Sample records for macromolecules dna rna

  1. Resolution enhancement in Raman spectra of biological macromolecules by Fourier deconvolution: applications to single-stranded DNA and RNA viruses1

    NASA Astrophysics Data System (ADS)

    Thomas, George J.

    The application of a constrained, iterative Fourier deconvolution method to Raman spectra of viruses permits separation of overlapped vibrational bands assigned to viral protein and nucleic acid constituents. The intrinsically broad and extensively overlapped Raman lines, which cannot be resolved by instrumental methods, are sufficiently well separated in the deconvoluted spectra so that band areas may be measured with sufficient accuracy to allow conclusions about the secondary structures and hydrogen bonding interactions of viral molecular components. Deconvolution of Raman scattering in the region 1500-1750 cm -1 of filamentous bacteriophages resolves the contributions of(i)amide I modes ofalpha-helix and beta-strand conformations of the viral coat proteins, (ii) aromatic ring modes of tryptophan, tyrosine and phenylalanine side chains and (iii) purine ring modes of the coated DNA molecule. The results show that among six filamentous viruses the amount of alpha-helix in coat protein subunits decreases in the following order: Pfl (100%) > IKe (93%) > fd (92%) > Ifl (90%) > Pf3 (82%) > Xf (71%). In an application to tobacco mosaic virus (TMV), the complex band in the 800-850 cm -1 region is deconvoluted to resolve contributions from the encapsidated RNA genome at 813 and 822 cm -1, which indicate at least two distinct nucleoside conformers and a contribution from the tyrosine rings of protein subunits at 831 cm -1. Integrated intensity measurements suggest that at least two-thirds of the nucleosides do not contain the usual C3'-endo ring pucker and anti orientation of the glycosidic bond normally associated with nucleoside residues of single-stranded RNA.

  2. Molecular Biology DNA: The Genetic Macromolecule

    E-print Network

    exercise is designed to give the student the chance to prove this to him/herself. In this exercise our goal, finally leading to production of a new protein in all bacteria receiving the new DNA. The lab exercise will contain ampicillin and arabinose, a sugar that E.coli can utilize in addition to the glucose present

  3. DNA, RNA , and protein

    NSDL National Science Digital Library

    Nobel e-Museum

    2001-01-01

    Have you ever wondered why you look like your mother while your brother looks like your grandfather? Consult life's gigantic book of information! This resource contains an illustrated interactive explanation of RNA, DNA, and proteins. This resource is appropriate for all users as it provides useful background information to enhance STEM teaching and learning for all. Copyright 2005 EDC

  4. Specific features of 5S rRNA structure - its interactions with macromolecules and possible functions.

    PubMed

    Smirnov, A V; Entelis, N S; Krasheninnikov, I A; Martin, R; Tarassov, I A

    2008-12-01

    Small non-coding RNAs are today a topic of great interest for molecular biologists because they can be regarded as relicts of a hypothetical "RNA world" which, apparently, preceded the modern stage of organic evolution on Earth. The small molecule of 5S rRNA (approximately 120 nucleotides) is a component of large ribosomal subunits of all living beings (5S rRNAs are not found only in mitoribosomes of fungi and metazoans). This molecule interacts with various protein factors and 23S (28S) rRNA. This review contains the accumulated data to date concerning 5S rRNA structure, interactions with other biological macromolecules, intracellular traffic, and functions in the cell. PMID:19216709

  5. RNA-templated DNA repair

    Microsoft Academic Search

    Francesca Storici; Katarzyna Bebenek; Thomas A. Kunkel; Dmitry A. Gordenin; Michael A. Resnick

    2007-01-01

    RNA can act as a template for DNA synthesis in the reverse transcription of retroviruses and retrotransposons and in the elongation of telomeres. Despite its abundance in the nucleus, there has been no evidence for a direct role of RNA as a template in the repair of any chromosomal DNA lesions, including DNA double-strand breaks (DSBs), which are repaired in

  6. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-print Network

    Santos, da Silva dos; Ricotta, Regina Maria

    2015-01-01

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  7. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-print Network

    da Silva dos Santos; Elso Drigo Filho; Regina Maria Ricotta

    2015-02-09

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  8. Fabricating RNA Microarrays with RNA-DNA Surface Ligation Chemistry

    E-print Network

    Fabricating RNA Microarrays with RNA-DNA Surface Ligation Chemistry Hye Jin Lee, Alastair W. Wark, there are at present only a handful of reports on the fabrication of RNA microarrays in the literature.12-15 These fabrication strategies typically employ modified RNA (e.g., thiol- terminated or biotinylated

  9. Stability of mRNA/DNA and DNA/DNA Duplexes Affects mRNA Transcription

    PubMed Central

    Kraeva, Rayna I.; Krastev, Dragomir B.; Roguev, Assen; Ivanova, Anna; Nedelcheva-Veleva, Marina N.; Stoynov, Stoyno S.

    2007-01-01

    Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary structures that assist the transfer of genetic information and can modulate gene expression. However, the nucleotide sequence alone is insufficient in explaining phenomena like intron-exon recognition during RNA processing. This raises the question whether nucleic acids are endowed with other attributes that can contribute to their biological functions. In this work, we present a calculation of thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces by nearest-neighbor method. The results show that coding regions are more thermodynamically stable than introns, 3?-untranslated regions and intergenic sequences. Furthermore, open reading frames have more stable sense mRNA/DNA duplexes than the potential antisense duplexes, a property that can aid gene discovery. The lower stability of the DNA/DNA and mRNA/DNA duplexes of 3?-untranslated regions and the higher stability of genes correlates with increased mRNA level. These results suggest that the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes affects mRNA transcription. PMID:17356699

  10. Analyses of DNA, RNA and Protein

    E-print Network

    Dellaire, Graham

    ; Restriction endonucleases #12; Recombinant DNA technology #12;Cloning Vectors Plasmids Double strandedAnalyses of DNA, RNA and Protein #12;What are the early discoveries and technological advances;Hybridization technology #12;Molecular techniques for Analyzing DNA #12;Southern blotting #12;Detection of gene

  11. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    PubMed Central

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  12. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression.

    PubMed

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  13. A DNA enzyme that cleaves RNA

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.; Hoyce, G. F. (Principal Investigator)

    1994-01-01

    BACKGROUND: Several types of RNA enzymes (ribozymes) have been identified in biological systems and generated in the laboratory. Considering the variety of known RNA enzymes and the similarity of DNA and RNA, it is reasonable to imagine that DNA might be able to function as an enzyme as well. No such DNA enzyme has been found in nature, however. We set out to identify a metal-dependent DNA enzyme using in vitro selection methodology. RESULTS: Beginning with a population of 10(14) DNAs containing 50 random nucleotides, we carried out five successive rounds of selective amplification, enriching for individuals that best promote the Pb(2+)-dependent cleavage of a target ribonucleoside 3'-O-P bond embedded within an otherwise all-DNA sequence. By the fifth round, the population as a whole carried out this reaction at a rate of 0.2 min-1. Based on the sequence of 20 individuals isolated from this population, we designed a simplified version of the catalytic domain that operates in an intermolecular context with a turnover rate of 1 min-1. This rate is about 10(5)-fold increased compared to the uncatalyzed reaction. CONCLUSIONS: Using in vitro selection techniques, we obtained a DNA enzyme that catalyzes the Pb(2+)-dependent cleavage of an RNA phosphoester in a reaction that proceeds with rapid turnover. The catalytic rate compares favorably to that of known RNA enzymes. We expect that other examples of DNA enzymes will soon be forthcoming.

  14. RNA Splicing Factors and RNA-Directed DNA Methylation

    PubMed Central

    Huang, Chao-Feng; Zhu, Jian-Kang

    2014-01-01

    RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway. PMID:24833507

  15. Properties of Macromolecules

    NSDL National Science Digital Library

    Keirle, Matt

    This lab activity from the Biotechnology Alliance for Suncoast Biology Educators explores different analytical tests that are used to detect the presence of specific macromolecule classes based on their properties. Students will also have a chance to measure their own body mass index by taking advantage of the bioelectrical impedance properties of body fat and an opportunity to extract their own DNA. The lesson includes background information on types of macromolecules, the materials needed, and the procedure.

  16. Absolute cross section for low-energy-electron damage to condensed macromolecules: a case study of DNA.

    PubMed

    Rezaee, Mohammad; Cloutier, Pierre; Bass, Andrew D; Michaud, Marc; Hunting, Darel J; Sanche, Léon

    2012-09-01

    Cross sections (CSs) for the interaction of low-energy electrons (LEE) with condensed macromolecules are essential parameters for accurate modeling of radiation-induced molecular decomposition and chemical synthesis. Electron irradiation of dry nanometer-scale macromolecular solid films has often been employed to measure CSs and other quantitative parameters for LEE interactions. Since such films have thicknesses comparable with electron thermalization distances, energy deposition varies throughout the film. Moreover, charge accumulation occurring inside the films shields a proportion of the macromolecules from electron irradiation. Such effects complicate the quantitative comparison of the CSs obtained in films of different thicknesses and limit the applicability of such measurements. Here, we develop a simple mathematical model, termed the molecular survival model, that employs a CS for a particular damage process together with an attenuation length related to the total CS, to investigate how a measured CS might be expected to vary with experimental conditions. As a case study, we measure the absolute CS for the formation of DNA strand breaks (SBs) by electron irradiation at 10 and 100 eV of lyophilized plasmid DNA films with thicknesses between 10 and 30 nm. The measurements are shown to depend strongly on the thickness and charging condition of the nanometer-scale films. Such behaviors are in accord with the model and support its validity. Via this analysis, the CS obtained for SB damage is nearly independent of film thickness and charging effects. In principle, this model can be adapted to provide absolute CSs for electron-induced damage or reactions occurring in other molecular solids across a wider range of experimental conditions. PMID:23030950

  17. Evaluation of DNA and RNA Extraction Methods

    Microsoft Academic Search

    C S Edwin Shiaw; M S Shiran; Y K Cheah; G C Tan; A R Sabariah; M Path

    2010-01-01

    SUMMARY This study was done to evaluate various DNA and RNA extractions from archival FFPE tissues. A total of 30 FFPE blocks from the years of 2004 to 2006 were assessed with each modified and adapted method. Extraction protocols evaluated include the modified enzymatic extraction method (Method A), Chelex-100 extraction method (Method B), heat-induced retrieval in alkaline solution extraction method

  18. Isothermal amplified detection of DNA and RNA.

    PubMed

    Yan, Lei; Zhou, Jie; Zheng, Yue; Gamson, Adam S; Roembke, Benjamin T; Nakayama, Shizuka; Sintim, Herman O

    2014-05-01

    This review highlights various methods that can be used for a sensitive detection of nucleic acids without using thermal cycling procedures, as is done in PCR or LCR. Topics included are nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), loop-mediated amplification (LAMP), Invader assay, rolling circle amplification (RCA), signal mediated amplification of RNA technology (SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA), nicking endonuclease signal amplification (NESA) and nicking endonuclease assisted nanoparticle activation (NENNA), exonuclease-aided target recycling, Junction or Y-probes, split DNAZyme and deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection via the self-assembly of DNA probes to give supramolecular structures. The majority of these isothermal amplification methods can detect DNA or RNA in complex biological matrices and have great potential for use at point-of-care. PMID:24643211

  19. Widespread RNA and DNA Sequence Differences in the

    E-print Network

    Zhang, Jianzhi

    Widespread RNA and DNA Sequence Differences in the Human Transcriptome Mingyao Li,1 * Isabel X,7,8 The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than

  20. Splint ligation of RNA with T4 DNA ligase

    PubMed Central

    Kershaw, Christopher J.; O’Keefe, Raymond T.

    2014-01-01

    Splint ligation of RNA, whereby specific RNA molecules are ligated together, can be carried out using T4 DNA ligase and a bridging DNA oligonucleotide complementary to the RNAs. This method takes advantage of the property of T4 DNA ligase to join RNA molecules when they are in an RNA:DNA hybrid. Splint ligation is a useful tool for the introduction of modified nucleotides into RNA molecules, insertion of a radiolabel into a specific position within an RNA and for the assembly of smaller synthetic RNAs into longer RNA molecules. Such modifications enable a wide range of experiments to be carried out with the modified RNA including structural studies, co-immunoprecipitations, and the ability to map sites of RNA:RNA and RNA:protein interactions. PMID:23065567

  1. Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping

    PubMed Central

    Giovan, Stefan M.; Scharein, Robert G.; Hanke, Andreas

    2014-01-01

    We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases. PMID:25381542

  2. Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping

    E-print Network

    Stefan M. Giovan; Robert G. Scharein; Andreas Hanke; Stephen D. Levene

    2014-10-24

    We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P=20 and L/P=40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.

  3. Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping

    NASA Astrophysics Data System (ADS)

    Giovan, Stefan M.; Scharein, Robert G.; Hanke, Andreas; Levene, Stephen D.

    2014-11-01

    We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.

  4. Interaction of zanamivir with DNA and RNA: Models for drug DNA and drug RNA bindings

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Kahangi, Fatemeh Ghoreyshi; Azizi, Ebrahim; Zebarjad, Nader; Tajmir-Riahi, Heidar-Ali

    2007-03-01

    Zanamivir (ZAN) is the first of a new generation of influenza virus-specific drugs known as neuraminidase inhibitors, which acts by interfering with life cycles of influenza viruses A and B. It prevents the virus spreading infection to other cells by blocking the neuraminidase enzyme present on the surface of the virus. The aim of this study was to examine the stability and structural features of calf thymus DNA and yeast RNA complexes with zanamivir in aqueous solution, using constant DNA or RNA concentration (12.5 mM) and various zanamivir/polynucleotide ( P) ratios of 1/20, 1/10, 1/4, and 1/2. FTIR and UV-visible spectroscopy are used to determine the drug external binding modes, the binding constant and the stability of zanamivir-DNA and RNA complexes in aqueous solution. Structural analysis showed major interaction of zanamivir with G-C (major groove) and A-T (minor groove) base pairs and minor perturbations of the backbone PO 2 group with overall binding constants of Kzanamivir-DNA = 1.30 × 10 4 M -1 and Kzanamivir-RNA = 1.38 × 10 4 M -1. The drug interaction induces a partial B to A-DNA transition, while RNA remains in A-conformation.

  5. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    PubMed Central

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ? 8 x 10?3 s?1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5?-adenylylated DNA with a 20-fold lower kcat and a KM ? 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5?-phosphorylated dC or dG residue on the 3? side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  6. Studies of the dynamics of biological macromolecules using Au nanoparticle-DNA artificial molecules.

    PubMed

    Chen, Qian; Smith, Jessica M; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2015-01-01

    The recent development of graphene liquid cells, a nanoscale version of liquid bubble wrap, is a breakthrough for in situ liquid phase electron microscopy (EM). Using ultrathin graphene sheets as the liquid sample container, graphene liquid cells have allowed the unprecedented atomic resolution observation of solution phase growth and dynamics of nanocrystals. Here we explore the potential of this technique to probe nanoscale structure and dynamics of biomolecules in situ, using artificial Au nanoparticle-DNA artificial molecules as model systems. The interactions of electrons with both the artificial molecules and the liquid environment have been demonstrated and discussed, revealing both the opportunities and challenges of using graphene liquid cell EM as a new method of bio-imaging. PMID:25430862

  7. DNA and RNA obtained from Bouin’s fixed tissues

    Microsoft Academic Search

    S Bonin; F Petrera; J Rosai; G Stanta

    2005-01-01

    Background: The use in many countries of acid fixatives, such as Bouin’s solution, has limited the use of archival tissue for molecular analysis. An acidic environment is one of the main causes of DNA degradation. Moreover, RNA extraction is difficult in these types of fixed tissues.Aims: To amplify DNA and RNA from Bouin’s fixed tissues.Methods: DNA and RNA were extracted

  8. DNA and RNA Quadruplex-Binding Proteins

    PubMed Central

    Brázda, Václav; Hároníková, Lucia; Liao, Jack C. C.; Fojta, Miroslav

    2014-01-01

    Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development. PMID:25268620

  9. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.

    PubMed

    Zhelkovsky, Alexander M; McReynolds, Larry A

    2014-11-28

    RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates. PMID:25324547

  10. Transcript-RNA-templated DNA recombination and repair.

    PubMed

    Keskin, Havva; Shen, Ying; Huang, Fei; Patel, Mikir; Yang, Taehwan; Ashley, Katie; Mazin, Alexander V; Storici, Francesca

    2014-11-20

    Homologous recombination is a molecular process that has multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life. Generally, homologous recombination involves the exchange of genetic information between two identical or nearly identical DNA molecules; however, homologous recombination can also occur between RNA molecules, as shown for RNA viruses. Previous research showed that synthetic RNA oligonucleotides can act as templates for DNA double-strand break (DSB) repair in yeast and human cells, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements. Here we report that endogenous transcript RNA mediates homologous recombination with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect the events of homologous recombination initiated by transcript RNA following the repair of a chromosomal DSB occurring either in a homologous but remote locus, or in the same transcript-generating locus in reverse-transcription-defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases H1 and H2. In the presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-driven homologous recombination during DSB repair. We demonstrate that yeast and human Rad52 proteins efficiently catalyse annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of homologous recombination and DNA repair in which transcript RNA is used as a template for DSB repair. Thus, considering the abundance of RNA transcripts in cells, RNA may have a marked impact on genomic stability and plasticity. PMID:25186730

  11. Full-length Dengue Virus RNA-dependent RNA Polymerase-RNA/DNA Complexes

    PubMed Central

    Szymanski, Michal R.; Jezewska, Maria J.; Bujalowski, Paul J.; Bussetta, Cecile; Ye, Mengyi; Choi, Kyung H.; Bujalowski, Wlodzimierz

    2011-01-01

    Fundamental aspects of interactions of the Dengue virus type 3 full-length polymerase with the single-stranded and double-stranded RNA and DNA have been quantitatively addressed. The polymerase exists as a monomer with an elongated shape in solution. In the absence of magnesium, the total site size of the polymerase-ssRNA complex is 26 ± 2 nucleotides. In the presence of Mg2+, the site size increases to 29 ± 2 nucleotides, indicating that magnesium affects the enzyme global conformation. The enzyme shows a preference for the homopyrimidine ssRNAs. Positive cooperativity in the binding to homopurine ssRNAs indicates that the type of nucleic acid base dramatically affects the enzyme orientation in the complex. Both the intrinsic affinity and the cooperative interactions are accompanied by a net ion release. The polymerase binds the dsDNA with an affinity comparable with the ssRNAs affinity, indicating that the binding site has an open conformation in solution. The lack of detectable dsRNA or dsRNA-DNA hybrid affinities indicates that the entry to the binding site is specific for the sugar-phosphate backbone and/or conformation of the duplex. PMID:21725087

  12. DNA-RNA-Protein - Nobel Prize Educational Tutorial

    NSDL National Science Digital Library

    2009-01-01

    The Nobel Prize in Physiology or Medicine 1959 was awarded jointly to Severo Ochoa and Arthur Kornberg "for their discovery of the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic acid." This tutorial goes through DNA replication, RNA transcription, RNA processing, mRNA transport, and protein translation. The tutorial has two levels: basic and advanced.

  13. RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection

    PubMed Central

    Radenbaugh, Amie J.; Ma, Singer; Ewing, Adam; Stuart, Joshua M.; Collisson, Eric A.; Zhu, Jingchun; Haussler, David

    2014-01-01

    The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual’s DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA. PMID:25405470

  14. Genome Analysis Transfer RNA gene recruitment in mitochondrial DNA

    E-print Network

    Lavrov, Dennis V.

    Genome Analysis Transfer RNA gene recruitment in mitochondrial DNA Dennis V. Lavrov* and B. Franz is unusual for mitochondrial DNA (mtDNA), we investigated their origins by phylogenetic analysis' has occurred recently and repeatedly in the mitochondrial genome of the demosponge Axinella corrugata

  15. Chemical methods of DNA and RNA fluorescent labeling.

    PubMed Central

    Proudnikov, D; Mirzabekov, A

    1996-01-01

    Several procedures have been described for fluorescent labeling of DNA and RNA. They are based on the introduction of aldehyde groups by partial depurination of DNA or oxidation of the 3'-terminal ribonucleoside in RNA by sodium periodate. Fluorescent labels with an attached hydrazine group are efficiently coupled with the aldehyde groups and the hydrazone bonds are stabilized by reduction with sodium cyanoborohydride. Alternatively, DNA can be quantitatively split at the depurinated sites with ethylenediamine. The aldimine bond between the aldehyde group in depurinated DNA or oxidized RNA and ethylenediamine is stabilized by reduction with sodium cyanoborohydride and the primary amine group introduced at these sites is used for attachment of isothiocyanate or succinimide derivatives of fluorescent dyes. The fluorescent DNA labeling can be carried out either in solution or on a reverse phase column. These procedures provide simple, inexpensive methods of multiple DNA labeling and of introducing one fluorescent dye molecule per RNA, as well as quantitative DNA fragmentation and incorporation of one label per fragment. These methods of fluorophore attachment were shown to be efficient for use in the hybridization of labeled RNA, DNA and DNA fragments with oligonucleotide microchips. PMID:8948646

  16. RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II.

    PubMed

    Wang, Isabel X; Core, Leighton J; Kwak, Hojoong; Brady, Lauren; Bruzel, Alan; McDaniel, Lee; Richards, Allison L; Wu, Ming; Grunseich, Christopher; Lis, John T; Cheung, Vivian G

    2014-03-13

    RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs) in nascent RNA. Our results show that RDDs begin to occur in RNA chains ~55 nt from the RNA polymerase II (Pol II) active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing. PMID:24561252

  17. Inhibition of HIV-1 proviral DNA synthesis and RNA accumulation by mismatched dsRNA.

    PubMed

    Montefiori, D C; Pellegrino, M G; Robinson, W E; Engle, K; Field, M; Mitchell, W M; Gillespie, D H

    1989-02-15

    The antiviral activity of mismatched dsRNA of the form poly(I):poly(C12-U)n (Ampligen) against the human immunodeficiency virus type 1 (HIV-1) was investigated by RNA-RNA and RNA-DNA hybridizations. Mismatched dsRNA delayed the appearance of newly transcribed HIV-1 RNA as detected by liquid dot-blot hybridization in cultures of H9 T-lymphoblastoid cells following virus challenge. The appearance of proviral DNA as detected by Southern hybridization following virus challenge in H9 cells was also delayed. Mismatched dsRNA had no effect in syncytium inhibition assays performed by fusing MT-2 cells with H9/HTLV-IIIB cells. These results suggest that the in vitro anti-HIV-1 activity of mismatched dsRNA occurs, at least in part, at an early stage in the viral replication cycle following initial gp120-CD4 binding. PMID:2784055

  18. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, James H. (Los Alamos, NM); Keller, Richard A. (Los Alamos, NM); Martin, John C. (Los Alamos, NM); Moyzis, Robert K. (Los Alamos, NM); Ratliff, Robert L. (Los Alamos, NM); Shera, E. Brooks (Los Alamos, NM); Stewart, Carleton C. (Los Alamos, NM)

    1990-01-01

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed.

  19. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1990-10-09

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  20. Method for rapid base sequencing in DNA and RNA

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Moyzis, R.K.; Ratliff, R.L.; Shera, E.B.; Stewart, C.C.

    1987-10-07

    A method is provided for the rapid base sequencing of DNA or RNA fragments wherein a single fragment of DNA or RNA is provided with identifiable bases and suspended in a moving flow stream. An exonuclease sequentially cleaves individual bases from the end of the suspended fragment. The moving flow stream maintains the cleaved bases in an orderly train for subsequent detection and identification. In a particular embodiment, individual bases forming the DNA or RNA fragments are individually tagged with a characteristic fluorescent dye. The train of bases is then excited to fluorescence with an output spectrum characteristic of the individual bases. Accordingly, the base sequence of the original DNA or RNA fragment can be reconstructed. 2 figs.

  1. DNA Templated Synthesis (DTS) -Nature's effective molarity based approach-

    E-print Network

    Katsumoto, Shingo

    Translation DNA RNA Protein Replication mRNA tRNA Nucleic acid templated synthesis plays a important roleDNA Templated Synthesis (DTS) -Nature's effective molarity based approach- Organic Seminar 27th May of many reactants in one solution macromolecule- templated synthesis selective product formation one

  2. Synthesis of peptide ribonucleic acid (PRNA)-DNA chimera and interaction with DNA and RNA.

    PubMed

    Wada, Takehiko; Maeda, Yoshiki; Sawa, Nobuya; Sato, Hirofumi; Chon, Hyongi; Kanaya, Shigenori; Inoue, Yoshihisa

    2007-01-01

    Recently, we have demonstrated that effective control of the recognition behavior of peptide ribonucleic acid (PRNA) with complementary DNA is possible through the anti-to-synorientational change of pyrimidine nucleobase induced by borate ester formation. In this study, DNA-PRNA chimera was prepared by the solidphase synthesis. In the DNA-PRNA chimeras, both PRNA and DNA domains work as recognition sites for the complementary DNA/RNAs to form stable complex, while DNA-RNA hybrids formed in the DNA domains of DNA-PRNA chimera should be substrates to the hydrolysis by RNase H and PRNA moieties work as recognition control/switching devices and as inhibitor for the hydrolysis by exonucleases. Interaction of the DNA-PRNA chimera with DNA and RNA has been discussed. PMID:18029566

  3. DNA/RNA Mapping Using Seed-and-Extend

    E-print Network

    Kaminsky, Alan

    Generation Sequencing (NGS) is becoming a popular trend in DNA/RNA genetic sequencing. Next Generation be generated are well over 100,000 per sequencing run. Because of this large amount of data to be analyzed Mapping Accelerator b. Efficient Storage of High Throughput DNA Sequencing Data Using Reference

  4. A pyrenyl-PNA probe for DNA and RNA recognition

    PubMed Central

    Tonelli, Alessandro; Sforza, Stefano; Corradini, Roberto; Marchelli, Rosangela

    2010-01-01

    The design and the synthesis of a PNA oligomer containing a pyrenyl residue in the backbone were performed. PNA sequence was chosen complementary to a “G rich” target sequence involved in G-quadruplex formation. The pyrenyl unit replaced a nucleobase in the middle of the PNA through covalent linkage to the backbone by a carboxymethyl unit. A systematic study on the binding properties of this probe towards DNA and RNA complementary strands was carried out by UV and fluorescence spectroscopy. UV melting curves indicated that the PNA probe binds more tightly to RNA rather than to DNA. Thermodynamic data obtained by Van't Hoff fitting of the melting curves indicated that, in the case of RNA, a more favorable interaction occurs between the pyrenyl unit and the RNA nucleobases, leading to a very favorable enthalpic contribution. The fluorescence analysis showed specific quenching of the pyrene emission associated to the formation of the full-match PNA-DNA or PNA-RNA duplexes. Again, this behavior was more evident in the case of RNA, consistently with the stronger interaction of the pyrenyl unit with the complementary strand. In order to study the sequence specificity of the pyrenyl-PNA probe (pyr-PNA), recognition experiments on mismatched DNA and RNA sequences were also performed. PMID:21686243

  5. A Xenopus Zinc Finger Protein that Specifically Binds dsRNA and RNA-DNA Hybrids

    E-print Network

    Bass, Brenda L.

    A Xenopus Zinc Finger Protein that Specifically Binds dsRNA and RNA-DNA Hybrids Patrick J. Finerty Building 533, University of Utah, Salt Lake City, UT 84112, USA Proteins containing C2H2 type zinc ®nger describe a novel zinc ®nger protein, dsRBP-ZFa, isolated by screening an ex- pression library with ds

  6. The DNA/RNA-Dependent RNA Polymerase QDE-1 Generates Aberrant RNA and dsRNA for RNAi in a Process Requiring Replication Protein A and a DNA Helicase

    PubMed Central

    Yang, Qiuying; Chang, Shwu-Shin; Huang, Guocun; Fisher, Daniel; Cha, Joonseok; Poranen, Minna M.; Bamford, Dennis H.; Liu, Yi

    2010-01-01

    The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways. PMID:20957187

  7. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  8. Characterization of marine prokaryotic communities via DNA and RNA

    Microsoft Academic Search

    J. A. Fuhrman; S. H. Lee; Y. Masuchi; A. A. Davis; R. M. Wilcox

    1994-01-01

    We know very little about species distributions in prokaryotic marine plankton. Such information is very interesting in its own right, and ignorance of it is also beginning to hamper process studies, such as those on viral infection. New DNA- and RNA-based approaches avoid many prior limitations. Here we discuss four such applications: (1) cloning and sequencing of 16S rRNA genes

  9. Molecular-Sized DNA or RNA Sequencing Machine

    Cancer.gov

    Current high-throughput DNA sequencing methods suffer from several limitations. Many methods require multiple fluid handling steps, fixing of molecules on beads or a 2D surface, and provide very short read-lengths. Researchers at the National Cancer Institute's Gene Regulation and Chromosome Biology Laboratory offer a potential DNA or RNA sequencing device that drastically simplifies the process by combining all elements for sequence detection in a single molecule.

  10. Dynamic Methods for Investigating the Conformational Changes of Biological Macromolecules

    NASA Astrophysics Data System (ADS)

    Vidolova-Angelova, E.; Peshev, Z.; Shaquiri, Z.; Angelov, D.

    2010-01-01

    Fast conformational changes of biological macromolecules such as RNA folding and DNA—protein interactions play a crucial role in their biological functions. Conformational changes are supposed to take place in the sub milliseconds to few seconds time range. The development of appropriate dynamic methods possessing both high space (one nucleotide) and time resolution is of important interest. Here, we present two different approaches we developed for studying nucleic acid conformational changes such as salt-induced tRNA folding and interaction of the transcription factor NF-?B with its recognition DNA sequence. Importantly, only a single laser pulse is sufficient for the accurate measuring the whole decay curve. This peculiarity can be used in dynamical experiments.

  11. DNA?RNA: What Do Students Think the Arrow Means?

    ERIC Educational Resources Information Center

    Wright, L. Kate; Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein…

  12. Dataflow diagram representation of biological process: DNA, RNA, and protein

    Microsoft Academic Search

    Joe W. Yeol; W. Samarrai; I. Barjis; Y. S. Ryu

    2005-01-01

    In this paper, we introduce a new method of modeling tool for a biological process -central dogma. The data-flow diagram is used as a representation of the whole data input and output, which enables us to simulate, analyze, and manipulate (in the future) at our disposal. From DNA to protein via RNA is the one of most well-known biological process,

  13. Simulations Using Random-Generated DNA and RNA Sequences

    ERIC Educational Resources Information Center

    Bryce, C. F. A.

    1977-01-01

    Using a very simple computer program written in BASIC, a very large number of random-generated DNA or RNA sequences are obtained. Students use these sequences to predict complementary sequences and translational products, evaluate base compositions, determine frequencies of particular triplet codons, and suggest possible secondary structures.…

  14. Motion of RNA polymerase along DNA: a stochastic model.

    PubMed Central

    Jülicher, F; Bruinsma, R

    1998-01-01

    RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA polymerase motion. The model is based on a classical chemical kinetics description of polymerization reactions driven by a free energy gain that depends on forces applied externally at the catalytic site. The RNA polymerase controlled activation barrier of the reaction is assumed to be strongly dependent on inhibitory internal strains of the RNA polymerase molecule. The sequence sensitivity of RNA polymerase is described by a linear coupling between the height of the activation barrier and the local DNA sequence. Our model can simulate optical trap experiments and allows us to study the dynamics of chemically halted complexes that are important for footprinting studies. We find that the effective stall force is a sequence-dependent, statistical quantity, whose distribution depends on the observation time. The results are consistent with the experimental observations to date. PMID:9512017

  15. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.

    PubMed

    Knisbacher, Binyamin A; Levanon, Erez Y

    2015-04-01

    Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution. PMID:25722083

  16. FUS-regulated RNA metabolism and DNA damage repair

    PubMed Central

    Zhou, Yueqin; Liu, Songyan; Öztürk, Arzu; Hicks, Geoffrey G

    2014-01-01

    Cytoplasmic inclusion of RNA binding protein FUS/TLS in neurons and glial cells is a characteristic pathology of a subgroup of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dysregulation of RNA metabolism caused by FUS cytoplasmic inclusion emerges to be a key event in FUS-associated ALS/FTD pathogenesis. Our recent discovery of a FUS autoregulatory mechanism and its dysregulation in ALS-FUS mutants demonstrated that dysregulated alternative splicing can directly exacerbate the pathological FUS accumulation. We show here that FUS targets RNA for pre-mRNA alternative splicing and for the processing of long intron-containing transcripts, and that these targets are enriched for genes in neurogenesis and gene expression regulation. We also identify that FUS RNA targets are enriched for genes in the DNA damage response pathway. Together, the data support a model in which dysregulated RNA metabolism and DNA damage repair together may render neurons more vulnerable and accelerate neurodegeneration in ALS and FTD. PMID:25083344

  17. A Superfamily of DNA Transposons Targeting Multicopy Small RNA Genes

    PubMed Central

    Kojima, Kenji K.; Jurka, Jerzy

    2013-01-01

    Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6–7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application. PMID:23874566

  18. Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis.

    PubMed

    Lin, Meihua; Wen, Yanli; Li, Lanying; Pei, Hao; Liu, Gang; Song, Haiyun; Zuo, Xiaolei; Fan, Chunhai; Huang, Qing

    2014-03-01

    Because of the short size and low abundance of microRNAs, it is challenging to develop fast, inexpensive, and simple biosensors to detect them. In this work, we have demonstrated a new generation (the third generation) of E-DNA sensor for the sensitive and specific detection of microRNAs. Our third generation of E-DNA sensor can sensitively detect microRNA target (microRNA-141) as low as 1 fM. The excellent specificity has been demonstrated by its differential ability to the highly similar microRNA analogues. In our design, the use of DNA tetrahedron ensures the stem-loop structure in well controlled density with improved reactivity. The regulation of the thermodynamic stability of the stem-loop structure decreases the background signal and increases the specificity as well. The enzymes attached bring the electrocatalytic signal to amplify the detection. The combination of these effects improves the sensitivity of the E-DNA sensor and makes it suitable to the microRNA detection. Finally, our third generation of E-DNA sensor is generalizable to the detection of other micro RNA targets (for example, microRNA-21). PMID:24528092

  19. Single-Molecule Electrical Random Resequencing of DNA and RNA

    PubMed Central

    Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji

    2012-01-01

    Two paradigm shifts in DNA sequencing technologies—from bulk to single molecules and from optical to electrical detection—are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5?-UGAGGUA-3? from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes. PMID:22787559

  20. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response

    PubMed Central

    Colis, Laureen; Peltonen, Karita; Sirajuddin, Paul; Liu, Hester; Sanders, Sara; Ernst, Glen; Barrow, James C.; Laiho, Marikki

    2014-01-01

    DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage. PMID:24952786

  1. RNA's role in the cell, James WatsonSite: DNA Interactive (www.dnai.org)

    NSDL National Science Digital Library

    2008-10-06

    Interviewee: James Watson DNAi Location:Code>Copying the code>players What does RNA do? After solving the structure of DNA, James Watson started working on RNA. He talks about what he thought of RNA and its function.

  2. DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor.

    PubMed

    Wen, Yanli; Liu, Gang; Pei, Hao; Li, Lanying; Xu, Qin; Liang, Wen; Li, Yan; Xu, Li; Ren, Suzhen; Fan, Chunhai

    2013-12-15

    MicroRNAs (miRNAs) are key regulators of a wide range of cellular processes, and have been identified as promising cancer biomarkers due to their stable presence in serum. As an surface-based electrochemical biosensors which offer great opportunities for low-cost, point-of-care tests (POCTs) of disease-associated miRNAs. Nevertheless, the sensitivity of miRNA sensors is often limited by mass transport and the surface crowding effect at the water-electrode interface. Here, we present a protocol as well as guidelines for ultrasensitive detection of miRNA with DNA nanostructure-based electrochemical miRNA biosensor. By employing the three-dimensional DNA nanostructure-based interfacial engineering approach, we can directly detect as few as attomolar (<1000 copies) miRNAs with high single-base discrimination ability. Since this ultrasensitive electrochemical miRNA sensor (EMRS) is highly reproducible and essentially free of prior target labeling and PCR amplification, it can conveniently and reliably analyze miRNA expression levels in clinical samples from esophageal squamous cell carcinoma (ESCC) patients. PMID:23911620

  3. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  4. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    PubMed Central

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe; Nielsen, Katrine E.; Højland, Torben; Wengel, Jesper; Petersen, Michael

    2011-01-01

    We report the synthesis of two C4?-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4?-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization to a maximum of 9°C per incorporation. Using fluorescence, ultraviolet and nuclear magnetic resonance (NMR) spectroscopy, we show that the stabilization is achieved by pyrene intercalation in the dsDNA duplex. The pyrene moiety is not restricted to one intercalation site but rather switches between multiple sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface. PMID:21062815

  5. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation

    PubMed Central

    Miller, Jennifer T.; Le Grice, Stuart F. J.; Yang, Wei

    2014-01-01

    Structures of type-1 human immunodeficiency virus (HIV-1) reverse transcriptase (RT) have been determined in several forms, but only one contains an RNA/DNA hybrid. Here we report three structures of HIV-1 RT complexed with a non-nucleotide RT inhibitor (NNRTI) and an RNA/DNA hybrid. In the presence of an NNRTI, the RNA/DNA structure differs from all prior nucleic acid bound to RT including the RNA/DNA hybrid. The enzyme structure also differs from all previous RT–DNA complexes. As a result, the hybrid has ready access to the RNase H active site. These observations indicate that an RT–nucleic acid complex may adopt two structural states, one competent for DNA polymerization and the other for RNA degradation. RT mutations that confer drug resistance but are distant from the inhibitor-binding sites often map to the unique RT–hybrid interface that undergoes conformational changes between two catalytic states. PMID:23314251

  6. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA

    PubMed Central

    Böhmdorfer, Gudrun; Rowley, M Jordan; Kuci?ski, Jan; Zhu, Yongyou; Amies, Ivan; Wierzbicki, Andrzej T

    2014-01-01

    Ribonucleic acid-mediated transcriptional gene silencing (known as RNA-directed DNA methylation, or RdDM, in Arabidopsis thaliana) is important for influencing gene expression and the inhibition of transposons by the deposition of repressive chromatin marks such as histone modifications and DNA methylation. A key event in de novo methylation of DNA by RdDM is the production of long non-coding RNA (lncRNA) by RNA polymerase V (Pol V). Little is known about the events that connect Pol V transcription to the establishment of repressive chromatin modifications. Using RNA immunoprecipitation, we elucidated the order of events downstream of lncRNA production and discovered interdependency between lncRNA-associated proteins. We found that the effector protein ARGONAUTE4 (AGO4) binds lncRNA independent of the RNA-binding protein INVOLVED IN DE NOVO2 (IDN2). In contrast, IDN2 binds lncRNA in an AGO4-dependent manner. We further found that the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) also associates with lncRNA produced by Pol V and that this event depends on AGO4 and IDN2. We propose a model where the silencing proteins AGO4, IDN2 and DRM2 bind to lncRNA in a stepwise manner, resulting in DNA methylation of RdDM target loci. PMID:24862207

  7. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA.

    PubMed

    Böhmdorfer, Gudrun; Rowley, M Jordan; Kuci?ski, Jan; Zhu, Yongyou; Amies, Ivan; Wierzbicki, Andrzej T

    2014-07-01

    Ribonucleic acid-mediated transcriptional gene silencing (known as RNA-directed DNA methylation, or RdDM, in Arabidopsis thaliana) is important for influencing gene expression and the inhibition of transposons by the deposition of repressive chromatin marks such as histone modifications and DNA methylation. A key event in de novo methylation of DNA by RdDM is the production of long non-coding RNA (lncRNA) by RNA polymerase V (Pol V). Little is known about the events that connect Pol V transcription to the establishment of repressive chromatin modifications. Using RNA immunoprecipitation, we elucidated the order of events downstream of lncRNA production and discovered interdependency between lncRNA-associated proteins. We found that the effector protein ARGONAUTE4 (AGO4) binds lncRNA independent of the RNA-binding protein INVOLVED IN DE NOVO2 (IDN2). In contrast, IDN2 binds lncRNA in an AGO4-dependent manner. We further found that the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) also associates with lncRNA produced by Pol V and that this event depends on AGO4 and IDN2. We propose a model where the silencing proteins AGO4, IDN2 and DRM2 bind to lncRNA in a stepwise manner, resulting in DNA methylation of RdDM target loci. PMID:24862207

  8. Did the Pre-RNA World Rest Upon DNA Molecules?

    NASA Technical Reports Server (NTRS)

    Lazcano, Antonio; Dworkin, Jason P.; Miller, Stanley L.

    2004-01-01

    The isolation of a DNA sequence that catalyzes the ligation of oligodeoxynucleotides via the formation of 3' - 5' phosphodiester linkage significance in selection experiments has been reported. Ball recently used this to discuss the possibility that natural DNA molecules may have formed in the primitive Earth leading to the origin of life. As noted by Ferris and Usher, if metabolic pathways evolved backwards, it could be argued that the biosynthesis of 2-deoxyribose from ribose suggests that RNA came from DNA. As summarized elsewhere, there are several properties of deoxyribose which could be interpreted to support the possibility that DNA-like molecules arose prior to the RNA world. For example, 2-deoxyribose is slightly more soluble than ribose (which may have been an advantage in a drying pool scenario), may have been more reactive under possible prebiotic conditions (it forms a nucleoside approx. 150 times faster than ribose with the alternative base urazole at 25 C), while it decomposes in solution (approximately 2.6 times more slowly than ribose at 100 C). Other advantages of DNA over RNA are that it has one fewer chiral center, has a greater stability at the 8.2 pH value of the current oceans, and does not has the 2'5' and 3'5' ambiguity in polymerizations. Yet, there is strong molecular biological and biochemical evidence that RNA was featured in the biology well before the last common ancestor. The presence of sugar acids, including both ribo- and deoxysugar acids, in the 4.6 Ga old Murchison meteorite suggest that both may have been available in the primitive Earth, derived from the accretion of extraterrestrial sources and/or from endogenous processes involving formaldehyde and its derivatives. However, the abiotic synthesis of deoxyribose, ribose, and other sugars from glyceraldehyde and acetaldehyde under alkaline conditions is inefficient and unespecific. Although sugars are labile compounds, the role of cyanamide or borate minerals in the stabilization of the cyclic forms of ribose and other pentoses has recently been demonstrated. Nonetheless, the assumption either RNA or DNA was the first genetic material needs to be supplemented by laboratory models demonstrating that the prebiotic synthesis of activated beta-D-(deoxy)ribonucleotides and their polymers was feasible. As of today such evidence is lacking, and there is no convincing synthesis of any nucleotide, since all model experiments produce complex mixtures of products in which there is no preferential synthesis of chiral D-nucleotides. This strongly suggests that both DNA and RNA may have been preceded by pairing structures much simpler than extant nucleic acids. It is doubtful that DNA molecules, or indeed other (de0xy)ribofuranoid oligonucleotides formed the basis of these as yet undescribed pre-RNA worlds.

  9. DNA damage-induced inhibition of rRNA synthesis by DNA-PK and PARP-1

    PubMed Central

    Calkins, Anne S.; Iglehart, J. Dirk; Lazaro, Jean-Bernard

    2013-01-01

    RNA synthesis and DNA replication cease after DNA damage. We studied RNA synthesis using an in situ run-on assay and found ribosomal RNA (rRNA) synthesis was inhibited 24 h after UV light, gamma radiation or DNA cross-linking by cisplatin in human cells. Cisplatin led to accumulation of cells in S phase. Inhibition of the DNA repair proteins DNA-dependent protein kinase (DNA-PK) or poly(ADP-ribose) polymerase 1 (PARP-1) prevented the DNA damage-induced block of rRNA synthesis. However, DNA-PK and PARP-1 inhibition did not prevent the cisplatin-induced arrest of cell cycle in S phase, nor did it induce de novo BrdU incorporation. Loss of DNA-PK function prevented activation of PARP-1 and its recruitment to chromatin in damaged cells, suggesting regulation of PARP-1 by DNA-PK within a pathway of DNA repair. From these results, we propose a sequential activation of DNA-PK and PARP-1 in cells arrested in S phase by DNA damage causes the interruption of rRNA synthesis after DNA damage. PMID:23775790

  10. DNA damage-induced inhibition of rRNA synthesis by DNA-PK and PARP-1.

    PubMed

    Calkins, Anne S; Iglehart, J Dirk; Lazaro, Jean-Bernard

    2013-08-01

    RNA synthesis and DNA replication cease after DNA damage. We studied RNA synthesis using an in situ run-on assay and found ribosomal RNA (rRNA) synthesis was inhibited 24 h after UV light, gamma radiation or DNA cross-linking by cisplatin in human cells. Cisplatin led to accumulation of cells in S phase. Inhibition of the DNA repair proteins DNA-dependent protein kinase (DNA-PK) or poly(ADP-ribose) polymerase 1 (PARP-1) prevented the DNA damage-induced block of rRNA synthesis. However, DNA-PK and PARP-1 inhibition did not prevent the cisplatin-induced arrest of cell cycle in S phase, nor did it induce de novo BrdU incorporation. Loss of DNA-PK function prevented activation of PARP-1 and its recruitment to chromatin in damaged cells, suggesting regulation of PARP-1 by DNA-PK within a pathway of DNA repair. From these results, we propose a sequential activation of DNA-PK and PARP-1 in cells arrested in S phase by DNA damage causes the interruption of rRNA synthesis after DNA damage. PMID:23775790

  11. The RNA World: Life Before DNA and Protein

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1993-01-01

    All of the life that is known, all organisms that exist on Earth today or are known to have existed on Earth in the past, are of the same life form: a life form based on DNA and protein. It does not necessarily have to be that way. Why not have two competing life forms on this planet? Why not have biology as we know it and some other biology that occupies its own distinct niche? Yet that is not how evolution has played out. From microbes living on the surface of antarctic ice to tube worms lying near the deep-sea hydrothermal vents, all known organisms on this planet are of the same biology. Looking at the single known biology on Earth, it is clear that this biology could not have simply sprung forth from the primordial soup. The biological system that is the basis for all known. life is far too complicated to have arisen spontaneously. This brings us to the notion that something else something simpler, must have preceded life based on DNA and protein. One suggestion that has gained considerable acceptance over the past decade is that DNA and protein-based life was preceded by RNA-based life in a period referred to as the 'RNA world'. Even an RNA-based life form would have been fairly complicated - not as complicated as our own DNA- and protein-based life form - but far too complicated, according to prevailing scientific thinking, to have arisen spontaneously from the primordial soup. Thus, it has been argued that something else must have preceded RNA-based life, or even that there was a succession of life forms leading from the primordial soup to RNA-based life. The experimental evidence to support this conjecture is not strong because, after all, the origin of life was a historical event that left no direct physical record. However, based on indirect evidence in both the geological record and the phylogenetic record of evolutionary history on earth, it is possible to reconstruct a rough picture of what life was like before DNA and protein.

  12. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes.

    PubMed Central

    Dammann, R; Pfeifer, G P

    1997-01-01

    UV light induces DNA lesions which are removed by nucleotide excision repair. Genes transcribed by RNA polymerase II are repaired faster than the flanking chromatin, and the transcribed strand is repaired faster than the coding strand. Transcription-coupled repair is not seen in RNA polymerase I-transcribed human rRNA genes. Since repair of genes transcribed by RNA polymerase III has not been analyzed before, we investigated DNA repair of tRNA genes after irradiation of human fibroblasts with UVC. We studied the repair of UV-induced cyclobutane pyrimidine dimers at nucleotide resolution by ligation-mediated PCR. A single-copy gene encoding selenocysteine tRNA, a tRNA valine gene, and their flanking sequences were analyzed. Protein-DNA footprinting showed that both genes were occupied by regulatory factors in vivo, and Northern blotting and nuclear run-on analysis of the tRNA indicated that these genes were actively transcribed. We found that both genes were repaired slower than RNA polymerase II-transcribed genes. No major difference between repair of the transcribed and the coding DNA strands was detected. Transcribed sequences of the tRNA genes were not repaired faster than flanking sequences. Indeed, several sequence positions in the 5' flanking region of the tRNA(Val) gene were repaired more efficiently than the gene itself. These results indicate that unlike RNA polymerase II, RNA polymerase III has no stimulatory effect on DNA repair. Since tRNA genes are covered by the regulatory factor TFIIIC and RNA polymerase III, these proteins may actually inhibit the DNA's accessibility to repair enzymes. PMID:8972202

  13. Oxidatively generated DNA/RNA damage in psychological stress states.

    PubMed

    Jørgensen, Anders

    2013-07-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased in schizophrenia patients, providing a possible molecular link between schizophrenia and its associated signs of accelerated aging. We found no association between psychopathology, perceived stress or cortisol secretion and 8-oxodG/8-oxoGuo excretion in the patients. In the controls, there were positive correlations between 8-oxodG/8-ocoGuo excretion and 9AM plasma cortisol, but no associations to perceived stress. In an animal study of experimentally induced chronic stress performed in metabolism cages, we found no increase in urinary 8-oxodG/8-oxoGuo or cerebral (hippocampal and frontal cortex) levels of oxidatively generated nucleic acid damage. However, there was a trend towards an increased expression of genes involved in DNA repair, possibly reflecting a compensatory mechanism. In a study of 220 elderly, mostly healthy individuals from the Italian InChianti cohort, we found a significant association between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased in schizophrenia, and linked to cortisol levels in healthy humans. Finally, the cerebral repair of DNA may be an aspect of the adaptation that, to our knowledge, has not previously been addressed. PMID:23809980

  14. Role of the RNA/DNA kinase Grc3 in transcription termination by RNA polymerase I

    PubMed Central

    Braglia, Priscilla; Heindl, Katrin; Schleiffer, Alexander; Martinez, Javier; Proudfoot, Nick J

    2010-01-01

    Transcription termination by RNA polymerase I in Saccharomyces cerevisiae is mediated by a ‘torpedo' mechanism: co-transcriptional RNA cleavage by Rnt1 at the ribosomal DNA 3?-region generates a 5?-end that is recognized by the 5?–3? exonuclease Rat1; this degrades the downstream transcript and eventually causes termination. In this study, we identify Grc3 as a new factor involved in this process. We demonstrate that GRC3, an essential gene of previously unknown function, encodes a polynucleotide kinase that is required for efficient termination by RNA polymerase I. We propose that it controls the phosphorylation status of the downstream Rnt1 cleavage product and thereby regulates its accessibility to the torpedo Rat1. PMID:20814424

  15. DNA ? RNA: What Do Students Think the Arrow Means?

    PubMed Central

    Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein products. We investigated understanding of central dogma concepts and found that students are not primed to think about information when presented with the canonical figure of the central dogma. We also uncovered conceptual errors in student interpretation of the meaning of the transcription arrow in the central dogma representation; 36% of students (n = 128; all undergraduate levels) described transcription as a chemical conversion of DNA into RNA or suggested that RNA existed before the process of transcription began. Interviews confirm that students with weak conceptual understanding of information flow find inappropriate meaning in the canonical representation of central dogma. Therefore, we suggest that use of this representation during instruction can be counterproductive unless educators are explicit about the underlying meaning.

  16. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA

    PubMed Central

    McLaggan, Debra; Adjimatera, Noppadon; Sep?i?, Kristina; Jaspars, Marcel; MacEwan, David J; Blagbrough, Ian S; Scott, Roderick H

    2006-01-01

    Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells. PMID:16412248

  17. Preparation of covalently linked DNA-RNA hybrids and arabinocytidine containing DNA fragments.

    PubMed Central

    de Vroom, E; Roelen, H C; Saris, C P; Budding, T N; van der Marel, G A; van Boom, J H

    1988-01-01

    It will be demonstrated that 5'-O-DMT-N-acyl-deoxyribonucleosides, 5'-O-Lev-2'-O-MTHP-N-acyl-ribonucleosides and, also, 2'-O-MTHP-N-acyl-ara-cytidine can be coupled, via the hydroxybenzotriazole phosphotriester approach, to afford two types of DNA-RNA hybrids as well as ara-C containing DNA-fragments. The final removal of acid-labile DMT and MTHP groups could be effected by 1 h treatment with 80% acetic acid of the otherwise unprotected DNA-RNA hybrids. The same acidic hydrolysis did not result in complete removal of the 2'-O-MTHP group from the ara-C unit. Complete deblocking was accomplished after an additional 2 h aqueous HC1 (0.01 M; pH 2.00) treatment. PMID:2453027

  18. CRISPR Craze Conquers the RNA World: Precise Manipulation of DNA and RNA Based on a Bacterial Defense System.

    PubMed

    Rentmeister, Andrea

    2015-04-13

    It cuts both ways: The CRISPR/Cas9 genome engineering system has been extended from DNA to RNA. The sequence-specific targeting and cleavage of RNA can be achieved with S. pyogenes Cas9-gRNA if an appropriate short single-stranded oligonucleotide, the "PAMmer", is added. This technique could lead to a general approach for sequence-specific RNA manipulation. PMID:25727398

  19. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity.

    PubMed

    Tumbale, Percy; Williams, Jessica S; Schellenberg, Matthew J; Kunkel, Thomas A; Williams, R Scott

    2014-02-01

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human APTX-RNA-DNA-AMP-Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA-DNA may contribute to neurological disease. PMID:24362567

  20. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein.

    PubMed Central

    Fujiwara, T; Giesman-Cookmeyer, D; Ding, B; Lommel, SA; Lucas, WJ

    1993-01-01

    Direct evidence is presented for cell-to-cell trafficking of macromolecules via plasmodesmata in higher plants. The fluorescently labeled 35-kD movement protein of red clover necrotic mosaic virus (RCNMV) trafficked rapidly from cell to cell when microinjected into cowpea leaf mesophyll cells. Furthermore, this protein potentiated rapid cell-to-cell trafficking of RCNMV RNA, but not DNA. Electron microscopic studies demonstrated that the 35-kD movement protein does not unfold the RCNMV RNA molecules. Thus, if unfolding of RNA is necessary for cell-to-cell trafficking, it may well involve participation of endogenous cellular factors. These findings support the hypothesis that trafficking of macromolecules is a normal plasmodesmal function, which has been usurped by plant viruses for their cell-to-cell spread. PMID:12271056

  1. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex.

    PubMed

    Ban, Ting; Zhu, Jian-Kang; Melcher, Karsten; Xu, H Eric

    2015-03-01

    RNA-binding proteins play crucial roles in RNA processing and function as regulators of gene expression. Recent studies have defined the structural basis for RNA recognition by diverse RNA-binding motifs. While many RNA-binding proteins recognize RNA sequence non-specifically by associating with 5' or 3' RNA ends, sequence-specific recognition by RNA-binding proteins is typically achieved by combining multiple modular domains to form complex binding surfaces. In this review, we present examples of structures from different classes of RNA-binding proteins, identify the mechanisms utilized by them to target specific RNAs, and describe structural principles of how protein-protein interactions affect RNA recognition specificity. We also highlight the structural mechanism of sequence-dependent and -independent interactions in the Cas9-RNA-DNA complex. PMID:25432705

  2. Dieter W. Heermann Heidelberg University 2005 Macromolecules

    E-print Network

    Heermann, Dieter W.

    Dieter W. Heermann Heidelberg University 2005 Knots in Macromolecules #12;Dieter W. Heermann://www.freelearning.com/knots/ #12;Dieter W. Heermann Heidelberg University 2005 Introduction · DNA packing can be visualized as two://www.smoothbrothers.com/ design/design_3d.htm #12;Dieter W. Heermann Heidelberg University 2005 Introduction · How can knot theory

  3. RNA aptamers selected against DNA polymerase b inhibit the polymerase activities of DNA polymerases b and k

    Microsoft Academic Search

    Leonid V. Gening; Svetlana A. Klincheva; Anastasia Reshetnjak; Arthur P. Grollman; Holly Miller

    2006-01-01

    DNA polymerase b (polb), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polb from a variable pool of 8 3 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened

  4. Triplex DNA:RNA, 3'-to-5' inverted RNA and protein coding in mitochondrial genomes.

    PubMed

    Seligmann, Hervé

    2013-09-01

    Triple-stranded DNA:RNA helices of unknown function in vertebrate mitochondria associate with replication and transcription. Antiparallel Hoogsteen pairings form triplexes at physiological conditions. Intermolecular antiparallel triplexes require inverted 3'-to-5' RNA polymerization, which was never observed. Three rare, long natural 3'-to-5' inverted GenBank RNAs from mice mitochondria suggest occasional inverted transcription, putatively coding for proteins. BLAST aligns 18 GenBank-stored proteins with hypothetical proteins translated from the 3'-to-5' inverted Mus musculus mitochondrial genome. Three are DNA-binding, five are membrane proteins. 25% of main frame codons contribute to their 3'-to-5' overlap coding. Properties of these codons match those of overlap coding protein genes, as compared to codons not expected involved in inverted coding: a) nucleotide contents at synonymous codon positions in mitochondrial genomes fit replicational deamination gradients (A->G and C->T), but digress from gradients when functioning as nonsynonymous positions in putative 3'-to-5' overlapping genes; b) bias against 'circular code' codons (codon groups creating unambiguity between frames), and favouring homogenous codons (AAA, CCC, GGG, TTT) characterize overlapping genes, including putative 3'-to-5' overlapping genes, as compared to nonoverlapping coding sequences from the same main frame gene. This signature correlates with digression from deamination gradients. Deamination and circular code tests confirm independently alignment-based predictions of overlapping 3'-to-5' protein coding genes. Results indicate varying expression for different 3'-to-5' overlapping genes. Inverted 3'-to-5' RNA is produced, perhaps by an unknown RNA polymerase (invertase) putatively coded by 3'-to-5' inverted RNA. PMID:23841652

  5. Structural Basis for Telomerase Catalytic Subunit TERT Binding to RNA Template and Telomeric DNA

    SciTech Connect

    Mitchell, M.; Gillis, A; Futahashi, M; Fujiwara, H; Skordalakes, E

    2010-01-01

    Telomerase is a specialized DNA polymerase that extends the 3{prime} ends of eukaryotic linear chromosomes, a process required for genomic stability and cell viability. Here we present the crystal structure of the active Tribolium castaneum telomerase catalytic subunit, TERT, bound to an RNA-DNA hairpin designed to resemble the putative RNA-templating region and telomeric DNA. The RNA-DNA hybrid adopts a helical structure, docked in the interior cavity of the TERT ring. Contacts between the RNA template and motifs 2 and B{prime} position the solvent-accessible RNA bases close to the enzyme active site for nucleotide binding and selectivity. Nucleic acid binding induces rigid TERT conformational changes to form a tight catalytic complex. Overall, TERT-RNA template and TERT-telomeric DNA associations are remarkably similar to those observed for retroviral reverse transcriptases, suggesting common mechanistic aspects of DNA replication between the two families of enzymes.

  6. Integrated RNA and DNA sequencing improves mutation detection in low purity tumors.

    PubMed

    Wilkerson, Matthew D; Cabanski, Christopher R; Sun, Wei; Hoadley, Katherine A; Walter, Vonn; Mose, Lisle E; Troester, Melissa A; Hammerman, Peter S; Parker, Joel S; Perou, Charles M; Hayes, D Neil

    2014-07-01

    Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors. PMID:24970867

  7. Integrated RNA and DNA sequencing improves mutation detection in low purity tumors

    PubMed Central

    Wilkerson, Matthew D.; Cabanski, Christopher R.; Sun, Wei; Hoadley, Katherine A.; Walter, Vonn; Mose, Lisle E.; Troester, Melissa A.; Hammerman, Peter S.; Parker, Joel S.; Perou, Charles M.; Hayes, D. Neil

    2014-01-01

    Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors. PMID:24970867

  8. The RNA experiment, 2D animationSite: DNA Interactive (www.dnai.org)

    NSDL National Science Digital Library

    2008-10-06

    Sydney Brenner, Francois Jacob and Matt Meselson's experiment showed that RNA was a copy of the information in DNA. As a messenger, RNA transported the information from the nucleus to the protein-making machinery in the cell.

  9. Deploying RNA and DNA with Functionalized Carbon Nanotubes

    PubMed Central

    Alidori, Simone; Asqiriba, Karim; Londero, Pablo; Bergkvist, Magnus; Leona, Marco; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Carbon nanotubes internalize into cells and are potential molecular platforms for siRNA and DNA delivery. A comprehensive understanding of the identity and stability of ammoniumfunctionalized carbon nanotube (f-CNT)-based nucleic acid constructs is critical to deploying them in vivo as gene delivery vehicles. This work explored the capability of f-CNT to bind single- and double-strand oligonucleotides by determining the thermodynamics and kinetics of assembly and the stoichiometric composition in aqueous solution. Surprisingly, the binding affinity of f-CNT and short oligonucleotide sequences was in the nanomolar range, kinetics of complexation were extremely rapid, and from one to five sequences were loaded per nanotube platform. Mechanistic evidence for an assembly process that involved electrostatic, hydrogen-bonding and ?-stacking bonding interactions was obtained by varying nanotube functionalities, oligonucleotides, and reaction conditions. 31P-NMR and spectrophotometric fluorescence emission data described the conditions required to assemble and stably bind a DNA or RNA cargo for delivery in vivo and the amount of oligonucleotide that could be transported. The soluble oligonucleic acid-f-CNT supramolecular assemblies were suitable for use in vivo. Importantly, key evidence in support of an elegant mechanism by which the bound nucleic acid material can be ‘off-loaded’ from the f-CNT was discovered. PMID:23626864

  10. The Roads to and from the RNA World

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Lazcano, Antonio; Miller, Stanley L.

    2003-01-01

    The historical existence of the RNA world, in which early life used RNA for both genetic information and catalytic ability, is widely accepted. However, there has been little discussion of whether protein synthesis arose before DNA or what preceded the RNA world (i.e. the pre-RNA world). We outline arguments of what route life may have taken out of the RNA world: whether DNA or protein followed. The metabolic arguments favor the possibility that RNA genomes preceded the use of DNA as the informational macromolecule. However, the opposite can also be argued based on the enhanced stability, reactivity, and solubility of 2-deoxyribose as compared to ribose. The possibility that DNA may have come before RNA is discussed, although it is a less parsimonious explanation than DNA following RNA.

  11. A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA.

    PubMed Central

    Wu, T Y; Wu, R

    1987-01-01

    Moderately repetitive DNA sequences are found in the genomes of all eucaryotes that have been examined. We now report the discovery of a novel, transcribed, moderately repetitive DNA sequence in a higher plant which is different from any of the known repetitive DNA sequences from any organism. We isolated a rice cDNA clone which hybridizes to multiple bands on genomic blot analysis. The sequence of this 352 bp cDNA contains four regions of homology to the wheat phenylalanine tRNA, including the polymerase III-type promoter. Unexpectedly, two regions of the same 352 bp sequence also show homology to the wheat 5S RNA sequence. Using the cDNA as a probe, we have isolated six genomic clones which contain long tandem repeats of 355 bp sequence, and have sequenced nine repeat units. Our findings suggest that the rice repetitive sequence may be an amplified pseudogene with sequence homology to both 5S RNA and tRNA, but organized as long tandem repeats resembling 5S RNA genes. This is the first example showing homology between the sequences of a moderately repetitive DNA with unknown function and 5S RNA. Images PMID:3627973

  12. 2'-Fluorination of Tricyclo-DNA Controls Furanose Conformation and Increases RNA Affinity.

    PubMed

    Istrate, Alena; Medvecky, Michal; Leumann, Christian J

    2015-04-17

    The synthesis of 2'-fluoro tricyclo-DNA pyrimidine nucleosides with fluorine in the ribo-configuration and their incorporation into oligodeoxynucleotides was accomplished. Unlike the parent tc-T nucleoside, the 2'F-RNA-tc-T unit occurs in the 2'-exo conformation in the crystal. Specifically, F-RNA-tc-T was found to stabilize duplexes with RNA by +2 to +4 °C in Tm/mod. F-RNA-tc-nucleosides mix well with the DNA backbone and thus open up possibilities of using shorter and mixed-(DNA/tc-DNA) backbone oligonucleotides for therapeutic applications. PMID:25837683

  13. Isolation of a cDNA clone for human threonyl-tRNA synthetase

    SciTech Connect

    Kontis, K.J.; Arfin, S.M.

    1989-05-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA /lambda/gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.

  14. Isolation of a cDNA clone for human threonyl-tRNA synthetase

    Microsoft Academic Search

    K. J. Kontis; S. M. Arfin

    1989-01-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA \\/lambda\\/gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the

  15. Programmed self-assembly of DNA/RNA for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei

    Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.

  16. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    NASA Astrophysics Data System (ADS)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  17. Complex Interplay among DNA Modification, Noncoding RNA Expression and Protein-Coding RNA Expression in Salvia miltiorrhiza Chloroplast Genome

    PubMed Central

    Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box–like motif (CPGDMM1, “TATANNNATNA”), and an unknown motif (CPGDMM2 “WNYANTGAW”). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome. PMID:24914614

  18. C2?-Pyrene-functionalized Triazole-linked DNA: Universal DNA/RNA Hybridization Probes

    PubMed Central

    Sau, Sujay P.; Hrdlicka, Patrick J.

    2011-01-01

    Development of universal hybridization probes, i.e., oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of ‘universal bases’ that either are based on aromatic base analogs without hydrogen-bonding capabilities or hydrogen-bonding purine derivatives. However, development of probes that enable truly ‘universal’ hybridization without compromising duplex thermostability has proven challenging. Here we have used the ‘click reaction’ to synthesize four C2?-pyrene-functionalized triazole-linked 2?-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display: a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands; b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes are < 1.5 °C); and c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (?Tm up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, indicates that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2?-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology. PMID:22087648

  19. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B. (Los Alamos, NM)

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  20. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA.

    PubMed

    Zhang, Jia-yu; Zheng, Ke-wei; Xiao, Shan; Hao, Yu-hua; Tan, Zheng

    2014-01-29

    We recently reported that a DNA:RNA hybrid G-quadruplex (HQ) forms during transcription of DNA that bears two or more tandem guanine tracts (G-tract) on the nontemplate strand. Putative HQ-forming sequences are enriched in the nearby 1000 nt region right downstream of transcription start sites in the nontemplate strand of warm-blooded animals, and HQ regulates transcription under both in vitro and in vivo conditions. Therefore, knowledge of the mechanism of HQ formation is important for understanding the biological function of HQ as well as for manipulating gene expression by targeting HQ. In this work, we studied the mechanism of HQ formation using an in vitro T7 transcription model. We show that RNA synthesis initially produces an R-loop, a DNA:RNA heteroduplex formed by a nascent RNA transcript and the template DNA strand. In the following round of transcription, the RNA in the R-loop is displaced, releasing the RNA in single-stranded form (ssRNA). Then the G-tracts in the RNA can jointly form HQ with those in the nontemplate DNA strand. We demonstrate that the structural cascade R-loop ? ssRNA ? HQ offers opportunities to intercept HQ formation, which may provide a potential method to manipulate gene expression. PMID:24392825

  1. Efficient cleavage of RNA at high temperatures by a thermostable DNA-linked ribonuclease H.

    PubMed

    Haruki, M; Nogawa, T; Hirano, N; Chon, H; Tsunaka, Y; Morikawa, M; Kanaya, S

    2000-12-01

    To construct a DNA-linked RNase H, which cleaves RNA site-specifically at high temperatures, the 15-mer DNA, which is complementary to the polypurine-tract sequence of human immunodeficiency virus-1 RNA (PPT-RNA), was cross-linked to the unique thiol group of Cys135 in the Thermus thermophilus RNase HI variant. The resultant DNA-linked enzyme (d15-C135/TRNH), as well as the d15-C135/ERNH, in which the RNase H portion of the d15-C135/TRNH is replaced by the Escherichia coli RNase HI variant, cleaved the 15-mer PPT-RNA site-specifically. The mixture of the unmodified enzyme and the unlinked 15-mer DNA also cleaved the PPT-RNA but in a less strict manner. In addition, this mixture cleaved the PPT-RNA much less effectively than the DNA-linked enzyme. These results indicate that the cross-linking limits but accelerates the interaction between the enzyme and the DNA/RNA substrate. The d15-C135/TRNH cleaved the PPT-RNA more effectively than the d15-C135/ERNH at temperatures higher than 50 degrees C. The d15-C135/TRNH showed the highest activity at 65 degrees C, at which the d15-C135/ERNH showed little activity. Such a thermostable DNA-linked RNase H may be useful to cleave RNA molecules with highly ordered structures in a sequence-specific manner. PMID:11239088

  2. RNA and DNA Puffs in Polytene Chromosomes of Rhynchosciara: Inhibition by Extirpation of Prothorax

    Microsoft Academic Search

    J. M. Amabis; Dulce Cabral

    1970-01-01

    In the giant polytene chromosomes, gene amplification is made visible by formation of DNA puffs, and gene transcription is made visible by formation of RNA puffs. Ligation of the anterior portion of the larva at the end of the fourth larval instar inhibited the formation of the DNA puffs that normally develop at this stage and caused regression of RNA

  3. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation

    E-print Network

    Kreil, David

    1 Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation/SNF2-like proteins most similar to the RAD54/ATRX-subfamily. In drd1 mutants, RNA-induced non of centromeric and rDNA repeats is unaffected. Thus, unlike the SNF2-like proteins DDM1/Lsh1 [[6, 7

  4. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1

    E-print Network

    Beal, Peter A.

    -mRNA for the DNA repair enzyme NEIL1 causes a lysine to arginine change in the lesion recognition loop can lead to codon changes (recoding) and the introduction of amino acids into a gene product in nonrepeat sequences, including a site predicted to cause recoding in the mRNA for the DNA repair enzyme NEIL

  5. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.

    PubMed

    Chan, Yujia A; Aristizabal, Maria J; Lu, Phoebe Y T; Luo, Zongli; Hamza, Akil; Kobor, Michael S; Stirling, Peter C; Hieter, Philip

    2014-04-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  6. Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip

    PubMed Central

    Lu, Phoebe Y. T.; Luo, Zongli; Hamza, Akil; Kobor, Michael S.; Stirling, Peter C.; Hieter, Philip

    2014-01-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  7. The Effect of Charge-Reversal Amphiphile Spacer Composition on DNA and siRNA Delivery

    E-print Network

    The Effect of Charge-Reversal Amphiphile Spacer Composition on DNA and siRNA Delivery Xiao April 7, 2010 A series of charge-reversal amphiphiles with different spacers separating the headgroup from the hydrophobic chains are described for delivery of DNA and siRNA. Among them, the amphiphiles

  8. Extending the chemistry that supports genetic information transfer in vivo: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA, and methylphosphonate DNA.

    PubMed Central

    Thaler, D S; Liu, S; Tombline, G

    1996-01-01

    DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo. PMID:8577768

  9. Application of alkaline sucrose gradient centrifugation in the analysis of DNA replication after DNA damage.

    PubMed

    Raschke, Sascha; Guan, Jun; Iliakis, George

    2009-01-01

    Sucrose density gradient ultracentrifugation is a powerful technique for fractionating macromolecules like DNA, RNA, and proteins. For this purpose, a sample containing a mixture of different size macromolecules is layered on the surface of a gradient whose density increases linearly from top to bottom. During centrifugation, different size macromolecules sediment through the gradient at different rates. The rate of sedimentation depends, in addition to centrifugal force, on the size, shape, and density of the macromolecules, as well as on the density and viscosity of the gradient. In this way, macromolecules are separated by size with larger ones sedimenting towards the bottom and lighter ones remaining close to the top of the gradient. The method has been particularly successful in the size fractionation of large DNA molecules and has been extensively used to measure induction and repair of DNA breaks after exposure to clastogenic factors. Here, we describe an adaptation of this method that can be used in the analysis of newly synthesized DNA formed during DNA replication. Through size analysis of nascent DNA in alkaline sucrose gradients, variations in replication activity can be measured after exposure of cells to DNA-damaging agents. The method is particularly useful as it allows distinction between DNA damage-mediated effects on chain elongation vs. replicon initiation, which is essential for an in-depth analysis of the intra-S-phase checkpoint. This ability makes the technique unique and justifies its somewhat labour-intensive nature. PMID:19563115

  10. Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications

    PubMed Central

    Peña-Llopis, Samuel; Brugarolas, James

    2014-01-01

    Genomic technologies have revolutionized our understanding of complex Mendelian diseases and cancer. Solid tumors present several challenges for genomic analyses, such as tumor heterogeneity and tumor contamination with surrounding stroma and infiltrating lymphocytes. We developed a protocol to (i) select tissues of high cellular purity on the basis of histological analyses of immediately flanking sections and (ii) simultaneously extract genomic DNA (gDNA), messenger RNA (mRNA), noncoding RNA (ncRNA; enriched in microRNA (miRNA)) and protein from the same tissues. After tissue selection, about 12–16 extractions of DNA/RNA/protein can be obtained per day. Compared with other similar approaches, this fast and reliable methodology allowed us to identify mutations in tumors with remarkable sensitivity and to perform integrative analyses of whole-genome and exome data sets, DNA copy numbers (by single-nucleotide polymorphism (SNP) arrays), gene expression data (by transcriptome profiling and quantitative PCR (qPCR)) and protein levels (by western blotting and immunohistochemical analysis) from the same samples. Although we focused on renal cell carcinoma, this protocol may be adapted with minor changes to any human or animal tissue to obtain high-quality and high-yield nucleic acids and proteins. PMID:24136348

  11. A Course on Macromolecules.

    ERIC Educational Resources Information Center

    Horta, Arturo

    1985-01-01

    Describes a senior-level course that: (1) focuses on the structure and reactions of macromolecules; (2) treats industrial polymers in a unified way; and (3) uses analysis of conformation and conformational statistics as a unifying approach. Also discusses course topics, including polysaccharides, proteins, nucleic acids, and others. (JN)

  12. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes.

    PubMed

    Schmitz, Kerstin-Maike; Mayer, Christine; Postepska, Anna; Grummt, Ingrid

    2010-10-15

    Noncoding RNAs are important components of regulatory networks controlling the epigenetic state of chromatin. We analyzed the role of pRNA (promoter-associated RNA), a noncoding RNA that is complementary to the rDNA promoter, in mediating de novo CpG methylation of rRNA genes (rDNA). We show that pRNA interacts with the target site of the transcription factor TTF-I, forming a DNA:RNA triplex that is specifically recognized by the DNA methyltransferase DNMT3b. The results reveal a compelling new mechanism of RNA-dependent DNA methylation, suggesting that recruitment of DNMT3b by DNA:RNA triplexes may be a common and generally used pathway in epigenetic regulation. PMID:20952535

  13. A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis

    PubMed Central

    Huang, Chao-Feng; Miki, Daisuke; Tang, Kai; Zhou, Hao-Ran; Zheng, Zhimin; Chen, Wei; Ma, Ze-Yang; Yang, Lan; Zhang, Heng; Liu, Renyi; He, Xin-Jian; Zhu, Jian-Kang

    2013-01-01

    Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. PMID:24068953

  14. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    SciTech Connect

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley; Ke, Ailong (Cornell); (UMM)

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.

  15. Suppression of Hepatitis C Virus Genome Replication in Cells with RNA-Cleaving DNA Enzymes

    E-print Network

    Park, Jong-Sang

    Suppression of Hepatitis C Virus Genome Replication in Cells with RNA-Cleaving DNA Enzymes, the hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool. These selected DNAzyme and shRNA may be a viable therapeutic intervention to inhibit HCV replication in hepatic

  16. Preparation and Characterization of RNA Standards for Use in Quantitative Branched DNA Hybridization Assays

    Microsoft Academic Search

    M. L. Collins; C. Zayati; J. J. Detmer; B. Daly; J. A. Kolberg; T. A. Cha; B. D. Irvine; J. Tucker; M. S. Urdea

    1995-01-01

    RNA standards were developed for use in quantitative hybridization assays such as the Quantiplex HCV RNA Assay and Quantiplex HIV RNA Assay, which are based on branched DNA signal amplification. In vitro transcripts ranging in size from 0.5 to 9.4 kb were prepared and purified by phenol extraction following gel electrophoresis or column chromatography. Aliquots of the transcripts were digested

  17. An Attempt to Detect siRNA-Mediated Genomic DNA Modification by Artificially Induced Mismatch siRNA in Arabidopsis

    PubMed Central

    Miyagawa, Yosuke; Ogawa, Jun; Iwata, Yuji; Koizumi, Nozomu; Mishiba, Kei-ichiro

    2013-01-01

    Although tremendous progress has been made in recent years in identifying molecular mechanisms of small interfering RNA (siRNA) functions in higher plants, the possibility of direct interaction between genomic DNA and siRNA remains an enigma. Such an interaction was proposed in the ‘RNA cache’ hypothesis, in which a mutant allele is restored based on template-directed gene conversion. To test this hypothesis, we generated transgenic Arabidopsis thaliana plants conditionally expressing a hairpin dsRNA construct of a mutated acetolactate synthase (mALS) gene coding sequence, which confers chlorsulfuron resistance, in the presence of dexamethasone (DEX). In the transgenic plants, suppression of the endogenous ALS mRNA expression as well as 21-nt mALS siRNA expression was detected after DEX treatment. After screening >100,000 progeny of the mALS siRNA-induced plants, no chlorsulfuron-resistant progeny were obtained. Further experiments using transgenic calli also showed that DEX-induced expression of mALS siRNA did not affect the number of chlorsulfuron-resistant calli. No trace of cytosine methylation of the genomic ALS region corresponding to the dsRNA region was observed in the DEX-treated calli. These results do not necessarily disprove the ‘RNA cache’ hypothesis, but indicate that an RNAi machinery for ALS mRNA suppression does not alter the ALS locus, either genetically or epigenetically. PMID:24278423

  18. A comparison of RNA with DNA in template-directed synthesis

    NASA Technical Reports Server (NTRS)

    Zielinski, M.; Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Nonenzymatic template-directed copying of RNA sequences rich in cytidylic acid using nucleoside 5'-(2-methylimidazol-1-yl phosphates) as substrates is substantially more efficient than the copying of corresponding DNA sequences. However, many sequences cannot be copied, and the prospect of replication in this system is remote, even for RNA. Surprisingly, wobble-pairing leads to much more efficient incorporation of G opposite U on RNA templates than of G opposite T on DNA templates.

  19. The ATM Kinase Induces MicroRNA Biogenesis in the DNA Damage Response

    PubMed Central

    Zhang, Xinna; Wan, Guohui; Berger, Franklin G.; He, Xiaoming; Lu, Xiongbin

    2011-01-01

    SUMMARY The DNA damage response involves a complex network of processes that detect and repair DNA damage. Here we show that miRNA biogenesis is globally induced upon DNA damage in an ATM-dependent manner. About one fourth of miRNAs are significantly up-regulated after DNA damage, while loss of ATM abolishes their induction. KSRP (KH-type splicing regulatory protein) is a key player that translates DNA damage signaling to miRNA biogenesis. The ATM kinase directly binds to and phosphorylates KSRP, leading to enhanced interaction between KSRP and pri-miRNAs and increased KSRP activity in miRNA processing. Mutations of the ATM phosphorylation sites of KSRP impaired its activity in regulating miRNAs. These findings reveal a mechanism by which DNA damage signaling is linked to miRNA biogenesis. PMID:21329876

  20. Pulse Dipolar ESR of Doubly Labeled Mini TAR DNA and Its Annealing to Mini TAR RNA.

    PubMed

    Sun, Yan; Borbat, Peter P; Grigoryants, Vladimir M; Myers, William K; Freed, Jack H; Scholes, Charles P

    2015-02-17

    Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ?35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present. PMID:25692594

  1. Production of infectious RNA transcripts from full-length cDNA clones representing two subgroups of peanut stunt virus strains: mapping satellite RNA support to RNA1

    Microsoft Academic Search

    Chung-Chi Hu; Margaret Sanger; Said A. Ghabrial

    1998-01-01

    Full-length cDNA clones from which infectious trans- cripts could be generated were constructed from the genomic RNAs of two distinct strains of peanut stunt cucumovirus (PSV), PSV-ER and PSV-W. PSV- ER, a subgroup I strain, is known to support efficient replication of satellite RNA (satRNA) in infected plants, whereas PSV-W, a subgroup II strain, does not support satRNA replication. Although

  2. Cellular content of chloroplast DNA and chloroplast ribosomal RNA genes in Euglena gracilis during chloroplast development.

    PubMed

    Chelm, B K; Hoben, P J; Hallick, R B

    1977-02-22

    The cellular content of chloroplast DNA in Euglena gracilis has been quantitatively determined. DNA was extracted from Euglena cells at various stages of chloroplast development and renatured in the presence of trace amounts of 3H-labeled chloroplast DNA. From the kinetics of renaturation of the 3H-labeled chloroplast DNA, compared with the kinetics of renaturation of excess nonradioactive chloroplast DNA, the fraction of cellular DNA represented by chloroplast DNA was calculated. The content of chloroplast DNA was found to increase from 4.9 to 14.6% of cellular DNA during light-induced chloroplast development. Correcting for the change in DNA mass per cell, the number of copies of chloroplast DNA is found to vary from 1400 to 2900 per cell. During this developmental transition, the cellular content of the chloroplast ribosomal RNA genes varies from 1900 to 5200 copies per cell. The ratio of the number of copies of rRNA genes to chloroplast genomes per cell remains in the range of 1-2 throughout chloroplast development, ruling out selective amplification of chloroplast rRNA genes as a means of regulation of rRNA gene expression. Direct measurement of the number of rRNA cistrons per 9.2 X 10(7) dalton genome yields a value of 1 or 2. PMID:402149

  3. Co-transcriptional production of RNA–DNA hybrids for simultaneous release of multiple split functionalities

    PubMed Central

    Afonin, Kirill A.; Desai, Ravi; Viard, Mathias; Kireeva, Maria L.; Bindewald, Eckart; Case, Christopher L.; Maciag, Anna E.; Kasprzak, Wojciech K.; Kim, Taejin; Sappe, Alison; Stepler, Marissa; KewalRamani, Vineet N.; Kashlev, Mikhail; Blumenthal, Robert; Shapiro, Bruce A.

    2014-01-01

    Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA–DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA–RNA, RNA–DNA and DNA–DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates. PMID:24194608

  4. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities.

    PubMed

    Afonin, Kirill A; Desai, Ravi; Viard, Mathias; Kireeva, Maria L; Bindewald, Eckart; Case, Christopher L; Maciag, Anna E; Kasprzak, Wojciech K; Kim, Taejin; Sappe, Alison; Stepler, Marissa; Kewalramani, Vineet N; Kashlev, Mikhail; Blumenthal, Robert; Shapiro, Bruce A

    2014-02-01

    Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates. PMID:24194608

  5. Concordance between HIV-2 genotypic coreceptor tropism predictions based on plasma RNA and proviral DNA.

    PubMed

    Visseaux, Benoit; Charpentier, Charlotte; Taieb, Audrey; Damond, Florence; Bénard, Antoine; Larrouy, Lucile; Chêne, Geneviève; Brun-Vézinet, Françoise; Matheron, Sophie; Descamps, Diane

    2013-01-14

    In this study, assessing HIV-2 tropism among 43 paired plasma/peripheral blood mononuclear cell specimens, the concordance between proviral DNA and plasma RNA genotypic tropism prediction was 74%. All the discordances were attributable to the prediction of R5 in RNA and X4/dual-mixed in DNA. HIV-2 genotypic tropism test based on proviral DNA is a suitable tool for tropism determination in HIV-2-infected patients with low or undetectable viral load. PMID:23095312

  6. Detection of Single Base Substitutions by Ribonuclease Cleavage at Mismatches in RNA:DNA Duplexes

    Microsoft Academic Search

    Richard M. Myers; Zoia Larin; Tom Maniatis

    1985-01-01

    Single base substitutions can be detected and localized by a simple and rapid method that involves ribonuclease cleavage of single base mismatches in RNA:DNA heteroduplexes. A 32P-labeled RNA probe complementary to wild-type DNA is synthesized in vitro and annealed to a test DNA containing a single base substitution. The resulting single base mismatch is cleaved by ribonuclease A, and the

  7. Transcription: DNA codes for messenger RNA (mRNA), 3D animation with basic narrationSite: DNA Interactive (www.dnai.org)

    NSDL National Science Digital Library

    2008-10-06

    DNAi Location: Code>Copying the Code>putting it together>Transcription What you are about to see is DNA's most extraordinary secret, how a simple code is turned into flesh and blood. It begins with a bundle of factors (transcription factors)assembling at the start of a gene. A gene is simply a length of DNA instructions stretching away to the left. The assembled factors trigger the first phase of the process, reading off the information that will be needed to make the protein. Everything is ready to roll: three, two, one, GO! The blue molecule (RNA polymerase) racing along the DNA is reading the gene. It's unzipping the double helix, and copying one of the two strands. The yellow chain (messanger RNA or mRNA) snaking out of the top is a copy of the genetic message and it's made of a close chemical cousin of DNA called RNA. The building blocks to make the RNA enter through an intake hole. They are matched to the DNA - letter by letter - to copy the As, Cs, Ts and Gs of the gene. The only difference is that in the RNA copy, the letter T is replaced with a closely related building block known as \\"U\\". You are watching this process - called transcription - in real time. It's happening right now in almost every cell in your body.

  8. Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA

    E-print Network

    Pang, Bo

    Deamination of nucleobases in DNA and RNA results in the formation of xanthine (X), hypoxanthine (I), oxanine, and uracil, all of which are miscoding and mutagenic in DNA and can interfere with RNA editing and function. ...

  9. Detection of Genomic DNA Fragmentation during Apoptosis (DNA Ladder) and the Simultaneous Isolation of RNA from Low Cell Numbers

    Microsoft Academic Search

    Peter T. Daniel; Isrid Sturm; Silke Ritschel; Katrin Friedrich; Bernd Dörken; Peter Bendzko; Timo Hillebrand

    1999-01-01

    In the present paper we describe a rapid and sensitive method for the simultaneous isolation of total RNA and genomic plus low-molecular-weight DNA from apoptotic cells. Using this method, we were able to detect a DNA ladder from as low as 30,000 apoptotic cells in only 45 min including gel electrophoresis. In addition, RNA can be readily obtained from the

  10. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

    PubMed Central

    Peng, Wenfang; Feng, Mingxia; Feng, Xu; Liang, Yun Xiang; She, Qunxin

    2015-01-01

    CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-? and Cmr-?) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis identified a trinucleotide sequence in the 3?-region of crRNA that was crucial for RNA interference. Studying mutants lacking Cmr-? or Cmr-? system showed that each Cmr complex exhibited RNA interference. Strikingly, these analyses further revealed that the two Cmr systems displayed distinctive interference features. Whereas Cmr-? complexes targeted transcripts and could be recycled in RNA cleavage, Cmr-? complexes probably targeted nascent RNA transcripts and remained associated with the substrate. Moreover, Cmr-? exhibited much stronger RNA cleavage activity than Cmr-?. Since we previously showed that S. islandicus Cmr-? mediated transcription-dependent DNA interference, the Cmr-? constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA. PMID:25505143

  11. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction

    Microsoft Academic Search

    D P Jackson; F A Lewis; G R Taylor; A W Boylston; P Quirke

    1990-01-01

    Several DNA extraction techniques were quantitatively and qualitatively compared using both fresh and paraffin wax embedded tissue and their suitability investigated for providing DNA and RNA for the polymerase chain reaction (PCR). A one hour incubation with proteinase K was the most efficient DNA extraction procedure for fresh tissue. For paraffin wax embedded tissue a five day incubation with proteinase

  12. Hydrolysis of plasmid DNA and RNA by amino alkyl naphthalimide as metal-free artificial nuclease.

    PubMed

    Yang, Qing; Xu, Jianqiang; Sun, Yuanshe; Li, Zhigang; Li, Yonggang; Qian, Xuhong

    2006-02-15

    A strategy of dimethylamino alkyldiimide conjugated with an intercalator of naphthalimide for hydrolysis of DNA was suggested and evaluated. 4 can hydrolyze 4 kb plasmid DNA into 2 kb fragments with GC and GG selectivity, which represents a novel example of sequence- or site-selective metal-free DNA artificial nuclease. Results also show it could hydrolyze RNA efficiently. PMID:16314096

  13. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases

    Microsoft Academic Search

    Roberta Benetti; Susana Gonzalo; Isabel Jaco; Purificación Muñoz; Susana Gonzalez; Stefan Schoeftner; Elizabeth Murchison; Thomas Andl; Taiping Chen; Peter Klatt; En Li; Manuel Serrano; Sarah Millar; Gregory Hannon; Maria A Blasco

    2008-01-01

    Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with

  14. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects. PMID:24095303

  15. Pre-mRNA processing factors meet the DNA damage response

    PubMed Central

    Montecucco, Alessandra; Biamonti, Giuseppe

    2013-01-01

    It is well-known that DNA-damaging agents induce genome instability, but only recently have we begun to appreciate that chromosomes are fragile per se and frequently subject to DNA breakage. DNA replication further magnifies such fragility, because it leads to accumulation of single-stranded DNA. Recent findings suggest that chromosome fragility is similarly increased during transcription. Transcripts produced by RNA polymerase II (RNAPII) are subject to multiple processing steps, including maturation of 5? and 3? ends and splicing, followed by transport to the cytoplasm. RNA maturation starts on nascent transcripts and is mediated by a number of diverse proteins and ribonucleoprotein particles some of which are recruited cotranscriptionally through interactions with the carboxy-terminal domain of RNAPII. This coupling is thought to maximize efficiency of pre-mRNA maturation and directly impacts the choice of alternative splice sites. Mounting evidence suggests that lack of coordination among different RNA maturation steps, by perturbing the interaction of nascent transcripts with the DNA template, has deleterious effects on genome stability. Thus, in the absence of proper surveillance mechanisms, transcription could be a major source of DNA damage in cancer. Recent high-throughput screenings in human cells and budding yeast have identified several factors implicated in RNA metabolism that are targets of DNA damage checkpoint kinases: ATM (ataxia telangiectasia mutated) and ATR (ATM-Rad3 related) (Tel1 and Mec1 in budding yeast, respectively). Moreover, inactivation of various RNA processing factors induces accumulation of ?H2AX foci, an early sign of DNA damage. Thus, a complex network is emerging that links DNA repair and RNA metabolism. In this review we provide a comprehensive overview of the role played by pre-mRNA processing factors in the cell response to DNA damage and in the maintenance of genome stability. PMID:23761808

  16. DNA, RNA, and Protein Extraction: The Past and The Present

    PubMed Central

    Tan, Siun Chee; Yiap, Beow Chin

    2009-01-01

    Extraction of DNA, RNA, and protein is the basic method used in molecular biology. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes. In the past, the process of extraction and purification of nucleic acids used to be complicated, time-consuming, labor-intensive, and limited in terms of overall throughput. Currently, there are many specialized methods that can be used to extract pure biomolecules, such as solution-based and column-based protocols. Manual method has certainly come a long way over time with various commercial offerings which included complete kits containing most of the components needed to isolate nucleic acid, but most of them require repeated centrifugation steps, followed by removal of supernatants depending on the type of specimen and additional mechanical treatment. Automated systems designed for medium-to-large laboratories have grown in demand over recent years. It is an alternative to labor-intensive manual methods. The technology should allow a high throughput of samples; the yield, purity, reproducibility, and scalability of the biomolecules as well as the speed, accuracy, and reliability of the assay should be maximal, while minimizing the risk of cross-contamination. PMID:20011662

  17. Thermodynamic and structural features of ultrastable DNA and RNA hairpins

    NASA Astrophysics Data System (ADS)

    Hernández, Belén; Baumruk, Vladimir; Leulliot, Nicolas; Gouyette, Catherine; Huynh-Dinh, Tam; Ghomi, Mahmoud

    2003-06-01

    Short RNA and DNA hairpins have been analysed in aqueous phase by means of UV absorption and vibrational spectroscopy in the following oligodeoxynucleotide and oligoribonucleotide sequences: 5'-d(GC- GAA-GC)-3', 5'-r(CGC- GNRA-GCG)-3' (where N=U, A, C, G and R=A, G) and 5'-r(GCG- UGAA-CGC)-3'. These hairpins contain GAA triloop, GNRA and UGAA tetraloops stabilised by two or three GC base pairs in their stems. The analysis of UV absorption melting profiles allowed us to confirm the high (to very high) thermodynamic stability of these hairpins through the estimation of their melting temperature ( Tm). FT-IR spectra revealed the presence of N-type and/or S-type sugar puckers in the hairpins. Raman spectra at the temperatures below Tm provided information on the conformations of certain nucleosides involved in the hairpins, as well as on the global conformation (A or B forms) of their stems. Raman spectra recorded as a function of temperature, are consistent with the hairpin-to-random coil conformational transitions through the breakdown of interbase H-bonds, and the loss of stacking between the bases. A discussion has been carried out on the agreement between vibrational data and those available from NMR on a few number of these hairpins.

  18. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA.

    PubMed

    Su, Shao; Fan, Jinwei; Xue, Bing; Yuwen, Lihui; Liu, Xingfen; Pan, Dun; Fan, Chunhai; Wang, Lianhui

    2014-01-22

    Herein, we report a convenient approach to developing quantum dots (QDs)-based nanosensors for DNA and micro-RNA (miRNA) detection. The DNA-QDs conjugate was prepared by a ligand-exchange method. Thiol-labeled ssDNA is directly attached to the QD surface, leading to highly water-dispersible nanoconjugates. The DNA-QDs conjugate has the advantages of the excellent optical properties of QDs and well-controlled recognition properties of DNA and can be used as a nanoprobe to construct a nanosensor for nucleic acid detection. With the addition of a target nucleic acid sequence, the fluorescence intensity of QDs was quenched by an organic quencher (BHQ2) via Förster resonance energy transfer. This nanosensor can detect as low as 1 fM DNA and 10 fM miRNA. Moreover, the QDs-based nanosensor exhibited excellent selectivity. It not only can effectively distinguish single-base-mismatched and random nucleic sequences but also can recognize pre-miRNA and mature miRNA. Therefore, the nanosensor has high application potential for disease diagnosis and biological analysis. PMID:24380365

  19. Tandem Duplication of D-Loop and Ribosomal RNA Sequences in Lizard Mitochondrial DNA

    Microsoft Academic Search

    Craig Moritz; Wesley M. Brown

    1986-01-01

    Some Cnemidophorus exsanguis have mitochondrial DNA's (mtDNA's) that are 22.2 kilobases (kb) in size, whereas most have mtDNA's of 17.4 kb. Restriction site mapping, DNA transfer hybridization experiments, and electron microscopy show that the size increment stems from the tandem duplication of a 4.8-kb region that includes regulatory sequences and transfer and ribosomal RNA genes. This observation is notable in

  20. Modified method for combined DNA and RNA isolation from peanut and other oil seeds.

    PubMed

    Dang, Phat M; Chen, Charles Y

    2013-02-01

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA isolation from plant seeds is a prerequisite for many seed specific gene expression studies and DNA is necessary in marker-assisted selection and other genetic studies. We describe a modified method to isolate both RNA and DNA from the same seed tissue and have been successful with several oil seeds including peanut, soybean, sunflower, canola, and oil radish. An additional LiCl precipitation step was added to isolate both RNA and DNA from the same seed tissues. High quality nucleic acids were observed based on A(260)/A(280) and A(260)/A(230) ratios above 2.0 and distinct bands on gel-electrophoresis. RNA was shown to be suitable for reverse transcriptase polymerase chain reaction based on actin or 60S ribosomal primer amplification and DNA was shown to have a single band on gel-electrophoresis analysis. This result shows that RNA and DNA isolated using this method can be appropriate for molecular studies in peanut and other oil containing seeds. PMID:23104473

  1. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation

    PubMed Central

    Thilly, William G; Gostjeva, Elena V; Koledova, Vera V; Zukerberg, Lawrence R; Chung, Daniel; Fomina, Janna N; Darroudi, Firouz; Stollar, B David

    2014-01-01

    Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development. PMID:24418910

  2. Photocleavage of DNA and photofootprinting of E. coli RNA polymerase bound to promoter DNA by azido-9-acridinylamines.

    PubMed Central

    Jeppesen, C; Buchardt, O; Henriksen, U; Nielsen, P E

    1988-01-01

    The long-wavelength ultraviolet (lambda approximately 420 nm) radiation induced reaction between 6-azido-2-methoxy-9-acridinylamines and supercoiled plasmid DNA results in single strand scissions and formation of covalent adducts (ratio approximately 1:10). By treating azidoacridine-photomodified DNA with piperidine at 90 degrees C, additional strand scissions are observed in a complex sequence dependent manner with an overall preference for T greater than or equal to G greater than C much greater than A. The resulting DNA fragments migrate as 5'-phosphates in polyacrylamide gels. Photofootprinting of the binding site of RNA-polymerase on promoter DNA is demonstrated with an azido-9-acridinylamino-octamethylene-9-aminoacridine. Similar experiments using 9-amino-6-azido-2-methoxyacridine indicate that this reagent recognizes changes in the DNA conformation induced by RNA polymerase binding, in relation to open complex formation. Images PMID:3041368

  3. Recognition of Chelerythrine to Human Telomeric DNA and RNA G-quadruplexes

    PubMed Central

    Bai, Li-Ping; Hagihara, Masaki; Nakatani, Kazuhiko; Jiang, Zhi-Hong

    2014-01-01

    A study on binding of antitumor chelerythrine to human telomeric DNA/RNA G-quadruplexes was performed by using DNA polymerase stop assay, UV-melting, ESI-TOF-MS, UV-Vis absorption spectrophotometry and fluorescent triazole orange displacement assay. Chelerythrine selectively binds to and stabilizes the K+-form hybrid-type human telomeric DNA G-quadruplex of biological significance, compared with the Na+-form antiparallel-type DNA G-quadruplex. ESI-TOF-MS study showed that chelerythrine possesses a binding strength for DNA G-quadruplex comparable to that of TMPyP4 tetrachloride. Both 1:1 and 2:1 stoichiometries were observed for chelerythrine's binding with DNA and RNA G-quadruplexes. The binding strength of chelerythrine with RNA G-quadruplex is stronger than that with DNA G-quadruplex. Fluorescent triazole orange displacement assay revealed that chelerythrine interacts with human telomeric RNA/DNA G-quadruplexes by the mode of end- stacking. The relative binding strength of chelerythrine for human telomeric RNA and DNA G-quadruplexes obtained from ESI-TOF-MS experiments are respectively 6.0- and 2.5-fold tighter than that with human telomeric double-stranded hairpin DNA. The binding selectivity of chelerythrine for the biologically significant K+-form human telomeric DNA G-quadruplex over the Na+-form analogue, and binding specificity for human telomeric RNA G-quadruplex established it as a promising candidate in the structure-based design and development of G-quadruplex specific ligands. PMID:25341562

  4. Recognition of Chelerythrine to Human Telomeric DNA and RNA G-quadruplexes

    NASA Astrophysics Data System (ADS)

    Bai, Li-Ping; Hagihara, Masaki; Nakatani, Kazuhiko; Jiang, Zhi-Hong

    2014-10-01

    A study on binding of antitumor chelerythrine to human telomeric DNA/RNA G-quadruplexes was performed by using DNA polymerase stop assay, UV-melting, ESI-TOF-MS, UV-Vis absorption spectrophotometry and fluorescent triazole orange displacement assay. Chelerythrine selectively binds to and stabilizes the K+-form hybrid-type human telomeric DNA G-quadruplex of biological significance, compared with the Na+-form antiparallel-type DNA G-quadruplex. ESI-TOF-MS study showed that chelerythrine possesses a binding strength for DNA G-quadruplex comparable to that of TMPyP4 tetrachloride. Both 1:1 and 2:1 stoichiometries were observed for chelerythrine's binding with DNA and RNA G-quadruplexes. The binding strength of chelerythrine with RNA G-quadruplex is stronger than that with DNA G-quadruplex. Fluorescent triazole orange displacement assay revealed that chelerythrine interacts with human telomeric RNA/DNA G-quadruplexes by the mode of end- stacking. The relative binding strength of chelerythrine for human telomeric RNA and DNA G-quadruplexes obtained from ESI-TOF-MS experiments are respectively 6.0- and 2.5-fold tighter than that with human telomeric double-stranded hairpin DNA. The binding selectivity of chelerythrine for the biologically significant K+-form human telomeric DNA G-quadruplex over the Na+-form analogue, and binding specificity for human telomeric RNA G-quadruplex established it as a promising candidate in the structure-based design and development of G-quadruplex specific ligands.

  5. Very Few RNA and DNA Sequence Differences in the Human Transcriptome

    E-print Network

    Hahn, Matthew

    ,2 *. , Jean-Francois Gout1. , Matthew W. Hahn1,2 1 Department of Biology, Indiana University, Bloomington than originally proposed. Citation: Schrider DR, Gout J-F, Hahn MW (2011) Very Few RNA and DNA Sequence

  6. Photoelectron properties of DNA and RNA bases from many-body perturbation theory

    E-print Network

    Umari, Paolo

    The photoelectron properties of DNA and RNA bases are studied using many-body perturbation theory within the GW approximation, together with a recently developed Lanczos-chain approach. Calculated vertical ionization ...

  7. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  8. The structure, function and evolution of proteins that bind DNA and RNA.

    PubMed

    Hudson, William H; Ortlund, Eric A

    2014-11-01

    Proteins that bind both DNA and RNA typify the ability of a single gene product to perform multiple functions. Such DNA- and RNA-binding proteins (DRBPs) have unique functional characteristics that stem from their specific structural features; these developed early in evolution and are widely conserved. Proteins that bind RNA have typically been considered as functionally distinct from proteins that bind DNA and studied independently. This practice is becoming outdated, in partly owing to the discovery of long non-coding RNAs (lncRNAs) that target DNA-binding proteins. Consequently, DRBPs were found to regulate many cellular processes, including transcription, translation, gene silencing, microRNA biogenesis and telomere maintenance. PMID:25269475

  9. Isolation of DNA, RNA and protein from the starlet sea anemone Nematostella vectensis.

    PubMed

    Stefanik, Derek J; Wolenski, Francis S; Friedman, Lauren E; Gilmore, Thomas D; Finnerty, John R

    2013-05-01

    Among marine invertebrates, the starlet sea anemone Nematostella vectensis has emerged as an important laboratory model system. One advantage of working with this species relative to many other marine invertebrates is the ease of isolating relatively pure DNA, RNA and protein. Nematostella can be raised at high densities, under clean culture conditions, and it lacks integumentary or skeletal structures that can impede the recovery of DNA, RNA or protein. Here we describe methods used in our lab to isolate DNA, RNA and protein from Nematostella embryos, larvae and adults. The methods described here are less expensive than commercial kits and are more easily scalable to larger tissue amounts. Preparation of DNA can be completed in ?7 h, RNA preparation in ?1.5 h and protein preparation in ?1 h. PMID:23579778

  10. UV light-induced DNA lesions cause dissociation of yeast RNA polymerases-I and establishment of a specialized chromatin structure at rRNA genes.

    PubMed

    Tremblay, Maxime; Charton, Romain; Wittner, Manuel; Levasseur, Geneviève; Griesenbeck, Joachim; Conconi, Antonio

    2014-01-01

    The cytotoxicity of UV light-induced DNA lesions results from their interference with transcription and replication. DNA lesions arrest elongating RNA polymerases, an event that triggers transcription-coupled nucleotide excision repair. Since arrested RNA polymerases reduce the accessibility of repair factors to DNA lesions, they might be displaced. The fate of arrested RNA polymerases-II at DNA lesions has been extensively studied, yielding partially contradictory results. Considerably less is known about RNA polymerases-I that transcribe nucleosomes-depleted rRNA genes at very high rate. To investigate the fate of arrested RNA polymerases-I at DNA lesions, chromatin-immunoprecipitation, electron microscopy, transcription run-on, psoralen-cross-linking and chromatin-endogenous cleavage were employed. We found that RNA polymerases-I density increased at the 5'-end of the gene, likely due to continued transcription initiation followed by elongation and pausing/release at the first DNA lesion. Most RNA polymerases-I dissociated downstream of the first DNA lesion, concomitant with chromatin closing that resulted from deposition of nucleosomes. Although nucleosomes were deposited, the high mobility group-box Hmo1 (component of actively transcribed rRNA genes) remained associated. After repair of DNA lesions, Hmo1 containing chromatin might help to restore transcription elongation and reopening of rRNA genes chromatin. PMID:24097442

  11. IDN2 has a role downstream of siRNA formation in RNA-directed DNA methylation

    PubMed Central

    Finke, Andreas; Kuhlmann, Markus; Florian Mette, Michael

    2012-01-01

    In plants, a particular class of short interfering (si)RNAs can serve as a signal to induce cytosine methylation at homologous genomic regions. If the targeted DNA has promoter function, this RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing (TGS). RNA-directed transcriptional gene silencing (RdTGS) of transgenes provides a versatile system for the study of epigenetic gene regulation. We used transcription of a nopaline synthase promoter (ProNOS)-inverted repeat (IR) to provide a RNA signal that triggers de novo cytosine methylation and TGS of a homologous ProNOS copy in trans. Utilizing a ProNOS-NPTII reporter gene showing high sensitivity to silencing in this two component system, a forward genetic screen for EMS-induced no rna-directed transcriptional silencing (nrd) mutations was performed in Arabidopsis thaliana. Three nrd mutant lines were found to contain one novel loss-of-function allele of idn2/rdm12 and two of nrpd2a/nrpe2a. IDN2/RDM12 encodes a XH/XS domain protein that is able to bind double-stranded RNA with 5? overhangs, while NRPD2a/NRPE2a encodes the common second-largest subunit of the plant specific DNA-dependent RNA polymerases IV and V involved in silencing processes. Both idn2/rdm12 and nrpd2a/nrpe2a release target transgene expression and reduce CHH context methylation at transgenic as well as endogenous RdDM target regions to similar extents. Nevertheless, accumulation of IR-derived siRNA is not affected, allowing us to present a refined model for the pathway of RdDM and RdTGS that positions function of IDN2 downstream of siRNA formation and points to an important role for its XH domain. PMID:22810086

  12. CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli

    PubMed Central

    Beloglazova, Natalia; Kuznedelov, Konstantin; Flick, Robert; Datsenko, Kirill A.; Brown, Greg; Popovic, Ana; Lemak, Sofia; Semenova, Ekaterina; Severinov, Konstantin; Yakunin, Alexander F.

    2015-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5? handle (8 nt) and a 3? handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5? handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA. PMID:25488810

  13. CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli.

    PubMed

    Beloglazova, Natalia; Kuznedelov, Konstantin; Flick, Robert; Datsenko, Kirill A; Brown, Greg; Popovic, Ana; Lemak, Sofia; Semenova, Ekaterina; Severinov, Konstantin; Yakunin, Alexander F

    2015-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5' handle (8 nt) and a 3' handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5' handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA. PMID:25488810

  14. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA

    PubMed Central

    Lagunavicius, Arunas; Merkiene, Egle; Kiveryte, Zivile; Savaneviciute, Agne; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2009-01-01

    We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3??5? RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted to inner RNA sequences and their peculiarities can be analyzed directly. We demonstrate that the exoribonucleolytic activity of Phi29 DNA polymerase can be successfully applied in vitro and in situ. These findings expand the potential for detection and analysis of RNA sequences distanced from 3?-end. PMID:19244362

  15. ADAR Proteins: Double-stranded RNA and Z-DNA Binding Domains

    PubMed Central

    Barraud, Pierre; Allain, Frédéric H.-T

    2012-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We are reviewing here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the double-stranded RNA and Z-DNA binding domains. PMID:21728134

  16. Nucleotide-Dependent Degradation of Nucleic Acids by DNA and RNA Polymerases

    Microsoft Academic Search

    V. V. Sosunov; L. S. Victorova

    2004-01-01

    The review considers two reactions discovered recently: (1) excision of the 3'-terminal nucleotide from the nascent DNA strand in the presence of relatively high concentrations of noncomplementary r\\/dNTPs or r\\/dNDPs (pseudopyrophosphorolysis), which is catalyzed by various DNA polymerases (DNAPs), and (2) excision of the 3'-terminal nucleotide from the nascent RNA strand, which is catalyzed by RNA polymerases (RNAPs) and stimulated

  17. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, J.H.; Keller, R.A.; Martin, J.C.; Posner, R.G.; Marrone, B.L.; Hammond, M.L.; Simpson, D.J.

    1995-04-11

    A method is described for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand. 4 figures.

  18. Method for rapid base sequencing in DNA and RNA with two base labeling

    DOEpatents

    Jett, James H. (Los Alamos, NM); Keller, Richard A. (Los Alamos, NM); Martin, John C. (Los Alamos, NM); Posner, Richard G. (Los Alamos, NM); Marrone, Babetta L. (Los Alamos, NM); Hammond, Mark L. (Los Alamos, NM); Simpson, Daniel J. (Los Alamos, NM)

    1995-01-01

    Method for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand.

  19. Measuring the differential stoichiometry and energetics of ligand binding to macromolecules by single-molecule force spectroscopy: an extended theory.

    PubMed

    Jacobson, David R; Saleh, Omar A

    2015-02-01

    Many chemical techniques exist for measuring the stoichiometry of ligand binding to a macromolecule; however, these techniques are often specific to certain ligands or require the presumption of specific binding models. Here, we further develop a previously reported, general, thermodynamic method for extracting the change in number of ligands bound to a macromolecule as that macromolecule undergoes a conformational transition driven by mechanical stretching, for example, by magnetic tweezers or optical trapping. We extend the theory of this method to consider systems with many ligands, experiments conducted in different thermodynamic ensembles (e.g., constant-force, constant-extension), and experiments in which the system is not at equilibrium. Further, we show that analysis of the same single-molecule mechanical manipulation data yields a measure of the differential free energy of stabilization due to ligand binding, that is, the free energy contribution by which ligand binding favors one conformation of the macromolecule over another. We interpret an existing data set measuring ion binding to RNA and DNA in terms of this free energy. PMID:25621932

  20. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes.

    PubMed Central

    Kassavetis, G A; Riggs, D L; Negri, R; Nguyen, L H; Geiduschek, E P

    1989-01-01

    Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes. Images PMID:2668737

  1. MicroRNA Expression Profiling and DNA Methylation Signature for Deregulated MicroRNA in Cutaneous T-Cell Lymphoma.

    PubMed

    Sandoval, Juan; Díaz-Lagares, Angel; Salgado, Rocío; Servitje, Octavio; Climent, Fina; Ortiz-Romero, Pablo L; Pérez-Ferriols, Amparo; Garcia-Muret, Maria P; Estrach, Teresa; Garcia, Mar; Nonell, Lara; Esteller, Manel; Pujol, Ramon M; Espinet, Blanca; Gallardo, Fernando

    2015-04-01

    MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients. PMID:25405321

  2. Using a commercial DNA extraction kit to obtain RNA from mature rice kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few RNA extraction protocols or commercial kits work well with the starchy endosperm of cereal grains. Standard RNA extraction protocols are time consuming, use large amounts of expensive chemicals, and leave behind hazardous wastes. However, there are numerous commercial DNA extraction kits that ...

  3. Problems of an RNA Genome Operating in a DNA-Dominated Biological Universe

    Microsoft Academic Search

    S. Spiegelman; I. HARUNA

    1966-01-01

    The existence of viruses which use RNA rather than DNA to store genetic in- formation poses an interesting challenge to those concerned with the nature and function of genetic material. Questions are raised concerning replication, transcription, and translation involving a gene which cannot be distinguished from its message. These, and related problems posed by RNA genomes, must be resolved before

  4. SHAMS: Combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids

    PubMed Central

    Turner, Kevin B.; Yi-Brunozzi, Hye Young; Brinson, Robert G.; Marino, John P.; Fabris, Daniele; Le Grice, Stuart F.J.

    2009-01-01

    Selective 2?-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2?-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2?-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed. PMID:19535461

  5. A deeply conserved, noncanonical miRNA hosted by ribosomal DNA.

    PubMed

    Chak, Li-Ling; Mohammed, Jaaved; Lai, Eric C; Tucker-Kellogg, Greg; Okamura, Katsutomo

    2015-03-01

    Advances in small RNA sequencing technologies and comparative genomics have fueled comprehensive microRNA (miRNA) gene annotations in humans and model organisms. Although new miRNAs continue to be discovered in recent years, these have universally been lowly expressed, recently evolved, and of debatable endogenous activity, leading to the general assumption that virtually all biologically important miRNAs have been identified. Here, we analyzed small RNAs that emanate from the highly repetitive rDNA arrays of Drosophila. In addition to endo-siRNAs derived from sense and antisense strands of the pre-rRNA sequence, we unexpectedly identified a novel, deeply conserved, noncanonical miRNA. Although this miRNA is widely expressed, this miRNA was not identified by previous studies due to bioinformatics filters removing such repetitive sequences. Deep-sequencing data provide clear evidence for specific processing with precisely defined 5' and 3' ends. Furthermore, we demonstrate that the mature miRNA species is incorporated in the effector complexes and has detectable trans regulatory activity. Processing of this miRNA requires Dicer-1, whereas the Drosha-Pasha complex is dispensable. The miRNA hairpin sequence is located in the internal transcribed spacer 1 region of rDNA and is highly conserved among Dipteran species that were separated from their common ancestor ? 100 million years ago. Our results suggest that biologically active miRNA genes may remain unidentified even in well-studied organisms. PMID:25605965

  6. Introduction Parasites Traveling Waves Ecosystem DNA Evolution of RNA-like Replicators

    E-print Network

    Utrecht, Universiteit

    replicator species #12;Introduction Parasites Traveling Waves Ecosystem DNA Individual-based and ecosystem genome Error threshold ecosystem-based solution Coexistence of multiple replicator species parasitesIntroduction Parasites Traveling Waves Ecosystem DNA Evolution of RNA-like Replicators --Roles

  7. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    PubMed Central

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  8. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation.

    PubMed

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J; Cowling, Victoria H; Cairns, Bradley R; White, Robert J

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  9. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks

    PubMed Central

    Krietsch, Jana; Caron, Marie-Christine; Gagné, Jean-Philippe; Ethier, Chantal; Vignard, Julien; Vincent, Michel; Rouleau, Michèle; Hendzel, Michael J.; Poirier, Guy G.; Masson, Jean-Yves

    2012-01-01

    After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood. PMID:22941645

  10. Configurational diffusion of coal macromolecules

    Microsoft Academic Search

    J. A. Guin; C. W. Curtis; A. R. Tarrer

    1990-01-01

    As shown in last quarter's report on the configurational diffusion of coal macromolecules, the hindered diffusion data for both TPP and coal macromolecules were significantly different from the theoretical correlations. In order to evaluate the factors which could lead to this difference an error analysis was conducted, and the detailed results reported herein. Generally, we did not find any errors

  11. Affinity Purification of DNA and RNA from Environmental Samples with Peptide Nucleic Acid Clamps

    Microsoft Academic Search

    DARRELL P. CHANDLER; JENNIE R. STULTS; SHARON CEBULA; BEATRICE L. SCHUCK; DEREK W. WEAVER; KEVIN K. ANDERSON; MICHAEL EGHOLM; FRED J. BROCKMAN

    2000-01-01

    Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sed- iment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate (SDS)) a PNA clamp recovered significantly more

  12. Evaluation of commercial kits for dual extraction of DNA and RNA from human body fluids.

    PubMed

    Schweighardt, Andrew J; Tate, Courtney M; Scott, Kristina A; Harper, Kathryn A; Robertson, James M

    2015-01-01

    STR typing of DNA evidence can identify the donor with a high power of discrimination but cannot identify the tissue origin of a body-fluid stain. Using RNA to attribute a crime scene stain to a particular tissue may aid in reconstruction efforts. With blood from 10 donors, four DNA and RNA coextraction kits were evaluated by measuring yields and STR and mRNA profiles. T tests indicated some significant differences in kit performance. The Zymo Research ZR-Duet(™) kit performed best based on average DNA (41.4 ng) and mRNA (4.07 ng) yields and was the only kit to provide complete DNA/RNA profiles for all samples. The consistency of this kit was challenged by data from additional blood and saliva donors. Further testing is advised before a superior kit is unequivocally chosen. Stand-alone DNA or RNA purification generally offers higher yield, but coextraction may still allow successful STR profiling and tissue source identification. PMID:25284026

  13. Identification and location of nine T5 bacteriophage tRNA genes by DNA sequence analysis.

    PubMed Central

    Desai, S M; Vaughan, J; Weiss, S B

    1986-01-01

    Sequence analysis of two DNA fragments generated from bacteriophage T5 DNA by restriction with Hpa I and Hae III has resulted in the detection and localization of nine tRNA genes (His, two Ser genes, Leu, Val, Lys, fMet, Pro, and Ile). The genes which code for tRNAs His and Leu are partials, whereas the remaining genes are complete. A majority of the tRNA genes are located in close proximity to one another. A unique feature of the Pro and Ile genes is that their DNA sequence overlap. PMID:3012464

  14. Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis.

    PubMed

    Zhong, Xuehua; Hale, Christopher J; Nguyen, Minh; Ausin, Israel; Groth, Martin; Hetzel, Jonathan; Vashisht, Ajay A; Henderson, Ian R; Wohlschlegel, James A; Jacobsen, Steven E

    2015-01-20

    DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase domains rearranged methylase 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation. PMID:25561521

  15. Viral nanomotors for packaging of dsDNA and dsRNA

    PubMed Central

    Guo, Peixuan; Lee, Tae Jin

    2007-01-01

    While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications. PMID:17501915

  16. M. S. Shell 2009 1/12 last modified 10/27/2010 DNA, RNA, replication, translation, and transcription

    E-print Network

    Shell, M. Scott

    © M. S. Shell 2009 1/12 last modified 10/27/2010 DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure One monomer unit = deoxyribonucleic acid · composed

  17. Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhiko S.; Masuda, Shoko; Campbell, Elizabeth A.; Muzzin, Oriana; Darst, Seth A.

    2002-05-01

    The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (?2??'??A) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the ? subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the ? subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.

  18. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes

    NASA Astrophysics Data System (ADS)

    Shah, Pratik; Cho, Seok Keun; Waaben Thulstrup, Peter; Bhang, Yong-Joo; Ahn, Jong Cheol; Choi, Suk Won; Rørvig-Lund, Andreas; Yang, Seong Wook

    2014-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs (size ˜21 nt to ˜25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative method for the determination of miRNA levels using the red fluorescent properties of DNA/silver nanoclusters (DNA/AgNCs). Our method is based on monitoring the emission drop of a DNA/AgNCs probe in the presence of its specific target miRNA. Accordingly, the accuracy and efficiency of the method relies on the sensitivity of hybridization between the probe and target. To gain specific and robust hybridization between probe and target, we investigated a range of diverse salts, organic solvents, and buffer to optimize target sensing conditions. Under the newly adjusted conditions, the target sensitivity and the formation of emissive DNA/AgNCs probes were significantly improved. Also, fortification of the Tris-acetate buffer with inorganic salts or organic solvents improved the sensitivity of the DNA/AgNC probes. On the basis of these optimizations, the versatility of the DNA/AgNCs-based miRNA detection method can be expanded.

  19. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  20. Reading, writing, and modulating genetic information with boranophosphate mimics of nucleotides, DNA, and RNA.

    PubMed

    Shaw, Barbara Ramsay; Dobrikov, Mikhail; Wang, Xin; Wan, Jing; He, Kaizhang; Lin, Jin-Lai; Li, Ping; Rait, Vladimir; Sergueeva, Zinaida A; Sergueev, Dmitri

    2003-12-01

    The P-boranophosphates are efficient and near perfect mimics of natural nucleic acids in permitting reading and writing of genetic information with high yield and accuracy. Substitution of a borane (-BH3) group for oxygen in the phosphate ester bond creates an isoelectronic and isosteric mimic of natural nucleotide phosphate esters found in mononucleotides, i.e., AMP and ATP, and in RNA and DNA polynucleotides. Compared to natural nucleic acids, the boranophosphate RNA and DNA analogs demonstrate increased lipophilicity and resistance to endo- and exonucleases, yet they retain negative charge and similar spatial geometry. Borane groups can readily be introduced into the NTP and dNTP nucleic acid monomer precursors to produce alpha-P-borano nucleoside triphosphate analogs (e.g., NTPalphaB and dNTPalphaB). The NTPalphaB and dNTPalphaB are, in fact, good to excellent substrates for RNA and DNA polymerases, respectively, and allow ready enzymatic synthesis of RNA and DNA with P-boranophosphate linkages. Further, boranophosphate polymer products are good templates for replication, transcription, and gene expression; boronated RNA products are also suitable for reverse transcription to cDNA. Fully substituted boranophosphate DNA can activate the RNase H cleavage of RNA in RNA:DNA hybrids. Moreover, certain dideoxy-NTPalphaB analogs appear to be better substrates for viral reverse transcriptases than the regular ddNTPs, and may offer promising prodrug alternatives in antiviral therapy. These properties make boranophosphates promising candidates for diagnostics; aptamer selection; gene therapy; and antiviral, antisense, and RNAi therapeutics. The boranophosphates constitute a versatile family of phosphate mimics for processing genetic information and modulating gene function. PMID:14751819

  1. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  2. Automated serial extraction of DNA and RNA from biobanked tissue specimens

    PubMed Central

    2013-01-01

    Background With increasing biobanking of biological samples, methods for large scale extraction of nucleic acids are in demand. The lack of such techniques designed for extraction from tissues results in a bottleneck in downstream genetic analyses, particularly in the field of cancer research. We have developed an automated procedure for tissue homogenization and extraction of DNA and RNA into separate fractions from the same frozen tissue specimen. A purpose developed magnetic bead based technology to serially extract both DNA and RNA from tissues was automated on a Tecan Freedom Evo robotic workstation. Results 864 fresh-frozen human normal and tumor tissue samples from breast and colon were serially extracted in batches of 96 samples. Yields and quality of DNA and RNA were determined. The DNA was evaluated in several downstream analyses, and the stability of RNA was determined after 9 months of storage. The extracted DNA performed consistently well in processes including PCR-based STR analysis, HaloPlex selection and deep sequencing on an Illumina platform, and gene copy number analysis using microarrays. The RNA has performed well in RT-PCR analyses and maintains integrity upon storage. Conclusions The technology described here enables the processing of many tissue samples simultaneously with a high quality product and a time and cost reduction for the user. This reduces the sample preparation bottleneck in cancer research. The open automation format also enables integration with upstream and downstream devices for automated sample quantitation or storage. PMID:23957867

  3. RNA template-dependent 5' nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases.

    PubMed

    Ma, W P; Kaiser, M W; Lyamicheva, N; Schaefer, J J; Allawi, H T; Takova, T; Neri, B P; Lyamichev, V I

    2000-08-11

    DNA replication and repair require a specific mechanism to join the 3'- and 5'-ends of two strands to maintain DNA continuity. In order to understand the details of this process, we studied the activity of the 5' nucleases with substrates containing an RNA template strand. By comparing the eubacterial and archaeal 5' nucleases, we show that the polymerase domain of the eubacterial enzymes is critical for the activity of the 5' nuclease domain on RNA containing substrates. Analysis of the activity of chimeric enzymes between the DNA polymerases from Thermus aquaticus (TaqPol) and Thermus thermophilus (TthPol) reveals two regions, in the "thumb" and in the "palm" subdomains, critical for RNA-dependent 5' nuclease activity. There are two critical amino acids in those regions that are responsible for the high activity of TthPol on RNA containing substrates. Mutating glycine 418 and glutamic acid 507 of TaqPol to lysine and glutamine, respectively, increases its RNA-dependent 5' nuclease activity 4-10-fold. Furthermore, the RNA-dependent DNA polymerase activity is controlled by a completely different region of TaqPol and TthPol, and mutations in this region do not affect the 5' nuclease activity. The results presented here suggest a novel substrate binding mode of the eubacterial DNA polymerase enzymes, called a 5' nuclease mode, that is distinct from the polymerizing and editing modes described previously. The application of the enzymes with improved RNA-dependent 5' nuclease activity for RNA detection using the invasive signal amplification assay is discussed. PMID:10827184

  4. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Microsoft Academic Search

    Randy P. Revetta; Robin S. Matlib

    2011-01-01

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA\\u000a extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic\\u000a analysis of 761 DNA-based clone sequences showed that unclassified bacteria were the most abundant group, representing nearly\\u000a 62% of all DNA sequences analyzed.

  5. Simultaneous isolation of DNA, RNA, and proteins for genetic, epigenetic, transcriptomic, and proteomic analysis.

    PubMed

    Radpour, Ramin; Sikora, Michal; Grussenmeyer, Thomas; Kohler, Corina; Barekati, Zeinab; Holzgreve, Wolfgang; Lefkovits, Ivan; Zhong, Xiao Yan

    2009-11-01

    Analysis of DNA, RNA, and proteins for downstream genetic, epigenetic, transcriptomic, and proteomic analysis holds an important place in the field of medical care and life science. This is often hampered by the limited availability of sample material. For this reason, there exists an increasing interest for simultaneous isolation of DNA, RNA and proteins from a single sample aliquot. Several kit-systems allowing such a procedure have been introduced to the market. We present an approach using the AllPrep method for simultaneous isolation of DNA, RNA and proteins from several human specimens, such as whole blood, buffy coat, serum, plasma and tissue samples. The quantification and qualification of the isolated molecular species were assessed by different downstream methods: NanoDrop for measuring concentration and purity of all molecular species; DNA and RNA LabChip for fractionation analysis of nucleic acids; quantitative PCR for quantification analysis of DNA and RNA; thymidine-specific cleavage mass array on MALDI-TOF silico-chip for epigenetic analysis; Protein LabChip and two-dimensional (2D) gel electrophoresis for proteomic analysis. With our modified method, we can simultaneously isolate DNA, RNA and/or proteins from one single sample aliquot. We could overcome to some method limitations like low quality or DNA fragmentation using reamplification strategy for performing high-throughput downstream assays. Fast and easy performance of the procedure makes this method interesting for all fields of downstream analysis, especially when using limited sample resources. The cost-effectiveness of the procedure when material is abundantly available has not been addressed. This methodological improvement enables to execute such experiments that were not performable with standard procedure, and ensures reproducible outcome. PMID:19780627

  6. DNA sequences of tobacco chloroplast genes for tRNA(Ser) (GGA), tRNA (Thr) (UGU), tRNA (Leu) (UAA), tRNA (Phe) (GAA): the tRNA (Leu) gene contains a 503 bp intron.

    PubMed

    Yamada, K; Shinozaki, K; Sugiura, M

    1986-05-01

    The location and nucleotide sequence of tobacco chloroplast genes for tRNA(Ser) (GGA), tRNA(Thr) (UGU), tRNA(Leu) (UAA) and tRNA(Phe) (GAA) (trnS-GGA, trnT-UGU, trnL-UAA and trnF-GAA, respectively) have been determined. These genes are located in the 10 kbp BamHI fragment which lies in the middle of the large single-copy region of the chloroplast DNA. The gene order is trnS-trnT-trnL-trnF. The trnS, trnL and trnF are encoded on the same strand while the trnT on the opposite strand. The trnL contains a 503 bp intron like maize and broad bean trnL-UAAs. PMID:24307278

  7. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)

    PubMed Central

    JIMÉNEZ-WENCES, HILDA; PERALTA-ZARAGOZA, OSCAR; FERNÁNDEZ-TILAPA, GLORIA

    2014-01-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  8. Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors

    PubMed Central

    Ehrlich, Melanie; Woods, Christian B.; Yu, Mimi C.; Dubeau, Louis; Yang, Fan; Campan, Mihaela; Weisenberger, Daniel J.; Long, Tiffany I.; Youn, Byungwoo; Fiala, Emerich S.; Laird, Peter W.

    2005-01-01

    How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5’ gene region or promoter hypermethylation, satellite or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, 6 of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P<0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor cause of satellite and global DNA hypomethylation. PMID:16532039

  9. Abnormal rapid non-linear RNA production induced by T7 RNA polymerase in the absence of an exogenous DNA template

    NASA Astrophysics Data System (ADS)

    Kakimoto, Y.; Fujinuma, A.; Fujita, S.; Kikuchi, Y.; Umekage, S.

    2015-02-01

    Although recombinant T7 RNA polymerase is commonly used for in vitro RNA synthesis, several reports have pointed out that T7 RNA polymerase can also induce RNA-directed RNA polymerization or replication. In addition, here we show a new aberrant transcription when using T7 RNA polymerase. This polymerization was observed in the presence of both ribonucleotides and a purchasable T7 RNA polymerase, Thermo T7 RNA polymerase, as well as in the absence of an exogenous DNA template. This cryptic RNA production was detectable after several hours of incubation and was inhibited by adding DNase I. These findings suggested that some contaminated DNA along with the Thermo stable T7 RNA polymerase could be used as template DNA. However, to our surprise, RNA production showed a rapid non-linear increase. This finding strongly indicated that a self-replication cycle emerged from the RNA-directed polymerization or replication by T7 RNA polymerase, triggering the abnormal explosive increase.

  10. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing

    PubMed Central

    Ursic, Doris; Chinchilla, Karen; Finkel, Jonathan S.; Culbertson, Michael R.

    2004-01-01

    Sen1p in Saccharomyces cerevisiae is a Type I DNA/RNA helicase. Mutations in the helicase domain perturb accumulation of diverse RNA classes, and Sen1p has been implicated in 3? end formation of non-coding RNAs. Using a combination of global and candidate-specific two hybrid screens, eight proteins were identified that interact with Sen1p. Interactions with three of the proteins were analyzed further: Rpo21p(Rpb1p), a subunit of RNA polymerase II, Rad2p, a deoxyribonuclease required in DNA repair, and Rnt1p (RNase III), an endoribonuclease required for RNA maturation. For all three interactions, the two-hybrid results were confirmed by co-immunoprecipitation experiments. Genetic tests designed to assess the biological significance of the interactions indicate that Sen1p plays functionally significant roles in transcription and transcription-coupled DNA repair. To investigate the potential role of Sen1p in RNA processing and to assess the functional significance of the Sen1p/Rnt1p interaction, we examined U5 snRNA biogenesis. We provide evidence that Sen1p functions in concert with Rnt1p and the exosome at a late step in 3? end formation of one of the two mature forms of U5 snRNA but not the other. The protein–protein and protein–RNA interactions reported here suggest that the DNA/RNA helicase activity of Sen1p is utilized for several different purposes in multiple gene expression pathways. PMID:15121901

  11. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9.

    PubMed

    Rigby, Rachel E; Webb, Lauren M; Mackenzie, Karen J; Li, Yue; Leitch, Andrea; Reijns, Martin A M; Lundie, Rachel J; Revuelta, Ailsa; Davidson, Donald J; Diebold, Sandra; Modis, Yorgo; MacDonald, Andrew S; Jackson, Andrew P

    2014-03-18

    The sensing of nucleic acids by receptors of the innate immune system is a key component of antimicrobial immunity. RNA:DNA hybrids, as essential intracellular replication intermediates generated during infection, could therefore represent a class of previously uncharacterised pathogen-associated molecular patterns sensed by pattern recognition receptors. Here we establish that RNA:DNA hybrids containing viral-derived sequences efficiently induce pro-inflammatory cytokine and antiviral type I interferon production in dendritic cells. We demonstrate that MyD88-dependent signalling is essential for this cytokine response and identify TLR9 as a specific sensor of RNA:DNA hybrids. Hybrids therefore represent a novel molecular pattern sensed by the innate immune system and so could play an important role in host response to viruses and the pathogenesis of autoimmune disease. PMID:24514026

  12. The Chemical Synthesis of DNA/RNA: Our Gift to Science

    PubMed Central

    Caruthers, Marvin H.

    2013-01-01

    It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs. PMID:23223445

  13. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9

    PubMed Central

    Rigby, Rachel E; Webb, Lauren M; Mackenzie, Karen J; Li, Yue; Leitch, Andrea; Reijns, Martin A M; Lundie, Rachel J; Revuelta, Ailsa; Davidson, Donald J; Diebold, Sandra; Modis, Yorgo; MacDonald, Andrew S; Jackson, Andrew P

    2014-01-01

    The sensing of nucleic acids by receptors of the innate immune system is a key component of antimicrobial immunity. RNA:DNA hybrids, as essential intracellular replication intermediates generated during infection, could therefore represent a class of previously uncharacterised pathogen-associated molecular patterns sensed by pattern recognition receptors. Here we establish that RNA:DNA hybrids containing viral-derived sequences efficiently induce pro-inflammatory cytokine and antiviral type I interferon production in dendritic cells. We demonstrate that MyD88-dependent signalling is essential for this cytokine response and identify TLR9 as a specific sensor of RNA:DNA hybrids. Hybrids therefore represent a novel molecular pattern sensed by the innate immune system and so could play an important role in host response to viruses and the pathogenesis of autoimmune disease. PMID:24514026

  14. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases

    PubMed Central

    Ruprich-Robert, Gwenaël; Thuriaux, Pierre

    2010-01-01

    DNA transcription depends on multimeric RNA polymerases that are exceptionally conserved in all cellular organisms, with an active site region of >500 amino acids mainly harboured by their Rpb1 and Rpb2 subunits. Together with the distantly related eukaryotic RNA-dependent polymerases involved in gene silencing, they form a monophyletic family of ribonucleotide polymerases with a similarly organized active site region based on two double-? barrels. Recent viral and phage genome sequencing have added a surprising variety of putative nucleotide polymerases to this protein family. These proteins have highly divergent subunit composition and amino acid sequences, but always contain eight invariant amino acids forming a universally conserved catalytic site shared by all members of the two-barrel protein family. Moreover, the highly conserved ‘funnel’ and ‘switch 2’ components of the active site region are shared by all putative DNA-dependent RNA polymerases and may thus determine their capacity to transcribe double-stranded DNA templates. PMID:20360047

  15. Cloning, sequencing and expression of a cDNA encoding mammalian valyl-tRNA synthetase.

    PubMed

    Vilalta, A; Donovan, D; Wood, L; Vogeli, G; Yang, D C

    1993-01-30

    A fragment of the cDNA encoding a rat valyl-tRNA synthetase (TrsVal)-like protein was cloned from a rat cDNA library in lambda gt11 using an oligodeoxyribonucleotide (oligo) probe. Three independent plaque clones containing the human TrsVal cDNA were then isolated from a lambda gt10 human erythroleukemia cDNA library using the rat cDNA fragment as the hybridization probe. Sequence analyses of the cDNA fragments provided a 3.2-kb sequence with an open reading frame that contained the 'HIGH' synthetase signature sequence and the tRNA 3'-end-binding motif, KMSKS, and putative Val-binding motif, EWCISRQ. The sequence was extended to the 3' end of the cDNA by the polymerase chain reaction using an internal primer and an oligo(dT) adapter. The deduced 1051-amino-acid sequence shares 65% identity with yeast TrsVal, and contains a highly basic N-terminal region, a newly evolved protease-sensitive region in sequence close to the C terminus, and several sites for protein kinase C phosphorylation. A 3-kb cDNA fragment was sub-cloned into plasmid pSVL and expressed in COS-7 cells; up to a sevenfold increase in TrsVal activity was obtained. These results confirm the cloning and sequencing of a human TrsVal-encoding cDNA. PMID:8428657

  16. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal gangliaof latently infected mice

    Microsoft Academic Search

    Anand Mehta; John Maggioncalda; Omar Bagasra; Seshamma Thikkavarapu; Pamujula Saikumari; Tibor Valyi-Nagy; Nigel W. Fraser; Timothy M. Block

    1995-01-01

    The presence of herpes simplex virus (HSV-1) DNA in the trigeminal ganglia of latently infected mice was detected byan in situ DNA polymerase chain reaction (PCR), which includes a DNA:DNA hybridization step (indirect in situ PCR). These results were compared to the number of neurons possessing the HSV-1 latency associated transcript (LAT), as detected by in situ RNA hybridization with

  17. The Tree of Life's Macromolecules

    NSDL National Science Digital Library

    Molecular Literacy Project

    Students start with images of living organisms, from bacteria to plants and animals. They "zoom" into cells and tissues to discover that they are made of different macromolecules. Students observe that these macromolecules are polymers. They zoom into polymers to find that some are made from almost identical monomers, while others, such as proteins, are made from a set of different monomers. They discover that all monomers making up biological macromolecules are composed of just a few types of chemical elements: C, H, O, N, P and S. Students will be able to:Identify typical molecular building blocks (monomers) that form biological macromolecules; determine the types of atoms that make up most biopolymers; reason about the uniformity and diversity at the atomic level of life's molecular building blocks.

  18. Stabilizing RNA by the sonochemical formation of RNA nanospheres.

    PubMed

    Shimanovich, Ulyana; Volkov, Vadim; Eliaz, Dror; Aizer, Adva; Michaeli, Shulamit; Gedanken, Aharon

    2011-04-18

    Biological macromolecules, including DNA, RNA, and proteins, have intrinsic features that make them potential building blocks for the bottom-up fabrication of nanodevices. Unlike DNA, RNA is a more versatile molecule whose range in the cell is from 21 to thousands of nucleotides and is usually folded into stem and loop structures. RNA is unique in nanoscale fabrication due to its diversity in size, function, and structure. Because gene expression analysis is becoming a clinical reality and there is a need to collect RNA in minute amounts from clinical samples, keeping the RNA intact is a growing challenge. RNA samples are notoriously difficult to handle because of their highly labile nature and tendency to degrade even under controlled RNase-free conditions and maintenance in the cold. Silencing the RNA that induces the RNA interference is viewed as the next generation of therapeutics. The stabilization and delivery of RNA to cells are the major concerns in making siRNAs usable drugs. For the first time, ultrasonic waves are shown to convert native RNA molecules to RNA nanospheres. The creation of the nanobubbles is performed by a one-step reaction. The RNA nanospheres are stable at room temperature for at least one month. Additionally, the nanospheres can be inserted into mammalian cancer cells (U2OS). This research achieves: 1) a solution to RNA storage; and 2) a way to convert RNA molecules to RNA particles. RNA nanosphere formation is a reversible process, and by using denaturing conditions, the RNA can be refolded into intact molecules. PMID:21456085

  19. A FRET-based DNA nano-tweezer technique for the imaging analysis of specific mRNA.

    PubMed

    Funabashi, Hisakage; Shigeto, Hajime; Nakatsuka, Keisuke; Kuroda, Akio

    2015-02-21

    A DNA nano-tweezer (DNA-NT) structure-based target mRNA detection probe, which uses fluorescence resonance energy transfer (FRET) as a detection signal and works as a single molecule, has been developed. This FRET-paired fluorescent dye-modified DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from open to closed states and produces a FRET signal in response to in vitro transcripts of Hes-1 mRNA. Our results showed that the FRET-based DNA-NT detected both GLUT1 mRNA as a pre-fixed target mRNA model and Hes-1 mRNA as a model expressed inside a living cell. These results confirm the feasibility of using the FRET-based DNA-NT for imaging analysis of target mRNA. PMID:25529369

  20. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    PubMed

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure twice these nucleases act as molecular level transformers that typically reshape the DNA and sometimes themselves to achieve extraordinary specificity and efficiency. PMID:24754999

  1. Effects of long DNA folding and small RNA stem–loop in thermophoresis

    PubMed Central

    Maeda, Yusuke T.; Tlusty, Tsvi; Libchaber, Albert

    2012-01-01

    In thermophoresis, with the fluid at rest, suspensions move along a gradient of temperature. In an aqueous solution, a PEG polymer suspension is depleted from the hot region and builds a concentration gradient. In this gradient, DNA polymers of different sizes can be separated. In this work the effect of the polymer structure for genomic DNA and small RNA is studied. For genome-size DNA, individual single T4 DNA is visualized and tracked in a PEG solution under a temperature gradient built by infrared laser focusing. We find that T4 DNA follows steps of depletion, ring-like localization, and accumulation patterns as the PEG volume fraction is increased. Furthermore, a coil–globule transition for DNA is observed for a large enough PEG volume fraction. This drastically affects the localization position of T4 DNA. In a similar experiment, with small RNA such as ribozymes we find that the stem–loop folding of such polymers has important consequences. The RNA polymers having a long and rigid stem accumulate, whereas a polymer with stem length less than 4 base pairs shows depletion. Such measurements emphasize the crucial contribution of the double-stranded parts of RNA for thermal separation and selection under a temperature gradient. Because huge temperature gradients are present around hydrothermal vents in the deep ocean seafloor, this process might be relevant, at the origin of life, in an RNA world hypothesis. Ribozymes could be selected from a pool of random sequences depending on the length of their stems. PMID:23071341

  2. SURVEY AND SUMMARY: Having it both ways: transcription factors that bind DNA and RNA

    PubMed Central

    Cassiday, Laura A.; Maher, L. James

    2002-01-01

    Multifunctional proteins challenge the conventional ‘one protein–one function’ paradigm. Here we note apparent multifunctional proteins with nucleic acid partners, tabulating eight examples. We then focus on eight additional cases of transcription factors that bind double-stranded DNA with sequence specificity, but that also appear to lead alternative lives as RNA-binding proteins. Exemplified by the prototypic Xenopus TFIIIA protein, and more recently by mammalian p53, this list of transcription factors includes WT-1, TRA-1, bicoid, the bacterial ?70 subunit, STAT1 and TLS/FUS. The existence of transcription factors that bind both DNA and RNA provides an interesting puzzle. Little is known concerning the biological roles of these alternative protein–nucleic acid interactions, and even less is known concerning the structural basis for dual nucleic acid specificity. We discuss how these natural examples have motivated us to identify artificial RNA sequences that competitively inhibit a DNA-binding transcription factor not known to have a natural RNA partner. The identification of such RNAs raises the possibility that RNA binding by DNA-binding proteins is more common than currently appreciated. PMID:12364590

  3. Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences

    PubMed Central

    de Vanssay, Augustin; Bougé, Anne-Laure; Boivin, Antoine; Hermant, Catherine; Teysset, Laure; Delmarre, Valérie; Ronsseray, Stéphane; Antoniewski, Christophe

    2013-01-01

    Piwi-interacting RNAs (piRNAs) ensure transposable element silencing in Drosophila, thereby preserving genome integrity across generations. Primary piRNAs arise from the processing of long RNA transcripts produced in the germ line by a limited number of telomeric and pericentromeric loci. Primary piRNAs bound to the Argonaute protein Aubergine then drive the production of secondary piRNAs through the “ping-pong” amplification mechanism that involves an interplay with piRNAs bound to the Argonaute protein Argonaute-3. We recently discovered that clusters of P-element-derived transgenes produce piRNAs and mediate silencing of homologous target transgenes in the female germ line. We also demonstrated that some clusters are able to convert other homologous inactive transgene clusters into piRNA-producing loci, which then transmit their acquired silencing capacity over generations. This paramutation phenomenon is mediated by maternal inheritance of piRNAs homologous to the transgenes. Here we further mined our piRNA sequencing data sets generated from various strains carrying transgenes with partial sequence homology at distinct genomic sites. This analysis revealed that same sequences in different genomic contexts generate highly similar profiles of piRNA abundances. The strong tendency of piRNAs for bearing a U at their 5? end has long been recognized. Our observations support the notion that, in addition, the relative frequencies of Drosophila piRNAs are locally determined by the DNA sequence of piRNA loci. PMID:23880829

  4. Seasonal patterns of muscle RNA-DNA ratio and growth in black crappie, Pomoxis nigromaculatus

    Microsoft Academic Search

    Terry A. Haines

    1980-01-01

    Synopsis  Black crappie (Pomoxis nigromaculatus) were collected weekly from a natural lake during the period mid-April to mid-September. The fish were weighed, state of\\u000a maturity determined and RNA-DNA ratio of white muscle was measured. Water temperature and primary production were measured\\u000a in the lake.\\u000a \\u000a RNA-DNA ratio declined during the spawning season, reaching a low in mid-May, then increased steadily during the

  5. A streamlined protocol for extracting RNA and genomic DNA from archived human blood and muscle.

    PubMed

    Majumdar, Gipsy; Vera, Santiago; Elam, Marshall B; Raghow, Rajendra

    2015-04-01

    We combined the TRIzol method of nucleic acid extraction with QIAamp columns to achieve coextraction of RNA and genomic DNA from peripheral blood mononuclear cells (PBMCs) and biopsied skeletal muscle, both stored at -80°C for many months. Total RNA was recovered from the upper aqueous phase of TRIzol. The interphase and organic phases were precipitated with ethanol, digested with proteinase K, and filtered through QIAamp MinElute columns to recover DNA. The combined protocol yielded excellent quality and quantity of nucleic acids from archived human PBMCs and muscle and may be easily adapted for other tissues. PMID:25579785

  6. Boundary of pRNA functional domains and minimum pRNA sequence requirement for specific connector binding and DNA packaging of phage phi29.

    PubMed

    Garver, K; Guo, P

    1997-09-01

    Bacteriophage phi29 utilizes a viral-encoded 120-base RNA (pRNA) to accomplish dsDNA packaging into a preformed procapsid. Six pRNAs bind to the procapsid and work sequentially. The pRNA contains two functional domains, one for binding to the DNA translocating connector, and the other for interacting with another component of the DNA packaging machinery during DNA translocation. By UV crosslinking, the pRNA was found to bind to the connector specifically and not to the capsid or scaffolding proteins. When purified connectors were incubated with pRNA, rosette-like connector oligomers were observed. These oligomers were found to contain pRNA. A series of deletion mutants of the pRNA were constructed and their ability to perform various tasks involved in phi29 assembly were assayed. The minimum sizes of the pRNA needed for the following activities have been determined: (1) specific binding to procapsid or to connectors; (2) connector or procapsid binding with full efficiency compared with wild-type pRNA; and (3) genomic DNA packaging. In summary, bases 37-91 (55 nt) comprised the minimum sequence required for specific connector binding, although with lower efficiency; bases 6-113 (105 nt with the additional deletion of two nonessential bases, C109 and A106) comprised the minimum sequence required for full connector binding activity; and bases 1-117 comprised the minimum sequence needed for full DNA packaging activity. These data indicate clearly that the helical region composed of bases 1-6 and 113-117 plays a crucial role in DNA translocation, but is dispensable for connector binding. A model for the role of the pRNA in DNA packaging was also presented. PMID:9292504

  7. Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry.

    PubMed

    Nowak, El?bieta; Miller, Jennifer T; Bona, Marion K; Studnicka, Justyna; Szczepanowski, Roman H; Jurkowski, Jakub; Le Grice, Stuart F J; Nowotny, Marcin

    2014-04-01

    Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)-containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract-containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer. PMID:24608367

  8. Oxidative DNA lesions as blocks to in vitro transcription by phage 17 RNA polymerase

    SciTech Connect

    Hatahet, Z.; Purmal, A.A.; Wallace, S.S. [Univ. of Vermont, Burlington, VT (United States)

    1994-12-31

    In recent years, a link between the transcriptional state of damaged DNA and the rate at which it is repaired has been demonstrated in both prokaryotes and eukaryotes. DNA containing bulky adducts, cross-links, and UV damage processed by nucleotide excision repair is repaired at a higher rate when it is actively transcribed. For these damages, evidence exists that an RNA polymerase molecule, stalled opposite a lesion, works as a signal to initiate repair, thus linking the two processes. However, no conclusive demonstration exists between base excision repair processing and transcription. Accordingly, we have examined the ability of several oxidative DNA lesions to block in vitro transcription by phage T7 RNA polymerase. Previous and ongoing work in this laboratory suggests that the effect that these lesions have on DNA polymerases is greatly influenced by the sequence context in which they are found. Future work will examine if sequence context regulates the role of these lesions as blocks to transcription.

  9. Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation.

    PubMed

    Iacovella, Maria G; Golfieri, Cristina; Massari, Lucia F; Busnelli, Sara; Pagliuca, Cinzia; Dal Maschio, Marianna; Infantino, Valentina; Visintin, Rosella; Mechtler, Karl; Ferreira-Cerca, Sébastien; De Wulf, Peter

    2015-01-01

    The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis. PMID:25851096

  10. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA

    PubMed Central

    Nishimasu, Hiroshi; Ran, F. Ann; Hsu, Patrick D.; Konermann, Silvana; Shehata, Soraya; Dohmae, Naoshi; Ishitani, Ryuichiro; Zhang, Feng; Nureki, Osamu

    2014-01-01

    SUMMARY The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA, at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively-charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and non-complementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies. PMID:24529477

  11. Analysis of Cytokine mRNA and DNA: Detection and Quantitation by Competitive Polymerase Chain Reaction

    Microsoft Academic Search

    Gary Gilliland; Steven Perrin; Kerry Blanchard; H. Franklin Bunn

    1990-01-01

    The expression of two cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3), has been investigated in MLA-144 cells before and after induction with phorbol 12-myristate 13-acetate. We describe an adaptation of the polymerase chain reaction (PCR) for highly accurate quantitation of mRNA or DNA from a small number of cells. Aliquots of the PCR mixture containing cDNA copies of

  12. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis.

    PubMed

    Ausin, Israel; Greenberg, Maxim V C; Li, Carey Fei; Jacobsen, Steven E

    2012-01-01

    Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-interacting domains. After transforming FWA into 429 T-DNA insertion lines, we assayed for mutants that exhibited a late-flowering phenotype due to hypomethylated, thus ectopically expressed, copies of FWA. A T-DNA insertion line within the coding region of the spliceosome gene SR45 (sr45-1) flowered late after FWA transformation. Additionally, sr45-1 mutants display defects in the maintenance of DNA methylation. DNA methylation establishment and maintenance defects present in sr45-1 mutants are enhanced in dcl3-1 mutant background, suggesting a synergistic cooperation between SR45 and DICER-LIKE3 (DCL3) in the RdDM pathway. PMID:22274613

  13. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis

    PubMed Central

    Ausin, Israel; Greenberg, Maxim V.C.; Li, Carey Fei; Jacobsen, Steven E.

    2012-01-01

    Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-interacting domains. After transforming FWA into 429 T-DNA insertion lines, we assayed for mutants that exhibited a late-flowering phenotype due to hypomethylated, thus ectopically expressed, copies of FWA. A T-DNA insertion line within the coding region of the spliceosome gene SR45 (sr45-1) flowered late after FWA transformation. Additionally, sr45-1 mutants display defects in the maintenance of DNA methylation. DNA methylation establishment and maintenance defects present in sr45-1 mutants are enhanced in dcl3-1 mutant background, suggesting a synergistic cooperation between SR45 and DICER-LIKE3 (DCL3) in the RdDM pathway. PMID:22274613

  14. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  15. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis

    PubMed Central

    Ausin, Israel; Greenberg, Maxim V. C.; Simanshu, Dhirendra K.; Hale, Christopher J.; Vashisht, Ajay A.; Simon, Stacey A.; Lee, Tzuu-fen; Feng, Suhua; Española, Sophia D.; Meyers, Blake C.; Wohlschlegel, James A.; Patel, Dinshaw J.; Jacobsen, Steven E.

    2012-01-01

    At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome. PMID:22592791

  16. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis.

    PubMed

    Ausin, Israel; Greenberg, Maxim V C; Simanshu, Dhirendra K; Hale, Christopher J; Vashisht, Ajay A; Simon, Stacey A; Lee, Tzuu-fen; Feng, Suhua; Española, Sophia D; Meyers, Blake C; Wohlschlegel, James A; Patel, Dinshaw J; Jacobsen, Steven E

    2012-05-29

    At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome. PMID:22592791

  17. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis

    SciTech Connect

    Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.; Hale, Christopher J.; Vashisht, Ajay A.; Simon, Stacey A.; Lee, Tzuu-fen; Feng, Suhua; Española, Sophia D.; Meyers, Blake C.; Wohlschlegel, James A.; Patel, Dinshaw J.; Jacobsen, Steven E. (UCLA); (MSKCC); (Delaware)

    2012-10-23

    At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.

  18. Rolling circle amplification detection of RNA and DNA

    DOEpatents

    Christian, Allen T.; Pattee, Melissa S.; Attix, Cristina M.; Tucker, James D.

    2004-08-31

    Rolling circle amplification (RCA) has been useful for detecting point mutations in isolated nucleic acids, but its application in cytological preparations has been problematic. By pretreating cells with a combination of restriction enzymes and exonucleases, we demonstrate RCA in solution and in situ to detect gene copy number and single base mutations. It can also detect and quantify transcribed RNA in individual cells, making it a versatile tool for cell-based assays.

  19. Different modes of interaction by TIAR and HuR with target RNA and DNA.

    PubMed

    Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A

    2011-02-01

    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways. PMID:21233170

  20. High-fidelity recognition of RNA: solution structure of a DNA:RNA hybrid duplex with a molecular cap.

    PubMed

    Gerlach, Claudia; Claasen, Birgit; Richert, Clemens

    2014-11-24

    Binding RNA targets, such as microRNAs, with high fidelity is challenging, particularly when the nucleobases to be bound are located at the terminus of the duplex between probe and target. Recently, a peptidyl chain terminating in a quinolone, called ogOA, was shown to act as a cap that enhances affinity and fidelity for RNAs, stabilizing duplexes with Watson-Crick pairing at their termini. Here we report the three-dimensional structure of an intramolecular complex between a DNA strand featuring the ogOA cap and an RNA segment, solved by NMR and restrained torsion angle molecular dynamics. The quinolone stacks on the terminal base pair of the hybrid duplex, positioned by the peptidyl chain, whose prolinol residue induces a sharp bend between the 5' terminus of the DNA chain and the glycine linked to the oxolinic acid residue. The structure explains why canonical base pairing is favored over hard-to-suppress mismatched base combinations, such as T:G and A:A, and helps to design improved high-fidelity probes for RNA. PMID:25318665

  1. Switch to raltegravir-based regimens and HIV DNA decrease in patients with suppressed HIV RNA

    PubMed Central

    Bianco, Claudia; Meini, Genny; Rossetti, Barbara; Lamonica, Silvia; Mondi, Annalisa; Belmonti, Simone; Fanti, Luri; Ciccarelli, Nicoletta; Di Giambenedetto, Simona; Zazzi, Maurizio; De Luca, Andrea

    2014-01-01

    Introduction Raltegravir intensification is associated with an increase in 2-LTR episomal HIV DNA= circles, indicating a persistent low-level replication, in some individuals in ART with suppressed HIV RNA. We aimed at monitoring residual plasma HIV RNA and cellular HIV DNA in virologically suppressed patients switching to a raltegravir-based regimen. Materials and Methods Forty-six HIV-infected subjects on PI or NNRTI based-regimens, with plasma HIV RNA level <40 copies/mL for ?6 months and CD4 >200 cells/µL for ?12 months were enrolled. Thirty-four patients switched to raltegravir-based regimen (RASTA study group) and 12 continued a PI or NNRTI based-regimen (control group). Ultrasensitive HIV residual viremia and total PBMC HIV DNA were assessed at baseline (W0), 24 (W24) and 48 (W48) weeks. HIV RNA levels were determined by an ultrasensitive test derived from a commercial real time PCR (limit of detection 5 copies/ml). A real time PCR was used to quantify HIV DNA copy numbers in PBMCs. Results At W0, HIV DNA was detected in all patients while at W48 it was detectable in 82.3% of RASTA group vs 100% of controls (p=0.01). The difference between the average values of HIV DNA log10 copies/10°6 CD4 at W0 (median 3.11, IQR 2.70–3.45) and W48 (median 2.87, IQR 2.24–3.38) was statistically significant for RASTA group (p=0.035). Male gender (mean difference ?0.37 log10 copies/10°6 PBMC, p=0.023) and previous PI based-ART (mean difference +0.39 log10 copies/10°6 PBMC, p=0.036) were predictive of HIV DNA level at W0. After adjusting for previous PI based-ART, male gender was the only variable independently associated with HIV DNA size at W0 (mean difference ?0.326 log10 copies/10°6 PBMC, 95% CI ?0.641, ?0.011 p=0.043). Ultrasensitive HIV-1 RNA was detectable at W0 in 50% of RASTA group versus 66.7% of controls and at W48 in 32.4% versus 45.5%, respectively. No differences were found between HIV RNA levels at W0 and W48 within and between the two groups. Conclusions Switching to raltegravir-based regimens may be associated with a decrease of HIV reservoir, as measured by total PBMC HIV DNA. A larger sample size is required to confirm this finding. PMID:25397535

  2. RNA/DNA co-analysis from blood stains--results of a second collaborative EDNAP exercise.

    PubMed

    Haas, C; Hanson, E; Anjos, M J; Bär, W; Banemann, R; Berti, A; Borges, E; Bouakaze, C; Carracedo, A; Carvalho, M; Castella, V; Choma, A; De Cock, G; Dötsch, M; Hoff-Olsen, P; Johansen, P; Kohlmeier, F; Lindenbergh, P A; Ludes, B; Maroñas, O; Moore, D; Morerod, M-L; Morling, N; Niederstätter, H; Noel, F; Parson, W; Patel, G; Popielarz, C; Salata, E; Schneider, P M; Sijen, T; Sviežena, B; Turanská, M; Zatkalíková, L; Ballantyne, J

    2012-01-01

    A second collaborative exercise on RNA/DNA co-analysis for body fluid identification and STR profiling was organized by the European DNA Profiling Group (EDNAP). Six human blood stains, two blood dilution series (5-0.001 ?l blood) and, optionally, bona fide or mock casework samples of human or non-human origin were analyzed by the participating laboratories using a RNA/DNA co-extraction or solely RNA extraction method. Two novel mRNA multiplexes were used for the identification of blood: a highly sensitive duplex (HBA, HBB) and a moderately sensitive pentaplex (ALAS2, CD3G, ANK1, SPTB and PBGD). The laboratories used different chemistries and instrumentation. All of the 18 participating laboratories were able to successfully isolate and detect mRNA in dried blood stains. Thirteen laboratories simultaneously extracted RNA and DNA from individual stains and were able to utilize mRNA profiling to confirm the presence of blood and to obtain autosomal STR profiles from the blood stain donors. The positive identification of blood and good quality DNA profiles were also obtained from old and compromised casework samples. The method proved to be reproducible and sensitive using different analysis strategies. The results of this collaborative exercise involving a RNA/DNA co-extraction strategy support the potential use of an mRNA based system for the identification of blood in forensic casework that is compatible with current DNA analysis methodology. PMID:21459062

  3. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA

    Microsoft Academic Search

    Michiko Kimoto; Tsuneo Mitsui; Tsuyoshi Fujiwara; Rie Kawai; Akira Sato; Yoko Harada; Ichiro Hirao; Shigeyuki Yokoyama

    2006-01-01

    Methods for the site-specific incorporation of extra components into nucleic acids can be powerful tools for creating DNA and RNA molecules with increased functionality. We present an unnatural base pair system in which DNA containing an unnatural base pair can be amplified and function as a template for the site-specific incorporation of base analog substrates into RNA via transcription. The

  4. Ratios between Contents of DNA, RNA and Protein in Different Microorganisms as a Function of Maximal Growth Rate

    Microsoft Academic Search

    Vagn Leick

    1968-01-01

    THE growth medium determines the macromolecular composition as well as the growth rate (number of doublings per hour) of micro-organisms in the steady state of growth. For a given micro-organism the ratios of RNA : protein and RNA : DNA are linear functions of the growth rate, whereas the ratio of DNA : protein is virtually independent of the rate

  5. A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches.

    PubMed

    Gunnigle, Eoin; Ramond, Jean-Baptiste; Frossard, Aline; Seeley, Mary; Cowan, Don

    2014-08-01

    A co-extraction protocol that sequentially isolates core biopolymer fractions (DNA, RNA, protein) from edaphic microbial communities is presented. In order to confirm compatibility with downstream analyses, bacterial T-RFLP profiles were generated from the DNA- and RNA-derived fractions of an arid-based soil, with metaproteomics undertaken on the corresponding protein fraction. PMID:24929037

  6. In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA molecules that have catalytic

    E-print Network

    Weiblen, George D

    257 In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA of nucleic acid molecules. The future application of in vitro selected RNA and DNA catalysts in bioorganic-state analog Introduction Combinatorial nucleic-acid libraries have found increasing use for the isolation

  7. The classification of tymoviruses by cDNA-RNA hybridization and other measures of relatedness

    Microsoft Academic Search

    J. Blok; A. Gibbs; A. Mackenzie

    1987-01-01

    Summary The relationships of twelve tymoviruses have been assessed by cDNA-RNA hybridization. In addition, the percentage molar nucleotide composition of the genome of the PD strain of Kennedya yellow mosaic virus and the percentage molar amino acid composition of the coat proteins of cacao yellow mosaic, Kennedya yellow mosaic and turnip yellow mosaic (Cardamine strain) viruses were estimated. These as

  8. Correction of the Mutation Responsible for Sickle Cell Anemia by an RNA-DNA Oligonucleotide

    Microsoft Academic Search

    Allyson Cole-Strauss; Kyonggeun Yoon; Yufei Xiang; Bruce C. Byrne; Michael C. Rice; Jeff Gryn; William K. Holloman; Eric B. Kmiec

    1996-01-01

    A chimeric oligonucleotide composed of DNA and modified RNA residues was used to direct correction of the mutation in the hemoglobin beta^S allele. After introduction of the chimeric molecule into lymphoblastoid cells homozygous for the beta^S mutation, there was a detectable level of gene conversion of the mutant allele to the normal sequence. The efficient and specific conversion directed by

  9. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

    PubMed Central

    Swift, Robert V.; Amaro, Rommie E.

    2009-01-01

    Background Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. Objective In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD+-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. Conclusion High quality crystal structures of both NAD+-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity. PMID:20354588

  10. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  11. Purification and Characterization of DNA-Dependent RNA Polymerase from Staphylococcus aureus

    Microsoft Academic Search

    R. Deora; T. K. Misra

    1995-01-01

    DNA dependent RNA polymerase from exponentially growing Staphylococcus aureus cells was purified. An SDS-polyacrylamide gel analysis of the most purified preparation revealed that it consists of ?, ??, ?, and ? with apparent molecular masses of 151, 147, 42, and 55 kDa, respectively. The ? subunit cross reacted with a polyclonal antibody against Bacillus subtilis ?43. The cross reacting peptide

  12. RNA, DNA, and Cell Surface Characteristics of Lesional and Nonlesional Psoriatic Skin

    Microsoft Academic Search

    Lisa Staiano-Coico; Alice B. Gottlieb; Lance Barazani; D. Martin Carter

    1987-01-01

    We have measured the RNA and DNA content and examined cell surface characteristics of human epidermal cells derived from normal skin, and lesional and nonlesional areas of psoriatic skin prior to and following treatment on a modified Goeckerman protocol. Our results show that cells from active psoriatic lesions contain greater numbers of basal keratinocytes when compared with either nonlesional skin

  13. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing

    E-print Network

    Jacobsen, Steve

    experimental test of the effect of methylation on alternative slicing at the whole genome level has never beenRNA interference knockdown of DNA methyl- transferase 3 affects gene alternative splicing of Medicine, Houston, TX 77030; f Divisions of Animal and Plant Sciences, University of Missouri, Columbia, MO

  14. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect

    PubMed Central

    Ui-Tei, Kumiko; Naito, Yuki; Zenno, Shuhei; Nishi, Kenji; Yamato, Kenji; Takahashi, Fumitaka; Juni, Aya; Saigo, Kaoru

    2008-01-01

    Short interfering RNA (siRNA)-based RNA interference (RNAi) is widely used for target gene knockdown in mammalian cells. To clarify the position-dependent functions of ribonucleotides in siRNA, siRNAs with various DNA substitutions were constructed. The following could be simultaneously replaced with DNA without substantial loss of gene-silencing activity: the seed arm, which occupies positions 2–8 from the 5?end of the guide strand; its complementary sequence; the 5?end of the guide strand and the 3?overhang of the passenger strand. However, most part of the 3? two-thirds of the guide strand could not be replaced with DNA, possibly due to binding of RNA-recognition proteins such as TRBP2 and Ago2. The passenger strand with DNA in the 3?end proximal region was incapable of inducing off-target effect. Owing to lesser stability of DNA–RNA hybrid than RNA duplex, modified siRNAs with DNA substitution in the seed region were, in most cases, incapable to exert unintended gene silencing due to seed sequence homology. Thus, it may be possible to design DNA–RNA chimeras which effectively silence mammalian target genes without silencing unintended genes. PMID:18267968

  15. Short Hairpin RNA Suppression of Thymidylate Synthase Produces DNA Mismatches and Results in Excellent Radiosensitization

    SciTech Connect

    Flanagan, Sheryl A., E-mail: sflan@umich.edu [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Cooper, Kristin S. [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)] [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Mannava, Sudha; Nikiforov, Mikhail A. [Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York (United States)] [Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York (United States); Shewach, Donna S. [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)] [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2012-12-01

    Purpose: To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur. Methods and Materials: shRNA suppression of TS was compared with 5-fluoro-2 Prime -deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay. Cell cycle effects were measured by flow cytometry. The effects of FdUrd or shRNA suppression of TS on dNTP deoxynucleotide triphosphate imbalances and consequent nucleotide misincorporations into deoxyribonucleic acid (DNA) were analyzed by high-pressure liquid chromatography and as pSP189 plasmid mutations, respectively. Results: TS shRNA produced profound ({>=}90%) and prolonged ({>=}8 days) suppression of TS in HCT116 and HT29 cells, whereas FdUrd increased TS expression. TS shRNA also produced more specific and prolonged effects on dNTPs deoxynucleotide triphosphates compared with FdUrd. TS shRNA suppression allowed accumulation of cells in S-phase, although its effects were not as long-lasting as those of FdUrd. Both treatments resulted in phosphorylation of Chk1. TS shRNA alone was less cytotoxic than FdUrd but was equally effective as FdUrd in eliciting radiosensitization (radiation enhancement ratio: TS shRNA, 1.5-1.7; FdUrd, 1.4-1.6). TS shRNA and FdUrd produced a similar increase in the number and type of pSP189 mutations. Conclusions: TS shRNA produced less cytotoxicity than FdUrd but was equally effective at radiosensitizing tumor cells. Thus, the inhibitory effect of FdUrd on TS alone is sufficient to elicit radiosensitization with FdUrd, but it only partially explains FdUrd-mediated cytotoxicity and cell cycle inhibition. The increase in DNA mismatches after TS shRNA or FdUrd supports a causal and sufficient role for the depletion of dTTP thymidine triphosphate and consequent DNA mismatches underlying radiosensitization. Importantly, shRNA suppression of TS avoids FP-mediated TS elevation and its negative prognostic role. These studies support the further exploration of TS suppression as a novel radiosensitizing strategy.

  16. Simplified methods for the construction of RNA and DNA virus infectious clones.

    PubMed

    Nagata, Tatsuya; Inoue-Nagata, Alice Kazuko

    2015-01-01

    Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone. PMID:25287508

  17. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    SciTech Connect

    Li Guiqiu [Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang Province (China); Gu Hongxi [Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang Province (China)]. E-mail: hxgu2432@163.com; Li Di [Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang Province (China); Xu Weizhen [Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang Province (China)

    2007-04-06

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies.

  18. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage.

    PubMed

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel

    2014-08-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks. PMID:25064736

  19. Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms #

    E-print Network

    Schraudolph, Nicol N.

    Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms # Markus. Protein translation is a rapid and accurate process, which has been optimized by evolution. Recently, it has been shown that tRNA reusage influ­ ences translation speed. We present the tRNA Pairing Index

  20. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in plants

    PubMed Central

    Law, Julie A.; Ausin, Israel; Johnson, Lianna M.; Vashisht, Ajay A.; Zhu, Jian-Kang; Wohlschlegel, James A.; Jacobsen, Steven E.

    2010-01-01

    Summary DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM)[1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts[3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1)[4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3)[5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that, RDM1, like DRD1[3] and DMS3[7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. PMID:20409711

  1. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis.

    PubMed

    Law, Julie A; Ausin, Israel; Johnson, Lianna M; Vashisht, Ajay A; Zhu, Jian-Kang; Wohlschlegel, James A; Jacobsen, Steven E

    2010-05-25

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM). Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 and DMS3, is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. PMID:20409711

  2. Soaking of DNA into crystals of archaeal RNA polymerase achieved by desalting in droplets.

    PubMed

    Wojtas, Magdalena N; Abrescia, Nicola G A

    2012-09-01

    Transcription is a fundamental process across the three domains of life and is carried out by multi-subunit enzymatic DNA-directed RNA polymerases (RNAPs). The interaction of RNAP with nucleic acids is tightly controlled for precise and processive RNA synthesis. Whilst a wealth of structural information has been gathered on the eukaryotic Pol II in complex with DNA/RNA, no information exists on its ancestral counterpart archaeal RNAP. Thus, in order to extend knowledge of the archaeal transcriptional apparatus, crystallization of Sulfolobus shibatae RNAP (molecular mass of ~400 kDa) with DNA fragments was pursued. To achieve this goal, crystal growth was first optimized using a nanoseeding technique. An ad hoc soaking protocol was then put into place, which consisted of gently exchanging the high-salt buffer used for apo-RNAP crystal growth into a low-salt buffer necessary for DNA binding to RNAP. Of the various crystals screened, one diffracted to 4.3 Å resolution and structural analysis showed the presence of bound DNA [Wojtas et al. (2012). Nucleic Acids Res. 40, doi:10.1093/nar/gks692]. PMID:22949213

  3. RNA polymerase approaches its promoter without long-range sliding along DNA.

    PubMed

    Friedman, Larry J; Mumm, Jeffrey P; Gelles, Jeff

    2013-06-11

    Sequence-specific DNA binding proteins must quickly bind target sequences, despite the enormously larger amount of nontarget DNA present in cells. RNA polymerases (or associated general transcription factors) are hypothesized to reach promoter sequences by facilitated diffusion (FD). In FD, a protein first binds to nontarget DNA and then reaches the target by a 1D sliding search. We tested whether Escherichia coli ?(54)RNA polymerase reaches a promoter by FD using the colocalization single-molecule spectroscopy (CoSMoS) multiwavelength fluorescence microscopy technique. Experiments directly compared the rates of initial polymerase binding to and dissociation from promoter and nonpromoter DNAs measured in the same sample under identical conditions. Binding to a nonpromoter DNA was much slower than binding to a promoter-containing DNA of the same length, indicating that the detected nonspecific binding events are not on the pathway to promoter binding. Truncating one of the DNA segments flanking the promoter to a length as short as 7 bp or lengthening it to ~3,000 bp did not alter the promoter-specific binding rate. These results exclude FD over distances corresponding to the length of the promoter or longer from playing any significant role in accelerating promoter search. Instead, the data support a direct binding mechanism, in which ?(54)RNA polymerase reaches the local vicinity of promoters by 3D diffusion through solution, and suggest that binding may be accelerated by atypical structural or dynamic features of promoter DNA. Direct binding explains how polymerase can quickly reach a promoter, despite occupancy of promoter-flanking DNA by bound proteins that would impede FD. PMID:23720315

  4. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  5. DNA-dependent RNA polymerase activity in silkmoth-wing epidermis after hormone treatment.

    PubMed

    Katula, K S; Gilbert, L I; Sridhara, S

    1981-06-01

    DNA-dependent RNA polymerase activity of wing epidermal tissue from the silkmoth, Antheraea polyphemus, has been studied after treatment of pupae with either molting hormone 20-hydroxyecdysone or 20-hydroxyecdysone and juvenile hormone. Enzyme activity has been measured both on endogenous template in isolated nuclei and on exogenous template after solubilization and correlated with transcriptional activity measured as the incorporation of [3H]uridine into RNA. Within 4 h of either hormonal regimen, increases in nuclear transcriptional activity for enzymes I and II are observed. Maximal nuclear activity for both enzyme classes was observed at 26 h. Solubilized enzyme activity, on the other hand, increased continuously up to 144 h. The increase in enzyme activity at 26 h, and probably earlier, is dependent on both RNA and protein synthesis, indicating that the increase is not a consequence of the activation of inactive molecules, but requires the synthesis of either new enzyme molecules or effector molecules. Application of 20-hydroxyecdysone + juvenile hormone does not significantly affect nuclear RNA polymerase activity, rates of RNA synthesis or even RNA content during the first 26 h. However, JH causes significant diminution in the rise of solubilized activity observed with 20-hydroxyecdysone. This reduction is not a consequence of diminished protein content. Therefore, the number of active RNA polymerase molecules appears not to directly correspond to the rate of RNA synthesis. PMID:7250486

  6. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  7. Adleman DNA ([14], [15])

    E-print Network

    Hagiya, Masami

    , and Etsuji Tomita : A method for extracting globally structure free set of sequences, Technical Report­ 1 Adleman DNA " " PCR PCR DNA DNA RNA " " " " 1 #12;PCR DNA 2 1. ([10]) DNA DNA DNA RNA RNA GFP RNA RNA RNA RNA GFP 2. DNA S S+ ([14], [15]) S+ ([17]) n (m ) S+ O(m6 n6 ) 2 #12;3. Abstract Rewriting

  8. Crystal structure of RNase H3-substrate complex reveals parallel evolution of RNA/DNA hybrid recognition.

    PubMed

    Figiel, Ma?gorzata; Nowotny, Marcin

    2014-08-01

    RNases H participate in the replication and maintenance of genomic DNA. RNase H1 cleaves the RNA strand of RNA/DNA hybrids, and RNase H2 in addition hydrolyzes the RNA residue of RNA-DNA junctions. RNase H3 is structurally closely related to RNases H2, but its biochemical properties are similar to type 1 enzymes. Its unique N-terminal substrate-binding domain (N-domain) is related to TATA-binding protein. Here, we report the first crystal structure of RNase H3 in complex with its RNA/DNA substrate. Just like RNases H1, type 3 enzyme recognizes the 2'-OH groups of the RNA strand and detects the DNA strand by binding a phosphate group and inducing B-form conformation. Moreover, the N-domain recognizes RNA and DNA in a manner that is highly similar to the hybrid-binding domain of RNases H1. Our structure demonstrates a remarkable example of parallel evolution of the elements used in the specific recognition of RNA and DNA. PMID:25016521

  9. Crystal structure of RNase H3–substrate complex reveals parallel evolution of RNA/DNA hybrid recognition

    PubMed Central

    Figiel, Ma?gorzata; Nowotny, Marcin

    2014-01-01

    RNases H participate in the replication and maintenance of genomic DNA. RNase H1 cleaves the RNA strand of RNA/DNA hybrids, and RNase H2 in addition hydrolyzes the RNA residue of RNA–DNA junctions. RNase H3 is structurally closely related to RNases H2, but its biochemical properties are similar to type 1 enzymes. Its unique N-terminal substrate-binding domain (N-domain) is related to TATA-binding protein. Here, we report the first crystal structure of RNase H3 in complex with its RNA/DNA substrate. Just like RNases H1, type 3 enzyme recognizes the 2?-OH groups of the RNA strand and detects the DNA strand by binding a phosphate group and inducing B-form conformation. Moreover, the N-domain recognizes RNA and DNA in a manner that is highly similar to the hybrid-binding domain of RNases H1. Our structure demonstrates a remarkable example of parallel evolution of the elements used in the specific recognition of RNA and DNA. PMID:25016521

  10. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  11. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  12. Macromolecules Relevant to Stone Formation

    NASA Astrophysics Data System (ADS)

    Ryall, Rosemary L.; Cook, Alison F.; Thurgood, Lauren A.; Grover, Phulwinder K.

    2007-04-01

    Despite years of research, no single macromolecule in kidney calculi or in urine has yet been shown to fulfill a specific function in stone pathogenesis. In this paper we briefly review papers investigating the urinary excretion of individual macromolecules, their effects on calcium oxalate (CaOx) crystallization and attachment of crystals to renal epithelial cells, and the influence of lithogenic conditions on their renal expression in cultured cells and animal models. Using prothrombin fragment 1 (PTF1) and human serum albumin as examples, we show the types of patterns resulting from the binding of a fluorescently tagged protein to a specific CaOx monohydrate (COM) crystal face and its incorporation into the crystal structure. Molecular modeling is also used to illustrate how PTF1 can align with the atomic array on a COM crystal surface. We conclude that although many macromolecules are, by strict definition, relevant to stone formation, very few are probably truly influential.

  13. Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA

    PubMed Central

    Lipfert, Jan; Skinner, Gary M.; Keegstra, Johannes M.; Hensgens, Toivo; Jager, Tessa; Dulin, David; Köber, Mariana; Yu, Zhongbo; Donkers, Serge P.; Chou, Fang-Chieh; Das, Rhiju; Dekker, Nynke H.

    2014-01-01

    RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force–torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed “P-RNA,” and a highly underwound, left-handed state denoted “L-RNA.” Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA: Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA–protein interactions at the single-molecule level. PMID:25313077

  14. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription.

    PubMed

    Majumder, Sarmila; Ghoshal, Kalpana; Datta, Jharna; Smith, David Spencer; Bai, Shoumei; Jacob, Samson T

    2006-08-01

    We have previously demonstrated that the expression of human ribosomal RNA genes (rDNA) in normal and cancer cells is differentially regulated by methylation of the promoter CpG islands. Furthermore, we showed that the methyl CpG-binding protein MBD2 plays a selective role in the methylation-mediated block in rDNA expression. Here, we analyzed the role of three functional mammalian DNA methyltransferases (DNMTs) in regulating the rDNA promoters activity. Immunofluorescence analysis and biochemical fractionation showed that all three DNMTs (DNMT1, DNMT3A, and DNMT3B) are associated with the inactive rDNA in the nucleolus. Although DNMTs associate with both methylated and unmethylated rDNA promoters, DNMT1 preferentially associates with the methylated genes. The rDNA primary transcript level was significantly elevated in DNMT1-/- or DNMT3B-/- human colon carcinoma (HCT116) cells. Southern blot analysis demonstrated a moderate level of rDNA promoter hypomethylation in DNMT1-/- cells and a dramatic loss of rDNA promoter methylation in double knockout cells. Transient overexpression of DNMT1 or DNMT3B suppressed the luciferase expression from both methylated and unmethylated pHrD-IRES-Luc, a reporter plasmid where the rDNA promoter drives luciferase expression. DNMT1-mediated suppression of the unmethylated promoter involves de novo methylation of the promoter, whereas histone deacetylase 2 cooperates with DNMT1 to inhibit the methylated rDNA promoter. Unlike DNMT1, both the wild type and catalytically inactive DNMT3B mutant can suppress rDNA promoter irrespective of its methylation status. DNMT3B-mediated suppression of the rDNA promoter also involves histone deacetylation. Treatment of HCT116 cells with Decitabine (a DNMT inhibitor) or trichostatin A (a histone deacetylase inhibitor) up-regulated endogenous rDNA expression. These inhibitors synergistically activated methylated pHrD-IRES-Luc, whereas they exhibited additive effects on the unmethylated promoter. These results demonstrate localization of DNMTs with the inactive rDNA in the nucleolus, the specific role of DNMT1 and DNMT3B in rDNA expression and the differential regulation of rDNA expression from the methylated and unmethylated rDNA promoters. PMID:16735507

  15. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2015-03-01

    Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ?B97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 134-147, 2015. PMID:25257334

  16. SRA/SET domain-containing proteins link RNA polymerase V occupancy to DNA methylation

    PubMed Central

    Hale, Christopher J.; Bischof, Sylvain; Feng, Suhua; Chodavarapu, Ramakrishna K.; Zhong, Xuehua; Marson, Giuseppe; Pellegrini, Matteo; Segal, David J.; Patel, Dinshaw J.; Jacobsen, Steven E.

    2014-01-01

    RNA-directed DNA methylation (RdDM) in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV)1,2 and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA3-7. The SU(VAR)3-9 homologs SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown8,9. Here we show that genome-wide Pol V association with chromatin redundantly requires, SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM) binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins8. SUVH2 and SUVH9 both contain SET- and RING-ASSOCIATED (SRA) domains capable of binding methylated DNA8, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH2 with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results suggest that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing. PMID:24463519

  17. Cellular HIV-1 DNA load predicts HIV-RNA rebound and the outcome of highly active antiretroviral therapy

    E-print Network

    Cellular HIV-1 DNA load predicts HIV-RNA rebound and the outcome of highly active antiretroviral HIV-1 DNA prior to highly active antiretroviral therapy (HAART) initiation predicts its outcome initiation were available. Cellular HIV-1 DNA quantification was performed by a molecular beacon-based real

  18. Novel zinc-based fixative for high quality DNA, RNA and protein analysis

    PubMed Central

    Lykidis, Dimitrios; Van Noorden, Susan; Armstrong, Alan; Spencer-Dene, Bradley; Li, Jie; Zhuang, Zhengping; Stamp, Gordon W. H.

    2007-01-01

    We have developed a reliable, cost-effective and non-toxic fixative to meet the needs of contemporary molecular pathobiology research, particularly in respect of RNA and DNA integrity. The effects of 25 different fixative recipes on the fixed quality of tissues from C57BL/6 mice were investigated. Results from IHC, PCR, RT–PCR, RNA Agilent Bioanalyser and Real-Time PCR showed that a novel zinc-based fixative (Z7) containing zinc trifluoroacetate, zinc chloride and calcium acetate was significantly better than the standard zinc-based fixative (Z2) and neutral buffered formalin (NBF) for DNA, RNA and protein preservation. DNA sequences up to 2.4?kb in length and RNA fragments up to 361?bp in length were successfully amplified from Z7 fixed tissues, as demonstrated by PCR, RT–PCR and Real-Time PCR. Total protein analysis was achieved using 2-D gel electrophoresis. In addition, nucleic acids and proteins were very stable over a 6–14-month period. This improved, non-toxic and economical tissue fixative could be applied for routine use in pathology laboratories to permit subsequent genomic/proteomic studies. PMID:17576663

  19. The eukaryotic way to defend and edit genomes by sRNA-targeted DNA deletion.

    PubMed

    Swart, Estienne C; Nowacki, Mariusz

    2015-04-01

    While there is currently burgeoning interest in the application of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) to genome editing, it is perhaps not widely appreciated that this is the second discovery of a small RNA (sRNA)-targeted DNA-deletion system. The first sRNA-targeted DNA-deletion system to be discovered, which we call IES/Ias (internal eliminated sequence/IES-associated genes) to contrast with CRISPR/Cas, is found in ciliates, and, like CRISPR/Cas, is thought to serve as a form of immune defense against invasive DNAs. The manner in which the ciliate IES/Ias system functions is distinct from that of the CRISPR/Cas system in archaea and bacteria, and arose independently through a synthesis of RNA interference-derived and DNA-specific molecular components. Despite the major differences between CRISPR/Cas and IES/Ias, both systems face similar conceptual challenges in targeting invasive DNAs. In this review, we focus on the discovery, effects, function, and evolutionary consequences of the IES/Ias system. PMID:25581723

  20. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics.

    PubMed

    Rao, Aditya; P, Deepthi; Renumadhavi, C H; Chandra, M Girish; Srinivasan, Rajgopal

    2015-02-01

    Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods. PMID:25629590

  1. HYPOXIA-INDUCED GROWTH LIMITATION OF JUVENILE FISHES IN AN ESTUARINE NURSERY: ASSESSMENT OF SMALL-SCALE TEMPORAL DYNAMICS USING RNA:DNA

    EPA Science Inventory

    The ratio of RNA to DNA (RNA:DNA) in white muscle tissue of juvenile summer flounder (Paralichthys dentatus) and weakfish (Cynoscion regalis) was used as a proxy for recent growth rate in an estuarine nursery. Variability in RNA:DNA was examined relative to temporal changes in te...

  2. Polymerase-IV occupancy at RNA-directed DNA methylation sites requires SHH1

    PubMed Central

    Law, Julie A.; Du, Jiamu; Hale, Christopher J.; Feng, Suhua; Krajewski, Krzysztof; Palanca, Ana Marie S.; Strahl, Brian D.; Patel, Dinshaw J.; Jacobsen, Steven E.

    2014-01-01

    DNA methylation is an epigenetic modification that plays critical roles in gene silencing, development, and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM)1. This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors1,2. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1)3,4, a Pol-IV interacting protein3. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals1,5, a further understanding of this early targeting step may aid in our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy. PMID:23636332

  3. Nucleotide contributions to the structural integrity and DNA replication initiation activity of noncoding y RNA.

    PubMed

    Wang, Iren; Kowalski, Madzia P; Langley, Alexander R; Rodriguez, Raphaël; Balasubramanian, Shankar; Hsu, Shang-Te Danny; Krude, Torsten

    2014-09-23

    Noncoding Y RNAs are small stem-loop RNAs that are involved in different cellular processes, including the regulation of DNA replication. An evolutionarily conserved small domain in the upper stem of vertebrate Y RNAs has an essential function for the initiation of chromosomal DNA replication. Here we provide a structure-function analysis of this essential RNA domain under physiological conditions. Solution state nuclear magnetic resonance and far-ultraviolet circular dichroism spectroscopy show that the upper stem domain of human Y1 RNA adopts a locally destabilized A-form helical structure involving eight Watson-Crick base pairs. Within this helix, two G:C base pairs are highly stable even at elevated temperatures and therefore may serve as clamps to maintain the local structure of the helix. These two stable G:C base pairs frame three unstable base pairs, which are located centrally between them. Systematic substitution mutagenesis results in a disruption of the ordered A-form helical structure and in the loss of DNA replication initiation activity, establishing a positive correlation between folding stability and function. Our data thus provide a structural basis for the evolutionary conservation of key nucleotides in this RNA domain that are essential for the functionality of noncoding Y RNAs during the initiation of DNA replication. PMID:25151917

  4. The differential processing of telomeres in response to increased telomeric transcription and RNA–DNA hybrid accumulation

    PubMed Central

    Balk, Bettina; Dees, Martina; Bender, Katharina; Luke, Brian

    2014-01-01

    Telomeres are protective nucleoprotein structures at the ends of eukaryotic chromosomes. Despite the heterochromatic state of telomeres they are transcribed, generating non-coding telomeric repeat-containing RNA (TERRA). Strongly induced TERRA transcription has been shown to cause telomere shortening and accelerated senescence in the absence of both telomerase and homology-directed repair (HDR). Moreover, it has recently been demonstrated that TERRA forms RNA–DNA hybrids at chromosome ends. The accumulation of RNA–DNA hybrids at telomeres also leads to rapid senescence and telomere loss in the absence of telomerase and HDR. Conversely, in the presence of HDR, telomeric RNA–DNA hybrid accumulation and increased telomere transcription promote telomere recombination, and hence, delayed senescence. Here, we demonstrate that despite these similar phenotypic outcomes, telomeres that are highly transcribed are not processed in the same manner as those that accumulate RNA–DNA hybrids. PMID:24525824

  5. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks.

    PubMed

    Sharma, Vikas; Colson, Philippe; Giorgi, Roch; Pontarotti, Pierre; Raoult, Didier

    2014-07-01

    Environmental metagenomic studies show that there is a "dark matter," composed of sequences not linked to any known organism, as determined mainly using ribosomal DNA (rDNA) sequences, which therefore ignore giant viruses. DNA-dependent RNA polymerase (RNAP) genes are universal in microbes and conserved in giant viruses and may replace rDNA for identifying microbes. We found while reconstructing RNAP subunit 2 (RNAP2) phylogeny that a giant virus sequenced together with the genome of a large eukaryote, Hydra magnipapillata, has been overlooked. To explore the dark matter, we used viral RNAP2 and reconstructed putative ancestral RNAP2, which were significantly superior in detecting distant clades than current sequences, and we revealed two additional unknown mimiviruses, misclassified as an euryarchaeote and an oomycete plant pathogen, and detected unknown putative viral clades. We suggest using RNAP systematically to decipher the black matter and identify giant viruses. PMID:24929085

  6. Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.

    PubMed

    Mikkonen, Anu; Santalahti, Minna; Lappi, Kaisa; Pulkkinen, Anni-Mari; Montonen, Leone; Suominen, Leena

    2014-10-01

    Soil RNA and DNA were coextracted along a contamination gradient at a landfarming field with aged crude oil contamination to investigate pollution-dependent differences in 16S rRNA and rRNA gene pools. Microbial biomass correlated with nucleic acid yields as well as bacterial community change, indicating that the same factors controlled community size and structure. In surface soil, bacterial community evenness, estimated through length heterogeneity PCR (LH-PCR) fingerprinting, appeared higher for RNA-based than for DNA-based communities. The RNA-based community profiles resembled the DNA-based communities of soil with a lower contamination level. Cloning-based identification of bacterial hydrocarbon-degrading taxa in the RNA pool, representing the viable community with high protein synthesis potential, indicated that decontamination processes still continue. Analyses of archaea revealed that only Thaumarchaeota were present in the aerobic samples, whereas more diverse communities were found in the compacted subsurface soil with more crude oil. For subsurface bacteria, hydrocarbon concentration explained neither the community structure nor the difference between RNA-based and DNA-based communities. However, rRNA of bacterial taxa associated with syntrophic and sulphate-reducing alkane degradation was detected. Although the same prokaryotic taxa were identified in DNA and RNA, comparison of the two nucleic acid pools can aid in the assessment of past and future restoration success. PMID:24986450

  7. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    SciTech Connect

    Reich, Charles F. [Medical Research Service, 151G Durham VAMC, 508 Fulton Street, Durham, NC 27705 (United States); Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27705 (United States); Pisetsky, David S. [Medical Research Service, 151G Durham VAMC, 508 Fulton Street, Durham, NC 27705 (United States); Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27705 (United States)], E-mail: piset001@mc.duke.edu

    2009-03-10

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for {beta}-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death.

  8. Blind predictions of DNA and RNA tweezers experiments with force and torque.

    PubMed

    Chou, Fang-Chieh; Lipfert, Jan; Das, Rhiju

    2014-08-01

    Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's "spring-like" conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that 'nucleosome-excluding' poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology. PMID:25102226

  9. Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque

    PubMed Central

    Chou, Fang-Chieh; Lipfert, Jan; Das, Rhiju

    2014-01-01

    Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology. PMID:25102226

  10. Phage N4 RNA polymerase II recruitment to DNA by a single-stranded DNA-binding protein

    PubMed Central

    Carter, Richard H.; Demidenko, Alexander A.; Hattingh-Willis, Susan; Rothman-Denes, Lucia B.

    2003-01-01

    Transcription of bacteriophage N4 middle genes is carried out by a phage-coded, heterodimeric RNA polymerase (N4 RNAPII), which belongs to the family of T7-like RNA polymerases. In contrast to phage T7-RNAP, N4 RNAPII displays no activity on double-stranded templates and low activity on single-stranded templates. In vivo, at least one additional N4-coded protein (p17) is required for N4 middle transcription. We show that N4 ORF2encodes p17 (gp2). Characterization of purified gp2revealed that it is a single-stranded DNA-binding protein that activates N4 RNAPII transcription on single-stranded DNA templates through specific interaction with N4 RNAPII. On the basis of the properties of the proteins involved in N4 RNAPII transcription and of middle promoters, we propose a model for N4 RNAPII promoter recognition, in which gp2plays two roles, stabilization of a single-stranded region at the promoter and recruitment of N4 RNAPII through gp2-N4 RNAPII interactions. Furthermore, we discuss our results in the context of transcription initiation by mitochondrial RNA polymerases. PMID:12975320

  11. Transcription-coupled Hypernegative Supercoiling of Plasmid DNA by T7 RNA Polymerase in Escherichia coli Topoisomerase I Deficient Strains

    PubMed Central

    Samul, Rebecca; Leng, Fenfei

    2007-01-01

    Summary Transcription by RNA polymerase can stimulate negative DNA supercoiling in Escherichia coli topA strains. This phenomenon has been explained by a “twin-supercoiled-domain” model of transcription in which positive DNA supercoils are generated in front of a translocating RNA polymerase and negative supercoils behind it. However, since a specific system is lacking to study the factors governing this biologically important process, the parameters regulating transcription-coupled DNA supercoiling (TCDS) in Escherichia coli still remain elusive. In this paper, we describe our efforts to study TCDS in Escherichia coli using a newly developed system. This system consists of a topA strain, VS111(DE3) or DM800(DE3), in which a ?DE3 prophage containing a T7 RNA polymerase gene under control of the lacUV5 promoter has been integrated into the cell chromosome, along with a set of plasmids producing RNA transcripts of various lengths by T7 RNA polymerase. Using this system, we found that transcription by T7 RNA polymerase strikingly induced formation of hypernegatively supercoiled plasmid DNA. We also discovered, for the first time, that TCDS was dependent on the length of RNA transcripts in vivo, precisely predicted by the “twin-supercoiled-domain” model of transcription. Furthermore, our results demonstrated that hypernegative supercoiling of plasmid DNA by T7 RNA polymerase did not require anchoring of DNA to the bacterial cytoplasmic membrane. These results indicate that a transcribing RNA polymerase alone is sufficient to cause change of local DNA superhelicity, which can have a powerful impact on the conformation and function of critical DNA sequence elements, such as promoters and DNA replication origins. PMID:17980389

  12. Intronic Non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees

    PubMed Central

    2013-01-01

    Background Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing. Results We confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites. Conclusions Cytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns. PMID:24079845

  13. Ion binding to biological macromolecules

    PubMed Central

    Petukh, Marharyta; Alexov, Emil

    2015-01-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule.

  14. Macromolecules in Undergraduate Physical Chemistry.

    ERIC Educational Resources Information Center

    Mattice, Wayne L.

    1981-01-01

    Suggests the topic of macromolecules and synthetic polymers be included in undergraduate courses. Two macromolecular systems (polyethylene in a state unperturbated by long-range interactions and a polypeptide undergoing a helix-coil transition) are described which are suitable for inclusion in the statistical mechanics section of physical…

  15. Structural Basis for DNA-Hairpin Promoter Recognition by the Bacteriophage N4 Virion RNA Polymerase

    SciTech Connect

    Gleghorn, M.; Davydova, E; Rothman-Denes, L; Murakami, K

    2008-01-01

    Coliphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters. Mini-vRNAP uses four structural motifs to recognize DNA sequences at the hairpin loop and stem and to unwind DNA. Despite their low sequence similarity, three out of four motifs are shared with T7 RNAP that recognizes a double-stranded DNA promoter. The binary complex structure and results of engineered disulfide linkage experiments reveal that the plug and motif B loop, which block the access of template DNA to the active site in the apo-form mini-vRNAP, undergo a large-scale conformational change upon promoter binding, explaining the restricted promoter specificity that is critical for N4 phage early transcription.

  16. Physiochemical studies on interactions between DNA and RNA polymerase. Ultraviolet absorption measurements.

    PubMed

    Hsieh, T; Wang, J C

    1978-09-01

    The interaction between Escherichia coli RNA polymerase and a restriction fragment of coliphage T7 DNA containing four promoter sites for the coli enzyme has been studied by difference uv absorption spectroscopy in a low ionic strength buffer containing 10 mm MgCl2 and 50 mM KCl. The binding of the enzyme to the DNA is accompanied by a hyperchromic shift which shows a maximum around 260 nm, and increases with increasing temperature in the temperature range studied (4-40 degrees C). Measurements were also carried out with whole T7 DNA and a restriction fragment containing no promoter site. A comparison of the results obtained with the various DNAs suggests that the binding of an RNA polymerase to a promoter site in the low ionic strength medium causes the disruption of a short segment of the DNA helix, of the order of ten pairs; the binding of an enzyme molecule to a promotor site appears to have a cooperative effect on the binding of the enzyme molecules to adjacent non-promoter sites with concomitant disruption of DNA base pairs. PMID:360169

  17. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    SciTech Connect

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)] [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)] [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  18. Sequence-specific cleavage of the RNA strand in DNA–RNA hybrids by the fusion of ribonuclease H with a zinc finger

    PubMed Central

    Sulej, Agata A.; Tuszynska, Irina; Skowronek, Krzysztof J.; Nowotny, Marcin; Bujnicki, Janusz M.

    2012-01-01

    Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA–RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA–RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA–RNA hybrids. The optimization of the fusion enzyme’s specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation. PMID:23042681

  19. Sequence-specific cleavage of the RNA strand in DNA-RNA hybrids by the fusion of ribonuclease H with a zinc finger.

    PubMed

    Sulej, Agata A; Tuszynska, Irina; Skowronek, Krzysztof J; Nowotny, Marcin; Bujnicki, Janusz M

    2012-12-01

    Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA-RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA-RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA-RNA hybrids. The optimization of the fusion enzyme's specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation. PMID:23042681

  20. Reprogramming DNA Methylation in Bovine Cells by Knocking Down DNA Methyltransferase-1 with RNA Interference

    E-print Network

    Stroud, Todd

    2010-01-20

    Embryos derived by somatic cell nuclear transfer (SCNT) produce few pregnancies that result in a live, healthy offspring. This has largely been attributed to the aberrant reprogramming of the somatic cell DNA used for cloning. In order to improve...

  1. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    SciTech Connect

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-07-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were /sup 14/C-protein hydrolysate, (/sup 14/C)uridine, and (/sup 14/C) thymidine. Stimulation was determined by measuring incorporation of (/sup 14/C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules.

  2. Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra.

    PubMed

    Waters, E R; Schaal, B A

    1996-02-20

    Stress-induced mutations may play an important role in the evolution of plants. Plants do not sequester a germ line, and thus any stress-induced mutations could be passed on to future generations. We report a study of the effects of heat shock on genomic components of Brassica nigra Brassicaceae. Plants were submitted to heat stress, and the copy number of two nuclear-encoded single-copy genes, rRNA-encoding DNA (rDNA) and a chloroplast DNA gene, was determined and compared to a nonstressed control group. We determined whether genomic changes were inherited by examining copy number in the selfed progeny of control and heat-treated individuals. No effects of heat shock on copy number of the single-copy nuclear genes or on chloroplast DNA are found. However, heat shock did cause a statistically significant reduction in rDNA copies inherited by the F1 generation. In addition, we propose a DNA damage-reppair hypothesis to explain the reduction in rDNA caused by heat shock. PMID:8643652

  3. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA

    PubMed Central

    Wojtas, Magdalena N.; Mogni, Maria; Millet, Oscar; Bell, Stephen D.; Abrescia, Nicola G. A.

    2012-01-01

    Multi-subunit RNA polymerases (RNAPs) in all three domains of life share a common ancestry. The composition of the archaeal RNAP (aRNAP) is not identical between phyla and species, with subunits Rpo8 and Rpo13 found in restricted subsets of archaea. While Rpo8 has an ortholog, Rpb8, in the nuclear eukaryal RNAPs, Rpo13 lacks clear eukaryal orthologs. Here, we report crystal structures of the DNA-bound and free form of the aRNAP from Sulfolobus shibatae. Together with biochemical and biophysical analyses, these data show that Rpo13 C-terminus binds non-specifically to double-stranded DNA. These interactions map on our RNAP–DNA binary complex on the downstream DNA at the far end of the DNA entry channel. Our findings thus support Rpo13 as a RNAP–DNA stabilization factor, a role reminiscent of eukaryotic general transcriptional factors. The data further yield insight into the mechanisms and evolution of RNAP–DNA interaction. PMID:22848102

  4. Differentiating the Protein Coding and Noncoding RNA Segments of DNA Using Shannon Entropy

    NASA Astrophysics Data System (ADS)

    Mazaheri, P.; Shirazi, A. H.; Saeedi, N.; Reza Jafari, G.; Sahimi, Muhammad

    The complexity of DNA sequences is evaluated in order to differentiate between protein-coding and noncoding RNA segments. The method is based on computing the Shannon entropy of the sequences. By comparing the entropy of the original sequence with that of its shuffled one, we identify the source of the difference between the two segments and their relative contributions to the sequence. To demonstrate the method, the DNA sequences of the bacterium Clostridium difficile 630 (G + C = 29.1%) and Bdellovibrio bacteriovorus (G + C = 50.6%) are analyzed, which are representatives of bacteria with unbalanced and balanced nucleotide content, respectively. It is shown that in both bacteria, regardless of nucleotide content, ?rS — the relative difference of the two entropies — is significantly greater in protein-coding regions, when compared with noncoding RNA segments.

  5. Microwave-assisted phosphitylation of DNA and RNA nucleosides and their analogs.

    PubMed

    Efthymiou, Tim; Krishnamurthy, Ramanarayanan

    2015-01-01

    Microwave-assisted chemical phosphitylation of novel nucleoside analogs containing a ribulose sugar unit was successful with yields ranging from 50% to 79% using 2-cyanoethyl-N,N-diisopropyl chlorophosphoramidite as the phosphitylating reagent. The resultant phosphoramidite products remained intact, with no signs of degradation over extended reaction times (up to 60 min) at an elevated temperature (65°C). When the same microwave-mediated phosphitylating protocols were applied to canonical DNA and RNA nucleoside monomers as substrates, using either 2-cyanoethyl-N,N,-diisopropyl chlorophosphoramidite or 2-cyanoethyl-N,N,N',N'-tetraisopropyl phosphane with an activator, 40% to 90% yields of DNA and RNA phosphoramidites were obtained within 10 to 15 min. These results demonstrate that microwave-assisted phosphitylation is an efficient alternative to standard phosphitylating conditions that can be expanded and refined to include a variety of substrates. © 2015 by John Wiley & Sons, Inc. PMID:25754891

  6. Molecular cloning and sequencing of DNA complementary to chicken liver fatty acid synthase mRNA.

    PubMed Central

    Yuan, Z Y; Liu, W; Hammes, G G

    1988-01-01

    The cDNA corresponding to 4.18 kilobases (kb) of the mRNA of chicken liver fatty acid synthase has been cloned and sequenced. The cDNA corresponds to the 3' end of the mRNA and consists of a 1.87-kb noncoding tail and a 2.31-kb region encoding 769 amino acids of the C terminus of the enzyme. The thioesterase at the C terminus, preceded by the acyl carrier protein, can be identified from known amino acid sequences. However, the identity of the enzymes N terminal to the acyl carrier protein could not be ascertained. The partial amino acid sequence of the chicken liver fatty acid synthase shows greater than 70% similarity with the rat mammary gland enzyme. PMID:2842766

  7. Lipidoid-coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery

    PubMed Central

    Jiang, Shan; Eltoukhy, Ahmed A.; Love, Kevin T.; Langer, Robert

    2014-01-01

    The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50–100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia. PMID:23394319

  8. Tetrahedral DNA Nanostructure-Based MicroRNA Biosensor Coupled with Catalytic Recycling of the Analyte.

    PubMed

    Miao, Peng; Wang, Bidou; Chen, Xifeng; Li, Xiaoxi; Tang, Yuguo

    2015-03-25

    MicroRNAs are not only important regulators of a wide range of cellular processes but are also identified as promising disease biomarkers. Due to the low contents in serum, microRNAs are always difficult to detect accurately . In this study, an electrochemical biosensor for ultrasensitive detection of microRNA based on tetrahedral DNA nanostructure is developed. Four DNA single strands are engineered to form a tetrahedral nanostructure with a pendant stem-loop and modified on a gold electrode surface, which largely enhances the molecular recognition efficiency. Moreover, taking advantage of strand displacement polymerization, catalytic recycling of microRNA, and silver nanoparticle-based solid-state Ag/AgCl reaction, the proposed biosensor exhibits high sensitivity with the limit of detection down to 0.4 fM. This biosensor shows great clinical value and may have practical utility in early diagnosis and prognosis of certain diseases. PMID:25738985

  9. DNA-dependent RNA polymerase from the extremely halophilic archaebacterium Halococcus morrhuae.

    PubMed

    Madon, J; Leser, U; Zillig, W

    1983-09-15

    Pure and absolutely DNA-dependent RNA polymerase has been isolated from the extremely halophilic archaebacterium, Halococcus morrhuae. It is composed of five heavy (142 000; 88 000; 73 000; 52 500; and 49 500 Da) and five small components (13 300; 11 200; 10 800; 10 500; 9 900 Da). The peptides of 49 500 Da and 52 500 Da probably represent one component in different modification states. Single-stranded DNA shows the highest template efficiency, although archaebacterial chromosomal DNAs are efficiently transcribed. Rifampicin, streptolydigin and alpha-amanitin do not inhibit transcription by this enzyme. Heparin permits elongation but not initiation of transcription. The activity of H. morrhuae RNA polymerase is strongly stimulated by glycerol and dimethylsulfoxide. PMID:6884365

  10. Sensitivity of prestaining RNA with ethidium bromide before electrophoresis and performance of subsequent northern blots using heterologous DNA probes.

    PubMed

    Zhao, Yun; Du, Linfang; Zhang, Nianhui

    2013-06-01

    Adding ethidium bromide (EtBr) at low concentrations to RNA samples before running formaldehyde-agarose gels affords the advantages of checking RNA integrity and evaluating the quality of size-separation at any time during electrophoresis or immediately after either electrophoresis or blotted the separated RNA onto the membrane without significantly compromising mobility, transfer, or hybridization. In this study, we systematically examined the factors that affect the sensitivity of RNA prestaining by heating RNA samples that include EtBr before electrophoresis under different denaturation conditions. We also examined the efficiency of the hybridization of EtBr-prestained RNA with heterologous DNA probes. The results showed that the fluorescent intensity of EtBr-prestained RNA was affected not only by the EtBr concentration as previously reported but also by the RNA amount, denaturation time, and denaturation temperature. Prior staining of RNA with 40 ?g/mL EtBr significantly decreased the efficiency of Northern blot hybridization with heterologous DNA probes. We propose that to best combine staining sensitivity and the efficiency of Northern blot hybridization with heterologous DNA probes, the concentration of EtBr used to prestain RNA should not exceed 30 ?g/mL. The efficiency of the hybridization of EtBr-prestained RNA was affected not only by factors that affect staining sensitivity but also by the type of probe used. PMID:22585558

  11. Chemical Methylation of RNA and DNA Viral Genomes as a Probe of In Situ Structure

    PubMed Central

    Yamakawa, Minoru; Shatkin, Aaron J.; Furuichi, Yasuhiro

    1981-01-01

    We used [methyl-3H] dimethyl sulfate to probe the genome structures of several RNA and DNA viruses. We compared sites of modification in nucleic acids that were methylated chemically before and after extraction from purified virions. With both single-stranded and double-stranded substrates alkylation occurred mainly at the N7 position of guanine. However, adenine N1 atoms were differentially accessible in single-stranded RNA and DNA. For example, the ratios of 1-methyladenosine to 7-methylguanosine for reovirus mRNA and deproteinized genome RNA were 0.43 and 0.03, respectively. Members of the Reoviridae methylated in situ yielded RNAs with ratios of 0.04 to 0.08, indicating that the intravirion genomes were double stranded. We obtained ratios of 0.26 and 0.35 for the RNAs of dimethyl sulfate-treated brome mosaic and avian sarcoma virions, respectively, which was consistent with partial protection of adenine N1 sites by structural proteins or genome conformation or both. The ratios of 1-methyladenosine to 7-methylguanosine for vaccinia virus DNAs methylated in situ (0.10) and after phenol extraction (0.14) were less than the ratios for ?X174 and M13 DNAs (0.39 to 0.64) but considerably greater than the ratio observed with adenovirus DNA (0.002 to 0.02). The presence of a single-stranded region(s) in the vaccinia virus genome was confirmed by S1 nuclease digestion of [methyl-3H] DNA; the released radiolabeled fraction had a ratio of 0.41, compared with 0.025 for the residual duplex DNA. In addition to the structure-dependent accessibility of adenine N1, methylation of adenine N3 was severalfold lower in the intravirion genomes of vaccinia virus, ?X174, and adenovirus than in the corresponding extracted DNAs. Chemical methylation of virions and subviral particles should be useful for in situ analyses of specific regions of RNA and DNA genomes, such as the sites of protein binding during virus maturation. PMID:6172596

  12. Chemically Programmed Polymers for Targeted DNA and siRNA Transfection

    Microsoft Academic Search

    Eveline Edith Salcher; Ernst Wagner

    \\u000a Plasmid DNA and siRNA have a large potential for use as therapeutic nucleic acids in medicine. The way to the target cell\\u000a and its proper compartment is full of obstacles. Polymeric carriers help to overcome the encountered barriers. Cationic polymers\\u000a can interact with the nucleic acid in a nondamaging way but still require optimization with regard to transfer efficiency\\u000a and

  13. Activated DNA And RNA-Duplexes Covalently Cross-Linked to Regulatory Proteins

    Microsoft Academic Search

    Zoe A. Shabarova

    1998-01-01

    A novel class of DNA- and RNA duplexes including trisubstituted pyrophosphate internucleotide groups (TSP) in sugar-phosphate backbone was employed in cross-linking to proteins. Substrates including TSP effectively bound covalently to nucleofilic aminoacids (Lys, His) of transcription factors HNF1 and NF-kB and to HIV-1 Tat protein without additional activation at physiological conditions.FAX: (095)939–3181: E-mail: zoeshab@nuclacid.genebee.msu.su

  14. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects

    PubMed Central

    Qiu, Haiyan; Lee, Sebum; Shang, Yulei; Wang, Wen-Yuan; Au, Kin Fai; Kamiya, Sherry; Barmada, Sami J.; Finkbeiner, Steven; Lui, Hansen; Carlton, Caitlin E.; Tang, Amy A.; Oldham, Michael C.; Wang, Hejia; Shorter, James; Filiano, Anthony J.; Roberson, Erik D.; Tourtellotte, Warren G.; Chen, Bin; Tsai, Li-Huei; Huang, Eric J.

    2014-01-01

    Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C–associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions. PMID:24509083

  15. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study

    PubMed Central

    Pan, Feng; Roland, Christopher; Sagui, Celeste

    2014-01-01

    The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5?-CGCGCGCGCGCG-3?)2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na+, K+ and Mg2 +, with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6]2+ ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6]2+ to distant phosphates, resulting in acute bending of A-RNA; tight ‘ion traps’ in Z-RNA between C-O2 and the C-O2? atoms in GpC steps; and others. PMID:25428372

  16. Interplay of Structure, Hydration and Thermal Stability in Formacetal Modified Oligonucleotides: RNA May Tolerate Nonionic Modifications Better than DNA

    SciTech Connect

    Kolarovic, A.; Schweizer, E; Greene, E; Gironda, M; Pallan, P; Egli, M; Rozners, E

    2009-01-01

    DNA and RNA oligonucleotides having formacetal internucleoside linkages between uridine and adenosine nucleosides have been prepared and studied using UV thermal melting, osmotic stress, and X-ray crystallography. Formacetal modifications have remarkably different effects on double helical RNA and DNAethe formacetal stabilizes the RNA helix by +0.7 C but destabilizes the DNA helix by -1.6 C per modification. The apparently hydrophobic formacetal has little effect on hydration of RNA but decreases the hydration of DNA, which suggests that at least part of the difference in thermal stability may be related to differences in hydration. A crystal structure of modified DNA shows that two isolated formacetal linkages fit almost perfectly in an A-type helix (decamer). Taken together, the data suggest that RNA may tolerate nonionic backbone modifications better than DNA. Overall, formacetal appears to be an excellent mimic of phosphate linkage in RNA and an interesting modification for potential applications in fundamental studies and RNA-based gene control strategies, such as RNA interference.

  17. Activation of different split functionalities upon re-association of RNA-DNA hybrids

    PubMed Central

    Afonin, Kirill A.; Viard, Mathias; Martins, Angelica N.; Lockett, Stephen J.; Maciag, Anna E.; Freed, Eric O.; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A.

    2013-01-01

    Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of the protein functions and improved detection sensitivity. Here we show a similar technique based on a pair of RNA-DNA hybrids that can be generally used for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept this work is mainly focused on activation of RNA interference; however the release of other functionalities (resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing. This split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications. PMID:23542902

  18. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa

    PubMed Central

    Rollins, MaryClare F.; Schuman, Jason T.; Paulus, Kirra; Bukhari, Habib S.T.; Wiedenheft, Blake

    2015-01-01

    The Type I-F CRISPR-mediated (clustered regularly interspaced short palindromic repeats) adaptive immune system in Pseudomonas aeruginosa consists of two CRISPR loci and six CRISPR-associated (cas) genes. Foreign DNA surveillance is performed by a complex of Cas proteins (Csy1–4) that assemble with a CRISPR RNA (crRNA) into a 350-kDa ribonucleoprotein called the Csy complex. Here, we show that foreign nucleic acid recognition by the Csy complex proceeds through sequential steps, initiated by detection of two consecutive guanine–cytosine base pairs (G–C/G–C) located adjacent to the complementary DNA target. We show that this motif, called the PAM (protospacer adjacent motif), must be double-stranded and that single-stranded PAMs do not provide significant discriminating power. Binding assays performed with G–C/G–C-rich competitor sequences indicate that the Csy complex interacts directly with this dinucleotide motif, and kinetic analyses reveal that recognition of a G–C/G–C motif is a prerequisite for crRNA-guided binding to a target sequence. Together, these data indicate that the Csy complex first interacts with G–C/G–C base pairs and then samples adjacent target sequences for complementarity to the crRNA guide. PMID:25662606

  19. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content.

    PubMed

    Schoft, Vera K; Chumak, Nina; Bindics, János; Slusarz, Lucyna; Twell, David; Köhler, Claudia; Tamaru, Hisashi

    2015-03-01

    Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA. PMID:25676347

  20. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa.

    PubMed

    Rollins, MaryClare F; Schuman, Jason T; Paulus, Kirra; Bukhari, Habib S T; Wiedenheft, Blake

    2015-02-27

    The Type I-F CRISPR-mediated (clustered regularly interspaced short palindromic repeats) adaptive immune system in Pseudomonas aeruginosa consists of two CRISPR loci and six CRISPR-associated (cas) genes. Foreign DNA surveillance is performed by a complex of Cas proteins (Csy1–4) that assemble with a CRISPR RNA (crRNA) into a 350-kDa ribonucleoprotein called the Csy complex. Here, we show that foreign nucleic acid recognition by the Csy complex proceeds through sequential steps, initiated by detection of two consecutive guanine–cytosine base pairs (G–C/G–C) located adjacent to the complementary DNA target. We show that this motif, called the PAM (protospacer adjacent motif), must be double-stranded and that single-stranded PAMs do not provide significant discriminating power. Binding assays performed with G–C/G–C-rich competitor sequences indicate that the Csy complex interacts directly with this dinucleotide motif, and kinetic analyses reveal that recognition of a G–C/G–C motif is a prerequisite for crRNA-guided binding to a target sequence. Together, these data indicate that the Csy complex first interacts with G–C/G–C base pairs and then samples adjacent target sequences for complementarity to the crRNA guide. PMID:25662606

  1. [The fresh weight and the concentration of DNA, RNA and protein in different tissues of swine of different ages].

    PubMed

    Marx, D; Kolb, E; Salomon, F V

    1992-02-01

    Female pigs aged between one day (body weight 1.39 +/- 0.20 kg) and 1123 days (b. w. 233 +/- 32 kg) were allotted to 10 groups of various age and analyses of the concentration of DNA, RNA and protein in 9 different tissues were performed. The wet weight: DNA-, the protein: DNA- and the RNA: DNA-ratio were determined. With the exception of the liver the content in DNA, RNA and protein increased to the age of 1123 days. The highest fresh weight: DNA ratio of 2041 was reached on the 1123rd day in the M.longissimus; the smallest (111) existed at this time in the spleen. In the liver the highest content in fresh weight, in DNA and RNA was found on the 180th day. The smallest increases in the content of DNA and RNA in the mentioned period were in the brain, the highest in the spleen, the liver and the M.longissimus dorsi. The values can be used as a basis for studies on the influence of feeding and of diseases (infections) on growth. PMID:1372782

  2. Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles.

    PubMed

    Kato, Daiki; Oishi, Motoi

    2014-10-28

    An ultrasensitive colorimetric DNA and RNA assay using a combination of enzyme-free click chemical ligation chain reaction (CCLCR) on dispersed gold nanoparticles (GNPs) and a magnetic separation process has been developed. The click chemical ligation between an azide-containing probe DNA-modified GNP and a dibenzocyclooctyne-containing probe biotinyl DNA occurred through hybridization with target DNA (RNA) to form the biotinyl-ligated GNPs (ligated products). Eventually, both the biotinyl-ligated GNPs and target DNA (RNA) were amplified exponentially using thermal cycling. After separation of the biotinyl-ligated GNPs using streptavidin-modified magnetic beads, the change in intensity of the surface plasmon band at 525 nm in the supernatants was observed by UV/vis measurement and was also evident visually. The CCLCR assay provides ultrasensitive detection (50 zM: several copies) of target DNA that is comparable to PCR-based approaches. Note that target RNA could also be detected with similar sensitivity without the need for reverse transcription to the corresponding cDNA. The amplification efficiency of the CCLCR assay was as high as 82% due to the pseudohomogeneous reaction behavior of CCLCR on dispersed GNPs. In addition, the CCLCR assay was able to discriminate differences in single-base mismatches and to specifically detect target DNA and target RNA from the cell lysate. PMID:25256209

  3. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response

    E-print Network

    Patil, Ashish

    S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in ...

  4. Influence of the ?–? interaction on the hydrogen bonding capacity of stacked DNA/RNA bases

    PubMed Central

    Mignon, Pierre; Loverix, Stefan; Steyaert, Jan; Geerlings, Paul

    2005-01-01

    The interplay between aromatic stacking and hydrogen bonding in nucleobases has been investigated via high-level quantum chemical calculations. The experimentally observed stacking arrangement between consecutive bases in DNA and RNA/DNA double helices is shown to enhance their hydrogen bonding ability as opposed to gas phase optimized complexes. This phenomenon results from more repulsive electrostatic interactions as is demonstrated in a model system of cytosine stacked offset-parallel with substituted benzenes. Therefore, the H-bonding capacity of the N3 and O2 atoms of cytosine increases linearly with the electrostatic repulsion between the stacked rings. The local hardness, a density functional theory-based reactivity descriptor, appears to be a key index associated with the molecular electrostatic potential (MEP) minima around H-bond accepting atoms, and is inversely proportional to the electrostatic interaction between stacked molecules. Finally, the MEP minima on surfaces around the bases in experimental structures of DNA and RNA–DNA double helices show that their hydrogen bonding capacity increases when taking more neighboring (intra-strand) stacking partners into account. PMID:15788750

  5. An Undergraduate Investigation into the 10-23 DNA Enzyme that Cleaves RNA: DNA Can Cut It in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Flynn-Charlebois, Amber; Burns, Jamie; Chapelliquen, Stephanie; Sanmartino, Holly

    2011-01-01

    A low-cost biochemistry experiment is described that demonstrates current techniques in the use of catalytic DNA molecules and introduces a nonradioactive, nonfluorescent, inexpensive, fast, and safe method for monitoring these nucleic acid reactions. The laboratory involves the exploration of the 10-23 DNA enzyme as it cleaves a specific RNA

  6. DNA fingerprinting of Campylobacter fetus using cloned constructs of ribosomal RNA and surface array protein genes.

    PubMed

    Denes, A S; Lutze-Wallace, C L; Cormier, M L; Garcia, M M

    1997-02-01

    DNA fragments coding for the ribosomal RNA and the surface array proteins of Campylobacter fetus have been cloned from a genomic library constructed in Escherichia coli. They were used in the molecular characterization of C. fetus (subsp. fetus; subsp. venerealis) strains by restriction fragment length polymorphism (RFLP) method. Ribotyping results showed that all strains of the two subspecies can be classified under one ribogroup implying very close relatedness. The sapA gene DNA marker, however, discriminated all the strains regardless of the subspecies when chromosomal DNA was restricted with HindIII, HaeIII, XbaI or EcoRV. These results illustrate that the sapA probe is potentially useful in fingerprinting C. fetus strains and in determining the relationships of strains for epidemiological purposes. PMID:9057261

  7. Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells

    Microsoft Academic Search

    Jesus Espada; Esteban Ballestar; Raffaella Santoro; Mario F. Fraga; Ana Villar-Garea; Attila Nemeth; Lidia Lopez-Serra; Santiago Ropero; Agustin Aranda; Helena Orozco; Vanessa Moreno; Angeles Juarranz; Juan Carlos Stockert; Gernot Langst; Ingrid Grummt; Wendy Bickmore; Manel Esteller

    2007-01-01

    The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in

  8. De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

    PubMed Central

    Seguin, Jonathan; Rajeswaran, Rajendran; Malpica-López, Nachelli; Martin, Robert R.; Kasschau, Kristin; Dolja, Valerian V.; Otten, Patricia; Farinelli, Laurent; Pooggin, Mikhail M.

    2014-01-01

    Virus-infected plants accumulate abundant, 21–24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this ‘siRNA omics’ approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense. PMID:24523907

  9. Strong Inverse Correlation Between MicroRNA-125b and Human Papillomavirus DNA in Productive Infection

    PubMed Central

    Nuovo, Gerard J.; Wu, Xin; Volinia, Stefano; Yan, Fengting; di Leva, Gianpiero; Chin, Nena; Nicol, Alcina F.; Jiang, Jinmai; Otterson, Gregory; Schmittgen, Thomas D.; Croce, Carlo

    2014-01-01

    Infection by the human papillomavirus (HPV) is a cause of cervical intraepithelial neoplasia (CIN) and cancer. microRNA (miRNA) in situ analysis of the transformation zone epithelia, the site of initial cervical HPV infection, showed that miRNAs let-7c, — 99a, 26a, and 125b were the most abundantly expressed. In situ testing of CIN 1 showed a dramatic reduction in miR-125b expression in the koilocytes, the cytologic marker of productive HPV infection. A marked reduction in miR-125b was likewise observed in the HPV-infected cells of the condyloma acuminatum, verruca vulgaris, and epidermodysplasia verruciformis. Reverse transcriptase in situ polymerase chain reaction (PCR) showed that the pre-miRNA 125b was present in the koilocyte, suggesting direct inactivation of the mature miRNA. HEK cells transfected with only the antimiR-125b showed perinuclear halos equivalent to HPV-infected koilocytes. NIH 3T3 cells transfected with the HPV 16 full-length genome and mimetic miR-125b showed a marked reduction in viral DNA and protein synthesis by quantitative PCR and in situ-based analyses, respectively (P=0.002). Alternatively, cotransfection with anti-miR-125b and HPV 16 markedly increased HPV DNA (P=0.002). Sequence analyses showed strong homology between L2 of different HPV genotypes and miR-125b. Transfection with HPV 16 L2 resulted in a marked reduction in miR-125b levels in the NIH 3T3 cells. HPV L2-induced inactivation of miR-125b is associated with the classic cytologic changes of the koilocyte, and the exogenous application of mimetic miR-125b markedly inhibits HPV DNA synthesis. PMID:20736742

  10. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA

    E-print Network

    Papavasiliou, F. Nina

    for viability. Enzymes mediating tRNA adenosine deamination in bacteria and yeast contain cytidine deaminase-binding pocket: (i) the adenosine deaminases acting on RNAs (ADARs) and (ii) the polynucle- otide cytidineAn adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA Mary Anne T

  11. A DNA Damage Response System Associated with the phosphoCTD of Elongating RNA Polymerase II

    PubMed Central

    Winsor, Tiffany Sabin; Bartkowiak, Bartlomiej; Bennett, Craig B.; Greenleaf, Arno L.

    2013-01-01

    RNA polymerase II translocates across much of the genome and since it can be blocked by many kinds of DNA lesions, detects DNA damage proficiently; it thereby contributes to DNA repair and to normal levels of DNA damage resistance. However, the components and mechanisms that respond to polymerase blockage are largely unknown, except in the case of UV-induced damage that is corrected by nucleotide excision repair. Because elongating RNAPII carries with it numerous proteins that bind to its hyperphosphorylated CTD, we tested for effects of interfering with this binding. We find that expressing a decoy CTD-carrying protein in the nucleus, but not in the cytoplasm, leads to reduced DNA damage resistance. Likewise, inducing aberrant phosphorylation of the CTD, by deleting CTK1, reduces damage resistance and also alters rates of homologous recombination-mediated repair. In line with these results, extant data sets reveal a remarkable, highly significant overlap between phosphoCTD-associating protein genes and DNA damage-resistance genes. For one well-known phosphoCTD-associating protein, the histone methyltransferase Set2, we demonstrate a role in DNA damage resistance, and we show that this role requires the phosphoCTD binding ability of Set2; surprisingly, Set2’s role in damage resistance does not depend on its catalytic activity. To explain all of these observations, we posit the existence of a CTD-Associated DNA damage Response (CAR) system, organized around the phosphoCTD of elongating RNAPII and comprising a subset of phosphoCTD-associating proteins. PMID:23613755

  12. RNA and DNA binding of inert oligonuclear ruthenium(II) complexes in live eukaryotic cells.

    PubMed

    Li, Xin; Gorle, Anil K; Ainsworth, Tracy D; Heimann, Kirsten; Woodward, Clifford E; Collins, J Grant; Keene, F Richard

    2015-02-28

    Confocal microscopy was used to study the intracellular localisation of a series of inert polypyridylruthenium(II) complexes with three eukaryotic cells lines - baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (Hep-G2). Co-staining experiments with the DNA-selective dye DAPI demonstrated that the di-, tri- and tetra-nuclear polypyridylruthenium(II) complexes that are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,12-dodecane bridging ligand ("bb12") showed a high degree of selectivity for the nucleus of the eukaryotic cells. Additional co-localisation experiments with the general nucleic acid stain SYTO 9 indicated that the ruthenium complexes showed a considerable preference for the RNA-rich nucleolus, rather than chromosomal DNA. No significant differences were observed in the intracellular localisation between the ?? and ?? enantiomers of the dinuclear complex. Cytotoxicity assays carried out over 72 hours indicated that the ruthenium complexes, particularly the tri- and tetra-nuclear species, were significantly toxic to the eukaryotic cells. However, when the activity of the least cytotoxic compound (the ?? enantiomer of the dinuclear species) was determined over a 24 hour period, the results indicated that the ruthenium complex was approximately a 100-fold less toxic to liver and kidney cells than to Gram positive bacteria. Circular dichroism (CD) spectroscopy was used to examine the effect of the ?? and ?? enantiomers of the dinuclear complex on the solution conformations of RNA and DNA. The CD experiments indicated that the RNA maintained the A-type conformation, and the DNA the B-type structure, upon binding by the ruthenium complexes. PMID:25333883

  13. Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance

    Microsoft Academic Search

    Vigdis Nygaard; Anders Løland; Marit Holden; Mette Langaas; Håvard Rue; Fang Liu; Ola Myklebost; Øystein Fodstad; Eivind Hovig; Birgitte Smith-Sørensen

    2003-01-01

    BACKGROUND: A limiting factor of cDNA microarray technology is the need for a substantial amount of RNA per labeling reaction. Thus, 20–200 micro-grams total RNA or 0.5–2 micro-grams poly (A) RNA is typically required for monitoring gene expression. In addition, gene expression profiles from large, heterogeneous cell populations provide complex patterns from which biological data for the target cells may

  14. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could generate the RNA metabolic fossils we see today.

  15. S1 analysis of messenger RNA using single-stranded DNA probes.

    PubMed

    Greene, J M; Struhl, K

    2001-05-01

    This method takes advantage of the ability of oligonucleotides to be efficiently labeled to a high specific activity at the 5' end through the use of kinase. The oligonucleotide is hybridized to a specific single-stranded template containing the complementary sequence to the oligonucleotide, and this hybrid is extended through the use of the Klenow fragment of E. coli DNA polymerase I. The mixture is cut with a restriction enzyme to give the probe a defined 3' end, and the probe is isolated on an alkaline agarose gel. Before using this protocol it is first helpful to have an M13 clone. If this is unavailable, a double-stranded plasmid clone of the region to be studied may be used, as described in an alternate protocol. Another alternate protocol describes the use of long oligonucleotides as probes for S1 analysis (useful for rapid and easy quantitation of the level of mRNA produced from a characterized promoter). For the mapping of the 5' end of an RNA species, hybridization of the probe to RNA is then carried out. S1 nuclease is added to digest all of the unhybridized portion of the probe. Electrophoresis of the hybrid on a denaturing polyacrylamide gel allows a determination of the length of the remaining DNA fragment. This length equals the distance between the 5' end of the probe to the 5' end of the RNA, defining the transcriptional start site to the nucleotide. By performing the hybridization reaction in vast probe excess, quantitation of the relative amounts of RNA can be estimated between samples. PMID:18265240

  16. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  17. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    SciTech Connect

    Chou, Shanho (Howard Hughes Medical Inst., Seattle, WA (United States) Univ. of Washington, Seattle (United States)); Flynn, P.; Wang, A.; Reid, B. (Univ. of Washington, Seattle (United States))

    1991-05-28

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3{prime}-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3{prime} end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1{prime}-H2{prime} J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2{prime}-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies.

  18. Antimicrobial Activity Spectrum, cDNA Cloning, and mRNA Expression of a Newly Isolated Member of the

    E-print Network

    Lowenberger, Carl

    Antimicrobial Activity Spectrum, cDNA Cloning, and mRNA Expression of a Newly Isolated Member, named cecropin A, was purified to homogeneity and fully characterized after cDNA cloning. The 34-residue for serious debilitating human diseases such as malaria, lymphatic filari- asis, and numerous arboviruses

  19. Reduction of DNA contamination in RNA samples for reverse transcription-polymerase chain reaction using selective precipitation by compaction agents.

    E-print Network

    Fox, George

    using selective precipitation by compaction agents. Añez-Lingerfelt M, Fox GE, Willson RC. Department-effective method of eliminating contaminating DNA in RNA samples using selective precipitation by compaction agents precipitation of salmon sperm DNA. Effectiveness and selectivity were then investigated using differences in RT

  20. Genotyping of chimerical BCR-ABL1 RNA in chronic myeloid leukemia by integrated DNA chip.

    PubMed

    Kang, Jong-Hun; Goh, Hyun-Gyung; Chae, Sang-Ho; Kim, Sung-Yong; Kim, Dong-Wook; Chae, Chi-Bom

    2012-09-01

    Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) are associated with fusion of the BCR and ABL1 genes by chromosome translocation. The chimerical BCR-ABL1 gene encodes different fusion proteins that vary in size, depending on the breakpoint in the BCR region. Different types of fusion genes in CML and Ph(+) ALL are thought to be related to the clinical course and outcome of each patient. Currently, the genotypes are determined by PCR, followed by gel electrophoresis or DNA sequencing (among other methodologies). Our major aim was to develop a diagnostic method for CML genotyping by means of an integrated process of DNA microarray. Here, we describe a method of integrated multiplex reverse transcription, asymmetric PCR, and hybridization, all in the same reaction mixture in a chamber assembled on the surface of capture oligonucleotide probes immobilized on a glass slide. The integrated system successfully identified the four predominant types of chimerical BCR-ABL1 RNA (b3a2, b2a2, e1a2, and c3a2), which together account for 98% of CML cases. The integrated multiplex system also had a high sensitivity of detection (as little as 200 molecules of target RNA molecules). The integrated process saves time and effort, and it also the advantage of minimizing the steps needed for automated detection of different types of chimerical CML RNA. PMID:22749885

  1. Catalytic Activity of a Binary Informational Macromolecule

    NASA Technical Reports Server (NTRS)

    Reader, John S.; Joyce, Gerald F.

    2003-01-01

    RNA molecules are thought to have played a prominent role in the early history of life on Earth based on their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, due to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unie'. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyze the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalyzed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.

  2. Normal human placentas contain RNA-directed DNA polymerase activity like that in viruses.

    PubMed Central

    Nelson, J; Leong, J A; Levy, J A

    1978-01-01

    Extracts from over 100 normal human placentas have been examined for RNA-directed DNA polymerase (DNA nucleotidyltransferase, EC 2.7.7.7) activity. More than 80% of these placentas contained this enzyme activity, which banded at a density of 1.15-1.17 g/ml in sucrose. After heat treatment, this enzyme activity was shifted in density to 1.22-1.24 g/ml. The enzymatic activity was greater with (rC)n.(dG)12-18 than with (dC)n.(dG)12-18 and was not stimulated by (dG)12-18 alone. The product of the endogenous reaction, which was sensitive to RNase, had the characteristics of a small DNA associated with a large RNA by hydrogen bonding. Electron microscopic inspection of the material with a density of 1.15-1.17 g/ml revealed numerous retrovirus-like particles with central electron-dense cores and double-membraned envelopes. The enzyme may be associated with the retrovirus-lik particles noted in the trophoblast layer of some human placentas. Images PMID:83652

  3. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site

    PubMed Central

    Zheng, Ke-wei; Wu, Ren-yi; He, Yi-de; Xiao, Shan; Zhang, Jia-yu; Liu, Jia-quan; Hao, Yu-hua; Tan, Zheng

    2014-01-01

    Human mitochondrial DNA contains a distinctive guanine-rich motif denoted conserved sequence block II (CSB II) that stops RNA transcription, producing prematurely terminated transcripts to prime mitochondrial DNA replication. Recently, we reported a general phenomenon that DNA:RNA hybrid G-quadruplexes (HQs) readily form during transcription when the non-template DNA strand is guanine-rich and such HQs in turn regulate transcription. In this work, we show that transcription of mitochondrial DNA leads to the formation of a stable HQ or alternatively an unstable intramolecular DNA G-quadruplex (DQ) at the CSB II. The HQ is the dominant species and contributes to the majority of the premature transcription termination. Manipulating the stability of the DQ has little effect on the termination even in the absence of HQ; however, abolishing the formation of HQs by preventing the participation of either DNA or RNA abolishes the vast majority of the termination. These results demonstrate that the type of G-quadruplexes (HQ or DQ) is a crucial determinant in directing the transcription termination at the CSB II and suggest a potential functionality of the co-transcriptionally formed HQ in DNA replication initiation. They also suggest that the competition/conversion between an HQ and a DQ may regulate the function of a G-quadruplex-forming sequence. PMID:25140009

  4. Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD.

    PubMed

    Nowotny, Marcin; Cerritelli, Susana M; Ghirlando, Rodolfo; Gaidamakov, Sergei A; Crouch, Robert J; Yang, Wei

    2008-04-01

    Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes. PMID:18337749

  5. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  6. Anti-DNA:RNA Antibodies and Silicon Photonic Microring Resonator Arrays Enable the Ultrasensitive, Multiplexed Detection of microRNAs

    PubMed Central

    Qavi, Abraham J.; Kindt, Jared T.; Gleeson, Martin A.; Bailey, Ryan C.

    2011-01-01

    In this paper, we present a method for the ultrasensitive detection of microRNAs (miRNAs) utilizing an antibody that specifically recognizes DNA:RNA heteroduplexes, using a silicon photonic microring resonator array transduction platform. Microring resonator arrays are covalently functionalized with DNA capture probes that are complementary to solution phase miRNA targets. Following hybridization on the sensor, the anti-DNA:RNA antibody is introduced and binds selectively to the heteroduplexes, giving a larger signal than the original miRNA hybridization due to the increased mass of the antibody, as compared to the 22 oligoribonucleotide. Furthermore, the secondary recognition step is performed in neat buffer solution and at relatively higher antibody concentrations, facilitating the detection of miRNAs of interest. The intrinsic sensitivity of the microring resonator platform coupled with the amplification provided by the anti-DNA:RNA antibodies allows for the detection of microRNAs at concentrations as low as 10 pM (350 attomoles). The simplicity and sequence generality of this amplification method position it as a promising tool for high-throughput, multiplexed miRNA analysis, as well as a range of other RNA based detection applications. PMID:21711056

  7. Ultrastable pRNA hexameric ring gearing hexameric phi29 DNA-packaging motor by revolving without rotating and coiling.

    PubMed

    Schwartz, Chad; Guo, Peixuan

    2013-08-01

    Biomotors have previously been classified into two categories: linear and rotational motors. It has long been popularly believed that viral DNA packaging motors are rotation motors. We have recently found that the DNA-packaging motor of bacteriophage phi29 uses a third mechanism: revolution without rotation. phi29 motor consists of three-coaxial rings of hexameric RNA, a hexameric ATPase, and a dodecameric channel. The motor uses six ATP to revolve one helical turn of dsDNA around the hexameric ring of ATPase gp16. Each dodecameric segment tilts at a 30°-angle and runs anti-parallel to the dsDNA helix to facilitate translation in one direction. The negatively charged phosphate backbone interacts with four positively charged lysine rings, resulting in four steps of transition. This review will discuss how the novel pRNA meets motor requirements for translocation concerning structure, stoichiometry, and thermostability; how pRNA studies have led to the generation of the concept of RNA nanotechnology; and how pRNA is fabricated into nanoparticles to deliver siRNA, miRNA, and ribozymes to cancer and virus-infected cells. PMID:23683853

  8. Ultrastable pRNA hexameric ring gearing hexameric phi29 DNA-packaging motor by revolving without rotating and coiling

    PubMed Central

    Schwartz, Chad; Guo, Peixuan

    2013-01-01

    Biomotors have previously been classified into two categories: linear and rotational motors. It has long been popularly believed that viral DNA packaging motors are rotation motors. We have recently found that the DNA-packaging motor of bacteriophage phi29 uses a third mechanism: revolution without rotation. phi29 motor consists of three-coaxial rings of hexameric RNA, a hexameric ATPase, and a dodecameric channel. The motor uses six ATP to revolve one helical turn of dsDNA around the hexameric ring of ATPase gp16. Each dodecameric segment tilts at a 30°-angle and runs anti-parallel to the dsDNA helix to facilitate translation in one direction. The negatively charged phosphate backbone interacts with four positively charged lysine rings, resulting in four steps of transition. This review will discuss how the novel pRNA meets motor requirements for translocation concerning structure, stoichiometry, and thermostability; how pRNA studies have led to the generation of the concept of RNA nanotechnology; and how pRNA is fabricated into nanoparticles to deliver siRNA, miRNA, and ribozymes to cancer and virus-infected cells. PMID:23683853

  9. 24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex

    PubMed Central

    Lim, Andrew S. P.; Srivastava, Gyan P.; Yu, Lei; Chibnik, Lori B.; Xu, Jishu; Buchman, Aron S.; Schneider, Julie A.; Myers, Amanda J.; Bennett, David A.; De Jager, Philip L.

    2014-01-01

    Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1–3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and Alzheimer's disease. PMID:25375876

  10. Small Interfering RNA (siRNA)-Directed Knockdown of Uracil DNA Glycosylase Induces Apoptosis and Sensitizes Human Prostate Cancer Cells to Genotoxic Stress

    PubMed Central

    Pulukuri, Sai Murali Krishna; Knost, James A.; Estes, Norman; Rao, Jasti S.

    2009-01-01

    Uracil DNA glycosylase (UNG) is the primary enzyme responsible for removing uracil residues from DNA. Although a substantial body of evidence suggests that DNA damage plays a role in cancer cell apoptosis, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in cell survival. To test the hypothesis that the repair of DNA damage associated with uracil misincorporation is critical for cancer cell survival, we used small interfering RNA to target the human UNG gene. In a dose- and time-dependent manner, siRNA specifically inhibited UNG expression and modified expression of several genes, at both mRNA and protein levels. In LNCaP cells, p53, p21 and Bax protein levels increased, whereas Bcl2 levels decreased. In DU145 cells, p21 levels were elevated, although mutant p53 and Bax levels remained unchanged. In PC3 cells, UNG inhibition resulted in elevated p21 and Bax levels. In all three cell lines, UNG inhibition reduced cell proliferation, induced apoptosis, and increased cellular sensitivity to genotoxic stress. Furthermore, the in vitro cleavage experiment using uracil-containing double-stranded DNA as template has demonstrated that siRNA-mediated knockdown of UNG expression significantly reduced uracil-excising activity of UNG in human prostate cancer cells, which was associated with DNA damage analyzed by comet assay. Taken together, these findings indicate that RNA interference-directed targeting of UNG is a convenient, novel tool for studying the biological role of UNG and raises the potential of its application for prostate cancer therapy. PMID:19671688

  11. RNA.

    ERIC Educational Resources Information Center

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  12. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  13. A comparative study of COI and 16?S rRNA genes for DNA barcoding of cultivable carps in India.

    PubMed

    Mohanty, Mausumee; Jayasankar, Pallipuram; Sahoo, Lakshman; Das, Paramananda

    2013-09-19

    Abstract The 5' region of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) is the standard marker for DNA barcoding. However, 16?S rRNA has also been advocated for DNA barcoding in many animal species. Herein, we directly compare the usefulness of COI and 16?S rRNA in discriminating six cultivable carp species: Labeo rohita, Catla catla, Cirrhinus mrigala, Labeo fimbriatus, Labeo bata and Cirrhinus reba from India. Analysis of partial sequences of these two gene fragments from 171 individuals indicated close genetic relationship between Catla catla and Labeo rohita. The results of the present study indicated COI to be more useful than 16?S rRNA for DNA barcoding of Indian carps. PMID:24047160

  14. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma.

    PubMed

    Yan, H; Wu, Q-L; Sun, C-Y; Ai, L-S; Deng, J; Zhang, L; Chen, L; Chu, Z-B; Tang, B; Wang, K; Wu, X-F; Xu, J; Hu, Y

    2015-01-01

    Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138(+) MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16(INK4A). In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM. PMID:24732595

  15. HPV mRNA Is More Specific than HPV DNA in Triage of Women with Minor Cervical Lesions

    PubMed Central

    Sørbye, Sveinung Wergeland; Fismen, Silje; Gutteberg, Tore Jarl; Mortensen, Elin Synnøve; Skjeldestad, Finn Egil

    2014-01-01

    Background In Norway, repeat cytology and HPV testing comprise delayed triage of women with minor cytological lesions. The objective of this study was to evaluate HPV DNA and HPV mRNA testing in triage of women with an ASC-US/LSIL diagnosis. Materials and Methods We used repeat cytology, HPV DNA testing (Cobas 4800) and HPV mRNA testing (PreTect HPV-Proofer) to follow up 311 women aged 25–69 years with ASC-US/LSIL index cytology. Results Of 311 women scheduled for secondary screening, 30 women (9.6%) had ASC-H/HSIL cytology at triage and 281 women (90.4%) had ASC-US/LSIL or normal cytology. The HPV DNA test was positive in 92 (32.7%) of 281 instances, and 37 (13.2%) were mRNA positive. Of the 132 women with repeated ASC-US/LSIL, we received biopsies from 97.0% (65/67) of the DNA-positive and 92.9% (26/28) of the mRNA-positive cases. The positive predictive values for CIN2+ were 21.5% (14/65) for DNA positive and 34.6% (9/26) for mRNA positive (ns). The odds ratio for being referred to colposcopy in DNA-positive cases were 2.8 times (95% CI: 1.8–4.6) higher that of mRNA-positive cases. Compared to the mRNA test, the DNA test detected four more cases of CIN2 and one case of CIN3. Conclusions The higher positivity rate of the DNA test in triage leads to higher referral rate for colposcopy and biopsy, and subsequent additional follow-up of negative biopsies. By following mRNA-negative women who had ASC-US/LSIL at triage with cytology, the additional cases of CIN2+ gained in DNA screening can be discovered. Our study indicates that in triage of repeated ASC-US/LSIL, HPV mRNA testing is more specific and is more relevant in clinical use than an HPV DNA test. PMID:25405981

  16. DUPLEX: A molecular mechanics program in torsion angle space for computing structures of DNA and RNA

    SciTech Connect

    Hingerty, B.E.

    1992-07-01

    DUPLEX produces energy minimized structures of DNA and RNA of any base sequence for single and double strands. The smallest subunits are deoxydinucleoside monophosphates, and up to 12 residues, single or double stranded can be treated. In addition, it can incorporate NMR derived interproton distances an constraints in the minimizations. Both upper and lower bounds for these distances can be specified. The program has been designed to run on a UNICOS Cray supercomputer, but should run, albeit slowly, on a laboratory computer such as a VAX or a workstation.

  17. DNA Micelle Flares for Intracellular mRNA Imaging and Gene Therapy

    PubMed Central

    Chen, Tao; Sam Wu, Cuichen; Jimenez, Elizabeth; Zhu, Zhi; Dajac, Joshua G.; You, Mingxu; Han, Da

    2013-01-01

    Multifunctional DNA micelles: Molecular beacon micelle flares (MBMFs), based on diacyllipid-molecular beacon conjugate (L-MB) self-assembly, have been developed for combined mRNA detection and gene therapy. The advantages of these micelle flares include easy probe synthesis, efficient cellular uptake, enhanced enzymatic stability, high signal-to-background ratio, excellent target selectivity, and superior biocompatibility. In addition, these probes possess a hydrophobic cavity that can be used for additional hydrophobic agents, holding great promise for constructing an all-in-one nucleic acid probe. PMID:23319350

  18. Simplified Identification of mRNA or DNA in Whole Cells

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    A recently invented method of detecting a selected messenger ribonucleic acid (mRNA) or deoxyribonucleic acid (DNA) sequence offers two important advantages over prior such methods: it is simpler and can be implemented by means of compact equipment. The simplification and miniaturization achieved by this invention are such that this method is suitable for use outside laboratories, in field settings in which space and power supplies may be limited. The present method is based partly on hybridization of nucleic acid, which is a powerful technique for detection of specific complementary nucleic acid sequences and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes.

  19. Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules

    Microsoft Academic Search

    E. C. M. Juan; J. Kondo; T. Kurihara; T. Ito; Y. Ueno; A. Matsuda; A. Takenaka

    2007-01-01

    Oligonucleotides containing 5-(N-aminohexyl) carbamoyl-modified uracils have promising features for applications as antigene and antisense therapies. Relative to unmodified DNA, oligonucleotides con- taining 5-(N-aminohexyl)carbamoyl-20-deoxyuridine (NU) or 5-(N-aminohexyl)carbamoyl-20-O-methyl- uridine (NUm), respectively exhibit increased binding affinity for DNA and RNA, and enhanced nuclease resistance. To understand the structural implications of NU and NUm substitutions, we have determined the X-ray crystal structures of DNA:DNA

  20. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  1. Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis.

    PubMed

    Clarke, Richard W; Piper, Joe D; Ying, Liming; Klenerman, David

    2007-05-11

    We report the measurement of the surface conductivity of biological macromolecules by dielectrophoretic trapping at the tip of a glass nanopipet. We find that the threshold voltage for trapping is a function of salt concentration and can be directly linked to the effective conductivity of the biomolecule and its solvation shell. The surface conductivities obtained for 20-mer single-stranded DNA, 40-mer double-stranded DNA, and yellow fluorescent protein are 7.9+/-1.9 nS, 5.3+/-0.7 nS, and 21.5+/-1.6 nS, respectively. PMID:17677664

  2. In-vitro nanodiagnostic platform through nanoparticles and DNA-RNA nanotechnology.

    PubMed

    Chan, Ki; Ng, Tzi Bun

    2015-04-01

    Nanocomposites containing nanoparticles or nanostructured domains exhibit an even higher degree of material complexity that leads to an extremely high variability of nanostructured materials. This review introduces analytical concepts and techniques for nanomaterials and derives recommendations for a qualified selection of characterization techniques for specific types of samples, and focuses the characterization of nanoparticles and their agglomerates or aggregates. In addition, DNA nanotechnology and the more recent newcomer RNA nanotechnology have achieved almost an advanced status among nanotechnology researchers¸ therefore, the core features, potential, and significant challenges of DNA nanotechnology are also highlighted as a new discipline. Moreover, nanobiochips made by nanomaterials are rapidly emerging as a new paradigm in the area of large-scale biochemical analysis. The use of nanoscale components enables higher precision in diagnostics while considerably reducing the cost of the platform that leads this review to explore the use of nanoparticles, nanomaterials, and other bionanotechnologies for its application to nanodiagnostics in-vitro. PMID:25761622

  3. Higher-Level Snake Phylogeny Inferred from Mitochondrial DNA Sequences of 12s rRNA and 16s rRNA Genes

    E-print Network

    Hedges, Blair

    Higher-Level Snake Phylogeny Inferred from Mitochondrial DNA Sequences of 12s rRNA and 16s r sequenced to determine the phylogenetic relationships among the major clades of snakes. Thirty-six species families of lizards. Snakes were found to constitute a monophyletic group (confidence probability [CP] = 96

  4. Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria

    PubMed Central

    El Hage, Aziz; Webb, Shaun; Kerr, Alastair; Tollervey, David

    2014-01-01

    During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5?-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes. PMID:25357144

  5. RNA/DNA co-analysis from human skin and contact traces - results of a sixth collaborative EDNAP exercise.

    PubMed

    Haas, C; Hanson, E; Banemann, R; Bento, A M; Berti, A; Carracedo, Á; Courts, C; Cock, G De; Drobnic, K; Fleming, R; Franchi, C; Gomes, I; Hadzic, G; Harbison, S A; Hjort, B; Hollard, C; Hoff-Olsen, P; Keyser, C; Kondili, A; Maroñas, O; McCallum, N; Miniati, P; Morling, N; Niederstätter, H; Noël, F; Parson, W; Porto, M J; Roeder, A D; Sauer, E; Schneider, P M; Shanthan, G; Sijen, T; Syndercombe Court, D; Turanská, M; van den Berge, M; Vennemann, M; Vidaki, A; Zatkalíková, L; Ballantyne, J

    2015-05-01

    The European DNA profiling group (EDNAP) organized a sixth collaborative exercise on RNA/DNA co-analysis for body fluid/tissue identification and STR profiling. The task was to identify skin samples/contact traces using specific RNA biomarkers and test three housekeeping genes for their suitability as reference genes. Eight stains, a skin RNA dilution series and, optionally, bona fide or mock casework samples of human or non-human origin were analyzed by 22 participating laboratories using RNA extraction or RNA/DNA co-extraction methods. Two sets of previously described skin-specific markers were used: skin1 pentaplex (LCE1C, LCE1D, LCE2D, IL1F7 and CCL27) and skin2 triplex (LOR, KRT9 and CDSN) in conjunction with a housekeeping gene, HKG, triplex (B2M, UBC and UCE). The laboratories used different chemistries and instrumentation. All laboratories were able to successfully isolate and detect mRNA in contact traces (e.g., human skin, palm-, hand- and fingerprints, clothing, car interiors, computer accessories and electronic devices). The simultaneous extraction of RNA and DNA provides an opportunity for positive identification of the tissue source of origin by mRNA profiling as well as a simultaneous identification of the body fluid donor by STR profiling. The skin markers LCE1C and LOR and the housekeeping gene marker B2M were detected in the majority of contact traces. Detection of the other markers was inconsistent, possibly due to the low amounts and/or poor quality of the genetic material present in shed skin cells. The results of this and the previous collaborative RNA exercises support RNA profiling as a reliable body fluid/tissue identification method that can easily be combined with current STR typing technology. PMID:25600397

  6. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage.

    PubMed

    Wei, Na; Shi, Yi; Truong, Lan N; Fisch, Kathleen M; Xu, Tao; Gardiner, Elisabeth; Fu, Guangsen; Hsu, Yun-Shiuan Olivia; Kishi, Shuji; Su, Andrew I; Wu, Xiaohua; Yang, Xiang-Lei

    2014-10-23

    Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage. PMID:25284223

  7. Eel ventricular natriuretic peptide: cDNA cloning and mRNA expression.

    PubMed

    Takei, Y; Ueki, M; Nishizawa, T

    1994-12-01

    Ventricular natriuretic peptide (VNP), a newly discovered type of cardiac natriuretic peptide identified in eels, has a unique amino acid sequence and biological activity compared with other members of the natriuretic peptide family. We have cloned a cDNA encoding the eel VNP precursor from a cDNA library of eel ventricles and determined its sequence. Sequence analysis showed that the preproVNP consists of 150 amino acid residues containing a signal sequence of 22 amino acid residues at its N terminus and mature VNP(1-36) at its C terminus. Comparison with two types of mammalian cardiac natriuretic peptides (A and B type natriuretic peptides; ANP and BNP) revealed that VNP showed greater overall sequence identity to ANP than to BNP at both the cDNA and amino acid sequence levels. Since VNP cDNA lacks the repetitive ATTTA sequence in the 3' non-coding region, which is a characteristic common to all BNP cDNAs sequenced to date, VNP may differ from BNP. While mRNA for eel ANP was detected only in the atrium, that for eel VNP was more abundant in the ventricle than in the atrium. Thus VNP is regarded as the first truly ventricular hormone in terms of synthesis and storage. Southern blot analysis indicated that VNP is also present in the quail, which belongs to a taxon where BNP has already been identified. PMID:7893352

  8. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA.

    PubMed

    Li, Li; Li, Xincang; Li, Lu; Wang, Jinxing; Jin, Wenrui

    2011-01-24

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1×10(-14)molL(-1). Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte. PMID:21168551

  9. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    PubMed

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells. PMID:25579461

  10. Configurational diffusion of coal macromolecules

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  11. Development of a Novel Self-Enclosed Sample Preparation Device for DNA/RNA Isolation in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Mehta, Satish K.; Pensinger, Stuart J.; Pickering, Karen D.

    2011-01-01

    Modern biology techniques present potentials for a wide range of molecular, cellular, and biochemistry applications in space, including detection of infectious pathogens and environmental contaminations, monitoring of drug-resistant microbial and dangerous mutations, identification of new phenotypes of microbial and new life species. However, one of the major technological blockades in enabling these technologies in space is a lack of devices for sample preparation in the space environment. To overcome such an obstacle, we constructed a prototype of a DNA/RNA isolation device based on our novel designs documented in the NASA New Technology Reporting System (MSC-24811-1/3-1). This device is self-enclosed and pipette free, purposely designed for use in the absence of gravity. Our design can also be modified easily for preparing samples in space for other applications, such as flowcytometry, immunostaining, cell separation, sample purification and separation according to its size and charges, sample chemical labeling, and sample purification. The prototype of our DNA/RNA isolation device was tested for efficiencies of DNA and RNA isolation from various cell types for PCR analysis. The purity and integrity of purified DNA and RNA were determined as well. Results showed that our developed DNA/RNA isolation device offers similar efficiency and quality in comparison to the samples prepared using the standard protocol in the laboratory.

  12. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells

    PubMed Central

    Singh, Ankur; Suri, Shalu; Roy, Krishnendu

    2009-01-01

    Polymer-based, injectable systems that can simultaneously deliver multiple bioactive agents in a controlled manner could significantly enhance the efficacy of next generation therapeutics. For immunotherapies to be effective, both prophylactically or therapeutically, it is not only critical to drive the antigen (Ag) specific immune response strongly towards either T helper type 1 (Th1) or Th2 phenotype, but also to promote recruitment of a high number of antigen-presenting cells (APCs) at the site of immunization. We have recently reported a microparticle-based system capable of simultaneously delivering siRNA and DNA to APCs. Here we present an in situ crosslinkable, injectable formulation containing dendritic cell (DC)-chemoattractants and dual-mode DNA-siRNA loaded microparticles to attract immature DCs and simultaneously deliver, to the migrated cells, immunomodulatory siRNA and plasmid DNA antigens. These low crosslink density hydrogels were designed to degrade within 2–7 days in-vitro and released chemokines in a sustained manner. Chemokine carrying gels attracted 4–6 folds more DCs over a sustained period in vitro, compared to an equivalent bolus dose. Interestingly, migrated DCs were able to infiltrate the hydrogels and efficiently phagocytose the siRNA/DNA carrying microparticles. Hydrogel embedded microparticles co-delivering Interleukin-10 siRNA and plasmid DNA antigens exhibited efficient Interleukin-10 gene knockdown in migrated primary DCs in-vitro. PMID:19560815

  13. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor

    PubMed Central

    Shu, Dan; Khisamutdinov, Emil F.; Zhang, Le; Guo, Peixuan

    2014-01-01

    Misfolding and associated loss of function are common problems in constructing fusion RNA complexes due to changes in energy landscape and the nearest-neighbor principle. Here we report the incorporation and application of the pRNA-3WJ motif of the phi29 DNA packaging motor into fusion RNA with controllable and predictable folding. The motif included three discontinuous ?18 nucleotide (nt) fragments, displayed a distinct low folding energy (Shu D et al., Nature Nanotechnology, 2011, 6:658–667), and folded spontaneously into a leading core that enabled the correct folding of other functionalities fused to the RNA complex. Three individual fragments dispersed at any location within the sequence allowed the other RNA functional modules to fold into their original structures with authentic functions, as tested by Hepatitis B virus ribozyme, siRNA, and aptamers for malachite green (MG), spinach, and streptavidin (STV). Only nine complementary nucleotides were present for any two of the three ?18-nt fragments, but the three 9 bp branches were so powerful that they disrupted other double strands with more than 15 bp within the fusion RNA. This system enabled the production of fusion complexes harboring multiple RNA functionalities with correct folding for potential applications in biotechnology, nanomedicine and nanotechnology. We also applied this system to investigate the principles governing the folding of RNA in vivo and in vitro. Temporal production of RNA sequences during in vivo transcription caused RNA to fold into different conformations that could not be predicted with routine principles derived from in vitro studies. PMID:24084081

  14. Genetic Evidence That DNA Methyltransferase DRM2 Has a Direct Catalytic Role in RNA-Directed DNA Methylation in Arabidopsis thaliana

    PubMed Central

    Naumann, Ulf; Daxinger, Lucia; Kanno, Tatsuo; Eun, Changho; Long, Quan; Lorkovic, Zdravko J.; Matzke, Marjori; Matzke, Antonius J. M.

    2011-01-01

    RNA-directed DNA methylation (RdDM) is a small RNA-mediated epigenetic modification in plants. We report here the identification of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) in a forward screen for mutants defective in RdDM in Arabidopsis thaliana. The finding of a mutation in the presumptive active site argues in favor of direct catalytic activity for DRM2. PMID:21212233

  15. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results.

    PubMed

    van den Berge, M; Carracedo, A; Gomes, I; Graham, E A M; Haas, C; Hjort, B; Hoff-Olsen, P; Maroñas, O; Mevåg, B; Morling, N; Niederstätter, H; Parson, W; Schneider, P M; Court, D Syndercombe; Vidaki, A; Sijen, T

    2014-05-01

    The European Forensic Genetics Network of Excellence (EUROFORGEN-NoE) undertook a collaborative project on mRNA-based body fluid/skin typing and the interpretation of the resulting RNA and DNA data. Although both body fluids and skin are composed of a variety of cell types with different functions and gene expression profiles, we refer to the procedure as 'cell type inference'. Nine laboratories participated in the project and used a 20-marker multiplex to analyse samples that were centrally prepared and thoroughly tested prior to shipment. Specimens of increasing complexity were assessed that ranged from reference PCR products, cDNAs of indicated or unnamed cell type source(s), to challenging mock casework stains. From this specimen set, information on the overall sensitivity and specificity of the various markers was obtained. In addition, the reliability of a scoring system for inference of cell types was assessed. This scoring system builds on replicate RNA analyses and the ratio observed/possible peaks for each cell type [1]. The results of the exercise support the usefulness of this scoring system. When interpreting the data obtained from the analysis of the mock casework stains, the participating laboratories were asked to integrate the DNA and RNA results and associate donor and cell type where possible. A large variation for the integrated interpretations of the DNA and RNA data was obtained including correct interpretations. We infer that with expertise in analysing RNA profiles, clear guidelines for data interpretation and awareness regarding potential pitfalls in associating donors and cell types, mRNA-based cell type inference can be implemented for forensic casework. PMID:24552886

  16. Characterization of Damage to Bacteria and Bio-macromolecules Caused by (V)UV Radiation and Particles Generated by a Microscale Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Lackmann, Jan-Wilm; Schneider, Simon; Narberhaus, Franz; Benedikt, Jan; Bandow, Julia E.

    Atmospheric pressure plasma jets effectively inactivate bacteria on ­surfaces including infected tissues. This is due to the combined effects of (V)UV radiation, reactive oxygen and nitrogen species, ions, and high electric fields. A well-characterized microscale atmospheric pressure plasma jet (?-APPJ) operated with He/O2 gas mixture has been modified so that (V)UV radiation and heavy reactive particles (mainly O3 molecules and O atoms) emitted from the plasma source can be separated effectively. The separation is achieved by an additional lateral He flow, which diverts the heavy particles from the jet axis. The new jet geometry is called X-Jet. Separation of different plasma components allows studying their effects on living cells and bio-macromolecules separately. First, the effectiveness of the separation of different plasma components was demonstrated by treatment of monolayers of vegetative Bacillus subtilis cells. To characterize effects on nucleic acids, dried plasmid DNA and total cellular RNA were treated with the separated plasma components. Dried bovine serum albumin was used to study etching effects of (V)UV radiation and heavy particles on proteins. We found that heavy particles emitted from the X-Jet kill vegetative cells more effectively than the (V)UV radiation from this type of plasma source. All bio-macromolecules investigated, DNA, RNA, and proteins, are affected by plasma treatment. DNA exposed to the (V)UV-channel of the jet seems to be prone to thymine dimer formation not only in vitro but also in vivo as indicated by induction of the photolyase in Escherichia coli, while DNA strand breaks occur under both jet channels. Heavy particles seem more effective in degrading RNA and in etching protein in vitro.

  17. Automatic on-chip RNA-DNA hybridization assay with integrated phase change microvalves

    NASA Astrophysics Data System (ADS)

    Weng, Xuan; Jiang, Hai; Wang, Junsheng; Chen, Shu; Cao, Honghe; Li, Dongqing

    2012-07-01

    An RNA-DNA hybridization assay microfluidic chip integrated with electrothermally actuated phase change microvalves for detecting pathogenic bacteria is presented in this paper. In order to realize the sequential loading and washing processes required in such an assay, gravity-based pressure-driven flow and phase-change microvalves were used in the microfluidic chip. Paraffin wax was used as the phase change material in the valves and thin film heaters were used to electrothermally actuate microvalves. Light absorption measured by a photodetector to determine the concentrations of the samples. The automatic control of the complete assay was implemented by a self-coded LabVIEW program. To examine the performance of this chip, Salmonella was used as a sample pathogen. Significantly, reduction in reagent/sample consumption (up to 20 folds) was achieved by this on-chip assay, compared with using the commercial test kit following the same protocol in conventional labs. The experimental results show that the quantitative detection can be obtained in approximately 26 min, and the detection limit is as low as 103 CFU ml-1. This RNA-DNA hybridization assay microfluidic chip shows an excellent potential in the development of a portable device for point-of-testing applications.

  18. A novel microRNA assay with optical detection and enzyme-free DNA circuits

    NASA Astrophysics Data System (ADS)

    Liao, Yuhui; Zhou, Xiaoming

    2014-09-01

    MicroRNAs (miRNAs) participate in the significant processes of life course, can be used as quantificational biomarkers for cellular level researches and related diseases. Conventional methods of miRNAs' quantitative detection are obsessed with low sensitivity, time and labour consuming. Otherwise, the emerging miRNAs detection approaches are mostly exposed to the expensive equipment demands and the professional operation, remains at the stage of laboratory and concept demonstration phase. Herein, we designed a novel miRNAs detection platform that based on enzyme-free DNA circuits and electrochemical luminescence (ECL). MicroRNA21 was chosen as the ideal analyte of this platform. The whole process consists of enzyme-free DNA circuits and ECL signal giving-out steps, achieves advantages of operating in constant temperature condition, without the participation of the enzyme, preferable sensitivity and specificity. Through this approach, the sensitivity achieved at 10pM. It is indicated that this miRNAs detection platform possesses potentials to be an innovation of miRNA detection technologies in routine tests. Benefits of the high penetration of ECL in well-equipped medical establishment, this approach could greatly lessen the obstacles in process of popularization and possess excellent prospects of practical application.

  19. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex.

    PubMed

    Geiger, Sebastian R; Lorenzen, Kristina; Schreieck, Amelie; Hanecker, Patrizia; Kostrewa, Dirk; Heck, Albert J R; Cramer, Patrick

    2010-08-27

    The eukaryotic RNA polymerases Pol I, II, and III use different promoters to transcribe different classes of genes. Promoter usage relies on initiation factors, including TFIIF and TFIIE, in the case of Pol II. Here, we show that the Pol I-specific subunits A49 and A34.5 form a subcomplex that binds DNA and is related to TFIIF and TFIIE. The N-terminal regions of A49 and A34.5 form a dimerization module that stimulates polymerase-intrinsic RNA cleavage and has a fold that resembles the TFIIF core. The C-terminal region of A49 forms a "tandem winged helix" (tWH) domain that binds DNA with a preference for the upstream promoter nontemplate strand and is predicted in TFIIE. Similar domains are predicted in Pol III-specific subunits. Thus, Pol I/III subunits that have no counterparts in Pol II are evolutionarily related to Pol II initiation factors and may have evolved to mediate promoter specificity and transcription processivity. PMID:20797630

  20. Human apolipoprotein B: identification of cDNA clones and characterization of mRNA.

    PubMed Central

    Mehrabian, M; Schumaker, V N; Fareed, G C; West, R; Johnson, D F; Kirchgessner, T; Lin, H C; Wang, X B; Ma, Y H; Mendiaz, E

    1985-01-01

    Apolipoprotein B (apoB) is a major protein component of low density and very low density lipoproteins. Because of its large size and heterogeneity, molecular studies of apoB have been difficult, and its structure and regulation remain poorly understood. We now report the identification of human apoB cDNA clones by antibody screening of hepatoma libraries in the expression vector lambda gt11. Both oligo(dT) primed and random primed libraries were constructed and screened with polyclonal antibodies to intact apoB, as well as with antibodies raised against a synthetic peptide based on the limited amino acid sequence available for apoB. The identity of the clones was unambiguously established by comparisons of the cloned cDNA sequences with apoB amino acid sequences. The clones hybridize to an exceptionally large 20 kb mRNA that is present in liver and intestine but not other tissues examined, consistent with the distribution expected from protein biosynthetic studies. The properties of the mRNA have implications for the biogenesis of the multiple apoB molecular weight forms secreted by liver and intestine. Images PMID:3903660

  1. Integrative DNA, RNA, and Protein Evidence Connects TREML4 to Coronary Artery Calcification

    PubMed Central

    Sen, Shurjo K.; Boelte, Kimberly C.; Barb, Jennifer J.; Joehanes, Roby; Zhao, XiaoQing; Cheng, Qi; Adams, Lila; Teer, Jamie K.; Accame, David S.; Chowdhury, Soma; Singh, Larry N.; Kavousi, Maryam; Peyser, Patricia A.; Quigley, Laura; Priel, Debra Long; Lau, Karen; Kuhns, Douglas B.; Yoshimura, Teizo; Johnson, Andrew D.; Hwang, Shih-Jen; Chen, Marcus Y.; Arai, Andrew E.; Green, Eric D.; Mullikin, James C.; Kolodgie, Frank D.; O’Donnell, Christopher J.; Virmani, Renu; Munson, Peter J.; McVicar, Daniel W.; Biesecker, Leslie G.

    2014-01-01

    Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcification. Our findings connect multimodal genomics data with a commonly used clinical marker of cardiovascular disease. PMID:24975946

  2. Integrative DNA, RNA, and protein evidence connects TREML4 to coronary artery calcification.

    PubMed

    Sen, Shurjo K; Boelte, Kimberly C; Barb, Jennifer J; Joehanes, Roby; Zhao, XiaoQing; Cheng, Qi; Adams, Lila; Teer, Jamie K; Accame, David S; Chowdhury, Soma; Singh, Larry N; Kavousi, Maryam; Peyser, Patricia A; Quigley, Laura; Priel, Debra Long; Lau, Karen; Kuhns, Douglas B; Yoshimura, Teizo; Johnson, Andrew D; Hwang, Shih-Jen; Chen, Marcus Y; Arai, Andrew E; Green, Eric D; Mullikin, James C; Kolodgie, Frank D; O'Donnell, Christopher J; Virmani, Renu; Munson, Peter J; McVicar, Daniel W; Biesecker, Leslie G

    2014-07-01

    Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcification. Our findings connect multimodal genomics data with a commonly used clinical marker of cardiovascular disease. PMID:24975946

  3. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid.

    PubMed

    Nowak, Elzbieta; Potrzebowski, Wojciech; Konarev, Petr V; Rausch, Jason W; Bona, Marion K; Svergun, Dmitri I; Bujnicki, Janusz M; Le Grice, Stuart F J; Nowotny, Marcin

    2013-04-01

    A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs. PMID:23382176

  4. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid

    PubMed Central

    Nowak, El?bieta; Potrzebowski, Wojciech; Konarev, Petr V.; Rausch, Jason W.; Bona, Marion K.; Svergun, Dmitri I.; Bujnicki, Janusz M.; Le Grice, Stuart F. J.; Nowotny, Marcin

    2013-01-01

    A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate—a key difference between monomeric and dimeric RTs. PMID:23382176

  5. Improvement of DNA and RNA Sugar Pucker Profiles from Semiempirical Quantum Methods

    PubMed Central

    2015-01-01

    Neglect of diatomic differential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models commonly employed in combined quantum mechanical/molecular mechanical simulations fail to adequately describe the deoxyribose and ribose sugar ring puckers. This failure limits the application of these methods to RNA and DNA systems. In this work, we provide benchmark ab initio gas-phase two-dimensional potential energy scans of the RNA and DNA sugar puckering. The benchmark calculations are compared with semiempirical models. Pucker corrections are introduced into the semiempirical models via B-spline interpolation of the potential energy difference surface relative to the benchmark data. The corrected semiempirical models are shown to well reproduce the ab initio puckering profiles. Furthermore, we demonstrate that the uncorrected semiempirical models do not usually produce a transition state between the A-form and B-form sugar puckers, but the ab initio transition state is reproduced when the B-spline correction is used. PMID:24803866

  6. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  7. The effects of transcription and RNA processing on the initiation of chloroplast DNA replication in Chlamydomonas reinhardtii.

    PubMed

    Chang, C H; Wu, M

    2000-03-01

    In Chlamydomonas reinhardtii, the origin for chloroplast DNA replication, Ori A, overlaps the coding region for the chloroplast ribosomal protein Rpl16. In an in vitro DNA replication system that uses cloned Ori A as template, alteration of transcription across rpl16 affects replication activity. S1 nuclease protection mapping of cellular RNA derived from this region revealed multiple 5' and 3' ends, and several 3' ends were mapped within mini Ori A (224 bp), the core region for replication initiation. We also demonstrated that the protein fraction used in the in vitro DNA replication system contained an RNA processing activity responsible for the generation of multiple 3' ends. The 3' ends of some of the processed RNA species coincided with those of the cellular transcripts. Initiation of DNA replication in the in vitro system changed the abundance of some of the processed RNA species, and the S1 nuclease protection pattern generated by the 3' ends now mimicked that of the in vivo transcripts. We also monitored the pattern of 3' ends in cellular transcripts from the rpl16 region during gametogenesis--when the chloroplast DNA is under-replicated--and detected a change in transcript abundance that correlated with that seen in the in vitro study. Measurements of the template activity of mutants with targeted sequences change near the sites of processing also supported the notion that the processed transcripts play an important role in DNA replication. PMID:10778751

  8. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?

    PubMed

    Conde, João; Edelman, Elazer R; Artzi, Natalie

    2015-01-01

    microRNAs (miRNAs) show high potential for cancer treatment, however one of the most significant bottlenecks in enabling miRNA effect is the need for an efficient vehicle capable of selective targeting to tumor cells without disrupting normal cells. Even more challenging is the ability to detect and silence multiple targets simultaneously with high sensitivity while precluding resistance to the therapeutic agents. Focusing on the pervasive role of miRNAs, herein we review the multiple nanomaterial-based systems that encapsulate DNA/RNA for miRNA sensing and inhibition in cancer therapy. Understanding the potential of miRNA detection and silencing while overcoming existing limitations will be critical to the optimization and clinical utilization of this technology. PMID:25220355

  9. Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines.

    PubMed

    Kontis, K J; Arfin, S M

    1989-05-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations. PMID:2747635

  10. Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines.

    PubMed Central

    Kontis, K J; Arfin, S M

    1989-01-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations. Images PMID:2747635

  11. Rapid and Sensitive Colorimetric Method for Visualizing Biotin-Labeled DNA Probes Hybridized to DNA or RNA Immobilized on Nitrocellulose: Bio-Blots

    Microsoft Academic Search

    Jeffry J. Leary; David J. Brigati; David C. Ward

    1983-01-01

    Biotin-labeled DNA probes, prepared by nicktranslation in the presence of biotinylated analogs of TTP, are hybridized to DNA or RNA immobilized on nitrocellulose filters. After removal of residual probe, the filters are incubated for 2--5 min with a preformed complex made with avidin-DH (or streptavidin) and biotinylated polymers of intestinal alkaline phosphatase. The filters are then incubated with a mixture

  12. MicroRNA-31 suppresses medulloblastoma cell growth by inhibiting DNA replication through minichromosome maintenance 2

    PubMed Central

    Zhang, Ziyu; Li, Sanen; Huang, Huijie; Yu, Ting-ting; Cao, Xiumei; Cheng, Steven Y.

    2014-01-01

    Medulloblastoma is an aggressive childhood brain tumor with poor prognosis. Recent studies indicate that dys-regulation of microRNA expression plays important roles in tumorigenesis. By comparing microRNA levels between mouse medulloblastoma and normal cerebellar tissues, we identified a set of down-regulated microRNAs including miR-31. Here, we show that the genomic region surrounding human miR-31 at 9p21.3 is frequently deleted in many solid tumor cell lines, and reintroducing miR-31 into DAOY cells, a line of human medulloblastoma cells devoid of miR-31, strongly suppresses cell growth, causes cell cycle arrest at the G1/S boundary, and inhibits colony formation in vitro and xenograft tumorigenesis in nude mice. Global gene expression profiling of mouse medulloblastomas and bioinformatics analyses of microRNA targets suggest that minichromosome maintenance complex component 2 (MCM2) is a likely target gene of miR-31 in suppressing cell growth. We demonstrate that miR-31 inhibits MCM2 expression via its 3'-untranslated region, that knockdown of MCM2 in DAOY cells leads to a degree of growth inhibition comparable to that by miR-31 restoration, and that overexpression of miR-31 reduces the chromatin loading of MCM2 at the point of G1/S transition. Taken together, these data indicate that miR-31 suppresses medulloblastoma tumorigenesis by negatively regulating DNA replication via MCM2. PMID:24970811

  13. Activation of different split functionalities on re-association of RNA-DNA hybrids.

    PubMed

    Afonin, Kirill A; Viard, Mathias; Martins, Angelica N; Lockett, Stephen J; Maciag, Anna E; Freed, Eric O; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A

    2013-04-01

    Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications. PMID:23542902

  14. Artificial riboswitches for gene expression and replication control of DNA and RNA viruses.

    PubMed

    Ketzer, Patrick; Kaufmann, Johanna K; Engelhardt, Sarah; Bossow, Sascha; von Kalle, Christof; Hartig, Jörg S; Ungerechts, Guy; Nettelbeck, Dirk M

    2014-02-01

    Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule-triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses. PMID:24449891

  15. Homochirality through Photon-Induced Melting of RNA/DNA: the Thermodynamic Dissipation Theory of the Origin of Life

    E-print Network

    Michaelian, Karo

    2010-01-01

    The homochirality of the molecules of life has been a vexing problem with no generally accepted solution to date. Since a racemic mixture of chiral nucleotides frustrates the extension and replication of RNA and DNA, understanding the origin of homochirality has important implications to the investigation of the origin of life. Here we suggest a novel solution to the homochirality problem based on a recently proposed thermodynamic dissipation theory for the origin of life. Homochirality is suggested to have been incorporated gradually into the emerging life as a result of asymmetric right- over left-handed photon-induced denaturation of RNA/DNA occurring when Archean sea surface temperatures became close to the denaturing temperatures of RNA/DNA. This differential denaturing success would have been promoted by the somewhat right-handed circularly polarized submarine light of the late afternoon when surface water temperatures are highest, and a negative circular dichroism band extending from 220 nm up to 260 n...

  16. Identification of a BRCA1-mRNA Splicing Complex Required for Efficient DNA Repair and Maintenance of Genomic Stability

    PubMed Central

    Savage, Kienan I.; Gorski, Julia J.; Barros, Eliana M.; Irwin, Gareth W.; Manti, Lorenzo; Powell, Alexander J.; Pellagatti, Andrea; Lukashchuk, Natalia; McCance, Dennis J.; McCluggage, W. Glenn; Schettino, Giuseppe; Salto-Tellez, Manuel; Boultwood, Jacqueline; Richard, Derek J.; McDade, Simon S.; Harkin, D. Paul

    2014-01-01

    Summary Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage. PMID:24746700

  17. Importance of the tmRNA system for cell survival when transcription is blocked by DNA-protein crosslinks

    PubMed Central

    Kuo, H. Kenny; Krasich, Rachel; Bhagwat, Ashok S.; Kreuzer, Kenneth N.

    2010-01-01

    Summary Anticancer drug 5-azacytidine (aza-C) induces DNA-protein crosslinks (DPCs) between cytosine methyltransferase and DNA as the drug inhibits methylation. We found that mutants defective in the tmRNA translational quality control system are hypersensitive to aza-C. Hypersensitivity requires expression of active methyltransferase, indicating the importance of DPC formation. Furthermore, the tmRNA pathway is activated upon aza-C treatment in cells expressing methyltransferase, resulting in increased levels of SsrA tagged proteins. These results argue that the tmRNA pathway clears stalled ribosome-mRNA complexes generated after transcriptional blockage by aza-C-induced DPCs. In support, an ssrA mutant is also hypersensitive to streptolydigin, which blocks RNA polymerase elongation by a different mechanism. The tmRNA pathway is thought to act only on ribosomes containing a 3’ RNA end near the A site, and the known pathway for releasing RNA 3’ ends from a blocked polymerase involves Mfd helicase. However, an mfd knockout mutant is not hypersensitive to either aza-C-induced DPC formation or streptolydigin, indicating that Mfd is not involved. Transcription termination factor Rho is also likely not involved, because the Rho-specific inhibitor bicyclomycin failed to show synergism with either aza-C or streptolydigin. Based on these findings, we discuss models for how E. coli processes transcription/translation complexes blocked at DPCs. PMID:20807197

  18. Probing Anomalous Structural Features in Polypurine Tract-Containing RNA–DNA Hybrids with Neomycin B†

    PubMed Central

    Brinson, Robert G.; Turner, Kevin B.; Yi-Brunozzi, Hye Young; Le Grice, Stuart F. J.; Fabris, Daniele; Marino, John P.

    2009-01-01

    During (?)-strand DNA synthesis in retroviruses and Saccharomyces cerevisiae LTR retrotransposons, a purine rich region of the RNA template, known as the polypurine tract (PPT), is resistant to RNase H-mediated hydrolysis and subsequently serves as a primer for (+)-strand, DNA-dependent DNA synthesis. Although HIV-1 and Ty3 PPT sequences share no sequence similarity beyond the fact that both include runs of purine ribonucleotides, it has been suggested that these PPTs are processed by their cognate reverse transcriptases (RTs) through a common molecular mechanism. Here, we have used the aminoglycoside neomycin B (NB) to examine which structural features of the Ty3 PPT contribute to specific recognition and processing by its cognate RT. Using high-resolution NMR, direct infusion FTICR mass spectrometry, and isothermal titration calorimetry, we show that NB binds preferentially and selectively adjacent to the Ty3 3? PPT–U3 cleavage junction and in an upstream 5? region where the thumb subdomain of Ty3 RT putatively grips the substrate. Regions highlighted by NB on the Ty3 PPT are similar to those previously identified on the HIV-1 PPT sequence that are implicated as contact points for substrate binding by its RT. Our findings thus support the notion that common structural features of lentiviral and LTR-retrotransposon PPTs facilitate the interaction with their cognate RT. PMID:19449839

  19. Repressor activity of the RpoS/?S-dependent RNA polymerase requires DNA binding.

    PubMed

    Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Kolb, Annie; Monot, Marc; Dupuy, Bruno; Duarte, Sara Serradas; Jagla, Bernd; Coppée, Jean-Yves; Beraud, Mélanie; Norel, Françoise

    2015-02-18

    The RpoS/?(S) sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of ?(S)-dependent control, that of a repressor. Negative regulation by ?(S) has been proposed to result largely from competition between ?(S) and other ? factors for binding to a limited amount of core RNAP (E). To assess whether ?(S) binding to E alone results in significant downregulation of gene expression by other ? factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a ?(S) protein proficient for E?(S) complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by ?(S) requires its binding to DNA. Although the mechanisms of repression by ?(S) are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that ? competition at the promoter DNA level plays an important role in gene repression by E?(S). PMID:25578965

  20. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription.

    PubMed Central

    Lauder, S; Bankmann, M; Guzder, S N; Sung, P; Prakash, L; Prakash, S

    1996-01-01

    Genetic and biochemical studies of Saccharomyces cerevisiae have indicated the involvement of a large number of protein factors in nucleotide excision repair (NER) of UV-damaged DNA. However, how MMS19 affects this process has remained unclear. Here, we report on the isolation of the MMS19 gene and the determination of its role in NER and other cellular processes. Genetic and biochemical evidence indicates that besides its function in NER, MMS19 also affects RNA polymerase II (Pol II) transcription. mms19delta cells do not grow at 37 degrees C, and mutant extract exhibits a thermolabile defect in Pol II transcription. Thus, Mms19 protein resembles TFIIH in that it is required for both transcription and DNA repair. However, addition of purified Mms19 protein does not alleviate the transcriptional defect of the mms19delta extract, nor does it stimulate the incision of UV-damaged DNA reconstituted from purified proteins. Interestingly, addition of purified TFIIH corrects the transcriptional defect of the mms19delta extract. Mms19 is, however, not a component of TFIIH or of Pol II holoenzyme. These and other results suggest that Mms19 affects NER and transcription by influencing the activity of TFIIH as an upstream regulatory element. It is proposed that mutations in the human MMS19 counterpart could result in syndromes in which both NER and transcription are affected. PMID:8943333

  1. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription.

    PubMed

    Lauder, S; Bankmann, M; Guzder, S N; Sung, P; Prakash, L; Prakash, S

    1996-12-01

    Genetic and biochemical studies of Saccharomyces cerevisiae have indicated the involvement of a large number of protein factors in nucleotide excision repair (NER) of UV-damaged DNA. However, how MMS19 affects this process has remained unclear. Here, we report on the isolation of the MMS19 gene and the determination of its role in NER and other cellular processes. Genetic and biochemical evidence indicates that besides its function in NER, MMS19 also affects RNA polymerase II (Pol II) transcription. mms19delta cells do not grow at 37 degrees C, and mutant extract exhibits a thermolabile defect in Pol II transcription. Thus, Mms19 protein resembles TFIIH in that it is required for both transcription and DNA repair. However, addition of purified Mms19 protein does not alleviate the transcriptional defect of the mms19delta extract, nor does it stimulate the incision of UV-damaged DNA reconstituted from purified proteins. Interestingly, addition of purified TFIIH corrects the transcriptional defect of the mms19delta extract. Mms19 is, however, not a component of TFIIH or of Pol II holoenzyme. These and other results suggest that Mms19 affects NER and transcription by influencing the activity of TFIIH as an upstream regulatory element. It is proposed that mutations in the human MMS19 counterpart could result in syndromes in which both NER and transcription are affected. PMID:8943333

  2. Hyphantria cunea ferritin heavy chain homologue: cDNA sequence and mRNA expression.

    PubMed

    Kim, Hong Ja; Yun, Chi Young; Cheon, Hyang Mi; Chae, Boa; Lee, In Hee; Park, Seun Ja; Kang, Young Jin; Seo, Sook Jae

    2004-05-01

    We have sequenced a cDNA clone encoding a 26-kDa ferritin subunit, which was heavy chain homologue (HCH), in fall webworm, Hyphantria cunea. The HCH cDNA was obtained from the screening of a cDNA library using a PCR product. H. cunea ferritin is composed of 221 amino acid residues and their calculated mass is 26,160 Da. The protein contains the conserved motifs for the ferroxidase center typical for heavy chains of vertebrate ferritin. The iron-responsive element sequence with a predicted stem-loop structure is present in the 5'-untranslated region of ferritin HCH mRNA. The sequence alignment of ferritin HCH shows 68.9 and 68.7% identity with Galleria mellonella HCH (26 kDa ferritin) and Manduca sexta HCH, respectively. While G type insect ferritin vertebrate light chain homologue (LCH) is distantly related to H. cunea ferritin HCH (17.2-20.8%), the Northern blot analysis revealed that H. cunea ferritin HCH was ubiquitously expressed in various tissues and all developmental stages. The ferritin expression of midgut is more responsive to iron-fed, compared to fat body in H. cunea. PMID:15101063

  3. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions

    PubMed Central

    Walmacq, Celine; Wang, Lanfeng; Chong, Jenny; Scibelli, Kathleen; Lubkowska, Lucyna; Gnatt, Averell; Brooks, Philip J.; Wang, Dong; Kashlev, Mikhail

    2015-01-01

    In human cells, the oxidative DNA lesion 8,5?-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5?) next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5?-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. Thus, the translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, translesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions. PMID:25605892

  4. Repressor activity of the RpoS/?S-dependent RNA polymerase requires DNA binding

    PubMed Central

    Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Kolb, Annie; Monot, Marc; Dupuy, Bruno; Duarte, Sara Serradas; Jagla, Bernd; Coppée, Jean-Yves; Beraud, Mélanie; Norel, Françoise

    2015-01-01

    The RpoS/?S sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of ?S-dependent control, that of a repressor. Negative regulation by ?S has been proposed to result largely from competition between ?S and other ? factors for binding to a limited amount of core RNAP (E). To assess whether ?S binding to E alone results in significant downregulation of gene expression by other ? factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a ?S protein proficient for E?S complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by ?S requires its binding to DNA. Although the mechanisms of repression by ?S are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that ? competition at the promoter DNA level plays an important role in gene repression by E?S. PMID:25578965

  5. The Mini-Chromosome Maintenance (Mcm) Complexes Interact with DNA Polymerase ?-Primase and Stimulate Its Ability to Synthesize RNA Primers

    PubMed Central

    You, Zhiying; De Falco, Mariarosaria; Kamada, Katsuhiko; Pisani, Francesca M.; Masai, Hisao

    2013-01-01

    The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2?7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase ?-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2?7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes. PMID:23977294

  6. Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium

    Microsoft Academic Search

    Simon Stammen; Franziska Schuller; Sylvia Dietrich; Martin Gamer; Rebekka Biedendieck; Dieter Jahn

    2010-01-01

    Gene “7” of Escherichia coli phage K1E was proposed to encode a novel DNA-dependent RNA polymerase (RNAP). The corresponding protein was produced recombinantly,\\u000a purified to apparent homogeneity via affinity chromatography, and successfully employed for in vitro RNA synthesis. Optimal\\u000a assay conditions (pH 8, 37°C, 10 mM magnesium chloride and 1.3 mM spermidine) were established. The corresponding promoter\\u000a regions were identified on the

  7. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    SciTech Connect

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  8. Segmented regression, a versatile tool to analyze mRNA levels in relation to DNA copy number aberrations.

    PubMed

    Nemes, Szilárd; Parris, Toshima Z; Danielsson, Anna; Kannius-Janson, Marie; Jonasson, Junmei Miao; Steineck, Gunnar; Helou, Khalil

    2012-01-01

    DNA copy number aberrations (CNA) and subsequent altered gene expression profiles (mRNA levels) are characteristic features of cancerous cells. Integrative genomic analysis aims to identify recurrent CNA that may have a potential role in cancer development, assuming that gene amplification is accompanied by overexpression, while deletions give rise to downregulation of gene expression. We propose a segmented regression-based approach to identify CNA-driven alteration of gene expression profiles. Segmented regression allows to fit piecewise linear models in different domains of CNA joined by a change-point, where the mRNA-CNA relationship undergoes structural changes. Here, we illustrate the implementation and applicability of the proposed model using 1,161 chromosome fragments detected as DNA CNA in primary tumors from 97 breast cancer patients. We identified significant CNA-driven changes in gene expression levels for 341 chromosome fragments, of which 72 showed a nonlinear relationship to CNA. For 59 of 72 chromosome fragments (82%), we observed an initial increase in mRNA levels due to changes in CNA. After the change-point was passed, the mRNA levels reached a plateau, and a further increase in DNA copy numbers did not induce further elevation in mRNA levels. In contrast, for 13 chromosome fragments, the change-point marked the point where mRNA production accelerated. We conclude that segmented regression modeling may provide valuable insights into the impact CNA have on gene expression in cancer cells. PMID:22034095

  9. [The mechanism of the incorporation into alpha-cells of double-stranded RNA, DNA and reconstructed nucleosomes].

    PubMed

    Zakharian, R A; Rukhkian, L A

    1990-01-01

    It is shown that the interaction of Ca precipitate of double stranded RNA, DNA, including the reconstructed in nucleosome structures DNA with L-cells plasmatic membrane surface induced the increase of cyclic AMP content, stimulates calcium ion input as well the activity of phospholipase A2, resulting in increase of the phospholipid lysoform and unsaturated fatty acid level in membrane, providing the possibility of nucleic acid biopolymer translocation into cell. PMID:1965301

  10. Silver(I) Complexes with DNA and RNA Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis

    Microsoft Academic Search

    H. Arakawa; J. F. Neault; H. A. Tajmir-Riahi

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1–6.6 with constant

  11. Characterization of cDNA and expression of mRNA encoding an Achatina cardioexcitatory RFamide peptide.

    PubMed

    Satake, H; Takuwa, K; Minakata, H

    1999-11-01

    Achatina cardioexcitatory peptide-1 (ACEP-1) is an RFamide family peptide isolated from the atria of the African giant snail, Achatina fulica. In this report, we describe an identification of the ACEP-1 cDNA sequence and localizations of the ACEP-1 mRNA. Southern blot analysis revealed that the ACEP-1 mRNA was present in the atrium as well as in the central nervous system. Furthermore, in situ hybridization revealed the localizations of the ACEP-1 mRNA in small neurons of the cerebral and pedal ganglia and a few large neurons of the right parietal and visceral ganglia. PMID:10612443

  12. Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing

    PubMed Central

    Farazi, Thalia A.; Brown, Miguel; Morozov, Pavel; ten Hoeve, Jelle J.; Ben-Dov, Iddo Z.; Hovestadt, Volker; Hafner, Markus; Renwick, Neil; Mihailovi?, Aleksandra; Wessels, Lodewyk F.A.; Tuschl, Thomas

    2012-01-01

    The characterization of post-transcriptional gene regulation by small regulatory RNAs of 20–30 nt length, particularly miRNAs and piRNAs, has become a major focus of research in recent years. A prerequisite for the characterization of small RNAs is their identification and quantification across different developmental stages, normal and diseased tissues, as well as model cell lines. Here we present a step-by-step protocol for the bioinformatic analysis of barcoded cDNA libraries for small RNA profiling generated by Illumina sequencing, thereby facilitating miRNA and other small RNA profiling of large sample collections. PMID:22836126

  13. QIP, a Protein That Converts Duplex siRNA Into Single Strands, Is Required for Meiotic Silencing by Unpaired DNA

    PubMed Central

    Xiao, Hua; Alexander, William G.; Hammond, Thomas M.; Boone, Erin C.; Perdue, Tony D.; Pukkila, Patricia J.; Shiu, Patrick K. T.

    2010-01-01

    RNA interference (RNAi) depends on the production of small RNA to regulate gene expression in eukaryotes. Two RNAi systems exist to control repetitive selfish elements in Neurospora crassa. Quelling targets transgenes during vegetative growth, whereas meiotic silencing by unpaired DNA (MSUD) silences unpaired genes during meiosis. The two mechanisms require common RNAi proteins, such as RNA-directed RNA polymerases, Dicers, and Argonaute slicers. We have previously demonstrated that, while Quelling depends on the redundant dicer activity of DCL-1 and DCL-2, only DCL-1 is required for MSUD. Here, we show that QDE-2-interacting protein (QIP), an exonuclease that is important for the production of single-stranded siRNA during Quelling, is also required for MSUD. QIP is crucial for sexual development and is shown to colocalize with other MSUD proteins in the perinuclear region. PMID:20551436

  14. Submillimeter wave spectroscopy of biological macromolecules

    NASA Astrophysics Data System (ADS)

    Globus, Tatiana

    2005-03-01

    The recently emergence of submillimeter-wave or terahertz (THz) spectroscopy of biological molecules has demonstrated the capability to detect low-frequency internal molecular vibrations involving the weakest hydrogen bonds of the DNA base pairs and/or non-bonded interactions. These multiple bonds, although having only ˜ 5% of the strength of covalent bonds, stabilize the structure of bio-polymers, by holding the two strands of the DNA double helix together, or polypeptides together in different secondary structure conformations. There will be a review of THz-frequency transmission (absorption) results for biological materials obtained from Fourier Transform Infrared (FTIR) spectroscopy during the last few years^1,2. Multiple resonances, due to low frequency vibrational modes within biological macromolecules, have been unambiguously demonstrated in qualitative agreement with theoretical prediction, thereby confirming the fundamental physical nature of observed resonance features. The discovery of resonance character of interaction between THz radiation and biological materials opens many possible applications for THz spectroscopy technique in biological sensing and biomedicine using multiple resonances as distinctive spectral fingerprints. However, many issues still require investigation. Kinetics of interactions with radiation at THz has not been studied and vibrational lifetimes have not been measured directly as a function of frequency. The strength of resonant modes of bio-molecules in aqueous environment and strong dependence of spectra on molecular orientation need explanation. Vibrational modes have not been assigned to specific motions within molecules. THz spectroscopy of bio-polymers makes it only in first steps. 1. T. Globus, D. Woolard, M. Bykhovskaia, B. Gelmont, L. Werbos, A. Samuels. International Journal of High Speed Electronics and Systems (IJHSES), 13, No. 4, 903-936 (2003). 2. T. Globus, T. Khromova, D. Woolard and B. Gelmont. Proceedings of SPIE Vol. 5268-2, 10-18 (2004)

  15. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation

    PubMed Central

    Dong, Cheng; Zhang, Heng; Xu, Chao; Arrowsmith, Cheryl H.; Min, Jinrong

    2014-01-01

    Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors. PMID:25485134

  16. Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa; Pavelka, Matej

    2012-02-14

    B3LYP density functional based computations were performed in order to characterize the interactions present in some Cu(+), Ag(+), and Au(+) metal ion-mediated DNA and RNA base pairs from both structural and electronic points of view. Examined systems involve as ligands canonical Watson-Crick, Hoogsteen and Wobble base pairs. Two artificial Hoogsteen base pairs were also taken into account. Binding energy values indicate that complexes involving silver cations are less stable than those in which copper or gold are present, and propose a similar behaviour for these two latter ions. The nature of the bond linking metal ions and bases was described by the NBO analysis that suggests metal coordinative interactions to be covalent. An evaluation of the dispersion contributions for the investigated systems was performed with the B3LYP-D3 functional. PMID:22159156

  17. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes

    NASA Astrophysics Data System (ADS)

    Kimsey, Isaac J.; Petzold, Katja; Sathyamoorthy, Bharathwaj; Stein, Zachary W.; Al-Hashimi, Hashim M.

    2015-03-01

    Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10-3 to 10-5) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.

  18. Experimental and ab initio study of the photofragmentation of DNA and RNA sugars

    SciTech Connect

    Ha, D. T. [Department of Physics and Astronomy, University of Turku (Finland); Graduate School of Materials Research, Turku (Finland); Huels, M. A. [Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec (Canada); Huttula, M.; Urpelainen, S. [Department of Physics, University of Oulu (Finland); Kukk, E. [Department of Physics and Astronomy, University of Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland)

    2011-09-15

    The photoelectron-photoion-photoion coincidence method is used to measure the photodissociation of doubly charged D-ribose (C{sub 5}H{sub 10}O{sub 5}), the RNA sugar molecules, and 2-deoxy-D-ribose (C{sub 5}H{sub 10}O{sub 4}), the DNA sugar molecules, following normal Auger decay after initial C 1s and O 1s core ionizations. The fragment identification is facilitated by measuring isotopically labeled D-ribose, such as D-ribose deuterated at C(1), and with {sup 13}C at the C(5) position. Ab initio quantum chemistry calculations are used to gain further insight into the abundant appearance of the CHO{sup +} fragment.

  19. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes.

    PubMed

    Kimsey, Isaac J; Petzold, Katja; Sathyamoorthy, Bharathwaj; Stein, Zachary W; Al-Hashimi, Hashim M

    2015-03-19

    Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10(-3) to 10(-5)) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases. PMID:25762137

  20. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA

    PubMed Central

    Yao, Da-Kang; Maslov, Konstantin; Shung, Kirk K.; Zhou, Qifa; Wang, Lihong V.

    2010-01-01

    Imaging of cell nuclei plays a critical role in cancer diagnosis and prognosis. In order to image noninvasively cell nuclei in vivo without staining, we developed ultraviolet photoacoustic microscopy (UV-PAM), in which 266-nm-wavelength ultraviolet light excites unlabeled DNA and RNA in cell nuclei to produce photoacoustic waves. We applied UV-PAM to ex vivo imaging of cell nuclei in a mouse lip and a mouse small intestine, and to in vivo imaging of the cell nuclei in the mouse skin. The UV-PAM images of unstained cell nuclei match the optical micrographs of the histologically stained cell nuclei. Given intrinsic optical contrast and high spatial resolution, in vivo label-free UV-PAM has potential for unique biological and clinical application. PMID:21165116

  1. Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq.

    PubMed

    Khoury, Joseph D; Tannir, Nizar M; Williams, Michelle D; Chen, Yunxin; Yao, Hui; Zhang, Jianping; Thompson, Erika J; Meric-Bernstam, Funda; Medeiros, L Jeffrey; Weinstein, John N; Su, Xiaoping

    2013-08-01

    Elucidation of tumor-DNA virus associations in many cancer types has enhanced our knowledge of fundamental oncogenesis mechanisms and provided a basis for cancer prevention initiatives. RNA-Seq is a novel tool to comprehensively assess such associations. We interrogated RNA-Seq data from 3,775 malignant neoplasms in The Cancer Genome Atlas database for the presence of viral sequences. Viral integration sites were also detected in expressed transcripts using a novel approach. The detection capacity of RNA-Seq was compared to available clinical laboratory data. Human papillomavirus (HPV) transcripts were detected using RNA-Seq analysis in head-and-neck squamous cell carcinoma, uterine endometrioid carcinoma, and squamous cell carcinoma of the lung. Detection of HPV by RNA-Seq correlated with detection by in situ hybridization and immunohistochemistry in squamous cell carcinoma tumors of the head and neck. Hepatitis B virus and Epstein-Barr virus (EBV) were detected using RNA-Seq in hepatocellular carcinoma and gastric carcinoma tumors, respectively. Integration sites of viral genes and oncogenes were detected in cancers harboring HPV or hepatitis B virus but not in EBV-positive gastric carcinoma. Integration sites of expressed viral transcripts frequently involved known coding areas of the host genome. No DNA virus transcripts were detected in acute myeloid leukemia, cutaneous melanoma, low- and high-grade gliomas of the brain, and adenocarcinomas of the breast, colon and rectum, lung, prostate, ovary, kidney, and thyroid. In conclusion, this study provides a large-scale overview of the landscape of DNA viruses in human malignant cancers. While further validation is necessary for specific cancer types, our findings highlight the utility of RNA-Seq in detecting tumor-associated DNA viruses and identifying viral integration sites that may unravel novel mechanisms of cancer pathogenesis. PMID:23740984

  2. A method for assaying DNA-dependent RNA polymerase II in crude extracts of Drosophila melanogaster adults: Its use in identifying mutants with an altered RNA polymerase II

    Microsoft Academic Search

    James T. Nishiura

    1981-01-01

    A method for assaying Drosophila melanogaster adult DNA-dependent RNA polymerase II in crude extracts from as few as two females or three males is described. Preparation of the extracts involves incubating homogenates at 25 C for 60 min and subsequent treatment with Macaloid. Eighty-five percent of the activity in the extracts is inhibited by 1 µg\\/ml a-amanitin and this fraction

  3. Characterizing the diversity of active bacteria in soil by comprehensive stable isotope probing of DNA and RNA with H218O

    PubMed Central

    Rettedal, Elizabeth A; Brözel, Volker S

    2015-01-01

    Current limitations in culture-based methods have lead to a reliance on culture-independent approaches, based principally on the comparative analysis of primary semantides such as ribosomal gene sequences. DNA can be remarkably stable in some environments, so its presence does not indicate live bacteria, but extracted ribosomal RNA (rRNA) has previously been viewed as an indicator of active cells. Stable isotope probing (SIP) involves the incorporation of heavy isotopes into newly synthesized nucleic acids, and can be used to separate newly synthesized from existing DNA or rRNA. H218O is currently the only potential universal bacterial substrate suitable for SIP of entire bacterial communities. The aim of our work was to compare soil bacterial community composition as revealed by total versus SIP-labeled DNA and rRNA. Soil was supplemented with H218O and after 38 days the DNA and RNA were co-extracted. Heavy nucleic acids were separated out by CsCl and CsTFA density centrifugation. The 16S rRNA gene pools were characterized by DGGE and pyrosequencing, and the sequence results analyzed using mothur. The majority of DNA (?60%) and RNA (?75%) from the microcosms incubated with H218O were labeled by the isotope. The analysis indicated that total and active members of the same type of nucleic acid represented similar community structures, which suggested that most dominant OTUs in the total nucleic acid extracts contained active members. It also supported that H218O was an effective universal label for SIP for both DNA and RNA. DNA and RNA-derived diversity was dissimilar. RNA from this soil more comprehensively recovered bacterial richness than DNA because the most abundant OTUs were less numerous in RNA than DNA-derived community data, and dominant OTU pools didn't mask rare OTUs as much in RNA. PMID:25650291

  4. A sequence-specific interaction between the Saccharomyces cerevisiae rRNA gene repeats and a locus encoding an RNA polymerase I subunit affects ribosomal DNA stability.

    PubMed

    Cahyani, Inswasti; Cridge, Andrew G; Engelke, David R; Ganley, Austen R D; O'Sullivan, Justin M

    2015-02-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  5. A Systematic Analysis on DNA Methylation and the Expression of Both mRNA and microRNA in Bladder Cancer

    PubMed Central

    Zhou, Liang; Chen, Jiahao; Luo, Huijuan; Sun, Jihua; Wu, Song; Han, Yonghua; Yin, Guangliang; Chen, Maoshan; Han, Zujing; Li, Xianxin; Huang, Yi; Zhang, Weixing; Zhou, Fangjian; Chen, Tong; Fa, Pingping; Wang, Yong; Sun, Liang; Leng, Huimin; Sun, Fenghao; Liu, Yuchen; Ye, Mingzhi; Yang, Huanming; Cai, Zhiming; Gui, Yaoting; Zhang, Xiuqing

    2011-01-01

    Background DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported. Methodology/Principal Findings The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to “neurogenesis” and “cell differentiation” by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples. Conclusions/Significance We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research. PMID:22140553

  6. Physical Localization and DNA Methylation of 45S rRNA Gene Loci in Jatropha curcas L.

    PubMed Central

    Gong, Zhiyun; Xue, Chao; Zhang, Mingliang; Guo, Rui; Zhou, Yong; Shi, Guoxin

    2013-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n?=?2x?=?22?=?12m+10sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation. PMID:24386362

  7. A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

    PubMed Central

    Gammon, Don B; Duraffour, Sophie; Rozelle, Daniel K; Hehnly, Heidi; Sharma, Rita; Sparks, Michael E; West, Cara C; Chen, Ying; Moresco, James J; Andrei, Graciela; Connor, John H; Conte, Darryl; Gundersen-Rindal, Dawn E; Marshall, William L; Yates, John R; Silverman, Neal; Mello, Craig C

    2014-01-01

    Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-?B, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems. DOI: http://dx.doi.org/10.7554/eLife.02910.001 PMID:24966209

  8. RNA polymerase III transcription in synthetic nuclei assembled in vitro from defined DNA templates.

    PubMed Central

    Ullman, K S; Forbes, D J

    1995-01-01

    Although much is known of the basic control of transcription, little is understood of the way in which the structural organization of the nucleus affects transcription. Synthetic nuclei, assembled de novo in extracts of Xenopus eggs, would be predicted to have a large potential for approaching the role of nuclear structure in RNA biogenesis. Synthetic nuclei provide a system in which the genetic content of the nuclei, as well as the structural and enzymatic proteins within the nuclei, can be manipulated. In this study, we have begun to examine transcription in such nuclei by using the most simple of templates, RNA polymerase III (pol III)-transcribed genes. DNA encoding tRNA or 5S genes was added to an assembly extract, and nuclei were formed entirely from the pol III templates. Conditions which allowed nuclear assembly and pol III transcription to take place efficiently and simultaneously in the assembly extract were found. To examine whether pol III transcription could initiate within synthetic nuclei, or instead was inhibited in nuclei and initiated only on rare unincorporated templates, we identified transcriptional inhibitors that were excluded from nuclei. We found that these inhibitors, heparin and dextran sulfate, blocked pol III transcription in the absence of assembly but did not do so following nuclear assembly. At the concentrations used, the inhibitors had no deleterious effect on nuclear structure itself or on nuclear import. We conclude that pol III transcription is active in synthetic nuclei, and this conclusion is further strengthened by the finding that pol III transcripts could be coisolated with synthetic nuclei. The rapid and direct transcriptional analysis possible with pol III templates, coupled with the simple experimental criteria developed in this study for distinguishing between nuclear and non-nuclear transcription, should now allow a molecular analysis of the effect of nuclear structure on transcriptional and posttranscriptional control. PMID:7651406

  9. RNA:DNA ratio during the critical period and early larval growth of the red drum Sciaenops ocellatus

    Microsoft Academic Search

    M. Westerman; G. J. Holt

    1994-01-01

    Eggs from two separate spawning stocks of the red drum Sciaenops ocellatus (Linnaeus) were hatched, and the larvae were reared in the laboratory for 2 wk under closely controlled conditions. Total RNA, DNA, and soluble protein were measured in each population daily in triplicate pooled samples of larvae from each of three tanks. Growth rate in mm d-1 was determined

  10. A New Three-Dimensional Educational Model Kit for Building DNA and RNA Molecules: Development and Evaluation

    ERIC Educational Resources Information Center

    Beltramini, Leila Maria; Araujo, Ana Paula Ulian; de Oliveira, Tales Henrique Goncalves; dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; dos Santos, Neusa Fernandes

    2006-01-01

    International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The…

  11. Defining the starvation potential and the influence on RNA/DNA ratios in horse mackerel ( Trachurus mediterraneus) larvae

    NASA Astrophysics Data System (ADS)

    Yandi, Ilhan; Altinok, Ilhan

    2015-03-01

    Larval survival potentially affects recruitment strongly. Variability in larval growth rates, primarily caused by variable nutritional situations, is one of the factors that can influence larval survival rates. RNA/DNA ratio as well as protein content was analyzed in wild-caught laboratory-grown and in wild-caught horse mackerel Trachurus mediterraneus in relation to feeding and starvation. For this purpose, field-caught genoblast eggs were incubated and the hatched larvae were reared under different feeding regimes: fed control, unfed control, starved either for 1, 2 or 3 days, on feeding restrictions. The whole-body RNA/DNA ratio and the daily protein growth rate were individually analyzed. In all larvae eye pigmentation, mouth opening and subsequently first feeding started on the third day after hatching. All larvae in the unfed group died on day 8. The survival rate during the first 3 days in delayed feeding groups was higher than that of the unfed group. Overall, growth curves from feeding-delayed larvae indicated that fish fed after up to 3 days starvation were capable of complete recovery with the critical RNA/DNA ratio of 1.05 ± 0.08. According to this value, approximately 10 % of the field-caught larvae were starving. Therefore, the RNA/DNA ratio is an easy tool to assess the nutritional status in horse mackerel larvae caught in the field with a high precision rate.

  12. Acyclicl-threoninol nucleic acid (l-aTNA) with suitable structural rigidity cross-pairs with DNA and RNA.

    PubMed

    Murayama, Keiji; Kashida, Hiromu; Asanuma, Hiroyuki

    2015-03-31

    We report the hybridization properties of a novel artificial nucleic acid: acyclicl-threoninol nucleic acid (l-aTNA). l-aTNA formed a more stable duplex with DNA and RNA than either d-aTNA or serinol nucleic acid (SNA) as the rigidity of the l-form was more optimal for interaction with natural nucleic acids. PMID:25633432

  13. U3 Region in the HIV1 Genome Adopts a GQuadruplex Structure in Its RNA and DNA Sequence

    E-print Network

    Sharma, Gaurav

    U3 Region in the HIV1 Genome Adopts a GQuadruplex Structure in Its RNA and DNA Sequence Dorota 14627, United States *S Supporting Information ABSTRACT: Genomic regions rich in G residues are prone of the HIV-1 U3 region, which serves as a promoter of viral transcription, adopts a G-quadruplex structure

  14. The day/night switch of the circadian clock of synechococcus elongatus and hydrogen bonds of dna and rna

    E-print Network

    Kim, Yong-Ick

    2009-05-15

    are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h?13C2 values. Thus, we show experimentally...

  15. Sequence analysis of 16S rRNA from mycoplasmas by direct solid-phase DNA sequencing.

    PubMed Central

    Pettersson, B; Johansson, K E; Uhlén, M

    1994-01-01

    Automated solid-phase DNA sequencing was used for determination of partial 16S ribosomal DNA sequences of mycoplasmas. The sequence information was used to establish phylogenetic relationships of 11 different mycoplasmas whose 16S rRNA sequences had not been determined earlier. A biotinylated fragment corresponding to positions 344 to 939 in the Escherichia coli sequence was generated by PCR. The PCR product was immobilized onto streptavidin-coated paramagnetic beads, and direct sequencing was performed in both directions. One previously unclassified avian mycoplasma was found to belong to the Mycoplasma lipophilum cluster of the hominis group. Microheterogeneities were discovered in the rRNA operons of Mycoplasma mycoides subsp. mycoides (SC type), confirming the existence of two different rRNA operons. The 16S rRNA sequence of M. mycoides subsp. capri was identical to that of M. mycoides subsp. mycoides (type SC), except that no microheterogeneities were revealed. Furthermore, automated solid-phase DNA sequencing was used to identify a mycoplasmal contamination of a cell culture as Mycoplasma hyorhinis, which proved to be very difficult by conventional methods. The results suggest that the direct solid-phase DNA sequencing procedure is a powerful tool for identification of mycoplasmas and is also useful in taxonomic studies. Images PMID:7521158

  16. Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.

    PubMed Central

    Reines, D; Mote, J

    1993-01-01

    In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt, I. (1990) Nature (London) 344, 559-562; Deuschele, U., Hipskind, R. A. & Bujard, H. (1990) Science 248, 480-483]. We show that in a reconstituted transcription system, elongation factor SII enables RNA polymerase II to proceed through this blockage at high efficiency. lac repressor-arrested elongation complexes display an SII-activated transcript cleavage reaction, an activity associated with transcriptional read-through of a previously characterized region of bent DNA. This demonstrates factor-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Nascent transcript cleavage may be a general mechanism by which RNA polymerase II can bypass many transcriptional impediments. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446609

  17. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation.

    PubMed

    Duan, Cheng-Guo; Zhang, Huiming; Tang, Kai; Zhu, Xiaohong; Qian, Weiqiang; Hou, Yueh-Ju; Wang, Bangshing; Lang, Zhaobo; Zhao, Yang; Wang, Xingang; Wang, Pengcheng; Zhou, Jianping; Liang, Gaimei; Liu, Na; Wang, Chunguo; Zhu, Jian-Kang

    2015-03-01

    Argonaute (AGO) family proteins are conserved key components of small RNA-induced silencing pathways. In the RNA-directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4- and AGO6-dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co-localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co-localized. In the nucleoplasm, AGO4 displays a strong co-localization with Pol II, whereas AGO6 co-localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V-dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA-directed DNA methylation. PMID:25527293

  18. Levels and size complexity of DNA polymerase beta mRNA in rat regenerating liver and other organs.

    PubMed

    Nowak, R; Siedlecki, J A; Kaczmarek, L; Zmudzka, B Z; Wilson, S H

    1989-07-01

    A cDNA probe encoding DNA polymerase beta (beta-pol) was used to study the level and size complexity of beta-pol mRNA in regenerating rat liver and other rat tissues. An almost 2-fold increase in beta-pol mRNA was observed 18-24 h after partial hepatectomy. In most adult rat tissues (liver, heart, kidney, stomach, spleen, thymus, lung and brain) the abundance of beta-pol mRNA was low. In contrast, young brain and testes exhibited beta-pol mRNA levels 5- and 15-times higher, respectively. The observed changes in the level of beta-pol mRNA in regenerating rat liver and in developing brain are correlated with reported changes in DNA polymerase beta activity. Four different (4.0, 2.5, 2.2, 1.4 kb) transcripts hybridizing to beta-pol probe were found in all tissues examined. The 4.0 kb transcript was dominant for young and adult brain, whereas the 1.4 kb transcript was dominant for testes. The significance of these transcripts is discussed. PMID:2736248

  19. Arcobacter-specific and Arcobacter butzleri-specific 16S rRNA-based DNA probes.

    PubMed Central

    Wesley, I V; Schroeder-Tucker, L; Baetz, A L; Dewhirst, F E; Paster, B J

    1995-01-01

    The genus Arcobacter encompasses gram-negative, aerotolerant, spiral-shaped bacteria formerly designated Campylobacter cryaerophila. Two genus-specific 16S rRNA-based oligonucleotide DNA probes (23-mer and 27-mer) were developed. The probes hybridized with strains of Arcobacter butzleri (n = 58), Arcobacter cryaerophilus (n = 19), and Arcobacter skirrowii (n = 17). The probes did not cross-react with any of the reference strains of Campylobacter, Helicobacter, including "Flexispira rappini," or Wolinella. The 27-mer hybridized with 61 Arcobacter spp. field isolates originating from late-term aborted porcine (n = 54) and equine (n = 2) fetuses and humans with enteritis (n = 5). The species of Arcobacter isolates (n = 56) recovered from aborted livestock fetuses were determined by ribotyping and were as follows: A. cryaerophilus group 1A (11 of 56; 20%), A. cryaerophilus group 1B (37 of 56; 66%), A. butzleri (5 of 56; 9%), and unknown (3 of 56; 5%). The five human field strains were identified as A. butzleri. A species-specific DNA probe (24-mer) for A. butzleri was also developed since there is evidence that this organism may be a human pathogen. This probe hybridized with previously characterized strains of A. butzleri (n = 58), with 10 field strains identified as A. butzleri by ribotyping and with 2 strains having an indeterminate ribotype. The A. butzleri-specific probe did not cross-react with strains of A. skirrowii (n = 17) and A. cryaerophilus (n = 19). PMID:7545177

  20. H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae

    PubMed Central

    Cesarini, Elisa; D'Alfonso, Anna; Camilloni, Giorgio

    2012-01-01

    Transcription-associated recombination is an important process involved in several aspects of cell physiology. In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae, RNA polymerase II transcription–dependent recombination has been demonstrated among the repeated units. In this study, we investigate the mechanisms controlling this process at the chromatin level. On the basis of a small biased screening, we found that mutants of histone deacetylases and chromatin architectural proteins alter both the amount of Pol II–dependent noncoding transcripts and recombination products at rDNA in a coordinated manner. Of interest, chromatin immunoprecipitation analyses in these mutants revealed a corresponding variation of the histone H4 acetylation along the rDNA repeat, particularly at Lys-16. Here we provide evidence that a single, rapid, and reversible posttranslational modification—the acetylation of the H4K16 residue—is involved in the coordination of transcription and recombination at rDNA. PMID:22621897

  1. DNA damaging agents increase gadd153 (CHOP-10) messenger RNA levels in bovine preimplantation embryos cultured in vitro.

    PubMed

    Fontanier-Razzaq, N; McEvoy, T G; Robinson, J J; Rees, W D

    2001-05-01

    DNA damage and other forms of stress are believed to be important factors in reducing the efficiency of in vitro embryo transfer techniques in farm animals. The expression of mRNAs from stress-responsive genes such as gadd153 (CHOP-10, ddit3) may provide a means of assessing the quality of embryos produced in vitro. Treatment of bovine granulosa cell cultures with the DNA-damaging agents, methyl methane-sulphonate (MMS) or sodium arsenite, induced the expression of an mRNA, which hybridized with the hamster gadd153 cDNA. Part of the corresponding bovine cDNA was amplified by nested polymerase chain reaction (PCR), cloned, and sequenced. Using a sensitive reverse transcriptase-PCR assay we have investigated the expression of gadd153 and beta-actin in blastocyst-stage bovine embryos treated with MMS or sodium arsenite. Both agents produced an increase in the ratio of gadd153 mRNA relative to beta-actin. These results show that there are changes in gene expression in blastocyst-stage bovine embryos in response to genotoxic stress, suggesting that an increase in gadd153 mRNA is a useful marker of DNA damage and metabolic stress in preimplantation embryos. PMID:11319142

  2. Missing Genes, Multiple ORFs, and C-to-U Type RNA Editing in Acrasis kona (Heterolobosea, Excavata) Mitochondrial DNA

    PubMed Central

    Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G.E.; Baldauf, Sandra L.

    2014-01-01

    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. PMID:25146648

  3. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA.

    PubMed

    Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G E; Baldauf, Sandra L

    2014-09-01

    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. PMID:25146648

  4. Use of RNA:DNA ratios to evaluate the condition and growth of the copepod Calanus sinicus in the Southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Ning, Juan; Li, Chaolun; Yang, Guang; Wan, Aiyong; Sun, Song

    2013-12-01

    Calanus sinicus, a dominant calanoid copepod in the Yellow Sea, is an important link in the food web between phytoplankton and higher trophic levels. Its populations typically start to develop in later winter with a maximum of individuals in early summer. To study the correlation between changes in the abundance of this species and changes in food resources and the physical environment, RNA and DNA concentrations and egg production rates (EPR) were measured, and RNA:DNA ratios were calculated as indices of growth and nutritional conditions of copepods collected in the Yellow Sea from February to July. We observed pronounced seasonal and spatial variations of RNA concentrations and resulting RNA:DNA ratios. There was a positive correlation between the EPR and RNA:DNA ratios. The copepods collected in March and April, when phytoplankton were more abundant, had high RNA:DNA ratios, and contained more RNA than copepods collected during the other months. There was no significant correlation between the growth indices (RNA:DNA ratios and EPR) and chlorophyll-a concentrations (Chl a) or temperature at large temporal and spatial scales. We tracked the development of two phytoplankton blooms in April, which were dominated in turn by diatoms and dinoflagellates. We observed high concentrations of RNA and a high RNA:DNA ratio at both bloom sites during the respective blooms. During the diatom bloom, the RNA:DNA ratios in copepods increased at the onset of the bloom and decreased thereafter. In addition, we observed a positive correlation (P<0.001) between RNA-based indices and Chl a. Our results suggest that food availability plays a more important role than temperature in controlling the growth of C. sinicus in the field. Thus, the spring phytoplankton blooms in the Yellow Sea are important regulators of copepod abundance.

  5. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar?dominance

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the ?3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2?-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also de-epressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA. PMID:9284051

  6. Influence of DNA extraction on oral microbial profiles obtained via 16S rRNA gene sequencing

    PubMed Central

    Abusleme, Loreto; Hong, Bo-Young; Dupuy, Amanda K.; Strausbaugh, Linda D.; Diaz, Patricia I.

    2014-01-01

    Background and objective The advent of next-generation sequencing has significantly facilitated characterization of the oral microbiome. Despite great efforts in streamlining the processes of sequencing and data curation, upstream steps required for amplicon library generation could still influence 16S rRNA gene-based microbial profiles. Among upstream processes, DNA extraction is a critical step that could represent a great source of bias. Accounting for bias introduced by extraction procedures is important when comparing studies that use different methods. Identifying the method that best portrays communities is also desirable. Accordingly, the aim of this study was to evaluate bias introduced by different DNA extraction procedures on oral microbiome profiles. Design Four DNA extraction methods were tested on mock communities consisting of seven representative oral bacteria. Additionally, supragingival plaque samples were collected from seven individuals and divided equally to test two commonly used DNA extraction procedures. Amplicon libraries of the 16S rRNA gene were generated and sequenced via 454-pyrosequencing. Results Evaluation of mock communities revealed that DNA yield and bacterial species representation varied with DNA extraction methods. Despite producing the lowest yield of DNA, a method that included bead beating was the only protocol capable of detecting all seven species in the mock community. Comparison of the performance of two commonly used methods (crude lysis and a chemical/enzymatic lysis+column-based DNA isolation) on plaque samples showed no effect of extraction protocols on taxa prevalence but global community structure and relative abundance of individual taxa were affected. At the phylum level, the latter method improved the recovery of Actinobacteria, Bacteroidetes, and Spirochaetes over crude lysis. Conclusion DNA extraction distorts microbial profiles in simulated and clinical oral samples, reinforcing the importance of careful selection of a DNA extraction protocol to improve species recovery and facilitate data comparison across oral microbiology studies. PMID:24778776

  7. A High-Throughput Macromolecule Characterization System

    E-print Network

    Kim, Jae Hyun

    2013-08-31

    The size and complexity in structure of biopharmaceutical products makes them more susceptible to chemical or structural changes leading to lower potency or altered immunogenicity. Sustaining the stability of macromolecules ...

  8. Nanomechanics of cartilage extracellular matrix macromolecules

    E-print Network

    Han, Lin, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    In this thesis, the shear and self-adhesion nanomechanical properties between opposing cartilage aggrecan macromolecules were probed. In addition, nanoscale dynamic oscillatory mechanical properties of cartilage and its ...

  9. Evidence for genetic relationship between RNA and DNA viruses from the sequence homology of a putative polymerase gene of bluetongue virus with that of vaccinia virus: conservation of RNA polymerase genes from diverse species.

    PubMed Central

    Roy, P; Fukusho, A; Ritter, G D; Lyon, D

    1988-01-01

    The nucleotide sequence of segment 1 of the double stranded RNA genome of bluetongue virus serotype 10 (BTV-10), encoding the largest viral core protein, VP1, has been determined. Linear sequence analysis of the predicted amino acid sequence of the 149-K Da protein, a putative component of the viral RNA-directed RNA polymerase, revealed extensive homology with the vaccinia virus 147K Da DNA-directed RNA polymerase subunit. Similar homologies were detected between the VP1 polypeptide and the beta chain subunit of Escherichia coli and common tobacco chloroplast RNA polymerases, yeast RNA polymerase II and III and fruit fly polymerase II. PMID:2850542

  10. Cloning of cDNA sequences derived from poly(A) + nuclear RNA of Xenopus laevis at different developmental stages: Evidence for stage specific regulation

    Microsoft Academic Search

    Walter Knöchel; Dieter Bladauski

    1981-01-01

    Nuclear poly(A)+ RNA was isolated from gastrula and early tadpole stages ofXenopus laevis, transcribed into cDNA and integrated as double stranded cDNA by the G-C joining method into the Pst cleavage site of plasmid pBR 322. After cloning inE. coli strain HB 101 the clone libraries were hybridized to32P labelled cDNA derived from nuclear poly(A)+ RNA of the two different

  11. Detection of human immunodeficiency virus-1 RNA and DNA by extractive and in situ PCR in unprocessed semen and seminal fractions isolated by semen-washing procedure

    Microsoft Academic Search

    Tiziana Persico; Valeria Savasi; Enrico Ferrazzi; Monica Oneta; A. E. Semprini; Giuseppe Simoni

    BACKGROUND: To determine the presence of human immunodeficiency virus-1 (HIV-1) viral RNA\\/DNA in whole semen, in properly isolated seminal fractions and in spermatozoa after swim-up, by extractive nested PCR and to compare the detection of HIV DNA by in situ PCR (IS-PCR) with the results of nested PCR. METHODS: We tested HIV-1 RNA and DNA by nested PCR in semen

  12. The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation.

    PubMed

    Sasaki, Taku; Lorkovi?, Zdravko J; Liang, Shih-Chieh; Matzke, Antonius J M; Matzke, Marjori

    2014-01-01

    RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step. PMID:24498436

  13. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis.

    PubMed

    Kolakofsky, Daniel; Le Mercier, Philippe; Iseni, Frédéric; Garcin, Dominique

    2004-01-20

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template. PMID:15015496

  14. Fast-SAXS-pro: A unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes

    NASA Astrophysics Data System (ADS)

    Ravikumar, Krishnakumar M.; Huang, Wei; Yang, Sichun

    2013-01-01

    A generalized method, termed Fast-SAXS-pro, for computing small angle x-ray scattering (SAXS) profiles of proteins, nucleic acids, and their complexes is presented. First, effective coarse-grained structure factors of DNA nucleotides are derived using a simplified two-particle-per-nucleotide representation. Second, SAXS data of a 18-bp double-stranded DNA are measured and used for the calibration of the scattering contribution from excess electron density in the DNA solvation layer. Additional test on a 25-bp DNA duplex validates this SAXS computational method and suggests that DNA has a different contribution from its hydration surface to the total scattering compared to RNA and protein. To account for such a difference, a sigmoidal function is implemented for the treatment of non-uniform electron density across the surface of a protein/nucleic-acid complex. This treatment allows differential scattering from the solvation layer surrounding protein/nucleic-acid complexes. Finally, the applications of this Fast-SAXS-pro method are demonstrated for protein/DNA and protein/RNA complexes.

  15. Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2010-03-01

    Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.

  16. Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase

    PubMed Central

    Ditlevson, Jennifer V.; Tornaletti, Silvia; Belotserkovskii, Boris P.; Teijeiro, Virginia; Wang, Guliang; Vasquez, Karen M.; Hanawalt, Philip C.

    2008-01-01

    DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)14, which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)14 sequence on transcription with T7 RNA polymerase in vitro. We detected partial transcription blockage within the sequence; the blockage increased with negative supercoiling of the template DNA. This effect was not observed in a control self-complementary sequence of identical length and base composition as the (CG)14 sequence, when the purine–pyrimidine alternation required for Z-DNA formation was disrupted. These findings suggest that the inhibitory effect on T7 transcription results from Z-DNA formation in the (CG)14 sequence rather than from an effect of the sequence composition or from hairpin formation in either the DNA or the RNA product. PMID:18400779

  17. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ?10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ?25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed. PMID:23894473

  18. Sequence and organization of a 7.2 kb region of wheat mitochondrial DNA containing the large subunit (26S) rRNA gene

    Microsoft Academic Search

    David F. Spencer; Murray N. Schnare; Michael B. Coulthart; Michael W. Gray

    1992-01-01

    We report the sequence of a 7.2 kilobase pair DNA fragment containing a copy of the wheat mitochondrial gene (rrn26) that encodes the mitochondrial large-subunit ribosomal RNA (26S rRNA). The mature 26S rRNA was determined by direct RNA sequencing to be 3467 nucleotides long, and to share a 5'-terminal pentanucleotide (5'-AUCAU), thought to be important in post-transcriptional processing, with the

  19. Kyle M, Watts T, Schade J, Elser JJ. 2003. A microfluoremetric method for quantifying RNA and DNA in terrestrial insects. 7pp. Journal of Insect Science, 3:1, Available online: insectscience.org/3.1

    E-print Network

    Arizona State University

    present methods for the extraction and quantification of insect RNA and DNA based on the use of NKyle M, Watts T, Schade J, Elser JJ. 2003. A microfluoremetric method for quantifying RNA and DNA of Insect Science insectscience.org A microfluorometric method for quantifying RNA and DNA in terrestrial

  20. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.

    PubMed

    Nowotny, Marcin; Gaidamakov, Sergei A; Ghirlando, Rodolfo; Cerritelli, Susana M; Crouch, Robert J; Yang, Wei

    2007-10-26

    We report here crystal structures of human RNase H1 complexed with an RNA/DNA substrate. Unlike B. halodurans RNase H1, human RNase H1 has a basic protrusion, which forms a DNA-binding channel and together with the conserved phosphate-binding pocket confers specificity for the B form and 2'-deoxy DNA. The RNA strand is recognized by four consecutive 2'-OH groups and cleaved by a two-metal ion mechanism. Although RNase H1 is overall positively charged, the substrate interface is neutral to acidic in character, which likely contributes to the catalytic specificity. Positions of the scissile phosphate and two catalytic metal ions are interdependent and highly coupled. Modeling of HIV reverse transcriptase (RT) with RNA/DNA in its RNase H active site suggests that the substrate cannot simultaneously occupy the polymerase active site and must undergo a conformational change to toggle between the two catalytic centers. The region that accommodates this conformational change offers a target to develop HIV-specific inhibitors. PMID:17964265

  1. Induction of amphiregulin by p53 promotes apoptosis via control of microRNA biogenesis in response to DNA damage

    PubMed Central

    Taira, Naoe; Yamaguchi, Tomoko; Kimura, Junko; Lu, Zheng-Guang; Fukuda, Shinji; Higashiyama, Shigeki; Ono, Masaya; Yoshida, Kiyotsugu

    2014-01-01

    Upon DNA damage, tumor suppressor p53 determines cell fate by repairing DNA lesions to survive or by inducing apoptosis to eliminate damaged cells. The decision is based on its posttranslational modifications. Especially, p53 phosphorylation at Ser46 exerts apoptotic cell death. However, little is known about the precise mechanism of p53 phosphorylation on the induction of apoptosis. Here, we show that amphiregulin (AREG) is identified for a direct target of Ser46 phosphorylation via the comprehensive expression analyses. Ser46-phosphorylated p53 selectively binds to the promoter region of AREG gene, indicating that the p53 modification changes target genes by altering its binding affinity to the promoter. Although AREG belongs to a family of the epidermal growth factor, it also emerges in the nucleus under DNA damage. To clarify nuclear function of AREG, we analyze AREG-binding proteins by mass spectrometry. AREG interacts with DEAD-box RNA helicase p68 (DDX5). Intriguingly, AREG regulates precursor microRNA processing (i.e., miR-15a) with DDX5 to reduce the expression of antiapoptotic protein Bcl-2. These findings collectively support a mechanism in which the induction of AREG by Ser46-phosphorylated p53 is required for the microRNA biogenesis in the apoptotic response to DNA damage. PMID:24379358

  2. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes.

    PubMed

    Andrade-Lima, Leonardo C; Veloso, Artur; Paulsen, Michelle T; Menck, Carlos F M; Ljungman, Mats

    2015-03-11

    The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5'-3' direction with slow recovery and TC-NER at the 3' end of long genes. RNA synthesis resumed fully at the 3'-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER). Different transcription recovery profiles were found for individual genes but these differences did not fully correlate to differences in DNA repair of these genes. Our study gives the first genome-wide view of how UV-induced lesions affect transcription and how the recovery of RNA synthesis of large genes are particularly delayed by the apparent lack of resumption of transcription by arrested polymerases. PMID:25722371

  3. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes

    PubMed Central

    Andrade-Lima, Leonardo C.; Veloso, Artur; Paulsen, Michelle T.; Menck, Carlos F.M.; Ljungman, Mats

    2015-01-01

    The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5?-3? direction with slow recovery and TC-NER at the 3? end of long genes. RNA synthesis resumed fully at the 3?-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER). Different transcription recovery profiles were found for individual genes but these differences did not fully correlate to differences in DNA repair of these genes. Our study gives the first genome-wide view of how UV-induced lesions affect transcription and how the recovery of RNA synthesis of large genes are particularly delayed by the apparent lack of resumption of transcription by arrested polymerases. PMID:25722371

  4. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP)

    PubMed Central

    Chander, Yogesh; Koelbl, Jim; Puckett, Jamie; Moser, Michael J.; Klingele, Audrey J.; Liles, Mark R.; Carrias, Abel; Mead, David A.; Schoenfeld, Thomas W.

    2014-01-01

    Meeting the goal of providing point of care (POC) tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol) is a thermostable viral enzyme that enables true POC use in clinics or in the field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP) for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations. Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst) and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular detection of pathogens. PMID:25136338

  5. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP).

    PubMed

    Chander, Yogesh; Koelbl, Jim; Puckett, Jamie; Moser, Michael J; Klingele, Audrey J; Liles, Mark R; Carrias, Abel; Mead, David A; Schoenfeld, Thomas W

    2014-01-01

    Meeting the goal of providing point of care (POC) tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol) is a thermostable viral enzyme that enables true POC use in clinics or in the field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP) for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations. Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst) and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular detection of pathogens. PMID:25136338

  6. Synthetic Spike-in Standards Improve Run-Specific Systematic Error Analysis for DNA and RNA Sequencing

    PubMed Central

    Zook, Justin M.; Samarov, Daniel; McDaniel, Jennifer; Sen, Shurjo K.; Salit, Marc

    2012-01-01

    While the importance of random sequencing errors decreases at higher DNA or RNA sequencing depths, systematic sequencing errors (SSEs) dominate at high sequencing depths and can be difficult to distinguish from biological variants. These SSEs can cause base quality scores to underestimate the probability of error at certain genomic positions, resulting in false positive variant calls, particularly in mixtures such as samples with RNA editing, tumors, circulating tumor cells, bacteria, mitochondrial heteroplasmy, or pooled DNA. Most algorithms proposed for correction of SSEs require a data set used to calculate association of SSEs with various features in the reads and sequence context. This data set is typically either from a part of the data set being “recalibrated” (Genome Analysis ToolKit, or GATK) or from a separate data set with special characteristics (SysCall). Here, we combine the advantages of these approaches by adding synthetic RNA spike-in standards to human RNA, and use GATK to recalibrate base quality scores with reads mapped to the spike-in standards. Compared to conventional GATK recalibration that uses reads mapped to the genome, spike-ins improve the accuracy of Illumina base quality scores by a mean of 5 Phred-scaled quality score units, and by as much as 13 units at CpG sites. In addition, since the spike-in data used for recalibration are independent of the genome being sequenced, our method allows run-specific recalibration even for the many species without a comprehensive and accurate SNP database. We also use GATK with the spike-in standards to demonstrate that the Illumina RNA sequencing runs overestimate quality scores for AC, CC, GC, GG, and TC dinucleotides, while SOLiD has less dinucleotide SSEs but more SSEs for certain cycles. We conclude that using these DNA and RNA spike-in standards with GATK improves base quality score recalibration. PMID:22859977

  7. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    PubMed Central

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5?-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  8. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification.

    PubMed

    Bi, Sai; Cui, Yangyang; Li, Li

    2013-01-01

    An ultrasensitive and highly selective method for polymerase chain reaction-free (PCR-free) messenger RNA (mRNA) expression profiling is developed through a novel cross-rolling circle amplification (C-RCA) process based on DNA-rotaxane nanostructures. Two species of DNA pseudorotaxane (DPR) superstructures (DPR-I and DPR-II) are assembled by threading a linear DNA rod through a double-stranded DNA (dsDNA) ring containing two single-stranded gaps. In this assay, cDNA that is specific for ?-actin (ACTB) mRNA is taken as a model analyte. Upon the introduction of the target cDNA, the cDNA and the biotin-modified primer are hybridized to the single-stranded regions of the DNA rod and the gap-ring, respectively. As a result, the DPR-I dethreads into free DNA macrocycle and a dumbbell-shaped DNA nanostructure. In the presence of DNA polymerase/dNTPs, two release-DNA on the DPR-I are replaced by polymerase with strand-displacement activity, which can act as the input of the DPR-II to trigger the dethreading of DPR-II and the RCA reaction, releasing another two specified release-DNA strands those in turn serve as the "mimic cDNA" for DPR-I. The C-RCA reaction then proceeds autonomously. To overcome the high background induced by hemin itself, the biotinylated rolling circle products are captured by streptavidin-coated MNPs, achieving a detection limit as low as 0.1 zmol cDNA. The assay also exhibits an excellent selectivity due to its unique DNA nanostructure fabricated through base pairing hybridization. The ACTB mRNA expression in mammary cancer cells (MCF-7) is successfully detected. PMID:23148205

  9. Transcription-coupled hypernegative supercoiling of plasmid DNA by T7 RNA polymerase in Escherichia coli topoisomerase I-deficient strains.

    PubMed

    Samul, Rebecca; Leng, Fenfei

    2007-12-01

    Transcription by RNA polymerase can stimulate negative DNA supercoiling in Escherichia coli topA strains. This phenomenon has been explained by a "twin-supercoiled-domain" model of transcription in which positive DNA supercoils are generated in front of a translocating RNA polymerase and negative supercoils behind it. However, since there is lack of a specific system to study the factors governing this biologically important process, the parameters regulating transcription-coupled DNA supercoiling (TCDS) in E.coli still remain elusive. Here, we describe our efforts to study TCDS in E.coli using a newly developed system. This system consists of a topA strain, VS111(DE3) or DM800(DE3), in which a lambdaDE3 prophage containing a T7 RNA polymerase gene under the control of lacUV5 promoter has been integrated into the cell chromosome, along with a set of plasmids producing RNA transcripts of various lengths by T7 RNA polymerase. Using this system, we found that transcription by T7 RNA polymerase strikingly induced the formation of hypernegatively supercoiled plasmid DNA. We also discovered, for the first time, that TCDS was dependent on the length of RNA transcripts in vivo, precisely predicted by the twin-supercoiled-domain model of transcription. Furthermore, our results demonstrated that hypernegative supercoiling of plasmid DNA by T7 RNA polymerase did not require anchoring of DNA to the bacterial cytoplasmic membrane. These results indicate that a transcribing RNA polymerase alone is sufficient to cause a change in local DNA superhelicity, which can have a powerful impact on the conformation and function of critical DNA sequence elements such as promoters and DNA replication origins. PMID:17980389

  10. Characterization of bovine tracheobronchial phenol sulphotransferase cDNA and detection of mRNA regulation by cortisol.

    PubMed Central

    Schauss, S J; Henry, T; Palmatier, R; Halvorson, L; Dannenbring, R; Beckmann, J D

    1995-01-01

    Phenol sulphotransferases esterify both endogenous and foreign hydroxylated aromatic compounds with sulphate. Since these enzymes participate in both hormone and drug metabolism, elucidating their regulation at both the enzymic and molecular levels may provide new understanding in several metabolic pathways. The primary structure of a bovine phenol sulphotransferase has been determined by isolation of the corresponding cDNA. Two partial bovine cDNAs were first isolated by probing a tracheal epithelial cell lambda gt11 cDNA library with a rat phenol sulphotransferase cDNA. These clones provided the sequences of the 5' and 3' ends of the predicted coding region. A contiguous cDNA was subsequently isolated by PCR using 5' and 3' oligonucleotide primers and the cDNA library as the template. The sequence of the resulting approx. 1 kbp cDNA predicted an amino acid sequence that included sequences determined for several tryptic peptides of the purified protein. Antiserum directed to a synthetic N-terminal peptide predicted by the cDNA sequence showed reactivity with the purified enzyme. High-level Trc-promoter-driven expression of the recombinant bovine enzyme was achieved in Escherichia coli. The bovine cDNA was used to determine relative steady-state levels of phenol sulphotransferase transcripts in bovine lung tissues; distal lung parenchymal RNA levels were 6-10-fold greater than those in tracheobronchial epithelium. Using a bronchial epithelial cell culture model, however, cortisol was observed to increase mRNA levels by 5-fold in both a dose- and time-dependent manner; this corresponds to previously reported glucocorticoid stimulation of phenol sulphotransferase activity in this system [Beckmann, Illig and Bartzatt (1994) J. Cell Physiol. 160, 603-610]. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 7 PMID:7575456

  11. Isolation and sequence determination of 5'-terminal oligonucleotide fragments of RNA transcripts synthesized by bacteriophage T3-induced RNA polymerase from T3 DNA.

    PubMed Central

    Maitra, U; Jelinek, W; Yudelevich, A; Majumder, H K; Guha, A

    1980-01-01

    The nucleotide sequence of the 5'-terminal oligonucleotides produced by pancreatic RNase digestion of bacteriophage T3 RNA polymerase (EC 2.7.7.6) transcripts of T3 DNA has been determined. The sequence determination is based upon a simple isolation procedure for the 5'-terminal oligonucleotides. This procedure involves treatment of pancreatic RNase digests of alpha 32P-labeled T3 RNA polymerase transcripts with bovine brain exoribonuclease to remove oligonucleotides with free 5'-hydroxyl termini and then chromatographing the products on hydroxylapatite to resolve the remaining oligonucleotides having 5'-phosphate termini. By application of standard two-dimensional separation and sequence techniques, the major 5'-end sequences deduced were pppGpGpGpApGpApGpApY(Y = pyrimidine nucleoside) and pppGpGpGpApGpApCp. In addition, the sequences of other minor 5'-terminal oligonucleotides observed on homochromatograms were also determined. The sequences of these 5'-oligonucleotides were pppGpGpGpApApCpY, pppGpGpGpApApUpY, pppGpGp(2-4 Gp, 2-3 ApGp)..., and pppGpGpGp.... These results demonstrate that T3 phage-induced RNA polymerase possesses a high degree of specificity in the initiation of RNA chains. Images PMID:6933443

  12. SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase

    PubMed Central

    Shiu, Patrick K. T.; Zickler, Denise; Raju, Namboori B.; Ruprich-Robert, Gwenael; Metzenberg, Robert L.

    2006-01-01

    A gene unpaired during the meiotic homolog pairing stage in Neurospora generates a sequence-specific signal that silences the expression of all copies of that gene. This process is called Meiotic Silencing by Unpaired DNA (MSUD). Previously, we have shown that SAD-1, an RNA-directed RNA polymerase (RdRP), is required for MSUD. We isolated a second gene involved in this process, sad-2. Mutated Sad-2 RIP alleles, like those of Sad-1, are dominant and suppress MSUD. Crosses homozygous for Sad-2 are blocked at meiotic prophase. SAD-2 colocalizes with SAD-1 in the perinuclear region, where small interfering RNAs have been shown to reside in mammalian cells. A functional sad-2+ gene is necessary for SAD-1 localization, but the converse is not true. The data suggest that SAD-2 may function to recruit SAD-1 to the perinuclear region, and that the proper localization of SAD-1 is important for its activity. PMID:16461906

  13. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds.

    PubMed

    Humphery-Smith, I; Cordwell, S J; Blackstock, W P

    1997-08-01

    A methodological overview of proteome analysis is provided along with details of efforts to achieve high-throughput screening (HTS) of protein samples derived from two-dimensional electrophoresis gels. For both previously sequenced organisms and those lacking significant DNA sequence information, mass spectrometry has a key role to play in achieving HTS. Prototype robotics designed to conduct appropriate chemistries and deliver 700-1000 protein (genes) per day to batteries of mass spectrometers or liquid chromatography (LC)-based analyses are well advanced, as are efforts to produce high density gridded arrays containing > 1000 proteins on a single matrix assisted laser desorption ionisation/time-of-flight (MALDI-TOF) sample stage. High sensitivity HTS of proteins is proposed by employing principally mass spectrometry in an hierarchical manner: (i) MALDI-TOF-mass spectrometry (MS) on at least 1000 proteins per day; (ii) electrospray ionisation (ESI)/MS/MS for analysis of peptides with respect to predicted fragmentation patterns or by sequence tagging; and (iii) ESI/MS/MS for peptide sequencing. Genomic sequences when complemented with information derived from hybridisation assays and proteome analysis may herald in a new era of holistic cellular biology. The current preoccupation with the absolute quantity of gene-product (RNA and/or protein) should move backstage with respect to more molecularly relevant parameters, such as: molecular half-life; synthesis rate; functional competence (presence or absence of mutations); reaction kinetics; the influence of individual gene-products on biochemical flux; the influence of the environment, cell-cycle, stress and disease on gene-products; and the collective roles of multigenic and epigenetic phenomena governing cellular processes. Proteome analysis is demonstrated as being capable of proceeding independently of DNA sequence information and aiding in genomic annotation. Its ability to confirm the existence of gene-products predicted from DNA sequence is a major contribution to genomic science. The workings of software engines necessary to achieve large-scale proteome analysis are outlined, along with trends towards miniaturisation, analyte concentration and protein detection independent of staining technologies. A challenge for proteome analysis into the future will be to reduce its dependence on two-dimensional (2-D) gel electrophoresis as the preferred method of separating complex mixtures of cellular proteins. Nonetheless, proteome analysis already represents a means of efficiently complementing differential display, high density expression arrays, expressed sequence tags, direct or subtractive hybridisation, chromosomal linkage studies and nucleic acid sequencing as a problem solving tool in molecular biology. PMID:9298643

  14. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage

    PubMed Central

    Ng, Terry Fei Fan; Marine, Rachel; Wang, Chunlin; Simmonds, Peter; Kapusinszky, Beatrix; Bodhidatta, Ladaporn; Oderinde, Bamidele Soji; Wommack, K. Eric

    2012-01-01

    Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10?4), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses. PMID:22933275

  15. Redox cycling amplified electrochemical detection of DNA hybridization: Application to pathogen E. coli bacterial RNA

    PubMed Central

    Walter, Anne; Wu, Jie; Flechsig, Gerd-Uwe; Haake, David A.; Wang, Joseph

    2011-01-01

    An electrochemical genosensor in which signal amplification is achieved using p-aminophenol (p-AP) redox cycling by nicotinamide adenine dinucleotide (NADH) is presented. An immobilized thiolated capture probe is combined with a sandwich-type hybridization assay, using biotin as a tracer in the detection probe, and streptavidin-alkaline phosphatase as reporter enzyme. The phosphatase liberates the electrochemical mediator p-AP from its electrically inactive phosphate derivative. This generated p-AP is electrooxidized at an Au electrode modified self-assembled monolayer to p-quinone imine (p-QI). In the presence of NADH, p-QI is reduced back to p-AP, which can be re-oxidized on the electrode and produce amplified signal. A detection limit of 1 pM DNA target is offered by this simple one-electrode, one-enzyme format redox cycling strategy. The redox cycling design is applied successfully to the monitoring of the 16S rRNA of E. coli pathogenic bacteria, and provides a detection limit of 250 CFU ?L?1. PMID:21338752

  16. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage.

    PubMed

    Ng, Terry Fei Fan; Marine, Rachel; Wang, Chunlin; Simmonds, Peter; Kapusinszky, Beatrix; Bodhidatta, Ladaporn; Oderinde, Bamidele Soji; Wommack, K Eric; Delwart, Eric

    2012-11-01

    Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(-4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses. PMID:22933275

  17. Stability of DNA, RNA, cytomorphology, and immunoantigenicity in Residual ThinPrep Specimens.

    PubMed

    Kim, Younghye; Choi, Kap Ro; Chae, Moon Jung; Shin, Bong Kyung; Kim, Han Kyeom; Kim, Aeree; Kim, Baek-Hui

    2013-11-01

    The aim of this study was to evaluate the quality of residual liquid-based preparation (LBP) sample after cytopathologic diagnosis. Cervical swab, body fluid, and thyroid fine-needle aspiration (FNA) samples preserved in ThinPrep PreservCyt solution were tested. Samples kept frozen at -80 °C and stored at room temperature were tested 12 months after the initial sample collection. Gel electrophotography of GAPDH multiplex PCR, RNA integrity number (RIN) values obtained from Agilent bioanalyzer, cytomorphologic changes, and immunohistochemical staining (cytokeratin, thyroid transcription factor-1 (TTF-1), and D2-40) were used for the evaluation of sample quality. All available samples showed successful amplification products in multiplex PCR. However, RNAs in all residual samples were degraded with low RIN values (RIN < 4). RIN values decreased rapidly when samples were stored at room temperature in LBP medium. Cytomorpholoic evaluation and immunohistochemical staining results revealed no change regardless of storage time or storage temperature. In conclusion, RNAs stored in LBP medium degraded quickly at room temperature. Residual alcohol-based LBP cytologic specimens stored at -80 °C and room temperature showed no change in DNA quality, cytomorphology, and immunoreactivity during at least one year of storage. PMID:23566220

  18. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease.

    PubMed

    Kennedy, Edward M; Bassit, Leda C; Mueller, Henrik; Kornepati, Anand V R; Bogerd, Hal P; Nie, Ting; Chatterjee, Payel; Javanbakht, Hassan; Schinazi, Raymond F; Cullen, Bryan R

    2015-02-01

    Hepatitis B virus (HBV) remains a major human pathogen, with over 240 million individuals suffering from chronic HBV infections. These can persist for decades due to the lack of therapies that can effectively target the stable viral covalently closed circular (ccc) DNA molecules present in infected hepatocytes. Using lentiviral transduction of a bacterial Cas9 gene and single guide RNAs (sgRNAs) specific for HBV, we observed effective inhibition of HBV DNA production in in vitro models of both chronic and de novo HBV infection. Cas9/sgRNA combinations specific for HBV reduced total viral DNA levels by up to ~1000-fold and HBV cccDNA levels by up to ~10-fold and also mutationally inactivated the majority of the residual viral DNA. Together, these data provide proof of principle for the hypothesis that CRISPR/Cas systems have the potential to serve as effective tools for the depletion of the cccDNA pool in chronically HBV infected individuals. PMID:25553515

  19. Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): Prokaryote-like genes for tRNA f-Met and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons

    Microsoft Academic Search

    Geneviève A. Pont-Kingdon; C. Timothy Beagley; Ronald Okimoto; David R. Wolstenholme

    1994-01-01

    The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the sea anemone Metridium senile (phylum Cnidaria, class Anthozoa, order Actiniaria) has been determined, within which have been identified the genes for respiratory chain NADH dehydrogenase subunit 2 (ND2), the small-subunit rRNA (s-rRNA), cytochrome c oxidase subunit II(COII), ND4, ND6, cytochrome b (Cyt b), tRNAf-Met, and the

  20. Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation.

    PubMed

    Kornyshev, Alexei A; Leikin, Sergey

    2013-05-01

    Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation. PMID:23663846

  1. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  2. Mitochondrial DNA heteroplasmy dynamics in a kindred harboring a novel pathogenic mutation in the mitochondrial tRNA glutamate gene

    SciTech Connect

    Moraes, C.T.; Hao, H. [Univ. of Miami, FL (United States); Bonilla, E.; DiMauro, S.

    1994-09-01

    We have identified a novel mitochondrial DNA (mtDNA) mutation in a 32-year-old male with a myopathy (without progressive external ophthalmoplegia) and mild pyramidal involvement. This A{yields}G transition at mtDNA position 14709 alters an evolutionary conserved nucleotide in a region coding for the anticodon loop of the mitcohondrial tRNA{sup Glu}. The 14709 mtDNA mutation was heteroplasmic but present at very high levels in the patient`s muscle (95%), white blood cells (81%) and hair follicles (90%). The same mutant mtDNA population was observed in white blood cells and hair follicles of all maternal relatives, but a lesser percentage (25-80%). The patient`s muscle showed many ragged-red fibers and a severe focal defect in cytochrome c oxidase activity, accompanied by the absence of cross-reacting material for mitochondrially synthesized polypeptides (ND 1 and COX II). The percentage of mutant mtDNA was not preferentially increased over two generations. Rather, the percentage of mutant mtDNA observed in siblings seemed to follow a normal distribution around the percentage observed in their mothers. Single hair PCR/RFLP analysis showed that the intercellular fluctuation in the percentage of mutant mtDNA differs among family members. Younger generations tend to have a more homogeneous distribution of mutant mtDNA in different hair follicles. The highest degree of variability between individual hair follicles was observed in the patient`s grandmother. These results suggest that the intercellular distribution of the mutant and wild-type mtDNA populations may drift towards homogeneity in subsequent generations.

  3. Photoswitching of Site-Selective RNA Scission by Sequential Incorporation of Azobenzene and Acridine Residues in a DNA Oligomer

    PubMed Central

    Kuzuya, Akinori; Tanaka, Keita; Komiyama, Makoto

    2011-01-01

    Photoresponsive systems for site-selective RNA scission have been prepared by combining Lu(III) ions with acridine/azobenzene dual-modified DNA. The modified DNA forms a heteroduplex with substrate RNA, and the target phosphodiester linkages in front of the acridine residue is selectively activated so that Lu(III) ion rapidly cleaves the linkage. Azobenzene residue introduced adjacent to the acridine residue acts as a photoresponsive switch, which triggers the site-selective scission upon UV irradiation. A trans isomer of azobenzene efficiently suppresses the scission, whereas the cis isomer formed by UV irradiation hardly affects the scission. As a result, 1.7–2.4-fold acceleration of the cleavage was achieved simply by irradiating UV for 3?min to the mixture prior to the reaction. Considering the yield of photoisomerization, the intrinsic activity of a cis isomer is up to 14.5-fold higher than that of the trans isomer. PMID:21941627

  4. Structure of the DNA-binding and RNA-polymerase-binding region of transcription antitermination factor ?Q.

    PubMed

    Vorobiev, Sergey M; Gensler, Yocheved; Vahedian-Movahed, Hanif; Seetharaman, Jayaraman; Su, Min; Huang, Janet Y; Xiao, Rong; Kornhaber, Gregory; Montelione, Gaetano T; Tong, Liang; Ebright, Richard H; Nickels, Bryce E

    2014-03-01

    The bacteriophage ? Q protein is a transcription antitermination factor that controls expression of the phage late genes as a stable component of the transcription elongation complex. To join the elongation complex, ?Q binds a specific DNA sequence element and interacts with RNA polymerase that is paused during early elongation. ?Q binds to the paused early-elongation complex through interactions between ?Q and two regions of RNA polymerase: region 4 of the ?(70) subunit and the flap region of the ? subunit. We present the 2.1 Å resolution crystal structure of a portion of ?Q containing determinants for interaction with DNA, interaction with region 4 of ?(70), and interaction with the ? flap. The structure provides a framework for interpreting prior genetic and biochemical analysis and sets the stage for future structural studies to elucidate the mechanism by which ?Q alters the functional properties of the transcription elongation complex. PMID:24440517

  5. Effects of trace metals on growth of yellow perch ( Perca flavescens ) as measured by RNA-DNA ratios

    Microsoft Academic Search

    Paul K. Kearns; Gary J. Atchison

    1979-01-01

    Synopsis Relationships between sublethal concentrations of cadmium and zinc in natural water and metal uptake by and growth of fish were investigated. RNA-DNA ratios and weight gain were used to assess seasonal growth differences between yellow perch populations from contaminated and control sites. Whole-body concentrations of cadmium and zinc in young-of-the-year perch (Perca flavescens) were significantly different between sites. Measurable

  6. Treatment With mANT2 shRNA Enhances Antitumor Therapeutic Effects Induced by MUC1 DNA Vaccination

    PubMed Central

    Choi, Yun; Jeon, Yong H; Jang, Ji-Young; Chung, June-Key; Kim, Chul-Woo

    2011-01-01

    In this study, we developed a combination therapy (pcDNA3/hMUC1+mANT2 shRNA) to enhance the efficiency of MUC1 DNA vaccination by combining it with mANT2 short hairpin RNA (shRNA) treatment in immunocompetent mice. mANT2 shRNA treatment alone increased the apoptosis of BMF cells (B16F1 murine melanoma cell line coexpressing an MUC1 and Fluc gene) and rendered BMF tumor cells more susceptible to lysis by MUC1-associated CD8+ T cells. Furthermore, combined therapy enhanced MUC1 associated T-cell immune response and antitumor effects, and resulted in a higher cure rate than either treatment alone (pcDNA3/hMUC1 or mANT2 shRNA therapy alone). Human MUC1 (hMUC1)-loaded CD11c+ cells in the draining lymph nodes of BMF-bearing mice treated with the combined treatment were found to be most effective at generating hMUC1-associated CD8+IFN?+ T cells. Furthermore, the in vitro killing activities of hMUC1-associated cytotoxic T cells (CTLs) in the combined therapy were greater than in the respective monotherapies. Cured animals treated with the combined treatment rejected a rechallenge by BMF cells, but not a rechallenge by B16F1-Fluc cells at 14 days after treatment, and showed MUC1 antigen-associated immune responses. These results suggest that combined therapy enhances antitumor activity, and that it offers an effective antitumor strategy for treating melanoma. PMID:21063392

  7. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer.

    PubMed

    Papadopoulou, Eirini; Davilas, Elias; Sotiriou, Vasilios; Georgakopoulos, Eleftherios; Georgakopoulou, Stavroula; Koliopanos, Alexander; Aggelakis, Filipos; Dardoufas, Konstantinos; Agnanti, Niki J; Karydas, Irini; Nasioulas, Georgios

    2006-09-01

    In this study, we examined several molecular markers in prostate and breast cancer patients and in normal individuals. The markers tested were: variations in the quantity of plasma DNA, glutathione-S-transferase P1 gene (GSTP1), Ras association domain family 1A (RASSF1A), and ataxia telangiectasia mutated (ATM) methylation status in plasma, carcinoembryonic antigen (CEA) and prostate-specific membrane antigen (PSMA) mRNA in peripheral blood mononuclear cells (PBMC) and plasma samples from prostate cancer patients. DNA quantification in plasma was performed using real-time PCR (RT-PCR). We assessed the methylation status of GSTP1 in plasma DNA using methylation-specific PCR (MSP) assay, while the methylation status of RASSF1A and ATM genes was examined by the MethyLight technology. RT-PCR analysis was used for the detection of mRNA, PSMA, and CEA. In 58.3% of newly diagnosed prostate cancer patients and 26.7% of prostate cancer patients under therapy, plasma DNA levels were increased. Additionally, 48.5% of breast cancer patients showed plasma DNA levels above the cutoff limit. GSTP1 Promotor hypermethylation was detectable in 75% of plasma samples obtained from patients with newly diagnosed prostate cancer and in 36.8% of patients under therapy, whereas 26% and 14% of the breast cancer patients tested were positive for RASSF1A and ATM methylation, respectively. The combination of DNA load and promotor methylation status identified 88% of prostate cancer patients and 54% of breast cancer patients. This study shows that free-circulating DNA can be detected in cancer patients compared with disease-free individuals, and suggests a new, noninvasive approach for early detection of cancer. PMID:17108217

  8. Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection of DNA-RNA hybrids.

    PubMed Central

    Coutlee, F; Viscidi, R P; Yolken, R H

    1989-01-01

    The monoclonal antibody solution hybridization assay is a novel enzyme immunoassay for detection of RNA with a biotinylated DNA probe. To increase the sensitivity of this test, a fluorescent substrate and an enzymatic amplification cycling system were compared with a conventional colorigenic substrate for alkaline phosphatase. The fluorescent, cycling, and colorigenic substrates detected, respectively, 10, 10, and 100 amol of unbound alkaline phosphatase in 2 h. With a prolonged incubation period of 16.6 h, the conventional substrate measured 10 amol of the enzyme. In the immunoassay for RNA detection, the fluorescence and cycling assays were faster than that using the colorigenic substrate and reached an endpoint sensitivity of 3.2 pg/ml (0.16 pg per assay) of cRNA. However, longer incubation periods (16.6 h) for optimal generation of the colorigenic product led to a comparable level of sensitivity for the conventional substrate. PMID:2473088

  9. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein

    PubMed Central

    Kanevsky, Igor; Chaminade, Françoise; Chen, Yingying; Godet, Julien; René, Brigitte; Darlix, Jean-Luc; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2011-01-01

    Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA–DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardation assays, fluorescence anisotropy and cTAR mutants under conditions allowing strand transfer. In the absence of NC, cTAR DNA-TAR RNA annealing depends on nucleation through the apical loops. We show that the annealing intermediate of the kissing pathway is a loop–loop kissing complex involving six base-pairs and that the apical stems are not destabilized by this loop–loop interaction. Our data support a dynamic structure of the cTAR hairpin in the absence of NC, involving equilibrium between both the closed conformation and the partially open ‘Y’ conformation. This study is the first to show that the apical and internal loops of cTAR are weak and strong binding sites for NC, respectively. NC slightly destabilizes the lower stem that is adjacent to the internal loop and shifts the equilibrium toward the ‘Y’ conformation exhibiting at least 12 unpaired nucleotides in its lower part. PMID:21724607

  10. Generation of Marker-free Transgenic Plants Concurrently Resistant to a DNA Geminivirus and a RNA Tospovirus

    PubMed Central

    Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong

    2014-01-01

    Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413

  11. Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands

    PubMed Central

    Turner, Kevin B.; Brinson, Robert G.; Yi-Brunozzi, Hye Young; Rausch, Jason W.; Miller, Jennifer T.; Le Grice, Stuart F.J.; Fabris, Daniele

    2008-01-01

    The interactions of archetypical nucleic acid ligands with the HIV-1 polypurine tract (PPT) RNA:DNA hybrid, as well as analogous DNA:DNA, RNA:RNA and swapped hybrid substrates, were used to probe structural features of the PPT that contribute to its specific recognition and processing by reverse transcriptase (RT). Results from intercalative and groove-binding ligands indicate that the wild-type PPT hybrid does not contain any strikingly unique groove geometries and/or stacking arrangements that might contribute to the specificity of its interaction with RT. In contrast, neomycin bound preferentially and selectively to the PPT near the 5?(rA)4:(dT)4 tract and the 3? PPT-U3 junction. Nuclear magnetic resonance data from a complex between HIV-1 RT and the PPT indicate RT contacts within the same regions highlighted on the PPT by neomycin. These observations, together with the fact that the sites are correctly spaced to allow interaction with residues in the ribonuclease H (RNase H) active site and thumb subdomain of the p66 RT subunit, suggest that despite the long cleft employed by RT to make contact with nucleic acids substrates, these sites provide discrete binding units working in concert to determine not only specific PPT recognition, but also its orientation on the hybrid structure. PMID:18400780

  12. Effects of light and prey availability on Arctic freshwater protist communities examined by high-throughput DNA and RNA sequencing.

    PubMed

    Charvet, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2014-06-01

    Protists in high-latitude lakes are constrained by cold temperatures, low inorganic nutrient supply and low light availability for much of the year due to ice cover and polar darkness. The lengthening ice-free periods in these freshwater ecosystems due to a warming climate results in increased light availability, but the overall impacts on phytoplankton and other protists are unknown. We experimentally investigated protist community responses to changes in light and prey availability in a dilution series in Ward Hunt Lake (latitude 83°05'N), in the Canadian High Arctic. The communities at the end of the experiment were characterized using high-throughput pyrosequencing of the V4 region of the 18S rRNA gene as a measure of taxonomic presence, and of 18S rRNA (from RNA converted to cDNA) as a taxon-specific indicator of community response. At the end of the experiment under low irradiance, cDNA reads were dominated by photosynthetic dinoflagellate genera, except at the greatest dilution where Cercozoa were most abundant. In contrast, the cDNA reads in the high light treatments were dominated by chrysophytes. Given the known trophic differences among dinoflagellates, cercozoans and chrysophytes, this apparent environmental selection implies that the rise in underwater irradiance associated with increasing ice-free conditions may affect microbial food web structure and function in polar lakes. PMID:24646212

  13. RNA epigenetics.

    PubMed

    Liu, Nian; Pan, Tao

    2015-01-01

    Mammalian messenger RNA (mRNA) and long noncoding RNA (lncRNA) contain tens of thousands of posttranscriptional chemical modifications. Among these, the N(6)-methyl-adenosine (m(6)A) modification is the most abundant and can be removed by specific mammalian enzymes. m(6)A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modification. PMID:24768686

  14. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors

    PubMed Central

    2013-01-01

    Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer. PMID:24257477

  15. Preparation of cDNA Library for dRNA-seq

    Technology Transfer Automated Retrieval System (TEKTRAN)

    microRNAs (miRNAs) are ubiquitous regulators of gene expression in eukaryotic organisms, which guide Argonaute proteins (AGO) to cleave target mRNA or inhibit its translation based on sequence complementarity. In plants, miRNA directed cleavage occurs on the target mRNA at about 10 to 11 nucleotide ...

  16. Messenger RNA, Matthew MeselsonSite: DNA Interactive (www.dnai.org)

    NSDL National Science Digital Library

    2008-10-06

    Interviewee: Matt Meselson DNAi Location:Code>Copying the code>players Messenger RNA experiment Matt Meselson also had a hand in Sydney Brenner's RNA experiment. He talks about the experiment and how they waited for James Watson's group to finished their RNA work before publishing.

  17. USING A COMMERCIAL DNA EXTRACTION KIT TO OBTAIN RNA FROM MATURE RICE KERNELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraction of total RNA from starchy plant material such as common food grains is difficult, and especially so from dry rice (Oryza sativa L.) kernels. Most commercial RNA kits are not suited for starchy materials and traditional RNA extraction procedures leave hazardous organic wastes that have ex...

  18. Trial by fire: are the crystals macromolecules?

    PubMed Central

    Raghunathan, Kannan; Harris, Paul T.; Arvidson, Dennis N.

    2010-01-01

    Protein crystallization screens frequently yield salt crystals as well as protein crystals. A simple method for determining whether a crystal is composed of salt or macromolecules is suggested. A drop containing one or more crystals is transferred to a glass cover slip and the cover slip is then passed through the flame of a Bunsen burner. Macromolecule crystals are destroyed by this treatment, while salt crystals generally remain. The test can be performed after other commonly used tests such as crushing and staining. PMID:20445273

  19. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine).

    PubMed

    Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-01-01

    DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development. PMID:25306978

  20. Genome-wide DNA Methylation Profiles and Their Relationships with mRNA and the microRNA Transcriptome in Bovine Muscle Tissue (Bos taurine)

    PubMed Central

    Huang, Yong-Zhen; Sun, Jia-Jie; Zhang, Liang-Zhi; Li, Cong-Jun; Womack, James E.; Li, Zhuan-Jian; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-01-01

    DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development. PMID:25306978

  1. Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres.

    PubMed

    Xie, Yi; Lin, Xiaoyan; Huang, Yishun; Pan, Rujun; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong James

    2015-02-01

    Based on the protective properties of polydopamine nanospheres for DNA probes against nuclease digestion, we have developed a DNase I-assisted target recycling signal amplification method for highly sensitive and selective detection of miRNA. PMID:25554948

  2. Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage.

    PubMed

    Rychlik, Monika P; Chon, Hyongi; Cerritelli, Susana M; Klimek, Paulina; Crouch, Robert J; Nowotny, Marcin

    2010-11-24

    Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair. PMID:21095591

  3. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

    SciTech Connect

    Yu,B.; Edstrom, W.; Benach, J.; Hamuro, Y.; Weber, P.; Gibney, B.; Hunt, J.

    2006-01-01

    Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.

  4. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

    PubMed

    Gu, Jijin; Fang, Xiaoling; Hao, Junguo; Sha, Xianyi

    2015-03-01

    Multidrug resistance (MDR) remains one of the major reasons for the reductions in efficacy of many chemotherapeutic agents in cancer therapy. As a classical MDR phenotype of human malignancies, the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp) is an efflux protein with aberrant activity that has been linked to multidrug resistance in cancer. For the reversal of MDR by RNA interference (RNAi) technology, an U6-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed (abbreviated pDNA-iMDR1-shRNA). This study explored the feasibility of using Pluronic P123-conjugated polypropylenimine (PPI) dendrimer (P123-PPI) as a carrier for pDNA-iMDR1-shRNA to overcome tumor drug resistance in breast cancer cells. P123-PPI functionalized with anti-CD44 monoclonal antibody (CD44 receptor targeting ligand) (anti-CD44-P123-PPI) can efficiently condense pDNA into nanocomplexes to achieve efficient delivery of pDNA, tumor specificity and long circulation. The in vitro studies methodically evaluated the effect of P123-PPI and anti-CD44-P123-PPI on pDNA-iMDR1-shRNA delivery and P-gp downregulation. Our in vitro results indicated that the P123-PPI/pDNA and anti-CD44-P123-PPI/pDNA nanocomplexes with low cytotoxicity revealed higher transfection efficiency compared with the PPI/pDNA nanocomplexes and Lipofectamine™ 2000 in the presence of serum. The nanocomplexes loaded with pDNA-iMDR1-shRNA against P-gp could reverse MDR accompanied by the suppression of MDR1/P-gp expression at the mRNA and protein levels and improve the internalization and cytotoxicity of Adriamycin (ADR) in the MCF-7/ADR multidrug-resistant cell line. BALB/c nude mice bearing MCF-7/ADR tumor were utilized as a xenograft model to assess antitumor efficacy in vivo. The results demonstrated that the administration of anti-CD44-P123-PPI/pDNA-iMDR1-shRNA nanocomplexes combined with ADR could inhibit tumor growth more efficiently than ADR alone. The enhanced therapeutic efficacy of ADR may be correlated with increased accumulation of ADR in drug-resistant tumor cells. Consequently, these results suggested that the use of pDNA-iMDR1-shRNA-loaded nanocomplexes may be a promising gene delivery strategy to reverse MDR and improve the effectiveness of chemotherapy. PMID:25662500

  5. A primer-free method that selects high affinity single stranded DNA aptamers using Thermostable RNA Ligase

    PubMed Central

    Lai, Yi-Tak; DeStefano, Jeffrey J.

    2011-01-01

    This report describes a method for selecting single stranded DNA (ssDNA) molecules that bind with high affinity (aptamers) to specific target proteins. This SELEX (Systematic Evolution of Ligands by EXponential enrichment) method is similar to other “primer-free” approaches where the random sequence ssDNA starting pool has no fixed sequences at the 5? and 3? termini. Therefore there are no predetermined sequences that could bias selection. Like other SELEX methods, repeated cycles (typically 5–15) of selection then amplification and re-selection are used. The method differs from other primer-free approaches in that the key step for regenerating new material for subsequent rounds is ligation of the selected ssDNA to a defined sequence oligonucleotide using Thermostable RNA Ligase. Under specific conditions, this ligase ligated 30 nucleotide random sequence ssDNA (5?-N30-3?) to a specified 20 nucleotide ssDNA with ~50% efficiency. Efficiency was improved to ~90% by addition of a single T residue to the 3? end (5?-N29T-3?). High efficiency in this step is critical, especially early in the procedure as any selected material that is not ligated is lost. In this report, human immunodeficiency virus reverse transcriptase was used as the target protein but the method could be applied to essentially any protein. PMID:21420926

  6. Oncolytic adenovirus-expressed RNA interference of O6-methylguanine DNA methyltransferase activity may enhance the antitumor effects of temozolomide

    PubMed Central

    CHEN, XIN-JUN; ZHANG, KAI; XIN, YONG; JIANG, GUAN

    2014-01-01

    Temozolomide (TMZ) is an example of an alkylating agent, which are known to be effective anticancer drugs for the treatment of various solid tumors, including glioma and melanoma. TMZ acts predominantly through the mutagenic product O6-methylguanine, a cytotoxic DNA lesion. The DNA repair enzyme, O6-methylguanine DNA methyltransferase (MGMT), which functions in the resistance of cancers to TMZ, can repair this damage. RNA interference (RNAi) has been previously shown to be a potent tool for the knockdown of genes, and has potential for use in cancer treatment. Oncolytic adenoviruses not only have the ability to destroy cancer cells, but may also be possible vectors for the expression of therapeutic genes. We therefore hypothesized that the oncolytic virus-mediated RNAi of MGMT activity may enhance the antitumor effect of TMZ and provide a promising method for cancer therapy. PMID:25295108

  7. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay.

    PubMed

    Liu, Cheng-Che; Yeung, Chun-Yan; Chen, Po-Hao; Yeh, Ming-Kung; Hou, Shao-Yi

    2013-12-01

    An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient. PMID:23870991

  8. Accessible DNA and Relative Depletion of H3K9me2 at Maize Loci Undergoing RNA-Directed DNA Methylation[W][OPEN

    PubMed Central

    Gent, Jonathan I.; Madzima, Thelma F.; Bader, Rechien; Kent, Matthew R.; Zhang, Xiaoyu; Stam, Maike; McGinnis, Karen M.; Dawe, R. Kelly

    2014-01-01

    RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production. PMID:25465407

  9. New Dark Matter Detectors using DNA or RNA for Nanometer Tracking

    E-print Network

    Andrzej Drukier; Katherine Freese; Alejandro Lopez; David Spergel; Charles Cantor; George Church; Takeshi Sano

    2015-01-11

    Weakly Interacting Massive Particles (WIMPs) may constitute most of the matter in the Universe. The ability to detect the directionality of recoil nuclei will considerably facilitate detection of WIMPs. In this paper we propose a novel type of dark matter detector: detectors made of DNA or RNA could provide nanometer resolution for tracking, an energy threshold of 0.5 keV, and can operate at room temperature. When a WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the recoiling nucleus then traverses hundreds of strings of single stranded nucleic acids (ssNA) with known base sequences and severs ssNA strands along its trajectory. The location of the break can be identified by amplifying and identifying the segments of cut ssNA using techniques well known to biologists. Thus the path of the recoiling nucleus can be tracked to nanometer accuracy. In one such detector concept, the transducers are nanometer-thick Au-foils of 1m x 1m, and the direction of recoiling nuclei is measured by "NA Tracking Chamber" consisting of ordered array of ssNA strands. Polymerase Chain Reaction (PCR) and ssNA sequencing are used to read-out the detector. The proposed detector is smaller and cheaper than other alternatives: 1 kg of gold and 0.1 to 4 kg of ssNA (depending on length and strand density), packed into 0.01m$^3$, can be used to study 10 GeV WIMPs. A variety of other detector target elements could be used in this detector to optimize for different WIMP masses and to identify WIMP properties. By leveraging advances in molecular biology, we aim to achieve about 1,000-fold better spatial resolution than in conventional WIMP detectors at reasonable cost.

  10. The Thymocyte-Specific MAR Binding Protein, SATB1, Interacts in Vitro with a Novel Variant of DNA-Directed RNA Polymerase II, Subunit 11

    Microsoft Academic Search

    Linda K. Durrin; Theodore G. Krontiris

    2002-01-01

    A yeast two-hybrid screen of a Jurkat (T cell) derived cDNA library, using SATB1 (a matrix attachment region binding protein) as the bait, yielded four independent isolates of a novel variant of the DNA directed RNA polymerase II, subunit 11 (RPB11). Absence of lysine-17 from the amino terminus of this variant cannot be explained by alternative mRNA splicing. Instead, allele-specific

  11. Studies on DNA, RNA and protein synthesis in Malathion treated germinating seeds of Vigna Sinenses (L): effect of plant growth hormone supplementation

    Microsoft Academic Search

    S. Chakraborti; S. K. Roy; S. K. Banerjee; G. C. Chatterjee

    1982-01-01

    Studies have shown that malathion causes differential inhibition in the uptakes of C?uracil, C?leucine and H?thymidine, the radioactive precursors of RNA, protein and DNA respectively, when compared to the control seeds. The rate of RNA, protein and DNA synthesis were also found to be inhibited under malathion exposed conditions (above 50 ppm), in a dose dependent manner. On simultaneous application

  12. Simple molecular engineering of glycol nucleic acid: progression from self-pairing to cross-pairing with cDNA and RNA.

    PubMed

    Bose, Tanaya; Kumar, Vaijayanti A

    2014-11-01

    The acyclic chiral nucleic acid analogue, Glycol Nucleic Acid (GNA), displayed exceptional structural simplicity and atom economy while forming self-paired duplexes, using canonical Watson-Crick base pairing. We disclose here that the replacement of phosphodiester linker in GNA with somewhat rigid and shorter carbamate linker in Glycol Carbamate Nucleic Acid (GCNA) backbone allows unprecedented stability to the antiparallel self-paired duplexes. The R-GCNA oligomers were further found to form cross-paired antiparallel duplexes with cDNA and RNA following Watson-Crick base pairing. The stability of cross-paired GCNA:DNA and GCNA:RNA duplexes was higher than the corresponding DNA:DNA and DNA:RNA duplexes. The chiral (R) and (S) precursors were easily accessible from naturally occurring l-serine. PMID:25240730

  13. Targeted gene silencing in mouse germ cells by insertion of a homologous DNA into a piRNA generating locus

    PubMed Central

    Yamamoto, Yasuhiro; Watanabe, Toshiaki; Hoki, Yuko; Shirane, Kenjiro; Li, Yufeng; Ichiiyanagi, Kenji; Kuramochi-Miyagawa, Satomi; Toyoda, Atsushi; Fujiyama, Asao; Oginuma, Masayuki; Suzuki, Hitomi; Sado, Takashi; Nakano, Toru; Sasaki, Hiroyuki

    2013-01-01

    In germ cells, early embryos, and stem cells of animals, PIWI-interacting RNAs (piRNAs) have an important role in silencing retrotransposons, which are vicious genomic parasites, through transcriptional and post-transcriptional mechanisms. To examine whether the piRNA pathway can be used to silence genes of interest in germ cells, we have generated knock-in mice in which a foreign DNA fragment was inserted into a region generating pachytene piRNAs. The knock-in sequence was transcribed, and the resulting RNA was processed to yield piRNAs in postnatal testes. When reporter genes possessing a sequence complementary to portions of the knock-in sequence were introduced, they were greatly repressed after the time of pachytene piRNA generation. This repression mainly occurred at the post-transcriptional level, as degradation of the reporter RNAs was accelerated. Our results show that the piRNA pathway can be used as a tool for sequence-specific gene silencing in germ cells and support the idea that the piRNA generating regions serve as traps for retrotransposons, enabling the host cell to generate piRNAs against active retrotransposons. PMID:23132912

  14. Preferred Site for Initiation of RNA Transcription by Escherichia coli RNA Polymerase Within the Simian Virus 40 DNA Segment of the Nondefective Adenovirus-Simian Virus 40 Hybrid Viruses Ad2+ND1 and Ad2+ND3

    PubMed Central

    Zain, B. Sayeeda; Dhar, Ravi; Weissman, Sherman M.; Lebowitz, Paul; Lewis, Andrew M.

    1973-01-01

    The DNA of simian virus 40 (SV40) was transcribed into RNA by Escherichia coli RNA polymerase at 18 to 24 C after synchronization of the initiation of RNA synthesis. After a brief synthetic period the RNA product contained relatively large amounts of sequences derived from a limited segment of SV40 DNA. The source for this pulse-labeled RNA was found to be a portion of the segment of SV40 DNA included within the nondefective adenovirus (Ad)-SV40 hybrid viruses, Ad2+ND1 and Ad2+ND3. After synthesis with [?-32P] ATP, Ad2+ND1 and Ad2+ND3 DNA transcripts contained an initial sequence missing from Ad2 transcripts. This sequence was identified as an initiation sequence for polymerase transcription of the SV40 DNA. Thus, there is a preferred site for initiation of in vitro transcription on the segment of SV40 DNA common to the nondefective Ad2+ND1 and Ad2+ND3 hybrid viruses. Images PMID:4350713

  15. New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay

    Microsoft Academic Search

    I. Casas; L. Powell; P. E. Klapper; G. M. Cleator

    1995-01-01

    A new, rapid, and simple method for the isolation of either RNA or DNA from cerebrospinal fluid samples for subsequent amplification by specific polymerase chain reaction (PCR) assays is described. The technique involves a single extraction with a guanidinium thiocyanate acid (GuSCN) buffer, and does not require the use of organic solvents. Applied to the recovery of enteroviral RNA, herpes

  16. Evaluation of the DNA-dependent RNA polymerase ?-subunit gene (rpoB) for phytoplasma classification and phylogeny.

    PubMed

    Valiunas, Deividas; Jomantiene, Rasa; Davis, Robert Edward

    2013-10-01

    Phytoplasmas are classified into 16Sr groups and subgroups and 'Candidatus Phytoplasma' species, largely or entirely based on analysis of 16S rRNA gene sequences. Yet, distinctions among closely related 'Ca. Phytoplasma' species and strains based on 16S rRNA genes alone have limitations imposed by the high degree of rRNA nucleotide sequence conservation across diverse phytoplasma lineages and by the presence in a phytoplasma genome of two, sometimes sequence-heterogeneous, copies of the 16S rRNA gene. Since the DNA-dependent RNA polymerase (DpRp) ?-subunit gene (rpoB) exists as a single copy in the phytoplasma genome, we explored the use of rpoB for phytoplasma classification and phylogenetic analysis. We sequenced a clover phyllody (CPh) phytoplasma genetic locus containing ribosomal protein genes, a complete rpoB gene and a partial rpoC gene encoding the ?'-subunit of DpRp. Primers and reaction conditions were designed for PCR-mediated amplification of rpoB gene fragments from diverse phytoplasmas. The rpoB gene sequences from phytoplasmas classified in groups 16SrI, 16SrII, 16SrIII, 16SrX and 16SrXII were subjected to sequence similarity and phylogenetic analyses. The rpoB gene sequences were more variable than 16S rRNA gene sequences, more clearly distinguishing among phytoplasma lineages. Phylogenetic trees based on 16S rRNA and rpoB gene sequences had similar topologies, and branch lengths in the rpoB tree facilitated distinctions among closely related phytoplasmas. Virtual RFLP analysis of rpoB gene sequences also improved distinctions among closely related lineages. The results indicate that the rpoB gene provides a useful additional marker for phytoplasma classification that should facilitate studies of disease aetiology and epidemiology. PMID:24097832

  17. ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry

    E-print Network

    Karypis, George

    ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry: Citation Mining of User Documents Ronald N papers to Fenn's 1989 Science paper on Electrospray Ionization for Mass Spectrometry, and to the 400 first generation SCI citing papers to Tanaka's 1988 Rapid Communications in Mass Spectrometry paper

  18. The Place of Macromolecules in Freshman Chemistry

    ERIC Educational Resources Information Center

    Wunderlich, Bernhard

    1973-01-01

    Discusses the inclusion of knowledge on macromolecules into a freshman chemistry course which emphasizes topics in organic chemistry, polymer science and biochemistry, atoms, chemical thermodynamics, and inorganic chemistry. Indicates that the program is the only way to keep chemistry education up to date. (CC)

  19. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations.

    PubMed Central

    Pluen, A; Netti, P A; Jain, R K; Berk, D A

    1999-01-01

    The diffusion coefficients (D) of different types of macromolecules (proteins, dextrans, polymer beads, and DNA) were measured by fluorescence recovery after photobleaching (FRAP) both in solution and in 2% agarose gels to compare transport properties of these macromolecules. Diffusion measurements were conducted with concentrations low enough to avoid macromolecular interactions. For gel measurements, diffusion data were fitted according to different theories: polymer chains and spherical macromolecules were analyzed separately. As chain length increases, diffusion coefficients of DNA show a clear shift from a Rouse-like behavior (DG congruent with N0-0.5) to a reptational behavior (DG congruent with N0-2.0). The pore size, a, of a 2% agarose gel cast in a 0.1 M PBS solution was estimated. Diffusion coefficients of the proteins and the polymer beads were analyzed with the Ogston model and the effective medium model permitting the estimation of an agarose gel fiber radius and hydraulic permeability of the gels. Not only did flexible macromolecules exhibit greater mobility in the gel than did comparable-size rigid spherical particles, they also proved to be a more useful probe of available space between fibers. PMID:10388779

  20. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals

    PubMed Central

    Correa, Adrienne M S; Welsh, Rory M; Vega Thurber, Rebecca L

    2013-01-01

    The residence of dinoflagellate algae (genus: Symbiodinium) within scleractinian corals is critical to the construction and persistence of tropical reefs. In recent decades, however, acute and chronic environmental stressors have frequently destabilized this symbiosis, ultimately leading to coral mortality and reef decline. Viral infection has been suggested as a trigger of coral–Symbiodinium dissociation; knowledge of the diversity and hosts of coral-associated viruses is critical to evaluating this hypothesis. Here, we present the first genomic evidence of viruses associated with Symbiodinium, based on the presence of transcribed +ss (single-stranded) RNA and ds (double-stranded) DNA virus-like genes in complementary DNA viromes of the coral Montastraea cavernosa and expressed sequence tag (EST) libraries generated from Symbiodinium cultures. The M. cavernosa viromes contained divergent viral sequences similar to the major capsid protein of the dinoflagellate-infecting +ssRNA Heterocapsa circularisquama virus, suggesting a highly novel dinornavirus could infect Symbiodinium. Further, similarities to dsDNA viruses dominated (?69%) eukaryotic viral similarities in the M. cavernosa viromes. Transcripts highly similar to eukaryotic algae-infecting phycodnaviruses were identified in the viromes, and homologs to these sequences were found in two independently generated Symbiodinium EST libraries. Phylogenetic reconstructions substantiate that these transcripts are undescribed and distinct members of the nucleocytoplasmic large DNA virus (NCLDVs) group. Based on a preponderance of evidence, we infer that the novel NCLDVs and RNA virus described here are associated with the algal endosymbionts of corals. If such viruses disrupt Symbiodinium, they are likely to impact the flexibility and/or stability of coral–algal symbioses, and thus long-term reef health and resilience. PMID:22791238