for resonant interband tunneling. The peak current density is also examined as a function of InAs well width for different InAlSb barrier widths.

  15. Laser-based strain measurements for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lant, Christian T.

    1992-09-01

    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis.

  16. Modifying the Optoelectronic Properties of Rubrene by Strain

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar; Ramasubramaniam, Ashwin

    Rubrene crystals are promising organic electronic and optoelectronic materials due to their high charge carrier mobility. Recent studies have shown that the electronic properties of rubrene films can be tuned by substrate-induced strain, suggesting a new route towards the design of more efficient devices. Here, we present a first-principles density functional theory and many-body perturbation theory analysis of strain-induced changes to the mechanical, electronic, and optical properties of rubrene crystals. With an applied strain that is consistent with experiment, we predict changes of hole motilities in excellent agreement with electrical conductivity measurements. Furthermore, we predict that the optical absorption and nature of low-energy excitons within the crystal can be tuned by an applied strain as low as 1%. This work utilized resources at the Center for Nanoscale Materials, supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

  17. Strain rate effects on soot evolution in turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.; Mahmoud, Saleh; Alwahabi, Zeyad T.; Dally, Bassam B.; Nathan, Graham J.

    2015-11-01

    Large Eddy Simulations (LES) of turbulent nonpremixed ethylene/hydrogen/nitrogen (2/2/1 by volume) jet flames are conducted to investigate the effects of global strain rate on soot evolution. The exit strain rate is varied by fixing the Reynolds number as the burner diameter and exit velocity are altered. A detailed integrated LES approach is employed that includes a nonpremixed flamelet model that accounts for heat losses from radiation, a transport equation model to account for unsteadiness in polycyclic aromatic hydrocarbon (PAH) evolution, a detailed soot model based on the Hybrid Method of Moments, and a novel presumed subfilter PDF model for soot-turbulence interactions. As the strain rate increases, the maximum soot volume fraction decreases due to the suppression of PAH formation. This trend with increasing strain rate is validated against experimental measurements conducted at The University of Adelaide.

  18. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  19. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  20. Ferroelastic dynamics and strain compatibility

    NASA Astrophysics Data System (ADS)

    Lookman, T.; Shenoy, S. R.; Rasmussen, K. Ø.; Saxena, A.; Bishop, A. R.

    2003-01-01

    We derive underdamped evolution equations for the order-parameter (OP) strains of a proper ferroelastic material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free energy as a polynomial expansion in the N=n+Nop symmetry-adapted strains. The Nop strain equations are structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding (BG), with “strain accelerations” proportional to a Laplacian acting on a sum of the free-energy strain derivative and frictional strain force assuming geometric linearity. The tensorial St. Venant’s elastic compatibility constraints that forbid defects, are used to determine the n non-order-parameter strains in terms of the OP strains, generating anisotropic and long-range OP contributions to the free energy, friction, and noise. The same OP equations are obtained by either varying the displacement vector components, or by varying the N strains subject to the Nc compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear (strain) oscillators labeled by wave vector k→, with competing short- and long-range couplings. The oscillators have different “strain-mass” densities ρ(k)˜1/k2 and dampings ˜1/ρ(k)˜k2, so the lighter large-k oscillators equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for special parameter values. We consider in detail the two-dimensional (2D) unit-cell transitions from a triangular to a centered

  1. Pulmonary Complications due to Esophagectomy

    PubMed Central

    Shirinzadeh, Abulfazl; Talebi, Yashar

    2011-01-01

    Introduction Esophageal carcinoma is the scourge of human beings. Pulmonary complications in patients who have undergone operation are common (20-30% of cases) and there are no suitable tools and ways to predict these complications. Methods During a period of 10 years, from March 1998 to February 2007, 200 patients (150 male and 50 female) underwent Esophagectomy due to esophageal carcinoma in thoracic surgery ward retrospectively. Complications include the length of hospitalization, mechanical ventilation, morbidity and mortality. Patients’ risk factors include age, preoperative chemo-radiotherapy, stage of the disease and preoperative spirometry condition. Results We grouped our patients into three categories: Normal (FEV1 ≥ 80% predicted), mildly impaired (FEV1 65% to 79% predicted), more severely impaired (FEV1 < 65% predicted).Although almost all patients had radiographic pulmonary abnormalities, significant pulmonary complications occurred in 40 patients (20%) which underwent Esophagectomy. Pleural effusion and atelectasia in 160 patients (80%). 24 patients needed chest-tube insertion. 20 patients (10%) developed ARDS. 14 patients (7%) developed chylothorax. 20 patients (10%) of patients died during their postoperative hospital stay. 30 patients (15%) required mechanical ventilation for greater than 48 hours. Conclusion We reviewed a number of preoperative clinical variables to determine whether they contributed to postoperative pulmonary complications as well as other outcomes. In general, age, impaired pulmonary function especially in those patients with FEV1 less than 65% predicted was associated with prolonged hospital length of stay (LOS). In fact pulmonary complications rate after Esophagectomy are high and there was associated mortality and morbidity. PMID:24250962

  2. Canthaxanthin production with modified Mucor circinelloides strains.

    PubMed

    Papp, Tamás; Csernetics, Arpád; Nagy, Gábor; Bencsik, Ottó; Iturriaga, Enrique A; Eslava, Arturo P; Vágvölgyi, Csaba

    2013-06-01

    Canthaxanthin is a natural diketo derivative of β-carotene primarily used by the food and feed industries. Mucor circinelloides is a β-carotene-accumulating zygomycete fungus and one of the model organisms to study the carotenoid biosynthesis in fungi. In this study, the β-carotene ketolase gene (crtW) of the marine bacterium Paracoccus sp. N81106 fused with fungal promoter and terminator regions was integrated into the M. circinelloides genome to construct stable canthaxanthin-producing strains. Different transformation methods including polyethylene glycol-mediated transformation with linear DNA fragments, restriction enzyme-mediated integration and Agrobacterium tumefaciens-mediated transformation were tested to integrate the crtW gene into the Mucor genome. Mitotic stability, site of integration and copy number of the transferred genes were analysed in the transformants, and several stable strains containing the crtW gene in high copy number were isolated. Carotenoid composition of selected transformants and effect of culturing conditions, such as temperature, carbon sources and application of certain additives in the culturing media, on their carotenoid content were analysed. Canthaxanthin-producing transformants were able to survive at higher growth temperature than the untransformed strain, maybe due to the effect of canthaxanthin on the membrane fluidity and integrity. With the application of glucose, trehalose, dihydroxyacetone and L-aspartic acid as sole carbon sources in minimal medium, the crtW-expressing M. circinelloides strain, MS12+pCA8lf/1, produced more than 200 μg/g (dry mass) of canthaxanthin. PMID:23224586

  3. Strain energy release rate distributions for double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  4. Multiferroicity due to Charge Ordering

    NASA Astrophysics Data System (ADS)

    van den Brink, Jeroen

    2012-02-01

    In this contribution I discuss multiferroicity that is driven by different forms of charge ordering, presenting first the generic mechanisms by which charge ordering can induce ferroelectricity in magnetic systems. In type-I multiferroics [1], ferroelectricity and magnetism have different origins and occur at different temperatures. There is a number of specific classes of materials for which this is relevant. Discussed will be in some detail (i) perovskite manganites of the type (PrCa)MnO3 [2,3], (ii) the complex and interesting situation in magnetite Fe3O4, (iii) strongly ferroelectric frustrated LuFe2O4 and (iv) an example of a quasi-one-dimensional organic system [4]. In type-II multiferroics [1], ferroelectricity is completely due to magnetism, but with charge ordering playing an important role [5], such as (v) multiferroic Ca3CoMnO6, (vi) possible ferroelectricity in rare earth perovskite nickelates of the type RNiO3 [6,7], (vii) multiferroic properties of manganites of the type RMn2O5 [8], (viii) perovskite manganites with magnetic E-type ordering. [4pt] [1] J. van den Brink and D. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).[0pt] [2] D.V. Efremov, J. van den Brink and D.I. Khomskii, Nature Materials 3, 853 (2004).[0pt] [3] G. Giovannetti, S. Kumar, J. van den Brink, S. Picozzi, Phys. Rev. Lett. 103, 037601 (2009).[0pt] [4] G. Giovannetti, S. Kumar, A. Stroppa, J. van den Brink and S. Picozzi, Phys. Rev. Lett. 103, 266401 (2009). [0pt] [5] J. Betouras G. Giovannetti and J. van den Brink, Phys. Rev. Lett. 98, 257602 (2007).[0pt] [6] G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi and J. van den Brink, Phys. Rev. Lett. 103, 156401 (2009).[0pt] [7] S. Kumar, G. Giovannetti, J. van den Brink and S. Picozzi, Phys. Rev. B 82, 134429 (2010).[0pt] [8] G. Giovannetti and J. van den Brink, Phys. Rev. Lett. 100, 227603 (2008).

  5. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  6. Lysogenic Conversion for Multiple Characters in a Strain of Staphylococcus aureus

    PubMed Central

    Duval-Iflah, Yvonne; Van Heijenoort, Jean; Rousseau, Micheline; Raibaud, Pierre

    1977-01-01

    Lysogenization of nonlysogenic strains of Staphylococcus aureus was performed with two different bacteriophages, LS1 and LS2, that were unable to plaque on any of the strains of S. aureus tested. Infection of recipient strains was achieved when protoplasts were inoculated with LS1 or LS2 or when bacterial cultures were simultaneously inoculated with a virulent phage together with LS1 or LS2. Lysogenization was demonstrated by changes in phenotypic characters of the host strain and by liberation of bacteriophages from the modified strains as shown by electron microscopic examination. The lysogenic strains differed from the host strains by the following characters: they were coagulase, deoxyribonuclease, and lipase negative; they were untypable by the basic set of phages; they did not ferment mannitol under anaerobic conditions; and they produced only l-(+)-lactic acid by glucose fermentation. Their cell walls contained less glycine and concomitantly more serine than those of the host strains. Furthermore, they were devoid of protein A. Conversely, some antigenic factors as well as the presence of ribitol in the cell wall teichoic acid, indicated a parental relationship between the host strains and the derived lysogenic ones. Phages LS1 and LS2 could be excluded from the lysogenic strains by invading phages, and the revertant nonlysogenic strains recovered all of the characteristics of the initial host strains. It was thus concluded that the phenomenon described was due to lysogenic conversion. The origin of phages LS1 and LS2 is discussed. Images PMID:140862

  7. Genotype Characterization of Commonly Used Newcastle Disease Virus Vaccine Strains of India

    PubMed Central

    Gaikwad, Satish; Kataria, Jag Mohan; Vakharia, Vikram N.

    2014-01-01

    Newcastle disease is an avian pathogen causing severe economic losses to the Indian poultry industry due to recurring outbreaks in vaccinated and unvaccinated flocks. India being an endemic country, advocates vaccination against the virus using lentogenic and mesogenic strains. Two virus strains which are commonly used for vaccination are strain F (a lentogenic virus) and strain R2B (a mesogenic virus). Strain F is given to 0–7 days old chicks and R2B is given to older birds which are around 6–8 weeks old. To understand the genetic makeup of these two strains, a complete genome study and phylogenetic analysis of the F, HN genes of these vaccine strains were carried out. Both the viral strains had a genome length of 15,186 nucleotides and consisted of six genes with conserved complimentary 3' leader and 5' trailer regions. The fusion protein cleavage site of strain F is GGRQGRL and strain R2B is RRQKRF. Although both the viral strains had different virulence attributes, the length of the HN protein was similar with 577 amino acids. Phylogenetic analysis of F, HN and complete genome sequences grouped these two strains in genotype II category which are considered as early genotypes and corroborated with their years of isolation. PMID:24897503

  8. Management of severe pain due to lumbar disk protrusion.

    PubMed

    Conroy, Liam

    2015-03-01

    Lumbar intervertebral disk protrusion can cause excruciating pain in severe cases, which can be exacerbated by activity such as sitting down and straining at stool. Acute sciatica due to disk rupture will improve within 1 to 3 months. The efficacy of drugs used for the management of sciatica in primary care is unclear. Severe cases can require opioid analgesia, however people taking opioids for pain relief frequently present with opioid-induced bowel dysfunction. The use of transforaminal steroid injections is a controversial issue and repeat steroid injections should be considered in light of the risk-benefit profile of the individual patient. PMID:25643230

  9. Irradiation creep due to SIPA under cascade damage conditions

    SciTech Connect

    Woo, C.H.; Garner, F.A.; Holt, R.A.

    1992-12-31

    This paper derives the relationships between void swelling and irradiation creep due to Stress-Induced Preferred Absorption (SIPA) and SIPA-Induced Growth (SIG) under cascade damage conditions in an irradiated pressurized tube. It is found that at low swelling rates irradiation creep is a major contribution to the total diametral strain rate of the tube, whereas at high swelling rates the creep becomes a minor contribution. The anisotropy of the corresponding dislocation structure is also predicted to decline as the swelling rate increases. The theoretical predictions are found to agree very well with experimental results.

  10. In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Yadegari-Dehnavi, M. R.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M. A.; Basu, R.; Szpunar, J. A.

    2015-04-01

    The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning. Effect of deformation mechanism by changing temperature on strain localization is investigated by digital image correlation. EBSD technique is served to validate deformation mechanism as well as microstructural evolution. Strain induced martensite as well as deformation twinning is activated in the present steel affecting strain localization.

  11. Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique

    NASA Astrophysics Data System (ADS)

    Murkute, Pratik; Ramkumar, J.; Mondal, K.

    2016-07-01

    An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.

  12. Effect of strain on the electronic transport properties of mono- and bilayer graphene

    NASA Astrophysics Data System (ADS)

    Guan, Fen; Du, Xu

    It has been theoretically proposed that strain can have a significant impact on the electronic and charge transport properties of mono- and bilayer graphene. Experimental study of such ''strain engineering'' in field effect devices has been limited, mainly due to the challenge in creating an effective tuning knob of strain. Here we report the fabrication and characterization of suspended graphene field effect transistor (FET) on a Polyimide substrate, where uniaxial strain is applied by bending the substrate. Magnetotransport measurement of both mono- and bilayer graphene FETs are carried out with variable strain, from compressive to tensile, over wide range of temperature (4.2-300K). The impact of the strain on the conductivity of graphene will be discussed and compared to the theoretical predictions on strain-induced gauge field and flexural phonon scatterings.

  13. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  14. Stochastic precision analysis of two-dimensional cardiac strain estimation in vivo

    PubMed Central

    Bunting, EA; Provost, J; Konofagou, EE

    2014-01-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2-D) strain estimation may be useful when studying the heart due to the complex, three-dimensional deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2-D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2-D incremental strains were estimated in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2-D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. PMID:25330746

  15. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (ESTSC)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  16. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  17. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  18. Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo

    PubMed Central

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-01-01

    Objective The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach Acute force measurements were made using a load cell in n=3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 sec interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p<0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Further, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4–5 fold) stresses due to tissue micromotion at the interface. Significance The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  19. The variation of the yield stress of Ti alloys with strain rate at high temperatures

    SciTech Connect

    Rosen, R.S.; Paddon, S.P.; Kassner, M.E.

    1999-06-01

    This study extended investigation on the elevated-temperature yield-strength dependence of beta-phase titanium alloys on strain rate and temperature. Yield stresses were found to increase substantially with increasing strain rate at elevated temperatures due to the high strain-rate sensitivity of titanium at high temperatures. Above 1000 C, the strain-rate sensitivities were found to increase substantially with increasing temperature and/or decreasing strain rate. The six alloys examined were TIMETAL 21S, Ti-15-3-, Ti-6-4, Ti-13-11-3, Beta C, and Beta III. There was particular interest in determining the strain-rate sensitivity of these alloys through strain-rate change tests above 1000 C. The yield stresses of all the titanium alloys at temperatures above 1093 C were less than 1% of their ambient temperature values. strain hardening was negligible in the alloys tested at these high temperatures. Extended tensile ductilities of 100 to 200% were observed due to the pronounced strain-rare sensitivity. The rate controlling mechanism for plasticity, based on activation energy and the strain-rate sensitivity measurements, is discussed.

  20. Genomic Features and Niche-Adaptation of Enterococcus faecium Strains from Korean Soybean-Fermented Foods

    PubMed Central

    Kim, Eun Bae; Jin, Gwi-Deuk; Lee, Jun-Yeong; Choi, Yun-Jaie

    2016-01-01

    Certain strains of Enterococcus faecium contribute beneficially to human health and food fermentation. However, other E. faecium strains are opportunistic pathogens due to the acquisition of virulence factors and antibiotic resistance determinants. To characterize E. faecium from soybean fermentation, we sequenced the genomes of 10 E. faecium strains from Korean soybean-fermented foods and analyzed their genomes by comparing them with 51 clinical and 52 non-clinical strains of different origins. Hierarchical clustering based on 13,820 orthologous genes from all E. faecium genomes showed that the 10 strains are distinguished from most of the clinical strains. Like non-clinical strains, their genomes are significantly smaller than clinical strains due to fewer accessory genes associated with antibiotic resistance, virulence, and mobile genetic elements. Moreover, we identified niche-associated gene gain and loss from the soybean strains. Thus, we conclude that soybean E. faecium strains might have evolved to have distinctive genomic features that may contribute to its ability to thrive during soybean fermentation. PMID:27070419

  1. In Situ Neutron Diffraction Studies of Increasing Tension Strains of Superelastic Nitinol

    NASA Astrophysics Data System (ADS)

    Pelton, Alan R.; Clausen, Bjørn; Stebner, Aaron P.

    2015-09-01

    A micromechanical study of the effect of varying amounts of tensile strains on the microstructures and subsequent mechanical behaviors of superelastic Nitinol rods is presented. It is found that strains up to ~8-9 % develop microstructures that assist both forward and reverse transformation relative to un-strained material. This superelastic phenomenon is explained to be analogous to two-way shape memory effect in Nitinol actuation materials. These results provide understanding as to why such "pre-strains" may lead to improvements in subsequent superelastic fatigue life. Beyond 9 %, a drastic change is observed, as large amounts of martensite (75 % and more) are retained in unloaded samples. Thus, a competition between transformation, plasticity, and reorientation is found to give rise to microstructures that inhibit complete transformation. Furthermore, even though similar inelastic strain magnitudes are observed in loading and unloading plateaus, micromechanical mechanisms differ substantially from samples with less pre-strain. For example, in highly pre-strained samples at least half of the plateau strains are due to martensite reorientation, whereas, in low and moderately pre-strained samples nearly the entirety of the plateau strain is due to transformation. We also find that latent heat of plastic flow is larger than latent heat of transformation.

  2. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    correlated to the degree of strain to which is subjected. Volcanic processes such as dome extrusion, which involve progressive strain on complex fault systems, have been seen to cause fault sliding and the prolific generation of fault gouge. Our results indicate that the permeability of these faults will tend to remain constant or increase during continued extrusion, allowing magmatic gases to readily outgas through permeable fault architectures despite the generation and accumulation of gouge. On the other hand, deeper regions of the edifice that will typically be compacting due to the relatively higher confining pressures, will exhibit a continuous decrease in permeability. The interplay between permeability-increasing and permeability-decreasing processes within the edifice is likely to influence outgassing and eruptive cycles at active volcanoes.

  3. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    NASA Astrophysics Data System (ADS)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  4. Influence of pre-strain on fracture toughness and stable crack growth in low carbon steels

    SciTech Connect

    Miyata, Takashi; Tagawa, Tetsuya; Aihara, Syuji

    1997-12-31

    Experimental investigations demonstrate a significant effect of pre-strain on fracture toughness and stable crack growth resistance of a low carbon structural steel. Fracture toughness, Ji for the onset of stable ductile crack growth is decreased to one half with a 9% pre-strain due to cold rolling. The characteristic distance model for ductile crack initiation was applied to analyze parameters affecting the degradation of fracture resistance. The model predicts that value of Ji is given as a linear function of yield strength and ductility of the material. In order to confirm the theoretical prediction, notched round bar tensile tests were performed and ductility under a high triaxial stress state was measured. Critical plastic strain for micro-void coalescence is significantly decreased with increasing pre-strain. Degradation in Ji due to pre-strain can be well explained by the characteristic distance model. To clarify micro-mechanisms of degradation in ductility due to pre-strain, fracture process in notched round bar specimens was investigated emphasizing the role of micro-void nucleation and growth. Experimental observation indicates that the significant decrease of the critical strain due to pre-strain is attributed to the increase of void nucleation sites under a high triaxial stress state.

  5. Self-Repairing Polymer Optical Fiber Strain Sensor

    NASA Astrophysics Data System (ADS)

    Song, Young Jun

    This research develops a self-repairing polymer optical fiber strain sensor for structural health monitoring applications where the sensor network must survive under extreme conditions. Inspired by recent research in self-healing material systems, this dissertation demonstrates a self-repairing strain sensor waveguide, created by self-writing in a photopolymerizable resin system. In an initial configuration, the waveguide sensor was fabricated between two multi-mode (MM) optical fibers via ultraviolet (UV) lightwaves in the UV curable resin and operated as a strain sensor by interrogation of the infrared (IR) power transmission through the waveguide. After failure of the sensor occurred due to loading, the waveguide re-bridged the gap between the two optical fibers through the UV resin. The response of the waveguide sensors was sensitive to the applied strain and repeatable during multiple loading cycles with low observed hysteresis, however was not always monotonic. The strain response of the original sensor and the self-repaired sensor showed similar behaviors. Packaging the sensor in a polymer capillary improved the performance of the sensor by removing previous "no-response" zones. The resulting sensor output was monotonic throughout the measurement range. The hysteresis in the sensor behavior between multiple loading cycles was also significantly reduced. However, a jump in sensor output voltage was observed after the sensor self-repair process, which presents challenges for calibration of the sensor. The sensor configuration was modified to a Fabry-Perot interferometer to improve the sensor response. The measurable strain range was extended through multiple sensor self-repairs, and strain measurements were demonstrated up to 150% applied tensile strain. A hybrid sensor was fabricated by splicing a short segment of MM optical fiber to the input single-mode (SM) optical fiber. The hybrid sensor provided the high quality of waveguide fabrication previously

  6. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  7. Vaccinia virus strain differences in cell attachment and entry

    SciTech Connect

    Bengali, Zain; Townsley, Alan C.; Moss, Bernard

    2009-06-20

    Vaccinia virus (VACV) strain WR can enter cells by a low pH endosomal pathway or direct fusion with the plasma membrane at neutral pH. Here, we compared attachment and entry of five VACV strains in six cell lines and discovered two major patterns. Only WR exhibited pH 5-enhanced rate of entry following neutral pH adsorption to cells, which correlated with sensitivity to bafilomycin A1, an inhibitor of endosomal acidification. Entry of IHD-J, Copenhagen and Elstree strains were neither accelerated by pH 5 treatment nor prevented by bafilomycin A1. Entry of the Wyeth strain, although not augmented by pH 5, was inhibited by bafilomycin A1. WR and Wyeth were both relatively resistant to the negative effects of heparin on entry, whereas the other strains were extremely sensitive due to inhibition of cell binding. The relative sensitivities of individual vaccinia virus strains to heparin correlated inversely with their abilities to bind to and enter glycosaminoglycan-deficient sog9 cells but not other cell lines tested. These results suggested that that IHD-J, Copenhagen and Elstree have a more limited ability than WR and Wyeth to use the low pH endosomal pathway and are more dependent on binding to glycosaminoglycans for cell attachment.

  8. Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions

    NASA Astrophysics Data System (ADS)

    Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk

    2015-06-01

    Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.

  9. Strain engineered high reflectivity DBRs in the deep UV

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Hernandez-Balderrama, L.; Kaess, F.; Bryan, I.; Washiyama, S.; Bobea, M.; Tweedie, J.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-02-01

    The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.

  10. Independence of Anaplasma marginale Strains with High and Low Transmission Efficiencies in the Tick Vector following Simultaneous Acquisition by Feeding on a Superinfected Mammalian Reservoir Host▿

    PubMed Central

    Galletti, Maria F. B. M.; Ueti, Massaro W.; Knowles, Donald P.; Brayton, Kelly A.; Palmer, Guy H.

    2009-01-01

    Strain superinfection occurs when a second pathogen strain infects a host already carrying a primary strain. Anaplasma marginale superinfection occurs when the second strain carries a variant repertoire different from that of the primary strain, and the epidemiologic consequences depend on the relative efficiencies of tick-borne transmission of the two strains. Following strain superinfection in the reservoir host, we tested whether the presence of two A. marginale (sensu lato) strains that differed in transmission efficiency altered the transmission phenotypes in comparison to those for single-strain infections. Dermacentor andersoni ticks were fed on animals superinfected with the Anaplasma marginale subsp. centrale vaccine strain (low transmission efficiency) and the A. marginale St. Maries strain (high transmission efficiency). Within ticks that acquired both strains, the St. Maries strain had a competitive advantage and replicated to significantly higher levels than the vaccine strain. The St. Maries strain was subsequently transmitted to naïve hosts by ticks previously fed either on superinfected animals or on animals singly infected with the St. Maries strain, consistent with the predicted transmission phenotype of this strain and the lack of interference due to the presence of a competing low-efficiency strain. The vaccine strain was not transmitted by either singly infected or coinfected ticks, consistent with the predicted transmission phenotype and the lack of enhancement due to the presence of a high-efficiency strain. These results support the idea that the strain predominance in regions of endemicity is mediated by the intrinsic transmission efficiency of specific strains regardless of occurrence of superinfection. PMID:19188360

  11. Variation in Biofilm Formation among Strains of Listeria monocytogenes

    PubMed Central

    Borucki, Monica K.; Peppin, Jason D.; White, David; Loge, Frank; Call, Douglas R.

    2003-01-01

    Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence. PMID:14660383

  12. Two-strain competition in quasineutral stochastic disease dynamics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; Khasin, Michael; Meerson, Baruch; Schneider, David; Myers, Christopher R.

    2014-10-01

    We develop a perturbation method for studying quasineutral competition in a broad class of stochastic competition models and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model. Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007), 10.1016/j.tpb.2007.04.002], Parsons et al. [Theor. Popul. Biol. 74, 302 (2008), 10.1016/j.tpb.2008.09.001], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012), 10.1007/s10955-012-0479-9]. The second model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically "typical" initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.

  13. Experiments to study strain gage load calibrations on a wing structure at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.; Fields, R. A.

    1973-01-01

    Laboratory experiments were performed to study changes in strain-gage bridge load calibrations on a wing structure heated to temperatures of 200 F, 400 F, and 600 F. Data were also obtained to define the experimental repeatability of strain-gage bridge outputs. Experiments were conducted to establish the validity of the superposition of bridge outputs due to thermal and mechanical loads during a heating simulation of Mach 3 flight. The strain-gage bridge outputs due to load cycle at each of the above temperature levels were very repeatable. A number of bridge calibrations were found to change significantly as a function of temperature. The sum of strain-gage bridge outputs due to individually applied thermal and mechanical loads compared well with that due to combined or superimposed loads. The validity of superposition was, therefore, established.

  14. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  15. Rotamer strain as a determinant of protein structural specificity.

    PubMed Central

    Lazar, G. A.; Johnson, E. C.; Desjarlais, J. R.; Handel, T. M.

    1999-01-01

    We present direct evidence for a change in protein structural specificity due to hydrophobic core packing. High resolution structural analysis of a designed core variant of ubiquitin reveals that the protein is in slow exchange between two conformations. Examination of side-chain rotamers indicates that this dynamic response and the lower stability of the protein are coupled to greater strain and mobility in the core. The results suggest that manipulating the level of side-chain strain may be one way of fine tuning the stability and specificity of proteins. PMID:10631975

  16. 5 CFR 732.301 - Due process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Due process. 732.301 Section 732.301...) NATIONAL SECURITY POSITIONS Due Process and Reporting § 732.301 Due process. When an agency makes an... any determination. (b) Comply with all applicable administrative due process requirements, as...

  17. Size-dependent Strain in Epitaxial (001)Gadolinium-doped Ceria Nanoislands

    SciTech Connect

    V Solovyov; M Gibert; T Puig; X Obradors

    2011-12-31

    We report size-dependent strain in epitaxial gadolinium doped ceria nanoislands, which was determined by synchrotron x-ray diffraction. Reciprocal space sections of symmetric, (004) and asymmetric, (224) reflections are approximated by a model assuming size-dependent strain of the islands using real-space size distribution obtained by atomic force microscopy. We show that the islands smaller than 40 nm are subjected to a high level of lateral tensile strain and normal compression. The lateral to normal strain ratio determined from the reciprocal map analysis suggests that lateral tension is the primary stress generator, possibly due to oxygen vacancy ordering on the island-substrate interface.

  18. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  19. First-principles study of lithium adsorption and diffusion on graphene: the effects of strain

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Chen, Xi

    2015-10-01

    Large strain is produced within graphene sheets, which serve as a critical component in lithium-ion batteries, due to the expansion of the electrodes. First-principles calculations are therefore employed to investigate the interaction of Li with strained single-layer graphene. It is found that tensile strain enhances Li binding on graphene and significantly reduces the formation energy of divacancies. In addition, Li diffusion through graphene with defects is facilitated by tensile strain, whereas diffusion parallel to the plane of pristine graphene is slightly hindered.

  20. Genome Sequence of Pseudomonas chlororaphis Strain 189

    PubMed Central

    Town, Jennifer; Audy, Patrice; Boyetchko, Susan M.

    2016-01-01

    Pseudomonas chlororaphis strain 189 is a potent inhibitor of the growth of the potato pathogen Phytophthora infestans. We determined the complete, finished sequence of the 6.8-Mbp genome of this strain, consisting of a single contiguous molecule. Strain 189 is closely related to previously sequenced strains of P. chlororaphis. PMID:27340063

  1. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  2. Spin transport in graphene superlattice under strain

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2016-09-01

    In this paper, the spin-dependent transport and the spin polarization properties for graphene superlattice with Rashba spin-orbit interaction (RSOI) in the presence of zigzag and armchair direction strain are studied. It is found that for the zigzag direction strain the angular range of the spin-inversion can be efficiently controlled by the strain strength. In addition, the efficiency of spin-inversion and spin-dependent conductivity decreases by increasing the strain strength. When the armchair direction strain is applied to a monolayer graphene superlattice the spin polarization can be observed and increases by increasing the strain strength, whereas for the zigzag direction strain it is zero.

  3. Taxonomy of oxalotrophic Methylobacterium strains

    NASA Astrophysics Data System (ADS)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  4. Photoacoustic spectroscopy of Entamoeba histolytica strains

    NASA Astrophysics Data System (ADS)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  5. Flow sensor using optical fiber strain gauges

    NASA Astrophysics Data System (ADS)

    Schmitt, Nicolas F.; Morgan, R.; Scully, Patricia J.; Lewis, Elfed; Chandy, Rekha

    1995-09-01

    A novel technique for the measurement of air flow velocity using an optical fiber sensor is reported. The sensor measures the deformation of a rubber cantilever beam when subjected to the stresses induced by drag forces in the presence of the airflow. Tests performed in a wind tunnel have indicated a sensitivity of 2 (mu) /(m/s). A qualitative model based on fiber mode propagation has been developed which allows the sensor to be characterized in terms of optical losses. A single 1 mm diameter polymer fiber is mounted on the rectangular section rubber cantilever (section 14 mm by 6 mm) and six grooves are etched into the fiber which extend into the core of the fiber. As the beam deviates the surface deforms (stretches or contracts) and the fiber is subjected to strain. As the strain is increased the grooves become wider and the amount of light transmitted through the fiber is reduced due to increased losses. The sensor described has all the advantages of optical fiber sensors including electrical noise immunity and intrinsic safety for use in hazardous environments. However, its simple construction, robustness, versatility for a number of different fluid applications, as well as relatively low cost make it attractive for use in a wide variety of measurement applications e.g. wind velocity measurement where airborne moisture or chemicals are present.

  6. The addition of strain in uniaxially strained transistors by both SiN contact etch stop layers and recessed SiGe sources and drains

    NASA Astrophysics Data System (ADS)

    Denneulin, Thibaud; Cooper, David; Hartmann, Jean-Michel; Rouviere, Jean-Luc

    2012-11-01

    SiN contact etch stop layers (CESL) and recessed SiGe sources/drains are two uniaxial strain techniques used to boost the charge carriers mobility in p-type metal oxide semiconductor field effect transistors (pMOSFETs). It has already been shown that the electrical performances of the devices can be increased by combining both of these techniques on the same transistor. However, there are few experimental investigations of their additivity from the strain point of view. Here, spatially resolved strain mapping was performed using dark-field electron holography (DFEH) on pMOSFETs transistors strained by SiN CESL and embedded SiGe sources/drains. The influence of both processes on the strain distribution has been investigated independently before the combination was tested. This study was first performed with non-silicided devices. The results indicated that in the channel region, the strain induced by the combination of both processes is equal to the sum of the individual components. Then, the same investigation was performed after Ni-silicidation of the devices. It was found that in spite of a slight reduction of the strain due to the silicidation, the strain additivity is approximately preserved. Finally, it was also shown that DFEH can be a useful technique to characterize the strain field around dislocations.

  7. Strain engineering on silicon/germanium nanoscale heterostructures using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Park, Yumi

    Nanoscale architectures provide additional variables to engineer electronic/mechanical properties of material systems due to their high surface volume ratio and physics that arise from their extremely small size. To date, the device performance of microelectronics has been improved largely by miniaturization. However, with feature sizes below 100 nm, the fundamental challenges demand development of new architectures, new materials, and strain engineering. Strain engineering has been one of the most widely used techniques to achieve desired electronic properties of materials. For example, uniaxial compression and tension are desirable for high speed p-and n-MOSFET, respectively. However, accurate experimental characterization of strain in nanomaterials remains challenges such as resolving strain components and quantifying strain gradient which can affect electronic properties. Molecular dynamics (MD) describe materials with atomic resolution and it can provide invaluable information and insight into nanoscale strain engineering. MD simulations are used to study strain relaxation in Si/Ge heteroepitaxial structures of interest to nanoelectonic applications. Nanopatterning is considered as an avenue for strain engineering to achieve uniaxial strain state from epitaxially integrated Si/Ge heterostructures. Using MD, it is studied how size affect strain relaxation on strained Si/Ge/Si nanobars representing the structures obtained by patterning the films in nanoscale. The MD results demonstrate that Ge with a roughly square cross section has a uniaxial strain state desirable for hole mobility enhancement. Also, process-induced strain relaxation on Si/Ge heterostructures is discussed. The simulations suggest that, by engineering the aspect ratio of Si/Ge nanolaminates, local amorphization followed by recrystallization can be used for either preserving the engineered strain or achieving the desired strain state in crystalline region, showing a possibility as a new avenue

  8. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. PMID:27314505

  9. Ultrasonic imaging of the stress distribution in elastic media due to an external compressor.

    PubMed

    Ponnekanti, H; Ophir, J; Cespedes, I

    1994-01-01

    We describe an experimental ultrasonic method capable of imaging the two-dimensional distribution of longitudinal stress in an elastic, tissue-like material due to an external compressor of arbitrary size or shape and boundary conditions. The method involves the use of a compressor and an opposing ultrasonic transducer. Local strains are derived from the ultrasonic backscatter signals before and after compression using cross correlation analysis. The strain distribution is converted to a stress map by assuming a linear stress-strain relationship. The technique is useful for quantifying the corrections that must be made to images of the elastic modulus of tissue (elastograms) due to the effects of compressor size and shape, depth and boundary conditions. It is also useful for experimental modeling of stress distributions in elastic media. PMID:8197624

  10. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  11. An iterative search method for strain measurement in EFPI sensors

    NASA Astrophysics Data System (ADS)

    Ebel, W. J.; Mitchell, K. K.

    2012-04-01

    In this paper, a new method is given for estimating strain in extrinsic, Fabry-Perot, interferometric (EFPI) fiber-optic sensors under sinusoidal excitation at the sensor. The algorithm has a low complexity and is appropriate for low-cost applications. It is an iterative search algorithm based upon a known, sinusoidal excitation and a mean-square-error objective function. The algorithm provides an estimate of the maximum time-varying strain due to the excitation. It is shown that, for a broad range of parameters, the algorithm converges to the global minima with a high degree of probability. Empirical test results for two fiber-optic sensors with different gauge lengths along with corresponding measurements from a resistive strain gauge are given and shown to compare very well.

  12. Bending strain tolerance of MgB2 superconducting wires

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.

    2016-04-01

    This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.

  13. Laser induced breakdown spectroscopy for the discrimination of Candida strains.

    PubMed

    Manzoor, S; Ugena, L; Tornero-Lopéz, J; Martín, H; Molina, M; Camacho, J J; Cáceres, J O

    2016-08-01

    The present study reports the evaluation of Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) for the discrimination of different strains of various species of Candida. This genus of yeast was selected due to its medical relevance as it is commonly found in cases of fungal infection in humans. Twenty one strains belonging to seven species of Candida were included in the study. Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) was employed as a complementary technique to provide information about elemental composition of Candida cells. The use of LIBS spectra in combination with optimized NN models provided reliable discrimination among the distinct Candida strains with a high spectral correlation index for the samples analyzed, without any false positive or false negative. Therefore, this study indicates that LIBS-NN based methodology has the potential to be used as fast fungal identification or even diagnostic method. PMID:27216662

  14. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  15. Ignition, Burning, and Extinction of a Strained Fuel Strip

    NASA Technical Reports Server (NTRS)

    Selerland, T.; Karagozian, A. R.

    1996-01-01

    Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.

  16. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites.

    PubMed

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  17. Finite element stress analysis of polymers at high strains

    NASA Technical Reports Server (NTRS)

    Durand, M.; Jankovich, E.

    1973-01-01

    A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.

  18. Origin of charge separation in III-nitride nanowires under strain

    NASA Astrophysics Data System (ADS)

    Wu, Yelong; Chen, Guangde; Wei, Su-Huai; Al-Jassim, Mowafak M.; Yan, Yanfa

    2011-12-01

    The structural and electronic properties of BN, AlN, and GaN nanowires (NWs) under different strain condition are investigated using first-principles calculations. We found an anomaly of band gap change with respect to the applied external uniaxial strain. We show that this is due to the band crossing caused by the crystal field splitting at the top of the valance band. Due to the difference of the atomic relaxation at the core and surface regions of the NW, we show that electron and hole separation can be achieved when the compressive uniaxial strain exceeds the critical value |ɛc|.

  19. Naturally occurring prototrophic strains of Salmonella typhi.

    PubMed

    Virgilio, R; Cordano, A M

    1981-12-01

    In a survey of the nutritional requirements of Salmonella typhi it was found that 3.2% of 560 recent clinical isolates were able to grow in a minimal medium consisting of phosphates, ammonium and magnesium sulfates, and glucose; the remainder required tryptophan. Both groups grew slowly and rather poorly in these media due to a deficient utilization of sulfur from sulfate. Addition of cysteine or sodium sulfide or thiosulfate promoted rapid and profuse growth. Minimal medium containing thiosulfate as a source of sulfur allowed for an easy and sharp differentiation of prototrophic variants needing none of the amino acids, and tryptophan auxotrophs. The prototrophic phenotype is not the result of the presence of rare prototrophic mutants, since these strains were able to develop in minimal medium from very small inocula (10(2)), all colonies were prototrophic in replica plating experiments, and the cultures gave comparable colony counts when seeded simultaneously in nutrient and on minimal agar plates. PMID:7332879

  20. Design of an enhanced sensitivity FBG strain sensor and application in highway bridge engineering

    NASA Astrophysics Data System (ADS)

    Li, Litong; Zhang, Dongsheng; Liu, Hui; Guo, Yongxing; Zhu, Fangdong

    2014-06-01

    The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.

  1. Tunable electronic and optical properties of monolayer silicane under tensile strain: A many-body study

    SciTech Connect

    Shu, Huabing; Wang, Shudong; Li, Yunhai; Wang, Jinlan; Yip, Joanne

    2014-08-14

    The electronic structure and optical response of silicane to strain are investigated by employing first-principles calculations based on many-body perturbation theory. The bandgap can be efficiently engineered in a broad range and an indirect to direct bandgap transition is observed under a strain of 2.74%; the semiconducting silicane can even be turned into a metal under a very large strain. The transitions derive from the persistent downward shift of the lowest conduction band at the Γ-point upon an increasing strain. The quasi-particle bandgaps of silicane are sizable due to the weak dielectric screening and the low dimension; they are rapidly reduced as strain increases while the exciton bound energy is not that sensitive. Moreover, the optical absorption edge of the strained silicane significantly shifts towards a low photon energy region and falls into the visible light range, which might serve as a promising candidate for optoelectronic devices.

  2. Structural health monitoring of CFRP airframe structures using fiber-optic-based strain mapping

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Kume, M.; Takeya, H.; Iwahori, Y.; Minakuchi, S.; Takeda, N.; Enomoto, K.

    2012-04-01

    This paper proposes structural health monitoring technology based on the strain mapping of composite airframe structures through their life cycles by FBG sensors. We carried out operational load tests of small-sized mockup specimens of CFRP pressure bulkhead and measured the strain by FBG sensors. In addition, we confirmed strain change due to stiffener debondings. Moreover, debonding detectability of FBG sensors were investigated through the strain monitoring test of CFRP skin-stiffener panel specimens. As a result, the strain distribution varied with damage configurations. Moreover, the change in strain distribution measured by FBG sensors agrees well with numerical simulation. These results demonstrate that FBG sensors can detect stiffener debondings with the dimension of 5mm in composite airframe structures.

  3. Strain Concentration at Structural Discontinuities and Its Prediction Based on Characteristics of Compliance Change in Structures

    NASA Astrophysics Data System (ADS)

    Kasahara, Naoto

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes an increase in creep-fatigue damage of materials. One of the difficulties in predicting strain concentration is its dependence on the magnitude of loading, the constitutive equations, and the duration of loading. In this study, the author investigated the fundamental mechanism of strain concentration and its main factors. The results revealed that strain concentration is caused by strain redistribution between elastic and inelastic regions, which can be quantified by the characteristics of structural compliance. The characteristics of structural compliance are controlled by elastic region in structures and are insensitive to constitutive equations. It means that inelastic analysis can be easily applied to obtain compliance characteristics. By utilizing this fact, a simplified inelastic analysis method was proposed based on the characteristics of compliance change for the prediction of strain concentration.

  4. Temperature affects the morphology and calcification of Emiliania huxleyi strains

    NASA Astrophysics Data System (ADS)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2016-05-01

    The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC

  5. Superconducting proximity effect in graphene under inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Covaci, L.; Peeters, F. M.

    2011-12-01

    The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubov-de Gennes method to computations on video cards (GPUs).

  6. Trials with a Strain Gauge.

    ERIC Educational Resources Information Center

    Auty, Geoff

    1996-01-01

    Describes an attempt to match the goals of the practical demonstration of the use of a strain gauge and the technical applications of science and responding to student questions in early trials, while keeping within the level of electronics in advanced physics. (Author/JRH)

  7. Pre-Peak and Post-Peak Rock Strain Characteristics During Uniaxial Compression by 3D Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-07-01

    A non-contact optical method for strain measurement applying three-dimensional digital image correlation (3D DIC) in uniaxial compression is presented. A series of monotonic uniaxial compression tests under quasi-static loading conditions on Hawkesbury sandstone specimens were conducted. A prescribed constant lateral-strain rate to control the applied axial load in a closed-loop system allowed capturing the complete stress-strain behaviour of the rock, i.e. the pre-peak and post-peak stress-strain regimes. 3D DIC uses two digital cameras to acquire images of the undeformed and deformed shape of an object to perform image analysis and provides deformation and motion measurements. Observations showed that 3D DIC provides strains free from bedding error in contrast to strains from LVDT. Erroneous measurements due to the compliance of the compressive machine are also eliminated. Furthermore, by 3D DIC technique relatively large strains developed in the post-peak regime, in particular within localised zones, difficult to capture by bonded strain gauges, can be measured in a straight forward manner. Field of strains and eventual strain localisation in the rock surface were analysed by 3D DIC method, coupled with the respective stress levels in the rock. Field strain development in the rock samples, both in axial and shear strain domains suggested that strain localisation takes place progressively and develops at a lower rate in pre-peak regime. It is accelerated, otherwise, in post-peak regime associated with the increasing rate of strength degradation. The results show that a major failure plane, due to strain localisation, becomes noticeable only long after the peak stress took place. In addition, post-peak stress-strain behaviour was observed to be either in a form of localised strain in a shearing zone or inelastic unloading outside of the shearing zone.

  8. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  9. Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography

    NASA Astrophysics Data System (ADS)

    Murphy, Kathryn Fay

    A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and

  10. Intrafamilial cluster of pulmonary tuberculosis due to Mycobacterium bovis of the African 1 clonal complex.

    PubMed

    Godreuil, S; Jeziorski, E; Bañuls, A L; Fraisse, T; Van de Perre, P; Boschiroli, M L

    2010-12-01

    A new clonal complex of Mycobacterium bovis present at high frequency in cattle from west central African countries has been described as the African 1 (Af1) clonal complex. Here, the first intrafamilial cluster of human tuberculosis cases due to M. bovis Af1 clonal complex strains is reported. We discuss hypotheses regarding modes of transmission. PMID:20980573

  11. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  12. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  13. Critical stresses for Si/sub x/Ge/sub 1-//sub x/ strained-layer plasticity

    SciTech Connect

    Tsao, J.Y.; Dodson, B.W.; Picraux, S.T.; Cornelison, D.M.

    1987-11-23

    We have measured the temperature-dependent onset of strain relief in metastable Si/sub x/Ge/sub 1-//sub x/ strained layers grown on Ge substrates. On the basis of these measurements, and physical arguments, we propose that strained-layer breakdown is most directly determined not by thickness and lattice mismatch, but rather by (1) an ''excess'' stress (the difference between that due to misfit strain and that due to dislocation line tension) and (2) temperature. With use of these parameters, observed regimes of stability and metastability are shown to be described within a simple, unified framework.

  14. Pathogenic potential of Saccharomyces strains isolated from dietary supplements.

    PubMed

    Llopis, Silvia; Hernández-Haro, Carolina; Monteoliva, Lucía; Querol, Amparo; Molina, María; Fernández-Espinar, María T

    2014-01-01

    Saccharomyces cerevisiae plays a beneficial role in health because of its intrinsic nutritional value and bio-functional properties, which is why it is also used as a dietary supplement. However, the perception that S. cerevisiae is harmless has changed due to an increasing number of infections caused by this yeast. Given this scenario, we have tested whether viable strains contained in dietary supplements displayed virulence-associated phenotypic traits that could contribute to virulence in humans. We have also performed an in vivo study of the pathogenic potential of these strains using a murine model of systemic infection by intravenous inoculation. A total of 5 strains were isolated from 22 commercial products and tested. Results highlight one strain (D14) in terms of burden levels in brains and kidneys and ability to cause death, whereas the other two strains (D2 and D4) were considered of low virulence. Our results suggest a strong relationship between some of the virulence-associated phenotypic traits (ability to grow at 39°C and pseudohyphal growth) and the in vivo virulence in a mouse model of intravenous inoculation for isolates under study. The isolate displaying greatest virulence (D14) was evaluated in an experimental murine model of gastrointestinal infection with immunosuppression and disruption of mucosal integrity, which are common risk factors for developing infection in humans, and results were compared with an avirulent strain (D23). We showed that D14 was able to spread to mesenteric nodes and distant organs under these conditions. Given the widespread consumption of dietary supplements, we recommend only safe strains be used. PMID:24879417

  15. Pathogenic Potential of Saccharomyces Strains Isolated from Dietary Supplements

    PubMed Central

    Monteoliva, Lucía; Querol, Amparo; Molina, María; Fernández-Espinar, María T.

    2014-01-01

    Saccharomyces cerevisiae plays a beneficial role in health because of its intrinsic nutritional value and bio-functional properties, which is why it is also used as a dietary supplement. However, the perception that S. cerevisiae is harmless has changed due to an increasing number of infections caused by this yeast. Given this scenario, we have tested whether viable strains contained in dietary supplements displayed virulence-associated phenotypic traits that could contribute to virulence in humans. We have also performed an in vivo study of the pathogenic potential of these strains using a murine model of systemic infection by intravenous inoculation. A total of 5 strains were isolated from 22 commercial products and tested. Results highlight one strain (D14) in terms of burden levels in brains and kidneys and ability to cause death, whereas the other two strains (D2 and D4) were considered of low virulence. Our results suggest a strong relationship between some of the virulence-associated phenotypic traits (ability to grow at 39°C and pseudohyphal growth) and the in vivo virulence in a mouse model of intravenous inoculation for isolates under study. The isolate displaying greatest virulence (D14) was evaluated in an experimental murine model of gastrointestinal infection with immunosuppression and disruption of mucosal integrity, which are common risk factors for developing infection in humans, and results were compared with an avirulent strain (D23). We showed that D14 was able to spread to mesenteric nodes and distant organs under these conditions. Given the widespread consumption of dietary supplements, we recommend only safe strains be used. PMID:24879417

  16. Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, S.; Birner, S.; Dasgupta, S.; Knaak, C.; Grayson, M.

    2011-09-01

    This paper describes a complete analytical formalism for calculating electron subband energy and degeneracy in strained multivalley quantum wells grown along any orientation with explicit results for AlAs quantum wells (QWs). In analogy to the spin index, the valley degree of freedom is justified as a pseudospin index due to the vanishing intervalley exchange integral. A standardized coordinate transformation matrix is defined to transform between the conventional-cubic-cell basis and the QW transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, piezoelectric fields, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) QWs are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain for the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The biaxial Poisson ratio is calculated for the high-symmetry lower Miller index (001)-, (110)-, and (111)-oriented QWs. An additional shear-strain component arises in the higher Miller index (411)-oriented QWs and we define and solve for a shear-to-biaxial strain ratio. The notation is generalized to address non-Miller-indexed planes so that miscut substrates can also be treated, and the treatment can be adapted to other multivalley biaxially strained systems. To help classify anisotropic intervalley scattering, a valley scattering primitive unit cell is defined in momentum space, which allows one to distinguish purely in-plane momentum scattering events from those that require an out-of-plane momentum component.

  17. 29 CFR 4007.11 - Due dates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Due dates. (a) In general. For flat-rate and variable-rate premiums, the premium filing due date for... variable-rate premium payment must be made by the last day of the sixteenth full calendar month following... payment year. (ii) The due date for the variable-rate premium required by § 4006.3(b) of this chapter...

  18. 34 CFR 602.25 - Due process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Due process. 602.25 Section 602.25 Education... Required Operating Policies and Procedures § 602.25 Due process. The agency must demonstrate that the procedures it uses throughout the accrediting process satisfy due process. The agency meets this...

  19. 34 CFR 602.25 - Due process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Due process. 602.25 Section 602.25 Education... Required Operating Policies and Procedures § 602.25 Due process. The agency must demonstrate that the procedures it uses throughout the accrediting process satisfy due process. The agency meets this...

  20. 34 CFR 602.25 - Due process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Due process. 602.25 Section 602.25 Education... Required Operating Policies and Procedures § 602.25 Due process. The agency must demonstrate that the procedures it uses throughout the accrediting process satisfy due process. The agency meets this...

  1. Mobility enhancement of strained GaSb p-channel metal-oxide-semiconductor field-effect transistors with biaxial compressive strain

    NASA Astrophysics Data System (ADS)

    Yan-Wen, Chen; Zhen, Tan; Lian-Feng, Zhao; Jing, Wang; Yi-Zhou, Liu; Chen, Si; Fang, Yuan; Wen-Hui, Duan; Jun, Xu

    2016-03-01

    Various biaxial compressive strained GaSb p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) are experimentally and theoretically investigated. The biaxial compressive strained GaSb MOSFETs show a high peak mobility of 638 cm2/V·s, which is 3.86 times of the extracted mobility of the fabricated GaSb MOSFETs without strain. Meanwhile, first principles calculations show that the hole effective mass of GaSb depends on the biaxial compressive strain. The biaxial compressive strain brings a remarkable enhancement of the hole mobility caused by a significant reduction in the hole effective mass due to the modulation of the valence bands. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00602) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-002).

  2. Virulence of 32 Salmonella Strains in Mice

    PubMed Central

    Swearingen, Matthew C.; Porwollik, Steffen; Desai, Prerak T.; McClelland, Michael; Ahmer, Brian M. M.

    2012-01-01

    Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies. PMID:22558320

  3. Quantifying the uncertainty of synchrotron-based lattice strain measurements

    SciTech Connect

    Schuren, J.C.; Miller, M.P.

    2012-04-02

    Crystallographic lattice strains - measured using diffraction techniques - are the same magnitude as typical macroscopic elastic strains. From a research perspective, the main interest is in measuring changes in lattice strains induced during in-situ loading: either from one macroscopic stress level to another or from one cycle to the next. The hope is to link these measurements to deformation-induced changes in the internal structure of crystals, possibly related to inelastic deformation and damage. These measurements are relatively new - little experimental intuition exists and it is difficult to discern whether observed differences are due to actual micromechanical evolution or to random experimental fluctuations. If the measurements are linked to material evolution on the size scale of the individual crystal, they have the potential to change the ideas about grain scale deformation partitioning processes and can be used to validate crystal-based simulation frameworks. Therefore, understanding the uncertainty associated with the lattice strain experiments is a crucial step in their continued development. If the measured lattice strains are of the same order as the random fluctuations that are part of the measurement process, documenting the strains can create more confusion than understanding. Often lattice strain error is quoted as {+-}1 x 10{sup -4}. This simple value fails to account for the range of factors that contribute to the experimental uncertainty - which, if not properly accounted for, may lead to a false confidence in the measurements. The focus of this paper is the development of a lattice strain uncertainty expression that delineates the contributing factors into terms that vary independently: (i) the contribution from the instrument and (ii) the contribution from the material under investigation. These aspects of uncertainty are described, and it is then possible to employ a calibrant powder method (diffraction from an unstrained material with

  4. Time-dependent strains and stresses in a pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  5. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  6. Thermomechanical Stress and Strain in Solder Joints During Electromigration

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Xi, H. J.; Wu, Y. P.; Wu, F. S.

    2009-05-01

    Thermomechanical stress and strain in the solder joints of a dummy area array package were studied as electromigration occurred. A current density of 0.4 × 104 A/cm2 was applied to this package, constructed with 9 × 9 solder joints in a daisy chain, to perform the electromigration test. After 37 h, the first joint on the path of the electron flow broke off at the cathode, and the first three solder joints all exhibited a typical accumulation of intermetallic compounds at the anode. Different solder joints exhibited dissimilar electromigration states, such as steady state and nonsteady state. Finite element analysis indicated that during steady-state electromigration, although the symmetrical structure produced uniform distributions of current density and Joule heating in all solder joints, the distribution of temperature was nonuniform. This was due to the imbalanced heat dissipation, which in turn affected the distribution of thermomechanical stress and strain in the solder joints. The maximum thermomechanical stress and strain, as well the highest temperature and current crowding, appeared in the Ni/Cu layer of each joint. The strain in the Ni/Cu layer was significant along the z-axis, but was constrained in the x- y plane. The thermomechanical stress and strain increased with advancing electromigration; thus, a potential delamination between the Ni/Cu layer and the printed circuit board could occur.

  7. Strain glass state as the boundary of two phase transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-08-01

    A strain glass state was found to be located between B2-B19’ (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering.

  8. Strain rate effects on reinforcing steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  9. Strain glass state as the boundary of two phase transitions.

    PubMed

    Zhou, Zhijian; Cui, Jian; Ren, Xiaobing

    2015-01-01

    A strain glass state was found to be located between B2-B19' (cubic to monoclinic) phase transition and B2-R (cubic to rhombohedral) phase transition in Ti49Ni51 alloys after aging process. After a short time aging, strong strain glass transition was observed, because the size of the precipitates is small, which means the strain field induced by the precipitates is isotropic and point-defect-like, and the distribution of the precipitates is random. After a long time aging, the average size of the precipitates increases. The strong strain field induced by the precipitates around them forces the symmetry of the matrix materials to conform to the symmetry of the crystalline structure of the precipitates, which results in the new phase transition. The experiment shows that there exists no well-defined boundary in the evolution from the strain glass transition to the new phase transition. Due to its generality, this glass mediated phase transition divergence scheme can be applied to other proper material systems to induce a more important new phase transition path, which can be useful in the field of phase transition engineering. PMID:26307500

  10. SVAS3: Strain Vector Aided Sensorization of Soft Structures

    PubMed Central

    Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya

    2014-01-01

    Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332

  11. Evolution of plastic anisotropy for high-strain-rate computations

    SciTech Connect

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texture code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.

  12. Finite strain discrete dislocation plasticity in a total Lagrangian setting

    NASA Astrophysics Data System (ADS)

    Irani, N.; Remmers, J. J. C.; Deshpande, V. S.

    2015-10-01

    We present two total Lagrangian formulations for finite strain discrete dislocation plasticity wherein the discrete dislocations are presumed to be adequately represented by singular linear elastic fields thereby extending the superposition method of Van der Giessen and Needleman (1995) to finite strains. The finite deformation effects accounted for are (i) finite lattice rotations and (ii) shape changes due to slip. The two formulations presented differ in the fact that in the "smeared-slip" formulation the discontinuous displacement field is smeared using finite element shape functions while in the "discrete-slip" formulation the weak form of the equilibrium statement is written to account for the slip displacement discontinuity. Both these total Lagrangian formulations use a hyper-elastic constitutive model for lattice elasticity. This overcomes the issues of using singular dislocation fields in a hypo-elastic constitutive relation as encountered in the updated Lagrangian formulation of Deshpande et al. (2003). Predictions of these formulations are presented for the relatively simple problems of tension and compression of single crystals oriented for single slip. These results show that unlike in small-strain discrete dislocation plasticity, finite strain effects result in a size dependent tension/compression asymmetry. Moreover, both formulations give nearly identical predictions and thus we expect that the "smeared-slip" formulation is likely to be preferred due to its relative computational efficiency and simplicity.

  13. Mapping microscale strain heterogeneity during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla Terminel, A.; Evans, J.

    2013-12-01

    We use a new technique combining microfabrication technology and compression tests to map the strain field at a micrometric scale in polycrystalline materials. This technique allows us to map local strain while measuring macroscopic strain and rheological properties, and provides insight into the relative contribution of various plasticity mechanisms under varying creep conditions. The micro-strain mapping technique was applied to Carrara Marble under different deformation regimes, at 300 MPa and temperatures ranging from 200 to 700 °C. At 600 °C, strain of 10%, and strain rate of 3e-5s-1, the local strain at twin and grain boundaries is up to 5 times greater than the average sample strain. At these conditions, strains averaged across a particular grain may vary by as much as 100%, but the strain field becomes more homogeneous with increasing strain. For example, for the analyzed experiments, the average wavelength of the strain heterogeneity is 70 micrometers at 10% strain, but increases to 110 micrometers at 20%. For a strain of 10%, heterogeneity is increased at slower strain rate (at 1e-5s-1). This increase seems to be associated with a more important role of twin boundary and grain boundary migration. As expected, twin densities are markedly greater at the lower temperature, though it is still unclear whether the relative twin volume is greater. However, twin strains are still important at 600 °C and accommodate an average of 14 % of the total strain at 10% deformation and a strain rate of 3e-5s-1.

  14. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  15. Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns*

    PubMed Central

    Jhingan, Gagan Deep; Kumari, Sangeeta; Jamwal, Shilpa V.; Kalam, Haroon; Arora, Divya; Jain, Neharika; Kumaar, Lakshmi Krishna; Samal, Areejit; Rao, Kanury V. S.; Kumar, Dhiraj; Nandicoori, Vinay Kumar

    2016-01-01

    Mycobacterium tuberculosis is an adaptable intracellular pathogen, existing in both dormant as well as active disease-causing states. Here, we report systematic proteomic analyses of four strains, H37Ra, H37Rv, and clinical isolates BND and JAL, to determine the differences in protein expression patterns that contribute to their virulence and drug resistance. Resolution of lysates of the four strains by liquid chromatography, coupled to mass spectrometry analysis, identified a total of 2161 protein groups covering ∼54% of the predicted M. tuberculosis proteome. Label-free quantification analysis of the data revealed 257 differentially expressed protein groups. The differentially expressed protein groups could be classified into seven K-means cluster bins, which broadly delineated strain-specific variations. Analysis of the data for possible mechanisms responsible for drug resistance phenotype of JAL suggested that it could be due to a combination of overexpression of proteins implicated in drug resistance and the other factors. Expression pattern analyses of transcription factors and their downstream targets demonstrated substantial differential modulation in JAL, suggesting a complex regulatory mechanism. Results showed distinct variations in the protein expression patterns of Esx and mce1 operon proteins in JAL and BND strains, respectively. Abrogating higher levels of ESAT6, an important Esx protein known to be critical for virulence, in the JAL strain diminished its virulence, although it had marginal impact on the other strains. Taken together, this study reveals that strain-specific variations in protein expression patterns have a meaningful impact on the biology of the pathogen. PMID:27151218

  16. Brittle dynamic damage due to earthquake rupture

    NASA Astrophysics Data System (ADS)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  17. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    SciTech Connect

    Inaoka, Takeshi Yanagisawa, Susumu; Kadekawa, Yukihiro

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  18. Development of the average lattice phase-strain and global elastic macro-strain in Al/TiC composites

    SciTech Connect

    Shi, N.; Bourke, M.A.M.; Goldstone, J.A.; Allison, J.E.

    1994-02-01

    The development of elastic lattice phase strains and global elastic macro-strain in a 15 vol% TiC particle reinforced 2219-T6 Al composite was modeled by finite element method (FEM) as a function of tensile uniaxial loading. The numerical predictions are in excellent agreement with strain measurements at a spallation neutron source. Results from the measurements and modeling indicate that the lattice phase-strains go through a ``zigzag`` increase with the applied load in the direction perpendicular to the load, while the changes of slope in the parallel direction are monotonic. FEM results further showed that it is essential to consider the effect of thermal residual stresses (TRS) in understanding this anomalous behavior. It was demonstrated that, due to TRS, the site of matrix plastic flow initiation changed. On the other hand, the changes of slope of the elastic global macrostrain is solely determined by the phase-stress partition in the composite. An analytical calculation showed that both experimental and numerical slope changes during elastic global strain response under loading could be accurately reproduced by accounting for the changes of phase-stress ratio between the matrix and the matrix.

  19. Modelling to very high strains

    NASA Astrophysics Data System (ADS)

    Bons, P. D.; Jessell, M. W.; Griera, A.; Evans, L. A.; Wilson, C. J. L.

    2009-04-01

    Ductile strains in shear zones often reach extreme values, resulting in typical structures, such as winged porphyroclasts and several types of shear bands. The numerical simulation of the development of such structures has so far been inhibited by the low maximum strains that numerical models can normally achieve. Typical numerical models collapse at shear strains in the order of one to three. We have implemented a number of new functionalities in the numerical platform "Elle" (Jessell et al. 2001), which significantly increases the amount of strain that can be achieved and simultaneously reduces boundary effects that become increasingly disturbing at higher strain. Constant remeshing, while maintaining the polygonal phase regions, is the first step to avoid collapse of the finite-element grid required by finite-element solvers, such as Basil (Houseman et al. 2008). The second step is to apply a grain-growth routine to the boundaries of polygons that represent phase regions. This way, the development of sharp angles is avoided. A second advantage is that phase regions may merge or become separated (boudinage). Such topological changes are normally not possible in finite element deformation codes. The third step is the use of wrapping vertical model boundaries, with which optimal and unchanging model boundaries are maintained for the application of stress or velocity boundary conditions. The fourth step is to shift the model by a random amount in the vertical direction every time step. This way, the fixed horizontal boundary conditions are applied to different material points within the model every time step. Disturbing boundary effects are thus averaged out over the whole model and not localised to e.g. top and bottom of the model. Reduction of boundary effects has the additional advantage that model can be smaller and, therefore, numerically more efficient. Owing to the combination of these existing and new functionalities it is now possible to simulate the

  20. Complete genome sequences of avian paramyxovirus serotype 6 prototype strain Hong Kong and a recent novel strain from Italy: evidence for the existence of subgroups within the serotype

    PubMed Central

    Xiao, Sa; Subbiah, Madhuri; Kumar, Sachin; De Nardi, Roberta; Terregino, Calogero; Collins, Peter L.; Samal, Siba K.

    2010-01-01

    Complete genome sequences were determined for two strains of avian paramyxovirus serotype 6 (APMV-6): the prototype Hong Kong (HK) strain and a more recent isolate from Italy (IT4524-2). The genome length of strain HK is 16236 nucleotide (nt), which is the same as for the other two APMV-6 strains (FE and TW) that have been reported to date, whereas that of strain IT4524-2 is 16230 nt. The length difference in strain IT4524-2 is due to a 6-nt deletion in the downstream untranslated region of the F gene. All of these viruses follow the “rule of six”. Each genome consists of seven genes in the order of 3’N-P-M-F-SH-HN-L5’, which differs from other APMV serotypes in containing an additional gene encoding the small hydrophobic (SH) protein. Sequence comparisons revealed that strain IT4524-2 shares an unexpectedly low level of genome nt sequence identity (70%) and aggregate predicted amino acid (aa) sequence identity (79%) with other three strains, which in contrast are more closely related to each other with nt sequence 94–98% nt identity and 90–100% aggregate aa identity. Sequence analysis of the F-SH-HN genome region of two other recent Italian isolates showed that they fall in the HK/FE/TW group. The predicted signal peptide of IT4524-2 F protein lacks the N-terminal first 10 aa that are present in the other five strains. Also, the F protein cleavage site of strain IT4524-2, REPR↓L, has two dibasic aa (arginine, R) compared to the monobasic F protein cleavage site of PEPR↓L in the other strains. Reciprocal cross-hemagglutination inhibition (HI) assays using post infection chicken sera indicated that strain IT4524-2 is antigenically related to the other APMV-6 strains, but with 4- to 8-fold lower HI tiers for the test sera between strain IT4524-2 and the other APMV-6 strains. Taken together, our results indicated that the APMV-6 strains represents a single serotype with two subgroups that differ substantially based on nt and aa sequences and can be

  1. Strains

    MedlinePlus

    Pulled muscle ... can include: Pain and difficulty moving the injured muscle Discolored and bruised skin Swelling ... if you still have pain. Rest the pulled muscle for at least a day. If possible, keep ...

  2. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  3. The conversion of allenes to strained three-membered heterocycles.

    PubMed

    Adams, C S; Weatherly, C D; Burke, E G; Schomaker, J M

    2014-05-01

    This article reviews methods for converting allenes to strained, three-membered methylene heterocycles, and also covers the reactivity of these products. Specifically, the synthesis and reactivity of methylene aziridines, allene oxides/spirodiepoxides, methylene silacyclopropanes, methylene phosphiranes, and methylene thiiranes are described, including applications to the synthesis of complex molecules. Due to the primary focus on heterocyclic motifs, the all-carbon analogue of these species (methylene cyclopropane) is only briefly discussed. PMID:24647416

  4. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  5. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  6. Examination of a Rock Failure Criterion Based on Circumferential Tensile Strain

    NASA Astrophysics Data System (ADS)

    Fujii, , Y.; Kiyama, , T.; Ishijima, Y.; Kodama, J.

    Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment-such as confining pressure, loading rate, water content and anisotropy-on the critical tensile strain, i.e., the measured principal tensile strain at peak load.It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen's diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.The effect of confining pressure PC on the critical tensile strain ɛTC in the brittle failure region was between -0.02 × 10-10 Pa-1 and 0.77 × 10-10 Pa-1. This pressure sensitivity is small compared to the critical tensile strain values of around -0.5 × 10-2. The strain rate sensitivities ∂ɛTC/∂{log(d|ɛ|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from -0.10 × 10-3 to -0.52 × 10-3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ɛTC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins

  7. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  8. Design of a strain-gage probe

    NASA Technical Reports Server (NTRS)

    Kolba, V. M.; Vetter, D. L.

    1969-01-01

    Strain-gage spacer probe uses the deflection of a leaf spring to measure strain in a long, slender beam nondestructively. The selected gage is of the smallest practical size, as thin as possible and yet of a standard type.

  9. Strain stiffening in collagen I networks.

    PubMed

    Motte, Stéphanie; Kaufman, Laura J

    2013-01-01

    Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain. PMID:23097228

  10. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  11. Installing strain gauges on composite material

    NASA Astrophysics Data System (ADS)

    Shull, Larry

    The evolution of the strain gage is traced and problems associated with their use on composite materials are discussed. It is believed that the use of the computer in strain gage data systems has caused some of the attitude problems in measuring strains in composite materials. The performance of strain gages on filament-wound Kevlar pressure vessels is discussed as well as graphite composites during 1984-1986, surface preparation, gage location alignment.

  12. Temperature-Compensating Inactive Strain Gauge

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1993-01-01

    Thermal contribution to output of active gauge canceled. High-temperature strain gauges include both active gauge wires sensing strains and inactive gauge wires providing compensation for thermal contributions to gauge readings. Inactive-gauge approach to temperature compensation applicable to commercially available resistance-type strain gauges operating at temperatures up to 700 degrees F and to developmental strain gauges operating at temperatures up to 2,000 degrees F.

  13. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  14. Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains

    PubMed Central

    Gangaiah, Dharanesh; Webb, Kristen M.; Humphreys, Tricia L.; Fortney, Kate R.; Toh, Evelyn; Tai, Albert; Katz, Samantha S.; Pillay, Allan; Chen, Cheng-Yen; Roberts, Sally A.; Munson, Robert S.; Spinola, Stanley M.

    2015-01-01

    Background Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin? Methodology/Principal Findings To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin. Conclusions/Significance These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions. PMID:26147869

  15. Modal strain energies in COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Snyder, B. D.; Venkayya, V. B.

    1989-01-01

    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

  16. Strains and Sprains Are a Pain

    MedlinePlus

    ... move the injured part, and you may even think you have broken a bone . How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains can be more likely to happen if ...

  17. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-08-01

    interest in strain studies as well. Researchers in China investigated the effects of tensile strain on the thermal conductivity of graphene nanoribbons. Tuning the thermal conductivity of nanomaterials is highly desirable to optimize their functionality [5]. Wei and colleagues use computer simulations based on reverse nonequilibrium molecular dynamics (RNEMD) to demonstrate what they describe as 'a strain-induced magic flexibility of thermal engineering for carbon-based nanostructures', which may provide a new approach for tailoring nanomaterial functionality. Despite the attractions of more recently discovered carbon nanomaterials silicon remains the bedrock of the semiconductor device industry. Germanium nanostructures also hold significant interest, such as Ge nanowires, which have high mobility and a conveniently low synthesis temperature [6]. In fact the potential applications of germanium nanowires in field effect transistors and nanobridge devices prompted Jagadish and colleagues in Australia, Korea and the UK to investigate the growth of taper-free kinked Ge nanowires in silicon [7]. As they point out many recent reports have highlighted such kinked nanowires as valuable components for novel nanodevices. The work reported by Hrauda and colleagues in this issue looks at the growth of germanium islands on a silicon substrate rather than nanowires [2]. They grow islands on pre-patterned silicon with different levels of Ge deposition with the aim of better understanding how to manage the effects of strain due to lattice mismatch between the two metals. Their results show that considerably more Ge can be deposited without dislocations forming than previously thought and reveal a distinctive cycle of changing island morphologies as Ge is deposited. They add, 'Strain relaxation is revealed to be the main driving force of a rather complex evolution of island shape and Ge distribution'. In reference to his theory of atoms Bohr is once said to have told Werner Heisenberg

  18. Study of Unrecovered Strain and Critical Stresses in One-Way Shape Memory Nitinol

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Datla, Naresh V.; Konh, Bardia; Podder, Tarun K.; Dicker, Adam P.; Yu, Yan; Hutapea, Parsaoran

    2014-08-01

    Unique thermomechanical properties of Nitinol known as shape memory and superelasticity make it applicable for different fields such as biomedical, structural, and aerospace engineering. These unique properties are due to the comparatively large recoverable strain, which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain. For cyclic applications, it is important to understand the strain behavior of Nitinol wires. In this study, the unrecovered strain of different Nitinol wire diameters was investigated using constant stress experiment. Uniaxial tensile test has been also performed to find the range of critical stresses. It was observed that the unrecovered strain produced in the first loading-unloading cycle affects the total strain in the subsequent cycles. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible while the wires heated up to the range of 70-80°C, depending on the wire diameters. The unrecovered strain of wire diameters of 0.19 mm and less was found to be sensitive to the critical stress. On the other hand, for wire diameters bigger than 0.19 mm this connection between the unrecovered strain and the critical stress was not observed for the same range of heating temperature.

  19. Lactobacillus brevis Strains from Fermented Aloe vera Survive Gastroduodenal Environment and Suppress Common Food Borne Enteropathogens

    PubMed Central

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research. PMID:24598940

  20. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development. PMID:19635607

  1. Lactobacillus brevis strains from fermented aloe vera survive gastroduodenal environment and suppress common food borne enteropathogens.

    PubMed

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research. PMID:24598940

  2. Evaluation of Fiber Optic Strain Measurement System for Monitoring FRP Bridge Decks

    NASA Astrophysics Data System (ADS)

    Klinkhachorn, P.; Lonkar, G. M.; Halabe, Udaya B.; GangaRao, H. V. S.

    2005-04-01

    The use of Fiber Optic sensors for structural monitoring applications has attained popularity among researchers and practitioners recently due to their immense advantages. This paper discusses a continuous structural monitoring technique using surface mounted and embedded fiber optic strain sensors to measure the strain in FRP bridge decks. An Extrinsic Fabry-Perot Interferometric (EFPI) strain sensor was selected for evaluation as it offers a good compromise between accuracy and cost considerations. This EFPI strain sensor, along with a conventional strain gauge, was surface mounted on a FRP bridge decks. The decks were then subjected to an accelerated aging test in an environmental chamber and the performance of both the strain sensors was recorded for a performance comparison. The results from the seven months of accelerated aging that is equivalent to 10 years of actual life show that the strain gauge sensor and the EFPI Fiber Optic sensor are still in working condition. The EFPI fiber optic sensor detects minute and sudden changes in strain more effectively than the strain gauge sensor. Placement in the environmental chamber did not affect the EFPI sensor's performance and is an indication of its applicability to field structural monitoring for lengthy periods of time. The second part is a preliminary work where a fiber optic sensor was embedded inside a FRP plate during the pultrusion process. This shows the feasibility of manufacturing FRP bridge decks with embedded fiber optic sensors.

  3. Strain tunable ferroelectric and dielectric properties of BaZrO{sub 3}

    SciTech Connect

    Zhang, Yajun; Liu, Man; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2014-06-14

    The crucial role of epitaxial (in-plane) strain on the structural, electronic, energetic, ferroelectric, and dielectric properties of BaZrO{sub 3} (BZO) is investigated using density-functional theory calculations. We demonstrate that the BZO crystal subjected to a critical compressive (or tensile) strain exhibits non-trivial spontaneous polarization that is higher than that of well-known ferroelectrics BaTiO{sub 3}, while the BZO crystal is essentially paraelectric in the absence of strain. The electronic structure and Born-effective-charge analyses elucidate that the strain-induced paraelectric-to-ferroelectric transition is driven by the orbital hybridization of d-p electrons between zirconium and oxygen. Through the strain-induced paraelectric-to-ferroelectric phase transition, the dielectric response of BZO is significantly enhanced by the in-plane strain. The tensile strain increases the in-plane dielectric constant by a factor of seven with respect to that without the strain, while the compression tends to enhance the out-of-plane dielectric response. Therefore, strain engineering makes BZO an important electromechanical material due to the diversity in ferroelectric and dielectric properties.

  4. Type I/type II band alignment transition in strained PbSe /PbEuSeTe multiquantum wells

    NASA Astrophysics Data System (ADS)

    Simma, M.; Fromherz, T.; Bauer, G.; Springholz, G.

    2009-11-01

    Investigation of the optical transitions in tensily strained PbSe /PbEuSeTe multiquantum wells by differential transmission spectroscopy reveals a type I/type II band alignment transition due to strain-induced lowering of the band edge energies of the quantum wells. From the measured shifts of the optical transitions the optical deformation potentials of PbSe are obtained. This is crucial for realistic modeling of the electronic properties of strained PbSe heterostructures.

  5. Pile Model Tests Using Strain Gauge Technology

    NASA Astrophysics Data System (ADS)

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  6. Optical fiber strain gauge using a mirror with a pinhole

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Takase, Hiroshi; Yamamoto, Masayuki; Otani, Yukitoshi

    2001-11-01

    In the conventional measurement of strain, resistance wire types of strain gauges have been used in most of cases. However, other kinds of strain gauges have been reported recently and optical fiber gauges appeared on the market. Here, instead of a conventional strain gauge made of a metal wire, we propose an optical fiber gauge. This gauge consists of two fibers for transmitting a beam from a light source and for receiving a reflecting-back beam, and in between them a concave mirror with a hole is settled. This mirror is used for transmission and partial reflection of the beam. When strain is given to the testing specimen to which the gauge is adhered, small displacement between two fiber ends is brought. The construction of this gauge is so sensitive to gap change between the fibers that high sensitivity is realized in measurement. In addition to high sensitivity, this gauge is featured by a small size and short gauge length. To verify this principle, experiments are repeated by using a thin plate specimen made of copper. The gauge is made of a plastic fiber of 0.5 mm in diameter and a small concave miro with a pinhole. Due to this mirror construction, the fluctuation of the beam intensity can be checked and the stable normalized output signal is obtained. Because the normalized signal is obtained form two signals; transmitted and reflected signals. An experimental result showed a high sensitivity in experimental measurement, and even for the intentional fluctuation of the beam intensity, we could get same measuring result in strain measurement.

  7. Mechanical strain inhibits repair of airway epithelium in vitro.

    PubMed

    Savla, U; Waters, C M

    1998-06-01

    The repair of airway epithelium after injury is crucial in restoring epithelial barrier integrity. Although the airway epithelium is stretched and compressed due to changes in both circumferential and longitudinal dimensions during respiration and may be overdistended during mechanical ventilation, the effect of cyclic strain on the repair of epithelial wounds is unknown. Human and cat airway epithelial cells were cultured on flexible membranes, wounded by scraping with a metal spatula, and subjected to cyclic strain using the Flexercell Strain Unit. Because the radial strain profile in the wells was nonuniform, we compared closure in regions of elongation and compression within the same well. Both cyclic elongation and cyclic compression significantly slowed repair, with compression having the greatest effect. This attenuation was dependent upon the time of relaxation (TR) during the cycle. When wells were stretched at 10 cycles/min (6 s/cycle) with TR = 5 s, wounds closed similarly to wounds in static wells, whereas in wells with TR = 1 s, significant inhibition was observed. As the TR during cycles increased (higher TR), wounds closed faster. We measured the effect of strain at various TRs on cell area and centroid-centroid distance (CD) as a measure of spreading and migration. While cell area and CD in static wells significantly increased over time, the area and CD of cells in the elongated regions did not change. Cells in compressed regions were significantly smaller, with significantly lower CD. Cell area and CD became progressively larger with increasing TR. These results suggest that mechanical strain inhibits epithelial repair. PMID:9609726

  8. Persistence of Strain in Buoyant and Nonbuoyant Turbulent Nonpremixed Flames

    NASA Astrophysics Data System (ADS)

    Boratav, O.; Elghobashi, S.; Zhong, R.

    1997-11-01

    The effects of chemical reaction and buoyancy on the persistence of strain are studied in three different flows: i) Nonbuoyant flame, ii) Buoyant flame with gravity perpendicular to the initial fuel-oxidant interface (horizontal flame) and iii) Same as (ii), but gravity is parallel to the initial interface (vertical flame). The magnitude of the rate of strain S_ij relative to vorticity ω is measured by the angle ψ = tan-1(2 S_ijS_ij/ω \\cdot ω). Three mixture fraction, F, regions of distinct ψ characteristics are identified: 1) F>F_st, 2) Fdue to the large baroclinic vorticity production, i.e. ψ arrow 0, resulting in shifting the pdf's of the ω-strain eigendirection more towards the β direction than the α. In region (3), the vorticity production is negligible for all three flows and at all times, thus resulting in the persistence of strain dominance over vorticity, i.e. ψ ≈ π/2, enforcing the alignment of ω with the α eigendirection. Consequently, the nabla F transport equation shows that nabla F will be located in the β-γ plane near F_st. Since |γ| > |β|, the largest straining of nabla F will be mostly along the direction of the most compressive strain direction γ near F_st as observed in all three cases. Our DNS results show that in reacting flows, the peak scalar dissipation ɛF will be near F_st regardless of the presence of buoyancy.

  9. Peritoneal tuberculosis due to Mycobacterium caprae

    PubMed Central

    Nebreda, T.; Álvarez-Prida, E.; Blanco, B.; Remacha, M.A.; Samper, S.; Jiménez, M.S.

    2016-01-01

    The incidence of tuberculosis in humans due to Mycobacterium caprae is very low and is almost confined to Europe. We report a case of a previously healthy 41-year-old Moroccan with a 6 month history of abdominal pain, weight loss, fatigue and diarrhea. A diagnosis of peritoneal tuberculosis due to M. caprae was made. PMID:27134824

  10. Facial nerve palsy due to birth trauma

    MedlinePlus

    Seventh cranial nerve palsy due to birth trauma ... these factors do not lead to facial nerve palsy or birth trauma. ... The most common form of facial nerve palsy due to birth trauma ... This part controls the muscles around the lips. The muscle ...

  11. Due Process Hearings: An Update. Final Report.

    ERIC Educational Resources Information Center

    Ahearn, Eileen M.

    This report presents data from all 50 states on due process hearings concerning the education of students with disabilities for the years 1992, 1993, and 1994. Data were gathered from a 1996 survey conducted by the National Association of State Directors of Special Education. This survey updates due process statistics from a 1994 survey that…

  12. Procedural Due Process Rights in Student Discipline.

    ERIC Educational Resources Information Center

    Pressman, Robert; Weinstein, Susan

    To assist administrators in understanding procedural due process rights in student discipline, this manual draws together hundreds of citations and case summaries of federal and state court decisions and provides detailed commentary as well. Chapter 1 outlines the general principles of procedural due process rights in student discipline, such as…

  13. Qubit dephasing due to quasiparticle tunneling

    NASA Astrophysics Data System (ADS)

    Zanker, Sebastian; Marthaler, Michael

    2015-05-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest-order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams, we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ˜exp[-x (t )] where x (t ) ∝t3 /2 for short-time scales and x (t )∝t ln(t ) for long-time scales.

  14. Inelastic strain in the seismogenic zone, Kyushu, Japan inferred from focal mechanism of earthquakes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Nishimura, Takuya

    2016-04-01

    Strain in the seismogenic zone of the crust is a key parameter to understand crustal dynamics. GNSS data provide us with great information about deformation rate at the surface, which have been investigated by many researches and modeled kinematic behavior as elastic medium. Generally, strain in the earth's medium consists with elastic and inelastic ones. The two kinds of strain result different effects on the stress field. Therefore, detecting inelastic strain is important to know state of stress in the crust as well as elastic one. Inelastic strain is caused by such as fault creep, viscoelastic response, and earthquakes. Here, we showed the inelastic strain in the seismogenic zone of Kyushu, Japan from seismic moments and focal mechanisms data by counting Kostrov's sum in the spatial bins. Seismic moment tensors about 9000 earthquakes with magnitude greater than 2 for 13.5 years were obtained from seismic network data in Kyushu Island and F-net catalog. Total released moment at every spatial bin with 0.15 x 0.15 degree in latitude and longitude was estimated and then strain rate was calculated from the moment, compliance of the medium, and volume of the bin. The estimated maximum strain rate achieves 10^-7 strain/year. This strain rate is comparable with that from GNSS data. However, the strain rate mainly revealed the different principal direction from the one of GNSS. On the other hand, the directions were similar to the behavior of active faults in Kyushu. The result in this study showed that inelastic strain due to earthquakes is enough large, suggesting that the effect should be considered for modeling crustal dynamics.

  15. Two novel EHEC/EAEC hybrid strains isolated from human infections.

    PubMed

    Prager, Rita; Lang, Christina; Aurass, Philipp; Fruth, Angelika; Tietze, Erhard; Flieger, Antje

    2014-01-01

    The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H-, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H-, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized. PMID:24752200

  16. Two Novel EHEC/EAEC Hybrid Strains Isolated from Human Infections

    PubMed Central

    Aurass, Philipp; Fruth, Angelika; Tietze, Erhard; Flieger, Antje

    2014-01-01

    The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H−, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H−, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized. PMID:24752200

  17. Residual strain change resulting from stress corrosion in Carrara marble

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    greater relaxation of extensional strains during the preparatory test, leading to a subsequent increase in compression when the samples were returned to the neutral position prior to our measurement. Thin sections of the notch area help confirm these observations, as a narrow but continuous fracture following grain boundaries is evident in M4 and M2. M5 shows a buildup of extensional strains in the notch tip area due to low loading, though no cracking is evident. These results provide exceptional insight into the physics of fracture propagation under typical real-world conditions. We observe notably different mechanical inter- and intragranular responses to long-term static low loading under either wet or dry conditions, a result which contributes significantly to our ability to evaluate the potential impact of changes in (for example) rainfall distribution, chemistry, and meltwater production on tensile fracture propagation and alpine rock slope stability.

  18. Siderotyping of Antarctic fluorescent Pseudomonas strains.

    PubMed

    Geoffroy, V A; Meyer, J M

    2004-07-01

    Five fluorescent Pseudomonas strains isolated from Antarctica have been previously recognized as producing three structurally different pyoverdines. In the present work, siderotyping procedures have been used to classify these strains, together with 1282 isolates of different origins, into siderovars. The strain biodiversity encountered within each siderovar, as well as the potential taxonomic value of the siderovars, are described and discussed. It is concluded that a majority of antarctic strains are commonly distributed worldwide. One strain, however, presenting a particular pyoverdine structure found in a unique other isolate, was apparently much more specific to cold environment. PMID:15559975

  19. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  20. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  1. Strain flexibility identification of bridges from long-gauge strain measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xia, Qi; Cheng, YuYao; Wu, ZhiShen

    2015-10-01

    Strain flexibility, defined as the strain response of a structure's element to a unit input force, is import for structural safety evaluation, but its identification is seldom investigated. A novel long-gauge fiber optic sensor has been developed to measure the averaged strain within a long gauge length. Its advantage of measuring both local and global information of the structure offers an excellent opportunity of developing the strain flexibility identification theory. In this article, the method to identify structural strain flexibility from long-gauge dynamic strain measurements is proposed. It includes the following main steps: (a) macro strain frequency response function (FRF) estimation from macro strain measurements and its feature characterization; (b) general strain modal parameter identification; (c) scaling factor calculation, and (d) strain flexibility identification. Numerical and experimental examples successfully verify the effectiveness of the proposed method.

  2. Job Strain in Physical Therapists

    PubMed Central

    Campo, Marc A.; Weiser, Sherri; Koenig, Karen L.

    2009-01-01

    Background: Job stress has been associated with poor outcomes. In focus groups and small-sample surveys, physical therapists have reported high levels of job stress. Studies of job stress in physical therapy with larger samples are needed. Objective: The purposes of this study were: (1) to determine the levels of psychological job demands and job control reported by physical therapists in a national sample, (2) to compare those levels with national norms, and (3) to determine whether high demands, low control, or a combination of both (job strain) increases the risk for turnover or work-related pain. Design: This was a prospective cohort study with a 1-year follow-up period. Methods: Participants were randomly selected members of the American Physical Therapy Association (n=882). Exposure assessments included the Job Content Questionnaire (JCQ), a commonly used instrument for evaluation of the psychosocial work environment. Outcomes included job turnover and work-related musculoskeletal disorders. Results: Compared with national averages, the physical therapists reported moderate job demands and high levels of job control. About 16% of the therapists reported changing jobs during follow-up. Risk factors for turnover included high job demands, low job control, job strain, female sex, and younger age. More than one half of the therapists reported work-related pain. Risk factors for work-related pain included low job control and job strain. Limitations: The JCQ measures only limited dimensions of the psychosocial work environment. All data were self-reported and subject to associated bias. Conclusions: Physical therapists’ views of their work environments were positive, including moderate levels of demands and high levels of control. Those therapists with high levels of demands and low levels of control, however, were at increased risk for both turnover and work-related pain. Physical therapists should consider the psychosocial work environment, along with other

  3. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  4. Strain monitoring of composite pressure vessel with thin metal liner using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-qing; Wang, Rong-guo; He, Xiao-dong; Liu, Wen-bo

    2009-07-01

    Composite pressure vessel with thin metal liner has the advantage of both composite and metal. Due to the difference of elastic strain limits of composite and metal, there is problem of the compatibility of deformation. Nine fiber Bragg gratings were bonded to the surface of longitudinal and hoop directions of pressure vessel to monitor the strain status during 4.5MPa service pressure condition. The measured strain by the Bragg sensor is perfectly linear with the applied force. However, the hoop strain decreased as loading process and increased as unloading process, it is also negative value on middle part of the dome. The phenomena had been discussed in this investigation. As a smart structure Bragg sensor can detect the real strain state of composite pressure vessel and is suitable for damage monitoring in service. Analyzing result shows the pressure vessel can work safely with the applied hydrostatic pressure.

  5. Intergranular Strain Evolution in Titanium During Tensile Loading: Neutron Diffraction and Polycrystalline Model

    NASA Astrophysics Data System (ADS)

    Gloaguen, David; Oum, Guy; Legrand, Vincent; Fajoui, Jamal; Moya, Marie-José; Pirling, Thilo; Kockelmann, Winfried

    2015-11-01

    Intergranular strains due to tensile plastic deformation were investigated in a commercially pure Ti. Neutron diffraction has been used to characterize the evolution of residual elastic strain in grains with different crystallographic orientations. Experimental data have been obtained for the macroscopic stress-strain curve and the intergranular strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. The elasto-plastic self-consistent (EPSC) approach was used to model the deformation behavior of the studied material. Comparison between the neutron measurements and the model predictions shows that in most cases the EPSC approach can predict the lattice strain evolution and capture the plastic anisotropy observed in the experiments.

  6. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    SciTech Connect

    Thorbeck, Ted; Zimmerman, Neil M.

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  7. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.

    PubMed

    Amjadi, Morteza; Pichitpajongkit, Aekachan; Lee, Sangjun; Ryu, Seunghwa; Park, Inkyu

    2014-05-27

    The demand for flexible and wearable electronic devices is increasing due to their facile interaction with human body. Flexible, stretchable and wearable sensors can be easily mounted on clothing or directly attached onto the body. Especially, highly stretchable and sensitive strain sensors are needed for the human motion detection. Here, we report highly flexible, stretchable and sensitive strain sensors based on the nanocomposite of silver nanowire (AgNW) network and PDMS elastomer in the form of the sandwich structure (i.e., AgNW thin film embedded between two layers of PDMS). The AgNW network-elastomer nanocomposite based strain sensors show strong piezoresistivity with tunable gauge factors in the ranges of 2 to 14 and a high stretchability up to 70%. We demonstrate the applicability of our high performance strain sensors by fabricating a glove integrated with five strain sensors for the motion detection of fingers and control of an avatar in the virtual environment. PMID:24749972

  8. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    SciTech Connect

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2014-01-20

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences.

  9. Development and use of a quantum dot probe to track multiple yeast strains in mixed culture

    PubMed Central

    Gustafsson, Frida S.; Whiteside, Matthew D.; Jiranek, Vladimir; Durall, Daniel M.

    2014-01-01

    Saccharomyces cerevisiae strains vary in their ability to develop and enhance sensory attributes of alcoholic beverages and are often found growing in mixed strain fermentations; however, quantifying individual strains is challenging due to quantification inaccuracies, low marker longevity, and compromised kinetics. We developed a fluorescent probe, consisting of glutathione molecules conjugated to a quantum dot (QD). Two S. cerevisiae strains were incubated with different coloured probes (QD attached to glutathione molecules, QD-GSH), fermented at multiple ratios, and quantified using confocal microscopy. The QD method was compared with a culture method using microsatellite DNA analysis (MS method). Probes were taken up by an ADP1 encoded transporter, transferred from mother cell to daughter cell, detectable in strains throughout fermentation, and were non-toxic. This resulted in a new quantification method that was more accurate and efficient than the MS method. PMID:25382600

  10. Ge microdisk with lithographically-tunable strain using CMOS-compatible process.

    PubMed

    Sukhdeo, David S; Petykiewicz, Jan; Gupta, Shashank; Kim, Daeik; Woo, Sungdae; Kim, Youngmin; Vučković, Jelena; Saraswat, Krishna C; Nam, Donguk

    2015-12-28

    We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects. PMID:26831991

  11. Strain-induced electrostatic enhancements of BiFeO3 nanowire loops.

    PubMed

    Liu, Jun; Prashanthi, Kovur; Li, Zhi; McGee, Ryan T; Ahadi, Kaveh; Thundat, Thomas

    2016-08-17

    Semiconductor nanowires (NWs), due to their intriguing structural and physical properties, offer tremendous potential for future technological applications. The existence of strain in NWs can greatly affect, for instance, their mechanical, electrical and optical properties. Here, we report an extraordinary electrostatic response of semiconductor BiFeO3 NW loops, based on Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). A substantial ∼300 mV surface potential difference, accompanied by an ∼29% higher surface charge density, was found on the NW loop. We also found that the electrostatic enhancement is strongly related to the strain present at the curvature of the NW loops. We propose that the electric polarization coupled with mechanical strain (piezoelectric effect) or strain gradient (flexoelectricity) as possible reasons to account for our observation. These findings provide new insights into multiferroic based semiconductor NWs under external stimuli as well as significant inspiration towards strain sensors and electromechanical devices with multifunctional sensing abilities. PMID:27477993

  12. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  13. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  14. Numerical demonstration of MEMS strain sensor

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2012-04-01

    Silicon has piezoresistive property that allows designing strain sensor with higher gauge factor compared to conventional metal foil gauges. The sensing element can be micro-scale using MEMS, which minimizes the effect of strain gradient on measurement at stress concentration regions such as crack tips. The challenge of MEMS based strain sensor design is to decouple the sensing element from substrate for true strain measurement and to compensate the temperature effect on the piezoresistive coefficients of silicon. In this paper, a family of MEMS strain sensors with different geometric designs is introduced. Each strain sensor is made of single crystal silicon and manufactured using deposition/ etching/oxidation steps on a n- doped silicon wafer in (100) plane. The geometries include sensing element connected to the free heads of U shape substrate, a set of two or more sensing elements in an array in order to capture strain gradients and two directional sensors. The response function and the gauge factor of the strain sensors are identified using multi-physics models that combine structural and electrical behaviors of sensors mounted on a strained structure. The relationship between surface strain and strain at microstructure is identified numerically in order to include the relationship in the response function calculation.

  15. Thick film wireless and powerless strain sensor

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Sun, Ke

    2006-03-01

    The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.

  16. Strain engineering of graphene: a review

    NASA Astrophysics Data System (ADS)

    Si, Chen; Sun, Zhimei; Liu, Feng

    2016-02-01

    Graphene has intrigued the science community by many unique properties not found in conventional materials. In particular, it is the strongest two-dimensional material ever measured, being able to sustain reversible tensile elastic strain larger than 20%, which yields an interesting possibility to tune the properties of graphene by strain and thus opens a new field called ``straintronics''. In this article, the current progress in the strain engineering of graphene is reviewed. We first summarize the strain effects on the electronic structure and Raman spectra of graphene. We then highlight the electron-phonon coupling greatly enhanced by the biaxial strain and the strong pseudomagnetic field induced by the non-uniform strain with specific distribution. Finally, the potential application of strain-engineering in the self-assembly of foreign atoms on the graphene surface is also discussed. Given the short history of graphene straintronics research, the current progress has been notable, and many further advances in this field are expected.

  17. Genome Sequencing of Listeria monocytogenes “Quargel” Listeriosis Outbreak Strains Reveals Two Different Strains with Distinct In Vitro Virulence Potential

    PubMed Central

    Rychli, Kathrin; Müller, Anneliese; Zaiser, Andreas; Schoder, Dagmar; Allerberger, Franz; Wagner, Martin; Schmitz-Esser, Stephan

    2014-01-01

    A large listeriosis outbreak occurred in Austria, Germany and the Czech Republic in 2009 and 2010. The outbreak was traced back to a traditional Austrian curd cheese called “Quargel” which was contaminated with two distinct serovar 1/2a Listeria monocytogenes strains (QOC1 and QOC2). In this study we sequenced and analysed the genomes of both outbreak strains in order to investigate the extent of genetic diversity between the two strains belonging to MLST sequence types 398 (QOC2) and 403 (QOC1). Both genomes are highly similar, but also display distinct properties: The QOC1 genome is approximately 74 kbp larger than the QOC2 genome. In addition, the strains harbour 93 (QOC1) and 45 (QOC2) genes encoding strain-specific proteins. A 21 kbp region showing highest similarity to plasmid pLMIV encoding three putative internalins is integrated in the QOC1 genome. In contrast to QOC1, strain QOC2 harbours a vip homologue, which encodes a LPXTG surface protein involved in cell invasion. In accordance, in vitro virulence assays revealed distinct differences in invasion efficiency and intracellular proliferation within different cell types. The higher virulence potential of QOC1 in non-phagocytic cells may be explained by the presence of additional internalins in the pLMIV-like region, whereas the higher invasion capability of QOC2 into phagocytic cells may be due to the presence of a vip homologue. In addition, both strains show differences in stress-related gene content. Strain QOC1 encodes a so-called stress survival islet 1, whereas strain QOC2 harbours a homologue of the uncharacterized LMOf2365_0481 gene. Consistently, QOC1 shows higher resistance to acidic, alkaline and gastric stress. In conclusion, our results show that strain QOC1 and QOC2 are distinct and did not recently evolve from a common ancestor. PMID:24587155

  18. Turbulent momentum transport due to neoclassical flows

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I.; Belli, Emily; Candy, Jeff

    2015-12-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality.

  19. Intraplate Deformation Due to Motion of Plates over a Nonspherical Earth

    NASA Astrophysics Data System (ADS)

    Woodworth, D.; Gordon, R. G.

    2015-12-01

    The central tenet of plate tectonics is that the plates are rigid. Not long after the acceptance of plate tectonics, however, it was recognized that the motion of plates over a non-spherical Earth should cause intraplate deformation [McKenzie, 1972; Turcotte & Oxburgh, 1974]. Even so, no firm connection between hypothesized deformation and observed deformation has yet been made. An alternative cause of intraplate deformation is the horizontal contraction of lithosphere as it cools with age [Collette, 1974]. The rate of horizontal thermal contraction decreases as ~1/age and the resulting intraplate deformation should be large enough to cause observed plate circuit non-closures [Kumar & Gordon, 2009]. Strain rates thus obtained for 0 Ma-old, 0.1 Ma-old, 1 Ma-old, and 10 Ma-old oceanic lithosphere respectively are 2 × 10-2 Ma-1 (5 × 10-16 s-1), 8 × 10-3 s-1 (3 × 10-16 s-1), 1.5 × 10-3 Ma-1 (5 × 10-17 s-1), 2 × 10-4 Ma-1 (5 × 10-18 s-1) [Mishra & Gordon, 2015]. Across the Pacific Plate, such strains sum to intraplate relative velocities of up to ≈2 mm yr-1 [Kreemer & Gordon, 2014].Here we attempt to quantify rates of intraplate strain due to motion of plates over a nonspherical Earth to compare with strain rates due to horizontal contraction and due to observed intraplate deformation. We determine rates of northward motion of lithosphere using the SKS-MORVEL set of plate angular velocities relative to the deep mantle [Zheng et al., 2014]. Following Turcotte [1974], we use the approximation of a spherical Earth whose radius of curvature changes with the latitudinal motion of the plate. We considered two end-member cases—no radial strain and no change in thickness—in our calculations. We estimate average strain rates for the twenty-five major plates ranging from ~10-11 to 10-4 Ma-1 (3 × 10-25 to 3 × 10-18 s-1). For the Pacific Plate, we estimate strain rates that approach or exceed those due to thermal contraction only in the oldest lithosphere, where

  20. Impact of variation in acute virulence of BVDV1 strains on design of better vaccine efficacy challenge models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to antigenic differences between BVDV1 and BVDV2 strains both pestivirus species are included in U.S. vaccines. The efficacy of these vaccines in preventing acute infections is evaluated based on reduction of clinical disease. While high virulence BVDV2 strains are used in U.S. vaccine efficac...

  1. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    PubMed

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed. PMID:27139682

  2. The direct effects of strain on burning rates of composite solid propellants

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1984-01-01

    A mathematical model is developed to predict burn rate augmentation due to strain in a composite solid propellant. The model assumes the effect is due to the ability of the flame to penetrate the small fissures and voids that form when a propellant is strained. The number and size of these fissures is obtained by applying a flaw propagation analysis to randomly distributed flaws that form when the binder-oxidizer particle bonds break under stress. A flame height is calculated with Summerfield's burn rate equation and is used to compute the burn rate augmentation based upon the additional burn area created when the flame penetrates the fissures. Comparisons are made with data obtained from published sources. The existence of threshold pressure and strains, above which augmentation occurs, is verified although the model predicts a lower threshold pressure and higher threshold strain than expected. Further results and applications of the model are discussed.

  3. A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue

    PubMed Central

    Chen, Huan; Liu, Yi; Zhao, Xuefeng; Lanir, Yoram; Kassab, Ghassan S.

    2011-01-01

    Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation; i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations, and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation, and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials. PMID:21927506

  4. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  5. Correlation between strain and defects in Bi implanted Si

    NASA Astrophysics Data System (ADS)

    Palade, C.; Lepadatu, A.-M.; Slav, A.; Ciurea, M. L.; Lazanu, S.

    2016-06-01

    The strain in Si containing group-V impurities is a topical subject of study due to its potential applications in quantum computing. In this paper we study 209Bi implanted Si concerning the correlation between the strain produced by stopped Bi ions and trapping characteristics of the defects resulted from implantation. The depths distributions of stopped ions and primary defects are simulated and the distributions of permanent defects are modelled for Si implanted with low fluence 209Bi ions of 28 MeV kinetic energy. For comparison, these depths distributions were similarly calculated for 127I ions with the same fluence and energy, implanted in Si. The results are compared with each other and correlated with the characteristics of traps in these systems, previously obtained. We demonstrate that the intensity of the strain field is the most important factor in changing of trap parameters, while the superposition between the region with strain and the region where defects are located is a second order effect.

  6. Disparate metabolic response to fructose feeding between different mouse strains

    PubMed Central

    Montgomery, M. K.; Fiveash, C. E.; Braude, J. P.; Osborne, B.; Brown, S. H. J.; Mitchell, T. W.; Turner, N.

    2015-01-01

    Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges. PMID:26690387

  7. Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius

    DOE PAGESBeta

    Cabañes, F. Javier; Sanseverino, Walter; Castellá, Gemma; Bragulat, M. Rosa; Cigliano, Riccardo Aiese; Sánchez, Armand

    2015-03-13

    In microorganisms, Ion Torrent sequencing technology has been proved to be useful in whole-genome sequencing of bacterial genomes (5 Mbp). In our study, for the first time we used this technology to perform a resequencing approach in a whole fungal genome (36 Mbp), a non-ochratoxin A producing strain of Aspergillus carbonarius. Ochratoxin A (OTA) is a potent nephrotoxin which is found mainly in cereals and their products, but it also occurs in a variety of common foods and beverages. Due to the fact that this strain does not produce OTA, we focused some of the bioinformatics analyses in genes involvedmore » in OTA biosynthesis, using a reference genome of an OTA producing strain of the same species. This study revealed that in the atoxigenic strain there is a high accumulation of nonsense and missense mutations in several genes. Importantly, a two fold increase in gene mutation ratio was observed in PKS and NRPS encoding genes which are suggested to be involved in OTA biosynthesis.« less

  8. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  9. Strain Rate Behavior of HTPB-Based Magnetorheological Materials

    NASA Astrophysics Data System (ADS)

    Stoltz, Chad; Seminuk, Kenneth; Joshi, Vasant

    2013-06-01

    It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Strain rate response of two HTPB/Fe (Hydroxyl-terminated Polybutadiene/Iron) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field coil. Strain gauge data taken from the Split Hopkinson Pressure bar has been used to determine what mechanical properties were changed by inducing a mild electromagnetic field onto each sample. The data reduction method to obtain stress-strain plots included dispersion corrections for deciphering minute changes due to compositional alterations. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field. We acknowledge the Defense Threat Reduction Agency for funding.

  10. Wolbachia strains for disease control: ecological and evolutionary considerations

    PubMed Central

    Hoffmann, Ary A; Ross, Perran A; Rašić, Gordana

    2015-01-01

    Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations. PMID:26366194

  11. Separation of similar yeast strains by IEF techniques.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2009-06-01

    Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively. PMID:19526536

  12. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  13. The plane strain tests in the PROMETRA program

    NASA Astrophysics Data System (ADS)

    Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.

    2016-04-01

    A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.

  14. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

    PubMed Central

    Xu, Hui; Han, Dongmei; Xu, Zhaohui

    2015-01-01

    The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB), resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study) have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization. PMID:26273605

  15. A micromechanics finite-strain constitutive model of fibrous tissue

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Liu, Yi; Zhao, Xuefeng; Lanir, Yoram; Kassab, Ghassan S.

    2011-09-01

    Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation, i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials.

  16. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  17. Keratinocyte growth factor accelerates wound closure in airway epithelium during cyclic mechanical strain.

    PubMed

    Waters, C M; Savla, U

    1999-12-01

    The airway epithelium may be damaged by inhalation of noxious agents, in response to pathogens, or during endotracheal intubation and mechanical ventilation. Maintenance of an intact epithelium is important for lung fluid balance, and the loss of epithelium may stimulate inflammatory responses. Epithelial repair in the airways following injury must occur on a substrate that undergoes cyclic elongation and compression during respiration. We have previously shown that cyclic mechanical strain inhibits wound closure in the airway epithelium (Savla and Waters, 1998b). In this study, we investigated the stimulation of epithelial wound closure by keratinocyte growth factor (KGF) in vitro and the mechanisms by which KGF overcomes the inhibition due to mechanical strain. Primary cultures of normal human bronchial epithelial cells (NHBE) and a cell line of human airway epithelial cells, Calu 3, were grown on Silastic membranes, and a wound was scraped across the well. The wells were then exposed to cyclic strain using the Flexercell Strain Unit, and wound closure was measured. While cyclic elongation (20% maximum) and cyclic compression (approximately 2%) both inhibited wound closure in untreated wells, treatment with KGF (50 ng/ml) significantly accelerated wound closure and overcame the inhibition due to cyclic strain. Since wound closure involves cell spreading, migration, and proliferation, we investigated the effect of cyclic strain on cell area, cell-cell distance, and cell velocity at the wound edge. While the cell area increased in unstretched monolayers, the cell area of monolayers in compressed regions decreased significantly. Treatment with KGF increased the cell area in both cyclically elongated and compressed cells. Also, when cells were treated with KGF, cell velocity was significantly increased in both static and cyclically strained monolayers, and cyclic strain did not inhibit cell migration. These results suggest that KGF is an important factor in

  18. Educationally Sound Due Process in Academic Affairs.

    ERIC Educational Resources Information Center

    La Morte, Michael W.; Meadows, Robert B.

    1979-01-01

    This article examines the concept of educationally sound due process in higher education academic affairs in the light of the existing case law and the responsibility of public school officials to provide an educationally sound school program. (Author/IRT)

  19. Cushing syndrome due to adrenal tumor

    MedlinePlus

    ... syndrome. It occurs when a tumor of the adrenal gland releases excess amounts of the hormone cortisol. Causes ... hormone cortisol. This hormone is made in the adrenal glands . Too much cortisol can be due to various ...

  20. Septic arthritis due to Aerococcus viridans.

    PubMed

    Taylor, P W; Trueblood, M C

    1985-10-01

    A 20-year-old woman was found to have septic arthritis of the hip due to Aerococcus viridans. This organism closely resembles Streptococcus viridans, but forms gram positive tetrads rather than chains in broth media. The organism has been reported rarely to cause endocarditis and one case of osteomyelitis has been observed. To our knowledge septic arthritis due to Aerococcus viridans has not been previously reported. PMID:4087248

  1. Greenhouse effect due to atmospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  2. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  3. Draft Genome Sequence of Vancomycin-Susceptible, Ampicillin-Intermediate Enterococcus faecium Strain D344RRF.

    PubMed

    García-Solache, Mónica; Rice, Louis B

    2016-01-01

    Enterococcus faecium is an important nosocomial pathogen, causing a substantial health burden due to high resistance to antibiotics and its ability to colonize the gastrointestinal tract. Here, we present the draft genome of vancomycin-susceptible, ampicillin-intermediate strain D344RRF, a rifampicin/fusidic acid-resistant and commonly used laboratory strain, which is useful in studying the transfer of antibiotic resistance. PMID:27151809

  4. Draft Genome Sequence of Vancomycin-Susceptible, Ampicillin-Intermediate Enterococcus faecium Strain D344RRF

    PubMed Central

    Rice, Louis B.

    2016-01-01

    Enterococcus faecium is an important nosocomial pathogen, causing a substantial health burden due to high resistance to antibiotics and its ability to colonize the gastrointestinal tract. Here, we present the draft genome of vancomycin-susceptible, ampicillin-intermediate strain D344RRF, a rifampicin/fusidic acid-resistant and commonly used laboratory strain, which is useful in studying the transfer of antibiotic resistance. PMID:27151809

  5. Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Shakher, Chandra

    2016-04-01

    In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.

  6. [Peripheral neuropathies due to mitochondrial disorders].

    PubMed

    Funalot, B

    2009-12-01

    Involvement of peripheral nerves is frequent in mitochondrial disorders but with variable severity. Mitochondrial diseases causing peripheral neuropathies (PN) may be due to mutations of mitochondrial DNA (mtDNA), as is the case in MERRF and MELAS syndromes, or to mutations of nuclear genes. Secondary abnormalities of mtDNA (such as multiple deletions of muscle mtDNA) may result from mitochondrial disorders due to mutations in nuclear genes involved in mtDNA maintenance. This is the case in several syndromes caused by impaired mtDNA maintenance, such as Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO) due to recessive mutations in the POLG gene, which encodes the catalytic subunit of mtDNA polymerase (DNA polymerase gamma), or Mitochondrial Neuro-Gastro-Intestinal Encephalomyopathy (MNGIE), due to recessive mutations in the TYMP gene, which encodes thymidine phosphorylase. Genetically-determined PN due to mutations of mitofusin 2, a GTPase involved in the fusion of external mitochondrial membranes, were identified during the last few years. Characteristic ultrastructural lesions (abnormalities of axonal mitochondria) are observed on longitudinal sections of nerve biopsies in patients with PN due to mitofusin 2 mutations. PMID:19942242

  7. Reduction in maternal mortality due to sepsis.

    PubMed

    Chhabra, S; Kaipa, A; Kakani, A

    2005-02-01

    The present study was undertaken at a rural medical institute in India to analyse the trends in maternal mortality due to sepsis and the factors associated with change, if any. During the study period of 20 years, a total of 37,155 women delivered, 192 deaths occurred and forty deaths (20.83%) were due to sepsis and it's sequlae. It was revealed that there is a definite decrease in the proportion of deaths due to sepsis, to 10% in the last five years from 35% in earlier years. The change seems to be due to the advocacy of clean deliveries and reduction in case fatality because of alterations in medication and earlier surgical intervention. However the percentage contribution of septic abortion has remained the same. Septic abortion continues to exist inspite of all the current laws and discussion about the availability of a liberal law, which permits abortion almost on request. Most of the women who had died due to septic abortion were married (65%). Deaths due to septic abortion, are persisting even in married women and it is a matter of concern for health providers, policy makers and governments. PMID:15814392

  8. Epidemiology and Molecular Characterization of Bacteremia Due to Carbapenem-Resistant Klebsiella pneumoniae in Transplant Recipients

    PubMed Central

    Clancy, C. J.; Chen, L.; Shields, R. K.; Zhao, Y.; Cheng, S.; Chavda, K. D.; Hao, B.; Hong, J. H.; Doi, Y.; Kwak, E. J.; Silveira, F. P.; Abdel-Massih, R.; Bogdanovich, T.; Humar, A.; Perlin, D. S.; Kreiswirth, B. N.; Hong Nguyen, M.

    2014-01-01

    We conducted a retrospective study of 17 transplant recipients with carbapenem-resistant Klebsiella pneumoniae bacteremia, and described epidemiology, clinical characteristics and strain genotypes. Eighty-eight percent (15/17) of patients were liver or intestinal transplant recipients. Outcomes were death due to septic shock (18%), cure (24%) and persistent (>7 days) or recurrent bacteremia (29% each). Thirty- and 90-day mortality was 18% and 47%, respectively. Patients who were cured received at least one active antimicrobial agent and underwent source control interventions. Forty-one percent (7/17) of patients had intra-abdominal infections; all except one developed persistent/recurrent bacteremia despite drainage. Two patients tolerated persistent bacteremia for >300 days. All patients except one were infected with sequence type 258 (ST258), K. pneumoniae carbapenemase (KPC)-2-producing strains harboring a mutant ompK35 porin gene; the exception was infected with an ST37, KPC-3-producing strain. Seventy-one percent (12/17) of patients were infected with ST258 ompK36 mutant strains. In two patients, persistent bacteremia was caused by two strains with different ompK36 genotypes. Three ompK36 mutations were associated with significantly higher carbapenem minimum inhibitory concentrations than wild-type ompK36. Pulse-field gel electrophoresis identified a single ST258 lineage; serial strains from individual patients were indistinguishable. In conclusion, KPC-K. pneumoniae bacteremia exhibited highly diverse clinical courses following transplantation, and was caused by clonal ST258 strains with different ompK36 genotypes. PMID:24011185

  9. Geometric treatment of conduction electron scattering by crystal lattice strains and dislocations

    SciTech Connect

    Viswanathan, Koushik; Chandrasekar, Srinivasan

    2014-12-28

    The problem of conduction electron scattering by inhomogeneous crystal lattice strains is addressed using a tight-binding formalism and the differential geometric treatment of deformations in solids. In this approach, the relative positions of neighboring atoms in a strained lattice are naturally taken into account, even in the presence of crystal dislocations, resulting in a fully covariant Schrödinger equation in the continuum limit. Unlike previous work, the developed formalism is applicable to cases involving purely elastic strains as well as discrete and continuous distributions of dislocations—in the latter two cases, it clearly demarcates the effects of the dislocation strain field and core. It also differentiates between elastic and plastic strain contributions, respectively. The electrical resistivity due to the strain field of edge dislocations is then evaluated and the resulting numerical estimate for Cu shows good agreement with reported experimental values. This indicates that the electrical resistivity of edge dislocations in metals is not entirely due to the core, contrary to current models. Application to the study of strain effects in constrained quantum systems is also discussed.

  10. Texture development and hardening characteristics of steel sheets under plane-strain compression

    SciTech Connect

    Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.

    1999-04-01

    Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.

  11. A method for calculating strain energy release rate based on beam theory

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Pandey, R. K.

    1993-01-01

    The Timoshenko beam theory was used to model cracked beams and to calculate the total strain energy release rate. The root rotation of the beam segments at the crack tip were estimated based on an approximate 2D elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain energy release rate obtained using beam theory agrees very well with the 2D finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.

  12. Resistance-foil strain-gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1984-01-01

    A general review of existing strain-gage technologies as applied to orthotropic-composite materials is given. The specific topics addressed are gage-bonding procedures, transverse-sensitivity effects, errors due to gage misalignment, and temperature-compensation methods. The discussion is supplemented by numerical examples where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain-measurement errors exceeding 50 percent.

  13. Strain induced electronic structure changes in magnetic transition metal oxides thin films

    SciTech Connect

    van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

    2010-07-08

    We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

  14. Effect of pre-strain on ratcheting behavior of A668 Class D steel

    NASA Astrophysics Data System (ADS)

    Tripathy, S.; Mondal, A. K.; Dutta, K.

    2016-02-01

    The aim of this investigation is to study the effect pre-strain (0%, 2%, 4% and 8%) on ratcheting behavior of ASTM A668 Class D steel in different heat treatment conditions (normalized and hardened-tempered). Ratcheting tests were carried out at room temperature on cylindrical specimens having 12.5 mm gauge length and 6 mm gauge diameter. The results include reduced strain accumulation with increasing prestrain level due to work hardening of the pre-strained samples. Further, cyclic hardening takes place during ratcheting deformation.

  15. Investigation of high elastoplastic straining of shells of revolution under complex tensile and torque loading

    NASA Astrophysics Data System (ADS)

    Artem'eva, A. A.; Bazhenov, V. G.; Zhegalov, D. V.; Kazakov, D. A.; Nagornykh, E. V.

    2015-11-01

    A method of the numerical solution of nonlinear unsteady problems of axisymmetric elastoplastic straining of shells of revolution with allowance for torque loading at high strains is proposed. The method is based on the geometrically nonlinear theory of the Timoshenko shells and the plasticity theory with due allowance for combined isotropic and kinematic hardening. The problem is solved with the use of the variational difference method. Results of numerical and experimental investigations of elastoplastic straining of cylindrical shells under proportional and sequential kinematic tensile and torque loading are reported.

  16. Strain splitting of the Γ5 and Γ6 free excitons in GaN

    NASA Astrophysics Data System (ADS)

    Reynolds, D. C.; Hoelscher, J.; Litton, Cole; Collins, T. C.

    2002-11-01

    High quality GaN crystals have been grown by the hydride vapor phase epitaxy process. The thick layers grown by this process have the potential to provide lattice-matched and thermally-matched substrates for further epitaxial growth. The current sample was grown on a sapphire substrate, resulting in both lattice and thermal mismatch, which produces strain in the as-grown-layer. These in-grown strains result in energy shifts as well as splittings of the free excitons due to combined strain and spin exchange.

  17. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    PubMed

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection. PMID:27287433

  18. Phase diagram of compressively strained nickelate thin films

    SciTech Connect

    Disa, Ankit S; Kumah, D.; Ngai, J H; Specht, Eliot D; Arena, D.A.; Walker, Frederick J.; Ahn, Charles H.

    2013-01-01

    The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk RNiO3 phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite A-site rare-earth ion, R. Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metalinsulator phase diagram for the solid solution of Nd1-yLayNiO3 thin films within the range 0 y 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni O bond hybridization for coherently strained thin films.

  19. Induced strains and defect continuum theory: Internal reorganization of load

    NASA Astrophysics Data System (ADS)

    Teisseyre, Roman; Górski, Marek

    2012-02-01

    Induced strains play an important role in mining regions and water dam areas. We consider a mechanism of reorganization of the applied stress load by some changes in rock-body defect distribution caused by human activity. A defect content increases with increasing stress load and related deformations; hence, a relationship could appear between seismic risk and deformation level. Recent progress in the Asymmetric Continuum Theory permits to consider some internal reorganization of the applied load due to internal defect content and distribution; in this paper we consider an increase of internal defect densities due to mining works and the appearance of reorganized internal stress distribution. A generalization of the Peach-Koehler forces acting on the defects makes it possible to define formation of induced strains; a character of resulting strains may essentially differ from the applied load. In the case of an axial load, this approach helps to understand formation of shear or rotational micro-fractures, usually recognized as fragmentation and slip motions.

  20. Differential receptor usage by measles virus strains.

    PubMed

    Bartz, R; Firsching, R; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    1998-05-01

    Recently, we demonstrated that infection of cells with all measles virus (MV) strains tested was inhibited by antibodies against CD46, although not all strains caused downregulation of the MV receptor CD46 from the surface of human cells. We now show that infection of cells with MV strain WTFb, a variant of wild-type isolate WTF which has been isolated and propagated on human BJAB cells, is not inhibited by antibodies against CD46. In contrast, infection of cells with the closely related strain WTFv, a Vero cell-adapted variant of WTF, is inhibited by antibodies against CD46. This observation led us to investigate the interaction of these viruses and the vaccine strain Edmonston (Edm) with CD46 and target cells. Cellular receptors with high affinity binding for WTFb are present on BJAB cells, but not on transfected CD46-expressing CHO cells. In contrast to the Edm strain, virus particles and solubilized envelope glycoproteins of WTFb have a very limited binding capacity to CD46. Furthermore, we show that recombinant soluble CD46 either does not bind, or binds very weakly, to WTFb glycoproteins expressed on the cell surface. Our findings indicate that wild-type MV strain WTFb and vaccine strain Edm use different binding sites on human cells. In addition, the results suggest that MV strains may alternatively use CD46 and an unknown molecule as receptors, and that the degree of usage of both receptors may be MV strain-specific. PMID:9603316

  1. Usefulness of Sau-PCR for molecular epidemiology of nosocomial outbreaks due to Burkholderia cepacia which occurred in a local hospital in Guangzhou, China.

    PubMed

    Yan, He; Shi, Lei; Alam, M J; Li, Lin; Yang, Liansheng; Yamasaki, Shinji

    2008-05-01

    The aim of the present study was to determine the source of nosocomial outbreak due to Burkholderia cepacia by molecular techniques. A total of 11 B. cepacia strains were isolated; nine from blood and one from sputum of patients without cystic fibrosis, and one from reverse osmosis water at a local hospital in Guangzhou, China. Analyses of 11 strains by the Sau-PCR assay and pulsed-field gel electrophoresis revealed that nine strains obtained from the blood of outpatients in a hemodialysis unit and one strain from reverse osmosis water had identical DNA profiles, indicating that the reverse osmosis water supply could be a source of infection. PMID:18557899

  2. Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Fralick, Gustave (Technical Monitor)

    2003-01-01

    Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.

  3. The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111

    SciTech Connect

    Gray, G.T. III; Rollett, A.D.

    1991-01-01

    The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 MPa/unit strain. Normalizing the work hardening rate in tantalum with the Taylor Factor for a random polycrystal, ({Theta} / (3.07){sup 2}), yields work hardening rates of {mu}/276 at quasi-static strain rates and {mu}/680 at high-rates, assuming a shear modulus of 61 GPa for tantalum at room temperature. While the work hardening of all the tantalum-based materials are similar at quasi-static rates, alloying results in a small reduction in hardening rate. With increasing strain rate, the work hardening rate in tantalum decreases by approximately a factor of two compared to the alloys. Alloying tantalum with substitutional or interstitial elements is thought to result in increased edge dislocation storage and screw dislocation cross-slip due to interactions with the alloying elements at high strain rates. 28 refs.

  4. Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral Body Strain.

    PubMed

    Gustafson, Hannah; Siegmund, Gunter; Cripton, Peter

    2016-05-01

    Strain gages are commonly used to measure bone strain, but only provide strain at a single location. Digital image correlation (DIC) is an optical technique that provides the displacement, and therefore strain, over an entire region of interest on the bone surface. This study compares vertebral body strains measured using strain gages and DIC. The anterior surfaces of 15 cadaveric porcine vertebrae were prepared with a strain rosette and a speckled paint pattern for DIC. The vertebrae were loaded in compression with a materials testing machine, and two high-resolution cameras were used to image the anterior surface of the bones. The mean noise levels for the strain rosette and DIC were 1 με and 24 με, respectively. Bland-Altman analysis was used to compare strain from the DIC and rosette (excluding 44% of trials with some evidence of strain rosette failure or debonding); the mean difference ± 2 standard deviations (SDs) was -108 με ± 702 με for the minimum (compressive) principal strain and -53 με ± 332 με for the maximum (tensile) principal strain. Although the DIC has higher noise, it avoids the relatively high risk we observed of strain gage debonding. These results can be used to develop guidelines for selecting a method to measure strain on bone. PMID:26902321

  5. Rapid quantitative detection of Aeromonas hydrophila strains associated with disease outbreaks in catfish aquaculture.

    PubMed

    Griffin, Matt J; Goodwin, Andrew E; Merry, Gwenn E; Liles, Mark R; Williams, Malachi A; Ware, Cynthia; Waldbieser, Geoffrey C

    2013-07-01

    A new strain of Aeromonas hydrophila has been implicated in significant losses in farm-raised catfish. Outbreaks attributable to this new strain began in Alabama in the summer of 2009 and have spread to Arkansas and Mississippi in subsequent years. These outbreaks mostly afflicted market-sized fish and resulted in considerable losses in short periods of time. The present research was designed to develop an expeditious diagnostic procedure to detect the new strains of A. hydrophila due to the rapid onset and biosecurity concerns associated with this new disease. A discriminatory quantitative polymerase chain reaction assay was developed using gene sequences unique to the virulent strains identified in a related comparative genomic study. Using this assay, suspect colonies on a culture plate can be positively identified as the new strain within 2 hr. The assay is repeatable and reproducible with a linear dynamic range covering 8 orders of magnitude and a sensitivity of approximately 7 copies of target DNA in a 15-µl reaction. In addition, the assay is able to detect and quantify the virulent strain from catfish tissues (0.025 g), pond water (40 ml), and sediments (0.25 g) with a sensitivity limit of approximately 100 bacteria in a sample. This assay provides rapid discrimination between the new virulent strain and more common A. hydrophila and is useful for epidemiological studies involving the detection and quantification of the virulent strain in environmental samples and fish tissues. PMID:23847227

  6. Regulation of Staphylococcal Superantigen-Like Gene, ssl8, Expression in Staphylococcus aureus strain, RN6390.

    PubMed

    Pantrangi, Madhulatha; Singh, Vineet K; Shukla, Sanjay K

    2015-03-01

    Staphylococcal superantigen-like (SSL) proteins, which are encoded by a cluster of eleven ssl genes, contribute to the Staphylococcus aureus virulence. Recently we reported ssl8 expression profiles in seven clinically important strains-MW2, USA300FPR3757, MSSA476, Newman, RN6390, Mu50, and N315-and showed the differential expression of ssl8 in Newman, RN6390, and USA300FPR3757 strains, despite harboring identical allelic forms of ssl8, suggesting the roles for different regulatory elements for this gene in different S. aureus strains. In this communication, using RN6390, a common laboratory S. aureus strain and its isogenic knockout mutant strains of agr, sae, sarA, sigB, rot, and the agr-/sigB (-) double mutant, we showed that SarA and Rot are inducer and repressor, respectively, for ssl8 expression in RN6390. This is in contrast to the Newman strain, where ssl8 is positively regulated by Sae but negatively by Agr, indicating the variable expression of ssl8 in clinical strains is more likely due to strain-specific regulatory elements. PMID:24899694

  7. Dirac points and van Hove singularities of silicene under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2015-04-01

    First-principles calculations have been performed to investigate the low energy electronic properties and van Hove singularities (VHSs) of silicene under uniaxial strain. The Dirac points (DPs) persist when silicene is stretched uniaxially, while they are shifted away from the corners (K points) of the first Brillouin zone (FBZ). The relative positions of DPs with respect to the K points for silicene strained along the armchair (AC) or zigzag (ZZ) direction show opposite tendency compared with strained graphene, which is due to the larger deformation of the unit cell of strained silicene than that of strained graphene. Moreover, for silicene under AC or ZZ strain, the Fermi velocities around DPs along the positive and negative directions of the FBZ show rather significant difference. The nature of the VHS just above the Fermi energy undergoes a transition from the π* band to the σ* band for silicene under increasing AC or ZZ strain. These observations suggest uniaxial strain as an effective route to tune the electronic properties of silicene for potential applications in future electronic devices.

  8. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture.

    PubMed

    Li, Cheng; Cui, Ya-Long; Tian, Gui-Li; Shu, Yi; Wang, Xue-Feng; Tian, He; Yang, Yi; Wei, Fei; Ren, Tian-Ling

    2015-01-01

    Motion capture is attracting more and more attention due to its potential wide applications in various fields. However, traditional methods for motion capture still have weakness such as high cost and space consuming. Based on these considerations, a flexible, highly stretchable strain sensor with high gauge factor for motion capture is fabricated with carbon nanotube (CNT) array double helices as the main building block. Ascribed to the unique flexible double helical CNT-array matrix, the strain sensor is able to measure strain up to 410%, with low hysteresis. Moreover, a demonstration of using this strain sensor for capture hand motion and to control a mechanical hand in real time is also achieved. A model based on finite difference method is also made to help understand the mechanism of the strain sensors. Our work demonstrates that strain sensors can measure very large strain while maintaining high sensitivity, and the motion capture based on this strain sensor is expected to be less expensive, more convenient and accessible. PMID:26530904

  9. [Generation of nalidixic acid-resistant strains and signature-tagged mutants of Actinobacillus pleuropneumoniae].

    PubMed

    Shang, Lin; Li, Wei; Li, Liangjun; Li, Lu; Zhang, Sihua; Li, Tingting; Li, Yaokun; Liu, Lei; Guo, Zhiwei; Zhou, Rui; Chen, Huanchun

    2008-01-01

    Actinobacillus pleuropneumoniae is a very important respiratory pathogen for swine and causes great economic losses in pig industry worldwide. Signature-tagged mutagenesis (STM) is an effective method to identify virulence genes in bacteria. In this study, we selected nalidixic acid-resistant strains of APP serotypes 1 and 3 by in vitro cultivation, and used as receipt strains for constructing transposon mutants by mating with E. coli CC 118 lambdapir or S17-1 lambdapir containing mini-Tn10 tag plasmids pLOF/TAG1-48, with or without the help of E. coli DH5alpha (pRK2073). We screened mutant strains by antibiotics selection, PCR and Southern blot identification. Our data revealed that nalidixic acid-resistance of APP strains could easily be induced in vitro and the resistance was due to the mutation in the DNA gyrase A subunit gene gyrA. In the mating experiments, the bi-parental mating was more effective and easier than tri-parental mating. Different APP strains showed a different mating and transposon efficiency in the bi-parental mating, with the strains of serotype 1 much higher than serotype 3 and the reference strain of serotype 3 higher than the field strains. These data were helpful for the construction of STM mutants and pickup of virulence genes of APP. PMID:18338580

  10. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cui, Ya-Long; Tian, Gui-Li; Shu, Yi; Wang, Xue-Feng; Tian, He; Yang, Yi; Wei, Fei; Ren, Tian-Ling

    2015-11-01

    Motion capture is attracting more and more attention due to its potential wide applications in various fields. However, traditional methods for motion capture still have weakness such as high cost and space consuming. Based on these considerations, a flexible, highly stretchable strain sensor with high gauge factor for motion capture is fabricated with carbon nanotube (CNT) array double helices as the main building block. Ascribed to the unique flexible double helical CNT-array matrix, the strain sensor is able to measure strain up to 410%, with low hysteresis. Moreover, a demonstration of using this strain sensor for capture hand motion and to control a mechanical hand in real time is also achieved. A model based on finite difference method is also made to help understand the mechanism of the strain sensors. Our work demonstrates that strain sensors can measure very large strain while maintaining high sensitivity, and the motion capture based on this strain sensor is expected to be less expensive, more convenient and accessible.

  11. Dirac points and van Hove singularities of silicene under uniaxial strain

    SciTech Connect

    Lin, Xianqing; Ni, Jun

    2015-04-28

    First-principles calculations have been performed to investigate the low energy electronic properties and van Hove singularities (VHSs) of silicene under uniaxial strain. The Dirac points (DPs) persist when silicene is stretched uniaxially, while they are shifted away from the corners (K points) of the first Brillouin zone (FBZ). The relative positions of DPs with respect to the K points for silicene strained along the armchair (AC) or zigzag (ZZ) direction show opposite tendency compared with strained graphene, which is due to the larger deformation of the unit cell of strained silicene than that of strained graphene. Moreover, for silicene under AC or ZZ strain, the Fermi velocities around DPs along the positive and negative directions of the FBZ show rather significant difference. The nature of the VHS just above the Fermi energy undergoes a transition from the π* band to the σ* band for silicene under increasing AC or ZZ strain. These observations suggest uniaxial strain as an effective route to tune the electronic properties of silicene for potential applications in future electronic devices.

  12. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs

    PubMed Central

    Nogueira-Paiva, Nívia Carolina; Fonseca, Kátia da Silva; Vieira, Paula Melo de Abreu; Diniz, Lívia Figueiredo; Caldas, Ivo Santana; de Moura, Sandra Aparecida Lima; Veloso, Vanja Maria; Guedes, Paulo Marcos da Matta; Tafuri, Washington Luiz; Bahia, Maria Terezinha; Carneiro, Cláudia Martins

    2013-01-01

    Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model. PMID:24271001

  13. Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes.

    PubMed

    Robinson, A S

    2002-09-01

    The introduction of genetic sexing strains (GSS) into medfly, Ceratitis capitata (Wiedemann), sterile insect technique (SIT) programmes started in 1994 and it was accompanied by extensive evaluation of the strains both in field cages and in open field situations. Two male-linked translocation systems, one based on pupal colour, wp, and the other based on temperature sensitivity, tsl, have been used in medfly SIT programmes and they have quite different impacts on mass rearing strategy. In strains based on tsl, female zygotes are killed using high temperature and for wp strains, female and male pupae are separated based on their colour. In all these systems the colony females are homozygous for the mutation requiring that the mutation is not too deleterious and the males are also semi-sterile due to the presence of a male-linked translocation. Managing strain stability during large-scale mass rearing has presented some problems that have been essentially solved by selecting particular translocations for GSS and by the introduction of a filter rearing system (FRS). The FRS operates by removing from the colony any recombinant individuals that threaten the integrity of the strain. The use of GSS opens up the possibility of using the SIT for suppression as opposed to eradication and different radiation strategies can be considered. Some of the many field trials of the strains that were carried out before the strains were introduced into operational programmes are reviewed and an overview is given of their current use. PMID:12484522

  14. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture

    PubMed Central

    Li, Cheng; Cui, Ya-Long; Tian, Gui-Li; Shu, Yi; Wang, Xue-Feng; Tian, He; Yang, Yi; Wei, Fei; Ren, Tian-Ling

    2015-01-01

    Motion capture is attracting more and more attention due to its potential wide applications in various fields. However, traditional methods for motion capture still have weakness such as high cost and space consuming. Based on these considerations, a flexible, highly stretchable strain sensor with high gauge factor for motion capture is fabricated with carbon nanotube (CNT) array double helices as the main building block. Ascribed to the unique flexible double helical CNT-array matrix, the strain sensor is able to measure strain up to 410%, with low hysteresis. Moreover, a demonstration of using this strain sensor for capture hand motion and to control a mechanical hand in real time is also achieved. A model based on finite difference method is also made to help understand the mechanism of the strain sensors. Our work demonstrates that strain sensors can measure very large strain while maintaining high sensitivity, and the motion capture based on this strain sensor is expected to be less expensive, more convenient and accessible. PMID:26530904

  15. Uniaxial strain-induced mechanical and electronic property modulation of silicene

    PubMed Central

    2014-01-01

    We perform first-principles calculations of mechanical and electronic properties of silicene under uniaxial strains. Poisson's ratio and the rigidity of silicene show strong chirality dependence under large uniaxial strains. The ultimate strains of silicene with uniaxial strain are smaller than those with biaxial strain. We find that uniaxial strains induce Dirac point deviation from the high-symmetry points in the Brillouin zone and semimetal-metal transitions. Therefore, no bandgap opens under the uniaxial strain. Due to its peculiar structure and variable sp3/sp2 ratio of the chemical bond, the deviation directions of Dirac points from the high-symmetry points in the Brillouin zone and variation of Fermi velocities of silicene exhibit significant difference from those of graphene. Fermi velocities show strong anisotropy with respect to the wave vector directions and change slightly before the semimetal-metal transition. We also find that the work function of silicene increases monotonously with the increasing uniaxial strains. PACS numbers 61.46.-w; 62.20.D-; 73.22.Dj PMID:25276108

  16. Immunochemical characterization of polysaccharide antigens from six clinical strains of Enterococci

    PubMed Central

    Hsu, Carolyn T; Ganong, Amanda L; Reinap, Barbara; Mourelatos, Zafiria; Huebner, Johannes; Wang, Julia Y

    2006-01-01

    Background Enterococci have become major nosocomial pathogens due to their intrinsic and acquired resistance to a broad spectrum of antibiotics. Their increasing drug resistance prompts us to search for prominent antigens to develop vaccines against enterococci. Given the success of polysaccharide-based vaccines against various bacterial pathogens, we isolated and characterized the immunochemical properties of polysaccharide antigens from five strains of Enterococcus faecalis and one strain of vancomycin-resistant E. faecium. Results We cultured large batches of each strain, isolated sufficient quantities of polysaccharides, analyzed their chemical structures, and compared their antigenic specificity. Three classes of polysaccharides were isolated from each strain, including a polyglucan, a teichoic acid, and a heteroglycan composed of rhamnose, glucose, galactose, mannosamine, and glucosamine. The polyglucans from all six strains are identical and appear to be dextran. Yields of the teichoic acids were generally low. The most abundant polysaccharides are the heteroglycans. The six heteroglycans are structurally different as evidenced by NMR spectroscopy. They also differ in their antigenic specificities as revealed by competitive ELISA. The heteroglycans are not immunogenic by themselves but conjugation to protein carriers significantly enhanced their ability to induce antibodies. Conclusion The six clinical strains of enterococci express abundant, strain-specific cell-surface heteroglycans. These polysaccharides may provide a molecular basis for serological typing of enterococcal strains and antigens for the development of vaccines against multi-drug resistant enterococci. PMID:16836754

  17. Phylogenetic Analysis and Polyphasic Characterization of Clavibacter michiganensis Strains Isolated from Tomato Seeds Reveal that Nonpathogenic Strains Are Distinct from C. michiganensis subsp. michiganensis

    PubMed Central

    Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René

    2012-01-01

    The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675

  18. Development of a strain/temperature gauge and attachment system for use on carbon composites at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lanius, S. J.; Brasfield, R. G.; Wnuk, S. P.

    1987-03-01

    The difficulties encountered when instrumenting solid rocket motors for acquiring strain data are reviewed, emphasizing the strong temperature dependence due to apparent strain effects. The development of a strain/temperature gage to overcome some of these problems is discussed. This gage is designed to produce low apparent strain when attached to a carbon-carbon substrate. Characterization and performance data for gages attached with ceramic cement to carbon-carbon tensile coupons are presented, and the effect of a flame-sprayed installation process is discussed.

  19. Strain Discontinuity, Avalanche, and Memory in Carbon Nanotube Serpentine Systems.

    PubMed

    Müssnich, Lucas C P A M; Chacham, Hélio; Soares, Jaqueline S; Barbosa Neto, Newton M; Shadmi, Nitzan; Joselevich, Ernesto; Cançado, Luiz Gustavo; Jorio, Ado

    2015-09-01

    This work addresses the problem of how a nano-object adheres to a supporting media. The case of study are the serpentine-like structures of single-wall carbon nanotubes (SWNTs) grown on vicinal crystalline quartz. We develop in situ nanomanipulation and confocal Raman spectroscopy in such systems, and to explain the results, we propose a dynamical equation in which static friction is treated phenomenologically and implemented as cutoff for velocities, via Heaviside step function and an adhesion force tensor. We demonstrate that the strain profiles observed along the SWNTs are due to anisotropic adhesion, adhesion discontinuities, strain avalanches, and memory effects. The equation is general enough to make predictions for various one- and two-dimensional nanosystems adhered to a supporting media. PMID:26226057

  20. Adsorption-induced strain of a nanoscale silicon honeycomb

    NASA Astrophysics Data System (ADS)

    Grosman, A.; Puibasset, J.; Rolley, E.

    2015-03-01

    We report on systematic measurements of both adsorption and anisotropic mechanical deformations of mesoporous silicon, using heptane at room temperature. Porous Si obtained from highly doped (100) Si can be thought of as a nanoscale random honeycomb with pores parallel to the [001] axis. We show that strains ε\\parallel and ε\\bot measured along and transversely to the pore axis exhibit a hysteretic behavior as a function of the fluid pressure, which is due to the hysteresis in fluid adsorption. The pressure dependence of the strains together with the independent measurement of the transverse stress, allows us to determine the biaxial transverse modulus and to estimate the longitudinal Young's modulus of porous Si. We argue that the value of these constants implies that Young's modulus of the 6 nm thick walls of the honeycomb is about 5 times smaller than that of bulk silicon, striking evidence of finite-size effects.

  1. Assessment of workers' compensation claims for back strains/sprains.

    PubMed

    Klein, B P; Jensen, R C; Sanderson, L M

    1984-06-01

    Workers' compensation claim data for 1979 obtained from the Bureau of Labor Statistics' Supplementary Data System (SDS) were utilized to examine the demographic and occupational incidence of back strains/sprains among U.S. industrial employees covered by state compensation systems. These data were combined with estimated employment figures to provide incidence ratios, which allowed better approximations of industry- and occupation-specific risk. Industries found to have the largest incidence ratios were construction (1.6 claims/100 workers) and mining (1.5 claims/100 workers). Occupations with the largest ratios were miscellaneous laborers (12.3 claims/100 workers) and garbage collectors (11.1 claims/100 workers). The 285,468 compensation claims due to back strains/sprains filed in the 26 SDS states in 1979 suggest that back injuries continue to be a large and costly problem for U.S. workers and their employers. PMID:6234383

  2. Biotyping of Malassezia pachydermatis strains using the killer system.

    PubMed

    Coutinho, S D; Paula, C R

    1998-06-01

    The killer phenomenon has been used as epidemiological marker for Candida albicans, where hundreds of biotypes can be obtained. The objective of this study is to observe the behaviour of 30 strains of Malassezia pachydermatis isolated from dogs with otitis (15) or dermatitis (15) against 9 killer yeasts, which, when grouped in triplets produced a 3 digit code (biotype). The growth inhibition of the 30 strains of M. pachydermatis due to the effect of the killer yeasts used permitted the determination of the following biotypes: 888 (33.3%), 212 (26.7%), 111 (16.7%), 312 (6.7%), 512 (6.7%), 242 (3.3%), 311 (3.3%) and 411 (3.3%). Biotypes 888, 212 and 111 occurred most frequently in both ear canal and skin samples. PMID:17655416

  3. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  4. Fiber-optic polarimetric strain gauge

    NASA Astrophysics Data System (ADS)

    Bock, Wojtek J.; Wolinski, Tomasz R.

    A prototype fiber-optic polarimetric strain gauge based on the polarization mode coupling that occurs in highly birefringent optical fibers under the influence of axial strain is presented. Measurement set-up for a bonded strain gauge and its metrological characteristics are discussed together with the interpretation of observed physical effects in terms of changes in beat-length parameter under axial strain. The device is far more sensitive than conventional strain gauges, and can also be readily adjusted to a specified range of strain through an appropriate choice of fiber length and optical signal wavelength. The temperature drift of the device can be compensated in a straightforward procedure. The device is immune to electromagnetic interference, and is intrinsically safe in electrically dangerous, hazardous or explosive environments. Another attraction of this technology is its direct compatibility with fiber-optic telemetry, optical data transmission systems and multiplexing / demultiplexing technology.

  5. Sensor for Measuring Strain in Textile

    PubMed Central

    Mattmann, Corinne; Clemens, Frank; Tröster, Gerhard

    2008-01-01

    In this paper a stain sensor to measure large strain (80%) in textiles is presented. It consists of a mixture of 50wt-% thermoplastic elastomer (TPE) and 50wt-% carbon black particles and is fiber-shaped with a diameter of 0.315mm. The attachment of the sensor to the textile is realized using a silicone film. This sensor configuration was characterized using a strain tester and measuring the resistance (extension-retraction cycles): It showed a linear resistance response to strain, a small hysteresis, no ageing effects and a small dependance on the strain velocity. The total mean error caused by all these effects was ±5.5% in strain. Washing several times in a conventional washing machine did not influence the sensor properties. The paper finishes by showing an example application where 21 strain sensors were integrated into a catsuit. With this garment, 27 upper body postures could be recognized with an accuracy of 97%.

  6. Substantive due process after Gonzales v. Carhart.

    PubMed

    Calabresi, Steven G

    2008-06-01

    This Article begins in Part I with a doctrinal evaluation of the status of Washington v. Glucksberg ten years after that decision was handed down. Discussion begins with consideration of the Roberts Court's recent decision in Gonzales v. Carhart and then turns to the subject of Justice Kennedy's views in particular on substantive due process. In Part II, the Article goes on to consider whether the Glucksberg test for substantive due process decision making is correct in light of the original meaning of the Fourteenth Amendment. The Article concludes in Parts II and III that Glucksberg is right to confine substantive due process rights recognition to recognition only of those rights that are deeply rooted in history and tradition. PMID:18595213

  7. Outpatient commitment and procedural due process.

    PubMed

    Player, Candice Teri-Lowe

    2015-01-01

    A large empirical literature on Kendra's Law has assessed the impact of court ordered outpatient treatment on outcomes such as treatment adherence, psychiatric hospitalization, quality of life, and treatment costs. Missing from the empirical literature, however, is a better understanding of procedural due process under Kendra's Law. Procedural due process concerns the safeguards that must be in place when governments deprive persons of their liberties, for example--notice, the right to a hearing and the right to appeal. This article reports the findings from a qualitative study of procedural due process and assisted outpatient treatment hearings under Kendra's Law. Attorneys reported significant barriers to effective advocacy on behalf of their clients. Further, despite the shift from a medical model of civil commitment to a judicial model in the 1970s, by and large judges continue to accord great deference to clinical testimony. PMID:25748886

  8. Angioedema-Urticaria Due to Acitretin.

    PubMed

    Solak, Berna; Metin, Nurcan; Erdem, Mustafa Teoman

    2016-01-01

    Acitretin is a synthetic oral retinoid that has been used for a number of dermatological diseases. Several side effects of acitretin have been reported such as teratogenicity, cheilitis, xerosis, dyslipidemia, and photosensitivity. Many drugs, mainly antibiotics and nonsteroidal anti-inflammatory drugs, can cause angioedema-urticaria. We present the case of angioedema-urticaria due to acitretin, confirmed by oral provocation test, in a 61-year-old man with psoriasis. To the best of our knowledge, only 1 case of angioedema due to oral acitretin has been reported in the literature so far. We report this case to draw attention that acitretin may cause angioedema-urticaria and to inform patients about this risk besides other side effects due to acitretin. PMID:26820109

  9. [Cervical actinomycosis due to Actinomyces naeslundii].

    PubMed

    Kimura, Hiroshi

    2011-07-01

    Actinomyces naeslundii, an oral biofilm bacterium of, can be cured using intravenous piperacillin, clindamycin, and surgery. We report a case of cervical actinomycosis due to Actinomyces naeslundii. A 56-year-old man seen for right cervical swelling had undergone dental work. Computed tomography indicated an abscess, from which we aspirated pus using a needle. Although no sulfur granules were found, pus yielded Actinomyces naeslundii. This case is, to our knowledge, the first reported in Japan of cervical actinomycosis due to A. naeslundii. PMID:21838058

  10. Traumatic Endophthalmitis due to Cellulosimicrobium cellulans

    PubMed Central

    Jaru-ampornpan, Pimkwan; Agarwal, Anita; Midha, Narinder K.; Kim, Stephen J.

    2011-01-01

    Purpose. To report a case of traumatic endophthalmitis due to Cellulosimicrobium cellulans. Design. Case report. Methods. Retrospective chart review. Results. To our knowledge, this is the first report of traumatic endophthalmitis due to C. cellulans, which did not respond to intravitreal antibiotics or repeat vitrectomy and ultimately led to the discovery of an occult intraocular foreign body. Conclusions. C. cellulans is a rare cause of endophthalmitis. Greater awareness of this bacterium in the ophthalmic literature as a cause of endophthalmitis and its association with foreign bodies may allow earlier and more purposeful intervention in future cases. PMID:22606461

  11. Mechanical strain and degradation of laser heterostructures

    NASA Astrophysics Data System (ADS)

    Ptashchenko, Alexander A.; Ptashchenko, Fedor A.; Maslejeva, Natalia V.; Sadova, Galina V.

    2001-02-01

    The effect of mechanical strain on degradation processes in GaAs-AlGaAs laser heterostructures (LHS) with stripe geometry and in light emitting diodes (LED) was experimentally studied. The strain was produced either by axial pressure or by indentation with a Wickers pyramid. We show that degradation affects the degree of polarization and the far-field distribution of laser emission. The effect of strain on the degradation intensity is estimated.

  12. Polyphasic characterization of xanthomonas strains from onion.

    PubMed

    Gent, David H; Schwartz, Howard F; Ishimaru, Carol A; Louws, Frank J; Cramer, Robert A; Lawrence, Christopher B

    2004-02-01

    ABSTRACT Xanthomonas leaf blight has become an increasingly important disease of onion, but the diversity among Xanthomonas strains isolated from onion is unknown, as is their relationship to other species and pathovars of Xanthomonas. Forty-nine Xanthomonas strains isolated from onion over 27 years from 10 diverse geographic regions were characterized by pathogenicity to onion and dry bean, fatty acid profiles, substrate utilization patterns (Biolog), bactericide resistance, repetitive sequence-based polymerase chain reaction fingerprinting, rDNA internally transcribed spacer (ITS) region, and hrp b6 gene sequencing. Multiplication of onion Xanthomonas strain R-O177 was not different from X. axonopodis pv. phaseoli in dry bean, but typical common bacterial blight disease symptoms were absent in dry bean. Populations from each geographical region were uniformly sensitive to 100 mug of CuSO(4), 100 mug of ZnSO(4), and 100 mug of streptomycin sulfate per ml. Biolog substrate utilization and fatty acid profiles revealed close phenoltypic relatedness between onion strains of Xanthomonas and X. axonopodis pv. dieffenbachiae (57% of strains) and X. arboricola pv. poinsettiicola (37% of strains), respectively. A logistic regression model based on fatty acid composition and substrate utilization classified 69% of strains into their geographical region of origin. Sequencing of a portion of the hrp B6 gene from 24 strains and ITS region from 25 strains revealed greater than 97% sequence similarity among strains. DNA fingerprinting revealed five genotype groups within onion strains of Xanthomonas and a high degree of genetic diversity among geographical regions of origin. Based on pathogenicity to onion, carbon substrate utilization, fatty acid profiles, rDNA genetic diversity, and genomic fingerprints, we conclude that the strains examined in this study are pathovar X. axonopodis pv. allii. Implications of genetic and phenotypic diversity within X. axonopodis pv. allii are

  13. AN ORGANOTYPIC UNIAXIAL STRAIN MODEL USING MICROFLUIDICS

    PubMed Central

    Dollé, Jean-Pierre; Morrison, Barclay; Schloss, Rene R.; Yarmush, Martin L.

    2012-01-01

    Traumatic brain injuries are the leading cause of disability each year in the US. The most common and devastating consequence is the stretching of axons caused by shear deformation that occurs during rotational acceleration of the brain during injury. The injury effects on axonal molecular and functional events are not fully characterized. We have developed a strain injury model that maintains the three dimensional cell architecture and neuronal networks found in vivo with the ability to visualize individual axons and their response to a mechanical injury. The advantage of this model is that it can apply uniaxial strains to axons that make functional connections between two organotypic slices and injury responses can be observed in real-time and over long term. This uniaxial strain model was designed to be capable of applying an array of mechanical strains at various rates of strain, thus replicating a range of modes of axonal injury. Long term culture, preservation of slice and cell orientation, and slice-slice connection on the device was demonstrated. The device has the ability to strain either individual axons or bundles of axons through the control of microchannel dimensions. The fidelity of the model was verified by observing characteristic responses to various strain injuries which included axonal beading, delayed elastic effects and breakdown in microtubules. Microtubule breakdown was shown to be dependent on the degree of the applied strain field, where maximal breakdown was observed at peak strain and minimal breakdown is observed at low strain. This strain injury model could be a powerful tool in assessing strain injury effects on functional axonal connections. PMID:23233120

  14. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  15. Diversity among Streptomyces Strains Causing Potato Scab

    PubMed Central

    Doering-Saad, Christiane; Kämpfer, Peter; Manulis, Shulamit; Kritzman, Giora; Schneider, Jörg; Zakrzewska-Czerwinska, Jolanta; Schrempf, Hildgund; Barash, Isaac

    1992-01-01

    Eighty Streptomyces isolates, including 35 potato scab-inducing strains and 12 reference strains of Streptomyces scabies, were physiologically characterized by a total of 329 miniaturized tests. Overall similarities of all strains were determined by numerical taxonomy, with the unweighted average linkage (UPGMA) algorithm and simple matching (Ssm) and Jaccard (Sj) coefficients used as measures for similarity. Three cluster groups (A to C) were defined at a similarity level of 80.1% (Ssm); these groups contained 14 clusters and 24 unclustered strains defined at a similarity level of 86.5% (Ssm). Cluster group A contained strains phenotypically related to S. griseus or S. exfoliatus, whereas cluster group B contained strains which were phenotypically related to S. violaceus or S. rochei. The majority of the pathogenic isolates and reference strains were assigned to S. violaceus (57%) and S. griseus (22%). A DNA probe derived from the rRNA operon of S. coelicolor IMET 40271 was used to detect restriction fragment length polymorphisms (RELPs) among 40 pathogenic and nonpathogenic Streptomyces isolates. Southern blots revealed a high degree of diversity among the pathogenic strains tested. No significant correlation between numerical classification and RFLP grouping of Streptomyces strains could be revealed. The results obtained suggest that RFLP data are of minor importance in classification of Streptomyces species and that genes for pathogenicity determinants are spread among different Streptomyces species by mobilizable elements. Images PMID:16348823

  16. Strain induced fragility transition in metallic glass

    PubMed Central

    Yu, Hai-Bin; Richert, Ranko; Maaß, Robert; Samwer, Konrad

    2015-01-01

    Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials. PMID:25981888

  17. Measurement of Sorption-Induced Strain

    SciTech Connect

    Eric P. Robertson; Richard L. Christiansen

    2005-05-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

  18. Inflatable device for installing strain gage bridges

    NASA Technical Reports Server (NTRS)

    Cook, C. E.; Smith, G. E.; Monaghan, R. C. (Inventor)

    1983-01-01

    Methods and devices for installing in a tubular shaft multiple strain gages are disclosed with focus on a method and a device for pneumatically forcing strain gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple strain gages in a tubular shaft. The strain gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces.

  19. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  20. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.