Science.gov

Sample records for macromolecular structure solution

  1. Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.

    PubMed

    Bieri, Michael; Kwan, Ann H; Mobli, Mehdi; King, Glenn F; Mackay, Joel P; Gooley, Paul R

    2011-03-01

    A strength of NMR spectroscopy is its ability to monitor, on an atomic level, molecular changes and interactions. In this review, which is intended for non-spectroscopist, we describe major uses of NMR in protein science beyond solution structure determination. After first touching on how NMR can be used to quickly determine whether a mutation induces structural perturbations in a protein, we describe the unparalleled ability of NMR to monitor binding interactions over a wide range of affinities, molecular masses and solution conditions. We discuss the use of NMR to measure the dynamics of proteins at the atomic level and over a wide range of timescales. Finally, we outline new and expanding areas such as macromolecular structure determination in multicomponent systems, as well as in the solid state and in vivo. PMID:21214861

  2. Phenix - a comprehensive python-based system for macromolecular structure solution

    SciTech Connect

    Terwilliger, Thomas C; Hung, Li - Wei; Adams, Paul D; Afonine, Pavel V; Bunkoczi, Gabor; Chen, Vincent B; Davis, Ian; Echols, Nathaniel; Headd, Jeffrey J; Grosse Kunstleve, Ralf W; Mccoy, Airlie J; Moriarty, Nigel W; Oeffner, Robert; Read, Randy J; Richardson, David C; Richardson, Jane S; Zwarta, Peter H

    2009-01-01

    Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages, and the repeated use of interactive three-dimensional graphics. Phenix has been developed to provide a comprehensive system for crystallographic structure solution with an emphasis on automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand, and finally the development of a framework that allows a tight integration between the algorithms.

  3. Macromolecular complexes in crystals and solutions

    PubMed Central

    Krissinel, Evgeny

    2011-01-01

    This paper presents a discussion of existing methods for the analysis of macromolecular interactions and complexes in crystal packing. Typical situations and conditions where wrong answers may be obtained in the course of ordinary procedures are presented and discussed. The more general question of what the relationship is between natural (in-solvent) and crystallized assemblies is discussed and researched. A computational analysis suggests that weak interactions with K d ≥ 100 µM have a considerable chance of being lost during the course of crystallization. In such instances, crystal packing misrepresents macromolecular complexes and interactions. For as many as 20% of protein dimers in the PDB the likelihood of misrepresentation is estimated to be higher than 50%. Given that weak macromolecular interactions play an important role in many biochemical processes, these results suggest that a complementary noncrystallographic study should be always conducted when inferring structural aspects of weakly bound complexes. PMID:21460456

  4. Fractal Dimensions of Macromolecular Structures

    PubMed Central

    Todoroff, Nickolay; Kunze, Jens; Schreuder, Herman; Hessler, Gerhard; Baringhaus, Karl-Heinz; Schneider, Gisbert

    2014-01-01

    Quantifying the properties of macromolecules is a prerequisite for understanding their roles in biochemical processes. One of the less-explored geometric features of macromolecules is molecular surface irregularity, or ‘roughness’, which can be measured in terms of fractal dimension (D). In this study, we demonstrate that surface roughness correlates with ligand binding potential. We quantified the surface roughnesses of biological macromolecules in a large-scale survey that revealed D values between 2.0 and 2.4. The results of our study imply that surface patches involved in molecular interactions, such as ligand-binding pockets and protein-protein interfaces, exhibit greater local fluctuations in their fractal dimensions than ‘inert’ surface areas. We expect approximately 22 % of a protein’s surface outside of the crystallographically known ligand binding sites to be ligandable. These findings provide a fresh perspective on macromolecular structure and have considerable implications for drug design as well as chemical and systems biology. PMID:26213587

  5. Ordered macromolecular structures in ferrofluid mixtures

    SciTech Connect

    Hayter, J.B.; Pynn, R.; Charles, S.; Skjeltorp, A.T.; Trewhella, J.; Stubbs, G.; Timmins, P.

    1989-04-03

    We have observed ordering of dilute dispersions of spherical and cylindrical macromolecules in magnetized ferrofluids. The order results from structural correlations between macromolecular and ferrofluid particles rather than from macroscopic magnetostatic effects. We have aligned elongated macromolecules by this technique and have obtained anisotropic neutron-diffraction patterns, which reflect the internal structure of the macromolecules. The method provides a tool for orienting suspended macromolecular assemblies which are not amenable to conventional alignment techniques.

  6. Macromolecular Brushes as Stabilizers of Hydrophobic Solute Nanoparticles.

    PubMed

    Luo, Hanying; Raciti, David; Wang, Chao; Herrera-Alonso, Margarita

    2016-06-01

    Macromolecular brushes bearing poly(ethylene glycol) and poly(d,l-lactide) side chains were used to stabilize hydrophobic solute nanoparticles formed by a rapid change in solvent quality. Unlike linear diblock copolymers with the same hydrophilic and hydrophobic block chemistries, the brush copolymer enabled the formation of ellipsoidal β-carotene nanoparticles, which in cosolvent mixtures developed into rod-like structures, resulting from a combination of Ostwald ripening and particle aggregation. The stabilizing ability of the copolymer was highly dependent on the mobility of the hydrophobic component, influenced by its molecular weight. As shown here, asymmetric amphiphilic macromolecular brushes of this type may be used as hydrophobic drug stabilizers and potentially assist the shape control of nonspherical aggregate morphologies. PMID:27035279

  7. Hybrid Approaches to Structural Characterization of Conformational Ensembles of Complex Macromolecular Systems Combining NMR Residual Dipolar Couplings and Solution X-ray Scattering.

    PubMed

    Venditti, Vincenzo; Egner, Timothy K; Clore, G Marius

    2016-06-01

    Solving structures or structural ensembles of large macromolecular systems in solution poses a challenging problem. While NMR provides structural information at atomic resolution, increased spectral complexity, chemical shift overlap, and short transverse relaxation times (associated with slow tumbling) render application of the usual techniques that have been so successful for medium sized systems (<50 kDa) difficult. Solution X-ray scattering, on the other hand, is not limited by molecular weight but only provides low resolution structural information related to the overall shape and size of the system under investigation. Here we review how combining atomic resolution structures of smaller domains with sparse experimental data afforded by NMR residual dipolar couplings (which yield both orientational and shape information) and solution X-ray scattering data in rigid-body simulated annealing calculations provides a powerful approach for investigating the structural aspects of conformational dynamics in large multidomain proteins. The application of this hybrid methodology is illustrated for the 128 kDa dimer of bacterial Enzyme I which exists in a variety of open and closed states that are sampled at various points in the catalytic cycles, and for the capsid protein of the human immunodeficiency virus. PMID:26739383

  8. Long-range correlations, geometrical structure, and transport properties of macromolecular solutions. The equivalence of configurational statistics and geometrodynamics of large molecules.

    PubMed

    Mezzasalma, Stefano A

    2007-12-01

    A special theory of Brownian relativity was previously proposed to describe the universal picture arising in ideal polymer solutions. In brief, it redefines a Gaussian macromolecule in a 4-dimensional diffusive spacetime, establishing a (weak) Lorentz-Poincaré invariance between liquid and polymer Einstein's laws for Brownian movement. Here, aimed at inquiring into the effect of correlations, we deepen the extension of the special theory to a general formulation. The previous statistical equivalence, for dynamic trajectories of liquid molecules and static configurations of macromolecules, and rather obvious in uncorrelated systems, is enlarged by a more general principle of equivalence, for configurational statistics and geometrodynamics. Accordingly, the three geodesic motion, continuity, and field equations could be rewritten, and a number of scaling behaviors were recovered in a spacetime endowed with general static isotropic metric (i.e., for equilibrium polymer solutions). We also dealt with universality in the volume fraction and, unexpectedly, found that a hyperscaling relation of the form, (average size) x (diffusivity) x (viscosity)1/2 ~f(N0, phi0) is fulfilled in several regimes, both in the chain monomer number (N) and polymer volume fraction (phi). Entangled macromolecular dynamics was treated as a geodesic light deflection, entaglements acting in close analogy to the field generated by a spherically symmetric mass source, where length fluctuations of the chain primitive path behave as azimuth fluctuations of its shape. Finally, the general transformation rule for translational and diffusive frames gives a coordinate gauge invariance, suggesting a widened Lorentz-Poincaré symmetry for Brownian statistics. We expect this approach to find effective applications to solutions of arbitrarily large molecules displaying a variety of structures, where the effect of geometry is more explicit and significant in itself (e.g., surfactants, lipids, proteins). PMID

  9. Solution-Phase Processes of Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Minamitani, Elizabeth Forsythe

    2004-01-01

    We have proposed, for the tetragonal form of chicken egg lysozyme, that solution phase assembly processes are needed to form the growth units for crystal nucleation and growth. The starting point for the self-association process is the monomeric protein, and the final crystallographic symmetry is defined by the initial dimerization interactions of the monomers and subsequent n-mers formed, which in turn are a function of the crystallization conditions. It has been suggested that multimeric proteins generally incorporate the underlying multimers symmetry into the final crystallographic symmetry. We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The insoluble protein can be readily dissolved by weakly basic solution, which results in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part

  10. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway

    PubMed Central

    Kelley, Elizabeth G.; Murphy, Ryan P.; Seppala, Jonathan E.; Smart, Thomas P.; Hann, Sarah D.

    2014-01-01

    The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well--defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architecturesis controlled by processing methods that rely upon cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule, and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure. PMID:24710204

  11. The Phenix Software for Automated Determination of Macromolecular Structures

    PubMed Central

    Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Echols, Nathaniel; Headd, Jeffrey J.; Hung, Li-Wei; Jain, Swati; Kapral, Gary J.; Grosse Kunstleve, Ralf W.; McCoy, Airlie J.; Moriarty, Nigel W.; Oeffner, Robert D.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Zwart, Peter H.

    2011-01-01

    X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favour of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface. PMID:21821126

  12. New methods of structure refinement for macromolecular structure determination by NMR

    PubMed Central

    Clore, G. Marius; Gronenborn, Angela M.

    1998-01-01

    Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-bond coupling constants, secondary 13C shifts, 1H shifts, T1/T2 ratios, and residual dipolar couplings. The latter two measurements provide long range restraints that are not accessible by other solution NMR parameters. PMID:9600889

  13. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  14. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  15. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    PubMed Central

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  16. Macromolecular structure phasing by neutron anomalous diffraction

    PubMed Central

    Cuypers, Maxime G.; Mason, Sax A.; Mossou, Estelle; Haertlein, Michael; Forsyth, V. Trevor; Mitchell, Edward P.

    2016-01-01

    In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions – all of which are of central importance to a wide range of fundamental and applied areas in the biosciences. PMID:27511806

  17. Macromolecular structure phasing by neutron anomalous diffraction.

    PubMed

    Cuypers, Maxime G; Mason, Sax A; Mossou, Estelle; Haertlein, Michael; Forsyth, V Trevor; Mitchell, Edward P

    2016-01-01

    In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions - all of which are of central importance to a wide range of fundamental and applied areas in the biosciences. PMID:27511806

  18. Macromolecular Structure Database. Final Progress Report

    SciTech Connect

    Gilliland, Gary L.

    2003-09-23

    The central activity of the PDB continues to be the collection, archiving and distribution of high quality structural data to the scientific community on a timely basis. In support of these activities NIST has continued its roles in developing the physical archive, in developing data uniformity, in dealing with NMR issues and in the distribution of PDB data through CD-ROMs. The physical archive holdings have been organized, inventoried, and a database has been created to facilitate their use. Data from individual PDB entries have been annotated to produce uniform values improving tremendously the accuracy of results of queries. Working with the NMR community we have established data items specific for NMR that will be included in new entries and facilitate data deposition. The PDB CD-ROM production has continued on a quarterly basis, and new products are being distributed.

  19. Macromolecular crowding increases structural content of folded proteins.

    PubMed

    Perham, Michael; Stagg, Loren; Wittung-Stafshede, Pernilla

    2007-10-30

    Here we show that increased amount of secondary structure is acquired in the folded states of two structurally-different proteins (alpha-helical VlsE and alpha/beta flavodoxin) in the presence of macromolecular crowding agents. The structural content of flavodoxin and VlsE is enhanced by 33% and 70%, respectively, in 400 mg/ml Ficoll 70 (pH 7, 20 degrees C) and correlates with higher protein-thermal stability. In the same Ficoll range, there are only small effects on the unfolded-state structures of the proteins. This is the first in vitro assessment of crowding effects on the native-state structures at physiological conditions. Our findings imply that for proteins with low intrinsic stability, the functional structures in vivo may differ from those observed in dilute buffers. PMID:17919600

  20. REFMAC5 for the refinement of macromolecular crystal structures

    PubMed Central

    Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.; Pannu, Navraj S.; Steiner, Roberto A.; Nicholls, Robert A.; Winn, Martyn D.; Long, Fei; Vagin, Alexei A.

    2011-01-01

    This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Å can be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, ‘jelly-body’ restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback–Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography. PMID:21460454

  1. Crosslinked macromolecular structures in bituminous coals: Theoretical and experimental considerations

    NASA Astrophysics Data System (ADS)

    Lucht, Lucy M.; Peppas, Nicolaos A.

    1981-02-01

    Ample evidence from physicochemical experiments suggests that bituminous coals can be described as highly crosslinked and entangled networks of macromolecular chains of irregular structure. Theoretically these structures can be analyzed by statistical mechanical models considering non-Gaussian distribution of the macro-molecular chains along with departure from the Flory theories of crosslinked macromolecules. The models of Kovac (1978) and Peppas and Lucht (1979) have been developed in order to describe non-extractable coal matrices and their behavior during swelling in appropriate swelling agents. The molecular weight between cross-links Mc and the crosslinking density ρx can be determined for various solvents and equilibrium swelling ratios. Few experimental data are available to which these models can be applied. Thus, in view of these new theoretical models, experimental research must be directed towards the reexamination of extraction and swelling behavior of bituminous coals. Some of the important parameters to be determined for characterization of the physical structure of coals include the thermodynamic interaction parameter χ, the crosslinking parameters Mc and ρx and the molecular weight distribution of the extractable coal portion.

  2. Macromolecular structure analysis and effective liquefaction pretreatment. Final report

    SciTech Connect

    Suuberg, E.M.; Yun, Y.; Lilly, W.D.; Leung, K.; Gates, T.; Otake, Y.; Deevi, S.C.

    1994-07-01

    This project was concerned with characterizing the changes in coal macromolecular structure, that are of significance for liquefaction pretreatments of coal. The macromolecular structure of the insoluble portion of coal is difficult to characterize. Techniques that do so indirectly (based upon, for example, NMR and FTIR characterizations of atomic linkages) are not particularly sensitive for this purpose. Techniques that characterize the elastic structure (such as solvent swelling) are much more sensitive to subtle changes in the network structure. It is for this reason that we focused upon these techniques. The overall objective involved identifying pretreatments that reduce the crosslinking (physical or chemical) of the network structure, and thus lead to materials that can be handled to a greater extent by traditional liquid-phase processing techniques. These techniques tend to be inherently more efficient at producing desirable products. This report is divided into seven chapters. Chapter II summarizes the main experimental approaches used throughout the project, and summarizes the main findings on the Argonne Premium coal samples. Chapter III considers synergistic effects of solvent pairs. It is divided into two subsections. The first is concerned with mixtures of CS{sub 2} with electron donor solvents. The second subsection is concerned with aromatic hydrocarbon - alcohol or hydrocarbon - alcohol mixtures, as might be of interest for preliquefaction delivery of catalysts into bituminous coals. Chapter IV deals with questions of how oxidation might influence the results that are obtained. Chapter V briefly details what conclusions may be drawn concerning the elastic behavior of coals, and the effects of thermal treatments on this behavior. Chapter VI is concerned with theories to describe the action of solvents that are capable of dissociating non-covalent crosslinks. Finally, Chapter VII discusses the practical implications of the study.

  3. Conformational States of Macromolecular Assemblies Explored by Integrative Structure Calculation

    PubMed Central

    Thalassinos, Konstantinos; Pandurangan, Arun Prasad; Xu, Min; Alber, Frank; Topf, Maya

    2013-01-01

    Summary A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment. PMID:24010709

  4. Crystallography & NMR system: A new software suite for macromolecular structure determination.

    PubMed

    Brünger, A T; Adams, P D; Clore, G M; DeLano, W L; Gros, P; Grosse-Kunstleve, R W; Jiang, J S; Kuszewski, J; Nilges, M; Pannu, N S; Read, R J; Rice, L M; Simonson, T; Warren, G L

    1998-09-01

    A new software suite, called Crystallography & NMR System (CNS), has been developed for macromolecular structure determination by X-ray crystallography or solution nuclear magnetic resonance (NMR) spectroscopy. In contrast to existing structure-determination programs, the architecture of CNS is highly flexible, allowing for extension to other structure-determination methods, such as electron microscopy and solid-state NMR spectroscopy. CNS has a hierarchical structure: a high-level hypertext markup language (HTML) user interface, task-oriented user input files, module files, a symbolic structure-determination language (CNS language), and low-level source code. Each layer is accessible to the user. The novice user may just use the HTML interface, while the more advanced user may use any of the other layers. The source code will be distributed, thus source-code modification is possible. The CNS language is sufficiently powerful and flexible that many new algorithms can be easily implemented in the CNS language without changes to the source code. The CNS language allows the user to perform operations on data structures, such as structure factors, electron-density maps, and atomic properties. The power of the CNS language has been demonstrated by the implementation of a comprehensive set of crystallographic procedures for phasing, density modification and refinement. User-friendly task-oriented input files are available for nearly all aspects of macromolecular structure determination by X-ray crystallography and solution NMR. PMID:9757107

  5. Macromolecular Crystallography and Structural Biology Databases at NIST

    PubMed Central

    Gilliland, Gary L.

    2001-01-01

    In the late 1970s, macromolecular crystallography at NIST began with collaboration between NIST and NIH to establish a single-crystal neutron diffractometer. This instrument was constructed and employed to solve a number of crystal structures: bovine ribonuclease A, bovine-ribonuclease-uridine vanadate complex, and porcine insulin. In the mid 1980s a Biomolecular Structure Group was created establishing NIST capabilities in biomolecular singe-crystal x-ray diffraction. The group worked on a variety of structural problems until joining the NIST/UMBI Center for Advanced Research in Biotechnology (CARB) in 1987. Crystallographic studies at CARB were then focused on protein engineering efforts that included among others chymosin, subtilisin BPN', interleukin 1β, and glutathione S-transferase. Recently, the structural biology efforts have centered on enzymes in the chorismate metabolic pathways involved in amino acid biosynthesis and in structural genomics that involves determining the structures of “hypothetical” proteins to aid in assigning function. In addition to crystallographic studies, structural biology database activities began with the formal establishment of the Biological Macro-molecule Crystallization Database in 1989. Later, in 1997, NIST in partnership with Rutgers and UCSD formed the Research Collaboratory for Structural Bioinformatics that successfully acquired the Protein Data Bank. The NIST efforts in these activities have focused on data uniformity, establishing and maintaining the physical archive, and working with the NMR community. PMID:27500071

  6. Cryo electron microscopy to determine the structure of macromolecular complexes.

    PubMed

    Carroni, Marta; Saibil, Helen R

    2016-02-15

    Cryo-electron microscopy (cryo-EM) is a structural molecular and cellular biology technique that has experienced major advances in recent years. Technological developments in image recording as well as in processing software make it possible to obtain three-dimensional reconstructions of macromolecular assemblies at near-atomic resolution that were formerly obtained only by X-ray crystallography or NMR spectroscopy. In parallel, cryo-electron tomography has also benefitted from these technological advances, so that visualization of irregular complexes, organelles or whole cells with their molecular machines in situ has reached subnanometre resolution. Cryo-EM can therefore address a broad range of biological questions. The aim of this review is to provide a brief overview of the principles and current state of the cryo-EM field. PMID:26638773

  7. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure

    SciTech Connect

    Foley, Patricia L.; Wilson, David B.; Shuler, Michael L.

    2010-04-23

    The shape and compaction of the bacterial nucleoid may affect the accessibility of genetic material to the transcriptional machinery in natural and synthetic systems. To investigate this phenomenon, the nature and contribution of RNA and protein to the compaction of nucleoids that had been gently released from Escherichia coli cells were investigated using fluorescent and transmission electron microscopy. We propose that the removal of RNA from the bacterial nucleoid affects nucleoid compaction by altering the branching density and molecular weight of the nucleoid. We show that a common detergent in nucleoid preparations, Brij 58, plays a previously unrecognized role as a macromolecular crowding agent. RNA-free nucleoids adopt a compact structure similar in size to exponential-phase nucleoids when the concentration of Brij 58 is increased, consistent with our hypothesis. We present evidence that control and protein-free nucleoids behave similarly in solutions containing a macromolecular crowding agent. These results show that the contribution to DNA compaction by nucleoid-associated proteins is small when compared to macromolecular crowding effects.

  8. The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Rajapaksha Mudalige, Ajith Rathnaweera

    Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40

  9. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  10. Timely deposition of macromolecular structures is necessary for peer review

    SciTech Connect

    Joosten, Robbie P.; Soueidan, Hayssam; Wessels, Lodewyk F. A.; Perrakis, Anastassis

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  11. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  12. Macromolecular coal structure as revealed by novel diffusion tests

    SciTech Connect

    Peppas, N.A.; Olivares, J.; Drummond, R.; Lustig, S.

    1990-01-01

    The main goal of the present work was the elucidation of the mechanistic characteristics of dynamic transport of various penetrants (solvents) in thin sections of coals by examining their penetrant uptake, front swelling and stress development. An important objective of this work was the study of coal network structure in different thermodynamically compatible penetrants and the analysis of dynamic swelling in terms of present anomalous transport theories. Interferometry/polariscopy, surface image analysis and related techniques were used to quantify the stresses and solvent concentration profiles in these sections. Dynamic and equilibrium swelling behavior were correlated using the polar interaction contributions of the solvent solubility parameters. The penetrant front position was followed in thin coal sections as a function of time. The initial front velocity was calculated for various coals and penetrants. Our penetrant studies with thin coal section from the same coal sample but with different thickness show that within the range of 150 {mu}m to 1500{mu}m the transport mechanism of dimethyl formamide in the macromolecular coal network is non-Fickian. In fact, for the thickest samples the transport mechanism is predominately Case-II whereas in the thinner samples penetrant uptake may be diffusion-controlled. Studies in various penetrants such as acetone, cyclohexane, methanol, methyl ethyl ketone, toluene and methylene chloride indicated that penetrant transport is a non-Fickian phenomenon. Stresses and cracks were observed for transport of methylene chloride. 73 refs., 88 figs., 15 tabs.

  13. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  14. Macromolecular properties and polymeric structure of canine tracheal mucins.

    PubMed Central

    Shankar, V; Virmani, A K; Naziruddin, B; Sachdev, G P

    1991-01-01

    Two high-Mr mucus glycoproteins (mucins), CTM-A and CTM-B, were highly purified from canine tracheal pouch secretions, and their macromolecular properties as well as polymeric structure were investigated. On SDS/composite-gel electrophoresis, a diffuse band was observed for each mucin. Polyacrylamide-gel electrophoresis using 6% gels also showed the absence of low-Mr contaminants in the mucins. Comparison of chemical and amino acid compositions revealed significant differences between the two mucins. Using a static-laser-light-scattering technique, CTM-A and CTM-B were found to have weight-average Mr values of about 11.0 x 10(6) and 1.4 x 10(6) respectively. Both mucins showed concentration-dependent aggregation in buffer containing 6 M-guanidine hydrochloride. Under similar experimental conditions, reduced-alkylated CTM-A had an Mr of 5.48 x 10(6) and showed no concentration-dependent aggregation. Hydrophobic properties of the mucins, investigated by the fluorescent probe technique using mansylphenylalanine as the probe, showed the presence of a large number of low-affinity (KD approx. 10(5) M) binding sites. These sites appeared to be located on the non-glycosylated regions of the protein core, since Pronase digestion of the mucins almost completely eliminated probe binding. Reduction of disulphide bonds of CTM-A and CTM-B did not significantly alter the probe-binding properties. Also, addition of increasing NaCl concentrations (0.03-1.0 M) to the buffer caused only a small change in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable degradation, using a combination of chemical and enzymic methods. On SDS/PAGE the protein core was estimated to have an Mr of approx. 60,000. On the basis of the protein and carbohydrate contents of the major mucin CTM-A, the mucin monomer was calculated to have an

  15. Phasing macromolecular structures via structure-invariant algebra.

    PubMed

    Hauptman, H; Han, F

    1993-01-01

    Owing to the breakdown of Friedel's law when anomalous scatterers are present, unique values of the three-phase structure invariants in the whole range from 0 to 2pi are determined by measured values of diffraction intensities alone. Two methods are described for going from presumed known values of these invariants to the values of the individual phases. The first, dependent on a scheme for resolving the 2pi ambiguity in the estimate omega(HK) of the triplet phi(H) + phi(K) + phi(-H-K), solves by least squares the resulting redundant system of linear equations phi(H) + phi(K) + phi(-H-K) = omega(HK). The second attempts to minimize the weighted sum of squares of differences between the true values of the cosine and sine invariants and their estimates. The latter method is closely related to one based on the 'minimal principle' which determines the values of a large set of phases as the constrained global minimum of a function of all the phases in the set. Both methods work in the sense that they yield values of the individual phases substantially better than the values of the initial estimates of the triplets. However, the second method proves to be superior to the first but requires, in addition to estimates of the triplets, initial estimates of the values of the individual phases. PMID:15299539

  16. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB

    PubMed Central

    Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M.; Berrisford, John M.; Conroy, Matthew J.; Dana, Jose M.; Gore, Swanand P.; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M. S.; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A.; Mukhopadhyay, Abhik; Oldfield, Thomas J.; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A.; Wainwright, Michael E.; Deshpande, Mandar S.; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R.; Clark, Alice R.; Smart, Oliver S.; Korir, Paul K.; Kleywegt, Gerard J.

    2016-01-01

    The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the ‘best structures’ for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. PMID:26476444

  17. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions

    PubMed Central

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction’s mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein–protein interactions or protein–DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1 040 000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43 000 RNA-mediated interactions, and ∼12 000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  18. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo. PMID:27327881

  19. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and

  20. Macromolecular Stabilization by Excluded Cosolutes: Mean Field Theory of Crowded Solutions.

    PubMed

    Sapir, Liel; Harries, Daniel

    2015-07-14

    We propose a mean field theory to account for the experimentally determined temperature dependence of protein stabilization that emerges in solutions crowded by preferentially excluded cosolutes. Based on regular solution theory and employing the Flory-Huggins approximation, our model describes cosolutes in terms of their size, and two temperature-dependent microscopic parameters that correspond to macromolecule-cosolute and bulk solution interactions. The theory not only predicts a "depletion force" that can account for the experimentally observed stabilization of protein folding or association in the presence of excluded cosolutes but also predicts the full range of associated entropic and enthalpic components. Remarkably, depending on cosolute identity and in accordance with experiments, the theory describes entropically as well as enthalpically dominated depletion forces, even those disfavored by entropy. This emerging depletion attraction cannot be simply linked to molecular volumes. Instead, the relevant parameter is an effective volume that represents an interplay between solvent, cosolute, and macromolecular interactions. We demonstrate that the apparent depletion free energy is often accompanied by significant yet compensating entropy and enthalpy terms that, although having a net zero contribution to stabilization, can obscure the underlying molecular mechanism. This study underscores the importance of including often-neglected free energy terms that correspond to solvent-cosolute and cosolute-macromolecule interactions, which for most typical cosolutes are expected to be temperature dependent. We propose that experiments specifically aimed at resolving the temperature-dependence of cosolute exclusion from macromolecular surfaces should help reveal the full range of the underlying molecular mechanisms of the depletion force. PMID:26575781

  1. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    NASA Astrophysics Data System (ADS)

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-09-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and

  2. The Neurobiologist's Guide to Structural Biology: A Primer on Why Macromolecular Structure Matters and How to Evaluate Structural Data

    PubMed Central

    Minor, Daniel L.

    2010-01-01

    Structural biology now plays a prominent role in addressing questions central to understanding how excitable cells function. Although interest in the insights gained from the definition and dissection of macromolecular anatomy is high, many neurobiologists remain unfamiliar with the methods employed. This primer aims to help neurobiologists understand approaches for probing macromolecular structure and where the limits and challenges remain. Using examples of macromolecules with neurobiological importance, the review covers X-ray crystallography, electron microscopy (EM), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance (NMR) and biophysical methods with which these approaches are often paired: isothermal titration calorimetry (ITC), equilibrium analytical ultracentifugation, and molecular dynamics (MD). PMID:17521566

  3. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    ERIC Educational Resources Information Center

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  4. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination

    PubMed Central

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2014-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100 000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. PMID:24034303

  5. Quantification of Complex Topologies in Macromolecular and Nanoscale Structures using Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Pradhan, Siddharth; Ramachandran, Ramanth; Rai, Durgesh; Beaucage, Gregory

    2012-02-01

    Polymers are characterized by molecular weight distribution, tacticity, block copolymer content and branch content and chain topology. The branch structure and particularly the topology of branched chains has remained a difficult characterization problem. Recently we have developed a scaling model that can be coupled with small-angle scattering to measure the average branch length, number of branches and branch-on-branch structure in macromolecules of complex topology. This method has been extended to understand the structure of two dimensional structures and crumpling in these macromolecular systems. We have explored a wide range of materials in this regard. This poster will give an overview of the current uses for the scaling model for macromolecular topology. References pertaining to this poster can be found at http://www.eng.uc.edu/˜gbeaucag/BranchingPapers.html.

  6. High-Resolution Macromolecular Structure Determination by MicroED, a cryo-EM Method.

    PubMed

    Rodriguez, J A; Gonen, T

    2016-01-01

    Microelectron diffraction (MicroED) is a new cryo-electron microscopy (cryo-EM) method capable of determining macromolecular structures at atomic resolution from vanishingly small 3D crystals. MicroED promises to solve atomic resolution structures from even the tiniest of crystals, less than a few hundred nanometers thick. MicroED complements frontier advances in crystallography and represents part of the rebirth of cryo-EM that is making macromolecular structure determination more accessible for all. Here we review the concept and practice of MicroED, for both the electron microscopist and crystallographer. Where other reviews have addressed specific details of the technique (Hattne et al., 2015; Shi et al., 2016; Shi, Nannenga, Iadanza, & Gonen, 2013), we aim to provide context and highlight important features that should be considered when performing a MicroED experiment. PMID:27572734

  7. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics

    PubMed Central

    Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth

    2016-01-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  8. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    PubMed

    Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2016-04-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  9. A New Program for Detecting the Geometrical Core of a Set of Structures of Macromolecular Complexes.

    PubMed

    Vakulenko, Yu A; Nagaev, B E; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2016-04-01

    Comparison of structures of homological proteins often helps to understand functionally significant features of these structures. This concerns not only structures of separate protein chains, but also structures of macromolecular complexes. In particular, a comparison of complexes of homologous proteins with DNA is significant for analysis of the recognition of DNA by proteins. We present program LCore for detecting geometrical cores of a family of structures; a geometrical core is a set of amino acid residues and nucleotides that disposed similarly in all structures of the family. We describe the algorithm of the program, its web interface, and an example of its application to analysis of complexes of homeodomains with DNA. PMID:27293101

  10. The chemical structure of macromolecular fractions of a sulfur-rich oil

    SciTech Connect

    Richnow, H.H.; Jenisch, A.; Michaelis, W. )

    1993-06-01

    A selective stepwise chemical degradation has been developed for structural studies of high-molecular-weight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization; (ii) cleavage of oxygen-carbon bonds; and (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin, and a macromolecular fraction of low polarity (LPMF) of Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes, and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C[sub 11] to C[sub 33]. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed characterization of the site of bonding and the type of linkage for compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units (n-alkanes, steranes).

  11. The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures

    PubMed Central

    Holton, James M; Classen, Scott; Frankel, Kenneth A; Tainer, John A

    2014-01-01

    In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree. These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. Database Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws. PMID:25040949

  12. The PDB_REDO server for macromolecular structure model optimization

    PubMed Central

    Joosten, Robbie P.; Long, Fei; Murshudov, Garib N.; Perrakis, Anastassis

    2014-01-01

    The refinement and validation of a crystallographic structure model is the last step before the coordinates and the associated data are submitted to the Protein Data Bank (PDB). The success of the refinement procedure is typically assessed by validating the models against geometrical criteria and the diffraction data, and is an important step in ensuring the quality of the PDB public archive [Read et al. (2011 ▶), Structure, 19, 1395–1412]. The PDB_REDO procedure aims for ‘constructive validation’, aspiring to consistent and optimal refinement parameterization and pro-active model rebuilding, not only correcting errors but striving for optimal interpretation of the electron density. A web server for PDB_REDO has been implemented, allowing thorough, consistent and fully automated optimization of the refinement procedure in REFMAC and partial model rebuilding. The goal of the web server is to help practicing crystallo­graphers to improve their model prior to submission to the PDB. For this, additional steps were implemented in the PDB_REDO pipeline, both in the refinement procedure, e.g. testing of resolution limits and k-fold cross-validation for small test sets, and as new validation criteria, e.g. the density-fit metrics implemented in EDSTATS and ligand validation as implemented in YASARA. Innovative ways to present the refinement and validation results to the user are also described, which together with auto-generated Coot scripts can guide users to subsequent model inspection and improvement. It is demonstrated that using the server can lead to substantial improvement of structure models before they are submitted to the PDB. PMID:25075342

  13. Evolution of the macromolecular structure of sporopollenin during thermal degradation

    PubMed Central

    Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; Brown Jr., G.E.

    2015-01-01

    Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure of sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Yet, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils. PMID:27123494

  14. Evolution of the macromolecular structure of sporopollenin during thermal degradation

    SciTech Connect

    Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; G. E. Brown, Jr.

    2015-10-01

    Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure of sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.

  15. Evolution of the macromolecular structure of sporopollenin during thermal degradation

    DOE PAGESBeta

    Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; G. E. Brown, Jr.

    2015-10-01

    Reconstructing the original biogeochemistry of organic microfossils requires quantifying the extent of the chemical transformations they experienced during burial and maturation processes. In the present study, fossilization experiments have been performed using modern sporopollenin chosen as an analogue for the resistant biocompounds possibly constituting the wall of many organic microfossils. Sporopollenin powder has been processed thermally under argon atmosphere at different temperatures (up to 1000 °C) for varying durations (up to 900 min). Solid residues of each experiment have been characterized using infrared, Raman and synchrotron-based XANES spectroscopies. Results indicate that significant defunctionalisation and aromatization affect the molecular structure ofmore » sporopollenin with increasing temperature. Two distinct stages of evolution with temperature are observed: in a first stage, sporopollenin experiences dehydrogenation and deoxygenation simultaneously (below 500 °C); in a second stage (above 500 °C) an increasing concentration in aromatic groups and a lateral growth of aromatic layers are observed. With increasing heating duration (up to 900 min) at a constant temperature (360 °C), oxygen is progressively lost and conjugated carbon–carbon chains or domains grow progressively, following a log-linear kinetic behavior. Based on the comparison with natural spores fossilized within metasediments which experienced intense metamorphism, we show that the present experimental simulations may not perfectly mimic natural diagenesis and metamorphism. Moreover, performing such laboratory experiments provides key insights on the processes transforming biogenic molecules into molecular fossils.« less

  16. Recovering a Representative Conformational Ensemble from Underdetermined Macromolecular Structural Data

    PubMed Central

    Berlin, Konstantin; Castañeda, Carlos A.; Schneidman-Duhovny, Dina; Sali, Andrej; Nava-Tudela, Alfredo; Fushman, David

    2013-01-01

    Structural analysis of proteins and nucleic acids is complicated by their inherent flexibility, conferred, for example, by linkers between their contiguous domains. Therefore, the macromolecule needs to be represented by an ensemble of conformations instead of a single conformation. Determining this ensemble is challenging because the experimental data are a convoluted average of contributions from multiple conformations. As the number of the ensemble degrees of freedom generally greatly exceeds the number of independent observables, directly deconvolving experimental data into a representative ensemble is an ill-posed problem. Recent developments in sparse approximations and compressive sensing have demonstrated that useful information can be recovered from underdetermined (ill-posed) systems of linear equations by using sparsity regularization. Inspired by these advances, we designed Sparse Ensemble Selection (SES) method for recovering multiple conformations from a limited number of observations. SES is more general and accurate than previously published minimum-ensemble methods, and we use it to obtain representative conformational ensembles of Lys48-linked di-ubiquitin, characterized by the residual dipolar coupling data measured at several pH conditions. These representative ensembles are validated against NMR chemical shift perturbation data and compared to maximum-entropy results. The SES method reproduced and quantified the previously observed pH dependence of the major conformation of Lys48-linked di-ubiquitin, and revealed lesser-populated conformations that are pre-organized for binding known di-ubiquitin receptors, thus providing insights into possible mechanisms of receptor recognition by polyubiquitin. SES is applicable to any experimental observables that can be expressed as a weighted linear combination of data for individual states. PMID:24093873

  17. Macromolecular Crystallography for Synthetic Abiological Molecules: Combining xMDFF and PHENIX for Structure Determination of Cyanostar Macrocycles

    PubMed Central

    Singharoy, Abhishek; Venkatakrishnan, Balasubramanian; Liu, Yun; Mayne, Christopher G.; Lee, Semin; Chen, Chun-Hsing; Zlotnick, Adam; Schulten, Klaus; Flood, Amar H.

    2015-01-01

    Crystal structure determination has long provided insight into structure and bonding of small molecules. When those same small molecules are designed to come together in multi-molecular assemblies, such as in coordination cages, supramolecular architectures and organic-based frameworks, their crystallographic characteristics closely resemble biological macromolecules. This resemblance suggests that bio-macromolecular refinement approaches be used for structure determination of abiological molecular complexes that arise in an aggregate state. Following this suggestion we investigated the crystal structure of a pentagonal macrocycle, cyanostar, by means of biological structure analysis methods and compared results to traditional small molecule methods. Cyanostar presents difficulties seen in supramolecular crystallography including whole molecule disorder and highly flexible solvent molecules sitting in macrocyclic and intermolecule void spaces. We used the force-field assisted refinement method, molecular dynamics flexible fitting algorithm for X-ray crystallography (xMDFF), along with tools from the macromolecular structure determination suite PHENIX. We found that a standard implementation of PHENIX, namely one without xMDFF, either fails to produce a solution by molecular replacement alone or produces an inaccurate structure when using generic geometry restraints, even at a very high diffraction data resolution of 0.84 Å. The problems disappear when taking advantage of xMDFF, which applies an optimized force field to re-align molecular models during phasing by providing accurate restraints. The structure determination for this model system shows excellent agreement with the small-molecule methods. Therefore, the joint xMDFF-PHENIX refinement protocol provides a new strategy that uses macromolecule methods for structure determination of small molecules and their assemblies. PMID:26121416

  18. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  19. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes.

    PubMed

    Goh, Boon Chong; Hadden, Jodi A; Bernardi, Rafael C; Singharoy, Abhishek; McGreevy, Ryan; Rudack, Till; Cassidy, C Keith; Schulten, Klaus

    2016-07-01

    The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed. PMID:27145875

  20. Cryo-EM and the elucidation of new macromolecular structures: Random Conical Tilt revisited

    PubMed Central

    Sorzano, C. O. S.; Alcorlo, M.; de la Rosa-Trevín, J. M.; Melero, R.; Foche, I.; Zaldívar-Peraza, A.; del Cano, L.; Vargas, J.; Abrishami, V.; Otón, J.; Marabini, R.; Carazo, J. M.

    2015-01-01

    Cryo-Electron Microscopy (cryo-EM) of macromolecular complexes is a fundamental structural biology technique which is expanding at a very fast pace. Key to its success in elucidating the three-dimensional structure of a macromolecular complex, especially of small and non-symmetric ones, is the ability to start from a low resolution map, which is subsequently refined with the actual images collected at the microscope. There are several methods to produce this first structure. Among them, Random Conical Tilt (RCT) plays a prominent role due to its unbiased nature (it can create an initial model based on experimental measurements). In this article, we revise the fundamental mathematical expressions supporting RCT, providing new expressions handling all key geometrical parameters without the need of intermediate operations, leading to improved automation and overall reliability, essential for the success of cryo-EM when analyzing new complexes. We show that the here proposed RCT workflow based on the new formulation performs very well in practical cases, requiring very few image pairs (as low as 13 image pairs in one of our examples) to obtain relevant 3D maps. PMID:26390853

  1. Automated structure solution with the PHENIX suite

    SciTech Connect

    Terwilliger, Thomas C; Zwart, Peter H; Afonine, Pavel V; Grosse - Kunstleve, Ralf W

    2008-01-01

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  2. Automated Structure Solution with the PHENIX Suite

    SciTech Connect

    Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R.; McCoy, A.J.; McKee, Eric; Moriarty, Nigel; Read, Randy J.; Sacchettini, James C.; Sauter, Nicholas K.; Storoni, L.C.; Terwilliger, Tomas C.; Adams, Paul D.

    2008-06-09

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  3. PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures.

    PubMed

    Andrejasic, Miha; Praaenikar, Jure; Turk, Dusan

    2008-11-01

    The number and variety of macromolecular structures in complex with ;hetero' ligands is growing. The need for rapid delivery of correct geometric parameters for their refinement, which is often crucial for understanding the biological relevance of the structure, is growing correspondingly. The current standard for describing protein structures is the Engh-Huber parameter set. It is an expert data set resulting from selection and analysis of the crystal structures gathered in the Cambridge Structural Database (CSD). Clearly, such a manual approach cannot be applied to the vast and ever-growing number of chemical compounds. Therefore, a database, named PURY, of geometric parameters of chemical compounds has been developed, together with a server that accesses it. PURY is a compilation of the whole CSD. It contains lists of atom classes and bonds connecting them, as well as angle, chirality, planarity and conformation parameters. The current compilation is based on CSD 5.28 and contains 1978 atom classes and 32,702 bonding, 237,068 angle, 201,860 dihedral and 64,193 improper geometric restraints. Analysis has confirmed that the restraints from the PURY database are suitable for use in macromolecular crystal structure refinement and should be of value to the crystallographic community. The database can be accessed through the web server http://pury.ijs.si/, which creates topology and parameter files from deposited coordinates in suitable forms for the refinement programs MAIN, CNS and REFMAC. In the near future, the server will move to the CSD website http://pury.ccdc.cam.ac.uk/. PMID:19020347

  4. Macromolecular conformation in solution. Study of carbonic anhydrase by the positron annihilation technique.

    PubMed Central

    Handel, E D; Graf, G; Glass, J C

    1980-01-01

    The structural features of carbonic anhydrase (carbonate hydro-lyase; EC 4.2.1.1) in aqueous solution were probed by the positron annihilation technique. The data obtained under varying conditions of temperature, pH, and enzyme concentration were interpreted in terms of the free volume model. The change of enzymic activity with temperature is accompanied by a change in free volume of the protein. Upon thermal denaturation an irreversible change in free volume of the molecule occurred. At low temperatures the protein-water interactions were investigated. These results are discussed in terms of current concepts of structure-function relationships in proteins. This study shows the sensitivity of the positron annihilation method toward the structure of proteins related to their overall conformation and to the nature of bound water. PMID:6789901

  5. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  6. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution.

    PubMed

    Patel, Trushar R; Winzor, Donald J; Scott, David J

    2016-02-15

    Analytical ultracentrifugation, an early technique developed for characterizing quantitatively the solution properties of macromolecules, remains a powerful aid to structural biologists in their quest to understand the formation of biologically important protein complexes at the molecular level. Treatment of the basic tenets of the sedimentation velocity and sedimentation equilibrium variants of analytical ultracentrifugation is followed by considerations of the roles that it, in conjunction with other physicochemical procedures, has played in resolving problems encountered in the delineation of complex formation for three biological systems - the cytoplasmic dynein complex, mitogen-activated protein kinase (ERK2) self-interaction, and the terminal catalytic complex in selenocysteine synthesis. PMID:26555086

  7. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy

    NASA Astrophysics Data System (ADS)

    Brown, R. Malcom; Millard, Andrew C.; Campagnola, Paul J.

    2003-11-01

    The macromolecular structure of purified cellulose samples is studied by second-harmonic generation (SHG) imaging microscopy. We show that the SHG contrast in both Valonia and Acetobacter cellulose strongly resembles that of collagen from animal tissues, both in terms of morphology and polarization anisotropy. Polarization analysis shows that microfibrils in each lamella are highly aligned and ordered and change directions by 90° in adjacent lamellae. The angular dependence of the SHG intensity fits well to a cos2 θ distribution, which is characteristic of the electric dipole interaction. Enzymatic degradation of Valonia fibers by cellulase is followed in real time by SHG imaging and results in exponential decay kinetics, showing that SHG imaging microscopy is ideal for monitoring dynamics in biological systems.

  8. Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement

    PubMed Central

    Headd, Jeffrey J.; Echols, Nathaniel; Afonine, Pavel V.; Moriarty, Nigel W.; Gildea, Richard J.; Adams, Paul D.

    2014-01-01

    One of the great challenges in refining macromolecular crystal structures is a low data-to-parameter ratio. Historically, knowledge from chemistry has been used to help to improve this ratio. When a macromolecule crystallizes with more than one copy in the asymmetric unit, the noncrystallographic symmetry relationships can be exploited to provide additional restraints when refining the working model. However, although globally similar, NCS-related chains often have local differences. To allow for local differences between NCS-related molecules, flexible torsion-based NCS restraints have been introduced, coupled with intelligent rotamer handling for protein chains, and are available in phenix.refine for refinement of models at all resolutions. PMID:24816103

  9. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  10. Biological Macromolecular Structures Data from the RCSB Protein Data Bank (RCSB PDB)

    DOE Data Explorer

    The Research Collaboratory for Structural Bioinformatics (RCSB) is a non-profit consortium that works to improve understanding of the function of biological systems through the study of the 3-D structure of biological macromolecules. The RCSB PDB is one of three sites serving as deposition, data processing, and distribution sites of the Protein Data Bank Archive. Each site provides its own view of the primary data, thus providing a variety of tools and resources for the global community. RCSB is also the official keeper for the PDB archive, with sole access authority to the PDB archive directory structure and contents. The RCSB PDB Information Portal for Biological Macromolecular Structures offers online tools for search and retrieval, for visualizing structures, for depositing, validating, or downloading data, news and highlights, a discussion forum, and links to other areas of related research. The PDB archive is a repository of atomic coordinates and other information describing proteins and other important biological macromolecules. Structural biologists use methods such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy to determine the location of each atom relative to each other in the molecule. They then deposit this information, which is then annotated and publicly released into the archive by the wwPDB. Results can be viewed as 3-D images or models.

  11. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGESBeta

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  12. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  13. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    PubMed Central

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-01-01

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering. PMID:25945580

  14. X-ray Footprinting at Beamline X28C: A National Resource for Studying Macromolecular Structure and Dynamics

    SciTech Connect

    D'Mello, R.; Gupta, S; Bohen, J; Abel, D; Toomey, J; Sullivan, M; Chance, M

    2009-01-01

    X-ray footprinting employs intense X-rays produced by synchrotron radiation to generate hydroxyl radicals in solution on microseconds-milliseconds timescales. These hydroxyls radicals undergo stable reaction with solvent accessible sites of macromolecule and produce covalent modifications, which are appropriate to probing macromolecule dynamics under physiological condition. For nucleic acids, one analyzes the pattern of fragments after X-ray exposure by gel electrophoresis; the protected sections that are not cleaved yield a 'footprint'. For proteins, the exposed samples are digested with proteases and analyzed by liquid chromatography- and tandem-mass spectrometry to determine the extent and sites of modification. The data provide detailed structural information to map tertiary contacts of macromolecular interactions, which can subsequently be used as constraints for molecular modeling to generate high-resolution structures. This method is unique in providing 'local' structural information in solution for gaining insight into dynamic processes involving, large RNA-protein and protein-protein assemblies on biologically relevant timescales. The method also can uniquely probe the 'local' structure of large complexes poised at equilibrium for functional states of interest, and has been extended to in vivo studies. Beamline X28C is located at the National Synchrotron Light Source of Brookhaven National Laboratory. An expanding set of user groups utilize this national resource funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. The facility is operated by the Center for Synchrotron Biosciences and the Center for Proteomics and Bioinformatics of Case Western Reserve University. The facility supports both onsite and offsite user access. Beam time is allocated online through peer reviewed user proposal system. Examples of recent research projects are provided.

  15. The structural biology center at the APS: an integrated user facility for macromolecular crystallography

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Westbrook, E. M.

    1997-07-01

    The Structural Biology Center (SBC) has developed and operates a sector (undulator and bending magnet) of the APS as a user facility for macromolecular crystallography. Crystallographically determined structures of proteins, nucleic acids and their complexes with proteins, viruses, and complexes between macromolecules and small ligands have become of central importance in molecular and cellular biology. Major design goals were to make the extremely high brilliance of the APS available for brilliance limited studies, and to achieve a high throughput of less demanding studies, as well as optimization for MAS-phasing. Crystal samples will include extremely small crystals, crystals with large unit cells (viruses, ribosomes, etc.) and ensembles of closely similar crystal structures for drug design, protein engineering, etc. Data are recorded on a 3000×3000 pixel CCD-area detector (optionally on image plates). The x-ray optics of both beamlines has been designed to produce a highly demagnified image of the source in order to match the focal size with the sizes of the sample and the resolution element of the detector. Vertical focusing is achieved by a flat, cylindrically bent mirror. Horizontal focusing is achieved by sagitally bending the second crystal of the double crystal monochromator. Monochromatic fluxes of 1.3*1013 ph/s into focal sizes of 0.08 mm (horizontal)×0.04 mm (vertical) FWHM (flux density 3.5*1015 ph/s/mm2) have been recorded.

  16. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    SciTech Connect

    Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee; Stoica, Alexandru Dan; Crow, Lowell; Kovalevskyi, Andrii Y; Koritsanszky, Tibor S; Chakoumakos, Bryan C; Blessing, Robert; Meilleur, Flora

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3 and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.

  17. Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood.

    PubMed

    Pinto, Paula C; Evtuguin, Dmitry V; Pascoal Neto, Carlos

    2005-10-01

    The wood of Acacia mangium, a prominent fast-growing plantation species used in the pulp-and-paper industry and, so far, poorly investigated for its chemical structure, was submitted to a detailed characterization of its main macromolecular components. Lignin (28% wood weight) isolated by mild acidolysis and characterized by permanganate oxidation, 1H and 13C NMR, and GPC, showed a very low content of syringylpropane-derived units (S:G:H of 48:49:3), a high degree of condensation, a low content of beta-O-4 ( approximately 0.40-0.43 per C6) structures, and a Mw of 2230. Glucuronoxylan (14% wood weight) isolated by alkaline (KOH) or by dimethyl sulfoxide extraction was characterized by methylation analysis, 1H NMR, and GPC. About 10% of the xylopyranose (Xylp) units constituting the linear backbone were substituted at O-2 with 4-O-methylglucuronic acid residues. Almost half of the Xylp units (45%) were O-2 (18%), O-3 (24%) or O-2,3 (3%) acetylated. X-ray diffraction analysis of cellulose (46% wood weight), isolated according to the Kürschner-Hoffer method, showed a degree of crystallinity of 67.6%. PMID:16190642

  18. MACROMOLECULAR THERAPEUTICS

    PubMed Central

    Yang, Jiyuan; Kopeček, Jindřich

    2014-01-01

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines – (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. PMID:24747162

  19. In situ macromolecular crystallography using microbeams

    PubMed Central

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. PMID:22525757

  20. Complexation of Statins with β-Cyclodextrin in Solutions of Small Molecular Additives and Macromolecular Colloids

    NASA Astrophysics Data System (ADS)

    Süle, András; Csempesz, Ferenc

    The solubility of lovastatin and simvastatin (inevitable drugs in the management of cardiovascular diseases) was studied by phase-solubility measurements in multicomponent colloidal and non-colloidal media. Complexation in aqueous solutions of the highly lipophilic statins with β-cyclodextrin (β-CD) in the absence and the presence of dissolved polyvinyl pyrrolidone, its monomeric compound, tartaric acid and urea, respectively, were investigated. For the characterization of the CD-statin inclusion complexes, stability constants for the associates have been calculated.

  1. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    SciTech Connect

    Pražnikar, Jure; Turk, Dušan

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. They utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.

  2. Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes.

    PubMed

    Marrero-Ponce, Yovani; Contreras-Torres, Ernesto; García-Jacas, César R; Barigye, Stephen J; Cubillán, Néstor; Alvarado, Ysaías J

    2015-06-01

    In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝ(n) space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝ(n) space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragments of interest in proteins. On the other hand, with the objective of taking into account specific interactions among amino acids in global or local indices, geometric and topological cut-offs are defined. To assess the utility of global and local indices a classification model for the prediction of the major four protein structural classes, was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, respectively. The obtained model showed high values of the generalized square correlation coefficient (GC(2)) on both the training and test series. The statistical parameters derived from the internal and external validation procedures demonstrate the robustness, stability and the high predictive power of the proposed model. The performance of the LDA-model demonstrates the capability of the proposed indices not only to codify relevant biochemical information related to the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that the current method will benefit the prediction of other protein attributes or functions. PMID:25843214

  3. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  4. NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions

    NASA Technical Reports Server (NTRS)

    Addad, J. P. C.

    1983-01-01

    The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.

  5. Mechanism of helix induction in poly(4-carboxyphenyl isocyanide) with chiral amines and memory of the macromolecular helicity and its helical structures.

    PubMed

    Hase, Yoko; Nagai, Kanji; Iida, Hiroki; Maeda, Katsuhiro; Ochi, Noriaki; Sawabe, Kyoichi; Sakajiri, Koichi; Okoshi, Kento; Yashima, Eiji

    2009-08-01

    An optically inactive poly(4-carboxyphenyl isocyanide) (poly-1-H) changed its structure into the prevailing, one-handed helical structure upon complexation with optically active amines in dimethylsulfoxide (DMSO) and water, and the complexes show a characteristic induced circular dichroism in the polymer backbone region. Moreover, the macromolecular helicity induced in water and aqueous organic solutions containing more than 50 vol % water could be "memorized" even after complete removal of the chiral amines (h-poly-1b-H), while that induced in DMSO and DMSO-water mixtures containing less than 30 vol % water could not maintain the optical activity after removal of the chiral amines (poly-1a-H). We now report fully detailed studies of the helix induction mechanism with chiral amines and the memory of the macromolecular helicity in water and a DMSO-water mixture by various spectroscopic measurements, theoretical calculations, and persistence length measurements together with X-ray diffraction (XRD) measurements. From the spectroscopic results, such as circular dichroism (CD), absorption, IR, vibrational CD, and NMR of poly-1a-H, h-poly-1b-H, and original poly-1-H, we concluded that the specific configurational isomerization around the C horizontal lineN double bonds occurs during the helicity induction process in each solvent. In order to obtain the structural information, XRD measurements were done on the uniaxially oriented films of the corresponding methyl esters (poly-1-Me, poly-1a-Me, and h-poly-1b-Me) prepared from their liquid crystalline polymer solutions. On the basis of the XRD analyses, the most plausible helical structure of poly-1a-Me was proposed to be a 9-unit/5-turn helix with two monomer units as a repeating unit, and that of h-poly-1b-Me was proposed to be a 10-unit/3-turn helix consisting of one repeating monomer unit. The density functional theory calculations of poly(phenyl isocyanide), a model polymer of h-poly-1b-Me, afforded a 7-unit/2-turn

  6. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures

    PubMed Central

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2015-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now exceeds 45 000, with the vast majority determined using crystallographic methods. Thousands of studies describing such structures have been published in the scientific literature, and 14 Nobel prizes in chemistry or medicine have been awarded to protein crystallographers. As important as these structures are for understanding the processes that take place in living organisms and also for practical applications such as drug design, many non-crystallographers still have problems with critical evaluation of the structural literature data. This review attempts to provide a brief outline of technical aspects of crystallography and to explain the meaning of some parameters that should be evaluated by users of macromolecular structures in order to interpret, but not over-interpret, the information present in the coordinate files and in their description. A discussion of the extent of the information that can be gleaned from the coordinates of structures solved at different resolution, as well as problems and pitfalls encountered in structure determination and interpretation are also covered. PMID:18034855

  7. Hierarchical amplification of macromolecular helicity of dynamic helical poly(phenylacetylene)s composed of chiral and achiral phenylacetylenes in dilute solution, liquid crystal, and two-dimensional crystal.

    PubMed

    Ohsawa, Sousuke; Sakurai, Shin-ichiro; Nagai, Kanji; Banno, Motonori; Maeda, Katsuhiro; Kumaki, Jiro; Yashima, Eiji

    2011-01-12

    Optically active poly(phenylacetylene) copolymers consisting of optically active and achiral phenylacetylenes bearing L-alanine decyl esters (1L) and 2-aminoisobutylic acid decyl esters (Aib) as the pendant groups (poly(1L(m)-co-Aib(n))) with various compositions were synthesized by the copolymerization of the optically active 1L with achiral Aib using a rhodium catalyst, and their chiral amplification of the macromolecular helicity in a dilute solution, a lyotropic liquid crystalline (LC) state, and a two-dimensional (2D) crystal on the substrate was investigated by measuring the circular dichroism of the copolymers, mesoscopic cholesteric twist in the LC state (cholesteric helical pitch), and high-resolution atomic force microscopy (AFM) images of the self-assembled 2D helix-bundles of the copolymer chains. We found that the macromolecular helicity of poly(1L(m)-co-Aib(n))s could be hierarchically amplified in the order of the dilute solution, LC state, and 2D crystal. In sharp contrast, almost no chiral amplification of the macromolecular helicity was observed for the homopolymer mixtures of 1L and Aib in the LC state and 2D crystal on graphite. PMID:21141965

  8. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy.

    PubMed

    Stark, Holger; Chari, Ashwin

    2016-02-01

    Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination. PMID:26671943

  9. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  10. Teaching Structure: Student Use of Software Tools for Understanding Macromolecular Structure in an Undergraduate Biochemistry Course

    ERIC Educational Resources Information Center

    Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…

  11. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-01-01

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge. PMID:24786694

  12. Radiation damage and derivatization in macromolecular crystallography: a structure factor’s perspective

    PubMed Central

    Owen, Robin L.; Sherrell, Darren A.

    2016-01-01

    During, or even after, data collection the presence and effects of radiation damage in macromolecular crystallography may not always be immediately obvious. Despite this, radiation damage is almost always present, with site-specific damage occurring on very short time (dose) scales well before global damage becomes apparent. A result of both site-specific radiation damage and derivatization is a change in the relative intensity of reflections. The size and approximate rate of onset of X-ray-induced transformations is compared with the changes expected from derivatization, and strategies for minimizing radiation damage are discussed. PMID:26960125

  13. Mass spectrometric methods to analyze the structural organization of macromolecular complexes.

    PubMed

    Rajabi, Khadijeh; Ashcroft, Alison E; Radford, Sheena E

    2015-11-01

    With the development of soft ionization techniques such as electrospray ionization (ESI), mass spectrometry (MS) has found widespread application in structural biology. The ability to transfer large biomolecular complexes intact into the gas-phase, combined with the low sample consumption and high sensitivity of MS, has made ESI-MS a method of choice for the characterization of macromolecules. This paper describes the application of MS to study large non-covalent complexes. We categorize the available techniques in two groups. First, solution-based techniques in which the biomolecules are labeled in solution and subsequently characterized by MS. Three MS-based techniques are discussed, namely hydroxyl radical footprinting, cross-linking and hydrogen/deuterium exchange (HDX) MS. In the second group, MS-based techniques to probe intact biomolecules in the gas-phase, e.g. side-chain microsolvation, HDX and ion mobility spectrometry are discussed. Together, the approaches place MS as a powerful methodology for an ever growing plethora of structural applications. PMID:25782628

  14. Macromolecular Crowding Effects on Two Homologs of Ribosomal Protein S16: Protein-Dependent Structural Changes and Local Interactions

    PubMed Central

    Mikaelsson, Therese; Ådén, Jörgen; Wittung-Stafshede, Pernilla; Johansson, Lennart B.-Å.

    2014-01-01

    Proteins function in cellular environments that are crowded with biomolecules, and in this reduced available space, their biophysical properties may differ from those observed in dilute solutions in vitro. Here, we investigated the effects of a synthetic macromolecular crowding agent, dextran 20, on the folded states of hyperthermophilic (S16Thermo) and mesophilic (S16Meso) homologs of the ribosomal protein S16. As expected for an excluded-volume effect, the resistance of the mesophilic protein to heat-induced unfolding increased in the presence of dextran 20, and chemical denaturation experiments at different fixed temperatures showed the macromolecular crowding effect to be temperature-independent. Förster resonance energy transfer experiments show that intramolecular distances between an intrinsic Trp residue and BODIPY-labeled S16Meso depend on the level of the crowding agent. The BODIPY group was attached at three specific positions in S16Meso, allowing measurements of three intraprotein distances. All S16Meso variants exhibited a decrease in the average Trp-BODIPY distance at up to 100 mg/mL dextran 20, whereas the changes in distance became anisotropic (one distance increased, two distances decreased) at higher dextran concentrations. In contrast, the two S16Thermo mutants did not show any changes in Trp-BODIPY distances upon increase of dextran 20 concentrations. It should be noted that the fluorescence quantum yields and lifetimes of BODIPY attached to the two S16 homologs decreased gradually in the presence of dextran 20. To investigate the origin of this decrease, we studied the BODIPY quantum yield in three protein variants in the presence of a tyrosine-labeled dextran. The experiments revealed distinct tyrosine quenching behaviors of BODIPY in the three variants, suggesting a dynamic local interaction between dextran and one particular S16 variant. PMID:25028882

  15. Macromolecular changes and nano-structural arrangements in gliadin and glutenin films upon chemical modification: Relation to functionality.

    PubMed

    Rasheed, Faiza; Newson, William R; Plivelic, Tomás S; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2015-08-01

    Protein macromolecules adopted for biological and bio-based material functions are known to develop a structured protein network upon chemical modification. In this study, we aimed to evaluate the impact of chemical additives such as, NaOH, NH4OH and salicylic acid (SA), on the secondary and nano-structural transitions of wheat proteins. Further, the effect of chemically induced modifications in protein macromolecular structure was anticipated in relation to functional properties. The gliadin-NH4OH-SA film showed a supramolecular protein organization into hexagonal structures with 65 Å lattice parameter, and other not previously observed structural entities having a characteristic distance of 50 Å. Proteins in gliadin-NH4OH-SA films were highly polymerized, with increased amount of disulfide crosslinks and β-sheets, causing improved strength and stiffness. Glutenin and WG proteins with NH4OH-SA showed extensive aggregation and an increase in β-sheet content together with irreversible crosslinks. Irreversible crosslinks hindered a high order structure formation in glutenins, and this resulted in films with only moderately improved stiffness. Thus, formation of nano-hierarchical structures based on β-sheets and disulfide crosslinks are the major reasons of high strength and stiffness in wheat protein based films. PMID:25936284

  16. Role of the XPA protein in the NER pathway: A perspective on the function of structural disorder in macromolecular assembly.

    PubMed

    Fadda, Elisa

    2016-01-01

    Lack of structure is often an essential functional feature of protein domains. The coordination of macromolecular assemblies in DNA repair pathways is yet another task disordered protein regions are highly implicated in. Here I review the available experimental and computational data and within this context discuss the functional role of structure and disorder in one of the essential scaffolding proteins in the nucleotide excision repair (NER) pathway, namely Xeroderma pigmentosum complementation group A (XPA). From the analysis of the current knowledge, in addition to protein-protein docking and secondary structure prediction results presented for the first time herein, a mechanistic framework emerges, where XPA builds the NER pre-incision complex in a modular fashion, as "beads on a string", where the protein-protein interaction "beads", or modules, are interconnected by disordered link regions. This architecture is ideal to avoid the expected steric hindrance constraints of the DNA expanded bubble. Finally, the role of the XPA structural disorder in binding affinity modulation and in the sequential binding of NER core factors in the pre-incision complex is also discussed. PMID:26865925

  17. Macromolecular Crowding Modulates Actomyosin Kinetics.

    PubMed

    Ge, Jinghua; Bouriyaphone, Sherry D; Serebrennikova, Tamara A; Astashkin, Andrei V; Nesmelov, Yuri E

    2016-07-12

    Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase. PMID:27410745

  18. Statistical mechanics of macromolecular complexation

    NASA Astrophysics Data System (ADS)

    Nakamura, Issei

    The self-assembly of macromolecules through molecular association has attracted long-standing attention in soft-condensed matter physics. The hierarchical formation from small-scale building blocks into larger-scale complex structures often leads to very rich phase behavior controlled by various ambient conditions. The understanding and control of the phase behavior of self-assembling systems require detailed knowledge about the entropy and enthalpy contributions to the free energy of the system. However, this knowledge is limited at the present time because a comprehensive theoretical description of molecular association is still lacking. In this thesis, four tales of achievements in developing theories of macromolecular complexation are presented. (1) We begin with an analytically solvable model of the self-assembly of rigid macromolecules with surface adsorption. A generic understanding of the driving force and the role of entropy is obtained from the exact solutions. (2) We move on to further development of the theory in order to study the complexation between polymers and ionic molecules. The extension of the first model to chain-like molecules is performed using a well-established method in polymer physics, the self-consistent field theory (SCFT) of polymers. We also discuss gelation in this system within the scope of mean-filed approximations. (3) Then, a ladder-like polymer-polymer complexation is studied. Unconventional phase diagrams are predicted from the modified SCFT, indicating a large effect of variations in entropy due to the complexation on bulk properties. (4) Finally, the kinetic aspect of macromolecular binding reactions is discussed.

  19. Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures.

    PubMed

    Phinney, Brett S; Thelen, Jay J

    2005-01-01

    Proteomic analysis of a Triton X-100 insoluble, 30,000 x g pellet from purified pea chloroplasts resulted in the identification of 179 nonredundant proteins. This chloroplast fraction was mostly depleted of chloroplast membranes since only 23% and 9% of the identified proteins were also observed in envelope and thylakoid membranes, respectively. One of the most abundant proteins in this fraction was sulfite reductase, a dual function protein previously shown to act as a plastid DNA condensing protein. Approximately 35 other proteins known (or predicted) to be associated with high-density protein-nucleic acid particles (nucleoids) were also identified including a family of DNA gyrases, as well as proteins involved in plastid transcription and translation. Although nucleoids appeared to be the predominant component of 30k x g Triton-insoluble chloroplast preparations, multi-enzyme protein complexes were also present including each subunit to the pyruvate dehydrogenase and acetyl-CoA carboxylase multi-enzyme complexes, as well as a proposed assembly of the first three enzymes of the Calvin cycle. Approximately 18% of the proteins identified were annonated as unknown or hypothetical proteins and another 20% contained "putative" or "like" in the identifier tag. This is the first proteomic characterization of a membrane-depleted, high-density fraction from plastids and demonstrates the utility of this simple procedure to isolate intact macromolecular structures from purified organelles for analysis of protein-protein and protein-nucleic acid interactions. PMID:15822927

  20. WebFEATURE: An interactive web tool for identifying and visualizing functional sites on macromolecular structures.

    PubMed

    Liang, Mike P; Banatao, D Rey; Klein, Teri E; Brutlag, Douglas L; Altman, Russ B

    2003-07-01

    WebFEATURE (http://feature.stanford.edu/webfeature/) is a web-accessible structural analysis tool that allows users to scan query structures for functional sites in both proteins and nucleic acids. WebFEATURE is the public interface to the scanning algorithm of the FEATURE package, a supervised learning algorithm for creating and identifying 3D, physicochemical motifs in molecular structures. Given an input structure or Protein Data Bank identifier (PDB ID), and a statistical model of a functional site, WebFEATURE will return rank-scored 'hits' in 3D space that identify regions in the structure where similar distributions of physicochemical properties occur relative to the site model. Users can visualize and interactively manipulate scored hits and the query structure in web browsers that support the Chime plug-in. Alternatively, results can be downloaded and visualized through other freely available molecular modeling tools, like RasMol, PyMOL and Chimera. A major application of WebFEATURE is in rapid annotation of function to structures in the context of structural genomics. PMID:12824318

  1. Structural Studies on Membrane Proteins and Biological Macromolecular Assemblies in Japan

    NASA Astrophysics Data System (ADS)

    Tsukihara, Tomitake

    Structural studies on membrane proteins have been performed at atomic level by both three-dimensional X-ray crystallography and two-dimensional electron crystallography in Japan as in Europe and Unites States. More than 13 membrane protein structures were elucidate by X-ray method in our country, and seven membrane protein structures were determined by cryo-electron microscopic method developed by Fujiyoshi of Kyoto University. Extensive crystallographic studies on calcium pump and cytochrome c oxidase elucidated their functional mechanisms at atomic level. Structure and switching mechanism of a flagellum were studied by X-ray and electron microscopic methods. Vault structure exhibiting D39 symmetry was determined by X-ray method.

  2. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  3. Comprehensive objective maps of macromolecular conformations by quantitative SAXS analysis

    PubMed Central

    Hura, Greg L.; Budworth, Helen; Dyer, Kevin N.; Rambo, Robert P.; Hammel, Michal

    2013-01-01

    Comprehensive perspectives of macromolecular conformations are required to connect structure to biology. Here we present a small angle X-ray scattering (SAXS) Structural Similarity Map (SSM) and Volatility of Ratio (VR) metric providing comprehensive, quantitative and objective (superposition-independent) perspectives on solution state conformations. We validate VR and SSM utility on human MutSβ, a key ABC ATPase and chemotherapeutic target, by revealing MutSβ DNA sculpting and identifying multiple conformational states for biological activity. PMID:23624664

  4. Teaching macromolecular modeling.

    PubMed

    Harvey, S C; Tan, R K

    1992-12-01

    Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods. PMID:1489919

  5. Finding non-crystallographic symmetry in density maps of macromolecular structures.

    PubMed

    Terwilliger, Thomas C

    2013-09-01

    The internal symmetry of a macromolecule is both an important aspect of its function and a useful feature in obtaining a structure by X-ray crystallography and other techniques. A method is presented for finding internal symmetry and other non-crystallographic symmetry in a structure based on patterns of density in a density map for that structure. Regions in map that are similar are identified by cutting out a sphere of density from a region that has high local variation and using an FFT-based correlation search to find other regions that match. The relationships among correlated regions are then refined to maximize their correlations and are found to accurately represent non-crystallographic symmetry in the map. PMID:23881095

  6. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining

    PubMed Central

    Dauter, Zbigniew; Wlodawer, Alexander; Minor, Wladek; Jaskolski, Mariusz; Rupp, Bernhard

    2014-01-01

    Whereas the vast majority of the more than 85 000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available), have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely necessary safeguarding

  7. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining.

    PubMed

    Dauter, Zbigniew; Wlodawer, Alexander; Minor, Wladek; Jaskolski, Mariusz; Rupp, Bernhard

    2014-05-01

    Whereas the vast majority of the more than 85 000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available), have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely necessary safeguarding

  8. Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures

    PubMed Central

    Ren, Zhong; Šrajer, Vukica; Knapp, James E.; Royer, William E.

    2012-01-01

    Here we present a meta-analysis of a large collection of static structures of a protein in the Protein Data Bank in order to extract the progression of structural events during protein function. We apply this strategy to the homodimeric hemoglobin HbI from Scapharca inaequivalvis. We derive a simple dynamic model describing how binding of the first ligand in one of the two chemically identical subunits facilitates a second binding event in the other partner subunit. The results of our ultrafast time-resolved crystallographic studies support this model. We demonstrate that HbI functions like a homodimeric mechanical device, such as pliers or scissors. Ligand-induced motion originating in one subunit is transmitted to the other via conserved pivot points, where the E and F′ helices from two partner subunits are “bolted” together to form a stable dimer interface permitting slight relative rotation but preventing sliding. PMID:22171006

  9. Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures

    SciTech Connect

    Ren, Zhong; Šrajer, Vukica; Knapp, James E.; Royer, Jr., William E.

    2013-04-08

    Here we present a meta-analysis of a large collection of static structures of a protein in the Protein Data Bank in order to extract the progression of structural events during protein function. We apply this strategy to the homodimeric hemoglobin HbI from Scapharca inaequivalvis. We derive a simple dynamic model describing how binding of the first ligand in one of the two chemically identical subunits facilitates a second binding event in the other partner subunit. The results of our ultrafast time-resolved crystallographic studies support this model. We demonstrate that HbI functions like a homodimeric mechanical device, such as pliers or scissors. Ligand-induced motion originating in one subunit is transmitted to the other via conserved pivot points, where the E and F' helices from two partner subunits are 'bolted' together to form a stable dimer interface permitting slight relative rotation but preventing sliding.

  10. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation

    PubMed Central

    Adilakshmi, Tadepalli; Lease, Richard A.; Woodson, Sarah A.

    2006-01-01

    We used a high flux synchrotron X-ray beam to map the structure of 16S rRNA and RNase P in viable bacteria in situ. A 300 ms exposure to the X-ray beam was sufficient for optimal cleavage of the phosphodiester backbone. The in vivo footprints of the 16S rRNA in frozen cells were similar to those obtained in vitro and were consistent with the predicted accessibility of the RNA backbone to hydroxyl radical. Protection or enhanced cleavage of certain nucleotides in vivo can be explained by interactions with tRNA and perturbation of the subunit interface. Thus, short exposures to a synchrotron X-ray beam can footprint the tertiary structure and protein contacts of RNA–protein complexes with nucleotide resolution in living cells. PMID:16682443

  11. Macromolecular recognition: Structural aspects of the origin of the genetic system

    NASA Technical Reports Server (NTRS)

    Rein, Robert; Sokalski, W. Andrzej; Barak, Dov; Luo, Ning; Zielinski, Theresa Julia; Shibata, Masayuki

    1991-01-01

    Theoretical simulation of prebiotic chemical processes is an invaluable tool for probing the phenomenon of the evolution of life. Using computational and modeling techniques and guided by analogies from present day systems, we seek to understand the emergence of the genetic apparatus, enzymatic catalysis and protein synthesis under prebiotic conditions. Modeling of the ancestral aminoacyl-tRNA-synthetases (aRS) may provide important clues to the emergence of the genetic code and the protein synthetic machinery. The minimal structural requirements for the catalysis of tRNA aminoacylation are being explored. A formation of an aminoacyl adenylate was studied in the framework of ab initio molecular orbital theory. The role of individual residues in the vicinity of the TyrRS active site was examined, and the effect of all possible amino acids substitutions near the active site was examined. A formation of aminoacyl tRNA was studied by the molecular modeling system SYBYL with the high resolution crystallographic structures of the present day tRNA, aRS's complexes. The ultimate goal is to propose a simple RNA segment that is small enough to be build in the primordial chemical environment but maintains the specificity and catalytic activity of the contemporary RNA enzyme. To understand the mechanism of ribozyme catalyzed reactions, ab initio and semi-empirical (ZINDO) programs were used to investigate the reaction path of transphosphorylation. A special emphasis was placed on the possible catalytic and structural roles played by the coordinated magnesium cation. Both the inline and adjacent mechanisms of transphosphorylation were studied. The structural characteristics of the target helices, particularly a possible role for the G-T pair, is also studied by a molecular dynamics (MD) simulation technique.

  12. NaOH treatment of chitosan films: Impact on macromolecular structure and film properties.

    PubMed

    Takara, E A; Marchese, J; Ochoa, N A

    2015-11-01

    In this paper, we examine the significance of treatment with NaOH on chitosan (CH) film structure to obtain biodegradable materials for several applications. In order to determine the structure of the films, an analysis based on SEM, FTIR spectroscopy and X-ray diffraction data was performed. In addition, the consequences of this treatment were evaluated by swelling index measurements and mechanical testing. As result of FTIR and X-ray analysis, three effects were identified: the deprotonation and phosphate extraction, which allowed new hydrogen bonds to form, and a higher CH deacetylation. These studies also revealed that two hydrated and anhydrous polymorphs were present in the CH-NaOH films. Moreover, the new hydrogen bond and the reduction of N-acetyl groups produced films with a more compact and disordered structure, reducing their swelling characteristics and increasing their brittleness. The introduction of a mild NaOH treatment is a versatile tool to obtain chitosan films with interesting and tunable properties. PMID:26256320

  13. Testing of the structure of macromolecular polymer films containing solid active pharmaceutical ingredient (API) particles

    NASA Astrophysics Data System (ADS)

    Bölcskei, É.; Süvegh, K.; Marek, T.; Regdon, G.; Pintye-Hódi, K.

    2011-07-01

    The aim of the present study was to investigate the structure of free films of Eudragit ® L 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration. Films containing 5% of the API exhibited a different behavior during storage (17 °C, 65% relative humidity (RH)) in consequence of the uptake of water from the air.

  14. Macromolecular recognition: Structural aspects of the origin of the genetic system

    NASA Technical Reports Server (NTRS)

    Rein, Robert; Barak, Dov; Luo, Ning; Zielinski, Theresa Julia; Shibata, Masayuki

    1991-01-01

    Theoretical simulation of prebiotic chemical processes is an invaluable tool for probing the phenomenon of evolution of life. Using computational and modeling techniques and guided by analogies from present day systems we, seek to understand the emergence of genetic apparatus, enzymatic catalysis and protein synthesis under prebiotic conditions. In one possible scenario, the RNA enzymatic reaction plays a key role in the emergence of the self-replicating and offers a clue to the onset of enzymatic catalysis prior to the existence of the protein biosynthetic machinery. Our ultimate goal is to propose a simple RNA segment which contains the specificity and catalytic activity of the contemporary RNA enzyme and which could emerge in a primordial chemical environment. To understand the mechanism of ribozyme catalyzed reactions, ab initio and semi-empirical (ZINDO) programs were used to investigate the reaction path of transphosphorylation. A special emphasis was placed on the possible catalytic and structural roles played by the coordinated magnesium cation. Both the inline and adjacent mechanisms of transphosphorylation have been studied. Another important aspect of this reaction is the identity of the functional groups which are essential for the acid base catalysis. The structural characteristics of the target helices, particularly a possible role of G center dot T pair, is under examination by molecular dynamics (MD) simulation technique. Modeling of the ancestral aminoacyl-tRNA synthetases (aRS) may provide important clues to the emergence of the genetic code and the protein synthetic machinery. Assuming that the catalytic function evolved before the elements of specific recognition of a particular amino acid, we are exploring the minimal structural requirements for the catalysis of tRNA aminoacylation. The molecular modeling system SYBYL was used for this study based on the high resolution crystallographic structures of the present day tyrosyl-adenylate:tyrRS and

  15. Facilitating best practices in collecting anomalous scattering data for de novo structure solution at the ESRF Structural Biology Beamlines

    PubMed Central

    de Sanctis, Daniele; Oscarsson, Marcus; Popov, Alexander; Svensson, Olof; Leonard, Gordon

    2016-01-01

    The constant evolution of synchrotron structural biology beamlines, the viability of screening protein crystals for a wide range of heavy-atom derivatives, the advent of efficient protein labelling and the availability of automatic data-processing and structure-solution pipelines have combined to make de novo structure solution in macromolecular crystallography a less arduous task. Nevertheless, the collection of diffraction data of sufficient quality for experimental phasing is still a difficult and crucial step. Here, some examples of good data-collection practice for projects requiring experimental phasing are presented and recent developments at the ESRF Structural Biology beamlines that have facilitated these are illustrated. PMID:26960128

  16. Structure and property relations of macromolecular self-assemblies at interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Zhihao

    Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by

  17. Effects of macromolecular crowding on the structural stability of human α-lactalbumin.

    PubMed

    Zhang, De-Lin; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2012-08-01

    The folding of protein, an important process for protein to fulfill normal functions, takes place in crowded physiological environments. α-Lactalbumin, as a model system for protein-folding studies, has been used extensively because it can form stable molten globule states under a range of conditions. Here we report that the crowding agents Ficoll 70, dextran 70, and polyethylene glycol (PEG) 2000 have different effects on the structural stability of human α-lactalbumin (HLA) represented by the transition to a molten globule state: dextran 70 dramatically enhances the thermal stability of Ca(2+)-depleted HLA (apo-HLA) and Ficoll 70 enhances the thermal stability of apo-HLA to some extent, while PEG 2000 significantly decreases the thermal stability of apo-HLA. Ficoll 70 and dextran 70 have no obvious effects on trypsin degradation of apo-HLA but PEG 2000 accelerates apo-HLA degradation by trypsin and destabilizes the native conformation of apo-HLA. Furthermore, no interaction is observed between apo-HLA and Ficoll 70 or dextran 70, but a weak, non-specific interaction between the apo form of the protein and PEG 2000 is detected, and such a weak, non-specific interaction could overcome the excluded-volume effect of PEG 2000. Our data are consistent with the results of protein stability studies in cells and suggest that stabilizing excluded-volume effects of crowding agents can be ameliorated by non-specific interactions between proteins and crowders. PMID:22735492

  18. A Model for Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Macromolecular crystallization is a complex process. involving a system which typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only several well defined contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can often be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric single chain macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. Experimental evidence, based upon face growth rate, AFM, and fluorescence energy transfer data, for a postulated model of the nucleation of tetragonal lysozyme crystals and how it transitions into crystal growth will be presented.

  19. Emerging applications of small angle solution scattering in structural biology

    PubMed Central

    Chaudhuri, Barnali N

    2015-01-01

    Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu. PMID:25516491

  20. The nature and fate of natural resins in the geosphere. Part X{sup +ovr-}. Structural characteristics of the macromolecular constituents of modern Dammar resin and class II ambers.

    SciTech Connect

    Anderson, K. B.; Muntean, J. V.; Chemistry

    2000-01-01

    As part of a larger study of the structure and behavior of polyterpenoids in sedimentary systems, the structural characteristics of the macromolecular constituents of Dammar resin and a related Class II amber have been reinvestigated. The conclusions drawn from these analyses are inconsistent with the current widely held 'polycadinene' model for the macromolecular structure of these materials. Double bond characteristics observed by one and two dimensional NMR spectroscopy do not match those in the proposed 'polycadinene' structure. Based on these observations it is suggested that the proposed 'polycadinene' structure for these materials is inadequate and requires revision. Elemental and NMR data also suggest a significant contribution from functionalized monomers.

  1. Screening Outside the Catalytic Site: Inhibition of Macromolecular Inter-actions Through Structure-Based Virtual Ligand Screening Experiments

    PubMed Central

    Sperandio, Olivier; Miteva, Maria A; Segers, Kenneth; Nicolaes, Gerry A. F; Villoutreix, Bruno O

    2008-01-01

    During these last 15 years, drug discovery strategies have essentially focused on identifying small molecules able to inhibit catalytic sites. However, other mechanisms could be targeted. Protein-protein interactions play crucial roles in a number of biological processes, and, as such, their disruption or stabilization is becoming an area of intense activity. Along the same line, inhibition of protein-membrane could be of major importance in several disease indications. Despite the many challenges associated with the development of such classes of interaction modulators, there has been considerable success in the recent years. Importantly, through the existence of protein hot-spots and the presence of druggable pockets at the macromolecular interfaces or in their vicinities, it has been possible to find small molecule effectors using a variety of screening techniques, including combined virtual ligand-in vitro screening strategy. Indeed such in silico-in vitro protocols emerge as the method of choice to facilitate our quest of novel drug-like compounds or of mechanistic probes aiming at facilitating the understanding of molecular reactions involved in the Health and Disease process. In this review, we comment recent successes of combined in silico-in vitro screening methods applied to modulating macromolecular interactions with a special emphasis on protein-membrane interactions. PMID:18949072

  2. Myochrysine Solution Structure and Reactivity

    PubMed Central

    Jones, William B.; Zhao, Zheng; Dorsey, John G.; Tepperman, Katherine

    1994-01-01

    We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95°. The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 μM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine. The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)2]- and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (Kapp) for the reaction is 6×10-4M-1. Further reaction of [Au(CN)2]- with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL2]-. These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used for the study of gold

  3. What Macromolecular Crowding Can Do to a Protein

    PubMed Central

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  4. Visualizing Macromolecular Complexes with In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Wong, Peony C. K.; Chiu, Po-Lin; Dutrow, Gavin H.; Arslan, Ilke; Browning, Nigel D.

    2012-11-01

    A central focus of biological research is understanding the structure/function relationship of macromolecular protein complexes. Yet conventional transmission electron microscopy techniques are limited to static observations. Here we present the first direct images of purified macromolecular protein complexes using in situ liquid scanning transmission electron microscopy. Our results establish the capability of this technique for visualizing the interface between biology and nanotechnology with high fidelity while also probing the interactions of biomolecules within solution. This method represents an important advancement towards allowing future high-resolution observations of biological processes and conformational dynamics in real-time.

  5. Experimental Structural Studies of Solutes in Aqueous Solution

    SciTech Connect

    Persson, Ingmar

    2007-11-29

    The principles of experimental methods to study the structure and the hydrogen bonding of hydrated solutes in aqueous solution are presented, and whether theoretical simulations can produce comparable information as the experimental ones is discussed. Two structure methods, extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS), and one method to study the hydrogen bonding in hydrated species in aqueous solution, double difference infrared spectroscopy of HDO, are presented.

  6. Controlling the phase structures of polymer/surfactant complexes by changing macromolecular architecture and adding n-alcohols.

    PubMed

    Percebom, Ana Maria; Loh, Watson

    2016-03-15

    Phase behavior of complex salts formed by a cationic surfactant and different ethoxylated polyions was investigated in water and with addition of two n-alcohols of different chain lengths: n-butanol and n-decanol. The polyion possesses a main chain of methacrylic acid randomly grafted with oligo(ethylene oxide) chains. Strong electrostatic interaction between the anionic main chain and the cationic surfactant hexadecyltrimethylammonium (C16TA) leads to the formation of C16TAP(MA-MAEO(n)) x:y complex salts. Modifications in polyion structure, such as changes in the proportion of grafted comonomers and in the side chain length caused differences in the overall balance of interactions with water and n-alcohols, altering the complex salt solubility and, consequently, the formed liquid-crystalline structures. The role of n-decanol as a cosurfactant was verified, but the hydrophilic side chains expanded the capacity of the formed liquid crystalline phases to incorporate water. Additionally, a novel structure, probably cubic bicontinuous (Pn3m), was observed coexisting with lamellar phases at low water concentration. Because n-butanol is known for being a good solvent for poly(ethylene oxide), these side chains intensified the role of this short chain n-alcohol as cosolvent for C16TAP(MA-MAEO(n)) x:y complex salts, favoring the formation of disordered solutions, including a bicontinuous microemulsion. PMID:26752433

  7. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-10-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  8. Structure of supersaturated zincate solutions

    SciTech Connect

    Dmitrenko, V.E.; Balyakina, N.N.; Baulov, V.I.; Kotov, A.V.; Zubov, M.S.

    1985-09-01

    During the discharge of chemical power sources with zinc electrodes, supersaturated zincate solution (SZS) is formed from which zinc oxide or hydroxide precipitates as a function of time. The deposit detracts from the functioning of these power sources. In view of the model suggested for the structure of SZS, it is expected that a stabilizing effect would be exerted on SZS by compounds having proton-donating groups which do not give off the protons in the strongly alkaline medium and are not discharged in this medium. For a check of this, the authors chose to use xylitol and molasses in their experiments. The SZS were produced with a mock-up silver-zinc battery using the procedure previously described.

  9. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  10. Practical macromolecular cryocrystallography

    SciTech Connect

    Pflugrath, J. W.

    2015-05-27

    Current methods, reagents and experimental hardware for successfully and reproducibly flash-cooling macromolecular crystals to cryogenic temperatures for X-ray diffraction data collection are reviewed. Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented.

  11. Solution Accounts for Structural Damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1982-01-01

    New analytical technique determines dynamic response of damped structures dominated by internal structural damping mechanisms. Though structural damping is often negligible compared with damping due to air friction and friction in joints, structural damping can be of major importance in structures having heavy damping treatments or in outer-space structures. Finite-element model includes nonlinear, nonviscous internal damping.

  12. The design of macromolecular crystallography diffraction experiments

    SciTech Connect

    Evans, Gwyndaf Axford, Danny; Owen, Robin L.

    2011-04-01

    Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented. The measurement of X-ray diffraction data from macromolecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals.

  13. Macromolecular engineering by atom transfer radical polymerization.

    PubMed

    Matyjaszewski, Krzysztof; Tsarevsky, Nicolay V

    2014-05-01

    This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP--monomers, initiators, catalysts, and various additives--are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed. PMID:24758377

  14. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    PubMed Central

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering. PMID:25286839

  15. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  16. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE PAGESBeta

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  17. Practical macromolecular cryocrystallography

    PubMed Central

    Pflugrath, J. W.

    2015-01-01

    Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented. PMID:26057787

  18. Macromolecular character of amber

    SciTech Connect

    Wert, C.A.; Weller, M.; Schlee, D.; Ledbetter, H.

    1989-03-15

    Measurements are reported of anelastic and dielectric loss of various ambers and copals. They show spectra typical of synthetic polymers. This similarity permits description of the macromolecular character of amber which was not possible from previous studies of chemical composition. Measurements on amber of several origins and geological ages show generally similar character, but also differences in detail. These may be caused by differences in chemistry of the original resin and the geological age and history of the amber, reflecting differences in degree of polymerization. Also reported are elastic constants measured at high frequency.

  19. Microgravity and Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  20. Using NMR to Determine Protein Structure in Solution

    NASA Astrophysics Data System (ADS)

    Cavagnero, Silvia

    2003-02-01

    Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.

  1. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs. PMID:26777253

  2. In-vacuum long-wavelength macromolecular crystallography

    PubMed Central

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-01-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline. PMID:26960130

  3. Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments

    PubMed Central

    Kuszewski, John J.; Thottungal, Robin Augustine; Schwieters, Charles D.; Clore, G. Marius

    2008-01-01

    We report substantial improvements to the previously introduced automated NOE assignment and structure determination protocol known as PASD. The improved protocol includes extensive analysis of input spectral data to create a low-resolution contact map of residues expected to be close in space. This map is used to obtain reasonable initial guesses of NOE assignment likelihoods which are refined during subsequent structure calculations. Information in the contact map about which residues are predicted to not be close in space is applied via conservative repulsive distance restraints which are used in early phases of the structure calculations. In comparison with the previous protocol, the new protocol requires significantly less computation time. We show results of running the new PASD protocol on six proteins and demonstrate that useful assignment and structural information is extracted on proteins of more than 220 residues. We show that useful assignment information can be obtained even in the case in which a unique structure cannot be determined. PMID:18668206

  4. Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures.

    PubMed

    Peters, K R

    1985-01-01

    Membrane structures of macromolecular dimensions were imaged with high resolution secondary electron type I (SE-I) signal contrasts on metal coated biological specimens. The quality of the surface information was strongly dependent on the signal used for microscopy and on the properties of metal films, i.e., thickness, continuity, structure and decoration effects. Films of 10 nm thickness produced so much type II electrons that identical images were obtained with the conventional SE-II and BSE-II signals. In such images, the type I SE signal was so low that only very weak contrasts were recognizable. If the films--continuous or discontinuous--were composed of large metal aggregates (gold and platinum) a strong micro-roughness contrast was produced by the type II signal. At high magnifications (100,000 x) this background signal greatly reduced the S/N ratio of the SE-I signal. A similar effect was previously shown to be produced by the type III background signal. The type II background signal minimized when continuous films of small aggregates (tantalum and chromium) were applied. SE-I contrast dominated in the image if the film thickness was limited to 1 nm. Additionally, it was found that gold and platinum decorated membrane surface structures, less than 20 nm in size, and did not reveal all the topographic information available (size, shape, orientation spacing of small surface features) but merely displayed center-to-center distances. These decoration effects were avoided and extensive topographic information was obtained through surface coating with Ta or Cr. PMID:4095499

  5. Local Kinetic Measures of Macromolecular Structure Reveal Partitioning Among Multiple Parallel Pathways from the Earliest Steps in the Folding of a Large RNA Molecule

    SciTech Connect

    Laederach,A.; Shcherbakova, I.; Liang, M.; Brenowitz, M.; Altman, R.

    2006-01-01

    At the heart of the RNA folding problem is the number, structures, and relationships among the intermediates that populate the folding pathways of most large RNA molecules. Unique insight into the structural dynamics of these intermediates can be gleaned from the time-dependent changes in local probes of macromolecular conformation (e.g. reports on individual nucleotide solvent accessibility offered by hydroxyl radical ({center_dot}OH) footprinting). Local measures distributed around a macromolecule individually illuminate the ensemble of separate changes that constitute a folding reaction. Folding pathway reconstruction from a multitude of these individual measures is daunting due to the combinatorial explosion of possible kinetic models as the number of independent local measures increases. Fortunately, clustering of time progress curves sufficiently reduces the dimensionality of the data so as to make reconstruction computationally tractable. The most likely folding topology and intermediates can then be identified by exhaustively enumerating all possible kinetic models on a super-computer grid. The folding pathways and measures of the relative flux through them were determined for Mg{sup 2+} and Na{sup +}-mediated folding of the Tetrahymena thermophila group I intron using this combined experimental and computational approach. The flux during Mg{sup 2+}-mediated folding is divided among numerous parallel pathways. In contrast, the flux during the Na{sup +}-mediated reaction is predominantly restricted through three pathways, one of which is without detectable passage through intermediates. Under both conditions, the folding reaction is highly parallel with no single pathway accounting for more than 50% of the molecular flux. This suggests that RNA folding is non-sequential under a variety of different experimental conditions even at the earliest stages of folding. This study provides a template for the systematic analysis of the time-evolution of RNA structure

  6. Computing the origin and evolution of the ribosome from its structure — Uncovering processes of macromolecular accretion benefiting synthetic biology

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2015-01-01

    Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules. PMID:27096056

  7. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum Oocysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure and composition of the oocyst wall are primary factors determining the survival of Cryptosporidium parvum oocysts outside the host. An external polymer matrix (glycocalyx) may mediate interactions with environmental surfaces and, thus, affect the transport of oocysts in water, soil, an...

  8. Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments.

    PubMed

    Kuszewski, John; Schwieters, Charles D; Garrett, Daniel S; Byrd, R Andrew; Tjandra, Nico; Clore, G Marius

    2004-05-26

    The major rate-limiting step in high-throughput NMR protein structure determination involves the calculation of a reliable initial fold, the elimination of incorrect nuclear Overhauser enhancement (NOE) assignments, and the resolution of NOE assignment ambiguities. We present a robust approach to automatically calculate structures with a backbone coordinate accuracy of 1.0-1.5 A from datasets in which as much as 80% of the long-range NOE information (i.e., between residues separated by more than five positions in the sequence) is incorrect. The current algorithm differs from previously published methods in that it has been expressly designed to ensure that the results from successive cycles are not biased by the global fold of structures generated in preceding cycles. Consequently, the method is highly error tolerant and is not easily funnelled down an incorrect path in either three-dimensional structure or NOE assignment space. The algorithm incorporates three main features: a linear energy function representation of the NOE restraints to allow maximization of the number of simultaneously satisfied restraints during the course of simulated annealing; a method for handling the presence of multiple possible assignments for each NOE cross-peak which avoids local minima by treating each possible assignment as if it were an independent restraint; and a probabilistic method to permit both inactivation and reactivation of all NOE restraints on the fly during the course of simulated annealing. NOE restraints are never removed permanently, thereby significantly reducing the likelihood of becoming trapped in a false minimum of NOE assignment space. The effectiveness of the algorithm is demonstrated using completely automatically peak-picked experimental NOE data from two proteins: interleukin-4 (136 residues) and cyanovirin-N (101 residues). The limits of the method are explored using simulated data on the 56-residue B1 domain of Streptococcal protein G. PMID:15149223

  9. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  10. NMR solution structure of butantoxin.

    PubMed

    Holaday, S K; Martin, B M; Fletcher, P L; Krishna, N R

    2000-07-01

    The NMR structure of a new toxin, butantoxin (BuTX), which is present in the venoms of the three Brazilian scorpions Tityus serrulatus, Tityus bahiensis, and Tityus stigmurus, has been investigated. This toxin was shown to reversibly block the Shaker B potassium channels (K(d) approximately 660 nM) and inhibit the proliferation of T-cells and the interleukin-2 production of antigen-stimulated T-helper cells. BuTX is a 40 amino acid basic protein stabilized by the four disulfide bridges: Cys2-Cys5, Cys10-Cys31, Cys16-Cys36, and Cys20-Cys38. The latter three are conserved among all members of the short-chain scorpion toxin family, while the first is unique to BuTX. The three-dimensional structure of BuTX was determined using (1)H-NMR spectroscopy. NOESY, phase sensitive COSY (PH-COSY), and amide hydrogen exchange data were used to generate constraints for molecular modeling calculations. Distance geometry and simulated annealing calculations were performed to generate a family of 49 structures free of constraint violations. The secondary structure of BuTX consists of a short 2(1/2) turn alpha-helix (Glu15-Phe23) and a beta-sheet. The beta-sheet is composed of two well-defined antiparallel strands (Gly29-Met32 and Lys35-Cys38) connected by a type-I' beta-turn (Asn33-Asn34). Residues Cys5-Ala9 form a quasi-third strand of the beta-sheet. The N-terminal C2-C5 disulfide bridge unique to this toxin does not appear to confer stability to the protein. PMID:10864437

  11. Role of Macromolecular Structure in the Ultrafast Energy and Electron Transfer Dynamics of a Light-Harvesting Polymer.

    PubMed

    Morseth, Zachary A; Pho, Toan V; Gilligan, Alexander T; Dillon, Robert J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2016-08-18

    Ultrafast energy and electron transfer (EnT and ET, respectively) are characterized in a light-harvesting assembly based on a π-conjugated polymer (poly(fluorene)) functionalized with broadly absorbing pendant organic isoindigo (iI) chromophores using a combination of femtosecond transient absorption spectroscopy and large-scale computer simulation. Photoexcitation of the π-conjugated polymer leads to near-unity quenching of the excitation through a combination of EnT and ET to the iI pendants. The excited pendants formed by EnT rapidly relax within 30 ps, whereas recombination of the charge-separated state formed following ET occurs within 1200 ps. A computer model of the excited-state processes is developed by combining all-atom molecular dynamics simulations, which provides a molecular-level view of the assembly structure, with a kinetic model that accounts for the multiple excited-state quenching pathways. Direct comparison of the simulations with experimental data reveals that the underlying structure has a dramatic effect on the partitioning between EnT and ET in the polymer assembly, where the distance and orientation of the pendants in relation to the backbone serve to direct the dominant quenching pathway. PMID:27433946

  12. Macromolecular Crystallization in Microfluidics for the International Space Station

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  13. Growth and Dissolution of Macromolecular Markov Chains

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-07-01

    The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.

  14. Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macromolecular probes.

    PubMed

    Meyer, F A; Koblentz, M; Silberberg, A

    1977-02-01

    The ability of the uncharged open-coil dextran molecules to penetrate tissue space, without coil-shape change, was utilized to probe (by partitioning experiments) the structural arrangement of the collagen-fibre network and the proteoglycan system. Hyaluronidase digests most of the proteoglycans away and enables the respective contributions to the exclusion volume to be evaluated by using a series of different-molecular-weight dextrans. It appears that the major part of the exclusion volume is due to the collagen-fibril as a rod and the dextran coil as an impenetrable sphere. The additional exclusion due to the proteoglycans could be accounted for by a set of points (regions of high proteoglycan-segment density) over which the dextran coild cannot pass. These points are an average of 50 nm apart and are indicative of local extensive entanglement of high-molecular-weight proteoglycans with each other. Reasons are given why these entanglements could not act as cross-links in long-term elastic loading of the tissue. PMID:849263

  15. Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macromolecular probes.

    PubMed Central

    Meyer, F A; Koblentz, M; Silberberg, A

    1977-01-01

    The ability of the uncharged open-coil dextran molecules to penetrate tissue space, without coil-shape change, was utilized to probe (by partitioning experiments) the structural arrangement of the collagen-fibre network and the proteoglycan system. Hyaluronidase digests most of the proteoglycans away and enables the respective contributions to the exclusion volume to be evaluated by using a series of different-molecular-weight dextrans. It appears that the major part of the exclusion volume is due to the collagen-fibril as a rod and the dextran coil as an impenetrable sphere. The additional exclusion due to the proteoglycans could be accounted for by a set of points (regions of high proteoglycan-segment density) over which the dextran coild cannot pass. These points are an average of 50 nm apart and are indicative of local extensive entanglement of high-molecular-weight proteoglycans with each other. Reasons are given why these entanglements could not act as cross-links in long-term elastic loading of the tissue. PMID:849263

  16. Small angle neutron scattering for the structural study of intrinsically disordered proteins in solution: a practical guide.

    PubMed

    Gabel, Frank

    2012-01-01

    Small angle neutron scattering (SANS) allows studying bio-macromolecular structures and interactions in solution. It is particularly well-suited to study structural properties of intrinsically disordered proteins (IDPs) over a wide range of length-scales ranging from global aspects (radii of gyration and molecular weight) down to short-distance properties (e.g., cross-sectional analysis). In this book chapter, we provide a practical guide on how to carry out SANS experiments on IDPs and discuss the complementary aspects and strengths of SANS with respect to small angle X-ray scattering (SAXS). PMID:22821521

  17. ACHESYM: an algorithm and server for standardized placement of macromolecular models in the unit cell.

    PubMed

    Kowiel, Marcin; Jaskolski, Mariusz; Dauter, Zbigniew

    2014-12-01

    Despite the existence of numerous useful conventions in structural crystallography, for example for the choice of the asymmetric part of the unit cell or of reciprocal space, surprisingly no standards are in use for the placement of the molecular model in the unit cell, often leading to inconsistencies or confusion. A conceptual solution for this problem has been proposed for macromolecular crystal structures based on the idea of the anti-Cheshire unit cell. Here, a program and server (called ACHESYM; http://achesym.ibch.poznan.pl) are presented for the practical implementation of this concept. In addition, the first task of ACHESYM is to find an optimal (compact) macromolecular assembly if more than one polymer chain exists. ACHESYM processes PDB (atomic parameters and TLS matrices) and mmCIF (diffraction data) input files to produce a new coordinate set and to reindex the reflections and modify their phases, if necessary. PMID:25478846

  18. Complex structures – smart solutions

    PubMed Central

    2011-01-01

    The siliceous skeletal elements of the sponges, the spicules, represent one of the very few examples from where the molecule toolkit required for the formation of an extracellular mineral-based skeleton, has been elucidated. The distinguished feature of the inorganic matrix, the bio-silica, is its enzymatic synthesis mediated by silicatein. Ortho-silicate undergoes in the presence of silicatein a polycondensation reaction and forms bio-silica under release of reaction water. The protein silicatein aggregates non-covalently to larger filaments, a process that is stabilized by the silicatein-associated protein, silintaphin-1. These structured clusters form the axial filament that is located in the center of the spicules, the axial canal. Surprisingly it has now been found that the initial axial orientation, in which the spicules grow, is guided by cell processes through evagination. The approximately two µm wide cell extensions release silicatein that forms the first organic axial filament, which then synthesizes the inner core of the siliceous spicule rods. In parallel, the radial growth of the spicules is controlled by a telescopic arrangement of organic layers, into which bio-silica and ortho-silicate are deposited. Hence, the formation of a mature siliceous spicule is completed by a centrifugal accretion of bio-silica mediated by the silicatein in the axial filament, and a centripetal bio-silica deposition catalyzed by the extra-spicular silicatein. Finally this contribution highlights that for the ultimate determination of the spicule shapes, their species-specific morphologies, bio-silica hardens during a process which removes reaction water. The data presented can also provide new blueprints for the fabrication of novel biomaterials for biomedical applications.  PMID:22446527

  19. Cell-Free Protein Expression under Macromolecular Crowding Conditions

    PubMed Central

    Ge, Xumeng; Luo, Dan; Xu, Jianfeng

    2011-01-01

    Background Cell-free protein expression (CFPE) comprised of in vitro transcription and translation is currently manipulated in relatively dilute solutions, in which the macromolecular crowding effects present in living cells are largely ignored. This may not only affect the efficiency of protein synthesis in vitro, but also limit our understanding of the functions and interactions of biomolecules involved in this fundamental biological process. Methodology/Principal Findings Using cell-free synthesis of Renilla luciferase in wheat germ extract as a model system, we investigated the CFPE under macromolecular crowding environments emulated with three different crowding agents: PEG-8000, Ficoll-70 and Ficoll-400, which vary in chemical properties and molecular size. We found that transcription was substantially enhanced in the macromolecular crowding solutions; up to 4-fold increase in the mRNA production was detected in the presence of 20% (w/v) of Ficoll-70. In contrast, translation was generally inhibited by the addition of each of the three crowding agents. This might be due to PEG-induced protein precipitation and non-specific binding of translation factors to Ficoll molecules. We further explored a two-stage CFPE in which transcription and translation was carried out under high then low macromolecular crowding conditions, respectively. It produced 2.2-fold higher protein yield than the coupled CFPE control. The macromolecular crowding effects on CFPE were subsequently confirmed by cell-free synthesis of an approximately two-fold larger protein, Firefly luciferase, under macromolecular crowding environments. Conclusions/Significance Three macromolecular crowding agents used in this research had opposite effects on transcription and translation. The results of this study should aid researchers in their choice of macromolecular crowding agents and shows that two-stage CFPE is more efficient than coupled CFPE. PMID:22174874

  20. Water structure in concentrated lithium chloride solutions

    NASA Astrophysics Data System (ADS)

    Tromp, R. H.; Neilson, G. W.; Soper, A. K.

    1992-06-01

    The radial pair distribution functions gHH(r) and gOH(r) (to a good approximation) of 1 and 10 m solutions of lithium chloride in water have been obtained from neutron diffraction. It turns out that the intermolecular water structure in a solution of 10 m is affected considerably by the presence of ions—the number of hydrogen bonds is about 70% lower than in pure water. The intermolecular water structure in 1 m lithium chloride as well as the intramolecular water structure in both 1 and 10 m lithium chloride is not distinguishable from that of pure water in any measurable extent.

  1. Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization

    PubMed Central

    McPherson, Alexander; Kuznetsov, Yurii G.

    2014-01-01

    The nucleation and growth of protein, nucleic acid and virus crystals from solution are functions of underlying kinetic and thermodynamic parameters that govern the process, and these are all supersaturation-dependent. While the mechanisms of macromolecular crystal growth are essentially the same as for conventional crystals, the underlying parameters are vastly different, in some cases orders of magnitude lower, and this produces very different crystallization processes. Numerous physical features of macromolecular crystals are of serious interest to X-ray diffractionists; the resolution limit and mosaicity, for example, reflect the degree of molecular and lattice order. The defect structure of crystals has an impact on their response to flash-cooling, and terminal crystal size is dependent on impurity absorption and incorporation. The variety and extent of these issues are further unique to crystals of biological macromolecules. All of these features are amenable to study using atomic force microscopy, which provides direct images at the nanoscale level. Some of those images are presented here. PMID:24699728

  2. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    SciTech Connect

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  3. Fractionation and characterization of soy β-conglycinin-dextran conjugates via macromolecular crowding environment and dry heating.

    PubMed

    Weng, Jingyi; Qi, Junru; Yin, Shouwei; Wang, Jinmei; Guo, Jian; Feng, Jilu; Liu, Qianru; Zhu, Jianhua; Yang, Xiaoquan

    2016-04-01

    Conjugates of β-conglycinin and dextran were prepared by heating in solution under macromolecular crowding environment and dry-heating methods, and then fractionated by solubility at pH 4.8 and pH 6.5 and characterized. The results showed that the degree of glycation of the conjugates extracted from pH 4.8 were higher than the conjugates extracted from pH 6.5. Corresponding to the higher degree of glycation, it was supposed that the β-conglycinin of groups 4.8 of macromolecular crowding environment was completely surrounded by the dextran molecular while that of groups 6.5 were encircled partially with a lower degree of glycation. Compared to β-conglycinin, groups 4.8 demonstrated a decreasing surface hydrophobicity and sulfhydryl group content while groups 6.5 increased. The secondary structure of β-conglycinin soluble at pH 4.8 after conjugating under macromolecular crowding environment tended to stretch out and the highly ordered structure turn to random structures. The differences between the extraction of pH 4.8 and pH 6.5 conjugated by dry-heating methods were not as remarkable as the difference between the extraction conjugated by macromolecular crowding environment. PMID:26593615

  4. Stochastic dynamics of macromolecular-assembly networks.

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Vilar, Jose

    2006-03-01

    The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components [1]. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage λ induction switches, which rely on the formation of DNA loops by proteins [2] and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes. [1] L. Saiz and J.M.G. Vilar, submitted (2005). [2] J.M.G. Vilar and L. Saiz, Current Opinion in Genetics & Development, 15, 136-144 (2005).

  5. REdiii: a pipeline for automated structure solution

    PubMed Central

    Bohn, Markus-Frederik; Schiffer, Celia A.

    2015-01-01

    High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies in case the preconfigured solution is inadequate. This integrated pipeline is targeted at providing a comprehensive and efficient approach to screening for ligand-bound co-crystal structures while minimizing repetitiveness and allowing a high-throughput scientific discovery process. PMID:25945571

  6. REdiii: a pipeline for automated structure solution.

    PubMed

    Bohn, Markus Frederik; Schiffer, Celia A

    2015-05-01

    High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies in case the preconfigured solution is inadequate. This integrated pipeline is targeted at providing a comprehensive and efficient approach to screening for ligand-bound co-crystal structures while minimizing repetitiveness and allowing a high-throughput scientific discovery process. PMID:25945571

  7. A database of macromolecular motions.

    PubMed Central

    Gerstein, M; Krebs, W

    1998-01-01

    We describe a database of macromolecular motions meant to be of general use to the structural community. The database, which is accessible on the World Wide Web with an entry point at http://bioinfo.mbb.yale.edu/MolMovDB , attempts to systematize all instances of protein and nucleic acid movement for which there is at least some structural information. At present it contains >120 motions, most of which are of proteins. Protein motions are further classified hierarchically into a limited number of categories, first on the basis of size (distinguishing between fragment, domain and subunit motions) and then on the basis of packing. Our packing classification divides motions into various categories (shear, hinge, other) depending on whether or not they involve sliding over a continuously maintained and tightly packed interface. In addition, the database provides some indication about the evidence behind each motion (i.e. the type of experimental information or whether the motion is inferred based on structural similarity) and attempts to describe many aspects of a motion in terms of a standardized nomenclature (e.g. the maximum rotation, the residue selection of a fixed core, etc.). Currently, we use a standard relational design to implement the database. However, the complexity and heterogeneity of the information kept in the database makes it an ideal application for an object-relational approach, and we are moving it in this direction. Specifically, in terms of storing complex information, the database contains plausible representations for motion pathways, derived from restrained 3D interpolation between known endpoint conformations. These pathways can be viewed in a variety of movie formats, and the database is associated with a server that can automatically generate these movies from submitted coordinates. PMID:9722650

  8. Solution structure of RNase P RNA

    PubMed Central

    Kazantsev, Alexei V.; Rambo, Robert P.; Karimpour, Sina; SantaLucia, John; Tainer, John A.; Pace, Norman R.

    2011-01-01

    The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity. PMID:21531920

  9. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments

    SciTech Connect

    Brockhauser, Sandor; Ravelli, Raimond B. G.; McCarthy, Andrew A.

    2013-07-01

    Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.

  10. Macromolecular Materials and Engineering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover: The image shows electrospun fibers based on poly(lactic acid)/polyaniline blends with diameters from 90 to 1000 nm. The structural characteristics of the fibers are compared to cast films by scanning electron microscopy, small-angle X-ray scattering, differential scanning calorimetry, and ato...

  11. Structuring of polymer solutions upon solvent evaporation

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  12. Structure and aggregation in model tetramethylurea solutions

    SciTech Connect

    Gupta, Rini; Patey, G. N.

    2014-08-14

    The structure of model aqueous tetramethylurea (TMU) solutions is investigated employing large-scale (32 000, 64 000 particles) molecular dynamics simulations. Results are reported for TMU mole fractions, X{sub t}, ranging from infinite dilution up to 0.07, and for two temperatures, 300 and 330 K. Two existing force fields for TMU-water solutions are considered. These are the GROMOS 53A6 united-atom TMU model combined with SPC/E water [TMU(GROMOS-UA)/W(SPC/E)], and the more frequently employed AMBER03 all-atom force field for TMU combined with the TIP3P water model [TMU(AMBER-AA)/W(TIP3P)]. It is shown that TMU has a tendency towards aggregation for both models considered, but the tendency is significantly stronger for the [TMU(AMBER-AA)/W(TIP3P)] force field. For this model signs of aggregation are detected at X{sub t} = 0.005, aggregation is a well established feature of the solution at X{sub t} = 0.02, and the aggregates increase further in size with increasing concentration. This is in agreement with at least some experimental studies, which report signals of aggregation in the low concentration regime. The TMU aggregates exhibit little structure and are simply loosely ordered, TMU-rich regions of solution. The [TMU(GROMOS-UA)/W(SPC/E)] model shows strong signs of aggregation only at higher concentrations (X{sub t} ≳ 0.04), and the aggregates appear more loosely ordered, and less well-defined than those occurring in the [TMU(AMBER-AA)/W(TIP3P)] system. For both models, TMU aggregation increases when the temperature is increased from 300 to 330 K, consistent with an underlying entropy driven, hydrophobic interaction mechanism. At X{sub t} = 0.07, the extra-molecular correlation length expected for microheterogeneous solutions has become comparable with the size of the simulation cell for both models considered, indicating that even the systems simulated here are sufficiently large only at low concentrations.

  13. Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  14. Neutron Laue macromolecular crystallography

    SciTech Connect

    Meilleur, Flora; Myles, Dean A A; Blakeley, M. P.

    2006-01-01

    Recent progress in neutron protein crystallography such as the use of the Laue technique and improved neutron optics and detector technologies have dramatically improved the speed and precision with which neutron protein structures can now be determined. These studies are providing unique and complementary insights on hydrogen and hydration in protein crystal structures that are not available from X-ray structures alone. Parallel improvements in modern molecular biology now allow fully (per)deuterated protein samples to be produced for neutron scattering that essentially eradicate the large--and ultimately limiting--hydrogen incoherent scattering background that has hampered such studies in the past. High quality neutron data can now be collected to near atomic resolution ({approx}2.0 Angstroms) for proteins of up to {approx}50 kDa molecular weight using crystals of volume {approx}0.1 mm3 on the Laue diffractometer at ILL. The ability to flash-cool and collect high resolution neutron data from protein crystals at cryogenic temperature (15 K) has opened the way for kinetic crystallography on freeze trapped systems. Current instrument developments now promise to reduce crystal volume requirements by a further order of magnitude, making neutron protein crystallography a more accessible and routine technique.

  15. Macromolecular recognition in the Protein Data Bank

    SciTech Connect

    Janin, Joël; Rodier, Francis; Chakrabarti, Pinak

    2007-01-01

    X-ray structures in the PDB illustrate both the specific recognition of two polypeptide chains in protein–protein complexes and dimeric proteins and their nonspecific interaction at crystal contacts. Crystal structures deposited in the Protein Data Bank illustrate the diversity of biological macromolecular recognition: transient interactions in protein–protein and protein–DNA complexes and permanent assemblies in homodimeric proteins. The geometric and physical chemical properties of the macromolecular interfaces that may govern the stability and specificity of recognition are explored in complexes and homodimers compared with crystal-packing interactions. It is found that crystal-packing interfaces are usually much smaller; they bury fewer atoms and are less tightly packed than in specific assemblies. Standard-size interfaces burying 1200–2000 Å{sup 2} of protein surface occur in protease–inhibitor and antigen–antibody complexes that assemble with little or no conformation changes. Short-lived electron-transfer complexes have small interfaces; the larger size of the interfaces observed in complexes involved in signal transduction and homodimers correlates with the presence of conformation changes, often implicated in biological function. Results of the CAPRI (critical assessment of predicted interactions) blind prediction experiment show that docking algorithms efficiently and accurately predict the mode of assembly of proteins that do not change conformation when they associate. They perform less well in the presence of large conformation changes and the experiment stimulates the development of novel procedures that can handle such changes.

  16. Atomic-force-microscopy studies of phase separations in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. G.; Malkin, A. J.; McPherson, A.

    1998-09-01

    Atomic force microscopy (AFM) has been used to visualize events arising from the formation of intervening metastable phases at the surfaces of macromolecular crystals growing from solution. Crystals investigated were of the proteins canavalin, thaumatin, lipase, xylanase, and catalase, crystals of transfer RNA, and crystals of satellite tobacco mosaic virus. Two types of aggregates were observed. The first were small, linear and branched aggregates, perhaps fractile in structure. These were incorporated into growing crystals as impurities, and they produced defects of various kinds. The second aggregate form we infer to be liquid-protein droplets which were particularly evident in freshly mixed protein-precipitant solutions. Droplets, upon sedimentation, have two possible fates. In some cases they immediately restructured as crystalline multilayer stacks whose development was guided by and contiguous with the underlying lattice. These contributed to the ordered growth of the crystal by serving as sources of growth steps. In other cases, liquid-protein droplets formed distinct microcrystals, somehow discontinuous with the underlying lattice, and these were subsequently incorporated into the growing substrate crystal with the formation of defects. Scarring experiments with the AFM tip indicated that liquid-protein droplets with the potential to rapidly crystallize were a consequence of concentration instabilities near the crystal's surfaces. The AFM study suggests that phase separation and the appearance of aggregates having limited order is a common occurrence in supersaturated macromolecular solutions such as the protein-precipitant solutions used for crystallization.

  17. Solution structure of human sorting nexin 22.

    PubMed

    Song, Jikui; Zhao, Kate Qin; Newman, Carrie L Loushin; Vinarov, Dmitriy A; Markley, John L

    2007-05-01

    The sorting nexins (SNXs) constitute a large group of PX domain-containing proteins that play critical roles in protein trafficking. We report here the solution structure of human sorting nexin 22 (SNX22). Although SNX22 has <30% sequence identity with any PX domain protein of known structure, it was found to contain the alpha/beta fold and compact structural core characteristic of PX domains. Analysis of the backbone dynamics of SNX22 by NMR relaxation measurements revealed that the two walls of the ligand binding cleft undergo internal motions: on the picosecond timescale for the beta1/beta2 loop and on the micro- to millisecond timescale for the loop between the polyproline motif and helix alpha2. Regions of the SNX22 structure that differ from those of other PX domains include the loop connecting strands beta1 and beta2 and the loop connecting helices alpha1 and alpha2, which appear to be more mobile than corresponding loops in other known structures. The interaction of dibutanoyl-phosphatidylinositol-3-phosphate (dibutanoyl-PtdIns(3)P) with SNX22 was investigated by an NMR titration experiment, which identified the binding site in a basic cleft and indicated that ligand binding leads only to a local structural rearrangement as has been found with other PX domains. Because motions in the loops are damped out when dibutanoyl-PtdIns(3)P binds, entropic effects could contribute to the lower affinity of SNX22 for this ligand compared to other PX domains. PMID:17400918

  18. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  19. Multiscale Macromolecular Simulation: Role of Evolving Ensembles

    PubMed Central

    Singharoy, A.; Joshi, H.; Ortoleva, P.J.

    2013-01-01

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601

  20. Multiscale macromolecular simulation: role of evolving ensembles.

    PubMed

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601

  1. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  2. Organoactinide chemistry: synthesis, structure, and solution dynamics

    SciTech Connect

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp/sub 2/MX/sub 2/. Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U ..-->.. L ..pi..-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs.

  3. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles

    PubMed Central

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-01-01

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy. PMID:26903405

  4. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles.

    PubMed

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-01-01

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy. PMID:26903405

  5. Facile Preparation of a Macromolecular Benzophenone Photoinitiator

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Gu, Lingling; Bai, Xiongxiong; Cheng, Chuanjie

    2014-08-01

    Photoinitiators play important roles in the preparation of photo-cured resins. Macromolecular as well as reactive photoinitiators have attracted much attention both in industry and in academia due to the disadvantages of conventional small molecular photoinitiators such as volatility and mobility. A macromolecular benzophenone photoinitiator was designed and efficiently synthesized in this study. Hydroxyl-containing Michler's ketone was firstly synthesized in 82% yield, followed by reacting with toluene di-isocyanate (TDI) to prepare polyurethanetype macromolecular benzophenone photoinitiator.

  6. Macromolecular diffractive imaging using imperfect crystals.

    PubMed

    Ayyer, Kartik; Yefanov, Oleksandr M; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R; Schmidt, Marius; Sarrou, Iosifina; Spence, John C H; Weierstall, Uwe; White, Thomas A; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S; Robinson, Joseph S; Koglin, Jason E; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N

    2016-02-11

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing. PMID

  7. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  8. Macromolecular diffractive imaging using imperfect crystals

    NASA Astrophysics Data System (ADS)

    Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-02-01

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

  9. Generating Triangulated Macromolecular Surfaces by Euclidean Distance Transform

    PubMed Central

    Xu, Dong; Zhang, Yang

    2009-01-01

    Macromolecular surfaces are fundamental representations of their three-dimensional geometric shape. Accurate calculation of protein surfaces is of critical importance in the protein structural and functional studies including ligand-protein docking and virtual screening. In contrast to analytical or parametric representation of macromolecular surfaces, triangulated mesh surfaces have been proved to be easy to describe, visualize and manipulate by computer programs. Here, we develop a new algorithm of EDTSurf for generating three major macromolecular surfaces of van der Waals surface, solvent-accessible surface and molecular surface, using the technique of fast Euclidean Distance Transform (EDT). The triangulated surfaces are constructed directly from volumetric solids by a Vertex-Connected Marching Cube algorithm that forms triangles from grid points. Compared to the analytical result, the relative error of the surface calculations by EDTSurf is <2–4% depending on the grid resolution, which is 1.5–4 times lower than the methods in the literature; and yet, the algorithm is faster and costs less computer memory than the comparative methods. The improvements in both accuracy and speed of the macromolecular surface determination should make EDTSurf a useful tool for the detailed study of protein docking and structure predictions. Both source code and the executable program of EDTSurf are freely available at http://zhang.bioinformatics.ku.edu/EDTSurf. PMID:19956577

  10. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  11. Structure of void space in polymer solutions.

    PubMed

    Sung, Bong June; Yethiraj, Arun

    2010-03-01

    The structure of void space in two- and three-dimensional (3D) polymer solutions is studied using Voronoi tessellation and percolation theory. The polymer molecules are modeled as freely jointed chains of N tangent hard disks (two dimensions) or spheres (three dimensions). Polymer chains are equilibrated via Monte Carlo simulations and the pore space in configurations of equilibrated chains is mapped using Voronoi tessellation. In d dimensions a Voronoi vertex is the center of the sphere tangent to the d+1 nearest monomers. An edge of the Voronoi diagram is the shortest route between two neighboring vertices. The edge is considered connected if a monomer can pass through and disconnected otherwise. The Voronoi construction is used to calculate the percolation threshold of the void space. The most interesting result is that the polymer area fraction at the percolation threshold is a nonmonotonic function of N in two dimensions but monotonically reaches a constant value in three dimensions. The crossover behavior of the percolation threshold is also observed in pseudo-3D. The pore size distribution decreases monotonically with increasing pore size. This is markedly different from that in configurations of hard disks (monomeric fluid) where the pore size distribution is peaked at finite size. PMID:20365759

  12. A new method for mapping macromolecular topography.

    PubMed

    Mezei, Mihaly

    2003-03-01

    A new method, using circular variance, is introduced for mapping macromolecular topography. Circular variance, generally used to measures angular spread, can be used to characterize of molecular structures based on a simple idea. It will be shown that the circular variance of vectors drawn from some origin to a set of points is well correlated with the degree to which that origin is inside/outside the chosen points. In addition, it has continuous derivatives that are also easy to compute. This concept will be shown to be useful for: (i) distinguishing between atoms near the surface of a macromolecule and those in either the deep interior or remote exterior; (ii) identifying invaginations (even shallow ones); and (iii) detecting linker regions that interconnect two domains. PMID:12543141

  13. The design of macromolecular crystallography diffraction experiments

    PubMed Central

    Evans, Gwyndaf; Axford, Danny; Owen, Robin L.

    2011-01-01

    The measurement of X-ray diffraction data from macro­molecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals. PMID:21460444

  14. Analytical model for macromolecular partitioning during yeast cell division

    PubMed Central

    2014-01-01

    Background Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Results Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. Conclusions In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning. PMID

  15. A strategy for dissecting the architectures of native macromolecular assemblies

    PubMed Central

    Shi, Yi; Pellarin, Riccardo; Fridy, Peter C.; Fernandez-Martinez, Javier; Thompson, Mary K.; Li, Yinyin; Wang, Qing Jun; Sali, Andrej; Rout, Michael P.; Chait, Brian T.

    2015-01-01

    Despite the central role of large multi-protein complexes in many biological processes, it remains challenging to elucidate their structures and particularly problematic to define the structures of native macromolecular assemblies, which are often of low abundance. Here, we present a strategy for isolating such complexes and for extracting distance restraints that allow the determination of their molecular architectures. The method was optimized to allow facile use of the extensive global resources of GFP-tagged transgenic cells and animals. PMID:26436480

  16. Quantum chemistry of macromolecular shape

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    Some of the new developments in the quantum-chemical study of macromolecular shapes are reviewed, with special emphasis on the additive fuzzy electron density fragmentation methods and on the algebraic-topological shape group analysis of global and local shape features of fuzzy three-dimensional bodies of electron densities of macromolecules. Earlier applications of these methods to actual macromolecules are reviewed, including studies on the anticancer drug taxol, the proteins bovine insulin and HIV protease, and other macromolecules. The results of test calculations establishing the accuracy of these methods are also reviewed. The spherically weighted affine transformation technique is described and proposed for the deformation of electron densities approximating the changes occurring in small conformational displacements of atomic nuclei in macromolecules.

  17. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  18. The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liang, Kao-Chen; Waxham, Neal; Cheung, Margaret

    2011-03-01

    The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM in response to the changing intracellular environment, we use a combined method of computer simulation and experiments based on circular dichroism (CD). The conformation, helicity and EF hand orientation of CaM are analyzed computationally to address the effect of macromolecular crowding, ionic strength and calcium binding in the experiments. We applied a unique solution of charges computed from QM/MM to accurately represent the charge distribution in the transition from apo-CaM to holo-CaM. Computationally, we found that a high level of macromolecular crowding, in addition to calcium binding and ionic strength, can impact the conformation, helicity and the EF hand orientation of CaM. Our result may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells. This work is supported by National Science Foundation, Molecular & Cellular Biosciences (MCB0919974).

  19. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space.

    PubMed

    Chari, Ashwin; Haselbach, David; Kirves, Jan-Martin; Ohmer, Juergen; Paknia, Elham; Fischer, Niels; Ganichkin, Oleg; Möller, Vanessa; Frye, Jeremiah J; Petzold, Georg; Jarvis, Marc; Tietzel, Michael; Grimm, Clemens; Peters, Jan-Michael; Schulman, Brenda A; Tittmann, Kai; Markl, Jürgen; Fischer, Utz; Stark, Holger

    2015-09-01

    Molecular machines or macromolecular complexes are supramolecular assemblies of biomolecules with a variety of functions. Structure determination of these complexes in a purified state is often tedious owing to their compositional complexity and the associated relative structural instability. To improve the stability of macromolecular complexes in vitro, we present a generic method that optimizes the stability, homogeneity and solubility of macromolecular complexes by sparse-matrix screening of their thermal unfolding behavior in the presence of various buffers and small molecules. The method includes the automated analysis of thermal unfolding curves based on a biophysical unfolding model for complexes. We found that under stabilizing conditions, even large multicomponent complexes reveal an almost ideal two-state unfolding behavior. We envisage an improved biochemical understanding of purified macromolecules as well as a substantial boost in successful macromolecular complex structure determination by both X-ray crystallography and cryo-electron microscopy. PMID:26237227

  20. Theory for Surface Structure of Electrolyte Solutions.

    NASA Astrophysics Data System (ADS)

    Nichols, Albert Loyd, III

    A theory is developed for the salt concentration profile and ion-ion correlations near surfaces of electrolyte solutions. We use the random phase approximation to study the primitive surface model employed by Onsager and Samaras, and others. In this model the chief technical complication is the correct treatment of image forces. We invent an exact rearrangement of the mathematical formulation of the problem which makes especially transparent the special case solutions (infinite dielectric constant mismatch) previously found. This reformulation guides an analytical solution for arbitrary dielectric constant mismatch between the two phases, subject to other assumptions adopted by previous workers. Similarly general results are derived for mixtures of ionic and dipolar solutes. These general results form the basis for extending our theoretical studies in several new directions. First, higher concentration corrections are investigated. It is shown that over an experimentally significant range of low concentrations for aqueous solutions the initial concentration correction to the Onsager-Samaras absorption has a negative definite sign. The theory, including concentration corrections, is compared to available computer simulation data, and close agreement is found for aqueous solutions below a few tenths molar. Second, the theory is developed to treat asymmetric electrolytes, and applied to ionic surfactants spread on water-hydrocarbon interfaces. Again, the theory accurately describes available experimental data. Third, the theory is broadened to acknowledge the solubility of the salt in both phases. It is found that this generalization changes the qualitative nature of the low concentration limiting law for the excess surface tension: the limiting behavior is changed from the (rho)ln(rho) dependence predicted by Onsager and Samaras to a more generally correct (rho)(' 1/2) dependence. Experimental data which might test this (rho)(' 1/2) behavior are not presently

  1. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small angle X-ray scattering

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Summary Small-Angle X-ray Scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures. PMID:20097063

  2. WAXS studies of the structural diversity of hemoglobin in solution.

    SciTech Connect

    Makowski, L.; Bardhan, J.; Gore, D.; Lal, J.; Mandava, S.; Park, S.; Rodi, D. J.; Ho, N. T.; Ho, C.; Fischetti, R. F.

    2011-01-01

    Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.

  3. Regular branched Macromolecules: Structure of Bottlebrush Polymers in Solution

    NASA Astrophysics Data System (ADS)

    Pakula, T.; Rathgeber, S.; Matyjaszewski, K.

    2001-03-01

    The shape and internal structure of bottlebrush (comb) macromolecules under good solvent conditions have been studied using small angle neutron scattering and computer simulations. The form factor S(Q) was measured at low concentrations in toluene for comb polymers consisting of a p(BPEM) backbone with p(nBA) side chains. The following intramolecular parameters were varied: (1) backbone length, (2) grafting density and (3) length of the side chains. Using models which have been successfully applied to other regular branched polymers we derive the range of the hydrodynamic interaction within the polymer and the particle dimension from which we can conclude on the overall shape of the macromolecular brush. In addition we determined the radius of the gyration of the backbone R_g^bb and of the side chains R_g^sc. These parameters give information about the stiffness of the polymer. Experimental findings are compared with computer simulation results performed for a single bottlebrush macromolecule using the cooperative motion algorithm. The simulation gives direct access to R_g^bb and R_g^sc and allows an independent determination of S(Q). Good agreement between experiment and simulation has been found.

  4. Macromolecular structural changes in bituminous coals during extraction and solubilization. Quarterly technical progress report, 1 September 1981-1 December 1981

    SciTech Connect

    Peppas, N.A.

    1981-01-01

    Data are presented of the effect of coal pretreatment (extraction, flotation etc.) and porous structure on the apparent and effective swelling of several coals by four swelling agents. Analysis of the pore structure was achieved by mercury porosimetry and pyconometry. The effect of retained solvent in the pores is more prominent in the determination of the equilibrium coal volume fraction and the actual molecular weight between crosslinks, M/sub c/.

  5. Modeling the tripartite drug efflux pump archetype: structural and functional studies of the macromolecular constituents reveal more than their names imply.

    PubMed

    Elkins, C A; Beenken, K E

    2005-12-01

    It is a remarkable age in molecular biology when one can argue that our current understanding of a process is influenced as much by structural studies as it is by genetic and physiological manipulations. This statement is particularly poignant with membrane proteins for which structural knowledge has been long impeded by the inability to easily obtain crystal structures in a lipid matrix. Thus, several high-resolution structures of the components comprising tripartite multidrug efflux pumps from Escherichia coli and Pseudomonas aeruginosa are now available and were received with much acclaim over ever-evolving crystal structures of soluble, aqueous proteins. These structures, in conjunction with functional mutagenesis studies, have provided insight into substrate capture and binding domains and redefined the potential interactions between individual pump constituents. However, correct assembly of the components is still a matter of debate as is the functional contribution of each to the translocation of drug substrates over long distances spanning the Gram-negative cell envelope. PMID:16433187

  6. International summer school on macromolecular crystallographic computing. Final report

    SciTech Connect

    1998-08-01

    The School was the seventh in a series of International Union of Crystallography (IUCr) Crystallographic Symposia. The format of the School was formal lectures in the morning, tutorials in the afternoon, and software demonstrations and more lectures in the evening. The full program which left both the organizers and attendees exhausted, reflects the current state of excitement in the field of macromolecular structure determination using the technique of X-ray crystallography. The new and improved technologies and techniques described in these Proceedings are contributing to that growth and at the same time, as pointed out in the paper given by Sussman, creating challenges for the Protein Data Bank (PDB). As the School progressed, the authors were struck by the similarities to events which took place in small molecule crystallography beginning some 20 to 25 years ago. Growth then was fueled by the advent of new algorithms, affordable computer hardware, and good software. So it is today for macromolecular crystallography, but with the added bonus of the Internet which is changing how scientist conduct their research. Flack presented this view as part of his on-going contribution to how crystallographers use the Internet. After presentations discussing structures en masse they returned to the more traditional mode of presentation which parallels the determination of a single macromolecular structure: data collection -- phasing -- model building and visualization -- refinement.

  7. Quantifying macromolecular conformational transition pathways

    NASA Astrophysics Data System (ADS)

    Seyler, Sean; Kumar, Avishek; Thorpe, Michael; Beckstein, Oliver

    2015-03-01

    Diverse classes of proteins function through large-scale conformational changes that are challenging for computer simulations. A range of fast path-sampling techniques have been used to generate transitions, but it has been difficult to compare paths from (and assess the relative strengths of) different methods. We introduce a comprehensive method (pathway similarity analysis, PSA) for quantitatively characterizing and comparing macromolecular pathways. The Hausdorff and Fréchet metrics (known from computational geometry) are used to quantify the degree of similarity between polygonal curves in configuration space. A strength of PSA is its use of the full information available from the 3 N-dimensional configuration space trajectory without requiring additional specific knowledge about the system. We compare a sample of eleven different methods for the closed-to-open transitions of the apo enzyme adenylate kinase (AdK) and also apply PSA to an ensemble of 400 AdK trajectories produced by dynamic importance sampling MD and the Geometrical Pathways algorithm. We discuss the method's potential to enhance our understanding of transition path sampling methods, validate them, and help guide future research toward deeper physical insights into conformational transitions.

  8. Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm.

    PubMed

    Kuszewski, John J; Thottungal, Robin Augustine; Clore, G Marius; Schwieters, Charles D

    2008-08-01

    We report substantial improvements to the previously introduced automated NOE assignment and structure determination protocol known as PASD (Kuszewski et al. (2004) J Am Chem Soc 26:6258-6273). The improved protocol includes extensive analysis of input spectral data to create a low-resolution contact map of residues expected to be close in space. This map is used to obtain reasonable initial guesses of NOE assignment likelihoods which are refined during subsequent structure calculations. Information in the contact map about which residues are predicted to not be close in space is applied via conservative repulsive distance restraints which are used in early phases of the structure calculations. In comparison with the previous protocol, the new protocol requires significantly less computation time. We show results of running the new PASD protocol on six proteins and demonstrate that useful assignment and structural information is extracted on proteins of more than 220 residues. We show that useful assignment information can be obtained even in the case in which a unique structure cannot be determined. PMID:18668206

  9. Biophysical Highlights from 54 Years of Macromolecular Crystallography

    PubMed Central

    Richardson, Jane S.; Richardson, David C.

    2014-01-01

    The United Nations has declared 2014 the International Year of Crystallography, and in commemoration, this review features a selection of 54 notable macromolecular crystal structures that have illuminated the field of biophysics in the 54 years since the first excitement of the myoglobin and hemoglobin structures in 1960. Chronological by publication of the earliest solved structure, each illustrated entry briefly describes key concepts or methods new at the time and key later work leveraged by knowledge of the three-dimensional atomic structure. PMID:24507592

  10. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms. PMID:27322505

  11. Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c.

    PubMed

    Banci, L; Bertini, I; Bren, K L; Gray, H B; Sompornpisut, P; Turano, P

    1997-07-22

    The solution structure of oxidized Saccharomycescerevisiae Cys102Ser iso-1-cytochromechas been determined using 1361 meaningful NOEs (of 1676 total) after extending the published proton assignment [Gao, Y., et al. (1990) Biochemistry 29, 6994-7003] to 77% of all proton resonances. The NOE patterns indicate that secondary structure elements are maintained upon oxidation in solution with respect to the solid state and solution structures of the reduced species. Constraints derived from the pseudocontact shifts [diamagnetic reference shift values are those of the reduced protein [Baistrocchi, P., et al. (1996) Biochemistry 35, 13788-13796

  12. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  13. A Sco protein among the hypothetical proteins of Bacillus lehensis G1: Its 3D macromolecular structure and association with Cytochrome C Oxidase

    PubMed Central

    2014-01-01

    Background At least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail. Results All HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 –helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes. Conclusions We propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess

  14. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm.

    PubMed Central

    Chacón, P; Morán, F; Díaz, J F; Pantos, E; Andreu, J M

    1998-01-01

    Small-angle x-ray solution scattering (SAXS) is analyzed with a new method to retrieve convergent model structures that fit the scattering profiles. An arbitrary hexagonal packing of several hundred beads containing the problem object is defined. Instead of attempting to compute the Debye formula for all of the possible mass distributions, a genetic algorithm is employed that efficiently searches the configurational space and evolves best-fit bead models. Models from different runs of the algorithm have similar or identical structures. The modeling resolution is increased by reducing the bead radius together with the search space in successive cycles of refinement. The method has been tested with protein SAXS (0.001 < S < 0.06 A(-1)) calculated from x-ray crystal structures, adding noise to the profiles. The models obtained closely approach the volumes and radii of gyration of the known structures, and faithfully reproduce the dimensions and shape of each of them. This includes finding the active site cavity of lysozyme, the bilobed structure of gamma-crystallin, two domains connected by a stalk in betab2-crystallin, and the horseshoe shape of pancreatic ribonuclease inhibitor. The low-resolution solution structure of lysozyme has been directly modeled from its experimental SAXS profile (0.003 < S < 0.03 A(-1)). The model describes lysozyme size and shape to the resolution of the measurement. The method may be applied to other proteins, to the analysis of domain movements, to the comparison of solution and crystal structures, as well as to large macromolecular assemblies. PMID:9635731

  15. Solution Structure and Backbone Dynamics of Streptopain

    PubMed Central

    Wang, Chih-Chieh; Houng, Hsiang-Chee; Chen, Chun-Liang; Wang, Pei-Ju; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T.; Liu, Ching-Chuan; Huang, Wenya; Chuang, Woei-Jer

    2009-01-01

    Streptococcal pyrogenic exotoxin B (SPE B) is a cysteine protease expressed by Streptococcus pyogenes. The D9N, G163S, G163S/A172S, and G239D mutant proteins were expressed to study the effect of the allelic variants on their protease activity. In contrast to other mutants, the G239D mutant was ∼12-fold less active. The Gly-239 residue is located within the C-terminal S230-G239 region, which cannot be observed in the x-ray structure. The three-dimensional structure and backbone dynamics of the 28-kDa mature SPE B (mSPE B) were determined. Unlike the x-ray structure of the 40-kDa zymogen SPE B (proSPE B), we observed the interactions between the C-terminal loop and the active site residues in mSPE B. The structural differences between mSPE B and proSPE B were the conformation of the C-terminal loop and the orientation of the catalytic His-195 residue, suggesting that activation and inactivation of SPE B is involved in the His-195 side-chain rotation. Dynamics analysis of mSPE B and the mSPE B/inhibitor complexes showed that the catalytic and C-terminal loops were the most flexible regions with low order parameter values of 0.5 to 0.8 and exhibited the motion on the ps/ns timescale. These findings suggest that the flexible C-terminal loop of SPE B may play an important role in controlling the substrate binding, resulting in its broad substrate specificity. PMID:19237546

  16. Discovery of Water Structural Transitions near Interfaces of Polarizable Solutes

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry

    2015-03-01

    The standard harmonic approximation describing polarization around the solute is expected to break down with increasing solute polarizability. The focus of this study is to investigate the structure of water around dipolar-polarizable solutes by Monte Carlo (MC) simulations in the non-harmonic regime. We observe a structural transition in the water hydration shell and its condensation, which are driven by increasing the solute polarizability. There is also a crossover in the orientational structure near the point of breakdown of the harmonic approximation. At lower polarizabilities, waters in the hydration shell point their hydrogens toward the solute. The dipoles flip their orientations at the transition to the non-harmonic regime. Both the hydration shell compressibility and the electric field susceptibility display maxima in the transition region. Using the water electric field at the center of the polarizable solute as the order parameter, a Landau-type model is formulated. Its predictions are in reasonable agreement with MC simulations performed for hard sphere and Lennard Jones polarizable solutes in a TIP3P water model. The observed structural transition suggests a general crossover phenomenon driven by the stabilization energy required to polarize the solute. This research was supported by the National Science Foundation (CHE-1213288). CPU time was provided by the National Science Foundation through XSEDE resources (TG-MCB080116N).

  17. Complexation of Actinides in Solution: Thermodynamic Measurementsand Structural Characterization

    SciTech Connect

    Rao, L.

    2007-02-01

    This paper presents a brief introduction of the studies of actinide complexation in solution at Lawrence Berkeley National Laboratory. An integrated approach of thermodynamic measurements and structural characterization is taken to obtain fundamental understanding of actinide complexation in solution that is of importance in predicting the behavior of actinides in separation processes and environmental transport.

  18. The promise of macromolecular crystallization in microfluidic chips

    NASA Technical Reports Server (NTRS)

    van der Woerd, Mark; Ferree, Darren; Pusey, Marc

    2003-01-01

    Microfluidics, or lab-on-a-chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bioanalytical and microscale biopreparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial screening and subsequent optimization of macromolecular crystallization conditions. Screening operations, which require a macromolecule solution with a standard set of premixed solutions, are relatively straightforward and have been successfully demonstrated in a microfluidics platform. Optimization methods, in which crystallization solutions are independently formulated from a range of stock solutions, are considerably more complex and have yet to be demonstrated. To be competitive with either approach, a microfluidics system must offer ease of operation, be able to maintain a sealed environment over several weeks to months, and give ready access for the observation and harvesting of crystals as they are grown.

  19. Energy Structure of Emission Centers in Solutions with Silver Impurity

    NASA Astrophysics Data System (ADS)

    Zashivailo, T. V.; Kushnirenko, V. I.

    The spectral properties of solutions of oxygen-containing salts and acids with admixture of Аg+ ions were studied. The spectra of absorption, photoluminescence, and photoluminescence excitation for such systems are measured in the temperature range of 4.2-290 K. The energy structure of absorption and emission centers in the solution was determined. It is shown that the spectra under study are caused by the electron transitions between the energy levels, whose structure is deformed as a result of the interaction of ions Ag+ with the environment. The experimental results are interpreted on the basis of an ionic model for complexes for investigated solutions.

  20. Design and application of PDBlib, a C++ macromolecular class library.

    PubMed

    Chang, W; Shindyalov, I N; Pu, C; Bourne, P E

    1994-12-01

    PDBlib is an extensible object-oriented class library written in C++ for representing the three-dimensional structure of biological macromolecules. The software design strategy, features of many of the 129 classes currently distributed with the library, and two sample applications which use the library are described. Version 1.0 of the library represents the structural features of proteins, DNA, RNA and complexes thereof, at a level of detail on a par with that which can be parsed from a Protein Data Bank (PDB) entry. However, the memory-resident representation of the macromolecule is independent of the PDB entry and can be obtained from other sources, e.g. relational and object-oriented databases. PDBlib classes are organized into four categories: (i) classes that model the macromolecule; (ii) classes that enhance the extensibility of the library; (iii) classes that provide navigation facilities of the object-oriented macromolecular structure representation; and (iv) a class that loads a PDB file into the memory-resident object-oriented representation. A number of general-purpose procedures that return features of this representation and that are relevant to all biological disciplines are included in (i). The library has been used to develop PDBtool, a prototype structure verification tool, and PDBview, a structure rendering tool that requires no specialized graphics hardware and software. Current work centers on making the macromolecular structures represented by PDBlib persistent using a commercial object-oriented database and providing an additional class library, MMQLlib, to query those structures. PMID:7704656

  1. Effects of macromolecular crowding on genetic networks.

    PubMed

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  2. New pharmaceutical applications for macromolecular binders.

    PubMed

    Bertrand, Nicolas; Gauthier, Marc A; Bouvet, Céline; Moreau, Pierre; Petitjean, Anne; Leroux, Jean-Christophe; Leblond, Jeanne

    2011-10-30

    Macromolecular binders consist of polymers, dendrimers, and oligomers with binding properties for endogenous or exogenous substrates. This field, at the frontier of host/guest chemistry and pharmacology, has met a renewed interest in the past decade due to the clinical success of several sequestrants, like sevelamer hydrochloride (Renagel®) or sugammadex (Bridion®). In many instances, multivalent binding by the macromolecular drugs can modify the properties of the substrate, and may prevent it from reaching its site of action and/or trigger a biological response. From small (e.g., ions) to larger substrates (e.g., bacteria and cells), this review presents the state-of-the-art of macromolecular binders and provides detailed illustrative examples of recent developments bearing much promise for future pharmaceutical applications. PMID:21571017

  3. Effects of Macromolecular Crowding on Genetic Networks

    PubMed Central

    Morelli, Marco J.; Allen, Rosalind J.; Rein ten Wolde, Pieter

    2011-01-01

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  4. Molecular Ornstein-Zernike approach to the solvent effects on solute electronic structures in solution

    NASA Astrophysics Data System (ADS)

    Yoshida, Norio; Kato, Shigeki

    2000-09-01

    A new approach to ab initio electronic structure calculations of solute molecules in solution is presented. Combined with the molecular Ornstein-Zernike (MOZ) integral equation theory for polyatomic liquids, solute electronic wave function and solvent distribution around a solute are determined in a self-consistent manner. The hypernetted chain approximation is employed for solving the MOZ equation. In order to describe the short-range solute-solvent interactions, the effective potential operating solute electron is placed on a solute molecule, which is determined by a least-squares fitting to ab initio exchange repulsion/charge transfer energies. The present method, referred to as the MOZ self-consistent-field (SCF) method, is applied to a solute H2O molecule in water solvent. The solvent shift for the vertical excitation to the nπ* state of H2CO in aqueous solution is also examined. The results obtained by the MOZ-SCF calculations are compared with those by the reference interaction site model-SCF theory and the polarizable continuum model.

  5. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Cirkovic Velickovic, Tanja; Stanic-Vucinic, Dragana

    2015-06-15

    High intensity ultrasound (HIUS) can promote Maillard reaction (MR). Macromolecular crowding conditions accelerate reactions and stabilise protein structure. The aim of this study was to investigate if combined application of ultrasound and macromolecular crowding can improve efficiency of MR. The presence of crowding agent (polyethylene glycol) significantly increased ultrasound-induced whey protein (WP) glycation by arabinose. An increase in glycation efficiency results only in slight change of WP structure. Macromolecular crowding intensifies oxidative modifications of WP, as well as formation of amyloid-like structures by enhancement of MR. Solubility at different pH, thermal stability and antioxidative capacity of glycated WP were increased, especially in the presence of crowding agent, compared to sonicated nonglycated proteins. The application of HIUS under crowding conditions can be a new approach for enhancement of reactions in general, enabling short processing time and mild conditions, while preserving protein structure and minimising protein aggregation. PMID:25660883

  6. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed. PMID:27192825

  7. Water's structure around hydrophobic solutes and the iceberg model.

    PubMed

    Galamba, N

    2013-02-21

    The structure of water in the hydration shells of small hydrophobic solutes was investigated through molecular dynamics. The results show that a subset of water molecules in the first hydration shell of a nonpolar solute have a significantly enhanced tetrahedrality and a slightly larger number of hydrogen bonds, relative to the molecules in water at room temperature, consistent with the experimentally observed negative excess entropy and increased heat capacity of hydrophobic solutions at room temperature. This ordering results from the rearrangement of a small number of water molecules near the nonpolar solutes that occupy one to two vertices of the enhanced water tetrahedra. Although this structuring is not nearly like that often associated with a literal interpretation of the term "iceberg" in the Frank and Evans iceberg model, it does support a moderate interpretation of this model. Thus, the tetrahedral orientational order of this ensemble of water molecules is comparable to that of liquid water at ~10 °C, although not accompanied by the small contraction of the O-O distance observed in cold water. Further, we show that the structural changes of water in the vicinity of small nonpolar solutes cannot be inferred from the water radial distribution functions, explaining why this increased ordering is not observed through neutron diffraction experiments. The present results restore a molecular view where the slower translational and reorientational dynamics of water near hydrophobic groups has a structural equivalent resembling water at low temperatures. PMID:23360515

  8. Chemical oscillations in closed macromolecular systems.

    PubMed Central

    Di Cera, E; Phillipson, P E; Wyman, J

    1988-01-01

    A cycle of irreversible, first-order, autocatalytic reactions among different states of a polyfunctional macromolecule, subject to the conservation of mass, can display stable chemical oscillations. This introduces a class of nonlinear dynamic models for energy transduction in closed macromolecular systems. PMID:3413066

  9. Solution structure of ligands involved in purine salvage pathway.

    PubMed

    Karnawat, Vishakha; Puranik, Mrinalini

    2015-12-01

    Analogues of intermediates involved in the purine salvage pathway can be exploited as potential drug molecules against enzymes of protozoan parasites. To develop such analogues we need knowledge of the solution structures, predominant tautomer at physiological pH and protonation-state of the corresponding natural ligand. In this regard, we have employed ultraviolet resonance Raman spectroscopy (UVRR) in combination with density functional theory (DFT) to study the solution structures of two relatively unexplored intermediates, 6-phosphoryl IMP (6-pIMP) and succinyl adenosine-5'-monophosphate (sAMP), of purine salvage pathway. These molecules are intermediates in a two step enzymatic process that converts inosine-5'-monpophosphate (IMP) to adenosine-5'-monophosphate (AMP). Experimental data on the molecular structure of these ligands is lacking. We report UVRR spectra of these two ligands, obtained at an excitation wavelength of 260 nm. Using isotope induced shifts and DFT calculations we assigned observed spectra to computed normal modes. We find that sAMP exists as neutral species at physiological pH and the predominant tautomer in solution bears proton at N10 position of purine ring. Though transient in solution, 6-pIMP is captured in the enzyme-bound form. This work provides the structural information of these ligands in solution state at physiological pH. We further compare these structures with the structures of AMP and IMP. Despite the presence of similar purine rings in AMP and sAMP, their UVRR spectra are found to be very different. Similarly, though the purine ring in 6-pIMP resembles that of IMP, UVRR spectra of the two molecules are distinct. These differences in the vibrational spectra provide direct information on the effects of exocyclic groups on the skeletal structures of these molecules. Our results identify key bands in the vibrational spectra of these ligands which may serve as markers of hydrogen bonding interactions upon binding to the active

  10. General analytical shakedown solution for structures with kinematic hardening materials

    NASA Astrophysics Data System (ADS)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-04-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  11. Processes of ordered structure formation in polypeptide thin film solutions.

    SciTech Connect

    Botiz, I.; Schlaad, H.; Reiter, G.

    2010-06-17

    An experimental study is presented on the hierarchical assembly of {alpha}-helical block copolymers polystyrene-poly({gamma}-benzyl-L-glutamate) into anisotropic ordered structures. We transformed thin solid films into solutions through exposure to solvent vapor and studied the nucleation and growth of ordered three-dimensional structures in such solutions, with emphasis on the dependence of these processes on supersaturation with respect to the solubility limit. Interestingly, polymer solubility could be significantly influenced via variation of humidity in the surrounding gas phase. It is concluded that the interfacial tension between the ordered structures and the solution increased with humidity. The same effect was observed for other protic non-solvents in the surrounding gas phase and is attributed to a complexation of poly({gamma}-benzyl-L-glutamate) by protic non-solvent molecules (via hydrogen-bonding interactions). This change of polymer solubility was demonstrated to be reversible by addition or removal of small amounts of protic non-solvent in the surrounding gas phase. At a constant polymer concentration, ordered ellipsoidal structures could be dissolved by removing water or methanol present in the solution. Such structures formed once again when water or methanol was reintroduced via the vapor phase.

  12. Solution Structures of Two Homologous Venom Peptides from Sicarius dolichocephalus

    PubMed Central

    Loening, Nikolaus M.; Wilson, Zachary N.; Zobel-Thropp, Pamela A.; Binford, Greta J.

    2013-01-01

    We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides. PMID:23342149

  13. Thermodynamic signatures in macromolecular interactions involving conformational flexibility.

    PubMed

    Menzel, Anja; Neumann, Piotr; Schwieger, Christian; Stubbs, Milton T

    2014-07-01

    The energetics of macromolecular interactions are complex, particularly where protein flexibility is involved. Exploiting serendipitous differences in the plasticity of a series of closely related trypsin variants, we analyzed the enthalpic and entropic contributions accompanying interaction with L45K-eglin C. Binding of the four variants show significant differences in released heat, although the affinities vary little, in accordance with the principle of enthalpy-entropy compensation. Binding of the most disordered variant is almost entirely enthalpically driven, with practically no entropy change. As structures of the complexes reveal negligible differences in protein-inhibitor contacts, we conclude that solvent effects contribute significantly to binding affinities. PMID:25003391

  14. Bringing single-molecule spectroscopy to macromolecular protein complexes

    PubMed Central

    Joo, Chirlmin; Fareh, Mohamed; Kim, V. Narry

    2013-01-01

    Single-molecule fluorescence spectroscopy offers real-time, nanometer-resolution information. Over the past two decades, this emerging single-molecule technique has been rapidly adopted to investigate the structural dynamics and biological functions of proteins. Despite this remarkable achievement, single-molecule fluorescence techniques must be extended to macromolecular protein complexes that are physiologically more relevant for functional studies. In this review, we present recent major breakthroughs for investigating protein complexes within cell extracts using single-molecule fluorescence. We outline the challenges, future prospects and potential applications of these new single-molecule fluorescence techniques in biological and clinical research. PMID:23200186

  15. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    PubMed

    Shoda, Shin-Ichiro; Uyama, Hiroshi; Kadokawa, Jun-Ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society. PMID:26791937

  16. Mixed Consolidation Solution for a Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Lute, M.

    2016-06-01

    During the last years, reinforced concrete structures become subject for rehabilitation due to two factors: their long life span and large change in norms that leaded to a large increase of seismic loads in Eastern Europe. These lead to a necessity for rehabilitation of existing building stock in order to use them during their entire life span at the maximum potential. The present paper proposes a solution for rehabilitation for three reinforced concrete building of a hospital, that consumed a half of their life span and do not correspond anymore to present norms. The chosen solution is a combination between CFRP rehabilitation and increase of structural elements cross section in order to achieve the stiffness balance in the structure nodes that is required by present norms. As a further matter, correction in stiffness of local elements diminished the lateral drifts of the structure and improved the global seismic response of the building.

  17. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2016-01-01

    Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior. PMID:27093380

  18. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  19. Solution structure by site directed tryptophan fluorescence in tear lipocalin.

    PubMed

    Gasymov, O K; Abduragimov, A R; Yusifov, T N; Glasgow, B J

    1997-10-01

    The solution structure of the G strand of human tear lipocalin was deduced by site directed tryptophan fluorescence (SDTF). The fluorescent amino acid, tryptophan, was sequentially substituted for each native amino acid in the sequence of the G strand. The fluorescent properties resolved alternating periodicity as predicted for beta sheet structure, twists in the beta sheet, strand orientation in the lipocalin cavity, and the relative depth of residues in the cavity. A distribution of microstates with various orientations of dipoles in the side chain environments of the G strand revealed mobility on the nanosecond time scale. SDTF is broadly applicable to most proteins and will complement x-ray crystallography, site directed spin labeling by electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR) in the determination of solution structure. PMID:9345294

  20. Protein stabilization by macromolecular crowding through enthalpy rather than entropy.

    PubMed

    Senske, Michael; Törk, Lisa; Born, Benjamin; Havenith, Martina; Herrmann, Christian; Ebbinghaus, Simon

    2014-06-25

    The interior of the cell is a densely crowded environment in which protein stability is affected differently than in dilute solution. Macromolecular crowding is commonly understood in terms of an entropic volume exclusion effect based on hardcore repulsions among the macromolecules. We studied the thermal unfolding of ubiquitin in the presence of different cosolutes (glucose, dextran, poly(ethylene glycol), KCl, urea). Our results show that for a correct dissection of the cosolute-induced changes of the free energy into its enthalpic and entropic contributions, the temperature dependence of the heat capacity change needs to be explicitly taken into account. In contrast to the prediction by the excluded volume theory, we observed an enthalpic stabilization and an entropic destabilization for glucose, dextran, and poly(ethylene glycol). The enthalpic stabilization mechanism induced by the macromolecular crowder dextran was similar to the enthalpic stabilization mechanism of its monomeric building block glucose. In the case of poly(ethylene glycol), entropy is dominating over enthalpy leading to an overall destabilization. We propose a new model to classify cosolute effects in terms of their enthalpic contributions to protein stability. PMID:24888734

  1. Preparation of phenylboronate affinity rigid monolith with macromolecular porogen.

    PubMed

    Li, Xiang-Jie; Jia, Man; Zhao, Yong-Xin; Liu, Zhao-Sheng; Akber Aisa, Haji

    2016-03-18

    Boronate-affinity monolithic column was first prepared via polystyrene (PS) as porogen in this work. The monolithic polymer was synthetized using 4-vinylphenylboronic acid (4-VPBA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as crosslinker monomer, and a mixture of PS solution in tetrahydrofuran, the linear macromolecular porogen, and toluene as porogen. Isoquercitrin (ISO) and hyperoside (HYP), isomer diol flavonoid glycosides, can be baseline separated on the poly(VPBA-co-EDMA) monolith. The effect of polymerization variables on the selectivity factor, e.g., the ratio of monomer to crosslinker (M/C), the amount of PS and the molecular weight of macromolecular porogen was investigated. The surface properties of the monolithic polymer were characterized by scanning electron microscopy and nitrogen adsorption. The best polymerization condition was the M/C ratio of 7:3, and the PS concentration of 40 mg/ml. The poly(VPBA-co-EDMA) polymer was also applied to extract cis-diol flavonoid glycosides from the crude extraction of cotton flower. After treated by poly(VPBA-co-EDMA) for solid phase extraction, high purity ISO and HYP (>99.96%) can be obtained with recovery of 83.7% and 78.6%, respectively. PMID:26896914

  2. Structure and rheology of associative triblocks in microemulsion solutions

    NASA Astrophysics Data System (ADS)

    Bhatia, Surita Rani

    This thesis describes our theoretical and experimental work on the rheology, static structure, and phase behavior of associative solutions. Our theoretical efforts have centered on solving the diffusion equation model of Dolan and Edwards for ideal associative triblocks between surfaces to yield the segment density profile and free energy. We have shown that polymers between two spheres cause an O(kT) attraction, similar to that calculated by Milner and Witten for associative polymer brushes between flat plates. The attraction we calculate is weaker than that given by the Derjaguin approximation, and excluded volume moderates the attraction and softens the repulsion between spheres. The free energy was used to estimate an interparticle potential, which in turn was used to compute structure factors for solutions of associative polymers via Monte Carlo simulations. As a model system for our experiments, we have chosen PEO-PI-PEO triblocks in an AOT/water/decane microemulsion. Upon dilution with decane, the solutions phase separate into a dense, high viscosity phase and a dilute, low viscosity phase. We have performed both small-angle neutron scattering (SANS) and rheology on these solutions. Structure factors derived from our SANS data agree fairly well with those predicted by our theory and indicate that the droplets reside in an attractive minimum. The rheology of these solutions shows several interesting features that are not predicted by classical reversible network theory. Data from oscillatory experiments indicate a single relaxation time at low polymer concentrations but show evidence of a slower relaxation for higher concentrations. In addition, some solutions exhibit a maximum in the high shear viscosity. Some of our observations are predicted by the flowerlike micelle theory developed by Semenov and co-workers; however, our data is not completely consistent with the theoretical predictions. The high frequency modulus scales roughly quadratically with

  3. Structure of graphene oxide membranes in solvents and solutions

    NASA Astrophysics Data System (ADS)

    Klechikov, Alexey; Yu, Junchun; Thomas, Diana; Sharifi, Tiva; Talyzin, Alexandr V.

    2015-09-01

    The change of distance between individual graphene oxide sheets due to swelling is the key parameter to explain and predict permeation of multilayered graphene oxide (GO) membranes by various solvents and solutions. In situ synchrotron X-ray diffraction study shows that swelling properties of GO membranes are distinctly different compared to precursor graphite oxide powder samples. Intercalation of liquid dioxolane, acetonitrile, acetone, and chloroform into the GO membrane structure occurs with maximum one monolayer insertion (Type I), in contrast with insertion of 2-3 layers of these solvents into the graphite oxide structure. However, the structure of GO membranes expands in liquid DMSO and DMF solvents similarly to precursor graphite oxide (Type II). It can be expected that Type II solvents will permeate GO membranes significantly faster compared to Type I solvents. The membranes are found to be stable in aqueous solutions of acidic and neutral salts, but dissolve slowly in some basic solutions of certain concentrations, e.g. in NaOH, NaHCO3 and LiF. Some larger organic molecules, alkylamines and alkylammonium cations are found to intercalate and expand the lattice of GO membranes significantly, e.g. up to ~35 Å in octadecylamine/methanol solution. Intercalation of solutes into the GO structure is one of the limiting factors for nano-filtration of certain molecules but it also allows modification of the inter-layer distance of GO membranes and tuning of their permeation properties. For example, GO membranes functionalized with alkylammonium cations are hydrophobized and they swell in non-polar solvents.The change of distance between individual graphene oxide sheets due to swelling is the key parameter to explain and predict permeation of multilayered graphene oxide (GO) membranes by various solvents and solutions. In situ synchrotron X-ray diffraction study shows that swelling properties of GO membranes are distinctly different compared to precursor graphite

  4. Electronic structures of Ascaris trypsin inhibitor in solution

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-11-01

    The electronic structures of Ascaris trypsin inhibitor in solution are obtained by the first-principles, all-electron, ab initio calculation using the self-consistent cluster-embedding (SCCE) method. The inhibitor, made up of 62 amino acid residues with 912 atoms, has two three-dimensional solution structures: 1ata and 1atb. The calculated ground-state energy of structure 1atb is lower than that of structure 1ata by 6.12 eV. The active sites are determined and explained: only structure 1atb has a N terminal at residue ARG+31. This shows that the structure 1atb is the stable and active form of the inhibitor, which is in agreement with the experimental results. The calculation reveals that some parts of the inhibitor can be easily changed while the inhibitor’s biological activity may be kept. This kind of information may be helpful in fighting viruses such as AIDS, SARS, and flu, since these viruses have higher variability. The calculation offers an independent theoretical estimate of the precision of structure determination.

  5. Development of solution techniques for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Andrews, J. S.

    1974-01-01

    Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.

  6. Macromolecular transport in synapse to nucleus communication.

    PubMed

    Panayotis, Nicolas; Karpova, Anna; Kreutz, Michael R; Fainzilber, Mike

    2015-02-01

    Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling. PMID:25534890

  7. Steady state solutions to dynamically loaded periodic structures

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.

    1980-01-01

    The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.

  8. A primer in macromolecular linguistics.

    PubMed

    Searls, David B

    2013-03-01

    Polymeric macromolecules, when viewed abstractly as strings of symbols, can be treated in terms of formal language theory, providing a mathematical foundation for characterizing such strings both as collections and in terms of their individual structures. In addition this approach offers a framework for analysis of macromolecules by tools and conventions widely used in computational linguistics. This article introduces the ways that linguistics can be and has been applied to molecular biology, covering the relevant formal language theory at a relatively nontechnical level. Analogies between macromolecules and human natural language are used to provide intuitive insights into the relevance of grammars, parsing, and analysis of language complexity to biology. PMID:23034580

  9. On the solution of creep induced buckling in general structure

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1982-01-01

    This paper considers the pre and post buckling behavior of general structures exposed to high temperature fields for long durations wherein creep effects become significant. The solution to this problem is made possible through the use of closed upper bounding constraint surfaces which enable the development of a new time stepping algorithm. This permits the stable and efficient solution of structural problems which exhibit indefinite tangent properties. Due to the manner of constraining/bounding successive iterates, the algorithm developed herein is largely self adaptive, inherently stable, sufficiently flexible to handle geometric material and boundary induced nonlinearity, and can be incorporated into either finite element or difference simulations. To illustrate the capability of the procedure, as well as, the physics of creep induced pre and post buckling behavior, the results of several numerical experiments are included.

  10. Atomistic molecular dynamics simulations of the structure of symmetric Polyelectrolyte block copolymer micelle in salt-free aqueous solution

    NASA Astrophysics Data System (ADS)

    Chockalingam, Rajalakshmi; Natarajan, Upendra

    2014-03-01

    The structure of a symmetric polystyrene- b - poly(acrylic acid) (PS- b - PAA) micelle in salt-free aqueous solution as a function of degree-of-neutralization (or ionization, f) of the PAA is studied via explicit-atom-ion MD simulations, for the first time for a polyelectrolyte block copolymer in a polar solvent. Micelle size increases with fin agreement with experimental observations in literature, due to extension of PAA at higher ionization. Pair RDF's with respect to water oxygens show that corona-water interaction becomes stronger with f due to an increase in number density of carboxylate (COO-) groups on the chain. Water-PAA coordination (carboxylate O's) increases with ionization. H-bonding between PAA and water increases with f due to greater extent of corona-water affinity. With increase in f, atom and counter-ion ρ profiles confirm extension of corona blocks and micelle existing in the ``osmotic regime,'' and a decrease in scattering peak intensity, in agreement with neutron scattering experiments and mean-field theory in literature. Inter-chain distance in PS core is found to decrease with ionization. Macromolecular Simulation and Modeling Laboratory, Dept. of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036.

  11. Supersaturated lysozyme solution structure studied by chemical cross-linking.

    PubMed

    Hall, Clayton L; Clemens, John R; Brown, Amanda M; Wilson, Lori J

    2005-06-01

    Glutaraldehyde cross-linking followed by separation has been used to detect aggregates of chicken egg-white lysozyme (CEWL) in supersaturated solutions. In solutions of varying NaCl content, the number of aggregates was found to be related to the ionic strength of the solution. Separation by SDS-PAGE showed that percentage of dimer in solution ranged from 25.3% for no NaCl to 27.1% at 15% NaCl, and the aggregates larger than dimer increased from 1.9% for no NaCl to 36.8% at 15% NaCl. Conversely, the percentage of monomers decreased from 72.8% without NaCl to 36.1% at 15% NaCl. Molecular weights by capillary electrophoresis (SDS-CE) were found to be multiples of the monomer molecular weights, with the exception of trimer, which indicates a very compact structure. Native separation was accomplished using size-exclusion chromatography (SEC) and gave a lower monomer concentration and higher aggregate concentration than SDS-CE, which is a denaturing separation method. Most noticeably, trimers were absent in the SEC separation. The number of aggregates did not change with increased time between addition of NaCl and addition of cross-linking agent when separated by gel electrophoresis (SDS-PAGE). The results suggest that high ionic strength CEWL solutions are highly aggregated and that denaturing separation methods disrupt cross-linked products. PMID:15930646

  12. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    PubMed

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-01

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles. PMID:27400759

  13. Effect of Ternary Solutes on the Evolution of Structure and Gel Formation in Amphiphilic Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Meznarich, Norman Anthony Kang

    Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) amphiphilic triblock copolymers (commercially known as Pluronic surfactants) undergo reversible and temperature-dependent micellization and arrangement into cubic ordered lattices known as "micelle gels". The macroscopic behavior of the ordering is a transition from a liquid to a gel. While the phase behavior and gel structure of pure Pluronic surfactant solutions have been well studied, less is known about the effects of added ternary solutes. In this dissertation, a comprehensive investigation into the effects of the added pharmaceutical methylparaben on solutions of F127 ranging from 10 to 30 wt% was conducted in order to better understand the behavior of F127 in multicomponent pharmaceutical formulations. The viscoelastic properties of F127 gel formation were studied using rheometry, where heating rates of 0.1, 1, and 10 degrees C/min were also used to probe the kinetics of the gel transition. In solutions containing methylparaben, F127 gelation occurred at up to 15 degrees C lower temperatures and was accelerated by a factor of three to four. Small angle x-ray scattering (SAXS) was used to characterize the structure of the ordered domains, and how they were affected by the presence of dissolved pharmaceuticals. It was found that ordered domain formation changed from heterogeneous nucleation and growth to possible homogeneous nucleation and growth. A roughly 2% reduction in the cubic lattice parameter was also observed for solutions containing methylparaben. Differential scanning calorimetry (DSC) experiments were performed on a series of different Pluronic surfactants in order to characterize the micellization behavior as a function of PPO center block length and PEO/PPO ratio. Added methylparaben suppressed the micellization endotherm, the degree of suppression depending linearly on the amount of added methylparaben, as well as the length of the PPO center block and PEO

  14. Light scattering measurements supporting helical structures for chromatin in solution.

    PubMed

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model. PMID:662693

  15. The Solution Structure of the Regulatory Domain of Tyrosine Hydroxylase

    PubMed Central

    Zhang, Shengnan; Huang, Tao; Ilangovan, Udayar; Hinck, Andrew P.; Fitzpatrick, Paul F.

    2014-01-01

    Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1-71) and a well-folded C-terminal portion (residues 72-159). The structure of a truncated version of the regulatory domain containing residues 65-159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65-159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH. PMID:24361276

  16. Solution structure of leptospiral LigA4 Big domain.

    PubMed

    Mei, Song; Zhang, Jiahai; Zhang, Xuecheng; Tu, Xiaoming

    2015-11-13

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Big domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca(2+) binding property of LigA4 Big domain. PMID:26449456

  17. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  18. Ultrasonic Imaging of the Electroacoustic Effect in Macromolecular Gels

    PubMed Central

    Wen, Han; Balaban, Robert S.

    2010-01-01

    The electroacoustic effect occurs in electrolytes and colloidal suspensions. It describes the phenomenon in which a voltage applied to the sample produces an acoustic signal or vice versa. The basic mechanism is that charged particles in the sample have various mobilities due to different masses and viscosities. Under an external voltage they respond differently to the electrical force. This results in an overall acoustic vibration. The electroacoustic effect has been the basis for many measurement tools of solutions and other materials. In this note a method to image macromolecular gel samples using the electroacoustic effect at ultrasound frequencies is presented. Radio-frequency electrical excitation produces ultrasonic signal due to spatial changes in the electroacoustic sonic amplitude of the sample, which is used to construct an image similar to ultrasonography. This method is demonstrated in agar gel and eggwhite protein phantoms. The image contrast mechanism is also discussed. PMID:10197349

  19. Outrunning free radicals in room-temperature macromolecular crystallography

    PubMed Central

    Owen, Robin L.; Axford, Danny; Nettleship, Joanne E.; Owens, Raymond J.; Robinson, James I.; Morgan, Ann W.; Doré, Andrew S.; Lebon, Guillaume; Tate, Christopher G.; Fry, Elizabeth E.; Ren, Jingshan; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A2A adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macro­molecular crystallography. PMID:22751666

  20. Advances in macromolecular data storage

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2014-09-01

    user-data in a scheme that benefits from the massive parallelism of thousands of Read/Write stations within the same three-dimensionally micro-structured device.

  1. Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement

    PubMed Central

    Leaver-Fay, Andrew; O’Meara, Matthew J.; Tyka, Mike; Jacak, Ron; Song, Yifan; Kellogg, Elizabeth H.; Thompson, James; Davis, Ian W.; Pache, Roland A.; Lyskov, Sergey; Gray, Jeffrey J.; Kortemme, Tanja; Richardson, Jane S.; Havranek, James J.; Snoeyink, Jack; Baker, David; Kuhlman, Brian

    2013-01-01

    Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov and Dunbrack, 2011). PMID:23422428

  2. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS)

    PubMed Central

    Kovalevsky, Andrey; Fisher, Zoe; Johnson, Hannah; Mustyakimov, Marat; Waltman, Mary Jo; Langan, Paul

    2010-01-01

    The Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. Neutron diffraction is a powerful technique for locating H atoms and can therefore provide unique information about how biological macro­molecules function and interact with each other and smaller molecules. Users of the PCS have access to neutron beam time, deuteration facilities, the expression of proteins and the synthesis of substrates with stable isotopes and also support for data reduction and structure analysis. The beamline exploits the pulsed nature of spallation neutrons and a large electronic detector in order to collect wavelength-resolved Laue patterns using all available neutrons in the white beam. The PCS user facility is described and highlights from the user program are presented. PMID:21041938

  3. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    SciTech Connect

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having an increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.

  4. On the atomic structure of cocaine in solution.

    PubMed

    Johnston, Andrew J; Busch, Sebastian; Pardo, Luis Carlos; Callear, Samantha K; Biggin, Philip C; McLain, Sylvia E

    2016-01-14

    Cocaine is an amphiphilic drug which has the ability to cross the blood-brain barrier (BBB). Here, a combination of neutron diffraction and computation has been used to investigate the atomic scale structure of cocaine in aqueous solutions. Both the observed conformation and hydration of cocaine appear to contribute to its ability to cross hydrophobic layers afforded by the BBB, as the average conformation yields a structure which might allow cocaine to shield its hydrophilic regions from a lipophilic environment. Specifically, the carbonyl oxygens and amine group on cocaine, on average, form ∼5 bonds with the water molecules in the surrounding solvent, and the top 30% of water molecules within 4 Å of cocaine are localized in the cavity formed by an internal hydrogen bond within the cocaine molecule. This water mediated internal hydrogen bonding suggests a mechanism of interaction between cocaine and the BBB that negates the need for deprotonation prior to interaction with the lipophilic portions of this barrier. This finding also has important implications for understanding how neurologically active molecules are able to interact with both the blood stream and BBB and emphasizes the use of structural measurements in solution in order to understand important biological function. PMID:26660073

  5. The Promise of Macromolecular Crystallization in Micro-fluidic Chips

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Pusey, Marc

    2003-01-01

    Micro-fluidics, or lab on a chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bio-analytical and microscale bio-preparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial screening and subsequent optimization of macromolecular crystallization conditions. Screening operations, which require equilibrating macromolecule solution with a standard set of premixed solutions, are relatively straightforward and have been successfully demonstrated in a micro-fluidics platform. More complex optimization methods, where crystallization solutions are independently formulated from a range of stock solutions, are considerably more complex and have yet to be demonstrated. To be competitive with either approach, a micro-fluidics system must offer ease of operation, be able to maintain a sealed environment over several weeks to months, and give ready access for the observation of crystals as they are grown.

  6. Solution to certain problems in the failure of composite structures

    NASA Astrophysics Data System (ADS)

    Goodsell, Johnathan

    The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is

  7. Development of macromolecular prodrug for rheumatoid arthritis☆

    PubMed Central

    Yuan, Fang; Quan, Ling-dong; Cui, Liao; Goldring, Steven R.; Wang, Dong

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that is considered to be one of the major public health problems worldwide. The development of therapies that target tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and co-stimulatory pathways that regulate the immune system have revolutionized the care of patients with RA. Despite these advances, many patients continue to experience symptomatic and functional impairment. To address this issue, more recent therapies that have been developed are designed to target intracellular signaling pathways involved in immunoregulation. Though this approach has been encouraging, there have been major challenges with respect to off-target organ side effects and systemic toxicities related to the widespread distribution of these signaling pathways in multiple cell types and tissues. These limitations have led to an increasing interest in the development of strategies for the macromolecularization of anti-rheumatic drugs, which could target them to the inflamed joints. This approach enhances the efficacy of the therapeutic agent with respect to synovial inflammation, while markedly reducing non-target organ adverse side effects. In this manuscript, we provide a comprehensive overview of the rational design and optimization of macromolecular prodrugs for treatment of RA. The superior and the sustained efficacy of the prodrug may be partially attributed to their Extravasation through Leaky Vasculature and subsequent Inflammatory cell-mediated Sequestration (ELVIS) in the arthritic joints. This biologic process provides a plausible mechanism, by which macromolecular prodrugs preferentially target arthritic joints and illustrates the potential benefits of applying this therapeutic strategy to the treatment of other inflammatory diseases. PMID:22433784

  8. Solution structure of the human signaling protein RACK1

    PubMed Central

    2010-01-01

    Background The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 ± 0.2) × 106 M-1 and resulted in a dissociation constant (KD) of (0.7 ± 0.1) × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions. PMID:20529362

  9. The interplay of intrinsic disorder and macromolecular crowding on α-synuclein fibril formation

    NASA Astrophysics Data System (ADS)

    Shirai, Nobu C.; Kikuchi, Macoto

    2016-02-01

    α-synuclein (α-syn) is an intrinsically disordered protein which is considered to be one of the causes of Parkinson's disease. This protein forms amyloid fibrils when in a highly concentrated solution. The fibril formation of α-syn is induced not only by increases in α-syn concentration but also by macromolecular crowding. In order to investigate the coupled effect of the intrinsic disorder of α-syn and macromolecular crowding, we construct a lattice gas model of α-syn in contact with a crowding agent reservoir based on statistical mechanics. The main assumption is that α-syn can be expressed as coarse-grained particles with internal states coupled with effective volume; and disordered states are modeled by larger particles with larger internal entropy than other states. Thanks to the simplicity of the model, we can exactly calculate the number of conformations of crowding agents, and this enables us to prove that the original grand canonical ensemble with a crowding agent reservoir is mathematically equivalent to a canonical ensemble without crowding agents. In this expression, the effect of macromolecular crowding is absorbed in the internal entropy of disordered states; it is clearly shown that the crowding effect reduces the internal entropy. Based on Monte Carlo simulation, we provide scenarios of crowding-induced fibril formation. We also discuss the recent controversy over the existence of helically folded tetramers of α-syn, and suggest that macromolecular crowding is the key to resolving the controversy.

  10. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T.; Segelke, Brent; Rupp, Bernard; Toppani, Dominique

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  11. Fock spaces for modeling macromolecular complexes

    NASA Astrophysics Data System (ADS)

    Kinney, Justin

    Large macromolecular complexes play a fundamental role in how cells function. Here I describe a Fock space formalism for mathematically modeling these complexes. Specifically, this formalism allows ensembles of complexes to be defined in terms of elementary molecular ``building blocks'' and ``assembly rules.'' Such definitions avoid the massive redundancy inherent in standard representations, in which all possible complexes are manually enumerated. Methods for systematically computing ensembles of complexes from a list of components and interaction rules are described. I also show how this formalism readily accommodates coarse-graining. Finally, I introduce diagrammatic techniques that greatly facilitate the application of this formalism to both equilibrium and non-equilibrium biochemical systems.

  12. The three-dimensional solution structure of RANTES.

    PubMed

    Chung, C W; Cooke, R M; Proudfoot, A E; Wells, T N

    1995-07-25

    The solution structure of the chemokine RANTES (regulated on activation, normal T-cell expressed and secreted) has been determined using NMR spectroscopy. Backbone and side-chain 1H and 15N assignments have been obtained using a combination of two-dimensional homonuclear and three-dimensional heteronuclear spectra. Regular elements of secondary structure have been identified on the basis of a qualitative interpretation of NOE data, J(NH-H alpha) coupling constants, and amide exchange rates. Three-dimensional structures were calculated from a total of 2146 experimental restraints using a combination of distance geometry and simulated annealing protocols. For the 13 best structures the average backbone (N, C alpha, C) atomic rmsd from the mean coordinates for residues 5-65 is 0.64 A (+/- 0.14 A) for the dimer and 0.50 A (+/- 0.08 A) for the individual monomers. Each monomer consists of a three-stranded antiparallel beta-sheet (residues 26-30, 38-43, 48-51) in a Greek key motif with a C-terminal helix (56-65) packed across the sheet, an arrangement similar to the monomeric structure of other members of this chemokine family (IL-8, PF4, MGSA/Gro alpha, and MIP-1 beta). Overall, the RANTES dimer resembles that previously reported for MIP-1 beta. PMID:7542919

  13. Interfacial structures of acidic and basic aqueous solutions

    SciTech Connect

    Tian, C.; Ji, N.; Waychunas, G.; Shen, Y.R.

    2008-10-20

    Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the 'ice-like' band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the 'liquid-like' band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the 'liquid-like' band and disappearance of the 'ice-like' band in the spectrum indicates that OH{sup -} ions must also have excess at the interface. How they are incorporated in the interfacial water structure is however not clear.

  14. Structure and dynamics of of solution polymerized polyureas

    NASA Astrophysics Data System (ADS)

    Choi, Taeyi; Jeong, Youmi; Runt, James

    2011-03-01

    Polyureas consisting of alternating soft and hard (urea containing) segments exhibit physical properties that are closely related to their microphase separated structure, which consist of rigid (high Tg and sometimes crystalline) hard domains embedded in a matrix dominated by flexible polyether segments. Polyurea properties can be controlled over a rather broad range by varying the chemical structures, molecular weight of the components, and reaction stoichiometry. In the present study, we focus primarily on linear polyureas synthesized using methylene diphenyl diisocyanate and polytetramethylene oxide-di-p-aminobenzoate using a solution polymerization method. Soft segment (diamine) molecular weights were varied from 460 to 860 to 1200 g/mol and characterize their morphology, hydrogen bonding, mechanical behavior and dielectric properties upon varying molecular weight of diamines. This presentation will focus on our latest findings, particularly details of the microphase separated morphology and molecular dynamics as measured using dielectric relaxation spectroscopy This work is supported by Office of Naval Research.

  15. Structure of a passivated Ge surface prepared from aqueous solution.

    SciTech Connect

    Lyman, P. F.; Sakata, O.; Marasco, D, L.; Lee, T.-L.; Breneman, K. D.; Keane, D. T.; Bedzyk, M. J.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    2000-08-10

    The structure of a passivating sulfide layer on Ge(001) was studied using X-ray standing waves and X-ray fluorescence. The sulfide layer was formed by reacting clean Ge substrates in (NH{sub 4}){sub 2}S solutions of various concentrations at 80{sup o}C. For each treatment, a sulfide layer containing approximately two to three monolayers (ML) of S was formed on the surface, and an ordered structure was found at the interface that contained approximately 0.4 ML of S. Our results suggest the rapid formation of a glassy GeS{sub x} layer containing 1.5-2.5 ML S residing atop a partially ordered interfacial layer of bridge-bonded S. The passivating reaction appears to be self-limited to 2-3 ML at this reaction temperature.

  16. Pi sampling: a methodical and flexible approach to initial macromolecular crystallization screening

    SciTech Connect

    Gorrec, Fabrice Palmer, Colin M.; Lebon, Guillaume; Warne, Tony

    2011-05-01

    Pi sampling, derived from the incomplete factorial approach, is an effort to maximize the diversity of macromolecular crystallization conditions and to facilitate the preparation of 96-condition initial screens. The Pi sampling method is derived from the incomplete factorial approach to macromolecular crystallization screen design. The resulting ‘Pi screens’ have a modular distribution of a given set of up to 36 stock solutions. Maximally diverse conditions can be produced by taking into account the properties of the chemicals used in the formulation and the concentrations of the corresponding solutions. The Pi sampling method has been implemented in a web-based application that generates screen formulations and recipes. It is particularly adapted to screens consisting of 96 different conditions. The flexibility and efficiency of Pi sampling is demonstrated by the crystallization of soluble proteins and of an integral membrane-protein sample.

  17. Structural investigations of block copolymer melts and solutions

    NASA Astrophysics Data System (ADS)

    Kossuth, Mary Beth

    1999-11-01

    Block copolymers have been observed to spontaneously self-assemble into a variety of ordered liquid crystalline phases, much like surfactant and lipid solutions. Among these structures are two cubic morphologies: spheres packed on a body-centered cubic lattice and a bicontinuous structure known as the gyroid. The viscoelastic behavior of these two microstructures was examined in detail for nine chemically distinct systems using oscillatory shear. Remarkable similarities were seen in the rheological responses of the two phases, and a universal picture of the viscoelastic behavior of cubic phases was proposed. Two features were observed in every system: a low frequency crossover of the storage and loss moduli, oxx, and a frequency independent plateau in the storage modulus, Gcubic°. The plateau modulus is related experimentally to the characteristic domain spacing d* of the microstructures by Gcubic °˜d*-3, while theory predicts a d*-2 dependence. There are similarities between the phase behavior of melt-state block copolymers and surfactant solutions both in the phases that appear and the order in which they occur. The phase behavior for a series of low molecular weight block copolymers of poly(ethylene oxide)-poly(ethyl ethylene) (PEO-PEE) was examined in the presence of water and both water and dodecane (oil) using small-angle x-ray scattering. In the binary aqueous solutions, phase behavior similar to that of nonionic surfactants was observed, with evidence of lamellae, hexagonally packed cylinders, and body-centered cubic spheres; however, no gyroid phase was seen. The phases were remarkably robust; ordered structures persisted even to high temperatures. Above a critical concentration only lyotropic phase behavior was seen; below this composition thermotropic behavior was evident. Addition of dodecane to a symmetric block copolymer produced a very different phase diagram than its aqueous counterpart. Face-centered cubic spheres and a small window of the

  18. Aqueous Solutions on Silica Surfaces: Structure and Dynamics from Simulations

    NASA Astrophysics Data System (ADS)

    Striolo, Alberto; Argyris, Dimitrios; Tummala, Naga Rajesh

    2009-03-01

    Our group is interested in understanding the properties of aqueous electrolyte solutions at interfaces. The fundamental questions we seek to answer include: (A) how does a solid structure perturb interfacial water? (B) How far from the solid does this perturbation persist? (C) What is the rate of water reorientation and exchange in the perturbed layer? (D) What happens in the presence of simple electrolytes? To address such topics we implemented atomistic molecular dynamics simulations. Recent results for water and simple electrolytes near silicon dioxide surfaces of various degrees of hydroxylation will be presented. The data suggest the formation of a layered aqueous structure near the interface. The density profile of interfacial water seems to dictate the density profiles of aqueous solutions containing NaCl, CaCl2, CsCl, and SrCl2 near the solid surfaces. These results suggest that ion-ion and ion-water correlations are extremely important factors that should be considered when it is desired to predict the distribution of electrolytes near a charged surface. Our results will benefit a number of practical applications including water desalination, exploitation of the oil shale in the Green River Basin, nuclear waste sites remediation, and design of nanofluidic devices.

  19. EIGER detector: application in macromolecular crystallography.

    PubMed

    Casanas, Arnau; Warshamanage, Rangana; Finke, Aaron D; Panepucci, Ezequiel; Olieric, Vincent; Nöll, Anne; Tampé, Robert; Brandstetter, Stefan; Förster, Andreas; Mueller, Marcus; Schulze-Briese, Clemens; Bunk, Oliver; Wang, Meitian

    2016-09-01

    The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed. PMID:27599736

  20. Solution Structures of Rat Amylin Peptide: Simulation, Theory, and Experiment

    PubMed Central

    Reddy, Allam S.; Wang, Lu; Lin, Yu-Shan; Ling, Yun; Chopra, Manan; Zanni, Martin T.; Skinner, James L.; De Pablo, Juan J.

    2010-01-01

    Abstract Amyloid deposits of amylin in the pancreas are an important characteristic feature found in patients with Type-2 diabetes. The aggregate has been considered important in the disease pathology and has been studied extensively. However, the secondary structures of the individual peptide have not been clearly identified. In this work, we present detailed solution structures of rat amylin using a combination of Monte Carlo and molecular dynamics simulations. A new Monte Carlo method is presented to determine the free energy of distinct biomolecular conformations. Both folded and random-coil conformations of rat amylin are observed in water and their relative stability is examined in detail. The former contains an α-helical segment comprised of residues 7–17. We find that at room temperature the folded structure is more stable, whereas at higher temperatures the random-coil structure predominates. From the configurations and weights we calculate the α-carbon NMR chemical shifts, with results that are in reasonable agreement with experiments of others. We also calculate the infrared spectrum in the amide I stretch regime, and the results are in fair agreement with the experimental line shape presented herein. PMID:20141758

  1. Extracting trends from two decades of microgravity macromolecular crystallization history

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; van der Woerd, Mark J.

    2005-01-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  2. Large-volume protein crystal growth for neutron macromolecular crystallography

    SciTech Connect

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  3. Large-volume protein crystal growth for neutron macromolecular crystallography.

    PubMed

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  4. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGESBeta

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  5. Solution structure of an A-tract DNA bend.

    PubMed

    MacDonald, D; Herbert, K; Zhang, X; Pologruto, T; Lu, P; Polgruto, T

    2001-03-01

    The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d

  6. Solution structure, aggregation behavior, and flexibility of human relaxin-2.

    PubMed

    Haugaard-Kedström, Linda M; Hossain, Mohammed Akhter; Daly, Norelle L; Bathgate, Ross A D; Rinderknecht, Ernst; Wade, John D; Craik, David J; Rosengren, K Johan

    2015-03-20

    Relaxin is a member of the relaxin/insulin peptide hormone superfamily and is characterized by a two-chain structure constrained by three disulfide bonds. Relaxin is a pleiotropic hormone and involved in a number of physiological and pathogenic processes, including collagen and cardiovascular regulation and tissue remodelling during pregnancy and cancer. Crystallographic and ultracentrifugation experiments have revealed that the human form of relaxin, H2 relaxin, self-associates into dimers, but the significance of this is poorly understood. Here, we present the NMR structure of a monomeric, amidated form of H2 relaxin and compare its features and behavior in solution to those of native H2 relaxin. The overall structure of H2 relaxin is retained in the monomeric form. H2 relaxin amide is fully active at the relaxin receptor RXFP1 and thus dimerization is not required for biological activity. Analysis of NMR chemical shifts and relaxation parameters identified internal motion in H2 relaxin at the pico-nanosecond and milli-microsecond time scales, which is commonly seen in other relaxin and insulin peptides and might be related to function. PMID:25547165

  7. Structure and dynamics of aqueous solution of uranyl ions

    SciTech Connect

    Chopra, Manish; Choudhury, Niharendu

    2014-04-24

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied.

  8. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  9. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  10. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  11. Structure and phase behavior of aqueous methylcellulose solutions

    NASA Astrophysics Data System (ADS)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  12. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution

    SciTech Connect

    Franca, Eduardo D.; Lins, Roberto D.; Freitas, Luiz C.; Straatsma, t. P.

    2008-11-08

    Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atom of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.

  13. Solution NMR Structure of Membrane-Integral Diacylglycerol Kinase

    PubMed Central

    Van Horn, Wade D.; Kim, Hak-Jun; Ellis, Charles D.; Hadziselimovic, Arina; Sulistijo, Endah S.; Karra, Murthy D.; Tian, Changlin; Sönnichsen, Frank D.; Sanders, Charles R.

    2009-01-01

    Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer using solution NMR. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK’s three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK’s lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis. PMID:19556511

  14. Identifying duplicate crystal structures: XTALCOMP, an open-source solution

    NASA Astrophysics Data System (ADS)

    Lonie, David C.; Zurek, Eva

    2012-03-01

    applications may consider enantiomorphic structures to be identical. Solution method: The XtalComp algorithm overcomes these issues to detect duplicate structures regardless of differences in representation. It begins by performing a Niggli reduction on the inputs, standardizing the translation vectors and orientations. A transform search is performed to identify candidate sets of rotations, reflections, and translations that potentially map the description of one crystal onto the other, solving the problems of enantiomorphs and rotationally degenerate lattices. The atomic positions resulting from each candidate transform are then compared, using a cell-expansion technique to remove periodic boundary issues. Computational noise is treated by comparing non-integer quantities using a specified tolerance. Running time: The test run provided takes less than a second to complete.

  15. Simulation and display of macromolecular complexes

    NASA Technical Reports Server (NTRS)

    Nir, S.; Garduno, R.; Rein, R.; Macelroy, R. D.

    1977-01-01

    In association with an investigation of the interaction of proteins with DNA and RNA, an interactive computer program for building, manipulating, and displaying macromolecular complexes has been designed. The system provides perspective, planar, and stereoscopic views on the computer terminal display, as well as views for standard and nonstandard observer locations. The molecule or its parts may be rotated and/or translated in any direction; bond connections may be added or removed by the viewer. Molecular fragments may be juxtaposed in such a way that given bonds are aligned, and given planes and points coincide. Another subroutine provides for the duplication of a given unit such as a DNA or amino-acid base.

  16. Panorama of ancient metazoan macromolecular complexes.

    PubMed

    Wan, Cuihong; Borgeson, Blake; Phanse, Sadhna; Tu, Fan; Drew, Kevin; Clark, Greg; Xiong, Xuejian; Kagan, Olga; Kwan, Julian; Bezginov, Alexandr; Chessman, Kyle; Pal, Swati; Cromar, Graham; Papoulas, Ophelia; Ni, Zuyao; Boutz, Daniel R; Stoilova, Snejana; Havugimana, Pierre C; Guo, Xinghua; Malty, Ramy H; Sarov, Mihail; Greenblatt, Jack; Babu, Mohan; Derry, W Brent; Tillier, Elisabeth R; Wallingford, John B; Parkinson, John; Marcotte, Edward M; Emili, Andrew

    2015-09-17

    Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems. PMID:26344197

  17. Macromolecular crowding explains overflow metabolism in cells

    PubMed Central

    Vazquez, Alexei; Oltvai, Zoltán N.

    2016-01-01

    Overflow metabolism is a metabolic phenotype of cells characterized by mixed oxidative phosphorylation (OxPhos) and fermentative glycolysis in the presence of oxygen. Recently, it was proposed that a combination of a protein allocation constraint and a higher proteome fraction cost of energy generation by OxPhos relative to fermentation form the basis of overflow metabolism in the bacterium, Escherichia coli. However, we argue that the existence of a maximum or optimal macromolecular density is another essential requirement. Here we re-evaluate our previous theory of overflow metabolism based on molecular crowding following the proteomic fractions formulation. We show that molecular crowding is a key factor in explaining the switch from OxPhos to overflow metabolism. PMID:27484619

  18. Rapid automated superposition of shapes and macromolecular models using spherical harmonics

    PubMed Central

    Konarev, Petr V.; Petoukhov, Maxim V.; Svergun, Dmitri I.

    2016-01-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented (SUPALM). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models (e.g. of protein–nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [J. Appl. Cryst. (2001 ▸), 34, 33–41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB. The spherical harmonics algorithm is best suited for low-resolution shape models, e.g. those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods. PMID:27275142

  19. The NMR solution structure of recombinant RGD-hirudin

    SciTech Connect

    Song, Xia; Mo, Wei; Liu, Xingang; Zhu, Lina; Yan, Xiaomin; Song, Houyan . E-mail: hysong@shmu.edu.cn; Dai, Linsen . E-mail: lsdai@fudan.edu.cn

    2007-08-17

    The solution structure of a new recombinant RGD-hirudin, which has the activities of anti-thrombin and anti-platelet aggregation, was determined by {sup 1}H nuclear magnetic resonance spectroscopy and compared with the conformations of recombinant wild-type hirudin and hirudin (variant 2, Lys47) of the hirudin thrombin complex. On the basis of total 1284 distance and dihedral angle constraints derived from a series of NMR spectra, 20 conformers were computed with ARIA/CNS programs. The structure of residues 3-30 and 37-48 form a molecular core with two antiparallel {beta}-sheets as the other two hirudins. However, significant differences were found in the surface electrostatic charge distributions among the three hirudins, especially in the RGD segment of recombinant RGD-hirudin. This difference may be greatly beneficial to its additional function of anti-platelet aggregation. The difference in extended C-terminal makes its both ionic and hydrophobic interactions with the fibrinogen recognition exosite of thrombin more effective.

  20. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels.

    PubMed

    Das, Siddhartha; Subramanian, Kapil; Chakraborty, Suman

    2007-08-01

    In this paper, a generalized surface-kinetics based model is developed to analytically investigate the influences of the substrate types and the buffer compositions on the macromolecular transport and hybridization in microfluidic channels, under electrokinetic influences. For specific illustration, three typical microchannel substrates, namely silanized glass, polycarbonate and PDMS, are considered, in order to obtain analytical expressions for their zeta potentials as a function of the buffer pH and the substrate compositions. The expressions for the zeta potential are subsequently employed to derive the respective velocity distributions, under the application of electric fields of identical strengths in all cases. It is also taken into consideration that the charged macromolecules introduced into these channels are subjected to electrophoretic influences on account of the applied electric fields. Closed form expressions are derived to predict the transport behaviour of the macromolecules and their subsequent hybridization characteristics. From the analysis presented, it is shown that the modification of the channel surface with silane-treatment becomes useful for enhancing the macromolecular transport and surface hybridization, only if the buffer pH permits a large surface charge density. The analytical solutions are also compared with full-scale numerical solutions of the coupled problem of fluid dynamic and macromolecular transport in presence of the pertinent surface reactions, in order to justify the effectiveness of closed-form expressions derived in this study. PMID:17481862

  1. Hierarchical structure formation in unentangled polymer solutions under extension

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander N.; Subbotin, Andrey V.

    2016-05-01

    The phase separation processes in unentangled polymer solutions induced by the coil-stretch transition due to high-rate extension flow are considered theoretically. The results are in qualitative agreement with recent rheological experiments on PAN solutions.

  2. Phylogenetic Diversity in the Macromolecular Composition of Microalgae

    PubMed Central

    Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  3. Phylogenetic Diversity in the Macromolecular Composition of Microalgae.

    PubMed

    Finkel, Zoe V; Follows, Mick J; Liefer, Justin D; Brown, Chris M; Benner, Ina; Irwin, Andrew J

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  4. Macromolecular Powder Diffraction: Ready for genuine biological problems.

    PubMed

    Karavassili, Fotini; Margiolaki, Irene

    2016-01-01

    Knowledge of 3D structures of biological molecules plays a major role in both understanding important processes of life and developing pharmaceuticals. Among several methods available for structure determination, macromolecular X-ray powder diffraction (XRPD) has transformed over the past decade from an impossible dream to a respectable method. XRPD can be employed in biosciences for various purposes such as observing phase transitions, characterizing bulk pharmaceuticals, determining structures via the molecular replacement method, detecting ligands in protein-ligand complexes, as well as combining micro-sized single crystal crystallographic data and powder diffraction data. Studies using synchrotron and laboratory sources in some standard configuration setups are reported in this review, including their respective advantages and disadvantages. Methods presented here provide an alternative, complementary set of tools to resolve structural problems. A variety of already existing software packages for powder diffraction data processing and analysis, some of which have been adapted to large unit cell studies, are briefly described. This review aims to provide necessary elements of theory and current methods, along with practical explanations, available software packages and highlighted case studies. PMID:26786768

  5. Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness

    NASA Astrophysics Data System (ADS)

    Crasta, Graziano; De Cicco, Virginia; De Philippis, Guido; Ghiraldin, Francesco

    2016-08-01

    We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.

  6. PIMA: Protein-Protein interactions in Macromolecular Assembly - a web server for its Analysis and Visualization

    PubMed Central

    Kaleeckal Mathew, Oommen; Sowdhamini, Ramanathan

    2016-01-01

    Protein-protein interactions are essential for the basic biological machinery of the cell. This is important for processes like protein synthesis, enzyme kinetics, molecular assembly and signal transduction. A high number of macromolecular structural complexes are known due to recent advances in structure determination techniques. Therefore, it is of interest to develop an interactive tool to objectively analyze large protein complexes. Hence, we describe the development and utility of a web enabled application named ‘Protein-Protein Interaction in Macro-molecular Assembly’ (PIMA) for the analysis of large protein assemblies. The intricate details of physical interactions amongst protein subunits in a large complex are presented as simple user preferred interactive network diagrams PMID:27212837

  7. a Procedural Solution to Model Roman Masonry Structures

    NASA Astrophysics Data System (ADS)

    Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.

    2013-07-01

    The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.

  8. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG. PMID:20153852

  9. Solution structures of stromelysin complexed to thiadiazole inhibitors.

    PubMed Central

    Stockman, B. J.; Waldon, D. J.; Gates, J. A.; Scahill, T. A.; Kloosterman, D. A.; Mizsak, S. A.; Jacobsen, E. J.; Belonga, K. L.; Mitchell, M. A.; Mao, B.; Petke, J. D.; Goodman, L.; Powers, E. A.; Ledbetter, S. R.; Kaytes, P. S.; Vogeli, G.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.

    1998-01-01

    Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors. PMID:9827994

  10. Temperature- and salt-responsive polyoxometalate-poly(N-isopropylacrylamide) hybrid macromolecules in aqueous solution.

    PubMed

    Zhou, Jing; Yin, Panchao; Chen, Xinyue; Hu, Lang; Liu, Tianbo

    2015-11-14

    Polyoxometalate (POM) polar head groups were covalently functionalized with poly(N-isopropylacrylamide) (PNIPAM) tails. The macromolecular hybrid demonstrates solution behavior of hydrophilic macroions by self-assembling into blackberry structures at room temperature. The hybrid behaves like an amphiphilic surfactant by forming a vesicular structure when the temperature is above the phase transition of PNIPAM. The reversible self-assembly is also salt-sensitive and the salt-induced smaller vesicular formation results from counterion-association. PMID:26383608

  11. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7

    PubMed Central

    Langer, Gerrit G; Cohen, Serge X; Lamzin, Victor S; Perrakis, Anastassis

    2008-01-01

    ARP/wARP is a software suite to build macromolecular models in X-ray crystallography electron density maps. Structural genomics initiatives and the study of complex macromolecular assemblies and membrane proteins all rely on advanced methods for 3D structure determination. ARP/wARP meets these needs by providing the tools to obtain a macromolecular model automatically, with a reproducible computational procedure. ARP/wARP 7.0 tackles several tasks: iterative protein model building including a high-level decision-making control module; fast construction of the secondary structure of a protein; building flexible loops in alternate conformations; fully automated placement of ligands, including a choice of the best fitting ligand from a “cocktail”; and finding ordered water molecules. All protocols are easy to handle by a non-expert user through a graphical user interface or a command line. The time required is typically a few minutes although iterative model building may take a few hours. PMID:18600222

  12. JBluIce-EPICS control system for macromolecular crystallography.

    SciTech Connect

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J. L.; Fischetti, R. F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  13. Miniaturized kappa goniometer for macromolecular crystallography

    SciTech Connect

    Rosenbaum, G.; Westbrook, E. M.

    1997-07-01

    A goniometer with kappa geometry has been designed and built specifically for macromolecular crystallography. The main feature is a miniaturized kappa stage made possible by the small weight of specimen and specimen holder. The design goal was to: 1) eliminate interference between stage and area detector for specimen-to-detector distances of 100 mm and more; 2) minimize the sphere of confusion on expectation of dealing with very small crystals at third generation sources; 3) minimize the solid angle of shadow and inaccessible positioning of the sample due to interference of the stage with other objects in the sample area; 4) achieve a rotation speed of 10 degree/s at 0.5% constancy and 0.4 s acceleration time for 0.05 s exposures of 0.2 degree fine slice frames every 2 seconds, and 5) to achieve precise synchronization between rotation angle and shutter opening and closing. The kappa stage is mounted on a commercial high precision rotary table, designed for use in both horizontal and vertical orientation. This table provides the high precision rotation for data acquisition. The required crisp response and constant speed is delivered by a high output direct drive DC-motor, controlled by a closed-loop controller using feedback from a precision angular encoder. The kappa- and phi-motions are used for sample positioning only and are driven by miniature DC-motors equipped with integral encoders.

  14. Miniaturized kappa goniometer for macromolecular crystallography

    SciTech Connect

    Rosenbaum, G.; Westbrook, E.M.

    1997-07-01

    A goniometer with kappa geometry has been designed and built specifically for macromolecular crystallography. The main feature is a miniaturized kappa stage made possible by the small weight of specimen and specimen holder. The design goal was to: 1) eliminate interference between stage and area detector for specimen-to-detector distances of 100 mm and more; 2) minimize the sphere of confusion on expectation of dealing with very small crystals at third generation sources; 3) minimize the solid angle of shadow and inaccessible positioning of the sample due to interference of the stage with other objects in the sample area; 4) achieve a rotation speed of 10 degree/s at 0.5{percent} constancy and 0.4 s acceleration time for 0.05 s exposures of 0.2 degree fine slice frames every 2 seconds, and 5) to achieve precise synchronization between rotation angle and shutter opening and closing. The kappa stage is mounted on a commercial high precision rotary table, designed for use in both horizontal and vertical orientation. This table provides the high precision rotation for data acquisition. The required crisp response and constant speed is delivered by a high output direct drive DC-motor, controlled by a closed-loop controller using feedback from a precision angular encoder. The kappa- and phi-motions are used for sample positioning only and are driven by miniature DC-motors equipped with integral encoders.{copyright} {ital 1997 American Institute of Physics.}

  15. Neutron Laue diffraction in macromolecular crystallography

    NASA Astrophysics Data System (ADS)

    Myles, D. A. A.; Bon, C.; Langan, P.; Cipriani, F.; Castagna, J. C.; Lehmann, M. S.; Wilkinson, C.

    The time scales required for conventional neutron diffraction analysis of biological single crystals at, or near, atomic resolution are prohibitive - such studies are rarely performed. Laue (white beam) diffraction can provide a more rapid and efficient survey of reciprocal space, maximising the flux at the sample and stimulating large numbers of reflections simultaneously. A LAue DIffractometer (LADI), designed specifically for macromolecular crystallography, has been installed on a cold neutron guide at ILL. The detector comprises a large Gd 2O 3-doped neutron-sensitive image plate (400 × 800 mm) mounted on a cylindrical camera (318 mm diameter) that is read in phonographic mode after exposure. Detector response has been evaluated and performance indicators are given. Narrow (Quasi-Laue) band-passes (d/ gl/ λ = 8-20%) are often required for large unit-cell biological crystals in order to reduce reflection overlap and incoherent background. Laue and Quasi-Laue data have now been collected for a number of proteins and other biological crystals. Recent results are presented and future prospects reviewed.

  16. Solution structure of the chromomycin-DNA complex

    SciTech Connect

    Gao, X.; Patel, D.J. )

    1989-01-24

    The structure of the chromomycin-DNA complex at the deoxyoctanucleotide duplex level has been determined from one- and two-dimensional proton NMR studies in Mg-containing aqueous solution. The NMR results demonstrate that the antitumor agent binds as a symmetrical dimer to the self-complementary d(T-T-G-G-C-C-A-A) duplex with retention of the 2-fold symmetry in the complex. A set of intermolecular nuclear Overhauser enhancements (NOEs) established that two chromomycin molecules in the dimer share the minor groove at the G-G-C-C{center dot}G-G-C-C segment in such a way that each hydrophilic edge of the chromophore is located next to the G-G{center dot}C-C half-site and each C-D-E trisaccharide chain extends toward the 3{prime}-direction of the octanucleotide duplex. In addition, the A-B disaccharide segment and the hydrophilic side chain of the antitumor agent are directed toward the phosphate backbone. The observed changes in nucleic acid NOEs and coupling patterns on complex formation establish a transition to a wider and shallower minor groove at the central G-G-C-C{center dot}G-G-C-C segment required for accommodating the chromomycin dimer. The present demonstration that chromomycin binds as a dimer and switches the conformation of the DNA at its G{center dot}C-rich minor groove binding site provides new insights into antitumor agent design and the sequence specificity of antitumor agent-DNA recognition.

  17. Structural changes of CF 1-ATPase in solution

    NASA Astrophysics Data System (ADS)

    Calmettes, P.; Pezennec, S.; Berger, G.; Girault, G.

    1992-06-01

    Small changes in neutron scattering spectra were observed when spinach CF 1-ATPase is activated by dithiothreitol or allowed to bind to a nucleotide. It is shown that activation induces a significant conformation change whereas substrate binding does not. In solution, MgATP or MgAMP mainly modifies the interactions between the solute molecules.

  18. Formation mechanisms, structure, solution behavior, and reactivity of aminodiborane.

    PubMed

    Li, Huizhen; Ma, Nana; Meng, Wenjuan; Gallucci, Judith; Qiu, Yongqing; Li, Shujun; Zhao, Qianyi; Zhang, Jie; Zhao, Ji-Cheng; Chen, Xuenian

    2015-09-30

    A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(μ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis. PMID:26335760

  19. Comparison of the crystal and solution structures of two RNA oligonucleotides.

    PubMed Central

    Rife, J P; Stallings, S C; Correll, C C; Dallas, A; Steitz, T A; Moore, P B

    1999-01-01

    Until recently, there were no examples of RNAs whose structures had been determined by both NMR and x-ray crystallography, and thus there was no experimental basis for assessing the accuracy of RNA solution structures. A comparison of the solution and the crystal structures of two RNAs is presented, which demonstrates that NMR can produce solution structures that resemble crystal structures and thus validates the application to RNA of a methodology developed initially for the determination of protein conformations. Models for RNA solution structures are appreciably affected by the parameters used for their refinement that describe intramolecular interactions. For the RNAs of interest here, the more realistic those parameters, the greater the similarity between solution structures and crystal structures. PMID:9876123

  20. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  1. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy.

    PubMed

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E

    2016-05-27

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway. PMID:27023757

  2. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement

    PubMed Central

    Clore, G. Marius; Tang, Chun; Iwahara, Junji

    2007-01-01

    Recent advances in the use of paramagnetic relaxation enhancement (PRE) in structure refinement and in the analysis of transient dynamic processes involved in macromolecular complex formation are presented. In the slow exchange regime, we show, using the SRY/DNA complex as an example, that the PRE provides a powerful tool that can lead to significant increases in the reliability and accuracy of NMR structure determinations. Refinement necessitates the use of an ensemble representation of the paramagnetic center and a model free extension of the Solomon-Bloembergen equations. In the fast exchange regime, the PRE provides insight into dynamic processes and the existence of transient, low population intermediate species. The PRE allows one to characterize dynamic non-specific binding of a protein to DNA; to directly demonstrate that the search process whereby a transcription factor locates its specific DNA target site involves both intramolecular (sliding) and intermolecular (hopping and intersegment transfer) translocation; and to detect and visualize the distribution of an ensemble of transient encounter complexes in protein-protein association. PMID:17913493

  3. Exploring conformational modes of macromolecular assemblies by multi-particle cryo-EM

    PubMed Central

    Spahn, Christian M.T.; Penczek, Pawel A.

    2009-01-01

    Summary Single particle cryo-electron microscopy (cryo-EM) is a technique aimed at structure determination of large macromolecular complexes in their unconstrained, physiological conditions. The power of the method has been demonstrated in selected studies where for highly symmetric molecules the resolution attained permitted backbone tracing. However, most molecular complexes appear to exhibit intrinsic conformational variability necessary to perform their functions. Therefore, it is now increasingly recognized that sample heterogeneity constitutes a major methodological challenge for cryo-EM. To overcome it dedicated experimental and particularly computational multi-particle approaches have been developed. Their applications point to the future of cryo-EM as an experimental method uniquely suited to visualize the conformational modes of large macromolecular complexes and machines. PMID:19767196

  4. The Lunar Internal Structure Model: Problems and Solutions

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Gusev, Alexander; Petrova, Natalia; Varaksina, Natalia

    decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order, except for member J2. General conclusion: according to recent data, the true figure of the Moon is much more complex than a three-axis ellipsoid. Gravitational field and dynamic figure of the multilayered Moon: One of the main goals of selenodesy is the study of a dynamic figure of the Moon which determines distribution of the mass within the Moon’s body. A dynamic figure is shaped by the inertia ellipsoid set by values of resultant moments of inertia of the Moon A, B, C and their orientation in space. Selenoid satellites (SS) open new and most perspective opportunities in the study of gravitational field and the Moon’s figure. SSs “Moon 10”, “Apollo”, “Clementine”, “Lunar Prospector” trajectory tracking data processing has allowed for identification of coefficients in decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order. Difference from zero of c-coefficients proves asymmetry of gravitational fields on the visible and invisible sides of the Moon. As a first attempt at solving the problem, the report presents the survey of internal structure of the Moon, tabulated values of geophysical parameters and geophysical profile of the Moon, including liquid lunar core, analytical solution of Clairaut’s equation for the two-layer model of the Moon; mathematical and bifurcational analysis of solution based on physically justified task options; original debugged software in VBA programming language for computer

  5. Reconstruction of SAXS Profiles from Protein Structures

    PubMed Central

    Putnam, Daniel K.; Lowe, Edward W.

    2013-01-01

    Small angle X-ray scattering (SAXS) is used for low resolution structural characterization of proteins often in combination with other experimental techniques. After briefly reviewing the theory of SAXS we discuss computational methods based on 1) the Debye equation and 2) Spherical Harmonics to compute intensity profiles from a particular macromolecular structure. Further, we review how these formulas are parameterized for solvent density and hydration shell adjustment. Finally we introduce our solution to compute SAXS profiles utilizing GPU acceleration. PMID:24688746

  6. webSDA: a web server to simulate macromolecular diffusional association.

    PubMed

    Yu, Xiaofeng; Martinez, Michael; Gable, Annika L; Fuller, Jonathan C; Bruce, Neil J; Richter, Stefan; Wade, Rebecca C

    2015-07-01

    Macromolecular interactions play a crucial role in biological systems. Simulation of diffusional association (SDA) is a software for carrying out Brownian dynamics simulations that can be used to study the interactions between two or more biological macromolecules. webSDA allows users to run Brownian dynamics simulations with SDA to study bimolecular association and encounter complex formation, to compute association rate constants, and to investigate macromolecular crowding using atomically detailed macromolecular structures. webSDA facilitates and automates the use of the SDA software, and offers user-friendly visualization of results. webSDA currently has three modules: 'SDA docking' to generate structures of the diffusional encounter complexes of two macromolecules, 'SDA association' to calculate bimolecular diffusional association rate constants, and 'SDA multiple molecules' to simulate the diffusive motion of hundreds of macromolecules. webSDA is freely available to all users and there is no login requirement. webSDA is available at http://mcm.h-its.org/webSDA/. PMID:25883142

  7. Three Biomedical Beamlines at NSLS-II for Macromolecular Crystallography and Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Schneider, D. K.; Berman, L. E.; Chubar, O.; Hendrickson, W. A.; Hulbert, S. L.; Lucas, M.; Sweet, R. M.; Yang, L.

    2013-03-01

    We report on the status of the development of three beamlines for the National Synchrotron Light Source-II (NSLS-II), two for macromolecular crystallography (MX), and one for wide- and small-angle x-ray scattering (SAXS). Funded by the National Institutes of Health, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX) is scheduled to begin operation by 2015. The two MX beamlines share a sector with identical canted in-vacuum undulators (IVU21). The microfocusing FMX beamline on the inboard branch employs a two-stage horizontal source demagnification scheme, will cover an energy range of 5 - 23 keV, and at 12.7 keV will focus a flux of up to 1013 ph/s into a spot of 1 μm width. The companion AMX beamline on the short outboard branch of the sector is tunable in the range of 5 - 18 keV and has a native focus of 4 μm (h) × 2 μm (v). This robust beamline will be highly automated, have high throughput capabilities, and with larger beams and low divergence will be well suited for structure determinations on large complexes. The high brightness SAXS beamline, LIX, will provide multiple dynamic and static experimental systems to support scientific programs in solution scattering, membrane structure determination, and tissue imaging. It will occupy a different sector, equipped with a single in-vacuum undulator (IVU23). It can produce beams as small as 1 μm across, and with a broad energy range of 2.1 - 18 keV it will support anomalous SAXS.

  8. JBlulce Data Acquisition Software for Macromolecular Crystallography

    SciTech Connect

    2010-06-01

    JBlulce (Java Beam Line Universal Integrated Configuration Environment is a data acquisition software for macromolecular crystallography conforming user interface of the SSRL Blulce that has become a de-factor standard in the field. Besides this interface conformity, JBlulce is a unique system in terms of architecture, speec, capability and osftware implementation. It features only two software layers, the JBlulce clients and the EPICS servers, as compared to three layers present in Blulc and most of similar systems. This layers reduction provides a faster communication with hardware and an easier access to advanced hardware capabilities like on-the-fly scanning. Then JBlulc clients are designed to operate in parallel with the other beamline controls which streamlines the tasks performed by staff such as beamline preparation, maitenance, audting and user assistance. Another distinction is the deployment of multiple plugins that can be written in any programming languag thus involving more staff into the development. further on, JBlulce makes use of unified motion controls allowing for easy scanning and optimizing of any beamline component. Finally, the graphic interface is implemented in Java making full use of rich Java libraries and Jave IDE for debugging. to compare, Blulce user interface is implemented with aging Tcl/tk language providing very restricted capabilities. JBlulce makes full use of the industrial power and wide drivers selection of EPICS in controlling hardware; all hardware commuication is routed via multiple EPICS servers residing on local area network. JBlulce also includes several EPICS State Notation servers aimed at making hardware communication more robust. Besides using EPICS for controlling hardware, JBlulce extensively uses EPICS databases for efficien communications between multiple instances of JBlulce clients and JBlulce pplugins that can run in parallel on different computers. All of the above makes JBlulce one of the biggest and most

  9. JBlulce Data Acquisition Software for Macromolecular Crystallography

    Energy Science and Technology Software Center (ESTSC)

    2010-06-01

    JBlulce (Java Beam Line Universal Integrated Configuration Environment is a data acquisition software for macromolecular crystallography conforming user interface of the SSRL Blulce that has become a de-factor standard in the field. Besides this interface conformity, JBlulce is a unique system in terms of architecture, speec, capability and osftware implementation. It features only two software layers, the JBlulce clients and the EPICS servers, as compared to three layers present in Blulc and most of similarmore » systems. This layers reduction provides a faster communication with hardware and an easier access to advanced hardware capabilities like on-the-fly scanning. Then JBlulc clients are designed to operate in parallel with the other beamline controls which streamlines the tasks performed by staff such as beamline preparation, maitenance, audting and user assistance. Another distinction is the deployment of multiple plugins that can be written in any programming languag thus involving more staff into the development. further on, JBlulce makes use of unified motion controls allowing for easy scanning and optimizing of any beamline component. Finally, the graphic interface is implemented in Java making full use of rich Java libraries and Jave IDE for debugging. to compare, Blulce user interface is implemented with aging Tcl/tk language providing very restricted capabilities. JBlulce makes full use of the industrial power and wide drivers selection of EPICS in controlling hardware; all hardware commuication is routed via multiple EPICS servers residing on local area network. JBlulce also includes several EPICS State Notation servers aimed at making hardware communication more robust. Besides using EPICS for controlling hardware, JBlulce extensively uses EPICS databases for efficien communications between multiple instances of JBlulce clients and JBlulce pplugins that can run in parallel on different computers. All of the above makes JBlulce one of the biggest

  10. Macromolecular Topography Leaps into the Digital Age

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.

  11. Macromolecular networks and intelligence in microorganisms

    PubMed Central

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  12. Macromolecular networks and intelligence in microorganisms.

    PubMed

    Westerhoff, Hans V; Brooks, Aaron N; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C; Jackson, Victoria J; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  13. The structure of ionic aqueous solutions at interfaces: An intrinsic structure analysis

    NASA Astrophysics Data System (ADS)

    Bresme, Fernando; Chacón, Enrique; Tarazona, Pedro; Wynveen, Aaron

    2012-09-01

    We investigate the interfacial structure of ionic solutions consisting of alkali halide ions in water at concentrations in the range 0.2-1.0 molal and at 300 K. Combining molecular dynamics simulations of point charge ion models and a recently introduced computational approach that removes the averaging effect of interfacial capillary waves, we compute the intrinsic structure of the aqueous interface. The interfacial structure is more complex than previously inferred from the analysis of mean profiles. We find a strong alternating double layer structure near the interface, which depends on the cation and anion size. Relatively small changes in the ion diameter disrupt the double layer structure, promoting the adsorption of anions or inducing the density enhancement of small cations with diameters used in simulation studies of lithium solutions. The density enhancement of the small cations is mediated by their strong water solvation shell, with one or more water molecules "anchoring" the ion to the outermost water layer. We find that the intrinsic interfacial electrostatic potential features very strong oscillations with a minimum at the liquid surface that is ˜4 times stronger than the electrostatic potential in the bulk. For the water model employed in this work, SPC/E, the electrostatic potential at the water surface is ˜-2 V, equivalent to ˜80 kBT (for T = 300 K), much stronger than previously considered. Furthermore, we show that the utilization of the intrinsic surface technique provides a route to extract ionic potentials of mean force that are not affected by the thermal fluctuations, which limits the accuracy of most past approaches including the popular umbrella sampling technique.

  14. Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level.

    PubMed

    Pérez Santero, Silvia; Favretto, Filippo; Zanzoni, Serena; Chignola, Roberto; Assfalg, Michael; D'Onofrio, Mariapina

    2016-09-15

    Macromolecular crowding is a distinctive feature of the cellular interior, influencing the behaviour of biomacromolecules. Despite significant advancements in the description of the effects of crowding on global protein properties, the influence of cellular components on local protein attributes has received limited attention. Here, we describe a residue-level systematic interrogation of the structural, dynamic, and binding properties of the liver fatty acid binding protein (LFABP) in crowded solutions. Two-dimensional NMR spectral fingerprints and relaxation data were collected on LFABP in the presence of polymeric and biomolecular crowders. Non-interacting crowders produced minimal site-specific spectral perturbations on ligand-free and lipid-bound LFABP. Conformational adaptations upon ligand binding reproduced those observed in dilute solution, but a perturbation of the free oleate state resulted in less favorable uptake. When LFABP engaged in direct interactions with background molecules, changes in local chemical environments were detected for residues of the internal binding pocket and of the external surface. Enhanced complexity was introduced by investigating LFABP in cell lysates, and in membrane-bounded compartments. LFABP was able to capture ligands from prokaryotic and eukaryotic cell lysates, and from artificial cells (water-in-oil emulsion droplets). The data suggest that promiscuous interactions are a major factor influencing protein function in the cell. PMID:27457417

  15. Synchrotron radiation macromolecular crystallography: science and spin-offs

    PubMed Central

    Helliwell, John R.; Mitchell, Edward P.

    2015-01-01

    A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development. PMID:25866664

  16. Synchrotron radiation macromolecular crystallography: science and spin-offs.

    PubMed

    Helliwell, John R; Mitchell, Edward P

    2015-03-01

    A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development. PMID:25866664

  17. Electronic structures of intermolecular hydrogen bond contacts with solute in aqueous solution: glycine as a working prototype.

    PubMed

    Meng, Lingbiao; Wu, Weidong; Lin, Zijing

    2016-06-21

    The intermolecular hydrogen bond (H-bond) interactions play vital roles in many biological systems. Despite continued interest, the nature of their electronic structures has remained elusive. Based on the unique features of aqueous solution, a simple model depicting the H-bond electronic states by orbital hybridizations is developed. The model is demonstrated by reproducing the experimental IR data and yielding favorable solute-solvent interactions for the prototype glycine. The H-bond state for solute H, O and N atoms is found to be characterized by sp(1), sp(2), and sp(3) hybridizations, respectively. The model provides a new way for probing the intricate solute-solvent contacts. PMID:27243041

  18. Structural qualia: a solution to the hard problem of consciousness

    PubMed Central

    Loorits, Kristjan

    2014-01-01

    The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved. PMID:24672510

  19. Solution structure of p53 core domain: Structural basis for its instability

    PubMed Central

    Cañadillas, José Manuel Pérez; Tidow, Henning; Freund, Stefan M. V.; Rutherford, Trevor J.; Ang, Hwee Ching; Fersht, Alan R.

    2006-01-01

    The 25-kDa core domain of the tumor suppressor p53 is inherently unstable and melts at just above body temperature, which makes it susceptible to oncogenic mutations that inactivate it by lowering its stability. We determined its structure in solution using state-of-the-art isotopic labeling techniques and NMR spectroscopy to complement its crystal structure. The structure was very similar to that in the crystal but far more mobile than expected. Importantly, we were able to analyze by NMR the structural environment of several buried polar groups, which indicated structural reasons for the instability. NMR spectroscopy, with its ability to detect protons, located buried hydroxyl and sulfhydryl groups that form suboptimal hydrogen-bond networks. We mutated one such buried pair, Tyr-236 and Thr-253 to Phe-236 and Ile-253 (as found in the paralogs p63 and p73), and stabilized p53 by 1.6 kcal/mol. We also detected differences in the conformation of a mobile loop that might reflect the existence of physiologically relevant alternative conformations. The effects of temperature on the dynamics of aromatic residues indicated that the protein also experiences several dynamic processes that might be related to the presence of alternative hydrogen-bond patterns in the protein interior. p53 appears to have evolved to be dynamic and unstable. PMID:16461916

  20. A New Solution to the Problem of Finding All Numerical Solutions to Ordered Metric Structures.

    ERIC Educational Resources Information Center

    Lehner, Paul E.; Norma, Elliot

    1980-01-01

    A new algorithm is used to test and describe the set of all possible solutions for any linear model of an empirical ordering derived from techniques such as additive conjoint measurement, unfolding theory, general Fechnerian scaling, and ordinal multiple regression. The algorithm is computationally faster and numerically superior to previous…

  1. The structure of water in solutions containing di- and trivalent cations by empirical potential structure refinement

    NASA Astrophysics Data System (ADS)

    Bowron, Daniel T.; Díaz Moreno, Sofia

    2013-11-01

    Empirical potential structure refinement (EPSR) has been used to build experimentally consistent models of a range of electrolyte solutions containing di- and trivalent cations: Cu(ClO4)2 at concentrations of 0.5 and 2.0 m, and Cr(NO3)3, YCl3 and LaCl3 at a concentration of 1.0 m. The resulting models are used to investigate the perturbation of these electrolytes on the pair distribution and triplet angle correlations between solvent water molecules, compared with those found in the pure solvent. The results elucidate the differences that derive from the reflected range of highly structured local cation environments and provide a complementary viewpoint on the hydration shell geometries.

  2. A Sensitized Emission Based Calibration of FRET Efficiency for Probing the Architecture of Macromolecular Machines.

    PubMed

    Joglekar, Ajit; Chen, Renjie; Lawrimore, Joshua

    2013-01-01

    Macromolecular machines participate in almost every cell biological function. These machines can take the form of well-defined protein structures such as the kinetochore, or more loosely organized protein assemblies like the endocytic coat. The protein architecture of these machines-the arrangement of multiple copies of protein subunits at the nanoscale, is necessary for understanding their cell biological function and biophysical mechanism. Defining this architecture in vivo presents a major challenge. High density of protein molecules within macromolecular machines severely limits the effectiveness of super-resolution microscopy. However, this density is ideal for Forster Resonance Energy Transfer (FRET), which can determine the proximity between neighboring molecules. Here, we present a simple FRET quantitation scheme that calibrates a standard epifluorescence microscope for measuring donor-acceptor separations. This calibration can be used to deduce FRET efficiency fluorescence intensity measurements. This method will allow accurate determination of FRET efficiency over a wide range of values and FRET pair number. It will also allow dynamic FRET measurements with high spatiotemporal resolution under cell biological conditions. Although the poor maturation efficiency of genetically encoded fluorescent proteins presents a challenge, we show that its effects can be alleviated. To demonstrate this methodology, we probe the in vivo architecture of the γ-Tubulin Ring. Our technique can be applied to study the architecture and dynamics of a wide range of macromolecular machines. PMID:24319499

  3. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei.

    PubMed

    Zhang, Lingling; Wang, Yu; Picking, Wendy L; Picking, William D; De Guzman, Roberto N

    2006-06-01

    Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens. PMID:16631790

  4. JBluIce–EPICS control system for macromolecular crystallography

    PubMed Central

    Stepanov, Sergey; Makarov, Oleg; Hilgart, Mark; Pothineni, Sudhir Babu; Urakhchin, Alex; Devarapalli, Satish; Yoder, Derek; Becker, Michael; Ogata, Craig; Sanishvili, Ruslan; Venugopalan, Nagarajan; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline com­ponent. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallo­graphic experiments, especially in the field of microcrystallo­graphy. PMID:21358048

  5. Structure and interaction among protein and nanoparticle mixture in solution: Effect of temperature

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Das, Kaushik; Mehan, S.; Aswal, V. K.; Kohlbrecher, Joachim

    2015-11-01

    Structure and interaction among globular protein bovine serum albumin (BSA) and silica nanoparticle mixtures in solutions have been studied using small angle neutron scattering technique by varying the solution temperature. Our study shows that in absence of nanoparticles and up to 70 °C, an intermediate range repulsive and one long range attractive interaction potential between the proteins exist. Above that temperature, fractal structure forms. In presence of nanoparticles, fractal structures form even at room temperature by both the protein and nanoparticles. Fractal dimension increases with the increase of BSA concentration and solution temperature, and this temperature induced structural transition is irreversible.

  6. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  7. Growing market acceptance for fiber optic solutions in civil structures

    NASA Astrophysics Data System (ADS)

    Graver, Thomas; Inaudi, Daniele; Doornink, Justin

    2004-12-01

    Owners must manage and ensure the safety of their civil structures even as use of many structures extends well beyond their design lifetime. Traditionally, most structures rely on strict maintenance procedures, visual inspections, and very few sensors. But maintenance is very expensive, visual inspections can miss critical problems, and conventional sensors can fail in harsh environments. Can fiber-optic sensing (FOS) address these issues? This is not a new question, but there are some new answers. This paper highlights several structures where FOS is used, and describes the associated successes and challenges for each application. Many successes are coupled to improved FOS tools: better sensor packages, simpler and less expensive instrumentation, improved installation techniques, and more efficient data analysis tools. Examples of each are provided. Particular attention is given to the economics of instrumenting civil structures - when and how it pays. Conclusions include recommendations for future developments that will further accelerate FOS acceptance and use.

  8. NMR solution structure of the neurotrypsin Kringle domain.

    PubMed

    Ozhogina, Olga A; Grishaev, Alexander; Bominaar, Emile L; Patthy, László; Trexler, Maria; Llinás, Miguel

    2008-11-25

    Neurotrypsin is a multidomain protein that serves as a brain-specific serine protease. Here we report the NMR structure of its kringle domain, NT/K. The data analysis was performed with the BACUS (Bayesian analysis of coupled unassigned spins) algorithm. This study presents the first application of BACUS to the structure determination of a 13C unenriched protein for which no prior experimental 3D structure was available. NT/K adopts the kringle fold, consisting of an antiparallel beta-sheet bridged by an overlapping pair of disulfides. The structure reveals the presence of a surface-exposed left-handed polyproline II helix that is closely packed to the core beta-structure. This feature distinguishes NT/K from other members of the kringle fold and points toward a novel functional role for a kringle domain. Functional divergence among kringle domains is discussed on the basis of their surface and electrostatic characteristics. PMID:18956887

  9. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  10. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    SciTech Connect

    Soares, A.S.; Schneider, D. K.; Skinner, J. M.; Cowan, M.; Buono, R.; Robinson, H. H.; Heroux, A.; Carlucci-Dayton, M.; Saxena, A.; Sweet, R. M.

    2008-09-01

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  11. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    SciTech Connect

    A Soares; D Schneider; J Skinner; M Cowan; R Buono; H Robinson; A Heroux; M Carlucci-Dayton; A Saxena; R Sweet

    2011-12-31

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  12. Effects of Macromolecular Crowding on the Mechanical Unfolding of Ubiquitin

    NASA Astrophysics Data System (ADS)

    Peng, Haibo; Lin, Fan-Chi; Yuan, Jian-Min; Yang, Guoliang; Chyan, Chia-Lin

    2004-03-01

    Macromolecular crowding exists in all living cells and affects protein folding, rates of diffusion, and amyloid formation. Although the biophysical theory of macromolecular crowding by thermodynamics and statistical thermodynamics approaches has been well developed, the effect of crowding on protein stability and kinetics has not received sufficient attention experimentally. We have carried out experiments to characterize the effects of macromolecular crowding on the mechanical force-induced unfolding and refolding of individual protein molecules of ubiquitin. To facilitate the mechanical unfolding experiments, polymers of ubiquitin molecules were synthesized. Using the atomic force microscope, we determined that, as the concentration of the crowding agents (dextran) increases from zero to 300 g/l, the average unfolding force of ubiquitin increase from 228 pN to 296 pN with a pulling speed of 1000 nm/s and in neutral pH. This result suggests that the unfolding rate of ubiquitin is reduced due to molecular crowding.

  13. Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiping; Wang, Xiaojun

    2005-04-01

    Generalized eigenvalue problems from the modal analysis are often converted to the standard eigenvalue problems. In this paper, it evaluates the upper and lower bounds on the eigenvalues of the standard eigenvalue problem of structures subject to severely deficient information about the structural parameters. Here, we focus on non-probabilistic interval analysis models of uncertainty, which are adapted to the case of severe lack of information on uncertainty. Non-probabilistic, interval analysis method in which uncertainties are defined by interval numbers appears as an alternative to the classical probabilistic models. For the standard eigenvalue problem of structures with uncertain-but-bounded parameters, the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem for the standard eigenvalue problem are presented, and compared with Deif's solution theorem in numerical examples. It is shown that, for the upper and lower bounds on the eigenvalues of the standard eigenvalue problem with uncertain-but-bounded parameters, the presented vertex solution theorem is unconditional, and the positive semi-definite solution theorem and the parameter decomposition solution theorem have less limitary conditions compared with Deif's solution theorem. The effectiveness of the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem are illustrated by numerical examples

  14. Macromolecular crystallography beamline X25 at the NSLS

    PubMed Central

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  15. A macromolecular prodrug strategy for combinatorial drug delivery.

    PubMed

    Li, Nan-Nan; Lin, Jiantao; Gao, Di; Zhang, Li-Ming

    2014-03-01

    A novel macromolecular prodrug strategy was developed for the combinatorial delivery of two poorly water-soluble drugs, dexamethasone and doxorubicin. In this work, dexamethasone was firstly conjugated onto a water-soluble modified polysaccharide by an acid-labile hydrazone linkage. The resultant macromolecular prodrug had an amphiphilic character and could self-assemble into spherical polymeric micelles in aqueous system. With these micelles, doxorubicin was then encapsulated into their hydrophobic cores. For the conjugated dexamethasone and encapsulated doxorubicin, they could exhibit independent and acid-sensitive release characteristics. For the doxorubicin-loaded prodrug micelles, they were easily be internalized by living cells and showed obvious antitumor activity. PMID:24407691

  16. Unexpected effects of macromolecular crowding on protein stability.

    PubMed

    Benton, Laura A; Smith, Austin E; Young, Gregory B; Pielak, Gary J

    2012-12-11

    Most theories about macromolecular crowding focus on two ideas: the macromolecular nature of the crowder and entropy. For proteins, the volume excluded by the crowder favors compact native states over expanded denatured states, enhancing protein stability by decreasing the entropy of unfolding. We tested these ideas with the widely used crowding agent Ficoll-70 and its monomer, sucrose. Contrary to expectations, Ficoll and sucrose have approximately the same stabilizing effect on chymotrypsin inhibitor 2. Furthermore, the stabilization is driven by enthalpy, not entropy. These results point to the need for carefully controlled studies and more sophisticated theories for understanding crowding effects. PMID:23167542

  17. The Surface Structure of Concentrated Aqueous salt Solutions

    SciTech Connect

    Sloutskin,E.; Baumert, J.; Ocko, B.; Kuzmenko, I.; Checco, A.; Tamam, L.; Ofer, E.; Gog, T.; Deutsch, M.

    2007-01-01

    The surface-normal electron density profile {rho}{sub s}(z) of concentrated aqueous salt solutions of RbBr, CsCl, LiBr, RbCl, and SrCl{sub 2} was determined by x-ray reflectivity (XR). For all but RbBr and SrCl{sub 2} {rho}{sub s}(z) increases monotonically with depth z from {rho}{sub s}(z)=0 in the vapor (z<0) to {rho}{sub s}(z) = {rho}{sub b} of the bulk (z>0) over a width of a few angstroms. The width is commensurate with the expected interface broadening by thermally excited capillary waves. Anomalous (resonant) XR of RbBr reveals a depletion at the surface of Br{sup -} ions to a depth of {approx}10 A. For SrCl{sub 2}, the observed {rho}{sub s}(z)>{rho}{sub b} may imply a similar surface depletion of Cl{sup -} ions to a depth of a few angstroms. However, as the deviations of the XRs of RbBr and SrCl{sub 2} from those of the other solutions are small, the evidence for a different ion composition in the surface and the bulk is not strongly conclusive. Overall, these results contrast earlier theoretical and simulational results and nonstructural measurements, where significant surface layering of alternate, oppositely charged, ions is concluded.

  18. Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering.

    PubMed

    Milner, Emily M; Skipper, Neal T; Howard, Christopher A; Shaffer, Milo S P; Buckley, David J; Rahnejat, K Adam; Cullen, Patrick L; Heenan, Richard K; Lindner, Peter; Schweins, Ralf

    2012-05-23

    Solutions of negatively charged graphene (graphenide) platelets were produced by intercalation of nanographite with liquid potassium-ammonia followed by dissolution in tetrahydrofuran. The structure and morphology of these solutions were then investigated by small-angle neutron scattering. We found that >95 vol % of the solute is present as single-layer graphene sheets. These charged sheets are flat over a length scale of >150 Å in solution and are strongly solvated by a shell of solvent molecules. Atomic force microscopy on drop-coated thin films corroborated the presence of monolayer graphene sheets. Our dissolution method thus offers a significant increase in the monodispersity achievable in graphene solutions. PMID:22574888

  19. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  20. Structure and photophysics in C 60-micellar solutions

    NASA Astrophysics Data System (ADS)

    Eastoe, Julian; Crooks, Esther R.; Beeby, Andrew; Heenan, Richard K.

    1995-11-01

    Routes to the preparation of monomeric and colloidal C 60 in micellar solutions of non-ionic surfactants are described. UV-visible spectra and small-angle neutron scattering provide clear evidence for these two different forms. The micelles serve to stabilise the excited triplet state 3C 60 and the lifetime τT is increased by a factor of 3 as compared to 3C 60 in toluene. Furthermore, with monomeric dispersions in the presence of the electron donor DABCO, the radical anion C 60- is formed, with an unusually long lifetime τA = 16 ms. This lifetime is approximately 270 times longer than for γ-cyclodextrin. stabilised systems.

  1. Comparison of the crystal and solution structures of calmodulin and troponin C

    SciTech Connect

    Heidorn, D.B.; Trewhella, J.

    1988-02-09

    X-ray solution scattering data from skeletal muscle troponin C and from calmodulin have been measured. Modeling studies based on the crystal structure coordinates for these proteins show discrepancies between the solution data and the crystal structure that indicate that if the size and shape of the globular domains are the same in solution as in the crystal, the distances between them must be smaller by several angstroms. Bringing the globular domains closer together requires structural changes in the interconnecting helix that joins them.

  2. Solution structure of a dsDNA:LNA triplex

    PubMed Central

    Sørensen, Jesper J.; Nielsen, Jakob T.; Petersen, Michael

    2004-01-01

    We have determined the NMR structure of an intramolecular dsDNA:LNA triplex, where the LNA strand is composed of alternating LNA and DNA nucleotides. The LNA oligonucleotide binds to the dsDNA duplex in the major groove by formation of Hoogsteen hydrogen bonds to the purine strand of the duplex. The structure of the dsDNA duplex is changed to accommodate the LNA strand, and it adopts a geometry intermediate between A- and B-type. There is a substantial propeller twist between base-paired nucleobases. This propeller twist and a concomitant large propeller twist between the purine and LNA strands allows the pyrimidines of the LNA strand to interact with the 5′-flanking duplex pyrimidines. Altogether, the triplex has a regular global geometry as shown by a straight helix axis. This shows that even though the third strand is composed of alternating DNA and LNA monomers with different sugar puckers, it forms a seamless triplex. The thermostability of the triplex is increased by 19°C relative to the unmodified DNA triplex at acidic pH. Using NMR spectroscopy, we show that the dsDNA:LNA triplex is stable at pH 8, and that the triplex structure is identical to the structure determined at pH 5.1. PMID:15550567

  3. Element-by-element Solution Procedures for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Winget, J. M.; Levit, I.

    1984-01-01

    Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in nonlinear structural mechanics. Architectural and data base advantages of the present algorithms over traditional direct elimination schemes are noted. Results of calculations suggest considerable potential for the methods described.

  4. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Line 'Em All Up: Macromolecular Assembly at Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Richmond, Geraldine

    2013-03-01

    Advances in our molecular level understanding of the ubiquitous fluid interface comprised of a hydrophobic fluid medium, and an aqueous solution of soluble ions and solutes has been slow until recently. This more recent upsurge in interest and progress comes from advances in both experimental and computational techniques as well as the increasingly important role that this interface is playing in such areas as green chemistry, nanoparticle synthesis, improved oil and mineral recovery and water purification. The presentation will focus on our most recent efforts in understanding (1) the molecular structure of the interface between two immiscible liquids, (2) the penetration of aqueous phase ions into the interfacial region and their effect on its properties, and (3) the structure and dynamics of the adsorption of surfactants, polymers and nanoparticles at this interface. To gain insights into these processes we use a combination of vibrational sum frequency spectroscopy, surface tension measurements using the pendant drop method, and molecular dynamics simulations. The results demonstrate that weak interactions between interfacial oil and water molecules create an interface that exhibits a high degree of molecular structuring and ordering, and with properties quite different than what is observed at the air-water interface. As a consequence of these interfacial oil-water interactions, the interface provides a unique environment for the adsorption and assembly of ions, polymers and nanoparticles that are drawn to its inner-most regions. Examples of our studies that provide new insights into the unique nature of adsorption, adsorption dynamics and macromolecular assembly at this interface will be provided.

  5. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  6. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance. PMID:17661440

  7. A Compact X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  8. A Compact X-Ray System for Macromolecular Crystallography. 5

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  9. Assembly and solution structure of the core retromer protein complex.

    PubMed

    Norwood, Suzanne J; Shaw, Daniel J; Cowieson, Nathan P; Owen, David J; Teasdale, Rohan D; Collins, Brett M

    2011-01-01

    Retromer is a peripheral membrane protein complex that has pleiotropic roles in endosomal membrane trafficking. The core of retromer possesses three subunits, VPS35, VPS29 and VPS26, that play different roles in binding to cargo, regulatory proteins and complex stabilization. We have performed an investigation of the thermodynamics of core retromer assembly using isothermal titration calorimetry (ITC) demonstrating that VPS35 acts as the central subunit to which VPS29 and VPS26 bind independently. Furthermore, we confirm that the conserved PRLYL motif of the large VPS35 subunit is critical for direct VPS26 interaction. Heat capacity measurements of VPS29 and VPS26 binding to VPS35 indicate extensive binding interfaces and suggest conformational alterations in VPS29 or VPS35 upon complex formation. Solution studies of the retromer core using small-angle X-ray scattering allow us to propose a model whereby VPS35 forms an extended platform with VPS29 and VPS26 bound at distal ends, with the potential for forming dimeric assemblies. PMID:20875039

  10. Structure and solution properties of tamarind-seed polysaccharide.

    PubMed

    Gidley, M J; Lillford, P J; Rowlands, D W; Lang, P; Dentini, M; Crescenzi, V; Edwards, M; Fanutti, C; Reid, J S

    1991-07-30

    The major polysaccharide in tamarind seed is a galactoxyloglucan for which the ratios galactose:xylose:glucose are 1:2:25:2.8. A minor polysaccharide (2-3%) contains branched (1----5)-alpha-L-arabinofuranan and unbranched (1----4)-beta-D-galactopyranan features. Small-angle X-ray scattering experiments gave values for the cross-sectional radius of the polymer in aqueous solution that were typical of single-stranded molecules. Marked stiffness of the chain (C infinity 110) was deduced from static light-scattering studies and is ascribed partially to the restriction of the motion of the (1----4)-beta-D-glucan backbone by its extensive (approximately 80%) glycosylation. The rigidity of the polymer caused significant draining effects which heavily influenced the hydrodynamic behaviour. The dependence of "zero-shear" viscosity on concentration was used to characterise "dilute" and "semi-dilute" concentration regimes. The marked dependence on concentration in the "semi-dilute" region was similar to that for other stiff neutral polysaccharide systems, ascribed to "hyper-entanglements", and it is suggested that these may have arisen through a tenuous alignment of stiffened chains. PMID:1769022

  11. ANOVA-HDMR structure of the higher order nodal diffusion solution

    SciTech Connect

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-07-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  12. Impact of Synchrotron Radiation on Macromolecular Crystallography: a Personal View

    SciTech Connect

    Dauter, Z.; Jaskolski, M; Wlodawer, A

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled.

  13. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes

    PubMed Central

    Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K.; Heffeter, Petra; Teasdale, Ian

    2016-01-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex. PMID:27169668

  14. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes.

    PubMed

    Henke, Helena; Kryeziu, Kushtrim; Banfić, Jelena; Theiner, Sarah; Körner, Wilfried; Brüggemann, Oliver; Berger, Walter; Keppler, Bernhard K; Heffeter, Petra; Teasdale, Ian

    2016-08-01

    The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex. PMID:27169668

  15. Effects of macromolecular crowding and osmolyte on human Tau fibrillation.

    PubMed

    Wu, Yingying; Teng, Ningning; Li, Sen

    2016-09-01

    Tau fibrillation is reported to be involved in neurodegenerative disorders, such as Alzheimer's disease, in which the natural environment is very crowded in the cells. Understanding the role of crowding environments in regulating Tau fibrillation is of great importance for elucidating the etiology of these diseases. In this experiment, the effects of macromolecular crowding and osmolyte reagents in the crowding environment on Tau fibrillation were studied by thioflavin T binding, SDS-PAGE and TEM assays. Ficoll 70 and Dextran 70 of different concentrations were used as macromolecular crowding reagents inside the cells and showed a strong enhancing effect on the fibrillation of normal and hyperphosphorylated Tau. The enhancing effect of Dextran is stronger than that of Ficoll 70 at the same concentration. In addition, the cellular osmolyte sucrose was found to protect Tau against fibrillation, and inhibit the enhancing effect of macromolecular crowding on Tau fibrillation. A possible model for the fibrillation process of Tau and the effect of macromolecular crowding and osmolyte on this process was proposed based on these experimental results. The information obtained from our study can enhance the understanding of how proteins aggregate and avoid aggregation in crowded physiological environments and might lead to a better understanding of the molecular mechanisms of Alzheimer's disease in vivo. PMID:26683879

  16. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique

    NASA Astrophysics Data System (ADS)

    Peters, J. H.; Klein, R.; Delle Site, L.

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics.

  17. Phase sensitive x-ray diffraction imaging of defects in biological macromolecular crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Conventional x-ray diffraction topography is currently used to map defects in the bulk of protein crystals, but the lack of sufficient contrast is frequently a limiting factor. We experimentally demonstrate that this barrier can be circumvented using a method that combines phase sensitive and diffraction imaging principles. Details of defects revealed in tetragonal lysozyme and cubic ferritin crystals are presented and discussed. The approach enabling the detection of the phase changes of diffracted x rays should prove to be useful in the study of defect structures in a broad range of biological macromolecular crystals.

  18. Phase Behavior of a Single Structured Ionomer Chain in Solution

    DOE PAGESBeta

    Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; Grest, Gary S.

    2014-08-14

    Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less

  19. Phase Behavior of a Single Structured Ionomer Chain in Solution

    SciTech Connect

    Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; Grest, Gary S.

    2014-08-14

    Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. In hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.

  20. Structural characterization of human general transcription factor TFIIF in solution

    PubMed Central

    Akashi, Satoko; Nagakura, Shinjiro; Yamamoto, Seiji; Okuda, Masahiko; Ohkuma, Yoshiaki; Nishimura, Yoshifumi

    2008-01-01

    Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of α and β subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an αβ heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human α and β subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC. PMID:18218714

  1. Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Eckert, S.; Miedema, P. S.; Quevedo, W.; O'Cinneide, B.; Fondell, M.; Beye, M.; Pietzsch, A.; Ross, M.; Khalil, M.; Föhlisch, A.

    2016-03-01

    The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms.

  2. Thermodynamic and structural aspects of sulfonamide crystals and solutions.

    PubMed

    Perlovich, German L; Tkachev, Valery V; Strakhova, Nadezda N; Kazachenko, Vladimir P; Volkova, Tatyana V; Surov, Oleg V; Schaper, Klaus-Jürgen; Raevsky, Oleg A

    2009-12-01

    The crystal structures of three sulfonamides with the general structure 4-NH(2)-C(6)H(4)-SO(2)NH-C(6)H(4/3)-R (R = 4-Et; 4-OMe; 5-Cl-2-Me) have been determined by X-ray diffraction. On the basis of our previous data and the results obtained a comparative analysis of crystal properties was performed: molecular conformational states, packing architecture, and hydrogen bond networks using graph set notations. The thermodynamic aspects of the sulfonamide sublimation process have been studied by investigating the temperature dependence of vapor pressure using the transpiration method. A regression equation was derived describing the correlation between sublimation entropy terms and crystal density data calculated from X-ray diffraction results. Also correlations between sublimation Gibbs energies and melting points, on the one hand, and between sublimation enthalpies and fusion enthalpies at 298 K, on the other hand, were found. These dependencies give the opportunity to predict sublimation thermodynamic parameters by simple thermo-physical experiments (fusion characteristics). Solubility processes of the compounds in water, n-hexane, and n-octanol (as phases modeling various drug delivery pathways and different types of membranes) were investigated and corresponding thermodynamic functions were calculated as well. Thermodynamic characteristics of sulfonamide solvation were evaluated. For compounds with similar structures processes of transfer from one solvent to another one were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight that the contribution of these terms is different for different molecules (entropy- or enthalpy-determined). Thus, in contrast to interpretation of only the Gibbs energy of transfer, being extensively used for pharmaceuticals in the form of the partition coefficient (log P), the analysis of

  3. Minimizing distortion in truss structures - A Hopfield network solution

    NASA Technical Reports Server (NTRS)

    Fu, B.; Hajela, P.

    1992-01-01

    Distortions in truss structures can result from random errors in element lengths that are typical of a manufacturing process. These distortions may be minimized by an optimal selection of elements from those available for placement between the prescribed nodes - a combinatorial optimization problem requiring significant investment of computational resource for all but the smallest problems. The present paper describes a formulation in which near-optimal element assignments are obtained as minimum-energy stable states, of an analogous Hopfield neural network. This requires mapping of the optimization problem into an energy function of the appropriate Liapunov form. The computational architecture is ideally suited to a parallel processor implementation and offers significant savings in computational effort. A numerical implementation of the approach is discussed with reference to planar truss problems.

  4. Minimizing distortion in truss structures -- a Hopfield network solution

    NASA Technical Reports Server (NTRS)

    Fu, B.; Hajela, P.

    1993-01-01

    Distortions in truss structures can result from random errors in elemental lengths that are typical of a manufacturing process. These distortions may be minimized by an optimal selection of elements from those available for placement between the prescribed nodes -- a combinatorial optimization problem requiring significant investment of computational resource for all but the smallest problems. The present paper describes a formulation in which near-optimal element assignments are obtained as minimum energy, stable states, of an analogous Hopfield neural network. This requires mapping of the optimization problem into an energy function of the appropriate Lyapunov form. The computational architecture is ideally suited to a parallel processor implementation and offers significant savings in computational effort. A numerical implementation of the approach is discussed with reference to planar truss problems.

  5. Solution structure of a designed cyclic peptide ligand for nickel and copper ions

    PubMed Central

    Eshelman, Matthew R.; Aldous, Amanda R.; Neupane, Kosh P.; Kritzer, Joshua A.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to study a cyclic peptide derived from the amino-terminal copper-and-nickel-binding (ATCUN) motif. The three-dimensional structure of the unliganded peptide in aqueous solution was solved by simulated annealing using distance constraints derived from Nuclear Overhauser Effects. A structural model for the Ni(II)-bound complex was also produced based on NMR evidence and prior spectroscopic data, which are consistent with crystal structures of linear ATCUN complexes. Structural interpolation, or “morphing,” was used to understand the transition of this highly structured cyclic peptide from its unliganded structure to its metal-ion-bound structure. PMID:25414527

  6. Exploiting special problem structure when reliably investigating the solution of systems of IVPs and DDEs

    NASA Astrophysics Data System (ADS)

    Enright, W. H.

    2016-06-01

    In recent years we have developed a class of reliable order p methods for the approximate solution of general systems of initial value problems (IVPs) and delay differential equations (DDEs). In the theoretical analysis of these methods we have identified several trade-offs that do arise and have to be addressed when applying these methods to problems that exhibit special structure. Similar trade-offs also arise when one is concerned with investigating other important properties of the solutions. We will give examples of such trade-offs that arise when investigating the sensitivities of the solutions, and when very accurate approximate solutions are required.

  7. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  8. Global structure of black hole and brane solutions in a multidimensional model with anisotropic fluid

    NASA Astrophysics Data System (ADS)

    Bolokhov, S. V.; Ivashchuk, V. D.

    We analyse the global causal structure of a family of multidimensional spherically-symmetric solutions with a horizon which appear in the model with 1-component anisotropic fluid. This family can be considered as a generalized analogs of the well-known black hole solutions (including the Reissner--Nordström one) and some black brane solutions. The structure of regular horizons and singular boundaries is studied, and the corresponding Carter--Penrose diagrams are constructed for various values of the parameters of the model.

  9. Solution structure of the cAMP-dependent protein kinase

    SciTech Connect

    Trewhella, J.; Olah, G.A.; Walsh, D.A.; Mitchell, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project as Los Alamos National Laboratory (LANL). Protein phosphorylation is well established as one of the most important mechanisms of signal transduction and cellular regulation. Two of the key enzymes that catalyze these phosphorylation reactions are the cAMP- (PKA) and cGMP- (PKG) dependent protein kinases. PKA has served as the prototypic model of this class of enzymes that now comprises in excess of 300 phylogenetically related proteins. A large number of these protein kinases are critical for the regulation of cell function and a full analysis of their similarities and differences is essential to understand their diverse physiological roles. The cAMP-dependent protein kinase has the subunit structure R2C2, in which C and R refer to the catalytic and regulatory subunits, respectively. The cGMP-dependent protein kinase (PKG) is highly homologous to PKA but is distinguished from it by having the regulatory and catalytic domains on a contiguous polypeptide. The studies described here use small-angle scattering and Fourier Transform InfraRed (FTIR) spectroscopy to study domain movements and conformational changes in these enzymes in different functional states in order to elucidate the molecular bases for the regulation of their activities.

  10. A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment

    NASA Technical Reports Server (NTRS)

    Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott

    1995-01-01

    The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.

  11. Investigations on the structure of DMSO and acetone in aqueous solution

    SciTech Connect

    McLain, Sylvia E; Soper, Alan K

    2007-01-01

    Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations-1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions.

  12. Use of Plastic Capillaries for Macromolecular Crystallization

    NASA Technical Reports Server (NTRS)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  13. Structure and Interactions in Concentrated Diblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    McConnell, Glen A.

    We report on investigations of polystyrene/polyisoprene (PS/PI) diblock copolymers suspended in decane using small angle scattering techniques. The primary objective of this research is the understanding of the bulk properties and structure in concentrated diblock copolymers in a solvent selective for one block. In this case, decane is a good solvent for polyisoprene. Suspending PS/PI diblocks in decane at low concentrations produces monodisperse, spherical micelles comprising a dense core of polystyrene and a diffuse corona of polyisoprene. These micelles are well idealized as spherical cores with a fixed number of polyisoprene chains tethered to the surface. Since the local curvature plays an important role in determining the coronal density profile, the core radius and aggregation number are experimentally calculated. This experimental characterization lends each polymeric micelle to a description of the micellar architecture and pair-interaction potential through use of self-consistent mean field equations for tethered-chain systems. We use these pair-potentials to describe the liquid-like interference and disorder-order transition observed experimentally. Gillan's method, subject to a Rogers-Young closure, provides a description of the liquid-state. Density functional theory, specifically the modified weighted density approximation of Denton and Ashcroft, is used to estimate the solid-state. We supplement these calculations with a semi-quantitative phase diagram demonstrating the diversity in phase behavior resulting from tuning the range of the repulsions by varying block asymmetry; the phase diagram includes regions of face-centered cubic (FCC) and body-centered cubic (BCC) crystals depending on the range of the coronal layer thickness relative to the core dimension. In addition to these studies, we conclude with a discussion of the phase behavior of diblock copolymers at concentrations intermediate to those witnessing cubic micellar crystals and the ordered

  14. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  15. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    NASA Astrophysics Data System (ADS)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  16. Large-scale analysis of macromolecular crowding effects on protein aggregation using a reconstituted cell-free translation system

    PubMed Central

    Niwa, Tatsuya; Sugimoto, Ryota; Watanabe, Lisa; Nakamura, Shugo; Ueda, Takuya; Taguchi, Hideki

    2015-01-01

    Proteins must fold into their native structures in the crowded cellular environment, to perform their functions. Although such macromolecular crowding has been considered to affect the folding properties of proteins, large-scale experimental data have so far been lacking. Here, we individually translated 142 Escherichia coli cytoplasmic proteins using a reconstituted cell-free translation system in the presence of macromolecular crowding reagents (MCRs), Ficoll 70 or dextran 70, and evaluated the aggregation propensities of 142 proteins. The results showed that the MCR effects varied depending on the proteins, although the degree of these effects was modest. Statistical analyses suggested that structural parameters were involved in the effects of the MCRs. Our dataset provides a valuable resource to understand protein folding and aggregation inside cells. PMID:26500644

  17. Thermodynamics and Statistical Mechanics of Macromolecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, Michael

    2014-04-01

    Preface and outline; 1. Introduction; 2. Statistical mechanics: a modern review; 3. The complexity of minimalistic lattice models for protein folding; 4. Monte Carlo and chain growth methods for molecular simulations; 5. First insights to freezing and collapse of flexible polymers; 6. Crystallization of elastic polymers; 7. Structural phases of semiflexible polymers; 8. Generic tertiary folding properties of proteins in mesoscopic scales; 9. Protein folding channels and kinetics of two-state folding; 10. Inducing generic secondary structures by constraints; 11. Statistical analyses of aggregation processes; 12. Hierarchical nature of phase transitions; 13. Adsorption of polymers at solid substrates; 14. Hybrid protein-substrate interfaces; 15. Concluding remarks and outlook; Notes; References; Index.

  18. Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth

    NASA Technical Reports Server (NTRS)

    Malkin, Alexander J.

    1998-01-01

    During the past year we have focused on application of in situ Atomic Force Microscopy (AFM) for studies of the growth mechanisms and kinetics of crystallization for different macromolecular systems. Mechanisms of macrostep formation and their decay, which are important in understanding of defect formation, were studied on the surfaces of thaumatin, catalase, canavalin and lysozyme crystals. Experiments revealed that step bunching on crystalline surfaces occurred either due to two- or three-dimensional nucleation on the terraces of vicinal slopes or as a result of uneven step generation by complex dislocation sources. No step bunching arising from interaction of individual steps in the course of the experiment was observed. The molecular structure of the growth steps for thaumatin and lipase crystals were deduced. It was further shown that growth step advance occurs by incorporation of single protein molecules. In singular directions growth steps move by one-dimensional nucleation on step edges followed by lateral growth. One-dimensional nuclei have different sizes, less then a single unit cell, varying for different directions of step movement. There is no roughness due to thermal fluctuations, and each protein molecule which incorporated into the step remained. Growth kinetics for catalase crystals was investigated over wide supersaturation ranges. Strong directional kinetic anisotropy in the tangential step growth rates in different directions was seen. The influence of impurities on growth kinetics and cessation of macromolecular crystals was studied. Thus, for catalase, in addition to pronounced impurity effects on the kinetics of crystallization, we were also able to directly observe adsorption of some impurities. At low supersaturation we repeatedly observed filaments which formed from impurity molecules sedimenting on the surfaces. Similar filaments were observed on the surfaces of thaumatin, canavalin and STMV crystals as well, but the frequency was low

  19. High-accuracy deterministic solution of the Boltzmann equation for the shock wave structure

    NASA Astrophysics Data System (ADS)

    Malkov, E. A.; Bondar, Ye. A.; Kokhanchik, A. A.; Poleshkin, S. O.; Ivanov, M. S.

    2015-07-01

    A new deterministic method of solving the Boltzmann equation has been proposed. The method has been employed in numerical studies of the plane shock wave structure in a hard sphere gas. Results for Mach numbers and have been compared with predictions of the direct simulation Monte Carlo (DSMC) method, which has been used to obtain the reference solution. Particular attention in estimating the solution accuracy has been paid to a fine structural effect: the presence of a total temperature peak exceeding the temperature value further downstream. The results of solving the Boltzmann equation for the shock wave structure are in excellent agreement with the DSMC predictions.

  20. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  1. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  2. Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect

    PubMed Central

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel

    2013-01-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular

  3. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design

    PubMed Central

    Pache, Roland A.; Ollikainen, Noah; Kundert, Kale; O'Meara, Matthew J.; Smith, Colin A.; Kortemme, Tanja

    2015-01-01

    The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a “best practice” set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available. PMID:26335248

  4. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    PubMed

    Ó Conchúir, Shane; Barlow, Kyle A; Pache, Roland A; Ollikainen, Noah; Kundert, Kale; O'Meara, Matthew J; Smith, Colin A; Kortemme, Tanja

    2015-01-01

    The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available. PMID:26335248

  5. Exact solution to the problem of N bodies forming a multi-layer rotating structure.

    PubMed

    Smulsky, Joseph J

    2015-01-01

    Exact solutions to the problem of the Newtonian gravitational interaction of N material points moving around N 2 concentric circular orbits are considered. Each circular orbit contains N 3 axisymmetrically located bodies having identical masses. The structure as a whole rotates around its symmetry axis. Such structures are identical to the homographic-dynamics configurations, or planar central configurations, known from literature. Conceptually, those structures can be considered as structures formed by mutually embedded polygons with point bodies placed at polygon vortices. For structures involving less than 20 bodies, solutions were obtained using Hamiltonian-mechanics methods. In the study, the forces acting on each body in the rotating structure from the side of all other bodies were found. The differential motion equations of the bodies were reduced to a system of linear algebraic equations for the body masses. Solutions in various forms were obtained. For specifying the initial parameters and for calculating all other characteristics of the structures, a computer program RtCrcSt2.for has been developed. Structures comprising up to one million bodies have been calculated. Graphical images of obtained structures are presented, and their properties are described. Stability problems for examined structures are considered, and possible application of obtained results to celestial- and space-mechanics problems is discussed. PMID:26203407

  6. The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution

    SciTech Connect

    Weber, C.; Wilder, G.; von Freyberg, B.; Braun, W.; Wuethrich, K. ); Traber, R.; Widmer, H. )

    1991-07-02

    Cyclosporin A bound to the presumed receptor protein cyclophilin was studied in aqueous solution at pH 6.0 by nuclear magnetic resonance spectroscopy using uniform {sup 15}N- or {sup 13}C-labeling of cyclosporin A and heteronuclear spectral editing techniques. With an input of 108 intramolecular NOEs and four vicinal {sup 3}J{sub HN{alpha}} coupling constants, the three-dimensional structure of cyclosporin A bound to cyclophilin was calculated with the distance geometry program DISMAN, and the structures resulting from 181 converged calculations were energy refined with the program FANTOM. A group of 120 conformers was selected on the basis of the residual constraint violations and energy criteria to represent the solution structure. The average of the pairwise root-mean-square distances calculated for the backbone atoms of the 120 structures was 0.58 {angstrom}. The structure represents a novel conformation of cyclosporin A, for which the backbone conformation is significantly different from the previously reported structures in single crystals and in chloroform solution. The structure has all peptide bonds in the trans form, contains no elements of regular secondary structure and no intramolecular hydrogen bonds, and exposes nearly all polar groups to its environment. The root-mean-square distance between the backbone atoms of the crystal structure of cyclosporin A and the mean of the 120 conformers representing the NMR structure of cyclosporin A bound to cyclophilin is 2.5 {angstrom}.

  7. The structure and dynamics in solution of Cu(I) pseudoazurin from Paracoccus pantotrophus.

    PubMed Central

    Thompson, G. S.; Leung, Y. C.; Ferguson, S. J.; Radford, S. E.; Redfield, C.

    2000-01-01

    The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale. PMID:10850794

  8. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    PubMed

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. PMID:24698025

  9. Stochastic reaction–diffusion algorithms for macromolecular crowding

    NASA Astrophysics Data System (ADS)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction–diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction–diffusion simulations is investigated. Reaction–diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35–53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  10. Crystallization with oils: a new dimension in macromolecular crystal growth

    NASA Astrophysics Data System (ADS)

    Chayen, Naomi E.

    1999-01-01

    The crystal growth of biological macromolecules is a complicated process involving numerous parameters. This paper presents an approach which employs the use of oil as a major aid to crystal growth, and which has opened up a new dimension in the field of macromolecular crystallization. The presence of oil is a parameter which can contribute to the accuracy, the cleanliness and to the increase in the reproducibility of the experiments. Furthermore, the oil has a role in the protection of the trials during the course of their duration and in maintaining the stability of the resulting crystals. The use of oil also applies to the crystallization of membrane proteins. The results of a wide range of experiments which exploit the presence of oil to abet macromolecular crystal growth using both vapour diffusion and microbatch are presented.

  11. DOT2: Macromolecular docking with improved biophysical models.

    PubMed

    Roberts, Victoria A; Thompson, Elaine E; Pique, Michael E; Perez, Martin S; Ten Eyck, L F

    2013-07-30

    Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here, we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate an infinitive complete list of favorable candidate configurations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987

  12. DOT2: Macromolecular Docking With Improved Biophysical Models

    PubMed Central

    Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten

    2015-01-01

    Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987

  13. Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Cheng, Xuan; Dai, Chao-Qing

    2015-12-01

    Although the mapping method based on Riccati equation was proposed to obtain variable separation solutions many years ago, two important problems have not been studied: i) the equivalence of variable separation solutions by means of the mapping method based on Riccati equation with the radical sign combined ansatz; and ii) lack of physical meanings for some localized structures constructed by variable separation solutions. In this paper, we re-study the (2+1)-dimensional Boiti-Leon-Pempinelli equation via the mapping method based on Riccati equation and prove that nine types of variable separation solutions are actually equivalent to each other. Moreover, we also re-study localized structures constructed by variable separation solutions. Results indicate that some localized structures reported in the literature are lacking real values due to the appearance of the divergent and un-physical phenomenon for the initial field. Therefore, we must be careful with the initial field to avoid the appearance of some un-physical or even divergent structures in it when we construct localized structures for the potential field.

  14. Local structure of the halite-sylvine solid solution according to the computer simulation data

    SciTech Connect

    Urusov, V. S. Leonenko, E. V.

    2008-09-15

    The structural, elastic, and thermodynamic properties of halite NaCl and sylvine KCl and the miscibility properties of the NaCl-KCl solid solution found by computer simulation are in good agreement with the experimental data. Analysis of the relaxation of the solid solution structure suggests that both anion and cation sublattices are distorted; however, the anion sublattice is distorted much more strongly. Calculations of the local bond valence at all types of ions in the solid solution show opposite deviations from the balance at cations, whereas the general balance is retained. The values of the electrostatic potential in the ion positions reflect weakening of bonding in the solid solution with respect to its pure components. In addition, with an increase in the average interatomic distance in the first coordination sphere around cations, the modulus of the electrostatic potential at cations decreases.

  15. A 3D cellular context for the macromolecular world

    PubMed Central

    Patwardhan, Ardan; Ashton, Alun; Brandt, Robert; Butcher, Sarah; Carzaniga, Raffaella; Chiu, Wah; Collinson, Lucy; Doux, Pascal; Duke, Elizabeth; Ellisman, Mark H; Franken, Erik; Grünewald, Kay; Heriche, Jean-Karim; Koster, Abraham; Kühlbrandt, Werner; Lagerstedt, Ingvar; Larabell, Carolyn; Lawson, Catherine L; Saibil, Helen R; Sanz-García, Eduardo; Subramaniam, Sriram; Verkade, Paul; Swedlow, Jason R; Kleywegt, Gerard J

    2015-01-01

    We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community. PMID:25289590

  16. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    PubMed Central

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  17. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    SciTech Connect

    Pröpper, Kevin; Meindl, Kathrin; Sammito, Massimo; Dittrich, Birger; Sheldrick, George M.; Pohl, Ehmke; Usón, Isabel

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  18. Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways

    PubMed Central

    Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver

    2015-01-01

    Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that

  19. Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment

    SciTech Connect

    Chen, Y.C. . E-mail: armstrong@hit.edu.cn; Feng, J.C.; Liu, H.J.

    2007-02-15

    The stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment has been investigated. Experimental results show that the solution treatment causes drastic grain growth, Grain growth initiates at the surface and the bottom of the weld and then extends to the weld centre within several minutes. The solution treatment temperature and the welding heat input have a significant effect on grain growth. The higher the solution temperature, or the higher the welding heat input, the greater the grain growth. The instability of the grains is attributed to an imbalance between thermodynamic driving forces for grain growth and the pinning forces impeding grain boundary migration during solution treatment.

  20. Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine

    NASA Astrophysics Data System (ADS)

    Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.

    1992-05-01

    We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.

  1. Application of complex macromolecular architectures for advanced microelectronic materials.

    PubMed

    Hedrick, James L; Magbitang, Teddie; Connor, Eric F; Glauser, Thierry; Volksen, Willi; Hawker, Craig J; Lee, Victor Y; Miller, Robert D

    2002-08-01

    The distinctive features of well-defined, three-dimensional macromolecules with topologies designed to enhance solubility and amplify end-group functionality facilitated nanophase morphologies in mixtures with organosilicates and ultimately nanoporous organosilicate networks. Novel macromolecular architectures including dendritic and star-shaped polymers and organic nanoparticles were prepared by a modular approach from several libraries of building blocks including various generations of dendritic initiators and dendrons, selectively placed to amplify functionality and/or arm number, coupled with living polymerization techniques. Mixtures of an organosilicate and the macromolecular template were deposited, cured, and the phase separation of the organic component, organized the vitrifying organosilicate into nanostructures. Removal of the sacrificial macromolecular template, also denoted as porogen, by thermolysis, yielded the desired nanoporous organosilicate, and the size scale of phase separation was strongly dependent on the chain topology. These materials were designed for use as interlayer, ultra-low dielectric insulators for on-chip applications with dielectric constant values as low as 1.5. The porogen design, chemistry and role of polymer architecture on hybrid and pore morphology will be emphasized. PMID:12203311

  2. The solvent component of macromolecular crystals

    PubMed Central

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine; Rupp, Bernhard

    2015-01-01

    The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands. PMID:25945568

  3. The solvent component of macromolecular crystals.

    PubMed

    Weichenberger, Christian X; Afonine, Pavel V; Kantardjieff, Katherine; Rupp, Bernhard

    2015-05-01

    The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands. PMID:25945568

  4. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    SciTech Connect

    Li, Xibing; Dong, Longjun

    2014-02-15

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  5. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  6. Molecular dynamics simulations of large macromolecular complexes

    PubMed Central

    Perilla, Juan R.; Goh, Boon Chong; Cassidy, C. Keith; Liu, Bo; Bernardi, Rafael C.; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus

    2015-01-01

    Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. PMID:25845770

  7. Solution- and Adsorbed-State Structural Ensembles Predicted for the Statherin-Hydroxyapatite System

    PubMed Central

    Masica, David L.; Gray, Jeffrey J.

    2009-01-01

    Abstract We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces. PMID:19383454

  8. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin.

    PubMed

    Jo, Yoon Nam; Um, In Chul

    2015-07-01

    Sericin films have attracted much attention from researchers in biomedical and cosmetic fields because of its unique properties, including good cytocompatibility and its promotion of wound healing. However, poor mechanical properties of sericin films have restricted its application in these fields. In this study, a new solvent, formic acid, was used to fabricate sericin solutions and films. The effects of formic acid on the structural characteristics and mechanical properties of the sericin solutions and films were examined and compared with water. The sericin/formic acid solution showed fewer aggregated sericin molecules, resulting in a lower turbidity than that of the sericin/water solution. In addition, the gelation of the sericin solution was retarded in formic acid compared to that of water. Sericin films cast from the formic acid solution exhibited a much higher crystallinity index than that produced from water. The tensile strength and elongation of the sericin films cast from the formic acid solution were more than double that of the sericin films cast from water. It is expected that the more stable sericin solution and high-crystallinity sericin films, which have significantly improved mechanical properties, produced by using formic acid as the solvent could be utilized in biomedical and cosmetic applications. PMID:25869308

  9. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  10. Frequency modelling and solution of fluid-structure interaction in complex pipelines

    NASA Astrophysics Data System (ADS)

    Xu, Yuanzhi; Johnston, D. Nigel; Jiao, Zongxia; Plummer, Andrew R.

    2014-05-01

    Complex pipelines may have various structural supports and boundary conditions, as well as branches. To analyse the vibrational characteristics of piping systems, frequency modelling and solution methods considering complex constraints are developed here. A fourteen-equation model and Transfer Matrix Method (TMM) are employed to describe Fluid-Structure Interaction (FSI) in liquid-filled pipes. A general solution for the multi-branch pipe is proposed in this paper, offering a methodology to predict frequency responses of the complex piping system. Some branched pipe systems are built for the purpose of validation, indicating good agreement with calculated results.

  11. Backbone Solution Structures of Proteins Using Residual Dipolar Couplings: Application to a Novel Structural Genomics Target

    PubMed Central

    Valafar, H.; Mayer, K. L.; Bougault, C. M.; LeBlond, P. D.; Jenney, F. E.; Brereton, P. S.; Adams, M.W.W.; Prestegard, J.H.

    2006-01-01

    Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all side chains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the side chains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins that suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. PMID:15704012

  12. Nuclear magnetic resonance solution structure of dendrotoxin K from the venom of Dendroaspis polylepis polylepis.

    PubMed

    Berndt, K D; Güntert, P; Wüthrich, K

    1993-12-01

    The solution structure of dendrotoxin K (Toxin K), a protein consisting of one polypeptide chain with 57 residues purified from the venom of the black mamba, Dendroaspis polylepis polylepis, was determined by nuclear magnetic resonance (NMR) spectroscopy. On the basis of virtually complete sequence-specific 1H NMR assignments, including individual assignments for 38 pairs of diastereotopic substituents and side-chain amide protons, a total of 818 nuclear Overhauser effect distance constraints and 123 dihedral angle constraints were identified. Using this input, the solution structure of Toxin K was calculated with the program DIANA, and refined by restrained energy-minimization with a modified version of the program AMBER. The average root-mean-square deviation (r.m.s.d.) relative to the mean atomic co-ordinates of the 20 conformers selected to represent the solution structure is 0.31 A for all backbone atoms N, C alpha and C', and 0.90 A for all heavy-atoms of residues 2 to 56. The solution structure of Toxin K is very similar to the solution structure of the basic pancreatic trypsin inhibitor (BPTI) and the X-ray crystal structure of the alpha-dendrotoxin from Dendroaspis angusticeps (alpha-DTX), with r.m.s.d. values of 1.31 A and 0.92 A, respectively, for the backbone atoms of residues 2 to 56. Some local structural differences between Toxin K and BPTI are directly related to the fact that intermolecular interactions with two of the four internal molecules of hydration water in BPTI are replaced by intramolecular hydrogen bonds in Toxin K. PMID:8254670

  13. Axial growth and fusion of liposome regulated by macromolecular crowding and confinement.

    PubMed

    Liu, Yun; Zhu, Lin; Yang, Jingfa; Sun, Jianbo; Zhao, Jiang; Liang, Dehai

    2015-05-01

    The endomembrane system, including the endoplasmic reticulum, Golgi apparatus, lysosomes, and endosomes, is located in the crowded intracellular environment. An understanding of the cellular structure and functions requires knowledge of how macromolecular crowding and confinement affect the activity of membrane and its proteins. Using negatively charged liposome and the peptide K3L8K3 as a model system, we studied the aggregation behavior of liposome in a matrix of polyacrylamide and hyaluronic acid. Without matrix, the liposomes form spherical aggregates in the presence of K3L8K3. However, they orient in one dimension and fuse into a tube up to 40 μm long in the matrix. The growth of the tube is via end-to-end connection. This anisotropic growth is mainly due to the macromolecular confinement provided by the polymer network. The study of the interactions between liposome and peptide in the crowded environment helps to reveal the mechanism of membrane-related processes in vivo. PMID:25874379

  14. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties. PMID:27381983

  15. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    PubMed Central

    Pröpper, Kevin; Meindl, Kathrin; Sammito, Massimo; Dittrich, Birger; Sheldrick, George M.; Pohl, Ehmke; Usón, Isabel

    2014-01-01

    Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures. PMID:24914984

  16. A theory for water and macromolecular transport in the pulmonary artery wall with a detailed comparison to the aorta

    PubMed Central

    Zeng, Zhongqing; Jan, Kung-Ming

    2012-01-01

    The pulmonary artery (PA) wall, which has much higher hydraulic conductivity and albumin void space and approximately one-sixth the normal transmural pressure of systemic arteries (e.g, aorta, carotid arteries), is rarely atherosclerotic, except under pulmonary hypertension. This study constructs a detailed, two-dimensional, wall-structure-based filtration and macromolecular transport model for the PA to investigate differences in prelesion transport processes between the disease-susceptible aorta and the relatively resistant PA. The PA and aorta models are similar in wall structure, but very different in parameter values, many of which have been measured (and therefore modified) since the original aorta model of Huang et al. (23). Both PA and aortic model simulations fit experimental data on transwall LDL concentration profiles and on the growth of isolated endothelial (horseradish peroxidase) tracer spots with circulation time very well. They reveal that lipid entering the aorta attains a much higher intima than media concentration but distributes better between these regions in the PA than aorta and that tracer in both regions contributes to observed tracer spots. Solutions show why both the overall transmural water flow and spot growth rates are similar in these vessels despite very different material transport parameters. Since early lipid accumulation occurs in the subendothelial intima and since (matrix binding) reaction kinetics depend on reactant concentrations, the lower intima lipid concentrations in the PA vs. aorta likely lead to slower accumulation of bound lipid in the PA. These findings may be relevant to understanding the different atherosusceptibilities of these vessels. PMID:22198178

  17. A theory for water and macromolecular transport in the pulmonary artery wall with a detailed comparison to the aorta.

    PubMed

    Zeng, Zhongqing; Jan, Kung-Ming; Rumschitzki, David S

    2012-04-15

    The pulmonary artery (PA) wall, which has much higher hydraulic conductivity and albumin void space and approximately one-sixth the normal transmural pressure of systemic arteries (e.g, aorta, carotid arteries), is rarely atherosclerotic, except under pulmonary hypertension. This study constructs a detailed, two-dimensional, wall-structure-based filtration and macromolecular transport model for the PA to investigate differences in prelesion transport processes between the disease-susceptible aorta and the relatively resistant PA. The PA and aorta models are similar in wall structure, but very different in parameter values, many of which have been measured (and therefore modified) since the original aorta model of Huang et al. (23). Both PA and aortic model simulations fit experimental data on transwall LDL concentration profiles and on the growth of isolated endothelial (horseradish peroxidase) tracer spots with circulation time very well. They reveal that lipid entering the aorta attains a much higher intima than media concentration but distributes better between these regions in the PA than aorta and that tracer in both regions contributes to observed tracer spots. Solutions show why both the overall transmural water flow and spot growth rates are similar in these vessels despite very different material transport parameters. Since early lipid accumulation occurs in the subendothelial intima and since (matrix binding) reaction kinetics depend on reactant concentrations, the lower intima lipid concentrations in the PA vs. aorta likely lead to slower accumulation of bound lipid in the PA. These findings may be relevant to understanding the different atherosusceptibilities of these vessels. PMID:22198178

  18. Comparison of shock structure solutions using independent continuum and kinetic theory approaches

    NASA Technical Reports Server (NTRS)

    Fiscko, Kurt A.; Chapman, Dean R.

    1988-01-01

    A vehicle traversing the atmosphere will experience flight regimes at high altitudes in which the thickness of a hypersonic shock wave is not small compared to the shock standoff distance from the hard body. When this occurs, it is essential to compute accurate flow field solutions within the shock structure. In this paper, one-dimensional shock structure is investigated for various monatomic gases from Mach 1.4 to Mach 35. Kinetic theory solutions are computed using the Direct Simulation Monte Carlo method. Steady-state solutions of the Navier-Stokes equations and of a slightly truncated form of the Burnett equations are determined by relaxation to a steady state of the time-dependent continuum equations. Monte Carlo results are in excellent agreement with published experimental data and are used as bases of comparison for continuum solutions. For a Maxwellian gas, the truncated Burnett equations are shown to produce far more accurate solutions of shock structure than the Navier-Stokes equations.

  19. Structural characterization of NaOH aqueous solution in the glass and liquid states

    NASA Astrophysics Data System (ADS)

    Bruni, F.; Ricci, M. A.; Soper, A. K.

    2001-05-01

    Using the technique of hydrogen and deuterium substitution, the structure of water in concentrated NaOH solution (10 M) is explored. It is found that major changes in water structure occur both in the liquid phase at T=300 K and in the glassy phase at T=173 K. In particular the 4.4 Å peak in the OO pair correlation function of pure water, which is normally viewed as indicating tetrahedral short-range coordination in water, is totally absent in the NaOH solution at room temperature, and shows up only as a small feature in the NaOH solution in the glassy state. Corresponding changes occur in the OH and HH correlation functions: The hydrogen bond peak position is shifted from 1.85 Å in pure water to 1.65 Å for both the liquid and glassy NaOH, with a reduced number of hydrogen bonds in the glassy phase. The intramolecular HH distance, 1.5 Å, of the water molecule is unaffected by the presence of the solute, but the positions of the peaks in the HH function at 2.4 and 3.8 Å, due to the orientational correlation between neighboring pure water molecules, are respectively, shifted to 2.15 and 3.5 Å. The above findings indicate that ions in aqueous solutions induce a change in water structure equivalent to the application of high pressures.

  20. Local structure in the disordered solid solution of cis- and trans-perinones.

    PubMed

    Teteruk, Jaroslav L; Glinnemann, Jürgen; Heyse, Winfried; Johansson, Kristoffer E; van de Streek, Jacco; Schmidt, Martin U

    2016-06-01

    The cis- and trans-isomers of the polycyclic aromatic compound perinone, C26H12N4O2, form a solid solution (Vat Red 14). This solid solution is isotypic to the crystal structures of cis-perinone (Pigment Red 194) and trans-perinone (Pigment Orange 34) and exhibits a combined positional and orientational disorder: In the crystal, each molecular position is occupied by either a cis- or trans-perinone molecule, both of which have two possible molecular orientations. The structure of cis-perinone exhibits a twofold orientational disorder, whereas the structure of trans-perinone is ordered. The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic positions, but also the site occupancies and anisotropic displacement parameters. PMID:27240774

  1. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    SciTech Connect

    Barends, Thomas R. M.; Brosi, Richard W. W.; Steinmetz, Andrea; Scherer, Anna; Hartmann, Elisabeth; Eschenbach, Jessica; Lorenz, Thorsten; Seidel, Ralf; Shoeman, Robert L.; Zimmermann, Sabine; Bittl, Robert; Schlichting, Ilme; Reinstein, Jochen

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.

  2. Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution

    SciTech Connect

    Prud`homme, R.K.; Wu, G.; Schneider, D.K.

    1996-10-02

    Small-angle neutron scattering (SANS) and rheometry were used to investigate the supramolecular structure formed by a ploy(oxyethylene-oxypropylene-oxyethylene)(PEO{sub 100}PPO{sub 65 }PEO{sub 100}, Pluronic F127) copolymer in aqueous solution over a temperature range of 10-75 {degree}C and a concentration range of 10-20 wt%. At copolymer concentrations of less than 12.5% the solutions are Newtonian fluids. Gels with an ordered structure (cubic packing of spherical micelles) are observed over a well-defined temperature window when the copolymer concentrations are greater than 17 wt%. The SANS results show that the aggregation number of the micelles is independent of temperature and concentrations. Low-yield stresses, very high zero shear viscosities (nearly 10{sup 6} P), and shear thinning are the major rheological characteristics of the gels. Near, but outside, the gel phase boundary the solutions are non-Newtonian (shear thinning). However, SANS shows these solutions contain domains having the same structure as that in the gel phase. The temperature window for ordered structures and non-Newtonian behavior becomes wider with increasing copolymer concentration. The degree of overlap of the micellar shells increases with increasing copolymer concentration at a given temperature and reaches a maximum at nearly 40 {degree}C at a fixed polymer concentration. The yield stress is due to repulsive interactions of PEO chains in the overlapped micellar shell. 36 refs., 16 figs., 2 tabs.

  3. Comparing Multiple Solutions in the Structured Problem Solving: Deconstructing Japanese Lessons from Learner's Perspective

    ERIC Educational Resources Information Center

    Hino, Keiko

    2015-01-01

    The purpose of this study is to enhance our understanding of how students listen and attend to multiple solutions proposed by their classmates during the activity of comparison. This study examines ten consecutive lessons in each of the two eighth-grade classrooms in Tokyo that are organized in the style of "structured problem solving".…

  4. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  5. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX autosol wizard

    SciTech Connect

    Terwilliger, Thomas C; Adams, Paul D; Read, Randy J; Mccoy, Airlie J

    2008-01-01

    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

  6. Structure and Dynamics of NaCl Ion Pairing in Solutions of Water and Methanol.

    PubMed

    Kelley, Morgan; Donley, Amber; Clark, Sue; Clark, Aurora

    2015-12-24

    Ion pairing can have profound effects upon the ionic strength of electrolyte solutions but is poorly understood in solutions containing more than one solvent. Herein a combined density functional theory and molecular dynamics approach is used to examine the effect of both methanol concentration and interionic distance upon the structure and dynamics within successive solvation shells of Na(+) and Cl(-) in water/methanol binary solutions. The structure and dynamics of the first and second solvation shells were studied along a reaction coordinate associated with ion pair formation using potential of mean force simulations. The lifetimes of the solvent-solvent hydrogen bonds become perturbed when the second solvation shells of the ions begin to interact. In contrast, the structural properties within the first and second solvation shells of the ions were found to be largely independent of both methanol concentration and interionic distance until a contact ion pair is formed. Thus, as the ions are brought together, the effect of the opposing ion manifests itself in the solvation dynamics before any structural changes are observed. As anticipated based upon the decreased dielectric constant of the binary solution, ion pair formation becomes energetically more favorable as the concentration of methanol increases. PMID:26641882

  7. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-09-01

    Maxwell's equations, which treat electromagnetic interactions between macroscopic charged objects in materials, have explained many phenomena and contributed to many applications in our lives. Derived in 1861 when no methods were available to determine the atomic structure of macromolecules, Maxwell's equations assume the solvent to be a structureless continuum. However, near-solute solvent molecules are highly structured, unlike far-solute bulk solvent molecules. Current methods cannot treat both the near-solute solvent structure and time-dependent electromagnetic interactions in a macroscopic system. Here, we derive "microscopic" electrodynamics equations that can treat macroscopic time-dependent electromagnetic field problems like Maxwell's equations and reproduce the solvent molecular and dipole density distributions observed in molecular dynamics simulations. These equations greatly reduce computational expense by not having to include explicit solvent molecules, yet they treat the solvent electrostatic and van der Waals effects more accurately than continuum models. They provide a foundation to study electromagnetic interactions between molecules in a macroscopic system that are ubiquitous in biology, bioelectromagnetism, and nanotechnology. The general strategy presented herein to incorporate the near-solute solvent structure would enable studies on how complex cellular protein-ligand interactions are affected by electromagnetic radiation, which could help to prevent harmful electromagnetic spectra or find potential therapeutic applications. PMID:18698705

  8. Destruction of Tissue, Cells and Organelles in Type 1 Diabetic Rats Presented at Macromolecular Resolution

    PubMed Central

    Ravelli, Raimond B. G.; Kalicharan, Ruby D.; Avramut, M. Cristina; Sjollema, Klaas A.; Pronk, Joachim W.; Dijk, Freark; Koster, Abraham J.; Visser, Jeroen T. J.; Faas, Frank G. A.; Giepmans, Ben N. G.

    2013-01-01

    Finding alternatives for insulin therapy and making advances in etiology of type 1 diabetes benefits from a full structural and functional insight into Islets of Langerhans. Electron microscopy (EM) can visualize Islet morphology at the highest possible resolution, however, conventional EM only provides biased snapshots and lacks context. We developed and employed large scale EM and compiled a resource of complete cross sections of rat Islets during immuno-destruction to provide unbiased structural insight of thousands of cells at macromolecular resolution. The resource includes six datasets, totalling 25.000 micrographs, annotated for cellular and ultrastructural changes during autoimmune diabetes. Granulocytes are attracted to the endocrine tissue, followed by extravasation of a pleiotrophy of leukocytes. Subcellullar changes in beta cells include endoplasmic reticulum stress, insulin degranulation and glycogen accumulation. Rare findings include erythrocyte extravasation and nuclear actin-like fibers. While we focus on a rat model of autoimmune diabetes, our approach is general applicable. PMID:23652855

  9. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.

    PubMed

    Hennig, Janosch; Warner, Lisa R; Simon, Bernd; Geerlof, Arie; Mackereth, Cameron D; Sattler, Michael

    2015-01-01

    Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes. PMID:26068746

  10. Aromatic units from the macromolecular material in meteorites: Molecular probes of cosmic environments

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.

    2013-04-01

    Ancient meteorites contain several percent of organic matter that represents a chronicle of chemical evolution in the early solar system. Aromatic hydrocarbon units make up the majority of meteorite organic matter but reading their record of organic evolution is not straightforward and their formation mechanisms have remained elusive. Most aromatic units reside in a macromolecular material and new perceptions of its structure have been provided by a novel on-line hydrogenation approach. When applied to the Orgueil (CI1) and Murchison (CM2) meteorites the technique releases a range of aromatic hydrocarbons along with some oxygen, sulphur and nitrogen-containing aromatic units. When on-line hydrogenation is compared to conventional pyrolysis, more high molecular weight units and a wider range of liberated entities are evident. Comparisons of results from Orgueil and Murchison reveal variations that are most likely related to differing levels of parent body alteration. The enhancement of straight-chain hydrocarbons (n-alkanes) in the hydrogenation products imply a source of these common contaminants from straight-chain carboxylic acid (n-alkanoic acid) precursors, perhaps from bacterial contributions on Earth. The on-line hydrogenation data also highlight a long-standing but unexplained observation related to the relative preference for specific isomers in methyl-substituted benzenes (meta-, ortho- and para-xylenes). The new hydrogenation approach appears to release and transform macromolecular material meta-structures (benzenes with substituents separated by single carbon atoms) into their free hydrocarbon counterparts. Their release characteristics suggest that the meta-structures are bound by oxygen-linkages. The meta-structures may be molecular probes of specific ancient cosmic environments. Parent body processing may have performed a similar function as hydrogenation to produce the most common meta configuration for free substituted benzenes. Notably, this

  11. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  12. Pitfalls in assessing microvascular endothelial barrier function: impedance-based devices versus the classic macromolecular tracer assay.

    PubMed

    Bischoff, Iris; Hornburger, Michael C; Mayer, Bettina A; Beyerle, Andrea; Wegener, Joachim; Fürst, Robert

    2016-01-01

    The most frequently used parameters to describe the barrier properties of endothelial cells (ECs) in vitro are (i) the macromolecular permeability, indicating the flux of a macromolecular tracer across the endothelium, and (ii) electrical impedance of ECs grown on gold-film electrodes reporting on the cell layer's tightness for ion flow. Due to the experimental differences between these approaches, inconsistent observations have been described. Here, we present the first direct comparison of these assays applied to one single cell type (human microvascular ECs) under the same experimental conditions. The impact of different pharmacological tools (histamine, forskolin, Y-27632, blebbistatin, TRAP) on endothelial barrier function was analyzed by Transwell(®) tracer assays and two commercial impedance devices (xCELLigence(®), ECIS(®)). The two impedance techniques provided very similar results for all compounds, whereas macromolecular permeability readings were found to be partly inconsistent with impedance. Possible reasons for these discrepancies are discussed. We conclude that the complementary combination of both approaches is highly recommended to overcome the restrictions of each assay. Since the nature of the growth support may contribute to the observed differences, structure-function relationships should be based on cells that are consistently grown on either permeable or impermeable growth supports in all experiments. PMID:27025965

  13. Pitfalls in assessing microvascular endothelial barrier function: impedance-based devices versus the classic macromolecular tracer assay

    PubMed Central

    Bischoff, Iris; Hornburger, Michael C.; Mayer, Bettina A.; Beyerle, Andrea; Wegener, Joachim; Fürst, Robert

    2016-01-01

    The most frequently used parameters to describe the barrier properties of endothelial cells (ECs) in vitro are (i) the macromolecular permeability, indicating the flux of a macromolecular tracer across the endothelium, and (ii) electrical impedance of ECs grown on gold-film electrodes reporting on the cell layer’s tightness for ion flow. Due to the experimental differences between these approaches, inconsistent observations have been described. Here, we present the first direct comparison of these assays applied to one single cell type (human microvascular ECs) under the same experimental conditions. The impact of different pharmacological tools (histamine, forskolin, Y-27632, blebbistatin, TRAP) on endothelial barrier function was analyzed by Transwell® tracer assays and two commercial impedance devices (xCELLigence®, ECIS®). The two impedance techniques provided very similar results for all compounds, whereas macromolecular permeability readings were found to be partly inconsistent with impedance. Possible reasons for these discrepancies are discussed. We conclude that the complementary combination of both approaches is highly recommended to overcome the restrictions of each assay. Since the nature of the growth support may contribute to the observed differences, structure-function relationships should be based on cells that are consistently grown on either permeable or impermeable growth supports in all experiments. PMID:27025965

  14. ZnO Nanoporous Structure Growth, Optical and Structural Characterization by Aqueous Solution Route

    NASA Astrophysics Data System (ADS)

    Kashif, M.; Ali, Syed M. Usman; Foo, K. L.; Hashim, U.; Willander, Magnus

    2011-05-01

    In this study, we have demonstrated the structural and optical characterization of ZnO nanoporous structure grown on gold coated plastic substrate using low temperature aqueous chemical growth (ACG) technique and the annealing temperature was kept at 150° C. ZnO nanoporous structures were fabricated using hydrolysis process by reacting zinc acetate dehydrate with anhydrous ethanol. The crystalline morphology of ZnO nanoporous structures were investigated by using X-ray diffraction (XRD), surface morphology was observed by field emission scanning electron microscope (FESEM). The optical characteristics of ZnO nanoporous structures were investigated at room temperature, PL was observed using UV-Vis Spectrophotometer and the chemical composition is analyzed using Fourier Transform Infra-Red spectrometer (FTIR).

  15. Refined solution structure of the oligomerization domain of the tumour suppressor p53.

    PubMed

    Clore, G M; Ernst, J; Clubb, R; Omichinski, J G; Kennedy, W M; Sakaguchi, K; Appella, E; Gronenborn, A M

    1995-04-01

    The NMR solution structure of the oligomerization domain of the tumour suppressor p53 (residues 319-360) has been refined. The structure comprises a dimer of dimers, oriented in an approximately orthogonal manner. The present structure determination is based on 4,472 experimental NMR restraints which represents a three and half fold increase over our previous work in the number of NOE restraints at the tetramerization interface. A comparison with the recently solved 1.7 A resolution X-ray structure shows that the structures are very similar and that the average angular root-mean-square difference in the interhelical angles is about 1 degree. The results of recent extensive mutagenesis data and the possible effects of mutations which have been identified in human cancers are discussed in the light of the present structure. PMID:7796267

  16. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan.

    PubMed

    Benigar, Elizabeta; Dogsa, Iztok; Stopar, David; Jamnik, Andrej; Kralj Cigić, Irena; Tomšič, Matija

    2014-04-15

    The polysaccharide levan is a homopolymer of fructose and appears in nature as an important structural component of some bacterial biofilms. This paper reports the structural and dynamic properties of aqueous solutions of levan of various origin obtained from dynamic rheological, small-angle X-ray scattering, static and dynamic light scattering, as well as density and sound velocity measurements, determination of polymer branching after per-O-methylation, and microscopy. Besides samples of commercially available levan from Zymomonas mobilis and Erwinia herbicola, we also isolated, purified, and studied a levan sample from the biofilm of Bacillus subtilis. The results of dynamic rheological and light scattering measurements revealed very interesting viscoelastic properties of levan solutions even at very low polymer concentrations. The findings were complemented by small-angle X-ray scattering data that revealed some important differences in the structure of the aqueous levan solutions at the molecular level. Besides presenting detailed dynamic and structural results on the polysaccharide systems of various levans, one of the essential goals of this work was to point out the level of structural information that may be obtained for such polymer systems by combining basic physicochemical, rheological, and various light scattering techniques. PMID:24654746

  17. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    SciTech Connect

    Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek; Lee, Weontae

    2014-01-10

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.

  18. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    SciTech Connect

    Taylor, Seth T.

    2002-05-17

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores relationships between grain boundary structure and chemistry at the nanometer scale using spectroscopic and imaging techniques in the transmission electron microscope (TEM). Results demonstrate dramatic changes in solute segregation stemming from small fluctuations in grain boundary plane and structure. Titanium and silicon solute species exhibit strong tendencies to segregate to non-basal and basal grain boundary planes, respectively. Evidence suggests that grain boundary faceting occurs in low-angle twis t boundaries to accommodate nonequilibrium solute segregation related to slow specimen cooling rates, while faceting of tilt grain boundaries often occurs to expose special planes of the coincidence site lattice (CSL). Moreover, quantitative analysis of grain boundary chemistry indicates preferential segregation of charged defects to grain boundary dislocations. These results offer direct proof that static dislocations in ionic materials can assume a net charge, and emphasize the importance of interactions between charged point, line, and planar defects in ionic materials. Efforts to understand grain boundary chemistry in terms of space charge theory, elastic misfit and nonequilibrium segregation are discussed for the Al2O3 system.

  19. Structural and Electronic Properties of a Wide-Gap Quaternary Solid Solution: \\(Zn, Mg\\) \\(S, Se\\)

    NASA Astrophysics Data System (ADS)

    Saitta, A. M.; de Gironcoli, S.; Baroni, S.

    1998-06-01

    The structural properties of the (Zn, Mg) (S, Se) solid solutions are determined by a combination of the computational alchemy and the cluster expansion methods with Monte Carlo simulations. We determine the phase diagram of the alloy and show that the homogeneous phase is characterized by a large amount of short-range order occurring among first-nearest neighbors. Electronic-structure calculations performed using the special quasirandom structure approach indicate that the energy gap of the alloy is rather sensitive to this short-range order.

  20. Automating crystallographic structure solution and refinement of protein–ligand complexes

    PubMed Central

    Echols, Nathaniel; Moriarty, Nigel W.; Klei, Herbert E.; Afonine, Pavel V.; Bunkóczi, Gábor; Headd, Jeffrey J.; McCoy, Airlie J.; Oeffner, Robert D.; Read, Randy J.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-01-01

    High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation. PMID:24419387

  1. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    SciTech Connect

    Mereghetti, Paolo; Wade, Rebecca C.

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  2. Solution structure of sialyl Lewis X mimics studied by two-dimensional NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Noda, Masatoshi; Kajimoto, Tetsuya; Uchiyama, Taketo; Umemoto, Kimiko; Wong, Chi-Huey; Asakura, Tetsuo

    2002-01-01

    A structure of the peptidic mimic of sialyl Lewis X (Sle X) (α- N-acetyl-neuraminyl-(2,3)-β- D-galactopyranosyl-(1,4)-[α- L-fucopyranosyl-(1,3)-β- D- N-acetyl-glucosamine]) in an aqueous solution was studied using two-dimensional 1H NMR spectroscopy. Complete assignments of 1H NMR chemical shift of the SLe X mimic have been performed. The presence of three conformers of the SLe X mimic in a solution was proposed by using distance geometry calculation based on NOE constraints, which were obtained from NOESY experiments. In addition, intermolecular interaction between the mimic and the crystal structure of E-selectin was refined using molecular dynamics. This suggested the conformational rearrangement of the functional groups of the conformers to the active sites of E-selectin. The relationship between the binding activities toward E-selectin and the three-dimensional structures of other mimics was also discussed.

  3. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions

    PubMed Central

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-01-01

    ABSTRACT Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices. PMID:27134310

  4. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  5. In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm.

    PubMed

    Jin, Yuan; Hang, Yichun; Luo, Jie; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2013-11-01

    The spinning process of silkworm in vivo attracts great attentions. In this work, the structures and properties of the silk fibroin (SF) aqueous solutions from different divisions of silk glands of silkworms were investigated by using polarized microscope, rotational rheometer, Raman spectrometer and dynamic laser light scattering instrument. It was found that only the anterior (A) division and the anterior part of middle division (MA) of silk gland showed birefringence. With flowing from the posterior part (MP) to the MA part in the middle division of silk gland, the SF aqueous solutions was gradually transformed from random coil/α-helix to β-sheet conformation. Meantime, the elastic and viscous nature of the SF aqueous solution changed, and the mean diameter of SF aggregates increased from 118 nm to 331 nm. It could be concluded that the structures and properties of the SF aqueous solutions were gradually changed along the silk gland and the liquid crystal structure was initially formed in the MA part of silk gland. PMID:23994738

  6. Structure from solute-solvent interactions in supercritical polyatomic molecular mixtures

    SciTech Connect

    Lee, L.L.; Cochran, H.D.

    1994-12-31

    Solute-solvent and solute-solute microstructures at the sueprcritical state are important in elucidating chemical reaction and spectroscopic data. We can classify the range of pair correlations into two regions: a short range (r {le} r{sub min}) and a long range (r from r{sub min} to 20 {approximately} 50 molecular diameters). The often cited local density enhacement referes to the short range corelations and is shown not to be related to the critical behavior of the mixture. The long-range behavior of the pair correlations is responsible for the buildup of osmotic susceptibility and is related to the closeness to solvent`s critical point. In the class of attractive supercritical mixtures, the solute-solvent short-range pair correlation exhibits complicated bheavior: enhanced solvation (within the first neighborhood) at low to medium densities and peak attenuation followed by peak growth at higher densities. Earlier theor. studies (integral equations) dealt with idealized model of solute molecules as spheres (molecular size effects accounted for, but not molecular shape effects). This study examines behavioral change due to molecular shapes and orientations as the solutes take the shape of polyatomic molecules. For example the case of di-tert-butylnitroxide radicals in supercritical ethylene can be modeled as linear dimeric molecules. Reference interaction site model integral equation is used to produce site-site correlation functions. We map out the density ranges where structural changes take place and elucidate their practical implications.

  7. Structure and dimerization of translation initiation factor aIF5B in solution

    SciTech Connect

    Rasmussen, Louise Caroe Vohlander; Oliveira, Cristiano Luis Pinto; Byron, Olwyn; Jensen, Janni Mosgaard; Pedersen, Jan Skov; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer aIF5B forms maximum 5.0-6.8% irreversible dimers in solution. Black-Right-Pointing-Pointer Sedimentation coefficients for monomer and dimer are 3.64 and 5.51 {+-} 0.29 S. Black-Right-Pointing-Pointer Adding only 2% glycerol prevents dimerization. Black-Right-Pointing-Pointer SAXS on aIF5B monomer gave an R{sub g} of 37.5 {+-} 0.2 A and a D{sub max} of {approx}130 A. Black-Right-Pointing-Pointer There are universal structural differences between aIF5B and Escherichia coli IF2. -- Abstract: Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.0-6.8% dimer. Sedimentation velocity (SV) AUC at higher speed also indicated the presence of two species, and the sedimentation coefficients s{sub 20,w}{sup 0} were determined to be 3.64 and 5.51 {+-} 0.29 S for monomer and dimer, respectively. The atomic resolution (crystallographic) structure of aIF5B (Roll-Mecak et al. ) was used to model monomer and dimer, and theoretical sedimentation coefficients for these models were computed (3.89 and 5.63 S, respectively) in good agreement with the sedimentation coefficients obtained from SV analysis. Thus, the structure of aIF5B in solution must be very similar to the atomic resolution structure of aIF5B. SAXS data were acquired in the same buffer with the addition of 2% glycerol to inhibit dimerization, and the resultant monomeric aIF5B in solution did indeed adopt a structure very similar to the one reported earlier for the protein in crystalline form. The p(r) function indicated an elongated conformation supported by a radius of gyration of 37.5 {+-} 0.2 A

  8. Solution NMR of large molecules and assemblies†

    PubMed Central

    Foster, Mark P.; McElroy, Craig A.; Amero, Carlos D.

    2008-01-01

    Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D–4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics and interactions of smaller macromolecules (< ~25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes, and provide a perspective on the wide range of applications of NMR to biochemical problems. PMID:17209543

  9. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    DOE PAGESBeta

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; Schmidt, Martin U.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may bemore » used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.« less

  10. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    PubMed

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data. PMID:26697868

  11. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    SciTech Connect

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.; Schmidt, Martin U.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  12. A hybrid computational-experimental approach for automated crystal structure solution

    NASA Astrophysics Data System (ADS)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  13. Electrostatic Effect on the Solution Structure and Dynamics of PEDOT:PSS

    NASA Astrophysics Data System (ADS)

    Leaf, Michael; Muthukumar, Murugappan

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) is a popular material used in organic electronic devices as a conductor. It consists of PEDOT polycations complexed with PSS polyanions which are initially suspended in aqueous solution and eventually cast into a film. Various annealing and doping methods dramatically enhance PEDOT:PSS film conductivity. To understand the physical interactions at play, we explore structural and dynamic aspects of PEDOT:PSS solutions through scattering and rheology techniques. We highlight several aspects of the phase behavior of PEDOT:PSS, and the significance of electrostatic interactions.

  14. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  15. Families of solutions to the generalized Ginzburg-Landau equation and structural transitions between them

    SciTech Connect

    Ovchinnikov, Yu. N.

    2013-09-15

    Solutions to the generalized Ginzburg-Landau equations for superconductors are obtained for a Ginzburg-Landau parameter {kappa} close to unity. The families of solutions with arbitrary number n of flux quanta in a unit cell are analyzed. It is shown that under certain conditions, a cascade of phase transitions between different structures in a magnetic field appears near T{sub c}. Algebraic equations are derived for determining the boundaries of coexistence of different phases on the (T, H{sub 0}) plane.

  16. Measure-valued solutions for a hierarchically size-structured population

    NASA Astrophysics Data System (ADS)

    Ackleh, Azmy S.; Ito, Kazufumi

    We present a hierarchically size-structured population model with growth, mortality and reproduction rates which depend on a function of the population density ( environment). We present an example to show that if the growth rate is not always a decreasing function of the environment (e.g., a growth which exhibits the Allee effect) the emergence of a singular solution which contains a Dirac delta mass component is possible, even if the vital rates of the individual and the initial data are smooth functions. Therefore, we study the existence of measure-valued solutions. Our approach is based on the vanishing viscosity method.

  17. Characterization of Physical Structure from Measurements of Sound Velocity in Aqueous Solutions of Various Saccharides and Alditols.

    NASA Astrophysics Data System (ADS)

    Smith, David Eugene

    Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for

  18. Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement

    SciTech Connect

    McLain, Sylvia E.; Imberti, Silvia; Soper, Alan K.; Botti, Alberto; Bruni, Fabio; Ricci, Maria Antonietta

    2006-09-01

    Neutron diffraction with isotopic substitution has been used to investigate aqueous solutions of 2M NaOH in the liquid state. The data were modeled using empirical potential structure refinement which allows for the extraction of the ion-water and water-water correlations. The data show that the ion-water radial distribution functions are in accordance with those found by previous studies on NaOH solutions and follow a trend which is dependent on the concentration of the solute. In particular, the shape of the hydroxide hydration shell is found to be concentration independent, but the number of water molecules occupying this shell increases with dilution. Additionally, the water-water correlations show that there is still a measurable effect on water structure with the addition of ions at this concentration, as the second shell in the water oxygen radial distribution function is compressed relative to the first shell. The data are also used to discuss the recent claims that the published radial distribution functions of water are unreliable, showing that data taken at different neutron sources, with different diffraction geometry and systematic errors lead to the same structural information when analyzed via a realistic modeling regime.

  19. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source

    PubMed Central

    Classen, Scott; Hura, Greg L.; Holton, James M.; Rambo, Robert P.; Rodic, Ivan; McGuire, Patrick J.; Dyer, Kevin; Hammel, Michal; Meigs, George; Frankel, Kenneth A.; Tainer, John A.

    2013-01-01

    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world’s mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B4C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources. PMID:23396808

  20. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    PubMed

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. PMID:27558718

  1. Elongation factor TFIIS contains three structural domains: solution structure of domain II.

    PubMed Central

    Morin, P E; Awrey, D E; Edwards, A M; Arrowsmith, C H

    1996-01-01

    Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. Limited proteolytic digestion showed that yeast TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III) are required for transcription activity. The structure of domain III has been solved previously by using NMR spectroscopy. Here, we report the NMR-derived structure of domain II: a three-helix bundle built around a hydrophobic core composed largely of three tyrosines protruding from one face of the C-terminal helix. The arrangement of known inactivating mutations of TFIIS suggests that two surfaces of domain II are critical for transcription activity. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855225

  2. Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.

    PubMed

    Pantoja-Uceda, David; Bruix, Marta; Giménez-Gallego, Guillermo; Rico, Manuel; Santoro, Jorge

    2003-12-01

    The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity. PMID:14636051

  3. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  4. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    PubMed Central

    Waltersperger, Sandro; Olieric, Vincent; Pradervand, Claude; Glettig, Wayne; Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias; Schulze-Briese, Clemens; Wang, Meitian

    2015-01-01

    The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described. PMID:26134792

  5. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  6. Bioelectrochemical activity of an electroactive macromolecular weight coenzyme derivative

    NASA Astrophysics Data System (ADS)

    Liu, Pu; Zheng, Haitao; Nie, Pingping; Wei, Yaotian; Feng, Zhenchao; Sun, Tao

    2009-07-01

    As coenzyme utilized by more than hundreds of dehydrogenases, the efficient immobilization and regeneration of nicotinamide adenine dinucleotide (NAD+) are of great importance and have practical applications in industrial, analytical and biomedical field. In this paper, an electroactive macromolecular weight coenzyme derivative (PEI-DHBNAD) was prepared by attaching both NAD+ and 3,4-dihydroxybenzaldehyde (3,4-DHB) to a water-soluble polyelectrolyte, poly(ethylenimine) (PEI). The functional polymer exhibited both electrochemical properties of catechol unites and coenzymatic activity of NAD moieties. The macromolecular NAD analogue showed a substantial degree of efficiency relative to free NAD+ with alcohol dehydrogenase (ADH) and glucose-6-phophate dehydrogenase (G6PDH), and a litter higher Michaelis-Menton constant (Km) was obtained for the coenzyme derivative than free NAD+. The bioelectrochemical properties of PEI-DHB-NAD were investigated by using G6PDH as the model enzyme, and both of them were retained on electrode surface by ultrafiltration membrane. The modified electrode showed typical response to substrate without the addition of free coenzyme, which indicated that PEI-DHB-NAD can carry out the electron transfer between electrode and NAD-dependent dehydrogenase. The utilization of polymer-based PEI-DHB-NAD is convenient for the immobilization of both electron mediator and coenzyme, and offers a practical approach for the construction of reagentless biosensors.

  7. The macromolecular crystallography facility at the advanced light source

    NASA Astrophysics Data System (ADS)

    Earnest, Thomas; Padmore, Howard; Cork, Carl; Behrsing, Rolf; Kim, Sung-Hou

    1996-10-01

    Synchrotron radiation offers several advantages over the use of rotating anode sources for biological crystallography, which allow for the collection of higher-resolution data, substantially more rapid data collection, phasing by multiwavelength anomalous diffraction (MAD) techniques, and time-resolved experiments using polychromatic radiation (Laue diffraction). The use of synchrotron radiation is often necessary to record useful data from crystals which diffract weakly or have very large unit cells. The high brightness and stability characteristics of the advanced light source (ALS) at Lawrence Berkeley National Laboratory, along with the low emittance and long straight sections to accommodate insertion devices present in third generation synchrotrons like the ALS, lead to several advantages in the field of macromolecular crystallography. We are presently constructing a macromolecular crystallography facility at the ALS which is optimized for user-friendliness and high-throughput data collection, with advanced capabilities for MAD and Laue experiments. The X-rays will be directed to three branchlines. A well-equipped support lab will be available for biochemistry, crystal mounting and sample storage, as well as computer hardware and software available, along with staff support, allowing for the complete processing of data on site.

  8. Cardiac voltage-gated calcium channel macromolecular complexes.

    PubMed

    Rougier, Jean-Sébastien; Abriel, Hugues

    2016-07-01

    Over the past 20years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Cav1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Cav1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Cav1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Cav1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26707467

  9. Invisibility and cloaking structures as weak or strong solutions of Devaney-Wolf theorem.

    PubMed

    Labate, Giuseppe; Matekovits, Ladislau

    2016-08-22

    Inspired by a general theorem on non-radiating sources demonstrated by Devaney and Wolf, a unified theory for invisible and cloaking structures is here proposed. By solving Devaney-Wolf theorem in the quasi-static limit, a weak solution is obtained, demonstrating the existence of Anapole modes, Mantle Cloaking and Plasmonic Cloaking. Beyond the quasi-static regime, a strong solution of Devaney-Wolf theorem can be formulated, predicting general non-scattering devices based on directional invisibility, Transformation Optics, neutral inclusions and refractive index continuity. Both weak and strong solutions are analytically demonstrated to depend on the concept of contrast, mathematically defined as a normalized difference between constitutive parameters (or wave-impedance property) of a material and its surrounding background. PMID:27557204

  10. Crystal versus solution structures of enzymes: NMR spectroscopy of a crystalline serine protease.

    PubMed

    Smith, S O; Farr-Jones, S; Griffin, R G; Bachovchin, W W

    1989-05-26

    The hydrogen-bonding status of His57 in the catalytic triad (Asp-His-Ser) of serine protease has important mechanistic implications for this class of enzymes. Recent nitrogen-15 nuclear magnetic resonance (NMR) studies of alpha-lytic protease find His57 and Ser195 to be strongly hydrogen-bonded, a result that conflicts with the corresponding crystallographic studies, thereby suggesting that the crystal and solution structures may differ. This discrepancy is addressed and resolved in a nitrogen-15 NMR study of the enzyme in the crystalline state. The results show that the His-Ser and Asp-His interactions are identical in crystals and solutions, but that in crystals His57 titrates with a pKa of 7.9, nearly one pKa unit higher than in solution. This elevated pKa accounts for the absence of the His-Ser hydrogen bond in previous x-ray studies. PMID:2499045

  11. A dielectric spectroscopic study of the disperse structure of asphaltene solutions at high pressures

    SciTech Connect

    Syunyaev, R.Z.; Sh. Abid, R.

    1994-03-01

    The disperse structure of oil asphaltenes in benzene and toluene solutions at different temperatures and concentrations were studied at pressures up to 1.0 GPa. The polarity of the asphaltene molecules allows the dielectric spectroscopic method to be used. A sharp increase in the relaxation time and the sizes of the asphaltene aggregates, calculated according to the Debye model near the phase transition point, were found in the benzene solution. The pressure value corresponding to crystallization is much higher in the toluene solution, and only the border region can be investigated. An explanation of the pressure dependences of the relaxation times are presented. The activation energies and the coefficients of isothermal compressibility are calculated.

  12. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components

    NASA Astrophysics Data System (ADS)

    Balankina, E. S.

    2016-06-01

    Analytical dependences of a volume's properties on the differences between the geometric structures of initial monosystems are obtained for binary systems simulated by a grain medium. The effect of microstructural parameter k (the ratio of volumes of molecules of mixed components) on the concentration behavior of the relative excess molar volume of different types of real binary solutions is analyzed. It is established that the contribution due to differences between the volumes of molecules and coefficients of the packing density of mixed components is ~80-100% for mutual solutions of n-alkanes and ~55-80% of the experimental value of the relative excess molar volume for water solutions of n-alcohols.

  13. A structural study of the intermolecular interactions of tyramine in the solid state and in solution

    NASA Astrophysics Data System (ADS)

    Quevedo, Rodolfo; Nuñez-Dallos, Nelson; Wurst, Klaus; Duarte-Ruiz, Álvaro

    2012-12-01

    The nature of the interactions between tyramine units was investigated in the solid state and in solution. Crystals of tyramine in its free base form were analyzed by Fourier transform infrared (FT-IR) spectroscopy and single-crystal X-ray diffraction (XRD). The crystal structure shows a linear molecular organization held together by "head-to-tail" intermolecular hydrogen bonds between the amino groups and the phenolic hydroxyl groups. These chains are arranged in double layers that can geometrically favor the formation of templates in solution, which may facilitate macrocyclization reactions to form azacyclophane-type compounds. Computational calculations using the PM6-DH+ method and electrospray ionization mass spectrometry (ESI-HRMS) reveal that the formation of a hydrogen-bonded tyramine dimer is favored in solution.

  14. The Method of Decomposition in Invariant Structures: Exact Solutions for N Internal Waves in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Victor

    2015-11-01

    The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.

  15. Solution Structures of Spinach Acyl Carrier Protein with Decanoate and Stearate†

    PubMed Central

    Zornetzer, Gregory A.; Fox, Brian G.; Markley, John L.

    2008-01-01

    Acyl carrier protein (ACP) is a cofactor in a variety of biosynthetic pathways, including fatty acid metabolism. Thus it is of interest to determine structures of physiologically relevant ACP-fatty acid complexes. We report here the NMR solution structures of spinach ACP with decanoate (10:0-ACP) and stearate (18:0-ACP) attached to the 4′ phosphopantetheine prosthetic group. The protein in the fatty acid complexes adopts a single conformer, unlike apo- and holo-ACP, which interconvert in solution between two major conformers. The protein component of both 10:0- and 18:0-ACP adopts the four-helix bundle topology characteristic of ACP, and a fatty acid binding cavity was identified in both structures. Portions of the protein close in space to the fatty acid and the 4′ phosphopantetheine were identified using filtered/edited NOESY experiments. A docking protocol was used to generate protein structures containing bound fatty acid for 10:0- and 18:0-ACP. In both cases, the predominant structure contained fatty acid bound down the center of the helical bundle, in agreement with the location of the fatty acid binding pockets. These structures demonstrate the conformational flexibility of spinach-ACP and suggest how the protein changes to accommodate its myriad binding partners. PMID:16618110

  16. NMR Solution Structure and Condition-Dependent Oligomerization of the Antimicrobial Peptide Human Defensin 5

    PubMed Central

    Wommack, Andrew J.; Robson, Scott A.; Wanniarachchi, Yoshitha A.; Wan, Andrea; Turner, Christopher J.; Wagner, Gerhard; Nolan, Elizabeth M.

    2012-01-01

    Human defensin 5 (HD5) is a 32-residue host-defense peptide expressed in the gastrointestinal, reproductive, and urinary tracts that has antimicrobial activity. It exhibits six cysteine residues that are regiospecifically oxidized to form three disulfide bonds (Cys3—Cys31, Cys5—Cys20, and Cys10—Cys30) in the oxidized form (HD5ox). To probe the solution structure and oligomerization properties of HD5ox, and select mutant peptides lacking one or more disulfide bonds, NMR solution studies and analytical ultracentrifugation experiments are reported in addition to in vitro peptide stability assays. The NMR solution structure of HD5ox, solved at pH 4 in 90:10 H2O/D2O, is presented (PDB: 2LXZ). Relaxation T1/T2 measurements and the rotational correlation time (Tc) estimated from a [15N,1H]-TRACT experiment demonstrate that HD5ox is dimeric under these experimental conditions. Exchange broadening of the Hα signals in the NMR spectra suggests that residues 19-21 (Val19-Cys20-Glu21) contribute to the dimer interface in solution. Exchange broadening is also observed for residues 7-14 comprising the loop. Sedimentation velocity and equilibrium studies conducted in buffered aqueous solution reveal that the oligomerization state of HD5ox is pH-dependent. Sedimentation coefficients of ca. 1.8 S and a molecular weight of 14,363 Da were determined for HD5ox at pH 7, supporting a tetrameric form ([HD5ox] ≥ 30 μM). At pH 2, a sedimentation coefficient of ca. 1.0 S and a molecular weight of 7,079 Da, corresponding to a HD5ox dimer, were obtained. Millimolar concentrations of NaCl, CaCl2, and MgCl2 have negligible effect on the HD5ox sedimentation coefficients in buffered aqueous solution at neutral pH. Removal of a single disulfide bond results in a loss of peptide fold and quaternary structure. These biophysical investigations highlight the dynamic and environment-sensitive behavior of HD5ox in solution, and provide important insights into HD5ox structure

  17. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  18. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    PubMed

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices. PMID:21069972

  19. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes.

    PubMed

    Ilca, Serban L; Kotecha, Abhay; Sun, Xiaoyu; Poranen, Minna M; Stuart, David I; Huiskonen, Juha T

    2015-01-01

    Electron cryomicroscopy can yield near-atomic resolution structures of highly ordered macromolecular complexes. Often however some subunits bind in a flexible manner, have different symmetry from the rest of the complex, or are present in sub-stoichiometric amounts, limiting the attainable resolution. Here we report a general method for the localized three-dimensional reconstruction of such subunits. After determining the particle orientations, local areas corresponding to the subunits can be extracted and treated as single particles. We demonstrate the method using three examples including a flexible assembly and complexes harbouring subunits with either partial occupancy or mismatched symmetry. Most notably, the method allows accurate fitting of the monomeric RNA-dependent RNA polymerase bound at the threefold axis of symmetry inside a viral capsid, revealing for the first time its exact orientation and interactions with the capsid proteins. Localized reconstruction is expected to provide novel biological insights in a range of challenging biological systems. PMID:26534841

  20. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation

    SciTech Connect

    Li, Xiao Ji, Guanghua Zhang, Hui

    2015-02-15

    We use the stochastic Cahn–Hilliard equation to simulate the phase transitions of the macromolecular microsphere composite (MMC) hydrogels under a random disturbance. Based on the Flory–Huggins lattice model and the Boltzmann entropy theorem, we develop a reticular free energy suit for the network structure of MMC hydrogels. Taking the random factor into account, with the time-dependent Ginzburg-Landau (TDGL) mesoscopic simulation method, we set up a stochastic Cahn–Hilliard equation, designated herein as the MMC-TDGL equation. The stochastic term in the equation is constructed appropriately to satisfy the fluctuation-dissipation theorem and is discretized on a spatial grid for the simulation. A semi-implicit difference scheme is adopted to numerically solve the MMC-TDGL equation. Some numerical experiments are performed with different parameters. The results are consistent with the physical phenomenon, which verifies the good simulation of the stochastic term.