Science.gov

Sample records for macrophage activating factor

  1. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  2. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed Central

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-01-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. Images PMID:7504626

  3. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  4. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  5. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  6. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    SciTech Connect

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  7. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  8. Tissue factor activity. A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.

    PubMed Central

    Rothberger, H; McGee, M P; Lee, T K

    1984-01-01

    Experiments were carried out to examine relationships between alveolar macrophage maturity and amounts of tissue factor (Clotting Factor III) in these cells under physiologic conditions and during immunologically induced pneumonitis. Using discontinuous density gradient centrifugation, alveolar macrophages from healthy rabbits were rapidly isolated into five subpopulations at different stages of maturation, as demonstrated by morphologic and morphometric evaluation. Very large amounts of tissue factor activity were found in fully mature cells that were purified in the lowest density subpopulation and assayed without preliminary in vitro stimulation or culture. In the remaining four subpopulations of increasing density, amounts of tissue factor were found to progressively diminish in direct correlation with declines of cell maturity. These differences at mean levels were as great as 35-fold. In addition, blood monocytes had less than 1/219 and less than 1/6 of the activity of the fully mature and the least mature subpopulations, respectively. After 16 h culture of the five isolated subpopulations in the absence of lymphokines or of significant numbers of lymphocytes, tissue factor activity increased in inverse correlation with the preincubation stage of cell maturity (2,387 and 109% in the least mature and most mature subpopulations, respectively). These increases required protein synthesis and were accompanied by morphologic and morphometric changes which indicated cellular maturation during the period of tissue factor activity generation in vitro, thus further demonstrating relationships between macrophage maturity and tissue factor content. In additional experiments, direct correlations between cell maturity and tissue factor activity content were also found in activated alveolar macrophage populations from rabbits with Bacillus Calmette Guering (BCG)-induced granulomatous pneumonitis. However, as compared with controls, the BCG populations had increased total

  9. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  10. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  11. Activating transcription factor 4 promotes angiogenesis of breast cancer through enhanced macrophage recruitment.

    PubMed

    Liu, Chen; Li, Zongjin; Wang, Lina; Tong, Lingling; He, Ningning; Chen, Yanan; Liu, Yanhua; Wu, Zhongjun; Sun, Peiqing; Xiang, Rong; Ren, Guosheng; Su, Weijun

    2015-01-01

    Angiogenesis plays an important role in the progression of tumor. Besides being regulated by tumor cells per se, tumor angiogenesis is also influenced by stromal cells in tumor microenvironment (TME), for example, tumor associated macrophages (TAMs). Activating transcription factor 4 (ATF4), a member of the ATF/CREB family, has been reported to be related to tumor angiogenesis. In this study, we found that exogenous overexpression of ATF4 in mouse breast cancer cells promotes tumor growth via increasing tumor microvascular density. However, ATF4 overexpression failed to increase the expression level of a series of proangiogenic factors including vascular endothelial growth factor A (VEGFA) in tumor cells in this model. Thus, we further investigated the infiltration of proangiogenic macrophages in tumor tissues and found that ATF4-overexpressing tumors could recruit more macrophages via secretion of macrophage colony stimulating factor (M-CSF). Overall, we concluded that exogenous overexpression of ATF4 in breast cancer cells may facilitate the recruitment of macrophages into tumor tissues and promote tumor angiogenesis and tumor growth indirectly. PMID:25883982

  12. Immunocytochemical Localization of Latent Transforming Growth Factor-B1 Activation by Stimulated Macrophages

    SciTech Connect

    Chong, Hyonkyong; Vodovotz, Yoram; Cox, G.W.; Barcellos-Hoff, M.H.

    1998-09-22

    Transforming growth factor-{beta}1 (TGF-{beta}) is secreted in a latent form consisting of mature TGF-{beta} noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-{beta} from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-{beta} action. We have identified two events associated with latent TGF-{beta} (LTGF-{beta}) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-{beta} concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-{gamma} and lipopolysaccharide reportedly activate LTGF-{beta} via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-{beta} activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-{beta} epitopes. The induction of TGF-{beta} immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-{beta} activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-{beta} and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-{beta} activation provides an important tool for studies of its regulation.

  13. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  14. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    PubMed Central

    Bacher, M; Metz, C N; Calandra, T; Mayer, K; Chesney, J; Lohoff, M; Gemsa, D; Donnelly, T; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755565

  15. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  16. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation.

    PubMed Central

    Oswald, I P; Wynn, T A; Sher, A; James, S L

    1992-01-01

    Interleukin 10 (IL-10) inhibits interferon gamma-induced macrophage activation for cytotoxicity against larvae of the human parasite Schistosoma mansoni by suppressing production of the toxic effector molecule nitric oxide (NO). In this study, the mechanism of IL-10 action was identified as inhibition of endogenous tumor necrosis factor alpha (TNF-alpha) production by interferon gamma-activated macrophages. TNF-alpha appears to serve as a cofactor for interferon gamma-mediated activation, since both schistosomulum killing and NO production were inhibited by anti-TNF-alpha antibody, whereas TNF-alpha alone was unable to stimulate these macrophage functions. IL-10 blocked TNF-alpha production by interferon gamma-treated macrophages at the levels of both protein and mRNA synthesis. Addition of exogenous TNF-alpha reversed IL-10-mediated suppression of macrophage cytotoxic activity as well as NO production. Likewise, addition of a macrophage-triggering agent (bacterial lipopolysaccharide or muramyl dipeptide), which induced the production of TNF-alpha, also reversed the suppressive effect of IL-10 on cytotoxic function. In contrast to IL-10, two other cytokines, IL-4 and transforming growth factor beta, which also inhibit macrophage activation for schistosomulum killing and NO production, did not substantially suppress endogenous TNF-alpha production. These results, therefore, describe a separate pathway by which macrophage microbicidal function is inhibited by the down-regulatory cytokine IL-10. Images PMID:1528880

  17. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    PubMed

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  18. Phosphatase regulation of macrophage activation.

    PubMed

    Kozicky, Lisa K; Sly, Laura M

    2015-08-01

    Macrophages are innate immune cells that play critical roles in tissue homeostasis and the immune response to invading pathogens or tumor cells. A hallmark of macrophages is their "plasticity," that is, their ability to respond to cues in their local microenvironment and adapt their activation state or phenotype to mount an appropriate response. During the inflammatory response, macrophages may be required to mount a profound anti-bacterial or anti-tumor response, an anti-inflammatory response, an anti-parasitic response, or a wound healing response. To do so, macrophages express cell surface receptors for growth factors, chemokines and cytokines, as well pathogen and danger associated molecular patterns. Downstream of these cell surface receptors, cell signalling cascades are activated and deactivated by reversible and competing activities of lipid and protein kinases and phosphatases. While kinases drive the activation of cell signalling pathways critical for macrophage activation, the strength and duration of the signalling is regulated by phosphatases. Hence, gene knockout mouse models have revealed critical roles for lipid and protein phosphatases in macrophage activation. Herein, we describe our current understanding and the key roles of specific cellular phosphatases in the regulation of the quality of macrophage polarization as well as the quantity of cytokines produced by activated macrophages. PMID:26216598

  19. Impaired Macrophage Migration Inhibitory Factor (MIF)-AMPK Activation and Ischemic Recovery in the Senescent Heart

    PubMed Central

    Ma, Heng; Wang, Jingying; Thomas, D Paul; Tong, Chao; Leng, Lin; Wang, Wenkui; Merk, Melanie; Zierow, Swen; Bernhagen, Jürgen; Ren, Jun; Bucala, Richard; Li, Ji

    2010-01-01

    Background Elderly patients are more sensitive to myocardial ischemia, which results in higher mortality. We investigated how aging impacts the cardioprotective AMP-activated protein kinase (AMPK) signaling pathway. Methods and Results Ischemic AMPK activation was impaired in aged compared to young murine hearts. The expression and secretion of the AMPK upstream regulator, macrophage migration inhibitory factor (MIF), were lower in aged compared to young adult hearts. Additionally, the levels of hypoxia-inducible factor 1α (HIF-1α), a known transcriptional activator of MIF, were reduced in aged compared to young hearts. Ischemia-induced AMPK activation in MIF knock-out (MIF KO) mice was blunted, leading to greater contractile dysfunction in MIF-deficient than in wild type (WT) hearts. Furthermore, intra-myocardial injection of adenovirus encoding MIF (Adv-MIF) in aged mice increased MIF expression and ischemic AMPK activation, and reduced infarct size. Conclusions An impaired MIF-AMPK activation response in senescence thus may be attributed to an aging-associated defect in the transcription factor for MIF, HIF-1α. In the clinical setting, impaired cardiac HIF-1α activation and consequent reduced MIF expression may play an important role in the increased susceptibility to myocardial ischemia observed in older cardiac patients. PMID:20606117

  20. Pharmacologic reduction in tumor necrosis factor activity of pulmonary alveolar macrophages.

    PubMed

    Leeper-Woodford, S K; Fisher, B J; Sugerman, H J; Fowler, A A

    1993-02-01

    Tumor necrosis factor-alpha (TNF), an inflammatory cytokine released by macrophages, may be a mediator of lung injury during septicemia. We previously reported that the cyclooxygenase inhibitor ibuprofen and histamine receptor antagonists cimetidine (H2 antagonist) and diphenhydramine (H1 antagonist) attenuate lung injury and reduce circulating TNF surges during porcine sepsis. Since pulmonary alveolar macrophages (PAM) may participate in early sepsis by producing TNF, we hypothesized that the TNF activity of PAM is reduced by ibuprofen, cimetidine, and diphenhydramine. To test this, we examined changes in PAM-derived TNF bioactivity and cell viability of freshly isolated porcine PAM during exposure to bacterial endotoxin (LPS), ibuprofen, cimetidine, and diphenhydramine. The TNF activity (% L929 cytotoxicity of PAM conditioned medium) was elevated in LPS-stimulated PAM cultures (15 to 25% increase at 1 to 6 h and 40 to 43% increase at 6 to 48 h, compared with non-LPS-stimulated cultures), and ibuprofen (150 micrograms/ml) added with LPS decreased the TNF activity for 24 h (20 to 28% reduction at 1 to 24 h). Ibuprofen added 1 h after LPS was less effective in reducing the PAM-derived TNF activity (20 to 22% reduction at 2 to 6 h). Cimetidine (112 micrograms/ml) reduced the TNF activity of LPS-stimulated PAM cultures during the first 4 h of LPS exposure (15 to 24% decrease at 1 to 4 h). Diphenhydramine (150 micrograms/ml) attenuated the PAM-derived TNF activity but also decreased viability of PAM, indicating a toxic effect of this agent on PAM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8093999

  1. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    PubMed

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. PMID:20079467

  2. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  3. Macrophage-derived neutrophil chemotactic factor is involved in the neutrophil recruitment inhibitory activity present in the supernatants of LPS-stimulated macrophages

    PubMed Central

    Tavares-Murta, B. M.; Cunha, F. Q.; Dias-Baruffi, M.; Roque-Barreira, M. C.

    1996-01-01

    In a previous study, we demonstrated the presence of a neutrophil recruitment inhibitory factor (NRIF) in the supernatants of LPS-stimulated macrophages. Recently, the purification of a 54 kDa protein, identified as the macrophage-derived neutrophil chemotactic factor (MNCF) was reported. Since NRIF and MNCF are obtained under the same conditions, and, since the intravenous administration of TNF-α and IL-8 inhibits neutrophil migration, we have investigated whether MNCF could be responsible for this inhibitory activity. After affinity chromatography of the macrophage supernatants on a D-galactose column, the inhibitory activity was recovered in both the unbound (D-gal−) and bound (D-gal+) fractions, with MNCF being found in the D-gal+ fraction. Further gel filtration of the latter on Superdex 75 yielded a single peak containing both activities. In a cytotoxicity assay, most of the TNF found in the crude supernatants was recovered in the D-gal− fraction. Furthermore, the incubation of the D-gal− fraction with anti-TNF-α plus anti-IL-8 antisera partially prevents its inhibitory effect on neutrophil migration, but had no effect on the D-gal+ activity. Overall, these results suggest that the D-gal− inhibitory effect is partially mediated by TNF-α and IL-8, and that MNCF accounts for the inhibition of neutrophil migration in vivo by the D-gal+ fraction. PMID:18475709

  4. Transforming growth factor beta 1 and gamma interferon provide opposing signals to lipopolysaccharide-activated mouse macrophages.

    PubMed Central

    Hausmann, E H; Hao, S Y; Pace, J L; Parmely, M J

    1994-01-01

    Bacterial lipopolysaccharides (LPS) are potent inducers of macrophage activation, leading to the production of a number of proinflammatory mediators. Although several cytokines that prime macrophages for enhanced LPS-triggered responses have been identified, far less is known regarding the role that cytokines play in down-regulating macrophage responses to LPS. This study was designed to determine the effects of recombinant transforming growth factor beta 1 (rTGF-beta 1) on macrophage activation by LPS. Pretreatment of either mouse peritoneal macrophages or cells of the RAW 264.7 macrophage-like cell line with rTGF-beta 1 inhibited their ability to produce both tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) in response to LPS. These inhibitory effects were reversed by increasing the concentration of LPS or by priming cells with optimal concentrations of recombinant gamma interferon (rIFN-gamma). Pretreatment of cells with rTGF-beta 1 had only a modest inhibitory effect on the expression of TNF-alpha mRNA. By contrast, the expression of mRNA for the inducible form of nitric oxide synthase (iNOS), which is responsible for NO production in activated macrophages, was significantly inhibited by rTGF-beta 1 pretreatment. Thus, rTGF-beta 1-dependent suppression of macrophage TNF-alpha biosynthesis was manifest at a posttranscriptional level, whereas the inhibition of NO production correlated with a direct effect on iNOS gene expression. Importantly, both of these suppressive effects of rTGF-beta 1 were reversed by exposing the cells to priming concentrations of rIFN-gamma. As with NO production, immunocytochemical analysis of iNOS expression in LPS-stimulated macrophages revealed that rIFN-gamma and rTGF-beta 1 had antagonistic effects, with the former increasing, and the latter reducing, the number of iNOS-expressing cells induced by LPS. These data suggest that a balance between the priming effects of IFN-gamma and the inhibitory effects of TGF-beta 1 can

  5. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  6. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  7. Hypoxia Inducible Factor 1 (HIF-1) Recruits Macrophage to Activate Pancreatic Stellate Cells in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Li, Na; Li, Yang; Li, Zengxun; Huang, Chongbiao; Yang, Yanhui; Lang, Mingxiao; Cao, Junli; Jiang, Wenna; Xu, Yu; Dong, Jie; Ren, He

    2016-01-01

    Hypoxia inducible factor 1 (HIF-1) is a transcription factor composed of two subunits, namely, HIF-1α and HIF-1β, in which HIF-1β is constitutively expressed. HIF-1 upregulates several hypoxia-responsive proteins, including angiogenesis factors, glycolysis solution enzymes, and cell survival proteins. HIF-1 is also associated with the degree of inflammation in the tumor region, but the exact mechanism remains unclear. This study aims to identify the molecular mechanism of recruiting monocytes/macrophages by HIF-1α in pancreatic ductal adenocarcinoma (PDAC) and the effects of macrophages on pancreatic stellate cells (PSCs). Immunohistochemistry (IHC) was performed for cluster of differentiation 68 (CD68), HIF-1α, and chemical chemokines 2 (CCL2). Western blot, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation assay, and The Cancer Genome Atlas (TCGA) were used to verify the correlation between HIF-1α and CCL2 at protein and nucleic acid levels. Monocytes/macrophages were co-cultured with PSCs to observe their interaction. Samples showed significant correlation between CD68 and HIF-1α (t-test, p < 0.05). HIF-1α recruited monocytes/macrophages by promoting CCL2 secretion. Moreover, macrophages could accelerate the activation of PSCs. HIF-1α might promote inflammation and fibrosis of PDAC through CCL2 secretion, which may provide a novel target to treat PDAC patients. PMID:27271610

  8. Silica-induced apoptosis in murine macrophage: involvement of tumor necrosis factor-alpha and nuclear factor-kappaB activation.

    PubMed

    Gozal, Evelyne; Ortiz, Luis A; Zou, Xiaoyan; Burow, Matthew E; Lasky, Joseph A; Friedman, Mitchell

    2002-07-01

    Alveolar macrophages play a critical role in silica-induced lung fibrosis. Silica exposure induces tumor necrosis factor (TNF)-alpha release and nuclear factor (NF)-kappaB activation, and apoptotic mechanisms have been implicated in silica-induced pathogenesis. To characterize potential relationships between these signaling events, we studied their induction in two murine macrophage cell lines. The RAW 264.7 macrophage cell line was more sensitive, and the IC-21 macrophage cell line more tolerant to silica exposure (0.2 or 1 mg/ml for 6 h) as evidenced by significantly higher apoptotic responses in RAW 264.7 (P < 0.05). RAW 264.7 macrophages exhibited enhanced TNF-alpha production and NF-kappaB activation in response to silica, whereas IC-21 macrophages did not produce TNF-alpha in response to silica and did not induce NF-kappaB nuclear binding. Inhibition of NF-kappaB in RAW 264.7 cells with BAY11-7082 significantly increased apoptosis while inhibiting TNF-alpha release. In addition, TNF-alpha and NF-kappaB activation, but not apoptosis, were induced by lipopolysaccharide (LPS) in both cell lines, and NF-kappaB inhibition reduced LPS-induced TNF-alpha release. These data suggest that TNF-alpha induction is dependent on NF-kappaB activation in both cell lines. However, silica can induce apoptosis in murine macrophages, independently of TNF-alpha stimulation, as in IC-21 macrophages. Furthermore, NF-kappaB activation in macrophages may play dual roles, both pro- and antiapoptotic during silica injury. PMID:12091251

  9. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  10. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  11. Discovery of Novel Inhibitors of the Tautomerase Activity of Macrophage Migration Inhibitory Factor (MIF).

    PubMed

    Zapatero, Maria Cleofé; Pérez, Paloma; Vázquez, María Jesús; Colmenarejo, Gonzalo; de Los Frailes, Maite; Ramón, Fernando

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine associated with multiple diseases, including neurodegenerative disorders. With the ultimate goal of providing novel chemotypes as starting points for development of disease-modifying therapeutics for neurodegeneration, we endeavored to screen the GSK compound collection for MIF inhibitors using a miniaturized, activity-based kinetic assay. The assay monitors the increase in absorbance at 320 nm resulting from keto-to-enol tautomerization of 4-hydroxyphenylpyruvate, a reaction catalyzed by MIF. We ran a full-diversity screen evaluating the inhibitory activity of 1.6 million compounds. Primary hits were confirmed and retested in an orthogonal assay measuring tautomerization of l-dopachrome methyl ester by the decrease in absorbance at 475 nm in kinetic mode. Selected compounds were progressed to medium-throughput mode-of-inhibition studies, which included time dependence, enzyme concentration dependence, and reversibility of their inhibitory effect. With these results and after inspection of the physicochemical properties of compounds, 17 chemotypes were prioritized and progressed to further stages of validation and characterization to better assess their therapeutic potential. PMID:26933127

  12. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  13. Blocking macrophage migration inhibitory factor activity alleviates mouse acute otitis media in vivo.

    PubMed

    Zhang, Jin; Xu, Min; Zheng, Qingyin; Zhang, Yan; Ma, Weijun; Zhang, Zhaoqiang

    2014-11-01

    This study was to investigate the role of macrophage migration inhibitory factor (MIF) in mouse acute otitis media (AOM), we hypothesize that blocking MIF activity will relieve mouse AOM. A mouse AOM model was constructed by injecting lipopolysaccharide (LPS) into the middle ear of C57BL/6 mice through the tympanic membrane (TM). MIF levels were measured by real-time PCR (RT-PCR) and ELISA after LPS application. Normal or AOM mice were given PBS or ISO-1 (MIF antagonist) every day for 10 days and the hearing levels were determined by measuring auditory brainstem response (ABR) threshold. After the ABR test finished, H&E staining was conducted and the inflammation was also measured by detecting interleukin (IL)-1β, tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) levels with RT-PCR and ELISA. TLR-4 expression was determined by western blotting and NF-κB activation was determined by electrophoretic mobility shift assays. Compared with the normal control, MIF levels in the middle ear of LPS-induced AOM mice were significant increased. The ABR results showed that mean ABR thresholds in ISO-1 treated AOM mice were significantly reduced compared with PBS treated AOM mice since day 7, indicating that ISO-1 treatment potentially improved the hearing levels of AOM mice. H&E staining showed that ISO-1 treatment could reduce the mucosal thickness of AOM mice. In ISO-1 treated mice, TLR-4 expression and levels of IL-1β, TNF-α and VEGF were significantly lower compared with PBS treated AOM mice. ISO-1 treatment also significantly inhibited NF-κB activation in AOM mice compared with PBS treated AOM mice. These results suggested that blocking the activity of MIF by ISO-1 could reduce the inflammation in AOM mice in which process TLR-4 and NF-κB were involved. The reduction in MIF activity is conducive to alleviate mouse AOM, which may serve as a potential therapeutic target for the treatment of AOM. PMID:25108100

  14. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  15. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  16. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    PubMed

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  17. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    PubMed Central

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  18. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    PubMed Central

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  19. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients. PMID:14767536

  20. Neuroprotective Activities of Granulocyte-Macrophage Colony Stimulating Factor Following Controlled Cortical Impact

    PubMed Central

    Kelso, Matthew L.; Elliott, Bret R.; Haverland, Nicole A.; Mosley, R. Lee; Gendelman, Howard E.

    2014-01-01

    Neurodegeneration after traumatic brain injury (TBI) is facilitated by innate and adaptive immunity and can be harnessed to effect brain repair. In mice subjected to controlled cortical impact (CCI) we show that treatment with granulocyte macrophage colony stimulating factor (GM-CSF) affects regulatory T cell numbers coincident with decreased lesion volumes and increased cortical tissue sparing. This paralleled increases in neurofilament and diminished reactive microglial staining. Transcriptomic analysis showed that GM-CSF induces robust immune neuroprotective responses seven days following CCI. Together, these results support the therapeutic potential of GM-CSF for TBI. PMID:25468272

  1. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. PMID:9070663

  2. Viral and host factors induce macrophage activation and loss of Toll Like Receptor tolerance in chronic HCV infection

    PubMed Central

    Dolganiuc, Angela; Norkina, Oxana; Kodys, Karen; Catalano, Donna; Bakis, Gennadiy; Marshall, Christopher; Mandrekar, Pranoti; Szabo, Gyongyi

    2007-01-01

    Background&Aims Persistent inflammation contributes to progression of liver damage in chronic HCV (cHCV) infection. Repeated exposure to Toll like receptor (TLR) ligands results in tolerance, a protective mechanism aimed at limiting inflammation. Methods Monocytes/macrophages were repeatedly stimulated via pro-inflammatory cytokine-inducing TLRs and evaluated for activation markers. Results Unlike monocytes (Mo) of controls or patients with non-alcoholic steatohepatitis, the Mo of cHCV patients were hyper-responsive and failed to show homo- or hetero-tolerance to TLR ligands, manifested by elevated TNFα production. Serum levels of IFNγ, endotoxin (TLR4 ligand) and HCV core protein (TLR2 ligand) were elevated in cHCV patients suggesting potential mechanisms for in vivo monocyte pre-activation. Treatment of normal monocytes with IFNγ resulted in loss of tolerance to LPS or HCV core protein. Further, we found increased levels of MyD88-IRAK1 complexes and NFκB activity both in monocytes of cHCV patients and in normal monocytes that lost TLR tolerance after IFNγ+LPS pretreatment. In vitro differentiation of TLR tolerant cHCV monocytes into macrophages restored their capacity to exhibit TLR tolerance to LPS and HCV core protein and this could be reversed by administration of IFNγ. cHCV patients exhibited increased TNFα in the circulation and in the liver. In cHCV livers we found Kupffer cell/macrophage activation indicated by increased CD163 and CD33 expression. Conclusions We identified that host-derived factors (IFNγ and endotoxin) and viral factors (HCV core protein) act in tandem to induce and maintain monocyte/macrophage activation, thus favoring persistent inflammation in patients with cHCV infection. PMID:17916356

  3. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.

    PubMed

    Benis, K A; Schneider, G B

    1996-10-15

    Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the

  4. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1. PMID:24141263

  5. TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu1

    PubMed Central

    Sharma, Jyotika; Mishra, Bibhuti B.; Li, Qun; Teale, Judy M.

    2011-01-01

    The bacterial determinants of pulmonary Francisella induced inflammatory responses and their interaction with host components are not clearly defined. In this study, proteomic and immunoblot analyses showed presence of a cytoplasmic protein elongation factor Tu (EF-Tu) in the membrane fractions of virulent F. novicida, LVS and SchuS4, but not in an attenuated F. novicida mutant. EF-Tu was immunodominant in mice vaccinated and protected from virulent F. novicida. Moreover, recombinant EF-Tu induced macrophages to produce inflammatory cytokines in a TLR4 dependent manner. This study shows immune stimulatory properties of a cytoplasmic protein EF-Tu expressed on the membrane of virulent Francisella strains. PMID:21497800

  6. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    SciTech Connect

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi . E-mail: sqwang@nic.bmi.ac.cn

    2006-04-07

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G{sub 1} phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.

  7. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  8. Macrophage activation by OM-85 BV.

    PubMed

    Mauël, J

    1992-01-01

    Peritoneal or bone-marrow-derived murine macrophages were exposed for 24 h in vitro to dilutions of the bacterial extract OM-85 BV, in the presence or absence of other added compounds [macrophage-activating factor (MAF), recombinant murine interferon-gamma (IFN-gamma)]. Various metabolic responses and functional activities were then measured. Glucose oxidation through the hexose monophosphate shunt pathway was markedly stimulated in OM-85 BV-treated macrophages compared to control macrophages. Similarly, OM-85 BV primed macrophages for superoxide production upon triggering by phorbol myristate acetate. Both effects were further enhanced by simultaneous treatment of the cells with MAF with OM-85 BV. The bacterial extract also induced macrophages to release large amounts of nitrite (a marker of the activated state). As regards functional responses, coincubation with MAF and OM-85 BV activated macrophages to destroy target cells as well as intracellular microorganisms; in the latter case, similar results were obtained when MAF was replaced by IFN-gamma. In all these tests, the possibility that the observed effects were due to contamination of the bacterial extracts by endotoxin could be excluded. The above results indicate that OM-85 BV induces metabolic and functional properties in macrophages that are characteristic of the activated state and are important for host defence. PMID:1332156

  9. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation.

    PubMed

    Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas; Mony, Sridevi; Languino, Lucia R; McCaffrey, Judith C; Hockstein, Neil; Guarino, Michael; Masters, Gregory; Penman, Emily; Denstman, Fred; Xu, Xiaowei; Altieri, Dario C; Du, Hong; Yan, Cong; Gabrilovich, Dmitry I

    2016-02-16

    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy. PMID:26885857

  10. Modulation of Leishmania (L.) amazonensis Growth in Cultured Mouse Macrophages by Prostaglandins and Platelet Activating Factor

    PubMed Central

    Lonardoni, M. V. C.; Barbieri, C. L.; Russo, M.

    1994-01-01

    The role of endogenously synthesized PAF and prostaglandins on the infection of mouse macrophages by Letsbmanta (L.) amazonensis was investigated, as well as the possible correlation between the effects of these inflammatory mediators with nitric oxide production. It was found that pretreatment of macrophages with 10−5 M of the PAF antagonists, BN-52021 or WEB-2086, increased macrophage infection by 17 and 59%, respectively. The cyclooxygenase inhibitor, indomethacin (10 μg/ml), induced a significant inhibition which was reversed by addition of PGE (10-3 M) to the culture medium. These results suggested that the infection of macrophages by leisbmanla is inhibited by PAF and enhanced by prostaglandins and that these mediators are produced by macrophages during this infection. This was confirmed by addition of these mediators to the culture medium before infection; PAF (10−6, 10−9 and 10−12M) reduced significantly the infection whereas PGE2 (10−5 M) induced a marked enhancement. This effect of exogenous PAF on macrophage infection was reversed by the two PAF antagonists used in this study as well as by the inhibitor of nitric oxide synthesis, L-arginine methyl ester (100 mM). Taken together the data suggest that endogenous production of PAF and PGE2 exert opposing effects on Lesbmana–macrophage interaction and that nitric oxide may be involved in the augmented destruction of parasites induced by PAF. PMID:18472932

  11. Deficiency of the B Cell-Activating Factor Receptor Results in Limited CD169+ Macrophage Function during Viral Infection

    PubMed Central

    Xu, Haifeng C.; Huang, Jun; Khairnar, Vishal; Duhan, Vikas; Pandyra, Aleksandra A.; Grusdat, Melanie; Shinde, Prashant; McIlwain, David R.; Maney, Sathish Kumar; Gommerman, Jennifer; Löhning, Max; Ohashi, Pamela S.; Mak, Tak W.; Pieper, Kathrin; Sic, Heiko; Speletas, Matthaios; Eibel, Hermann; Ware, Carl F.; Tumanov, Alexei V.; Kruglov, Andrey A.; Nedospasov, Sergei A.; Häussinger, Dieter; Recher, Mike; Lang, Karl S.

    2015-01-01

    ABSTRACT The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169+ macrophage compartment. Consequently, Baffr−/− mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr−/− animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169+ cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169+ macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR

  12. Molecular characterization of the constitutive expression of the plasma platelet-activating factor acetylhydrolase gene in macrophages.

    PubMed Central

    Wu, Xiaoqing; McIntyre, Thomas M; Zimmerman, Guy A; Prescott, Stephen M; Stafforini, Diana M

    2003-01-01

    Plasma platelet-activating factor acetylhydrolase (PAF-AH) is a phospholipase that inactivates platelet-activating factor (PAF) and PAF-like lipids to generate products with little or no biological activity. The levels of circulating PAF-AH correlate with several disease syndromes. We previously reported that mediators of inflammation regulate the expression of the human PAF-AH gene at the transcriptional level. In the present paper, we characterize the constitutive expression of plasma PAF-AH using the mouse gene as a model system, and we report comparative results obtained using human and mouse promoter constructs. We first cloned, sequenced and analysed the promoter region of the murine plasma PAF-AH (mPAF-AH) gene and found that this gene lacks a canonical TATA box. We demonstrated that the cis -elements required for basal transcription are localized within the -316 to -68 bp region. In vitro band-shift and supershift assays showed that Sp1 and Sp3 transcription factors from RAW264.7 and J774A.1 macrophage nuclear extracts bound strongly to a distal GC-rich site within -278/-243 [specificity protein (Sp-A)] and to a proximal TC-rich motif within -150/-114 (Sp-B). In addition, we observed weak binding to a GA-rich site within -110/-82 (Sp-C). The regions containing Sp-B and Sp-C are highly conserved between the human and mouse genes. Forced expression of Sp1 or Sp3 in Sp-lacking Drosophila SL2 cells induced markedly the activity of the exogenous mPAF-AH promoter in a dose-dependent manner, and this induction was dependent on the presence of intact Sp-A and Sp-B. Interestingly, we found that the Sp1- and Sp3-associated DNA-binding activities increased during the maturation of primary human monocytes into macrophages in cell culture. These results demonstrate that Sp1 and Sp3 are key factors that contribute to the basal, constitutive transcription of the plasma PAF-AH gene in macrophages. PMID:12854969

  13. A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages.

    PubMed Central

    Ishii, S; Matsuda, Y; Nakamura, M; Waga, I; Kume, K; Izumi, T; Shimizu, T

    1996-01-01

    A murine gene encoding a platelet-activating factor receptor (PAFR) was cloned. The gene was mapped to a region of the D2.2 band of chromosome 4 both by fluorescence in situ hybridization and by molecular linkage analysis. Northern blot analysis showed a high expression of the PAFR message in peritoneal macrophages. When C3H/HeN macrophages were treated with bacterial lipopolysaccharide (LPS) or synthetic lipid A, the PAFR gene expression was induced. Bacterial LPS, but not lipid A, induced the level of PAFR mRNA in LPS unresponsive C3H/HeJ macrophages. These induction patterns were parallel to those of tumor necrosis factor-alpha mRNA. Thus the PAFR in macrophages is important in LPS-induced pathologies. PMID:8670084

  14. The Many Alternative Faces of Macrophage Activation.

    PubMed

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide

  15. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    PubMed Central

    Li, Ying-Hua; Yan, Zhong-Qun; Brauner, Annelie; Tullus, Kjell

    2002-01-01

    Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10-4–10-10 M) and dexamethasone (10-4–10-6 M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD. PMID:12323081

  16. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity.

    PubMed Central

    Gouilleux, F; Pallard, C; Dusanter-Fourt, I; Wakao, H; Haldosen, L A; Norstedt, G; Levy, D; Groner, B

    1995-01-01

    The molecular components which mediate cytokine signaling from the cell membrane to the nucleus were studied. Upon the interaction of cytokines with their receptors, members of the janus kinase (Jak) family of cytoplasmic protein tyrosine kinases and of the signal transducers and activators of transcription (Stat) family of transcription factors are activated through tyrosine phosphorylation. It has been suggested that the Stat proteins are substrates of the Jak protein tyrosine kinases. MGF-Stat5 is a member of the Stat family which has been found to confer the prolactin response. MGF-Stat5 can be phosphorylated and activated in its DNA binding activity by Jak2. The activation of MGF-Stat5 is not restricted to prolactin. Erythropoietin (EPO) and growth hormone (GH) stimulate the DNA binding activity of MGF-Stat5 in COS cells transfected with vectors encoding EPO receptor and MGF-Stat5 or vectors encoding GH receptor and MGF-Stat5. The activation of DNA binding by prolactin, EPO and GH requires the phosphorylation of tyrosine residue 694 of MGF-Stat5. The transcriptional induction of a beta-casein promoter luciferase construct in transiently transfected COS cells is specific for the prolactin activation of MGF-Stat5; it is not observed in EPO- and GH-treated cells. In the UT7 human hematopoietic cell line, EPO and granulocyte-macrophage colony stimulating factor activate the DNA binding activity of a factor closely related to MGF-Stat5 with respect to its immunological reactivity, DNA binding specificity and molecular weight. These results suggest that MGF-Stat5 regulates physiological processes in mammary epithelial cells, as well as in hematopoietic cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7744007

  17. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

    PubMed Central

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-01-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-Guérin) activates disabled naïve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1β), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-β) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions. PMID:26429502

  18. Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice.

    PubMed Central

    Wu-Hsieh, B A; Lee, G S; Franco, M; Hofman, F M

    1992-01-01

    Experimental infection of animals with Histoplasma capsulatum caused a massive macrophage infiltration into the spleen and induced the production of tumor necrosis factor alpha (TNF-alpha) locally. The cytokine was also produced in vitro by peritoneal exudate macrophages exposed to a large inoculum of yeast cells. Depletion of the cytokine by injection of polyclonal sheep anti-TNF-alpha antibody was detrimental to sublethally infected mice. Fungous burdens in the spleens of TNF-alpha-depleted mice were higher than they were in the infected control mice at days 2, 7, and 9 after infection, and the antibody-treated animals succumbed to the infection. Histopathological study of spleen sections revealed that splenic macrophages were not able to control proliferation of intracellular yeasts as a result of TNF-alpha depletion. It seems that TNF-alpha plays a role in early activation of splenic macrophages which is important in controlling the outcome of an infection. Images PMID:1398934

  19. Different pathways of macrophage activation and polarization.

    PubMed

    Juhas, Ulana; Ryba-Stanisławowska, Monika; Szargiej, Patryk; Myśliwska, Jolanta

    2015-01-01

    Monocytes are short-lived cells and undergo spontaneous apoptosis every day. Inflammatory responses may induce dramatic up-regulation of monocyte survival and differentiation. When monocytes are recruited to an area of infection they may differentiate into macrophages. In different microenvironments macrophages polarize into two types. The M1 or classically activated macrophages are characterized by the high ability to produce pro-inflammatory cytokines and the production of NO through the induced synthesis of iNOS. The M2 or alternatively activated macrophages are divided into 3 subtypes, M2 a, b and c, and they have anti-inflammatory properties. Mediators of M1 macrophage TLR-dependent polarization include transcription factors such as NF-κB, AP-1, PU.1, CCAAT/enhancer-binding protein α (C/EBP-α), STAT1 as well as interferon regulatory factor 5 (IRF5), while the transcription factors which promote M2 activation include IRF4, C/EBP-β, Krüppel-like factor 4 (KLF4), STAT6 and PPARγ receptor. PMID:25983288

  20. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo JV; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-01-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as “incurable” diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  1. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo Jv; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-08-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as "incurable" diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  2. Effect of triptolide on secretion of inflammatory cellular factors TNF-α and IL-8 in peritoneal macrophages of mice activated by lipopolysaccharide

    PubMed Central

    Yang, Fan; Bai, Xiang-jun; Hu, Duan; Li, Zhan-fei; Liu, Kai-jun

    2010-01-01

    BACKGROUND: Research has been carried out to look for safe and effective anti-inflammation drugs from traditional Chinese herbal medicine. As a powerful research technology of life science, molecular biology has entered many areas of traditional Chinese medicine. This study aimed to investigate the effect of triptolide on tumor necrosis factor-a (TNF-α) and interleukin-8 (IL-8) of peritoneal macrophages activated by lipopolysaccharide (LPS) in mice. METHODS: Peritoneal elicited macrophages were separated, purified and activated by LPS in mice, then cultured in vitro with triptolide at different concentrations. The activity of TNF-α and the level of IL-8 of cellular supernatants were determined by MTT colorimetric assay and ELISA, respectively. RESULTS: The activity of TNF-α in macrophages was significantly inhibited (P<0.01) by triptolide (10-1-101μg/ml) during 4-24 hours in a time- and dose-dependent manner. The level of IL-8 in macrophages was significantly inhibited (P<0.01) by triptolide (10-1-101μg/ml) in 12 hours in a dose-dependent manner. CONCLUSION: Triptolide could inhibit the activity of TNF-α and the level of IL-8 in macrophages activated by LPS. PMID:25214945

  3. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  4. Functional characterization of the turkey macrophage migration inhibitory factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...

  5. Tensile force on human macrophage cells promotes osteoclastogenesis through receptor activator of nuclear factor κB ligand induction.

    PubMed

    Kao, Chia-Tze; Huang, Tsui-Hsien; Fang, Hsin-Yuan; Chen, Yi-Wen; Chien, Chien-Fang; Shie, Ming-You; Yeh, Chia-Hung

    2016-07-01

    Little is known about the effects of tensile forces on osteoclastogenesis by human monocytes in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study we consider the effects of tensile force on osteoclastogenesis in human monocytes. The cells were treated with receptor activator of nuclear factor κB ligand (RANKL) to promote osteoclastogenesis. Then,expression and secretion of cathepsin K were examined. RANKL and the formation of osteoclasts during the osteoclast differentiation process under continual tensile stress were evaluated by Western blot. It was also found that -100 kPa or lower induces RANKL-enhanced tartrate-resistant acid phosphatase activity in a dose-dependent manner. Furthermore, an increased tensile force raises the expression and secretion of cathepsin K elevated by RANKL, and is concurrent with the increase of TNF-receptor-associated factor 6 induction and nuclear factor κB activation. Overall, the current report demonstrates that tensile force reinforces RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The tensile force is able to modify every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, affecting the fusion of preosteoclasts and function of osteoclasts. However, tensile force increased TNF-receptor-associated factor 6 expression. These results are in vitro findings and were obtained under a condition of tensile force. The current results help us to better understand the cellular roles of human macrophage populations in osteoclastogenesis as well as in alveolar bone remodeling when there is tensile stress. PMID:26204845

  6. Regulation of the surface expression of the platelet-activating factor receptor in IC-21 peritoneal macrophages. Effects of lipopolysaccharide.

    PubMed

    Liu, H; Chao, W; Olson, M S

    1992-10-15

    The effect of bacterial lipopolysaccharide (LPS) on the expression of the receptor for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; AGEPC) was examined in cultured IC-21 peritoneal macrophages. AGEPC binding to its receptors reached saturation within 20 min at 25 degrees C and was reversible. Scatchard analysis revealed a single class of AGEPC receptors with a Bmax of approximately 170 fmol/mg cellular protein and a Kd of 0.25 nM. Preincubation of IC-21 cells with LPS (0.01-1,000 ng/ml) induced an increase in the surface expression of AGEPC receptors in a time- and concentration-dependent fashion. The maximal effect of LPS on the AGEPC receptor was observed between 5 and 8 h, with a typical increase between 150 and 200%. Scatchard analysis indicated that LPS treatment of IC-21 cells increased the number of AGEPC receptors on the cell surface without any apparent change in the affinity of the receptor for the ligand. The effect of LPS on the surface expression of the AGEPC receptor was nearly abolished by cycloheximide (0.1 mM) and by actinomycin D (3 microM), suggesting the involvement of enhanced receptor protein synthesis and mRNA production in this event. Moreover, LPS treatment increased the capability of the IC-21 cell to respond to AGEPC addition by elevating intracellular free Ca2+ without causing an increase in the basal level of intracellular Ca2+. The present study demonstrates that IC-21 peritoneal macrophages possess high affinity AGEPC receptors and provides the evidence that the number of functional AGEPC receptors on a cell can be increased significantly upon exposure to LPS. PMID:1328211

  7. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  8. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. PMID:25782915

  9. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway.

    PubMed

    Yu, Yinhang; He, Jinjiao; Li, Siming; Song, Liying; Guo, Xiaochen; Yao, Wenbing; Zou, Dehua; Gao, Xinyu; Liu, Yunye; Bai, Fuliang; Ren, Guiping; Li, Deshan

    2016-09-01

    Our previous report has shown that FGF21 has anti-inflammatory properties in a collagen-induced arthritis (CIA) model. In this study, the underlying molecular mechanisms of action were also investigated using RAW 264.7 cells, a murine monocyte-macrophage. RAW 264.7 cells were pre-incubated with various concentrations (2000, 500, 100ng/ml) of FGF21 and stimulated with LPS to induce oxidative stress and inflammation. The result of flow cytometry showed that β-Klotho, FGF21 specific receptor, was expressed in murine splenic macrophages and RAW 264.7. In vitro, FGF21 reduced the expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the level of IL-10 in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophages. FGF21 also suppressed profound elevation of ROS production and oxidative stress, as evidenced by an increase of the MDA level and depletion of the intracellular GSH level, and restored the activities of antioxidant enzymes SOD and GSH-Px in LPS-stimulated RAW 264.7 macrophages. Moreover, FGF21 inhibited LPS-induced nuclear factor-κB (NF-κB) activation, including degradation of I-κB and nuclear translocation of p65. In addition, the result of Western blot and real-time PCR showed that FGF21 induced heme oxygenase-1 (HO-1) expression and increased the nuclear transcription factor-E2-related factor 2 (Nrf2) levels in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophages. In conclusion, the results suggest that macrophages are the targets for the anti-inflammatory effects of FGF21, and FGF21 exerted an anti-inflammatory effect mainly via enhancing Nrf2-mediated anti-oxidant capacity and suppressing NF-κB signaling pathway. PMID:27276443

  10. Tumour necrosis factor (TNF-alpha) in leishmaniasis. II. TNF-alpha-induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine.

    PubMed Central

    Liew, F Y; Li, Y; Millott, S

    1990-01-01

    Peritoneal macrophages from CBA mice incubated with recombinant murine tumour necrosis factor (TNF-alpha) are effective in killing the protozoa parasite Leishmania major in vitro. The leishmanicidal activity is directly correlated with the level of nitrite (NO2-) in the culture supernatants. The killing of intracellular parasites can be completely inhibited by L-NG-monomethyl arginine (L-NMMA), a specific inhibitor of the L-arginine:nitric oxide (NO) pathway. The level of NO2-, which is also a measurement of NO production, in the culture supernatant of TNF-alpha-activated macrophages can be progressively decreased to basal level with increasing concentrations of L-NMMA, but not with its D-enantiomer, D-NMMA. These data demonstrate that NO is an important effector mechanism in the TNF-alpha-induced macrophage killing of intracellular protozoa. PMID:2279740

  11. Macrophage migration inhibitory factor promotes breast cancer metastasis via activation of HMGB1/TLR4/NF kappa B axis.

    PubMed

    Lv, Wei; Chen, Na; Lin, Yanliang; Ma, Hongyan; Ruan, Yongwei; Li, Zhiwei; Li, Xungeng; Pan, Xiaohua; Tian, Xingsong

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is up-regulated in diverse solid tumors and acts as the critical link between immune response and tumorigenesis. In this study, we demonstrated that MIF overexpression promoted migration of breast cancer cells by elevating TLR4 expression. Further investigation evidenced that MIF induced ROS generation. MIF-induced ROS led to ERK phosphorylation, which facilitated HMGB1 release from the nucleus to the cytoplasm. MIF overexpression also induced caveolin-1 phosphorylation. Caveolin-1 phosphorylation contributed to HMGB1 secretion from the cytoplasm to the extracellular matrix. The extracellular HMGB1 activated TLR4 signaling including NF-κB phosphorylation, which was responsible for the transcription of Snail and Twist as well as MMP2 activation. Furthermore, MIF-induced caveolin-1-dependent HMGB1 secretion might control the recruitment of CD11b+ immune cells. Our data suggested that MIF affected the intrinsic properties of tumors and the host immune response in tumor microenvironment by regulating the TLR4/HMGB1 axis, leading to metastasis of breast cancer. PMID:26952810

  12. Albumin inhibits platelet-activating factor (PAF)-induced responses in platelets and macrophages: implications for the biologically active form of PAF.

    PubMed Central

    Grigoriadis, G.; Stewart, A. G.

    1992-01-01

    1. Platelet-activating factor (PAF) binds with high affinity to albumin leading Clay et al. (1990) to suggest that the active form of PAF is the albumin-PAF complex. 2. In the present study the proposal that albumin-bound, rather than monomeric PAF, is the active form of PAF at PAF receptors was critically evaluated by examining the effect of albumin on the potency of PAF in isolated platelets and macrophages. 3. Bovine serum albumin inhibited concentration-dependently PAF-induced responses in platelets and macrophages. The most probable explanation of this finding is that BSA reduced the concentration of free PAF. 4. Thus, we conclude that free PAF, rather than the albumin-PAF complex is the active form. Consequently, local concentrations of albumin will influence profoundly the potency of endogenously released PAF. Moreover, estimates of the affinity of PAF for PAF receptors made in buffers containing BSA, underestimate the true affinity of PAF for its receptors by approximately 3 orders of magnitude. PMID:1330167

  13. [The biological activity of macrophages in health and disease].

    PubMed

    Nazimek, Katarzyna; Bryniarski, Krzysztof

    2012-01-01

    Macrophages are involved in immune response as phagocytes, antigen presenting cells and as effector cells of delayed-type hypersensitivity. Moreover, the activity of macrophages is associated with modulation of many biological processes during the whole life and depends on the actual macrophage phenotype induced under the influence of various microenvironmental stimuli. In pregnancy, placental macrophages induce the development of maternal tolerance to fetal antigens, while fetal macrophages are responsible for proper formation of tissues and organs. Residual macrophages play a very important role in tissue homeostasis, apoptotic cell clearance to prevent autoimmunization and first defense in infections. The inflammatory response of macrophages may be modulated by pathogens. Their suppressive activity is observed in immunologically privileged organs such as testes. In pathologies, macrophages are responsible for tissue damage in a case of nonspecific activation followed by overproduction of proinflammatory factors. Suppression of a specific immune response against tumors is mainly the effect of tumor associated macrophage (TAM) action. On the other hand, presentation of allergens or self-antigens by macrophages and their nonspecific activation by necrotic adipocytes leads to the induction of a chronic inflammatory response and impairment of immunity. Therefore, modulation of macrophage functions may be the key for improvement of therapy of cancer and allergic, autoimmune, metabolic, cardiovascular and Alzheimer's diseases. PMID:22922151

  14. Crocodylus siamensis serum and macrophage phagocytic activity.

    PubMed

    Aree, Kalaya; Siruntawineti, Jindawan; Chaeychomsri, Win

    2011-12-01

    Antimicrobial activity of sera from many crocodilian species has been recognized. This activity was proposed to be mediated, at least in part, by complement. Due to the fact that complement proteins have different functions in the immune system, they may be involved in phagocytic process of phagocytes. In the present study, the effects of Siamese crocodile serum on phagocytic activity of macrophages as well as the possible involvement of complement in this process were examined. The results showed increases in the phagocytosis of both Escherichia coli and to a lesser extent, Staphylococcus aureus upon incubation of murine macrophage cell line with fresh crocodile serum (FS). Similar to FS, other crocodile blood products, including freeze dried serum (DS) and freeze dried whole blood (DWB) exhibited phagocytosis-enhancing property. However the ability of DWB to enhance phagocytosis was less efficient than that of FS and DS, suggesting that serum factors were involved in this process. Treatment of FS with heat at 56 degrees C for 30 min deteriorated the effect of FS on bacterial uptake of macrophages, suggesting that complement proteins play a role in the modulation of the phagocytic process. Collectively, the results of the present study suggested that crocodile serum enhances the macrophage phagocytic activity through complement activity and, therefore, may be taken as an alternative medicine for supporting the human immune responses. PMID:22619919

  15. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  16. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  17. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    PubMed

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  18. Biotinylated granulocyte/macrophage colony-stimulating factor analogues: effect of linkage chemistry on activity and binding.

    PubMed

    Angelotti, T P; Clarke, M F; Longino, M A; Emerson, S G

    1991-01-01

    Biotinylated granulocyte/macrophage colony-stimulating factor (GM-CSF) analogues with different linkage chemistries and levels of conjugated biotin were synthesized by reacting recombinant human GM-CSF with sulfosuccinimidyl 6-biotinamidohexanoate or biotin hydrazide/1-[3-(dimethylamino)-propyl]-3-ethylcarbodiimide. These chemically reactive forms of biotin produced derivatives biotinylated at amine or carboxyl groups, respectively. Amine-derivatized analogues of 1.2 and 3.8 mol of biotin/mol of protein (N1-bGM-CSF and N4-bGM-CSF) and a carboxyl-modified analogue of 4.6 mol of biotin/mol of protein (C5-bGM-CSF) were synthesized. These analogues were compared to determine the effect of biotinylation on biological activity and GM-CSF receptor binding characteristics. The biotinylated proteins migrated with the same molecular weight as the native, unmodified protein as determined by SDS-PAGE and could be detected by Western blotting with alkaline phosphatase conjugated streptavidin, thus demonstrating the biotin linkage. All three analogues retained full agonist activity relative to the native protein (EC50 = 10-15 pM) when assayed for the stimulation of human bone marrow progenitor cell growth. Cell surface GM-CSF receptor binding was characterized by the binding of the analogues to human neutrophils, with detection by fluorescein-conjugated avidin and fluorescence-activated cell sorting. The N-bGM-CSFs demonstrated GM-CSF receptor specific binding that was displaceable by excess underivatized protein, with the detected fluorescence signal decreasing with increasing biotin to protein molar ratio. In contrast, C5-bGM-CSF binding above background fluorescence could not be detected using this system, suggesting that this derivative could bind to and activate the receptor, but not simultaneously bind fluorescein-conjugated avidin. The amine-derivatized biotinylated GM-CSF analogues retained biological activity, could specifically label cell surface receptors, and may be

  19. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  20. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-01-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  1. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupus erythematosus.

    PubMed

    Masek-Hammerman, K; Peeva, E; Ahmad, A; Menon, S; Afsharvand, M; Peng Qu, R; Cheng, J B; Syed, J; Zhan, Y; O'Neil, S P; Pleasic-Williams, S; Cox, L A; Beidler, D

    2016-02-01

    This study's objective was to assess the effects of PD-0360324, a fully human immunoglobulin G2 monoclonal antibody against macrophage colony-stimulating factor in cutaneous lupus erythematosus (CLE). Patients with active subacute CLE or discoid lupus erythematosus were randomized to receive 100 or 150 mg PD-0360324 or placebo via intravenous infusion every 2 weeks for 3 months. Blood and urine samples were obtained pre- and post-treatment to analyse pharmacokinetics and pharmacodynamic changes in CD14(+) CD16(+) monocytes, urinary N-terminal telopeptide (uNTX), alanine/aspartate aminotransferases (ALT/AST) and creatine kinase (CK); tissue biopsy samples were taken to evaluate macrophage populations and T cells using immunohistochemistry. Clinical efficacy assessments included the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI). Among 28 randomized/analysed patients, peak/trough plasma concentrations increased in a greater-than-dose-proportional manner with dose increases from 100 to 150 mg. Statistically significant differences were observed between active treatment and placebo groups in changes from baseline in CD14(+) CD16(+) cells, uNTX, ALT, AST and CK levels at most time-points. The numbers, density and activation states of tissue macrophages and T cells did not change from baseline to treatment end. No between-group differences were seen in CLASI. Patients receiving PD-0360324 reported significantly more adverse events than those receiving placebo, but no serious adverse events. In patients with CLE, 100 and 150 mg PD-0360324 every 2 weeks for 3 months suppressed a subset of circulating monocytes and altered activity of some tissue macrophages without affecting cell populations in CLE skin lesions or improving clinical end-points. PMID:26376111

  2. Storage xyloglucans: potent macrophages activators.

    PubMed

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). PMID:20888807

  3. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-01-01

    Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361

  4. Artemisia asiatica Nakai Attenuates the Expression of Proinflammatory Mediators in Stimulated Macrophages Through Modulation of Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways.

    PubMed

    Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun

    2015-08-01

    The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361

  5. Krüppel-like factor 4 synergizes with CREB to increase the activity of apolipoprotein E gene promoter in macrophages.

    PubMed

    Stavri, Simona; Simionescu, Maya; Kardassis, Dimitris; Gafencu, Anca V

    Krüppel-like factor 4 (KLF4) is a critical regulator of monocyte differentiation and macrophage polarization, and it also plays an important role in several vascular diseases, including atherosclerosis. Apolipoprotein E (apoE) is an essential anti-atherosclerotic glycoprotein involved in lipid metabolism, expressed by the liver, macrophages and other cell types. We hypothesized that KLF4 is involved in apoE gene regulation in macrophages. Our experiments showed that differentiation of THP-1 monocytes to macrophages using PMA was associated with a robust induction of both KLF4 and apoE genes. KLF4 bound to the apoE promoter, as revealed by chromatin immunoprecipitation and DNA pull-down (DNAP) assays, and transactivated the apoE promoter in a dose-dependent manner. Using a series of apoE promoter deletion mutants we revealed the biological activity of multiple KLF4 binding sites located in the [-500/-100] region of apoE promoter. Moreover, overexpression of cAMP-response-element-binding protein (CREB) further increased KLF4 up-regulatory effect on apoE promoter. Despite the fact that no putative CREB binding sites were predicted in silico, we found that in macrophages CREB bound to apoE proximal promoter in the region -200/+4 and even more strongly on -350/-274 region. In similar DNAP experiments using cell extracts obtained from monocytes (lacking KLF4), a very weak binding of CREB was detected, indicating that interaction of CREB with apoE promoter takes place indirectly. In conclusion our results show: (i) a robust synchronized induction of KLF4 and apoE expression during differentiation of monocytes to macrophages; (ii) KLF4 up-regulates apoE gene in a dose-dependent manner; (iii) biologically active KLF4 binding sites are present on apoE promoter and (iv) the interaction of KLF4 with CREB results in an enhanced up-regulatory effect of KLF4 on apoE promoter. Taken together these data provide novel knowledge on apoE gene regulation mechanism in macrophages

  6. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  7. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    PubMed

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  8. Alveolar Epithelial Cells Are Critical in Protection of the Respiratory Tract by Secretion of Factors Able To Modulate the Activity of Pulmonary Macrophages and Directly Control Bacterial Growth

    PubMed Central

    Petursdottir, Dagbjort H.; Periolo, Natalia; Fernández, Carmen

    2013-01-01

    The respiratory epithelium is a physical and functional barrier actively involved in the clearance of environmental agents. The alveolar compartment is lined with membranous pneumocytes, known as type I alveolar epithelial cells (AEC I), and granular pneumocytes, type II alveolar epithelial cells (AEC II). AEC II are responsible for epithelial reparation upon injury and ion transport and are very active immunologically, contributing to lung defense by secreting antimicrobial factors. AEC II also secrete a broad variety of factors, such as cytokines and chemokines, involved in activation and differentiation of immune cells and are able to present antigen to specific T cells. Another cell type important in lung defense is the pulmonary macrophage (PuM). Considering the architecture of the alveoli, a good communication between the external and the internal compartments is crucial to mount effective responses. Our hypothesis is that being in the interface, AEC may play an important role in transmitting signals from the external to the internal compartment and in modulating the activity of PuM. For this, we collected supernatants from AEC unstimulated or stimulated in vitro with lipopolysaccharide (LPS). These AEC-conditioned media were used in various setups to test for the effects on a number of macrophage functions: (i) migration, (ii) phagocytosis and intracellular control of bacterial growth, and (iii) phenotypic changes and morphology. Finally, we tested the direct effect of AEC-conditioned media on bacterial growth. We found that AEC-secreted factors had a dual effect, on one hand controlling bacterial growth and on the other hand increasing macrophage activity. PMID:23147039

  9. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages. PMID:26833899

  10. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  11. Effect of hydroxyapatite microcrystals on macrophage activity.

    PubMed

    Fukuchi, N; Akao, M; Sato, A

    1995-01-01

    Hydroxyapatite (HAp) microcrystals were synthesized by a neutralization reaction of Ca(OH)2 suspension and H3PO4 solution using an ultrasonic homogenizer. The in vitro interaction of HAp microcrystals with rat peritoneal macrophages was investigated by measuring the viability, acid phosphatase (ACP) activity, lactate dehydrogenase (LDH) activity and intracellular calcium content. HAp calcined at 800 degrees C and alpha-alumina particles (alumina) were used as comparative materials. Macrophages actively phagocytosed HAp microcrystals by dissolving them. However, no damage in macrophages exposed to HAp microcrystals was observed by transmission electron microscopy. Macrophages in the presence of HAp microcrystals showed less ACP and LDH activity and higher intracellular calcium content than those in the presence of calcined HAp and alumina. HAp microcrystals had excellent biocompatibility to macrophages as well as sintered HAp. PMID:8785507

  12. BN 52021 (a platelet activating factor-receptor antagonist) decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis.

    PubMed Central

    Pérez-Arellano, J L; Martín, T; López-Novoa, J M; Sánchez, M L; Montero, A; Jiménez, A

    1998-01-01

    Several lines of research indirectly suggest that platelet activating factor (PAF) may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA). The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by measuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF) lactic hydrogenase activity and BALF alkaline phosphatase activity) and parameters of systemic response to the challenge (acute phase reagents). We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (beta-glucuronidase and tartrate-sensitive acid phosphatase) to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF. PMID:9705608

  13. Purification and partial biochemical characterization of a Mycoplasma fermentans-derived substance that activates macrophages to release nitric oxide, tumor necrosis factor, and interleukin-6.

    PubMed Central

    Mühlradt, P F; Frisch, M

    1994-01-01

    Mycoplasmal products may exert a number of diverse in vitro effects on cells of the immune system. A macrophage-activating substance from Mycoplasma fermentans was described in this laboratory and named mycoplasma-derived high-molecular-weight material (MDHM). Using synthesis of nitric oxide by peritoneal cells from endotoxin low-responder mice as an assay system, MDHM was purified as follows. After freeze-thawing of M. fermentans, MDHM activity was sedimented with the membrane fraction. Membranes were delipidated with chloroform-methanol, and MDHM activity was extracted with octyl glucoside. Coextracted proteins were degraded by proteinase K. MDHM was further purified by reversed-phase high-pressure liquid chromatography and eluted in one major and one minor peak of activity. Neither carbohydrates nor amino acids were found as constituents. MDHM had the following properties: it partitioned into the phenol phase upon phenol-water extraction and into the Triton phase after extraction with Triton X-114. MDHM was not inactivated by either phospholipase A2 or triglyceride lipases. However, mild periodate treatment led to a > 95% loss of activity. Also, alkaline hydrolysis at 25 degrees C completely abolished MDHM activity with a half-life of 2 min. MDHM activity was spread out over a wide molecular weight range upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes, whereas after proteinase treatment MDHM activity migrated close to the front. These features of MDHM, taken together, speak in favor of an amphiphilic molecule with a lipid moiety carrying fatty acids in ester linkage and a polyol moiety of unknown character. MDHM was active in the nanogram-per-milliliter range, activating macrophages to release nitric oxide, interleukin-6, and tumor necrosis factor. Images PMID:8063396

  14. Characterization of a cell-type-restricted negative regulatory activity of the human granulocyte-macrophage colony-stimulating factor gene.

    PubMed Central

    Fraser, J K; Guerra, J J; Nguyen, C Y; Indes, J E; Gasson, J C; Nimer, S D

    1994-01-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein. Images PMID:8114751

  15. Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor γ and nuclear factor-κB in macrophages

    PubMed Central

    Necela, Brian M; Su, Weidong; Thompson, E Aubrey

    2008-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) is expressed in macrophages and plays an important role in suppressing the inflammatory response. Lipopolysaccharides (LPS), which activate Toll-like receptor 4 (TLR4), reduced PPARγ expression and function in peritoneal macrophages and macrophage cell lines. Moreover, pretreatment with the synthetic PPARγ ligand, rosiglitazone did not prevent LPS-mediated downregulation of PPARγ. Inhibition of PPARγ expression was not blocked by cycloheximide, indicating that de novo protein synthesis is not required for LPS-mediated suppression of PPARγ. Destabilization of PPARγ messenger RNA (mRNA) was not observed in LPS-stimulated macrophages, suggesting that LPS regulates the synthesis of PPARγ mRNA. LPS had no effect on PPARγ expression in macrophages from TLR4 knockout mice, whereas LPS inhibited PPARγ expression in cells that had been reconstituted to express functional TLR4. Targeting the TLR4 pathway with inhibitors of MEK1/2, p38, JNK and AP-1 had no effect on PPARγ downregulation by LPS. However, inhibitors that target NEMO, IκB and NF-κB abolished LPS-mediated downregulation of PPARγ in LPS-stimulated macrophages. Our data indicate that activation of TLR4 inhibits PPARγ mRNA synthesis by an NF-κB-dependent mechanism. Low-density genomic profiling of macrophage-specific PPARγ knockout cells indicated that PPARγ suppresses inflammation under basal conditions, and that loss of PPARγ expression is sufficient to induce a proinflammatory state. Our data reveal a regulatory feedback loop in which PPARγ represses NF-κB-mediated inflammatory signalling in unstimulated macrophages; however, upon activation of TLR4, NF-κB drives down PPARγ expression and thereby obviates any potential anti-inflammatory effects of PPARγ in LPS-stimulated macrophages. PMID:18422969

  16. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF).

    PubMed

    Zhao, Bin; Li, Yifu; Buono, Chiara; Waldo, Stephen W; Jones, Nancy L; Mori, Masahiro; Kruth, Howard S

    2006-06-01

    Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors. PMID:16606620

  17. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    SciTech Connect

    Lv, Peng; Xue, Peng; Dong, Jian; Peng, Hui; Clewell, Rebecca; Wang, Aiping; Wang, Yue; Peng, Shuangqing; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  18. The Toll-like receptor 4-activated neuroprotective microglia subpopulation survives via granulocyte macrophage colony-stimulating factor and JAK2/STAT5 signaling.

    PubMed

    Kamigaki, Mayumi; Hide, Izumi; Yanase, Yuhki; Shiraki, Hiroko; Harada, Kana; Tanaka, Yoshiki; Seki, Takahiro; Shirafuji, Toshihiko; Tanaka, Shigeru; Hide, Michihiro; Sakai, Norio

    2016-02-01

    Toll-like receptor (TLR) 4 mediates inflammation and is also known to trigger apoptosis in microglia. Our time-lapse observations showed that lipopolysaccharide (LPS) stimulation induced rapid death in primary cultures of rat microglia, while a portion of the microglia escaped from death and survived for much longer than 2 days, in which time, all of the control cells had died. However, it remains unclear how the LPS-stimulated microglia subpopulation could continue to survive in the absence of any supplied growth factors. In the present study, to clarify the mechanism underlying the LPS-stimulated survival, we investigated whether microglia could produce their own survival factors in response to LPS, focusing on macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-34, which are mainly supplied by astrocytes or neurons. The LPS-stimulated microglia drastically induced the expression of the GM-CSF mRNA and protein, while M-CSF and IL-34 levels were unchanged. The surviving microglia also significantly upregulated the expression of GM-CSF receptor (GM-CSFR) mRNA without affecting M-CSFR. As for the GM-CSFR downstream signal, LPS resulted in the phosphorylation of STAT5 and its translocation to the nucleus in the surviving microglia. Moreover, a specific JAK2 inhibitor, NVP-BSK805, suppressed STAT5 phosphorylation and microglia survival in response to LPS, indicating a critical role of the JAK2/STAT5 pathway in this survival mechanism. Together, these results suggest that a subpopulation of TLR4-activated microglia may survive by producing GM-CSF and up-regulating GM-CSFR. This autocrine GM-CSF pathway may activate the JAK2/STAT5 signaling pathway, which controls the transcription of survival-related genes. Finally, these surviving microglia may have neuroprotective functions because the neurons remained viable in co-cultures with these microglia. PMID:26802935

  19. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice.

    PubMed

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  20. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-maf) Inhibits Angiogenesis and Tumor Growth in Mice1

    PubMed Central

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    Abstract We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  1. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta.

    PubMed

    Gazzinelli, R T; Oswald, I P; Hieny, S; James, S L; Sher, A

    1992-10-01

    The present study was carried out to determine the effector mechanism of anti-Trypanosoma cruzi activity by interferon (IFN)-gamma plus lipopolysaccharide (LPS)-treated macrophages. A macrophage cell line (IC-21) that failed to mount an appreciable oxidative burst was nevertheless found able to control T. cruzi growth after exposure to IFN-gamma alone or IFN-gamma plus LPS. Moreover, microbicidal functions of both inflammatory macrophages and IC-21 against T. cruzi was found to be inhibited in the presence of NG-monomethyl-L-arginine (NGMMA), a competitive inhibitor of L-arginine. Addition of supplemental L-arginine to the culture overcame the capacity of NGMMA to block activated macrophage anti-T. cruzi functions. The ability of NGMMA to reverse both parasite growth inhibition and killing by IFN-gamma plus LPS-activated macrophages was found to correlate with the suppression of nitrite accumulation in the culture supernatants. Together, these results implicate the L-arginine-dependent production of nitric oxide in T. cruzi killing by activated macrophages. We also tested the ability of interleukin(IL)-10 and transforming growth factor (TGF)-beta, to block regulation of T. cruzi growth in this system. Both IL-10 and TGF-beta inhibited anti-parasite function by IFN-gamma-activated macrophages, with an optimal dose of 100 units/ml and 0.5 ng/ml, respectively. Moreover, when used in combination, suboptimal doses of IL-10 and TGF-beta were found to produce a synergistic inhibitory effect in the regulation of T. cruzi growth. The ability of IL-10 and TGF-beta to suppress microbicidal function was also positively correlated with inhibition of nitrite generation in macrophage culture supernatants. These results predict an in vivo role for IL-10 and TGF-beta in promoting parasite survival in the face of the host cell-mediated immune response. PMID:1396957

  2. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    PubMed

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. PMID:27515218

  3. Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations.

    PubMed

    Schneider, G B; Benis, K A; Flay, N W; Ireland, R A; Popoff, S N

    1995-06-01

    Osteopetrosis is a heterogeneous group of bone diseases characterized by an excess accumulation of bone and a variety of immune defects. Osteopetrosis (op) and incisors absent (ia) are two nonallelic mutations in the rat which demonstrated these skeletal defects as a result of reduced bone resorption. Osteopetrotic (op) rats have severe sclerosis as a result of reduced numbers of osteoclasts which are structurally abnormal. The sclerosis in ia rats is not as severe as in op mutants; they have elevated numbers of osteoclasts, but they are also morphologically abnormal, lacking a ruffled border. Both of these mutations have defects in the inflammation-primed activation of macrophages. They demonstrate independent defects in the cascade involved in the conversion of vitamin D binding protein (DBP) to a potent macrophage activating factor (DBP-MAF). Because this factor may also play a role in the pathogenesis of osteoclastic dysfunction, the effects of ex vivo-generated DBP-MAF were evaluated on the skeletal system of these two mutations. Newborn ia and op rats and normal littermate controls were injected with DBP-MAF or vehicle once every 4 days from birth until 2 weeks of age, at which time bone samples were collected to evaluate a number of skeletal parameters. DBP-MAF treated op rats had an increased number of osteoclasts and the majority of them exhibited normal structure. There was also reduced bone volume in the treated op animals and an associated increased cellularity of the marrow spaces. The skeletal sclerosis was also corrected in the ia rats; the bone marrow cavity size was significantly enlarged and the majority of the osteoclasts appeared normal with extensive ruffled borders. PMID:7669443

  4. Influence of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), macrophage-colony stimulating factor (M-CSF) and fetal calf serum on human osteoclast formation and activity.

    PubMed

    Kreja, Ludwika; Liedert, Astrid; Schmidt, Carla; Claes, Lutz; Ignatius, Anita

    2007-10-01

    Human osteoclast (OC) formation and activity was studied in cultures of peripheral blood mononuclear cells (PBMNC) from six healthy donors after stimulation with fetal calf serum (FCS), under the influence of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) and the macrophage-colony stimulating factor (M-CSF). The results showed that selected FCS could stimulate OC formation without any medium supplementation with osteoclastogenic factors. The OC formation, investigated by quantification of multinucleated tartrate-resistant acid phosphatase-positive cells (TRAP+ cells), and the sensitivity of OC progenitors to RANKL and M-CSF, varied widely between individual donors. The OC resorption activity, measured in the "pit-assay" on dentine, was strictly dependent on the presence of RANKL and M-CSF in the medium and was also donor dependent. The considerable donor variability should be considered in culture studies investigating, e.g. the interactions of OC with biomaterials or the influence of cytokines, growth factors and drugs on osteoclastogenesis. PMID:18161075

  5. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  6. Induction of the Gene Encoding Macrophage Chemoattractant Protein 1 by Orientia tsutsugamushi in Human Endothelial Cells Involves Activation of Transcription Factor Activator Protein 1

    PubMed Central

    Cho, Nam-Hyuk; Seong, Seung-Yong; Huh, Myung-Sook; Kim, Na-Hyun; Choi, Myung-sik; Kim, Ik-sang

    2002-01-01

    Human macrophage chemoattractant protein 1 (MCP-1) is a potent mediator of macrophage migration and therefore plays an essential role in early events of inflammation. In endothelial cells, at least three independent pathways regulate MCP-1 expression by NF-κB and AP-1. Orientia tsutsugamushi causes vasculitis in humans by replicating inside macrophages and endothelial cells. In the present study, we investigated the cis-acting and trans-acting elements involved in O. tsutsugamushi-induced MCP-1 gene expression in human umbilical vein endothelial cells (HUVEC). Although NF-κB activation was observed in HUVEC infected with O. tsutsugamushi, inhibition of NF-κB activation did not affect the MCP-1 expression. However, treatment of HUVEC with extracellular signal-regulated kinase (ERK) kinase inhibitor or p38 mitogen-activated protein kinase (MAPK) inhibitor suppressed expression of MCP-1 mRNA concomitant with downregulation of activator protein 1 (AP-1) activation. Deletion of triphorbol acetate response elements (TRE) at position −69 to −63 of MCP-1 gene abolished inducible promoter activity. Deletion of TRE at position −69 to −63−96 to −90 or deletion of NF-κB-binding site at position −69 to −63−88 to −79 did not affect the inducibility of promoter. Site-directed mutagenesis of the NF-κB binding sites at positions −2640 to −2632, −2612 to −2603 in the enhancer region, or the AP-1 biding site at position −2276 to −2270 decreased the inducible activity of the promoter. Taken together, AP-1 activation by both the ERK pathway and the p38 MAPK pathway as well as their binding to TRE at position −69 to −63 in proximal promoter and TRE at position −2276 to −2270 in enhancer region is altogether essential in induction of MCP-1 mRNA in HUVEC infected with O. tsutsugamushi. Although NF-κB activation is not essential per se, the κB site in the enhancer region is important in MCP-1 induction of HUVEC. This discrepancy in the

  7. The toothless osteopetrotic rat has a normal vitamin D-binding protein-macrophage activating factor (DBP-MAF) cascade and chondrodysplasia resistant to treatments with colony stimulating factor-1 (CSF-1) and/or DBP-MAF.

    PubMed

    Odgren, P R; Popoff, S N; Safadi, F F; MacKay, C A; Mason-Savas, A; Seifert, M F; Marks, S C

    1999-08-01

    The osteopetrotic rat mutation toothless (tl) is characterized by little or no bone resorption, few osteoclasts and macrophages, and chondrodysplasia at the growth plates. Short-term treatment of tl rats with colony-stimulating factor-1 (CSF-1) has been shown to increase the number of osteoclasts and macrophages, producing dramatic resolution of skeletal sclerosis at some, but not all, sites. Defects in production of vitamin D-binding protein-macrophage activating factor (DBP-MAF) have been identified in two other independent osteopetrotic mutations of the rat (op and ia), and two in the mouse (op and mi), in which macrophages and osteoclasts can be activated by the administration of exogenous DBP-MAF. The present studies were undertaken to examine the histology and residual growth defects in tl rats following longer CSF-1 treatments, to investigate the possibility that exogenous DBP-MAF might act synergistically with CSF-1 to improve the tl phenotype, and to assess the integrity of the endogenous DBP-MAF pathway in this mutation. CSF-1 treatment-with or without DBP-MAF-induced resorption of metaphyseal bone to the growth plate on the marrow side, improved slightly but did not normalize long bone growth, and caused no improvement in the abnormal histology of the growth plate. Injections of lysophosphatidylcholine (lyso-Pc) to prime macrophage activation via the DBP-MAF pathway raised superoxide production to similar levels in peritoneal macrophages from both normal and mutant animals, indicating no defect in the DBP-MAF pathway in tl rats. Interestingly, pretreatments with CSF-1 alone also increased superoxide production, although the mechanism for this remains unknown. In summary, we find that, unlike other osteopetrotic mutations investigated to date, the DBP-MAF pathway does not appear to be defective in the tl rat; that additional DBP-MAF does not augment the beneficial skeletal effects seen with CSF-1 alone; and that the growth plate chondrodystrophy seen in

  8. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation.

    PubMed

    Wang, Guodong; Zhu, Lei; Yu, Bo; Chen, Ke; Liu, Bo; Liu, Jun; Qin, Guozheng; Liu, Chunyan; Liu, Huixia; Chen, Kaoshan

    2016-09-20

    In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1. PMID:27261736

  9. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-11-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  10. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms

  11. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses1

    PubMed Central

    Kamir, Daniela; Zierow, Swen; Leng, Lin; Cho, Yoonsang; Diaz, Yira; Griffith, Jason; McDonald, Courtney; Merk, Melanie; Mitchell, Robert A.; Trent, John; Chen, Yibang; Kwong, Yuen-Kwan Amy; Xiong, Huabao; Vermeire, Jon; Cappello, Michael; McMahon-Pratt, Diane; Walker, John; Bernhagen, Jurgen; Lolis, Elias; Bucala, Richard

    2009-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction. PMID:18523291

  12. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  13. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages.

    PubMed

    Bae, Young-An; Cheon, Hyae Gyeong

    2016-07-01

    Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction. PMID:27382358

  14. Role of Granulocyte-Macrophage Colony-Stimulating Factor Signaling in Regulating Neutrophil Antifungal Activity and the Oxidative Burst During Respiratory Fungal Challenge.

    PubMed

    Kasahara, Shinji; Jhingran, Anupam; Dhingra, Sourabh; Salem, Anand; Cramer, Robert A; Hohl, Tobias M

    2016-04-15

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that plays a critical role in regulating myeloid cell host defense. In this study, we demonstrated that GM-CSF signaling plays an essential role in antifungal defense against Aspergillus fumigatus. Mice that lack the GM-CSF receptor β chain (GM-CSFRβ) developed invasive hyphal growth and exhibited impaired survival after pulmonary challenge with A. fumigatus conidia. GM-CSFRβ signaling regulated the recruitment of inflammatory monocytes to infected lungs, but not the recruitment of effector neutrophils. Cell-intrinsic GM-CSFRβ signaling mediated neutrophil and inflammatory monocyte antifungal activity, because lung GM-CSFRβ(-/-) leukocytes exhibited impaired conidial killing compared with GM-CSFRβ(+/+) counterparts in mixed bone marrow chimeric mice. GM-CSFRβ(-/-) neutrophils exhibited reduced (hydrogenated) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in vivo. Conversely, administration of recombinant GM-CSF enhanced neutrophil NADPH oxidase function, conidiacidal activity, and lung fungal clearance in A. fumigatus-challenged mice. Thus, our study illustrates the functional role of GM-CSFRβ signaling on lung myeloid cell responses against inhaled A. fumigatus conidia and demonstrates a benefit for systemic GM-CSF administration. PMID:26908736

  15. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages

    PubMed Central

    Bae, Young-An

    2016-01-01

    Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction. PMID:27382358

  16. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal

  17. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  18. Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques.

    PubMed Central

    Tipping, P. G.; Hancock, W. W.

    1993-01-01

    The production of cytokines by atheromatous plaque macrophages from human endarterectomy tissue was assessed in vitro by short-term cell culture and in situ by immunohistology. Macrophages were isolated from plaques of 14 patients undergoing carotid endarterectomy and 7 patients undergoing reconstructive procedures on atheromatous distal aortic and femoral arteries. Tumor necrosis factor (TNF) and interleukin 1 (IL-1) production by plaque macrophages and blood monocytes isolated concurrently from these patients was assessed. TNF release by macrophages from carotid plaques (0.39 +/- 0.12 ng/10(6) cells/24 hours) was significantly augmented compared to the release by corresponding blood monocytes (0.014 +/- 0.011 ng/10(6) cells/24 hours, P = 0.03), and by macrophages from noncarotid lesions (0.038 +/- 0.036 ng/10(6) cells/24 hours, P < 0.04). Cellular TNF expression by macrophages within carotid plaques was also more prominent than in noncarotid lesions. By contrast, IL-1 production by plaque macrophages from both carotid and noncarotid plaques was not augmented compared to blood monocytes, and only infrequent and low-intensity labeling for IL-1 was present on macrophages within plaques from either group. These results provide functional and immunohistological evidence for increased production of TNF but not IL-1 by activated macrophages, indicating local and selective augmentation of cytokine production within carotid plaques. This suggests that macrophages play an active role in the inflammatory response within atheromatous carotid plaques. Images Figure 3 PMID:8506944

  19. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  20. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  1. The Histone Methyltransferase Smyd2 Is a Negative Regulator of Macrophage Activation by Suppressing Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF-α) Production

    PubMed Central

    Xu, Guiliang; Liu, Guilin; Xiong, Sidong; Liu, Haiyan; Chen, Xi; Zheng, Biao

    2015-01-01

    SET and MYND domain-containing 2 (Smyd2), a histone 3 lysine 4- and histone 3 lysine 36 (H3K36)-specific methyltransferase, plays critical roles in cardiac development and tumorigenesis. However, the role of Smyd2 in immunity and inflammation remains poorly understood. In this study, we report that Smyd2 is a novel negative regulator for macrophage activation and M1 polarization. Elevated Smyd2 expression suppresses the production of proinflammatory cytokines, including IL-6 and TNF, and inhibits the expression of important cell surface molecules, including major MHC-II and costimulatory molecules. Furthermore, macrophages with high Smyd2 expression inhibit Th-17 cell differentiation but promote regulatory T cell differentiation as a result of increased TGF-β production and decreased IL-6 secretion. In macrophages, Smyd2 specifically facilitates H3K36 dimethylation at Tnf and Il6 promoters to suppress their transcription and inhibits NF-κB and ERK signaling. Therefore, our data demonstrate that epigenetic modification by Smyd2-mediated H3K36 dimethylation at Tnf and Il6 promoters plays an important role in the regulation of macrophage activation during inflammation. PMID:25583990

  2. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways

    PubMed Central

    CUI, JINJIN; ZHANG, FENGYUN; WANG, YONGSHUN; LIU, JINGJIN; MING, XING; HOU, JINGBO; LV, BO; FANG, SHAOHONG; YU, BO

    2016-01-01

    Macrophage migration inhibitory factor (MIF) has pleiotropic immune functions in a number of inflammatory diseases. Recent evidence from expression and functional studies has indicated that MIF is involved in various aspects of cardiovascular disease. In this study, we aimed to determine whether MIF supports in vitro c-kit+CD45− cardiac stem cell (CSC) survival, proliferation and differentiation into endothelial cells, as well as the possible mechanisms involved. We observed MIF receptor (CD74) expression in mouse CSCs (mCSCs) using PCR and immunofluorescence staining, and MIF secretion by mCSCs using PCR and ELISA in vitro. Increasing amounts of exogenous MIF did not affect CD74 expression, but promoted mCSC survival, proliferation and endothelial differentiation. By contrast, treatment with an MIF inhibitor (ISO-1) or siRNA targeting CD74 (CD74-siRNA) suppressed the biological changes induced by MIF in the mCSCs. Increasing amounts of MIF increased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which are known to support cell survival, proliferation and differentiation. These effects of MIF on the mCSCs were abolished by LY294002 [a phosphoinositide 3-kinase (PI3K) inhibitor] and MK-2206 (an Akt inhibitor). Moreover, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased following treatment with MIF. The AMPK inhibitor, compound C, partly blocked the pro-proliferative effects of MIF on the mCSCs. In conclusion, our results suggest that MIF promotes mCSC survival, proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK signaling pathways. Thus, MIF may prove to be a potential therapeutic factor in the treatment of heart failure and myocardial infarction by activating CSCs. PMID:27035848

  3. A novel naturally occurring salicylic acid analogue acts as an anti-inflammatory agent by inhibiting nuclear factor-kappaB activity in RAW264.7 macrophages.

    PubMed

    Zhang, Tiantai; Sun, Lan; Liu, Rui; Zhang, Dan; Lan, Xi; Huang, Chao; Xin, Wenyu; Wang, Chao; Zhang, Dongming; Du, Guanhua

    2012-03-01

    Methyl salicylate 2-O-β-D-lactoside (DL0309), is a molecule chemically related to salicylic acid that is isolated from Gaultheria yunnanensis (FRANCH.) REHDER (G. yunnanensis). G. yunnanensis, a traditional Chinese herbal medicine, is widely used for treating rheumatoid arthritis, swelling, pain, trauma, and chronic tracheitis. In the present study, we explored the mechanism whereby DL0309 exerts anti-inflammatory effects, using the model of lipopolysaccharide (LPS)-treated RAW264.7 cells. We examined the effects of DL0309 on LPS-induced nuclear factor-kappaB (NF-κB) activity by Western blot analysis, cell imaging analysis and an electrophoretic mobility shift assay (EMSA). Production of pro-inflammatory cytokines was also measured. Our observations indicate that DL0309 suppressed production of nitric oxide (NO), reactive oxygen species (ROS) and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), in a concentration-dependent manner. The phosphorylation of IKK-β and degradation of IκB-α by LPS were both inhibited by DL0309 in the cytoplasm. The increased protein level of NF-κB by LPS in the nucleus was also reduced by DL0309. Consistent with these results, we found that DL0309 prevents the nuclear translocation and DNA binding activity of NF-κB. Finally, our results demonstrate that DL0309 exerts anti-inflammatory effects, by inhibiting the production of pro-inflammatory cytokines and suppressing of the activation of the NF-κB signaling pathway in LPS-treated macrophage cells. Therefore, DL0309 may have therapeutic potential for treating inflammatory diseases by regulating the NF-κB pathway and pro-inflammatory cytokine production. PMID:22292506

  4. Proatherogenic macrophage activities are targeted by the flavonoid quercetin.

    PubMed

    Lara-Guzman, Oscar J; Tabares-Guevara, Jorge H; Leon-Varela, Yudy M; Álvarez, Rafael M; Roldan, Miguel; Sierra, Jelver A; Londoño-Londoño, Julian A; Ramirez-Pineda, Jose R

    2012-11-01

    Many studies have demonstrated that the flavonoid quercetin protects against cardiovascular disease (CVD) and related risk factors. Atherosclerosis, the underlying cause of CVD, is also attenuated by oral quercetin administration in animal models. Although macrophages are key players during fatty streak formation and plaque progression and aggravation, little is known about the effects of quercetin on atherogenic macrophages. Here, we report that primary bone marrow-derived macrophages internalized less oxidized low-density lipoprotein (oxLDL) and accumulated less intracellular cholesterol in the presence of quercetin. This reduction of foam cell formation correlated with reduced surface expression of the oxLDL receptor CD36. Quercetin also targeted the lipopolysaccharide-dependent, oxLDL-independent pathway of lipid droplet formation in macrophages. In oxLDL-stimulated macrophages, quercetin inhibited reactive oxygen species production and interleukin (IL)-6 secretion. In a system that evaluated cholesterol crystal-induced IL-1β secretion via nucleotide-binding domain and leucine-rich repeat containing protein 3 inflammasome activation, quercetin also exhibited an inhibitory effect. Dyslipidemic apolipoprotein E-deficient mice chronically treated with intraperitoneal quercetin injections had smaller atheromatous lesions, reduced lipid deposition, and less macrophage and T cell inflammatory infiltrate in the aortic roots than vehicle-treated animals. Serum levels of total cholesterol and the lipid peroxidation product malondialdehyde were also reduced in these mice. Our results demonstrate that quercetin interferes with both key proatherogenic activities of macrophages, namely foam cell formation and pro-oxidant/proinflammatory responses, and these effects may explain the atheroprotective properties of this common flavonoid. PMID:22869926

  5. Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages.

    PubMed Central

    Bhattacharyya, Asima; Pathak, Shresh; Datta, Simanti; Chattopadhyay, Santanu; Basu, Joyoti; Kundu, Manikuntala

    2002-01-01

    Gastric infection, as well as inflammation, caused by Helicobacter pylori, activates the production of cytokines and chemokines by mononuclear cells; interleukin-8 (IL-8) is one of the major inflammatory chemokines. Since H. pylori does not invade mucosal tissue, we observed the effect of the water extract of H. pylori (HPE), containing shed factors, on the production of IL-8 by human peripheral blood monocytes and the human monocyte cell line THP-1. HPE-treatment induced activation of the mitogen-activated protein kinases (MAPKs) ERK (extracellular signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase), an effect which was not dependent on the presence of the cag pathogenicity island. p38 MAPK activation was sustained. The specific inhibitors, U0126 (for ERK1/2 signalling) and SB203580 (for p38 MAPK signalling), both abrogated IL-8 secretion from HPE-treated THP-1. Dominant-negative mutants of the upstream kinases MEK1 (MAPK/ERK kinase 1), MKK (MAPK kinase) 6 and MKK7 also inhibited IL-8 secretion, pointing to a role of all three MAPKs in HPE-mediated IL-8 release. The inhibitory effects of polymyxin B and anti-CD14 antibody suggested that the effect of HPE on MAPKs was mediated by H. pylori lipopolysaccharide (LPS). By analysis of IL-8-promoter-driven luciferase gene expression, we observed that the effects of HPE-induced nuclear factor-kappaB (NF-kappaB) activation and MAPK signalling were mediated at the level of the IL-8 promoter. While ERK1/2 activation could be linked to enhanced DNA binding of activator protein-1 (AP-1), p38 MAPK signalling did not affect AP-1 DNA binding. Taken together, these results provide the first evidence that LPS from H. pylori stimulates IL-8 release from cells of the monocytic lineage through activation of NF-kappaB and signalling along MAPK cascades. The stimulation of MAPK signalling in macrophages by LPS of H. pylori amplifies the inflammatory response associated with gastric H. pylori infection and needs to be taken

  6. NF-κB Repressing Factor Inhibits Chemokine Synthesis by Peripheral Blood Mononuclear Cells and Alveolar Macrophages in Active Pulmonary Tuberculosis

    PubMed Central

    Huang, Kuo-Hsiung; Wang, Chun-Hua; Lee, Kang-Yun; Lin, Shu-Min

    2013-01-01

    NF-κB repressing factor (NRF) is a transcriptional silencer implicated in the basal silencing of specific NF-κB targeting genes, including iNOS, IFN-β and IL-8/CXCL8. IP-10/CXCL10 and IL-8/CXCL8 are involved in neutrophil and lymphocyte recruitment against M. tuberculosis (MTb) and disease progression of pulmonary tuberculosis (TB). Alveolar macrophages (AM) and peripheral blood mononuclear cells (PBMC) were used to study the regulatory role of NRF in pulmonary TB. AM and PBMC were purified from 19 TB patients and 15 normal subjects. To study the underlying mechanism, PBMC were exposed to heated TB bacilli. The regulation role of NRF in IP-10/CXCL10 and IL-8/CXCL8 was determined by NRF knock-down or over-expression. NRF binding capabilities in promoter sites were measured by chromatin immunoprecipitation (ChIP) assay. The levels of IP-10/CXCL10, IL-8/CXCL8 and NRF were significantly higher in AM and PBMC in patients with active TB. NRF played an inhibitory role in IP-10/CXCL10 and IL-8/CXCL8 inductions. We delineate the role of NRF in pulmonary TB, which inhibits the expressions of IP-10/CXCL10 and IL-8/CXCL8 in AM and PBMC of patients with high bacterial load. NRF may serve as an endogenous repressor to prevent robust increase in IP-10/CXCL10 and IL-8/CXCL8 when TB bacterial load is high. PMID:24223729

  7. Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4.

    PubMed

    Gupta, Kamlesh K; Xu, Zhi; Castellino, Francis J; Ploplis, Victoria A

    2016-08-26

    While inflammation is often associated with increased Plasminogen Activator Inhibitor-1 (PAI-1), the functional consequences of PAI-1 in inflammation have yet to be fully determined. The aim of this study was to establish the in vivo relevance of PAI-1 in inflammation. A mouse model of systemic inflammation was employed in wild-type (WT) and PAI-1 deficient (PAI-1(-/-)) mice. Mice survival, macrophage infiltration into the lungs, and plasma levels of pro-inflammatory cytokines were assessed after lipopolysaccharide (LPS) infusion. In vitro experiments were conducted to examine changes in LPS-induced inflammatory responses after PAI-1 exposure. PAI-1 was shown to regulate inflammation, in vivo, and affect macrophage infiltration into lungs. Further, PAI-1 activated macrophages, and increased pro-inflammatory cytokines at both the mRNA and protein levels in these cells. The effect of PAI-1 on macrophage activation was dose-dependent and LPS-independent. Proteolytic inhibitory activity and Lipoprotein Receptor-related Protein (LRP) and vitronectin (VN) binding functions, were not involved in PAI-1-mediated activation of macrophages. However, the effect of PAI-1 on macrophage activation was partially blocked by a TLR4 neutralizing antibody. Furthermore, PAI-1-induced Tumor Necrosis Factor-alpha (TNF-α) and Macrophage Inflammatory Protein-2 (MIP-2) expression was reduced in TLR4(-/-) macrophages compared to WT macrophages. These results demonstrate that PAI-1 is involved in the regulation of host inflammatory responses through Toll-like Receptor-4 (TLR4)-mediated macrophage activation. PMID:27317488

  8. Structure-activity relationships of lipopolysaccharide (LPS) in tumor necrosis factor-alpha (TNF-alpha) production and induction of macrophage cell death in the presence of cycloheximide (CHX) in a murine macrophage-like cell line, J774.1.

    PubMed

    Karahashi, H; Amano, F

    1998-10-01

    The structure-activity relationships of lipopolysaccharide (LPS) in tumor necrosis factor-alpha (TNF-alpha) production and induction of macrophage cell death in the presence of cycloheximide (CHX) were examined in a murine macrophage-like cell line, J774.1. TNF-alpha production is one of the characteristic phenotypes of LPS-activated macrophages, and is observed upon incubation with LPS. On the contrary, macrophage cell death, which had been found in our laboratory (Amano F., Karahashi H., J. Endotoxin Res., 3, 415423 (1996)) and was examined as the release of lactate dehydrogenase (LDH) from cells into the culture supernatant, was observed 2.5 h after the addition of LPS in the presence of CHX. However, both TNF-alpha production and macrophage cell death were similarly dependent on the structures of LPS and lipid A. At more than 10 ng/ml, wild-type LPS from E.coli and S. minnesota exhibited the highest activity, and LPS as well as diphosphoryl lipid A from S. minnesota rough mutants also exhibited activity, but E. coli LPS detoxified by alkaline treatment or monophosphoryl lipid A from S. minnesota exhibited no activity even at 100 ng/ml. These results suggest that LPS-induced macrophage cell death in the presence of CHX shows similar requirements for LPS and/or lipid A structures as for the macrophage activation at higher doses than 10 ng/ml, although the former was not observed at 1 ng/ml LPS, while the latter was. However, TNF-alpha does not seem to be involved in the induction of macrophage cell death, because a neutralizing anti-TNF-alpha antibody failed to block the macrophage cell death and because recombinant TNF-alpha had little effect on the extent of LDH release in the presence or absence of LPS and/or CHX, and also because TNF-alpha production by LPS was abolished in the presence of CHX. PMID:9821819

  9. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  10. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation

    PubMed Central

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  11. Human alveolar macrophages synthesize factor VII in vitro. Possible role in interstitial lung disease.

    PubMed Central

    Chapman, H A; Allen, C L; Stone, O L; Fair, D S

    1985-01-01

    Both fibrin and tissue macrophages are prominent in the histopathology of chronic inflammatory pulmonary disease. We therefore examined the procoagulant activity of freshly lavaged human alveolar macrophages in vitro. Intact macrophages (5 X 10(5) cells) from 13 healthy volunteers promoted clotting of whole plasma in a mean of 65 s. Macrophage procoagulant activity was at least partially independent of exogenous Factor VII as judged by a mean clotting time of 99 s in Factor VII-deficient plasma and by neutralization of procoagulant activity by an antibody to Factor VII. Immunoprecipitation of extracts of macrophages metabolically labeled with [35S]methionine by Factor VII antibody and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a labeled protein consistent in size with the known molecular weight of blood Factor VII, 48,000. The addition of 50 micrograms of unlabeled, purified Factor VII blocked recovery of the 48,000-mol wt protein. In addition, supernatants of cultured macrophages from six normal volunteers had Factor X-activating activity that was suppressed an average of 71% after culture in the presence of 50 microM coumadin or entirely by the Factor VII antibody indicating that Factor VII synthesized by the cell was biologically active. Endotoxin in vitro induced increases in cellular tissue factor but had no consistent effect on macrophage Factor VII activity. We also examined the tissue factor and Factor VII activities of freshly lavaged alveolar cells from nine subjects with clinical and/or histologic evidence of sarcoidosis. Four of the nine subjects expressed increased tissue factor and seven of nine had increased Factor VII activity over the normal range (P less than 0.01). We estimate the mean Factor VII associated with the cells of sarcoid patients to be 4.7 ng/10(6) cells (range 0.4-20) as compared to a mean of 0.74 ng/10(6) cells (range 0.2-2) for that of normal subjects. Along with previous data showing synthesis

  12. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W.; Cantley, Lloyd G.

    2015-01-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  13. Regulation of platelet-activating factor (PAF) biosynthesis via coenzyme A-independent transacylase in the macrophage cell line IC-21 stimulated with lipopolysaccharide.

    PubMed

    Svetlov, S I; Liu, H; Chao, W; Olson, M S

    1997-06-01

    The regulation of PAF synthesis by the macrophage cell line IC-21 challenged with bacterial endotoxin was investigated. The LPS-induced increase in cellular PAF levels was rapid, sustained and attained maximal levels within 30 min following LPS stimulation. PAF accumulation was accompanied by the activation of the CoA-independent transacylase and acetyl-CoA: lyso-PAF acetyltransferase, whereas the release of free [3H]arachidonic acid in prelabeled cells reflecting the activation of phospholipase A2, occurred primarily within the initial 1-5 min of treatment with LPS. Cell lysates from LPS-stimulated macrophages exhibited a markedly increased enzymatic activity that was capable of both acylation of 1-[3H]alkyl-2-lyso-GPC (lyso-PAF) and deacylation of 1-[3H]alkyl-2-acyl-GPC generating [3H]lyso-PAF via CoA-independent transacylation of exogenous lysoplasmenylethanolamine compared with extracts from resting macrophages. Pretreatment of the cells with LPS for 5 and 30 min enhanced significantly the transfer of [14C]arachidonic acid from 1-[3H]alkyl-2-[14C]arachidonoyl-GPC into plasmenylethanolamine in prelabeled cell homogenates following the addition of exogenous lysoplasmenylethanolamine. Taken together, these data suggest that the CoA-independent transacylase, but not phospholipase A2, is a key enzyme responsible for the prolonged generation of lyso-PAF and that the increased capability of CoA-independent transacylation followed by CoA-dependent acetylation of lyso-PAF can sustain the biosynthesis of PAF in LPS-stimulated IC-21 macrophages. PMID:9219895

  14. MACROPHAGE ACTIVATION SYNDROME AND CYTOKINE DIRECTED THERAPIES

    PubMed Central

    Grom, Alexei A.

    2014-01-01

    Macrophage activation syndrome (MAS) is an episode of overwhelming inflammation that occurs most commonly in children with systemic juvenile idiopathic arthritis. It is characterized by expansion and activation of T lymphocytes and hemophagocytic macrophages, and bears great similarity to hemophagocytic lymphohistiocytosis (HLH). This disorder has substantial morbidity and mortality, and there is frequently a delay in recognition and initiation of treatment. Here, we will review what is known about the pathogenesis of MAS and in particular its similarities to HLH. The development of MAS is characterized by a cytokine storm, with the elaboration of numerous proinflammatory cytokines. We will examine the evidence for various cytokines in the initiation and pathogenesis of MAS, and discuss how new biologic therapies may alter the risk of MAS. Finally we will review current treatment options for MAS, and examine how cytokine-directed therapy could serve as novel treatment modalities. PMID:24974063

  15. Macrophage activation syndrome in autoimmune disease.

    PubMed

    Deane, Sean; Selmi, Carlo; Teuber, Suzanne S; Gershwin, M Eric

    2010-01-01

    Macrophage activation syndrome (MAS) is a phenomenon characterized by cytopenia, organ dysfunction, and coagulopathy associated with an inappropriate activation of macrophages. Current diagnostic criteria are imprecise, but the syndrome is now recognized as a form of hemophagocytic lymphohistiocytosis that is characteristically associated with autoimmune diatheses. The diagnosis of incipient MAS in patients with autoimmune disease requires a high index of suspicion, as several characteristics of the disorder may be present in the underlying condition or infectious complications associated with the treatment thereof. Proposed treatment regimens include aggressive approaches that require validation in future controlled studies. This review discusses the major aspects of the pathophysiology, diagnosis, and management of MAS with a focus on the association with autoimmune disease. PMID:20407267

  16. Macrophage activation and polarization: nomenclature and experimental guidelines.

    PubMed

    Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A

    2014-07-17

    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. PMID:25035950

  17. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes.

    PubMed

    Lacasa, Danièle; Taleb, Soraya; Keophiphath, Mayoura; Miranville, Alexandra; Clement, Karine

    2007-02-01

    Obesity is considered a chronic low-grade inflammatory state. The white adipose tissue produces a variety of inflammation-related proteins whose expression is increased in obese subjects. The nonadipose cell fraction, which includes infiltrated macrophages, is a determinant source of inflammation-related molecules within the adipose tissue. Our working hypothesis is that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Human primary preadipocytes were then differentiated in the presence of conditioned media obtained from macrophages differentiated from blood monocytes. Preadipocytes treated by macrophage-conditioned medium displayed marked reduction of adipogenesis as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic and lipogenic markers. In addition to this effect, the activation of macrophages by lipopolysaccharides stimulated nuclear factor kappaB signaling, increased gene expression and release of proinflammatory cytokines and chemokines, and induced preadipocyte proliferation. This phenomenon was associated with increased cyclin D1 gene expression and maintenance of the fibronectin-rich matrix. Anti-TNFalpha neutralizing antibody inhibits the inflammatory state of preadipocytes positioning TNFalpha as an important mediator of inflammation in preadipocytes. Strikingly, conditioned media produced by macrophages isolated from human adipose tissue exerted comparable effects with activated macrophages, i.e. decreased adipogenesis and increased inflammatory state in the preadipocytes. These data show that macrophage-secreted factors inhibit the formation of mature adipocytes, suggesting possible role in limiting adipose tissue expansion in humans. PMID:17082259

  18. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages. PMID:8176226

  19. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination.

    PubMed

    Döring, Axinia; Sloka, Scott; Lau, Lorraine; Mishra, Manoj; van Minnen, Jan; Zhang, Xu; Kinniburgh, David; Rivest, Serge; Yong, V Wee

    2015-01-21

    Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin. PMID:25609628

  20. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed

    James, S L; Glaven, J A

    1987-12-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  1. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed Central

    James, S L; Glaven, J A

    1987-01-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  2. Macrophage-oriented cytotoxic activity of novel triterpene saponins extracted from roots of Securidaca inappendiculata.

    PubMed

    Yui, S; Ubukata, K; Hodono, K; Kitahara, M; Mimaki, Y; Kuroda, M; Sashida, Y; Yamazaki, M

    2001-10-01

    It is recognized that macrophages in peripheral tissues often proliferate under pathological conditions such as tumors, inflammation and atherosclerosis. Because the growth state of macrophages is believed to be a factor regulating the pathological process of the diseases, substances that regulate macrophage growth or survival may be useful for disease control. In this paper, we identified the activity inhibiting macrophage growth in a hot water extract of roots of Securidaca inappendiculata. The extract markedly inhibited macrophage colony-stimulating factor (M-CSF/CSF-1)-induced growth of macrophages, whereas it exerted a less potent effect on growth of Concanavalin A (Con A)-stimulated thymocytes or M-CSF-stimulated bone marrow cells. The inhibition of macrophage growth was caused by a cytotoxic effect rather than a cytostatic effect. Cell death was due to the induction of apoptosis, as judged by staining with terminal deoxynucleotidyl transferase-mediated d-UTP nick end labelling (TUNEL). The cytotoxic activity seemed to be specific to peripheral macrophages; it showed a weak effect on the growth and survival of tumor cell lines including a macrophage-like cell line, J-774.1. Moreover, the saponin fraction induced apoptotic cell death of macrophages only when they were stimulated by M-CSF; it did not affect the viability of macrophages cultured without M-CSF or with granulocyte/macrophage-CSF. We determined the structures of the two active triterpene saponin compounds in the fraction, named securioside A and securioside B having a 3,4-dimethoxycinnamic group which is essential for the cell death-inducing activity. They are believed to be the primary compounds of new drugs for the treatment of pathological states in which macrophage proliferation occurs. PMID:11606030

  3. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  4. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  5. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation.

    PubMed

    Guidez, F; Li, A C; Horvai, A; Welch, J S; Glass, C K

    1998-07-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages. PMID:9632769

  6. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea.

    PubMed Central

    Stimpel, M; Proksch, A; Wagner, H; Lohmann-Matthes, M L

    1984-01-01

    Purified polysaccharides (EPS) prepared from the plant Echinacea purpurea are shown to strongly activate macrophages. Macrophages activated with these substances develop pronounced extracellular cytotoxicity against tumor targets. The activation is brought about by EPS alone and is independent of any cooperative effect with lymphocytes. Also the production and secretion of oxygen radicals and interleukin 1 by macrophages is increased after activation with EPS. Cells of the macrophages lineage seem to be the main target for the action of these polysaccharides. EPS has no effect on T lymphocytes. B lymphocytes show a comparatively modest proliferation after incubation with E. purpurea EPS. Thus, these compounds, which are at least in tissue culture completely nontoxic, may be suited to activate in vivo cells of the macrophage system to cytotoxicity. They may therefore be of relevance in tumor and infectious systems. PMID:6389368

  7. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  8. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro.

    PubMed Central

    Irons, R D; Stillman, W S; Colagiovanni, D B; Henry, V A

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure. PMID:1570288

  9. Particulate matter phagocytosis induces tissue factor in differentiating macrophages.

    PubMed

    Milano, M; Dongiovanni, P; Artoni, A; Gatti, S; Rosso, L; Colombo, F; Bollati, V; Maggioni, M; Mannucci, P M; Bertazzi, P A; Fargion, S; Valenti, L

    2016-01-01

    Airborne exposure to particulate matter with diameter < 10 mcM (PM10) has been linked to an increased risk of thromboembolic events, but the mechanisms are not completely understood. The aim of this study was to evaluate the effect of PM10 phagocytosis on the release of procoagulant molecules in human differentiating macrophages, and that of PM10 inhalation in an experimental model in rats. Human monocytes were separated from the peripheral blood by the lymphoprep method, differentiated in vitro and treated with standard PM10 or vehicle. Sprague-Dawley rats were instilled intratracheally with PM10 or vehicle alone. The outcome was expression of proinflammatory genes and of tissue factor (TF). In human differentiating macrophages, PM10 exposure upregulated inflammatory genes, but most consistently induced TF mRNA and protein levels, but not TF protein inhibitor, resulting in increased TF membrane expression and a procoagulant phenotype. Differentiation towards the anti-inflammatory M2 phenotype inhibited PM10 -mediated TF expression. TF induction required phagocytosis of PM10 , whereas phagocytosis of inert particles was less effective. PM10 phagocytosis was associated with a gene expression profile consistent with intracellular retention of iron, inducing oxidative stress. Both PM10 and iron activated the stress kinases ERK1/2 pathway, involved in the induction of TF expression. In rats, alveolar exposure to PM10 was associated with pulmonary recruitment of inflammatory cells and resulted in local, but not systemic, induction of TF expression, which was sufficient to increase circulating TF levels. In conclusion, TF induction by differentiating lung macrophages, activated following phagocytosis, contributes to the increased risk of thromboembolic complications associated with PM10 exposure. PMID:25858758

  10. Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation.

    PubMed Central

    Marziali, G; Perrotti, E; Ilari, R; Testa, U; Coccia, E M; Battistini, A

    1997-01-01

    The ferritin H-chain gene promoter regulation was analyzed in heme-treated Friend leukemia cells (FLCs) and during monocyte-to-macrophage differentiation. In the majority of cell lines studied, the regulation of ferritin expression was exerted mostly at the translational level. However, in differentiating erythroid cells, which must incorporate high levels of iron to sustain hemoglobin synthesis, and in macrophages, which are involved in iron storage, transcriptional regulation seemed to be a relevant mechanism. We show here that the minimum region of the ferritin H-gene promoter that is able to confer transcriptional regulation by heme in FLCs to a reporter gene is 77 nucleotides upstream of the TATA box. This cis element binds a protein complex referred to as HRF (heme-responsive factor), which is greatly enhanced both in heme-treated FLCs and during monocyte-to-macrophage differentiation. The CCAAT element present in reverse orientation in this promoter region of the ferritin H-chain gene is necessary for binding and for gene activity, since a single point mutation is able to abolish the binding of HRF and the transcriptional activity in transfected cells. By competition experiments and supershift assays, we identified the induced HRF as containing at least the ubiquitous transcription factor NF-Y. NF-Y is formed by three subunits, A, B, and C, all of which are necessary for DNA binding. Cotransfection with a transdominant negative mutant of the NF-YA subunit abolishes the transcriptional activation by heme, indicating that NF-Y plays an essential role in this activation. We have also observed a differential expression of the NF-YA subunit in heme-treated and control FLCs and during monocyte-to-macrophage differentiation. PMID:9032265

  11. Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity.

    PubMed Central

    Wilson, N J; Moss, S T; Csar, X F; Ward, A C; Hamilton, J A

    1999-01-01

    Colony-stimulating factor 1 (CSF-1) is required for the development of monocytes/macrophages from progenitor cells and for the survival and activation of mature macrophages. The receptor for CSF-1 is the product of the c-fms proto-oncogene, which, on binding ligand, can stimulate a mitogenic response in the appropriate cells. To investigate which genes are regulated in response to CSF-1-stimulation in murine bone-marrow-derived macrophages (BMM), we employed mRNA differential display reverse transcriptase-mediated PCR to identify cDNA species induced by CSF-1. Both Northern and Western blot analyses confirmed the increased expression of one of the cDNA species identified as coding for the catalytic subunit of protein phosphatase 2A (PP2A), an observation not previously reported during the response to a growth factor. To determine the significance of the increased expression of PP2A in response to CSF-1, the PP2A inhibitor okadaic acid (OA) was added to CSF-1-treated BMM and found to inhibit DNA synthesis in a dose-dependent manner. Further analysis with flow cytometry in the presence of OA led to the novel conclusion that PP2A activity is critical for CSF-1-driven BMM cell cycle progression in both early G1 and S phases. Surprisingly, in the light of previous studies with other cells, the PP2A-dependent proliferation could be dissociated from activation by extracellular signal-regulated protein kinase (ERK) in macrophages because OA did not affect either the basal or CSF-1-induced ERK activity in BMM. Two-dimensional SDS/PAGE analysis of lysates of 32P-labelled BMM, which had been treated with CSF-1 in the presence or absence of OA, identified candidate substrates for PP2A. PMID:10215588

  12. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis.

    PubMed

    Gambelli, Federica; Di, Peter; Niu, Xiaomei; Friedman, Mitchell; Hammond, Timothy; Riches, David W H; Ortiz, Luis A

    2004-01-16

    Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure. PMID:14570868

  13. [Macrophage activation syndrome associated with adult-onset Still's disease].

    PubMed

    Iwamoto, Masahiro

    2007-12-01

    Macrophage activation syndrome (MAS) is a rare and potentially lethal disease, resulting from uncontrolled activation and proliferation of T lymphocytes and macrophages. Adult-onset Still's disease (AOSD) is an inflammatory disease. AOSD resemble reactive MAS in its symptoms and laboratory data. Moreover, AOSD per se induces MAS. It is, therefore, quite difficult to differentiate these syndrome and disease. The immunodeficiency state induced by treatment in AOSD could reactivate latent viruses such as Epstein-Barr virus, which could potentially lead to MAS. The therapeutic agents for AOSD, such as sulfasalazine, also could provoke reactive MAS. Because multiple factors are involved in inducing MAS to a different degree, the main cause should be searched for and targeted for the therapy. PMID:18174671

  14. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  15. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  16. Liver X receptor activation stimulates iron export in human alternative macrophages

    PubMed Central

    Bories, Gael; Colin, Sophie; Vanhoutte, Jonathan; Derudas, Bruno; Copin, Corinne; Fanchon, Melanie; Daoudi, Mehdi; Belloy, Loic; Haulon, Stephan; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2013-01-01

    Rationale In atherosclerotic plaques, iron preferentially accumulates in macrophages where it can exert pro-oxidant activities. Objective The objective of this study is, first, to better characterize the iron distribution and metabolism in macrophage sub-populations in human atherosclerotic plaques and, second, to determine whether iron homeostasis is under the control of nuclear receptors, such as the Liver X Receptors (LXR). Methods and Results Here we report that iron depots accumulate in human atherosclerotic plaque areas enriched in CD68 and Mannose Receptor (MR) positive (CD68+MR+) alternative M2 macrophages. In vitro IL-4 polarization of human monocytes into M2 macrophages also resulted in a gene expression profile and phenotype favouring iron accumulation. However, upon iron exposure, M2 macrophages acquire a phenotype favouring iron release, through a strong increase in ferroportin expression, illustrated by a more avid oxidation of extra-cellular LDL by iron-loaded M2 macrophages. In line, in human atherosclerotic plaques, CD68+MR+ macrophages accumulate oxidized lipids, which activate Liver X Receptors (LXRα and LXRβ), resulting in the induction of ABCA1, ABCG1 and ApoE expression. Moreover, in iron-loaded M2 macrophages, LXR activation induces nuclear factor erythroid 2-like 2 (NRF2) expression, hence increasing ferroportin expression, which, together with a decrease of hepcidin mRNA levels, promotes iron export. Conclusions These data identify a role for M2 macrophages in iron handling, a process which is regulated by LXR activation. PMID:24036496

  17. Krüppel-like factor KLF10 deficiency predisposes to colitis through colonic macrophage dysregulation.

    PubMed

    Papadakis, Konstantinos A; Krempski, James; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F; Lomberk, Gwen A; Urrutia, Raul A; Faubion, William A

    2015-12-01

    Krüppel-like factor (KLF)-10 is an important transcriptional regulator of TGF-β1 signaling in both CD8(+) and CD4(+) T lymphocytes. In the present study, we demonstrate a novel role for KLF10 in the regulation of TGFβRII expression with functional relevance in macrophage differentiation and activation. We first show that transfer of KLF10(-/-) bone marrow-derived macrophages into wild-type (WT) mice leads to exacerbation of experimental colitis. At the cell biological level, using two phenotypic strategies, we show that KLF10-deficient mice have an altered colonic macrophage phenotype with higher frequency of proinflammatory LyC6(+)MHCII(+) cells and a reciprocal decrease of the anti-inflammatory LyC6(-)MHCII(+) subset. Additionally, the anti-inflammatory CD11b(+)CX3CR1(hi) subset of colonic macrophages is significantly decreased in KLF10(-/-) compared with WT mice under inflammatory conditions. Molecularly, CD11b(+) colonic macrophages from KLF10(-/-) mice exhibit a proinflammatory cytokine profile with increased production of TNF-α and lower production of IL-10 in response to LPS stimulation. Because KLF10 is a transcription factor, we explored how this protein may regulate macrophage function. Consequently, we analyzed the expression of TGFβRII expression in colonic macrophages and found that, in the absence of KLF10, macrophages express lower levels of TGFβRII and display an attenuated Smad-2 phosphorylation following TGF-β1 stimulation. We further show that KLF10 directly binds to the TGFβRII promoter in macrophages, leading to enhanced gene expression through histone H3 acetylation. Collectively, our data reveal a critical role for KLF10 in the epigenetic regulation of TGFβRII expression in macrophages and the acquisition of a "regulatory" phenotype that contributes to intestinal mucosal homeostasis. PMID:26472224

  18. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent

  19. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.

    PubMed

    Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James

    2016-06-01

    MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers. PMID:27163877

  20. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    PubMed Central

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics. PMID:24252308

  1. Inhibition of tristetraprolin expression by dexamethasone in activated macrophages.

    PubMed

    Jalonen, Ulla; Lahti, Aleksi; Korhonen, Riku; Kankaanranta, Hannu; Moilanen, Eeva

    2005-03-01

    Tristetraprolin (TTP) is a factor that regulates mRNA stability and the expression of certain inflammatory genes. In the present study, we found that TTP expression was increased in macrophages exposed to bacterial lipopolysaccharide (LPS). Dexamethasone and dissociated steroid RU24858 inhibited LPS-induced TTP protein and mRNA expression and the inhibitory effect was reversed by a glucocorticoid receptor antagonist mifepristone. Histone deacetylase inhibitors trichostatin A (TSA) and apicidin reduced the inhibitory effect of dexamethasone and RU24858 on TTP expression, but the glucocorticoids did not alter TTP mRNA half-life. These results suggest that anti-inflammatory steroids reduce TTP expression in activated macrophages by a glucocorticoid response element (GRE)-independent mechanism, possibly through histone deacetylation and transcriptional silencing. PMID:15710351

  2. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  3. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    PubMed

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-01

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis. PMID:26159717

  4. Orthologs of macrophage migration inhibitory factor from parasitic nematodes

    PubMed Central

    Vermeire, Jon J.; Cho, Yoonsang; Lolis, Elias; Bucala, Richard; Cappello, Michael

    2013-01-01

    Chronic helminth infections are associated with modulation of host cellular immune responses, presumably to prolong parasite survival within the mammalian host. This phenomenon is attributed, at least in part, to the elaboration of parasite molecules, including orthologs of host cytokines and receptors, at the host–parasite interface. This review describes recent progress in the characterization of macrophage migration inhibitory factor (MIF) orthologs from parasitic nematodes. The roles of these molecules in parasite developmental biology and pathogenesis are discussed. Further knowledge of the species-specific activities and three-dimensional structures of human and parasitic nematode MIF molecules should make them ideal targets for drug- and/or vaccine-based strategies aimed at nematode disease control. PMID:18603473

  5. Factors regulating microglia activation

    PubMed Central

    Kierdorf, Katrin; Prinz, Marco

    2013-01-01

    Microglia are resident macrophages of the central nervous system (CNS) that display high functional similarities to other tissue macrophages. However, it is especially important to create and maintain an intact tissue homeostasis to support the neuronal cells, which are very sensitive even to minor changes in their environment. The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly regulated by several intrinsic (e.g., Runx-1, Irf8, and Pu.1) and extrinsic factors (e.g., CD200, CX3CR1, and TREM2). Under physiological conditions, minor changes of those factors are sufficient to cause fatal dysregulation of microglial cell homeostasis and result in severe CNS pathologies. In this review, we discuss recent achievements that gave new insights into mechanisms that ensure microglia quiescence. PMID:23630462

  6. Co-existence of classical and alternative activation programs in macrophages responding to Toxoplasma gondii

    PubMed Central

    Patil, Veerupaxagouda; Zhao, Yanlin; Shah, Suhagi; Fox, Barbara A.; Rommereim, Leah M.; Bzik, David J.; Yap, George S.

    2013-01-01

    Pro-inflammatory M1 macrophages are critical for defense against intracellular pathogens while alternatively-activated M2 macrophages mediate tissue homeostasis and repair. Whether these distinct activation programs are mutually exclusive or can co-exist within the same cell is unclear. Here, we report the co-existence of these programs in Toxoplasma gondii-elicited inflammatory macrophages. This is independent of parasite expression of the virulence factor ROP16 and host cell expression of signal transducer and activator of transcription 6 (STAT6). Furthermore, this observation was recapitulated by IFN-γ and IL-4 treated bone marrow-derived macrophages in vitro. These results highlight the multi-functionality of macrophages as they respond to diverse microbial and endogenous stimuli. PMID:24083945

  7. Co-existence of classical and alternative activation programs in macrophages responding to Toxoplasma gondii.

    PubMed

    Patil, Veerupaxagouda; Zhao, Yanlin; Shah, Suhagi; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Yap, George S

    2014-02-01

    Pro-inflammatory M1 macrophages are critical for defense against intracellular pathogens while alternatively-activated M2 macrophages mediate tissue homeostasis and repair. Whether these distinct activation programs are mutually exclusive or can co-exist within the same cell is unclear. Here, we report the co-existence of these programs in Toxoplasma gondii-elicited inflammatory macrophages. This is independent of parasite expression of the virulence factor ROP16 and host cell expression of signal transducer and activator of transcription 6 (STAT6). Furthermore, this observation was recapitulated by IFN-γ and IL-4 treated bone marrow-derived macrophages in vitro. These results highlight the multi-functionality of macrophages as they respond to diverse microbial and endogenous stimuli. PMID:24083945

  8. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT).

    PubMed

    Petreaca, Melissa L; Yao, Min; Ware, Carl; Martins-Green, Manuela M

    2008-01-01

    Resolution of inflammation is critical for normal wound healing. Inflammation is prolonged and fails to resolve properly in chronic wounds. We used in vivo and in vitro approaches to show that vascular endothelial growth factor (VEGF) induces macrophage apoptosis and to delineate mechanisms involved in this process. VEGF inhibition during wound healing leads to an increased number of macrophages remaining in wounds, suggesting the involvement of VEGF in removal of these cells from the wound. If this effect has physiological relevance, it likely occurs via apoptosis. We show that VEGF increases apoptosis of macrophages in vitro using Annexin V-FITC staining and caspase activation. Microarray analysis, reverse transcription-polymerase chain reaction, and immunoblotting showed that VEGF increases the expression of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT) in macrophages. We also show that in macrophages LIGHT promotes apoptosis through the lymphotoxin beta receptor. Moreover, inhibition of LIGHT prevents VEGF-induced death, suggesting that LIGHT mediates VEGF-induced macrophage apoptosis. Taken together, our results identify a novel role for VEGF and for LIGHT in macrophage apoptosis during wound healing, an event critical in the resolution of inflammation. This finding may lead to the development of new strategies to improve resolution of inflammation in problematic wounds. PMID:19128255

  9. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens. PMID:26667172

  10. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis. PMID:26538237

  11. Unilamellar liposomes modulate secretion of tumor necrosis factor by lipopolysaccharide-stimulated macrophages.

    PubMed Central

    Brisseau, G F; Kresta, A; Schouten, D; Bohnen, J M; Shek, P N; Fok, E; Rotstein, O D

    1994-01-01

    Liposomal encapsulation of antimicrobial agents has been used to improve drug delivery, particularly against intracellular pathogens. The effect of unilamellar liposomes on macrophage activation in response to Escherichia coli lipopolysaccharide was examined. Liposomes caused a dose- and time-dependent inhibition of tumor necrosis factor release by lipopolysaccharide-treated cells. The accumulation of tumor necrosis factor mRNA transcripts was unaffected, suggesting a posttranscriptional mechanism for this effect. However, induction of macrophage procoagulant activity was unaffected by liposomes, indicating a selective rather than a global inhibition. These data suggest that liposomes used for drug delivery may modulate the host response to infection. Images PMID:7872768

  12. Functional characterization of the turkey macrophage migration inhibitory factor.

    PubMed

    Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A

    2016-08-01

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. PMID:27062968

  13. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. PMID:26852662

  14. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  15. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    PubMed

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury. PMID:26631474

  16. Troglitazone regulates peroxisome proliferator-activated receptors and inducible nitric oxide synthase in murine ovarian macrophages.

    PubMed

    Minge, Cadence E; Ryan, Natalie K; Van Der Hoek, Kylie H; Robker, Rebecca L; Norman, Robert J

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells. In mouse ovary, PPARG protein was expressed in granulosa cells and in isolated cells localized to theca, stroma, and corpora lutea, consistent with EMR1+ macrophages. Isolation of immune cells (EMR1+ or H2+) showed that Pparg and Ppara were expressed in ovarian macrophages at much higher levels than in peritoneal macrophages. Ovulatory human chorionic gonadotropin downregulated expression of Pparg and Ppara in EMR1+ ovarian macrophages, but no hormonal responsiveness was observed in H2+ cells. Downstream anti-inflammatory effects of PPARG activation were analyzed by in vitro treatment of isolated macrophages with troglitazone. Interleukin-1 beta (Il1b) expression was not altered, and tumor necrosis factor-alpha (Tnf) expression was affected in peritoneal macrophages only. In ovarian macrophages, inducible nitric oxide synthase (Nos2), an important proinflammatory enzyme that regulates ovulation, was significantly reduced by troglitazone treatment, an effect that was restricted to cells from the preovulatory ovary. Thus, expression of PPARs within ovarian macrophages is hormonally regulated, reflecting the changing roles of these cells during the ovulatory cycle. Additionally, ovarian macrophages respond directly to troglitazone to downregulate expression of proinflammatory Nos2, providing mechanistic information about ovarian effects of TZD treatment. PMID:16192401

  17. Granulocyte macrophage colony stimulating factor therapy for pulmonary alveolar proteinosis.

    PubMed

    Shende, Ruchira P; Sampat, Bhavin K; Prabhudesai, Pralhad; Kulkarni, Satish

    2013-03-01

    We report a case of 58 year old female diagnosed with Pulmonary Alveolar Proteinosis (PAP) with recurrence of PAP after 5 repeated whole lung lavage, responding to subcutaneous injections of Granulocyte Macrophage Colony Stimulating Factor therapy (GM-CSF). Thus indicating that GM-CSF therapy is a promising alternative in those requiring repeated whole lung lavage PMID:24475687

  18. Characterization of Neospora caninum macrophage migration inhibitory factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study is the first characterization of Neospora caninum macrophage migration inhibitory factor (NcMIF). BLAST-N analysis of NcMIF revealed high similarity (87%) to the Toxoplasma gondii MIF. NcMIF was cloned and expressed in Escherichia coli in three forms, NcMIF (mature protein), NcMI...

  19. Induction of classical activation of macrophage in vitro by water soluble chitin

    NASA Astrophysics Data System (ADS)

    Jeon, Dong-Won; Ahn, Woong Shick; You, Su Jung; Chae, Gue Tae; Shim, Young Bock; Chun, Heung Jae

    2012-12-01

    The purpose of this study is to understand the effect of chitin on macrophage mediated immunity, which is a significant factor to wound healing and tissue regeneration. In this work, water soluble chitin (WSC) was prepared by re-acetylation of chitosan and was treated with the murine RAW 264.7 macrophage cell lines (ATCC TIB-71). WSC induced classical activation in the RAW 264.7 cells, accompanied by the induction of associated genes. The results suggest that WSC is one of the functional chitin molecules that are responsible for the immune response, especially present in macrophage classical activation.

  20. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  1. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages

    PubMed Central

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H.; Enciso-Moreno, Jose A.; Hancock, Robert E. W.

    2015-01-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  2. Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized Unopsonized Escherichia coli

    PubMed Central

    Hamrick, Terri S.; Havell, Edward A.; Horton, John R.; Orndorff, Paul E.

    2000-01-01

    In an effort to better understand genetic and cellular factors that influence innate immunity, we examined host and bacterial factors involved in the nonopsonic phagocytosis and killing of Escherichia coli K-12 by mouse macrophages. Unelicited (resident) peritoneal macrophages from five different mouse strains, BALB/c, C57BL/6, CD-1, C3H/HeJ, and C3H/HeN, were employed. Additional macrophage populations were obtained from CD-1 mice (bone marrow-derived macrophages). Also, for BALB/c and C57BL/6 mice, peritoneal macrophages elicited with either thioglycolate or proteose peptone, bone marrow-derived macrophages, and macrophage-like cell lines derived from the two strains were employed. Two E. coli K-12 strains that differed specifically in their abilities to produce type 1 pili containing the adhesive protein FimH were examined. The parameters used to assess macrophage bacteriocidal activity were (i) the killing of internalized (gentamicin-protected) E. coli during the approximately 4-h assay and (ii) the initial rate at which internalized E. coli were eliminated. Data on these parameters allowed the following conclusions: (i) unelicited or proteose peptone-elicited peritoneal macrophages were significantly better at eliminating internalized bacteria than thioglycolate-elicited peritoneal macrophages, bone marrow-derived macrophages, or macrophage cell lines; (ii) the host genetic background had no significant effect upon the ability of unelicited peritoneal macrophages to kill E. coli (even though the mouse strains differ widely in their in vivo susceptibilities to bacterial infection); and (iii) the FimH phenotype had no significant effect upon E. coli survival once the bacterium was inside a macrophage. Additionally, there was no correlation between the bacteriocidal effectiveness of a macrophage population and the number of bacteria bound per macrophage. However, macrophage populations that were the least bacteriocidal tended to bind higher ratios of FimH+ to Fim

  3. Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity.

    PubMed Central

    McMahon, K A; Wilson, N J; Marks, D C; Beecroft, T L; Whitty, G A; Hamilton, J A; Csar, X F

    2001-01-01

    M1 myeloid cells transfected with the wild-type (WT) colony-stimulating factor-1 (CSF-1) receptor (CSF-1R; M1/WT cells) undergo CSF-1-dependent macrophage differentiation. By mutation studies, we have provided prior evidence that tyrosine 559 in the CSF-1R cytoplasmic domain governs the Src-dependent differentiation pathway. Further components of this pathway were then sought. We report that the extent of CSF-1-mediated tyrosine phosphorylation of protein phosphatase 2A (PP2A), and the associated loss of its activity were reduced in M1 cells transfected with the CSF-1R with a tyrosine-to-phenylalanine mutation at position 559 (M1/559 cells), compared with the corresponding responses in CSF-1-treated M1/WT cells. This evidence for an involvement of a reduction in PP2A activity in the differentiation process was supported by the restoration of the defect in the CSF-1-mediated differentiation of M1/559 cells by the addition of the PP2A inhibitor, okadaic acid. It was also found that the degree of activation of extracellular-signal-regulated kinase (ERK) activities by CSF-1 was reduced in M1/559 cells, suggesting their involvement in the differentiation process. These data suggest that PP2A and ERK form part of the Src-dependent signal-transduction cascade governing CSF-1-mediated macrophage differentiation in M1 cells. PMID:11513742

  4. Impaired activation of Stat1 and c-Jun as a possible defect in macrophages of patients with active tuberculosis.

    PubMed

    Esquivel-Solís, H; Quiñones-Falconi, F; Zarain-Herzberg, A; Amieva-Fernández, R I; López-Vidal, Y

    2009-10-01

    Studies of patients with active tuberculosis (TB) and infected healthy individuals have shown that interferon (IFN)-gamma is present in sites of Mycobacterium tuberculosis infection in comparable levels. This suggests that there is a deficiency in the macrophage response to IFN-gamma in TB patients. We used recombinant human IFN-gamma to stimulate adherent monocyte-derived macrophages from three groups of people: patients with active tuberculosis (TBP), their healthy household contacts (HHC) and healthy uninfected controls from the community (CC). We then evaluated the ability of the macrophages to inhibit the growth of M. tuberculosis H37Rv as well as their cytokine profile at early in infection (48 h). After IFN-gamma treatment, macrophages of healthy individuals (HHC and CC) controlled M. tuberculosis growth and produced mainly nitric oxide (NO) and interleukin (IL)-12p70, whereas TBP macrophages did not kill M. tuberculosis. Additionally, TBP macrophages produced low levels of NO and IL-12p70 and high levels of tumour necrosis factor (TNF)-alpha and IL-10. Transforming growth factor (TGF)-beta levels were similar among all three groups. M. tuberculosis infection had little effect on the cytokine response after IFN-gamma stimulus, but infection alone induced more IL-10 and TGF-beta in TBP macrophages. There were no differences in Stat1 nuclear translocation and DNA binding between the groups. However, the phosphorylated Stat1 and c-Jun (AP-1) in nuclear protein extracts was diminished in TBP macrophages compared to macrophages of healthy individuals. These results indicate an impairment of Stat1-dependent and Stat1-independent IFN-gamma signalling in macrophages of people with active tuberculosis, suggesting a different molecular regulation that could impact macrophage functionality and disease outcome. PMID:19737230

  5. Effect of lectins on mouse peritoneal macrophage phagocytic activity.

    PubMed

    Maldonado, G; Porras, F; Fernández, L; Vázquez, L; Zenteno, E

    1994-11-01

    We studied the in vitro ability of lectin-treated murine peritoneal macrophages to attach and phagocytize particulate antigens. Glucose and mannose specific lectins such as Con-A and lentil lectin, as well as complex lactosamine residues specific lectins, such as Phaseolus vulgaris var. cacahuate and Phaseolus coccineus var. alubia, increased the macrophage phagocytic activity towards heterologous erythrocytes, whereas peanut agglutinin, a galactose-specific lectin, diminished the macrophage phagocytic activity. These results suggest that a galactose-N-acetyl-D galactosamine-containing structure could participate as negative modulator of the phagocytic activity. PMID:7851961

  6. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  7. Effect of lipopolysaccharide on thymidine salvage as related to macrophage activation.

    PubMed Central

    Harada, Y; Nagao, S; Nakamura, M; Okada, F; Tanigawa, Y

    1995-01-01

    Lipopolysaccharide (LPS), known as one of the potent activators of macrophages, has inhibitory effects on the proliferation of normal macrophages and macrophage-like cell lines. We report here that LPS dose- and time-dependently suppressed the tritiated thymidine ([3H]TdR) incorporation into the acid-insoluble fraction with a significant inverse correlation to the tumour necrosis factor-alpha (TNF) production in the J774.1 macrophage cell line. Among the three tested enzymes involved in DNA synthesis, only thymidine kinase (TK) activity decreased progressively in parallel with the decline in [3H]TdR incorporation, reaching 97% inhibition within 12 hr of LPS treatment, while changes in the activities of other two enzymes, DNA polymerase alpha and thymidylate synthase (TS), were less significant. On the other hand, LPS inhibited the cell proliferation only incompletely, as judged by 62% inhibition of cell growth at 36 hr. Even in the experiments done in a TdR-free medium, cell growth was inhibited by LPS to the same extent, suggesting that TK was not directly involved in the proliferation of J774 cells. LPS also inhibited the conversion of TdR to thymidine monophosphate (TMP) in murine peritoneal exudate macrophages (PEM). Thus LPS-induced suppression of TdR salvage related to TNF production is common in both normal and neoplastic macrophages, and therefore may be of potential importance in the process of macrophage activation. PMID:7751001

  8. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  9. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  10. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk.

    PubMed

    Fullerton, Morgan D; Ford, Rebecca J; McGregor, Chelsea P; LeBlond, Nicholas D; Snider, Shayne A; Stypa, Stephanie A; Day, Emily A; Lhoták, Šárka; Schertzer, Jonathan D; Austin, Richard C; Kemp, Bruce E; Steinberg, Gregory R

    2015-05-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1(-/-)) mice. Macrophages from Ampk β1(-/-) mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1(-/-) macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1(-/-) macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  11. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    SciTech Connect

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  12. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    PubMed

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies. PMID:24722209

  13. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    PubMed

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV. PMID:26296370

  14. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  15. Uptake of exogenous free cholesterol induces upregulation of tissue factor expression in human monocyte-derived macrophages.

    PubMed Central

    Lesnik, P; Rouis, M; Skarlatos, S; Kruth, H S; Chapman, M J

    1992-01-01

    Lipid-laden macrophages present as foam cells may contribute to the hyperthrombotic state of human atherosclerotic lesions by the production of tissue factor (TF). We investigated the effect of exogenous nonlipoprotein cholesterol on the expression of TF by human monocyte-derived macrophages in culture. Nonlipoprotein cholesterol at 50 micrograms/ml increased TF activity 4-fold; TF induction was dose- and time-dependent. Expression of TF activity was positively correlated with the free cholesterol content of monocyte-derived macrophages, was increased upon inhibition of cholesterol esterification, and reflected de novo synthesis of TF protein. TF expression in cholesterol-loaded macrophages remained sensitive to stimulation (approximately 12-fold) by bacterial lipopolysaccharide, indicating that intracellular free cholesterol and lipopolysaccharide act by distinct mechanisms in inducing TF procoagulant activity. Our results suggest that loading human monocyte-derived macrophages with free cholesterol induces upregulation of TF expression, thereby contributing to thrombus formation at sites of plaque rupture. Images PMID:1438222

  16. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    PubMed

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  17. Methamphetamine inhibits Toll-like receptor 9-mediated anti-HIV activity in macrophages.

    PubMed

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin; Liang, Hao; Ho, Wen-Zhe

    2013-08-01

    Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  18. Adiponectin Regulates Vascular Endothelial Growth Factor-C Expression in Macrophages via Syk-ERK Pathway

    PubMed Central

    Hu, Di; Fukuhara, Atsunori; Miyata, Yugo; Yokoyama, Chieko; Otsuki, Michio; Kihara, Shinji; Shimomura, Iichiro

    2013-01-01

    Adiponectin is exclusively expressed in adipose tissues and exhibits protective effects against cardiovascular and metabolic diseases. It enhances AMP-activated kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα) signaling in the liver and skeletal muscles, however, its signaling pathways in macrophages remain to be elucidated. Here, we show that adiponectin upregulated the expression of vascular endothelial growth factor (VEGF)-C, and induced phosphorylation of extracellular signal-regulated kinase (ERK) in macrophages. Inhibition of Syk abrogated adiponectin-induced VEGF-C expression and ERK phosphorylation. Furthermore, inhibition of ERK blocked the induction of VEGF-C gene. Inhibition of Syk, but not that of ERK, abrogated adiponectin-induced expression of cyclooxygenase (COX)-2, tissue inhibitor of metalloproteinase (TIMP)-1, and interleukin (IL)-6. These results indicate that adiponectin regulates VEGF-C expression via Syk-ERK pathway in macrophages. PMID:23424645

  19. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    PubMed Central

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  20. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype.

    PubMed

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  1. Ginger extract inhibits LPS induced macrophage activation and function

    PubMed Central

    2008-01-01

    Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines) and RANTES, MCP-1 (pro inflammatory chemokines) production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation. PMID:18173849

  2. Macrophage Migration Inhibitory Factor in Clinical Kidney Disease

    PubMed Central

    Bruchfeld, Annette; Wendt, Mårten; Miller, Edmund J.

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine implicated in acute and chronic inflammatory conditions, including sepsis, autoimmune disease, atherogenesis, plaque instability, and pulmonary arterial hypertension. MIF in plasma and urine is significantly elevated in patients with acute kidney injury (AKI) and elevated MIF in serum is associated with markers of oxidative stress, endothelial dysfunction, arterial stiffness, and markers of myocardial damage in chronic kidney disease (CKD). Furthermore, MIF seems to be involved in vascular processes and cardiovascular disease associated with CKD, glomerulonephritis, autosomal dominant polycystic kidney disease, and possibly also in progression to renal failure. Moreover, in active anti-neutrophil cytoplasmatic antibody-associated vasculitis, plasma MIF levels have been shown to be significantly elevated as compared with samples from patients in remission. A significant difference in the genotype frequency of high production MIF -173 G/C genotype has been found in end-stage renal disease, compared to controls. Inhibition of MIF in a diabetic nephropathy model ameliorated blood glucose and albuminuria and in a model of adult polycystic kidney disease cyst growth was delayed. Preclinical studies support a potential therapeutic role for MIF in AKI and in a number of CKDs, whereas these data in human disease are still observational. Future interventional studies are needed to delineate the role of MIF as a treatment target in clinical kidney disease. PMID:26858715

  3. An integrated signal transduction network of macrophage migration inhibitory factor.

    PubMed

    Subbannayya, Tejaswini; Variar, Prathyaksha; Advani, Jayshree; Nair, Bipin; Shankar, Subramanian; Gowda, Harsha; Saussez, Sven; Chatterjee, Aditi; Prasad, T S Keshava

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath ( http://www.netpath.org ), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF. PMID:27139435

  4. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders.

    PubMed

    Rigante, Donato; Emmi, Giacomo; Fastiggi, Michele; Silvestri, Elena; Cantarini, Luca

    2015-08-01

    An overwhelming activation of cytotoxic T cells and well-differentiated macrophages leading to systemic overload of inflammatory mediators characterizes the so-called macrophage activation syndrome (MAS); this potentially life-threatening clinical entity may derive from several genetic defects involved in granule-mediated cytotoxicity but has been largely observed in patients with juvenile idiopathic arthritis, many rheumatologic diseases, infections, and malignancies. The occurrence of MAS in the natural history or as the revealing clue of monogenic autoinflammatory disorders (AIDs), rare conditions caused by disrupted innate immunity pathways with overblown release of proinflammatory cytokines, has been only reported in few isolated patients with cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome since 2001. All these patients displayed various clinical, laboratory, and histopathologic features of MAS and have often required intensive care support. Only one patient has died due to MAS. Defective cytotoxic cell function was documented in a minority of patients. Corticosteroids were the first-line treatment, but anakinra was clinically effective in three refractory cases. Even if MAS and AIDs share multiple clinical features as well as heterogeneous pathogenetic scenes and a potential response to anti-interleukin-1 targeted therapies, MAS requires a prompt specific recognition in the course of AIDs due to its profound severity and high mortality rate. PMID:25846831

  5. A Novel Allosteric Inhibitor of Macrophage Migration Inhibitory Factor (MIF)*

    PubMed Central

    Bai, Fengwei; Asojo, Oluwatoyin A.; Cirillo, Pier; Ciustea, Mihai; Ledizet, Michel; Aristoff, Paul A.; Leng, Lin; Koski, Raymond A.; Powell, Thomas J.; Bucala, Richard; Anthony, Karen G.

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases. PMID:22782901

  6. High salt primes a specific activation state of macrophages, M(Na).

    PubMed

    Zhang, Wu-Chang; Zheng, Xiao-Jun; Du, Lin-Juan; Sun, Jian-Yong; Shen, Zhu-Xia; Shi, Chaoji; Sun, Shuyang; Zhang, Zhiyuan; Chen, Xiao-Qing; Qin, Mu; Liu, Xu; Tao, Jun; Jia, Lijun; Fan, Heng-Yu; Zhou, Bin; Yu, Ying; Ying, Hao; Hui, Lijian; Liu, Xiaolong; Yi, Xianghua; Liu, Xiaojing; Zhang, Lanjing; Duan, Sheng-Zhong

    2015-08-01

    High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na). PMID:26206316

  7. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect.

    PubMed

    Jeong, Hye-yun; Kang, Wan Seok; Hong, Moon Hwa; Jeong, Hae Chang; Shin, Myun-Geun; Jeong, Myung Ho; Kim, Yong Sook; Ahn, Youngkeun

    2015-01-01

    Macrophages are actively involved in inflammatory responses during the progression of cardiac injury, including myocardial infarction (MI). A previous study showed that 5-azacytidine (5AZ), a DNA methylation inhibitor, can ameliorate cardiac injury by shifting macrophages toward an anti-inflammatory phenotype via iNOS inhibition. Here, we show that the beneficial effect of 5AZ is associated with sumoylation of interferon regulatory factor-1 (IRF1) in macrophages. IRF1 is a critical transcription factor for iNOS induction and is antagonized by IRF2. In the stimulated macrophages, IRF1 accumulated in the nucleus without degradation by 5AZ treatment. In animal study, 5AZ administration resulted in significant improvements in cardiac function and fibrosis. IRF1-expressing macrophages were more abundant in the 5AZ-treated MI group than in the PBS-treated MI group. Because sumoylated IRF1 is known to mimic IRF2, we examined the IRF1 sumoylation. Sumoylated IRF1 was resistant to degradation and significantly increased in the 5AZ-treated MI group. Collectively, 5AZ had a protective effect after MI by potentiation of IRF1 sumoylation and is suggested as a novel therapeutic intervention for cardiac repair. PMID:26510961

  8. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect

    PubMed Central

    Jeong, Hye-yun; Kang, Wan Seok; Hong, Moon Hwa; Jeong, Hae Chang; Shin, Myun-Geun; Jeong, Myung Ho; Kim, Yong Sook; Ahn, Youngkeun

    2015-01-01

    Macrophages are actively involved in inflammatory responses during the progression of cardiac injury, including myocardial infarction (MI). A previous study showed that 5-azacytidine (5AZ), a DNA methylation inhibitor, can ameliorate cardiac injury by shifting macrophages toward an anti-inflammatory phenotype via iNOS inhibition. Here, we show that the beneficial effect of 5AZ is associated with sumoylation of interferon regulatory factor-1 (IRF1) in macrophages. IRF1 is a critical transcription factor for iNOS induction and is antagonized by IRF2. In the stimulated macrophages, IRF1 accumulated in the nucleus without degradation by 5AZ treatment. In animal study, 5AZ administration resulted in significant improvements in cardiac function and fibrosis. IRF1-expressing macrophages were more abundant in the 5AZ-treated MI group than in the PBS-treated MI group. Because sumoylated IRF1 is known to mimic IRF2, we examined the IRF1 sumoylation. Sumoylated IRF1 was resistant to degradation and significantly increased in the 5AZ-treated MI group. Collectively, 5AZ had a protective effect after MI by potentiation of IRF1 sumoylation and is suggested as a novel therapeutic intervention for cardiac repair. PMID:26510961

  9. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation.

    PubMed

    McMahan, Ryan S; Birkland, Timothy P; Smigiel, Kate S; Vandivort, Tyler C; Rohani, Maryam G; Manicone, Anne M; McGuire, John K; Gharib, Sina A; Parks, William C

    2016-08-01

    Several members of the matrix metalloproteinase (MMP) family control a range of immune processes, such as leukocyte influx and chemokine activity. Stromelysin-2 (MMP10) is expressed by macrophages in numerous tissues after injury; however, little is known of its function. In this study, we report that MMP10 is expressed by macrophages in human lungs from patients with cystic fibrosis and induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by isolated resident alveolar and bone marrow-derived macrophages (BMDM). Our data indicates that macrophage MMP10 serves a beneficial function in response to acute infection. Whereas wild-type mice survived infection with minimal morbidity, 50% of Mmp10(-/-) mice died and all showed sustained weight loss (morbidity). Although bacterial clearance and neutrophil influx did not differ between genotypes, macrophage numbers were ∼3-fold greater in infected Mmp10(-/-) lungs than in wild-types. Adoptive transfer of wild-type BMDM normalized infection-induced morbidity in Mmp10(-/-) recipients to wild-type levels, demonstrating that the protective effect of MMP10 was due to its production by macrophages. Both in vivo and in cultured alveolar macrophages and BMDM, expression of several M1 macrophage markers was elevated, whereas M2 markers were reduced in Mmp10(-/-) tissue and cells. Global gene expression analysis revealed that infection-mediated transcriptional changes persisted in Mmp10(-/-) BMDM long after they were downregulated in wild-type cells. These results indicate that MMP10 serves a beneficial role in response to acute infection by moderating the proinflammatory response of resident and infiltrating macrophages. PMID:27316687

  10. Macrophage activation and migration in interface tissue around loosening total hip arthroplasty components.

    PubMed

    Ishiguro, N; Kojima, T; Ito, T; Saga, S; Anma, H; Kurokouchi, K; Iwahori, Y; Iwase, T; Iwata, H

    1997-06-01

    The bone-cement interface tissue of failed total hip arthroplasty (THA) has inflammatory characteristics, such as the presence of prostaglandin E2 and interleukin 1 (IL-1). We considered that the bone-cement interface tissue could be the site of granulomatous inflammation caused by a foreign-body reaction. It has been demonstrated that inflammatory cytokines and chemokines have an important role in granulomatous inflammation. Bone-cement interface tissue was obtained at revision from nine patients with failed cemented THA, and the role of macrophages was assessed by immunohistochemistry, electron microscopy, and molecular biological techniques. We used the reverse-transcriptional polymerase chain reaction to examine the expression of mRNA for IL-1 alpha, IL-1 beta, tumor necrosis factor alpha (TNF alpha), macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, IL-8, and monocyte chemoattractant protein. Polyethylene debris surrounded by macrophages and phagocytosis of debris by macrophages was frequently observed in the interface tissue. Macrophage activation and the production of inflammatory cytokines such as IL-1 and TNF alpha might induce the development of interface tissue. Expression of chemokine mRNAs was also commonly seen, suggesting that this led to recruitment of macrophages into the bone-cement interface tissue. Debris released from implants appears to cause activation of macrophages and the production of inflammatory cytokines and chemokines that induce cellular recruitment into interface tissue. This mechanism might form a vicious cycle that aggravates THA loosening. PMID:9138074

  11. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  12. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  13. Elimination of Leishmania donovani amastigotes by activated macrophages.

    PubMed Central

    Haidaris, C G; Bonventre, P F

    1981-01-01

    Tissue macrophages are the obligatory host cells for Leishmania donovani, the causative agent of visceral leishmaniasis. In this study we sought to determine whether activated macrophages, as defined by the functional criterion of tumor cell cytotoxicity, were also able to exert a microbicidal effect on ingested L. donovani amastigotes. We found that mouse peritoneal macrophages activated by a variety of means exerted a cytotoxic effect on tumor cell targets but were not able to kill L. donovani amastigotes unless the infected macrophages were exposed continually to an activating stimulus. Corynebacterium parvum, Mycobacterium tuberculosis H37Ra, and lymphokine-activated peritoneal macrophages from C57BL/6J mice were cytotoxic for EMT6 tumor cell targets. However, L. donovani Sudan strain 1S amastigotes were not killed by these macrophages unless the activated state was maintained by daily addition of lymphokine to the infected monolayers for several days postinfection. The killing of amastigotes was dependent on the time of exposure to lymphokine, as well as on the concentration of lymphokine added to the culture. Images PMID:7287190

  14. Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage.

    PubMed

    Zhang, Heng; Zhai, Zhenhua; Zhou, Hongyu; Li, Yao; Li, Xiaojie; Lin, Yuhan; Li, Weihong; Shi, Yueping; Zhou, Ming-Sheng

    2015-01-01

    Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor α (TNFα, 160%) and interleukin (IL) 1β (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-IκBα/IκBα in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-IκBα/IκBα. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NFκB pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases. PMID:26576421

  15. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74.

    PubMed

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M; Zok, Stephanie; Klaener, Ole; Braun, Gerald S; Lindenmeyer, Maja T; Cohen, Clemens D; Bucala, Richard; Tittel, Andre P; Kurts, Christian; Moeller, Marcus J; Floege, Juergen; Ostendorf, Tammo; Bernhagen, Jürgen; Boor, Peter

    2016-06-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  16. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  17. Evaluation of macrophage antiviral activity in patients affected by neoplasia.

    PubMed

    Merendino, R A; Iannello, D; Arena, A; Bonina, L; Greco, V; Mesiti, M; Chillemi, S; Mastroeni, P

    1988-01-01

    The intrinsic antiviral activity of macrophages has been studied in healthy donors and in patients affected by breast cancer and melanoma. In vitro differentiated macrophages from blood-derived monocytes were infected with measles virus, herpes simplex virus type 2 and adenovirus 17. The challenge was carried out with different multiplicities of infection and the synthesis of virus was tested by evaluating the single cycle growth curve in 24 h. The results obtained show that the restriction of virus infectivity by macrophages is strongly influenced by the multiplicity of infection. This was particularly evident with the adenovirus 17. Moreover, macrophages from patients with melanoma and breast cancer showed an impairment of the intrinsic antiviral activity in comparison with normal subjects. PMID:2842553

  18. Macrophages require different nucleoside transport systems for proliferation and activation.

    PubMed

    Soler, C; García-Manteiga, J; Valdés, R; Xaus, J; Comalada, M; Casado, F J; Pastor-Anglada, M; Celada, A; Felipe, A

    2001-09-01

    To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation. PMID:11532978

  19. Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: an AP1 complex and an Sp1-related complex transactivate the promoter activity that is suppressed by a YY1 complex.

    PubMed Central

    Ye, J; Zhang, X; Dong, Z

    1996-01-01

    It is well documented that a repeated CATT element in the human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoter is required for promoter activity. However, the transcription factors that are able to transactivate this enhancer element remain unidentified. Recently, we have found that nuclear factor YY1 can interact with the enhancer element. Here, we report that in addition to YY1, two other nuclear factors have been identified in the DNA-protein complexes formed by the CATT oligonucleotide and the Jurkat T-cell nuclear protein. One of these factors is AP1, and the other one is an Sp1-related protein. Results from transient transfection of Jurkat T cells have revealed that formation of both AP1 and the Sp1-related complex is required for the full enhancer activity of the CATT element. This result is supported by cotransfection of a c-jun expression vector and mutational analysis of the AP1 site or the Sp1-related protein binding site. In contrast, formation of the YY1 complex suppresses enhancer activity, since deletion of the YY1 complex induces an augmentation of the enhancer activity and overexpression of YY1 results in an attenuation of the enhancer activity. Results from the mechanism study have revealed that YY1 is able to inhibit transactivation mediated by either AP1 or the Sp1-related protein, and YY1 suppressive activity is DNA binding dependent. Taken together, these data support the ideas that AP1 and the Sp1-related nuclear protein are required for transactivation of the human GM-CSF gene promoter and that YY1 can suppress transactivation of the promoter even under inducible conditions. PMID:8524292

  20. Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity

    PubMed Central

    2014-01-01

    Background Water soluble cinnamon extract has been shown to increase insulin sensitivity and modulate macrophage activation, a desirable trait for the management of obesity or atherosclerosis. Our present study investigated whether cinnamon water extract (CWE) may influence the differentiation of monocytes into macrophages and the activity of macrophage scavenger receptors, commonly observed in atherosclerotic lesions. Methods We investigated the effect of CWE on the expression of various surface markers and the uptake of acetylated low density lipoprotein (LDL) in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. The protein levels of PMA or macrophage-colony stimulating factor (M-CSF)-stimulated type 1 macrophage scavenger receptor (SRA) were analyzed. Finally, the role of extracellar signal-related kinase (ERK) 1/2 in SRA synthesis and the effect of CWE on PMA-stimulated ERK1/2 were determined. Results CWE inhibited the differentiation of monocyte by decreasing the expression of CD11b, CD36 and SRA and the uptake of acetyl LDL. CWE suppressed the upregulation of SRA by M-CSF and modulated ERK1/2 activity, which was required for PMA-induced SRA synthesis. Conclusions Our results demonstrate that CWE was able to interfere with monocyte differentiation and macrophage scavenger activity, indicating its potential in preventing the development of atherosclerotic lesions. PMID:24602512

  1. The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function.

    PubMed

    Costello, Derek A; Keenan, Kathryn; McManus, Róisín M; Falvey, Aidan; Lynch, Marina A

    2016-07-01

    The impact of infiltration of macrophages into the brain is debatable with evidence of both beneficial and detrimental effects. Recent work suggests that inflammatory macrophages, with an inflammatory phenotype that resembles the M1 activation state, may be detrimental, whereas anti-inflammatory M2-like macrophages may be beneficial. We set up a model to examine the response of bone marrow-derived macrophages to the inflammatory milieu that occurs in the aged brain. Expression of MHCII and CD40 was increased in macrophages incubated with soluble brain extract prepared from aged, compared with young, mice and this was accompanied by increased production of tumor necrosis factor-α and interleukin-6. Analysis of soluble brain extract indicated that it contained increased concentrations of several inflammatory mediators and, importantly, when bone marrow-derived macrophages were incubated in the inflammatory cytokines that were increased and applied to hippocampal slices, long-term potentiation was inhibited. The data suggest that infiltrating macrophages respond to local conditions and, in the case of aging, adopt an inflammatory phenotype that ultimately has a neurodetrimental effect. PMID:27255823

  2. Differences in angiogenic potential of classically vs alternatively activated macrophages.

    PubMed

    Kodelja, V; Müller, C; Tenorio, S; Schebesch, C; Orfanos, C E; Goerdt, S

    1997-11-01

    Macrophages (M phi) are important for angiogenesis during inflammation, wound repair, and tumor growth. However, well-characterized M phi subsets such as IFN-gamma-induced, classically activated (ca) M phi or IL-4/glucocorticoid-induced, alternatively activated (aa) M phi have not been thoroughly examined for a positive or negative association with angiogenesis. While caM phi populate early inflammatory reactions and high-turnover granulomas, aaM phi occur in healing wounds and chronic inflammation. In contrast to caM phi-dominated lesions, aaM phi-rich lesions are highly vascularized. In order to determine their angiogenic potential in vitro, these M phi subsets as well as unstimulated control macrophages (coM phi) were analyzed by RT-PCR for mRNA expression of 10 angiogenic factors after 3 and 6 days of culture. Early during activation, caM phi and coM phi expressed equal levels of 8 of 10 angiogenic factors (PDGF-A, MK, TNF-alpha, TGF-beta 1, PDGF-B, HGF, TGF-alpha, IGF-1), while aaM phi showed expression of only 4 of these factors (TGF-beta 1, PDGF-B, HGF, GF-1). After maturation, TGF-alpha and IGF-1 showed a shift in mRNA expression from caM phi to aaM phi resulting in a considerably enhanced expression of these factors in day-6 aaM phi as compared to day-6 caM phi and coM phi while PDGF-A, MK, and TNF-alpha remained suppressed in day 6 aaM phi. In all M phi subsets including controls, mRNA expression of aFGF and bFGF was minimal or absent while TGFG-beta 1, HGF, and ODGF-B were constitutively expressed. In order to functionally integrate angiogenic factor mRNA expression profiles, mitogenic activity of M phi subsets towards microvascular endothelium was assessed by cocultivation. Coculture experiments revealed that endothelial proliferation induced by aaM phi was 3.0-3.5x higher than induced by caM phi. In conclusion, mature aaM phi are well equipped to play an important role in protracted M phi-associated angiogenic processes. Presumably due to expression of

  3. Secretion of macrophage urokinase plasminogen activator is dependent on proteoglycans.

    PubMed

    Pejler, Gunnar; Winberg, Jan-Olof; Vuong, Tram T; Henningsson, Frida; Uhlin-Hansen, Lars; Kimata, Koji; Kolset, Svein O

    2003-10-01

    The importance of proteoglycans for secretion of proteolytic enzymes was studied in the murine macrophage cell line J774. Untreated or 4beta-phorbol 12-myristate 13-acetate (PMA)-stimulated macrophages were treated with hexyl-beta-d-thioxyloside to interfere with the attachment of glycosaminoglycan chains to their respective protein cores. Activation of the J774 macrophages with PMA resulted in increased secretion of trypsin-like serine proteinase activity. This activity was completely inhibited by plasminogen activator inhibitor 1 and by amiloride, identifying the activity as urokinase plasminogen activator (uPA). Treatment of both the unstimulated or PMA-stimulated macrophages with xyloside resulted in decreased uPA activity and Western blotting analysis revealed an almost complete absence of secreted uPA protein after xyloside treatment of either control- or PMA-treated cells. Zymography analyses with gels containing both gelatin and plasminogen confirmed these findings. The xyloside treatment did not reduce the mRNA levels for uPA, indicating that the effect was at the post-translational level. Treatment of the macrophages with xylosides did also reduce the levels of secreted matrix metalloproteinase 9. Taken together, these findings indicate a role for proteoglycans in the secretion of uPA and MMP-9. PMID:14511379

  4. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  5. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    PubMed

    Ball, Michael S; Shipman, Emilie P; Kim, Hyunjung; Liby, Karen T; Pioli, Patricia A

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  6. Update on the role of alternatively activated macrophages in asthma

    PubMed Central

    Jiang, Zhilong; Zhu, Lei

    2016-01-01

    Lung macrophages link innate and adaptive immune responses during allergic airway inflammatory responses. Alveolar macrophages (AMs) and interstitial macrophages are two different phenotypes that differentially exert immunological function under physiological and pathological conditions. Exposure to pathogen induces polarization of AM cells into classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells). M1 cells dominantly express proinflammatory cytokines such as TNF-α and IL-1 β and induce lung inflammation and tissue damage. M2 cells are further divided into M2a and M2c subsets. M2a cells dominantly produce allergic cytokines IL-4 and IL-13, but M2c cells dominantly produce anti-inflammatory cytokine IL-10. M2a and M2c cells are differently involved in initiation, inflammation resolution, and tissue remodeling in the different stages of asthma. Microenvironment dynamically influences polarization of AM cells. Cytokines, chemokines, and immune-regulatory cells interplay and affect the balance between the polarization of M1 and M2 cells, subsequently influencing disease progression. Thus, modulation of AM phenotypes through molecular intervention has therapeutic potential in the treatment of asthma and other allergic inflammatory diseases. This review updated recent advances in polarization and functional specialization of these macrophage subtypes with emphasis on modulation of polarization of M2 cells in asthma of human subjects and animal models. PMID:27350756

  7. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  8. Forced Activation of Notch in Macrophages Represses Tumor Growth by Upregulating miR-125a and Disabling Tumor-Associated Macrophages.

    PubMed

    Zhao, Jun-Long; Huang, Fei; He, Fei; Gao, Chun-Chen; Liang, Shi-Qian; Ma, Peng-Fei; Dong, Guang-Ying; Han, Hua; Qin, Hong-Yan

    2016-03-15

    Tumor-associated macrophages (TAM) contribute greatly to hallmarks of cancer. Notch blockade was shown to arrest TAM differentiation, but the precise role and underlying mechanisms require elucidation. In this study, we employed a transgenic mouse model in which the Notch1 intracellular domain (NIC) is activated conditionally to define the effects of active Notch1 signaling in macrophages. NIC overexpression had no effect on TAM differentiation, but it abrogated TAM function, leading to repressed growth of transplanted tumors. Macrophage miRNA profiling identified a novel downstream mediator of Notch signaling, miR-125a, which was upregulated through an RBP-J-binding site at the first intronic enhancer of the host gene Spaca6A. miR-125a functioned downstream of Notch signaling to reciprocally influence polarization of M1 and M2 macrophages by regulating factor inhibiting hypoxia inducible factor-1α and IRF4, respectively. Notably, macrophages transfected with miR-125a mimetics increased phagocytic activity and repressed tumor growth by remodeling the immune microenvironment. We also identified a positive feedback loop for miR-125a expression mediated by RYBP and YY1. Taken together, our results showed that Notch signaling not only supported the differentiation of TAM but also antagonized their protumorigenic function through miR-125a. Targeting this miRNA may reprogram macrophages in the tumor microenvironment and restore their antitumor potential. PMID:26759236

  9. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  10. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling.

    PubMed

    Zhang, Dong-mei; Bao, Yong-Li; Yu, Chun-Lei; Wang, Yi-meng; Song, Zhen-Bo

    2016-02-01

    Cripto-1 is an oncogenic protein belonging to the epidermal growth factor–Cripto-1/FRL-1/Cryptic family. It has important roles in tumor formation and metastasis, but its effects on the immune system are unclear. In the present study, we investigated the effects of Cripto-1 overexpression on macrophage activities and examined the underlying mechanisms. A cell line stably overexpressing Cripto-1 was developed. The culture supernatant from this cell line was collected and used to condition macrophages (RAW264.7, THP-1, and primary mouse macrophages) for various times. Exposure to this supernatant significantly increased the mRNA and protein expression levels of the anti-inflammatory cytokine interleukin (IL)-10 and of three pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-1β), but did not affect the expression of transforming growth factor-β, another anti-inflammatory cytokine. Exposure to this supernatant also enhanced macrophage phagocytosis of chicken erythrocytes and yeast cells. Similar effects were observed in macrophages stimulated with purified Cripto-1 protein. Mechanistic experiments revealed that Cripto-1 activated nuclear factor (NF)-κB signaling by inducing IκB kinase phosphorylation and p65 nuclear translocation. Pretreatment with ammonium pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, inhibited Cripto-1-induced cytokine secretion and phagocytosis of macrophages. Taken together, our present findings suggest that Cripto-1 enhances macrophage phagocytic activity and upregulates the production of anti- and pro-inflammatory cytokines via the NF-κB signaling pathway. PMID:26476731

  11. beta-Lapachone reduces endotoxin-induced macrophage activation and lung edema and mortality.

    PubMed

    Tzeng, Huei-Ping; Ho, Feng-Ming; Chao, Kuo-Fang; Kuo, Min-Liang; Lin-Shiau, Shoei-Yn; Liu, Shing-Hwa

    2003-07-01

    beta-Lapachone, a 1,2-naphthoquinone, is a novel chemotherapeutic agent. It has been shown to be capable of suppressing inducible nitric oxide synthase expression and function in rat alveolar macrophages. The authors further performed experiments to examine the molecular mechanism of beta-lapachone on LPS-induced responses in rat alveolar macrophages and to evaluate its in vivo antiinflammatory effect. A significant increase in nitrite production and inducible nitric oxide synthase expression was elicited in macrophages treated with LPS that was inhibited by coincubation with beta-lapachone. beta-Lapachone could also inhibit the production of tumor necrosis factor-alpha induced by LPS. LPS induces protein tyrosine phosphorylation and nuclear factor-kappaB binding activity by gel mobility shift assay in macrophages. These events were significantly inhibited by beta-lapachone. Furthermore, beta-lapachone in vivo protected against the induction of lung edema, lung-inducible nitric oxide synthase protein expression and nuclear factor-kappaB activation, lethality, and increased plasma nitrite and serum tumor necrosis factor-alpha levels induced by LPS. These results indicate that beta-lapachone suppresses inducible nitric oxide synthase induction and tumor necrosis factor-alpha production mediated by the inhibition of protein tyrosine phosphorylation and nuclear factor-kappaB activation caused by LPS. This results in a beneficial effect in an animal model of sepsis. PMID:12724123

  12. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis

    PubMed Central

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  13. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis.

    PubMed

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-07-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  14. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis

    PubMed Central

    Heinrichs, Daniel; Berres, Marie-Luise; Coeuru, Melanie; Knauel, Meike; Nellen, Andreas; Fischer, Petra; Philippeit, Claudia; Bucala, Richard; Trautwein, Christian; Wasmuth, Hermann E.; Bernhagen, Jürgen

    2014-01-01

    , P., Philippeit, C., Bucala, R., Trautwein, C., Wasmuth, H. E., Bernhagen, J. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. PMID:25122558

  15. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages.

    PubMed

    Pastore, Nunzia; Brady, Owen A; Diab, Heba I; Martina, José A; Sun, Lu; Huynh, Tuong; Lim, Jeong-A; Zare, Hossein; Raben, Nina; Ballabio, Andrea; Puertollano, Rosa

    2016-08-01

    The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response. PMID:27171064

  16. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  17. Differential regulation of early response genes and cell proliferation through the human granulocyte macrophage colony-stimulating factor receptor: selective activation of the c-fos promoter by genistein.

    PubMed Central

    Watanabe, S; Muto, A; Yokota, T; Miyajima, A; Arai, K

    1993-01-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) binds to the high-affinity GM-CSF receptor (GMR) consisting of alpha and beta subunits and induces rapid tyrosine phosphorylation, activation of early response genes, and proliferation of hematopoietic cells. The alpha subunit is the primary cytokine binding component and the beta subunit is required for high-affinity binding as well as for signal transduction. Using tyrosine kinase inhibitors and cytoplasmic deletion mutants of the beta subunit, we obtained evidence that there are at least two distinct pathways downstream of the GMR in BA/F3 cell, one which is essential for proliferation, leads to the c-myc gene activation, and is sensitive to herbimycin and genistein. Activation of this pathway depends on the cytoplasmic region between amino acid positions 455 and 517 of the beta subunit. The second pathway, which leads to activation of c-fos and c-jun genes, is only partially sensitive to herbimycin, is resistant to genistein and depends on the region between amino acid positions 626 and 763 of the beta subunit. Unexpectedly, the c-fos mRNA induction was augmented by genistein. The enhanced expression of c-fos mRNA by genistein also occurred with stimulation with cAMP, PMA, or EGF in NIH3T3 cells. It thus seems likely that genistein affects a common pathway downstream of these signals. Images PMID:8298195

  18. Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor

    PubMed Central

    Gow, Deborah J; Sauter, Kristin A; Pridans, Clare; Moffat, Lindsey; Sehgal, Anuj; Stutchfield, Ben M; Raza, Sobia; Beard, Philippa M; Tsai, Yi Ting; Bainbridge, Graeme; Boner, Pamela L; Fici, Greg; Garcia-Tapia, David; Martin, Roger A; Oliphant, Theodore; Shelly, John A; Tiwari, Raksha; Wilson, Thomas L; Smith, Lee B; Mabbott, Neil A; Hume, David A

    2014-01-01

    We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule. PMID:24962162

  19. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-01-01

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated). PMID:26287131

  20. Carbon Nanotube-Induced Pulmonary Granulomatous Disease: Twist1 and Alveolar Macrophage M1 Activation

    PubMed Central

    Barna, Barbara P.; Huizar, Isham; Malur, Anagha; McPeek, Matthew; Marshall, Irene; Jacob, Mark; Dobbs, Larry; Kavuru, Mani S.; Thomassen, Mary Jane

    2013-01-01

    Sarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation. To address this hypothesis, wild-type and macrophage-specific peroxisome proliferator-activated receptor gamma (PPARγ) knock out mice were given oropharyngeal instillation of multiwall carbon nanotubes (MWCNT). BAL cells obtained 60 days later exhibited significantly elevated Twist1 mRNA expression in granuloma-bearing wild-type or PPARγ knock out alveolar macrophages compared to sham controls. Overall, Twist1 expression levels in PPARγ knock out mice were higher than those of wild-type. Concurrently, BAL cells obtained from sarcoidosis patients and healthy controls validated gene array data: qPCR and protein analysis showed significantly elevated Twist1 in sarcoidosis compared to healthy controls. In vitro studies of alveolar macrophages from healthy controls indicated that Twist1 was inducible by classical (M1) macrophage activation stimuli (LPS, TNFα) but not by IL-4, an inducer of alternative (M2) macrophage activation. Findings suggest that Twist1 represents a PPARγ-sensitive alveolar macrophage M1 biomarker which is induced by inflammatory granulomatous disease in the MWCNT model and in human sarcoidosis. PMID:24322444

  1. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  2. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies

  3. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages

    PubMed Central

    Zhang, Yan; Choksi, Swati; Chen, Kun; Pobezinskaya, Yelena; Linnoila, Ilona; Liu, Zheng-Gang

    2013-01-01

    Differentiation to different types of macrophages determines their distinct functions. Tumor-associated macrophages (TAMs) promote tumorigenesis owing to their proangiogenic and immune-suppressive functions similar to those of alternatively activated (M2) macrophages. We report that reactive oxygen species (ROS) production is critical for macrophage differentiation and that inhibition of superoxide (O2−) production specifically blocks the differentiation of M2 macrophages. We found that when monocytes are triggered to differentiate, O2− is generated and is needed for the biphasic ERK activation, which is critical for macrophage differentiation. We demonstrated that ROS elimination by butylated hydroxyanisole (BHA) and other ROS inhibitors blocks macrophage differentiation. However, the inhibitory effect of ROS elimination on macrophage differentiation is overcome when cells are polarized to classically activated (M1), but not M2, macrophages. More importantly, the continuous administration of the ROS inhibitor BHA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models. Targeting TAMs by blocking ROS can be a potentially effective method for cancer treatment. PMID:23752925

  4. Innate immunity and monocyte-macrophage activation in atherosclerosis

    PubMed Central

    2011-01-01

    Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review. PMID:21526997

  5. Fine-tuning of macrophage activation using synthetic rocaglate derivatives

    PubMed Central

    Bhattacharya, Bidisha; Chatterjee, Sujoy; Devine, William G.; Kobzik, Lester; Beeler, Aaron B.; Porco, John A.; Kramnik, Igor

    2016-01-01

    Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource. PMID:27086720

  6. Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and partial characterization.

    PubMed Central

    Merrill, W W; Naegel, G P; Matthay, R A; Reynolds, H Y

    1980-01-01

    Alveolar macrophages are the initial phagocytic cells that encounter foreign material and particulates deposited in the terminal airways. We have examined a mechanism by which these cells, after phagocytic challenge, may control or amplify the inflammatory response in lung parenchyma. Normal human alveolar macrophages (AM) were studied from eight subjects. With in vitro culture, AM produced and released two substances into culture media which have potent chemoattractant activity for blood polymorphonuclear granulocytes (PMN) and negligible activity for mononuclear cells. Release of these factors is maximally stimulated by aggregated human immunoglobulin (Ig)G or zymosan particles; however, simple adhesion of the macrophages to plastic surfaces is also sufficient to stimulate release of these chemotactic substances. The larger substance (10,000 daltons) is immunologically distinct from C5a and interacts with a different PMN membrane receptor than that known to exist for formyl-methionyl-leucyl-phenylalanine. Its chemotactic activity is sensitive to the enzymatic effect of trypsin. Although producing a single elution peak on gelfiltration chromatography, electrofocusing in polyacrylamide gels yielded five peaks of radioactivity. Chemotactic activity was localized to a fraction with a pI = 5.0. The smaller molecular weight substance has been less well characterized. Thus, the human AM can produce at least two factors which attract PMN and this capability may augment the local inflammatory response in the lung. PMID:7356678

  7. Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells.

    PubMed

    Maeda, Reiko; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji

    2012-01-01

    Polysaccharides were extracted from Caulerpa lentillifera by treating with water and then purified by size-exclusion chromatography. The purified polysaccharides, termed SP1, were found to be sulfated xylogalactans with a molecular mass of more than 100 kDa. Adding SP1 to murine macrophage RAW 264.7 cells increased the production of nitric oxide (NO) in a dose-dependent manner. NO was found by immunoblotting and RT-PCR analyses to be synthesized by an inducible NO synthase. SP1 caused the degradation of IκB-α and the nuclear translocation of nuclear factor (NF)-κB subunit p65 in macrophage cells. SP1 also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results demonstrate that SP1 activated macrophage cells via both the NF-κB and p38 MAPK signaling pathways. Moreover, SP1 increased the expression of various genes encoding cytokines, and the phagocytic activity of macrophage cells. These combined results show that SP1 immunostimulated the activity of macrophage cells. PMID:22451391

  8. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage.

    PubMed

    Wang, Naizhen; Gates, Khalilah L; Trejo, Humberto; Favoreto, Silvio; Schleimer, Robert P; Sznajder, Jacob I; Beitel, Greg J; Sporn, Peter H S

    2010-07-01

    Elevated blood and tissue CO(2), or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated P(CO2) on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-kappaB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-beta, which do not require NF-kappaB. Notably, hypercapnia did not affect LPS-induced degradation of IkappaB alpha, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated P(CO2) also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease. PMID:20181940

  9. Amyloid fibril formation by macrophage migration inhibitory factor

    SciTech Connect

    Lashuel, Hilal A. . E-mail: hilal.lashuel@epfl.ch; Aljabari, Bayan; Sigurdsson, Einar M.; Metz, Christine N.; Leng Lin; Callaway, David J.E.; Bucala, Richard

    2005-12-16

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.

  10. Oxygen tension limits nitric oxide synthesis by activated macrophages.

    PubMed Central

    McCormick, C C; Li, W P; Calero, M

    2000-01-01

    Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783

  11. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  12. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  13. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  14. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  15. Proteomic analysis of macrophage activated with salmonella lipopolysaccharide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play pivotal role in immunity. They are activated by many pathogen derived molecules such as lipopolysaccharides (LPS) which trigger the production of various proteins and peptides that drive and resolve inflammation. There are numerous studies on the effect of LPS at the genome level bu...

  16. Dynamics of lung macrophage activation in response to helminth infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of our understanding of the development and phenotype of alternatively activated macrophages (AAM) has been obtained from studies investigating the response of bone marrow- and peritoneal-derived cells to IL-4 or IL-13 stimulation. Comparatively little is known about the development of the AAM...

  17. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling

    PubMed Central

    Zhao, Yutong; Zhao, Jing; Donahoe, Michael P.; Barge, Suchitra; Horne, William T.; Kolls, Jay K.; McVerry, Bryan J.; Birukova, Anastasiya; Tighe, Robert M.; Foster, W. Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S.

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  18. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    PubMed

    Pinilla-Vera, Miguel; Xiong, Zeyu; Zhao, Yutong; Zhao, Jing; Donahoe, Michael P; Barge, Suchitra; Horne, William T; Kolls, Jay K; McVerry, Bryan J; Birukova, Anastasiya; Tighe, Robert M; Foster, W Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  19. Enhancement of carrier-mediated transport after immunologic activation of peritoneal macrophages.

    PubMed

    Bonventre, P F; Straus, D; Baughn, R E; Imhoff, J

    1977-05-01

    Immunologically activated peritoneal macrophages from inbred mice and Hartley strain guinea pigs demonstrate a markedly greater than normal transport of 2-deoxy-D-glucose and L-leucine. The degree of nutrilite transport enhancement was greatest when animals were injected with the appropriate eliciting antigens before harvesting and also, if antigen was included in the tissue culture medium during the initial hours of in vitro culture. Enhanced hexose and amino acid uptake could also be achieved by exposure of macrophages from nonimmunized animals for 48 hr to supernatants of sensitized splenic lymphocyte cultures incubated with specific antigens. The animal systems in which this phenomenon was observed included CBA/J and C57BL/6J mice immunized with Staphylococcus aureus or sub-lethal doses of Listeria monocytogens, and the Hartley strain, albino guinea pig immunized with S. aureus or BCG. In all cases, immunization resulted in a state of delayed hypersensitivity as measured by skin testing or footpad swelling. Splenic cell supernatants contained lymphokines as detected by the presence of macrophage inhibitory factor (MIF), and by the supernatants' capacity to stimulate incorporation of 14C-glucosamine by macrophages in vitro. No increase of glucose or leucine transport by macrophages was observed in the absence of appropriate antigen stimulation in vivo or in vitro. We previously showed that a phagocytic stimulus results in a significant increase in hexose transport by normal macrophages; leucine transport by these same cells was unaltered after phagocytosis. In contrast, immunologically activated macrophages do not transport measurably more 2-deoxy-C-glucose after particle ingestion; activation or the phagocytic stimulus enhance 2-deoxy-C-glucose uptake to approximately the same extent. Analysis of nutrilite transport kinetics revealed that immunologic activation of macrophages increases the initial velocity (V1) and Vmax but does not change the Km values of

  20. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  1. Activation of Alveolar Macrophages via the Alternative Pathway in Herpesvirus-Induced Lung Fibrosis

    PubMed Central

    Mora, Ana L.; Torres-González, Edilson; Rojas, Mauricio; Corredor, Claudia; Ritzenthaler, Jeffrey; Xu, Jianguo; Roman, Jesse; Brigham, Kenneth; Stecenko, Arlene

    2006-01-01

    The etiology of idiopathic pulmonary fibrosis (IPF) is unknown. Because viral pathogenesis of IPF has been suggested, we have established a murine model of progressive pulmonary fibrosis by infecting IFN-γR–deficient mice (IFN-γR−/−) with the murine γ-herpesvirus 68. Because alveolar macrophages in humans with IPF have been implicated in driving the profibrotic response, we studied their role in our model. Chronic herpesvirus infection of the lung was associated with recruitment of alveolar macrophages to areas with epithelial hyperplasia and fibrosis in infected lungs. Using immunohistochemistry, Western blot, and RT-PCR techniques, we demonstrated that recruited alveolar macrophages showed high levels of expression of the proteins Ym1/2, FIZZ1 (found in inflammatory zone 1), insulin-like growth factor-1, and arginase I, and also active transcription of fibronectin, indicative of activation of macrophages by an alternative pathway. Arginase I expression was also evident in interstitial fibroblasts, and increased arginase activity was found in lungs of infected animals. Lung tissue from patients with IPF showed increased expression of arginase I in epithelial cells, fibroblast foci, and alveolar macrophages compared with normal lung. These results suggest that virus-induced upregulation of arginase I could be a mechanism driving lung fibrogenesis. PMID:16709958

  2. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury.

    PubMed

    Harvey, Lloyd D; Yin, Yan; Attarwala, Insiya Y; Begum, Gulnaz; Deng, Julia; Yan, Hong Q; Dixon, C Edward; Sun, Dandan

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1(+) microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32(+) microglia or macrophages, but an increased CD206(+) phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1(+) microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1(+) microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic

  3. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury

    PubMed Central

    Harvey, Lloyd D.; Yin, Yan; Attarwala, Insiya Y.; Begum, Gulnaz; Deng, Julia; Yan, Hong Q.; Dixon, C. Edward

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1+ microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32+ microglia or macrophages, but an increased CD206+ phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1+ microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1+ microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to

  4. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    PubMed

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation. PMID:26101328

  5. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner.

    PubMed

    Kumar, Pawan; Tyagi, Rohit; Das, Gobardhan; Bhaskar, Sangeeta

    2014-10-01

    Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism. PMID:24766519

  6. Modulation of nitric oxide synthase activity in macrophages

    PubMed Central

    Jorens, P. G.; Matthys, K. E.

    1995-01-01

    L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO2-) and nitrate (NO2-), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO−). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-γ (IFNγ). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain micro-organisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage. PMID:18475620

  7. Human lung tissue macrophages, but not alveolar macrophages, express matrix metalloproteinases after direct contact with activated T lymphocytes.

    PubMed

    Ferrari-Lacraz, S; Nicod, L P; Chicheportiche, R; Welgus, H G; Dayer, J M

    2001-04-01

    Human alveolar macrophages (AM) and lung tissue macrophages (LTM) have a distinct localization in the cellular environment. We studied their response to direct contact with activated T lymphocytes in terms of the production of interstitial collagenase (MMP-1), 92-kD gelatinase (MMP-9), and of TIMP-1, one of the counter-regulatory tissue inhibitors of metalloproteinases. Either AM obtained by bronchoalveolar lavage or LTM obtained by mincing and digestion of lung tissue were exposed for 48 h to plasma membranes of T lymphocytes previously activated with phorbol myristate acetate and phytohemagglutinin for 24 h. Membranes of activated T cells strongly induced the production of MMP-1, MMP-9, and TIMP-1 exclusively in LTM but not in AM, whereas membranes from unstimulated T cells failed to induce the release of MMPs. Both populations of mononuclear phagocytes spontaneously released only small amounts of MMPs and TIMP-1. Similar results were obtained when MMP and TIMP-1 expression was analyzed at pretranslational and biosynthetic levels, respectively. Blockade experiments with cytokine antagonists revealed the involvement of T-cell membrane-associated interleukin-1 and tumor necrosis factor-alpha in MMP production by LTM upon contact with T cells. These data suggest that the ability of lung macrophages to produce MMPs after direct contact with activated T cells is related to the difference in phenotype of mononuclear phagocytes and cell localization. In addition, these observations indicate that cell-cell contact represents an important biological mechanism in potentiating the inflammatory response of mononuclear phagocytes in the lungs. PMID:11306438

  8. Immunopharmacological activity of Echinacea preparations following simulated digestion on murine macrophages and human peripheral blood mononuclear cells.

    PubMed

    Rininger, J A; Kickner, S; Chigurupati, P; McLean, A; Franck, Z

    2000-10-01

    We have investigated the immunostimulatory, anti-inflammatory, and antioxidant activities of various Echinacea raw materials and commercially available products on murine macrophages and human peripheral blood mononuclear cells (PBMCs). To emulate oral dosing, a simulated digestion protocol was employed as a means of sample preparation. Echinacea-induced macrophage activation was used as a measure of immunostimulatory activity determined via quantitative assays for macrophage-derived factors including tumor necrosis factor alpha, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and nitric oxide. Echinacea herb and root powders were found to stimulate murine macrophage cytokine secretion as well as to significantly enhance the viability and/or proliferation of human PBMCs in vitro. In contrast, Echinacea extracts chemically standardized to phenolic acid or echinacoside content and fresh pressed juice preparations were found to be inactive as immunostimulatory agents but did display, to varying degrees, anti-inflammatory and antioxidant properties. PMID:11037971

  9. Molecular Cloning and Functional Characterization of the Avian Macrophage Migration Inhibitory Factor (MIF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor produced by sensitized T lymphocytes and inhibits the random migration of macrophages. Recent studies have revealed a more prominent role for MIF as a multi-functional cytokine mediating both innate and adaptive immune r...

  10. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50.

    PubMed

    Baer, M; Dillner, A; Schwartz, R C; Sedon, C; Nedospasov, S; Johnson, P F

    1998-10-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-alpha. This activity, termed TNF-alpha-inhibiting factor (TIF), suppressed the induction of TNF-alpha expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1beta [IL-1beta], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-alpha expression by macrophage conditioned medium was associated with selective induction of the NF-kappaB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-alpha promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-alpha gene. Repression of the TNF-alpha promoter by TIF required a distal region that includes three NF-kappaB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-alpha promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-alpha expression in activated macrophages. TIF is distinct from the known TNF-alpha-inhibiting factors IL-4, IL-10, and transforming growth factor beta and may represent a novel cytokine. PMID:9742085

  11. Tumor Necrosis Factor Alpha Transcription in Macrophages Is Attenuated by an Autocrine Factor That Preferentially Induces NF-κB p50

    PubMed Central

    Baer, Mark; Dillner, Allan; Schwartz, Richard C.; Sedon, Constance; Nedospasov, Sergei; Johnson, Peter F.

    1998-01-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-α. This activity, termed TNF-α-inhibiting factor (TIF), suppressed the induction of TNF-α expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-α expression by macrophage conditioned medium was associated with selective induction of the NF-κB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-α promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-α gene. Repression of the TNF-α promoter by TIF required a distal region that includes three NF-κB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-α promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-α expression in activated macrophages. TIF is distinct from the known TNF-α-inhibiting factors IL-4, IL-10, and transforming growth factor β and may represent a novel cytokine. PMID:9742085

  12. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation.

    PubMed

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-08-14

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration. PMID:27412794

  13. Superinduction of interleukin 8 mRNA in activated monocyte derived macrophages from rheumatoid arthritis patients

    PubMed Central

    Rodenburg, R.; van den Hoogen, F. H J; Barrera, P.; van Venrooij, W. J; van de Putte, L. B A

    1999-01-01

    OBJECTIVE—Synovial inflammation in patients with rheumatoid arthritis (RA) is characterised by the presence of large numbers of highly activated monocytes and macrophages. The importance of these cells in the aethiopathogenesis and prognosis of RA is increasingly recognised. The object of this report is to determine whether monocytes and monocyte derived macrophages of RA patients produce increased cytokine mRNA levels.
METHODS—Monocyte derived macrophages from RA patients and healthy controls were cultured either in the absence or presence of lipopolysaccharide. The expression levels of the mRNAs encoding GAPDH, interleukin 1β (IL1β), IL8, and α2 macroglobulin in these cells were analysed by reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS—Activated monocyte derived macrophages from RA patients produce significantly higher IL8 mRNA levels than activated macrophages from healthy controls. By contrast, resting RA and control macrophages produce similar levels of IL8 mRNA. Culturing of activated macrophages in the presence of RA or control sera has no effect on the expression levels of IL8 mRNA. No significant differences between RA and control macrophages were observed in the expression levels of IL1β and α2 macroglobulin mRNAs.
CONCLUSION—These data indicate that the increased IL8 mRNA production capacity of RA macrophages upon activation is an intrinsic property of these cells, and is not attributable to factors present in the circulation. Based on these observations, it is postulated that this innate hyper-responsiveness of RA macrophages contributes to the high IL8 levels present in the synovial fluid of rheumatoid joints, and is implicated in the chemotactic gradient leading to the homing of leucocytes to the joints.

 PMID:10491366

  14. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF. PMID:21170647

  15. Anti-inflammatory Effects of Schisandra chinensis (Turcz.) Baill Fruit Through the Inactivation of Nuclear Factor-κB and Mitogen-activated Protein Kinases Signaling Pathways in Lipopolysaccharide-stimulated Murine Macrophages

    PubMed Central

    Kang, Young-Soon; Han, Min-Ho; Hong, Su-Hyun; Park, Cheol; Hwang, Hye-Jin; Kim, Byung Woo; Kyoung, Kim Ho; Choi, Young Whan; Kim, Cheol Min; Choi, Yung Hyun

    2014-01-01

    Background: Schisandrae Fructus, the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study examined the anti-inflammatory effects of Schisandrae Fructus ethanol extract (SF) on the production of pro-inflammatory substances in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: To measure the effects of SF on pro-inflammatory mediator and inflammatory cytokine’s expression and production in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction, Western blotting analysis and immunofluorescence staining. Results: Stimulation of the RAW 264.7 cells with LPS caused an elevated production of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin (IL)-1β, which was markedly inhibited by the pretreatment with SF without causing any cytotoxic effects. SF also inhibited the expression of inducible NO synthase, TNF-α, and IL-1β protein and their mRNAs in LPS-stimulated RAW 264.7 cells. Furthermore, SF attenuated LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) by reducing inhibitory-κB degradation, and reduced the phosphorylation of mitogen-activated protein kinases (MAPKs), implying that SF regulated LPS-induced NF-κB-dependent inflammatory pathways through suppression of MAPKs activation. Conclusions: SF may be useful for the treatment of various inflammatory diseases. PMID:25574463

  16. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  17. Release of tumor necrosis factor alpha by human peritoneal macrophages in response to toxic shock syndrome toxin-1.

    PubMed

    Buyalos, R P; Rutanen, E M; Tsui, E; Halme, J

    1991-08-01

    We examined the release in vitro of tumor necrosis factor-alpha (TNF-alpha) by peritoneal macrophages and peripheral blood monocytes following incubation with toxic shock syndrome toxin-1 (TSST-1). We obtained peritoneal macrophages from 22 women at laparoscopy and peripheral blood monocytes from four healthy women during both the midfollicular and midluteal phases of the menstrual cycle. The samples were incubated for 24 hours at 37 C with 10(-2)-10(4) ng/mL of TSST-1 or 10(4) ng/mL of bacterial endotoxin. Tumor necrosis factor-alpha activity was determined with a bioassay using an actinomycin D-sensitized WEHI-164 murine fibrosarcoma cell line. Twenty-four-hour incubation with TSST-1 resulted in a dose-dependent release of TNF-alpha by both peritoneal macrophages (maximal response 554 +/- 97 U of activity) and peripheral blood monocytes (maximal response 478 +/- 81 U of activity). We observed enhanced TNF-alpha release by peritoneal macrophages from women with endometriosis, compared with those without endometriosis, at a concentration of 10(4) ng/mL of TSST-1 (704 +/- 134 versus 354 +/- 103 U of activity; P less than .05). These data support the theory that the metabolic and physiologic derangements of perimenstrual toxic shock syndrome may be partially mediated by TNF-alpha released by peritoneal macrophages as a result of exposure to TSST-1. PMID:2067760

  18. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP

    PubMed Central

    Kapoor, Nidhi; Niu, Jianli; Saad, Yasser; Kumar, Sanjay; Sirakova, Tatiana; Becerra, Edilu; Li, Xiaoman; Kolattukudy, Pappachan E.

    2015-01-01

    Macrophage polarization plays a critical role in tissue homeostasis, disease pathogenesis, and inflammation and its resolution. IL-4-induced macrophage polarization involves induction of STAT6 and KLF4 that induce each other and promote M2 polarization. However, how these transcription factors implement M2 polarization is not understood. We report that in murine macrophages MCPIP, induced by KLF4, inhibits M1 polarization by inhibiting NF-κB activation and implements M2 polarization using both its deubiquitinase and RNase activities that cause sequential induction of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress and autophagy required for M2 polarization. MCPIP also induces C/EBPβ and PPARγ that promote M2 polarization. Macrophages from mice with myeloid-targeted overexpression of MCPIP show elevated expression of M2 markers and reduced response to LPS, whereas macrophages from mice with myeloid-specific deletion of MCPIP manifest elevated M1 polarization with enhanced phagocytic activity. Thus, both in vivo and in vitro experiments demonstrate that the transcription factors STAT6 and KLF4 implement IL-4-induced M2 polarization via the dual catalytic activities of MCPIP. PMID:25934862

  19. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  20. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  1. Macrophage Activation Associated with Chronic Murine Cytomegalovirus Infection Results in More Severe Experimental Choroidal Neovascularization

    PubMed Central

    Cousins, Scott W.; Espinosa-Heidmann, Diego G.; Miller, Daniel M.; Pereira-Simon, Simone; Hernandez, Eleut P.; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D.

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  2. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.

    PubMed

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  3. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice

    PubMed Central

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  4. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease.

    PubMed

    Däbritz, Jan

    2014-03-01

    Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD. PMID:24503766

  5. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  6. The synergistic interaction between the calcineurin B subunit and IFN-γ enhances macrophage antitumor activity

    PubMed Central

    Su, Z; Yang, R; Zhang, W; Xu, L; Zhong, Y; Yin, Y; Cen, J; DeWitt, J P; Wei, Q

    2015-01-01

    Macrophages are involved in tumor growth and progression. They infiltrate into tumors and cause inflammation, which creates a microenvironment favoring tumor growth and metastasis. However, certain stimuli may induce macrophages to act as tumor terminators. Here we report that the calcineurin B subunit (CnB) synergizes with IFN-γ to make macrophages highly cytotoxic to cancer cells. Furthermore, CnB and IFN-γ act synergistically to polarize mouse tumor-associated macrophages, as well as human monocyte-derived macrophages to an M1-like phenotype. This synergy is mediated by the crosstalk between CnB-engaged integrin αM-p38 MAPK signaling and IFN-γ-initiated p38/PKC-δ/Jak2 signaling. Interestingly, the signal transducer and activator of transcription 1 (STAT1) is a key factor that orchestrates the synergy of CnB and IFN-γ, and the phosphorylation status at Ser727 and Tyr701 of STAT1 is directly regulated by CnB and IFN-γ. PMID:25950470

  7. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages.

    PubMed

    Zhang, Yuanyuan; Liu, Chuan; Dong, Bin; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-04-01

    Surfactin is primarily produced by Bacillus natto TK-1 and is one of the most powerful biosurfactants. It consists of a heptapeptide interlinked with a β-hydroxy fatty acid. Because of its special structure, surfactin shows broad biological effects, including anti-tumour, anti-microbial and anti-mycoplasma activities. It also has potential anti-inflammatory activity; however, the anti-inflammatory mechanism of surfactin has not been explored. In this study, we investigated the anti-inflammatory mechanism of surfactin in lipopolysaccharide (LPS)-stimulated macrophages. Surfactin exhibited an anti-inflammatory effect without cytotoxicity at certain concentrations, and the lipopolysaccharide (LPS)-stimulated cells appeared normal after surfactin treatment. Surfactin significantly inhibited the increased expression of IFN-γ, IL-6, iNOS and nitric oxide (NO). TLR4 is the critical receptor for LPS; therefore, the TLR4 signal transduction pathway is the primary pathway that mediates LPS-induced inflammation. The results show that surfactin downregulated the LPS-induced TLR4 protein expression of macrophages and indicated that the surfactin-mediated signal pathway was involved in with TLR4. The subsequent studies demonstrated that surfactin exhibited anti-inflammatory effects by attenuating the activation of nuclear factor-κB (NF-κB), which is involved in the nuclear factor-κB (NF-κB) cell signalling pathways. These results suggest that surfactin may be a new therapeutic agent for inflammation. PMID:25331175

  8. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages

    PubMed Central

    Smalley, Claire; Bechelli, Jeremy; Rockx-Brouwer, Dedeke; Saito, Tais; Azar, Sasha R.; Ismail, Nahed; Walker, David H.; Fang, Rong

    2016-01-01

    Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8–12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved. PMID:27362650

  9. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  10. Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47

    PubMed Central

    Stein, Erica V.; Miller, Thomas W.; Ivins-O’Keefe, Kelly; Kaur, Sukhbir; Roberts, David D.

    2016-01-01

    Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia. PMID:26813769

  11. Modular analysis of bioinformatics demonstrates a critical role for NF-κB in macrophage activation.

    PubMed

    Zhang, Yingmei; Wang, Yingmei; Lu, Ming; Qiao, Xin; Sun, Bei; Zhang, Weihui; Xue, Dongbo

    2014-08-01

    To achieve the goal of identifying the gene groups that regulated macrophage activation, a total of 925 differentially expressed genes of activated macrophages were found at the intersection of the three series (GSE5099-1, GSE5099-2, and GSE18686) from the Gene Expression Omnibus (GEO) database, and a sub-network was constructed based on the protein-protein interaction (PPI) network. Four communities (K = 3) were identified from the sub-network using the CFinder software. Community 1 was considered as the gene group of interest base on the heat map. GO-BP and KEGG enrichment analysis with the DAVID software showed that the functions of the 14 genes in community 1 were mainly related to the NF-κB pathway. A network was constructed using the Cytoscape software. The diagram showed that STAT1, NFKBIA, NFKAIB, JUN, and RELA were the key genes in the regulation of macrophage activation. Among these genes, RELA (NF-κB P65) was an important member of the NF-κB family, while NFKBIA (IκBα) and NFKAIB (IκBβ) were the inhibitory factors of NF-κB. Small molecules capable of regulating these five genes were identified via the CMap software, and a network diagram was generated using the Cytoscape software to provide a reference for the development of new drugs that regulate macrophage activation. PMID:24577727

  12. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  13. Ceramic modifications of porous titanium: effects on macrophage activation.

    PubMed

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. PMID:22939219

  14. A Distinctive Alveolar Macrophage Activation State Induced by Cigarette Smoking

    PubMed Central

    Woodruff, Prescott G.; Koth, Laura L.; Yang, Yee Hwa; Rodriguez, Madeleine W.; Favoreto, Silvio; Dolganov, Gregory M.; Paquet, Agnes C.; Erle, David J.

    2005-01-01

    Rationale: Macrophages are believed to play a central role in emphysema based largely on data from mouse models. However, the relevance of these models to smoking-related lung disease in humans is uncertain. Objectives: We sought to comprehensively characterize the effects of smoking on gene expression in human alveolar macrophages and to compare these with effects seen in transgenic mouse models of emphysema. Methods: We used DNA microarrays with genomewide coverage to analyze alveolar macrophages from 15 smokers, 15 nonsmokers, and 15 subjects with asthma (disease control). Selected gene expression changes were validated by polymerase chain reaction and ELISA. Expression changes were compared with those identified by microarray analysis of interleukin-13–overexpressing and integrin-β6–deficient mice, which both develop emphysema. Measurements and Main Results: All 15 smokers shared a common pattern of macrophage gene expression that distinguished them from nonsmokers, a finding not observed in subjects with asthma. We identified 110 genes as differentially expressed in smokers despite using conservative statistical methods. Matrix metalloproteinase 12, a proteinase that plays a critical role in mouse models, was the third most highly induced gene in smokers (ninefold, p < 0.0001). However, most changes in smokers were not reflected in mouse models. One such finding was increased osteopontin expression in smokers (fourfold, p = 0.006), which was confirmed at the protein level and correlated with the degree of airway obstruction. Conclusions: Smoking induces a remarkably consistent and distinctive pattern of alveolar macrophage activation. These studies identify aspects of mouse models that are directly relevant to human smokers and also reveal novel potential mediators of smoking-related diseases. PMID:16166618

  15. Myelin-Derived Lipids Modulate Macrophage Activity by Liver X Receptor Activation

    PubMed Central

    Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J. M.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J. A.

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  16. Myelin-derived lipids modulate macrophage activity by liver X receptor activation.

    PubMed

    Bogie, Jeroen F J; Timmermans, Silke; Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J M; Gustafsson, Jan-Åke; Steffensen, Knut R; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  17. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    PubMed Central

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4−/− but not in TLR2−/− mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use. PMID:12874325

  18. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. PMID:25953850

  19. Peroxisome proliferator-activated receptor ɣ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Bouhlel, Mohamed Amine; Copin, Corinne; Duhem, Christian; Derudas, Bruno; Neve, Bernardette; Noel, Benoit; Eeckhoute, Jerome; Lefebvre, Philippe; Seckl, Jonathan R.; Staels, Bart

    2012-01-01

    Objectives 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11β-HSD1 and the role of PPAR therein. Methods and Results 11β-HSD1 gene expression is higher in pro-inflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages (RM), whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11β-HSD1 enzyme activity in M2 macrophages, but not in RM or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11β-HSD1 substrate cortisone, an effect amplified by PPAR -induction of 11β-HSD1 activity, as illustrated by an increased expression of GR target genes. Conclusions Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11β-HSD1 expression and activity. PMID:22207732

  20. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. PMID:26382298

  1. Virulent Mycobacterium bovis Beijing Strain Activates the NLRP7 Inflammasome in THP-1 Macrophages

    PubMed Central

    Zhou, Yang; Shah, Syed Zahid Ali; Yang, Lifeng; Zhang, Zhongqiu; Zhou, Xiangmei; Zhao, Deming

    2016-01-01

    Mycobacterium bovis is the causative agent of tuberculosis in a wide range of mammals, including humans. Macrophages are the first line of host defense. They secrete proinflammatory cytokines, such as interleukin-1 beta (IL-1β), in response to mycobacterial infection, but the underlying mechanisms by which human macrophages are activated and release IL-1β following M. bovis infection are poorly understood. Here we show that the ‘nucleotide binding and oligomerization of domain-like receptor (NLR) family pyrin domain containing 7 protein’ (NLRP7) inflammasome is involved in IL-1β secretion and caspase-1 activation induced by M. bovis infection in THP-1 macrophages. NLRP7 inflammasome activation promotes the induction of pyroptosis as well as the expression of tumor necrosis factor alpha (TNF-α), Chemokine (C-C motif) ligand 3 (CCL3) and IL-1β mRNAs. Thus, the NLRP7 inflammasome contributes to IL-1β secretion and induction of pyroptosis in response to M. bovis infection in THP-1 macrophages. PMID:27043315

  2. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    PubMed Central

    Roy, Sugata; Schmeier, Sebastian; Arner, Erik; Alam, Tanvir; Parihar, Suraj P.; Ozturk, Mumin; Tamgue, Ousman; Kawaji, Hideya; de Hoon, Michiel J. L.; Itoh, Masayoshi; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Bajic, Vladimir B.; Guler, Reto; Consortium, FANTOM; Brombacher, Frank; Suzuki, Harukazu

    2015-01-01

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation. PMID:26117544

  3. Expression and kinetics of induced procoagulant activity in bovine pulmonary alveolar macrophages.

    PubMed

    Car, B D; Slauson, D O; Suyemoto, M M; Doré, M; Neilsen, N R

    1991-01-01

    Leukocytes, especially macrophages, are important cellular mediators of fibrin deposition and removal at tissue sites of inflammation. Pulmonary fibrin deposition is a prominent feature of bovine acute lung injury; therefore, we studied the resting and stimulated procoagulant responses of bovine pulmonary alveolar macrophages (PAM) and peripheral blood neutrophils (PMN). Freshly isolated normal PAM and PMN expressed negligible procoagulant activity. PAM stimulated with endotoxin lipopolysaccharide (LPS), 4 beta-phorbol 12-myristate 13-acetate (PMA) and bovine recombinant interleukin-1 beta (rBIL-1 beta) exhibited protein synthesis- and dose-dependent enhancement of procoagulant activity in 8-h cultures. Bovine recombinant granulocyte macrophage-colony stimulating factor (rBGM-CSF) and recombinant human gamma-interferon (rHIFN-gamma) did not induce procoagulant activity. The kinetics of LPS- and PMA-enhanced PAM procoagulant activity differed: LPS-induced enhancement developed earlier and more rapidly than PMA-induced enhancement. Pasteurella haemolytica LPS was more potent than Escherichia coli LPS in enhancing PAM procoagulant activity, while dexamethasone decreased both baseline and LPS- or PMA-stimulated activity by approximately 50%. PAM procoagulant activity resulted from tissue factor expression. Bovine PMN produced negligible procoagulant activity when stimulated, and are thus unlikely to be major contributors to procoagulant activity in bovine lung. Activity inhibitory to bovine tissue factor was present in both calf and adult sera, and was partly dependent on the presence of factor X for activity. Rapid induction of bovine PAM procoagulant activity by inflammatory mediators, and subsequent resistance to degradation, may thus combine to promote an alveolar microenvironment permissive to fibrin deposition in bovine acute lung injury. PMID:1959504

  4. Tumour necrosis factor receptors and apoptosis of alveolar macrophages during early infection with attenuated and virulent Mycobacterium bovis

    PubMed Central

    Rodrigues, Michele F; Alves, Caio C S; Figueiredo, Bárbara B M; Rezende, Alice B; Wohlres-Viana, Sabine; da Silva, Vânia Lúcia; Machado, Marco Antônio; Teixeira, Henrique C

    2013-01-01

    Apoptosis of macrophages has been reported as an effective host strategy to control the growth of intracellular pathogens, including pathogenic mycobacteria. Tumour necrosis factor-α (TNF-α) plays an important role in the modulation of apoptosis of infected macrophages. It exerts its biological activities via two distinct cell surface receptors, TNFR1 and TNFR2, whose extracellular domain can be released by proteolysis forming soluble TNF receptors (sTNFR1 and sTNFR2). The signalling through TNFR1 initiates the majority of the biological functions of TNF-α, leading to either cell death or survival whereas TNFR2 mediates primarily survival signals. Here, the expression of TNF-α receptors and the apoptosis of alveolar macrophages were investigated during the early phase of infection with attenuated and virulent mycobacteria in mice. A significant increase of apoptosis and high expression of TNFR1 were observed in alveolar macrophages at 3 and 7 days after infection with attenuated Mycobacterium bovis but only on day 7 in infection with the virulent M. bovis. Low surface expression of TNFR1 and increased levels of sTNFR1 on day 3 after infection by the virulent strain were associated with reduced rates of apoptotic macrophages. In addition, a significant reduction in apoptosis of alveolar macrophages was observed in TNFR1−/− mice at day 3 after bacillus Calmette–Guérin infection. These results suggest a potential role for TNFR1 in mycobacteria-induced alveolar macrophage apoptosis in vivo. In this scenario, shedding of TNFR1 seems to contribute to the modulation of macrophage apoptosis in a strain-dependent manner. PMID:23489296

  5. Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation.

    PubMed

    Makita, H; Nishimura, M; Miyamoto, K; Nakano, T; Tanino, Y; Hirokawa, J; Nishihira, J; Kawakami, Y

    1998-08-01

    Macrophage migration inhibitory factor (MIF) is a recently rediscovered pro-inflammatory cytokine that has the unique potential to override the anti-inflammatory action of glucocorticoids. Since recent reports suggest the pivotal role of MIF in acute lung injury, we examined the protective effect of anti-MIF antibody on lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were injected with LPS (7 mg/kg) intraperitoneally with or without pretreatment with anti-MIF antibody. The anti-MIF antibody significantly attenuated LPS-induced migration of neutrophils to the lungs at 4 and 24 h as demonstrated by observation of the number of neutrophils per alveolus, the activity of myeloperoxidase of the lung tissue, and cell differentiation of neutrophils in bronchoalveolar lavage (BAL) fluid. The increased level of macrophage inflammatory protein-2, a powerful neutrophil chemokine, in BAL fluid was also significantly attenuated by pretreatment with the anti-MIF antibody as compared with the control group. Additionally, positive immunostaining for MIF was observed in bronchial epithelial cells and alveolar macrophages, and Northern blot analysis of lung tissues demonstrated increased MIF mRNA 24 h after LPS injection. These data suggest that the anti-MIF antibody has therapeutic potential for the treatment of acute lung injury by suppressing the level of neutrophil chemokine in the lungs. PMID:9700137

  6. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  7. Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus.

    PubMed

    Bragg, D C; Hudson, L C; Liang, Y H; Tompkins, M B; Fernandes, A; Meeker, R B

    2002-06-01

    Recent observations have suggested that lentiviruses stimulate the proliferation and activation of microglia. A similar effect within the dense macrophage population of the choroid plexus could have significant implications for trafficking of virus and inflammatory cells into the brain. To explore this possibility, we cultured fetal feline macrophages and examined their response to feline immunodeficiency virus (FIV) or the T-cell-derived protein, recombinant human CD40-ligand trimer (rhuCD40-L). The rhCD40-L was the most potent stimulus for macrophage proliferation, often inducing a dramatic increase in macrophage density. Exposure to FIV resulted in a small increase in the number of macrophages and macrophage nuclei labeled with bromodeoxyuridine. The increase in macrophage density after FIV infection also correlated with an increase in neurotoxic activity of the macrophage-conditioned medium. Starting at 16-18 weeks postinfection, well after the peak of viremia, a similar toxic activity was detected in cerebrospinal fluid (CSF) from FIV-infected cats. Toxicity in the CSF increased over time and was paralleled by strong CD18 staining of macrophages/microglia in the choroid plexus and adjacent parenchyma. These results suggest that lentiviral infection of the choroid plexus can induce a toxic inflammatory response that is fueled by local macrophage proliferation. Together with the observation of increasing toxic activity in the CSF and increased CD18 staining in vivo, these observations suggest that choroid plexus macrophages may contribute to an inflammatory cascade in the brain that progresses independently of systemic and CSF viral load. PMID:12053277

  8. Molecular Mechanism of Macrophage Activation by Red Ginseng Acidic Polysaccharide from Korean Red Ginseng

    PubMed Central

    Byeon, Se Eun; Lee, Jaehwi; Kim, Ji Hye; Yang, Woo Seok; Kwak, Yi-Seong; Kim, Sun Young; Choung, Eui Su; Rhee, Man Hee; Cho, Jae Youl

    2012-01-01

    Red ginseng acidic polysaccharide (RGAP), isolated from Korean red ginseng, displays immunostimulatory and antitumor activities. Even though numerous studies have been reported, the mechanism as to how RGAP is able to stimulate the immune response is not clear. In this study, we aimed to explore the mechanism of molecular activation of RGAP in macrophages. RGAP treatment strongly induced NO production in RAW264.7 cells without altering morphological changes, although the activity was not strong compared to LPS-induced dendritic-like morphology in RAW264.7 cells. RGAP-induced NO production was accompanied with enhanced mRNA levels of iNOS and increases in nuclear transcription factors such as NF-κB, AP-1, STAT-1, ATF-2, and CREB. According to pharmacological evaluation with specific enzyme inhibitors, Western blot analysis of intracellular signaling proteins and inhibitory pattern using blocking antibodies, ERK, and JNK were found to be the most important signaling enzymes compared to LPS signaling cascade. Further, TLR2 seems to be a target surface receptor of RGAP. Lastly, macrophages isolated from RGS2 knockout mice or wortmannin exposure strongly upregulated RGAP-treated NO production. Therefore, our results suggest that RGAP can activate macrophage function through activation of transcription factors such as NF-κB and AP-1 and their upstream signaling enzymes such as ERK and JNK. PMID:22474399

  9. Lysis of herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma.

    PubMed Central

    Koff, W C; Showalter, S D; Seniff, D A; Hampar, B

    1983-01-01

    Thioglycolate-induced mouse peritoneal macrophages were activated in vitro by the lymphokine designated macrophage-activating factor (MAF) produced by a murine T cell hybridoma to lyse herpes simplex virus type 2 (HSV-2)-infected murine target cells. Comparison of uninfected BALB/c 10E2 cells with HSV-2-infected 10E2 cells showed that macrophages activated with MAF selectively destroyed HSV-2-infected cells and left uninfected cells unharmed, as measured by an 18-h 51Cr-release assay. In contrast, macrophages treated with medium were as efficient as MAF-activated macrophages in suppressing the production of HSV-2 from virus-infected cells. These findings suggest that macrophages must attain an activated state to lyse HSV-2-infected cells. Finally, incubation of macrophages with liposomes containing MAF was shown to be a highly efficient method for activation of macrophages against HSV-2 infected cells. The ability to selectively destroy herpesvirus-infected cells in vitro by macrophages activated with liposome-encapsulated MAF suggests that the therapeutic efficacy of this treatment in vivo should be evaluated. PMID:6358037

  10. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia.

    PubMed

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S Joseph

    2016-05-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  11. Dectin-1–Dependent LC3 Recruitment to Phagosomes Enhances Fungicidal Activity in Macrophages

    PubMed Central

    Tam, Jenny M.; Mansour, Michael K.; Khan, Nida S.; Seward, Michael; Puranam, Sravanthi; Tanne, Antoine; Sokolovska, Anna; Becker, Christine E.; Acharya, Mridu; Baird, Michelle A.; Choi, Augustine M. K.; Davidson, Michael W.; Segal, Brahm H.; Lacy-Hulbert, Adam; Stuart, Lynda M.; Xavier, Ramnik J.; Vyas, Jatin M.

    2014-01-01

    Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages. PMID:24842831

  12. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages.

    PubMed

    Tam, Jenny M; Mansour, Michael K; Khan, Nida S; Seward, Michael; Puranam, Sravanthi; Tanne, Antoine; Sokolovska, Anna; Becker, Christine E; Acharya, Mridu; Baird, Michelle A; Choi, Augustine M K; Davidson, Michael W; Segal, Brahm H; Lacy-Hulbert, Adam; Stuart, Lynda M; Xavier, Ramnik J; Vyas, Jatin M

    2014-12-01

    Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages. PMID:24842831

  13. Activation of Cytosolic Phospholipase A2α in Resident Peritoneal Macrophages by Listeria monocytogenes Involves Listeriolysin O and TLR2*

    PubMed Central

    Noor, Shahid; Goldfine, Howard; Tucker, Dawn E.; Suram, Saritha; Lenz, Laurel L.; Akira, Shizuo; Uematsu, Satoshi; Girotti, Milena; Bonventre, Joseph V.; Breuel, Kevin; Williams, David L.; Leslie, Christina C.

    2016-01-01

    Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2α). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (ΔhlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and ΔhlyLM. The attenuated release of arachidonic acid that is observed in TLR2−/− and MyD88−/− macrophages infected with WTLM and ΔhlyLM correlates with diminished MAPK activation. WTLM but not ΔhlyLM increases intracellular calcium, which is implicated in regulation of cPLA2α. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2α+/+ but not cPLA2α−/− macrophages in response to WTLM and ΔhlyLM. Tumor necrosis factor (TNF)-α production is significantly lower in cPLA2α+/+ than in cPLA2α−/− macrophages infected with WTLM and ΔhlyLM. Treatment of infected cPLA2α+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFα production to the level produced by cPLA2α−/− macrophages implicating prostaglandins in TNFα down-regulation. Therefore activation of cPLA2α in macrophages may impact immune responses to L. monocytogenes. PMID:18083708

  14. Multimodality PET/MRI agents targeted to activated macrophages.

    PubMed

    Tu, Chuqiao; Ng, Thomas S C; Jacobs, Russell E; Louie, Angelique Y

    2014-02-01

    The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages. PMID:24166283

  15. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21

    PubMed Central

    Caescu, Cristina I.; Guo, Xingyi; Tesfa, Lydia; Bhagat, Tushar D.; Verma, Amit; Zheng, Deyou

    2015-01-01

    Macrophage polarization between the M2 (repair, protumorigenic) and M1 (inflammatory) phenotypes is seen as a continuum of states. The detailed transcriptional events and signals downstream of colony-stimulating factor 1 receptor (CSF-1R) that contributes to amplification of the M2 phenotype and suppression of the M1 phenotype are largely unknown. Macrophage CSF-1R pTyr-721 signaling promotes cell motility and enhancement of tumor cell invasion in vitro. Combining analysis of cellular systems for CSF-1R gain of function and loss of function with bioinformatic analysis of the macrophage CSF-1R pTyr-721–regulated transcriptome, we uncovered microRNA-21 (miR-21) as a downstream molecular switch controlling macrophage activation and identified extracellular signal-regulated kinase1/2 and nuclear factor-κB as CSF-1R pTyr-721–regulated signaling nodes. We show that CSF-1R pTyr-721 signaling suppresses the inflammatory phenotype, predominantly by induction of miR-21. Profiling of the miR-21–regulated messenger RNAs revealed that 80% of the CSF-1–regulated canonical miR-21 targets are proinflammatory molecules. Additionally, miR-21 positively regulates M2 marker expression. Moreover, miR-21 feeds back to positively regulate its own expression and to limit CSF-1R–mediated activation of extracellular signal-regulated kinase1/2 and nuclear factor-κB. Consistent with an anti-inflammatory role of miRNA-21, intraperitoneal injection of mice with a miRNA-21 inhibitor increases the recruitment of inflammatory monocytes and enhances the peritoneal monocyte/macrophage response to lipopolysaccharide. These results identify the CSF-1R–regulated miR-21 network that modulates macrophage polarization. PMID:25573988

  16. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    NASA Astrophysics Data System (ADS)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  17. β-Glucan from Lentinus edodes Inhibits Nitric Oxide and Tumor Necrosis Factor-α Production and Phosphorylation of Mitogen-activated Protein Kinases in Lipopolysaccharide-stimulated Murine RAW 264.7 Macrophages*

    PubMed Central

    Xu, Xiaojuan; Yasuda, Michiko; Nakamura-Tsuruta, Sachiko; Mizuno, Masashi; Ashida, Hitoshi

    2012-01-01

    Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α. PMID:22102286

  18. Macrophage Migration Inhibitory Factor (MIF) as a Chaperone Inhibiting Accumulation of Misfolded SOD1

    PubMed Central

    Israelson, Adrian; Ditsworth, Dara; Sun, Shuying; Song, SungWon; Liang, Jason; Hruska-Plochan, Marian; McAlonis-Downes, Melissa; Abu-Hamad, Salah; Zoltsman, Guy; Shani, Tom; Maldonado, Marcus; Bui, Anh; Navarro, Michael; Zhou, Huilin; Marsala, Martin; Kaspar, Brian K.; Da Cruz, Sandrine; Cleveland, Don W.

    2015-01-01

    Summary Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons and accompanied by accumulation of misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and endoplasmic reticulum (ER). Using inhibition of misfolded SOD1 deposition onto mitochondria as an assay, a chaperone activity abundant in non-neuronal tissues is now purified and identified to be the multifunctional macrophage migration inhibitory factor (MIF), whose activities include an ATP-independent protein folding chaperone. Purified MIF is shown to directly inhibit mutant SOD1 misfolding. Elevating MIF in neuronal cells suppresses accumulation of misfolded SOD1 and its association with mitochondria and ER and extends survival of mutant SOD1-expressing motor neurons. Accumulated MIF protein is identified to be low in motor neurons, implicating correspondingly low chaperone activity as a component of vulnerability to mutant SOD1 misfolding and supporting therapies to enhance intracellular MIF chaperone activity. PMID:25801706

  19. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  20. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNFα, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  1. New insights into the multidimensional concept of macrophage ontogeny, activation and function.

    PubMed

    Ginhoux, Florent; Schultze, Joachim L; Murray, Peter J; Ochando, Jordi; Biswas, Subhra K

    2016-01-01

    Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution. PMID:26681460

  2. Oxidized Low-Density Lipoprotein Contributes to Atherogenesis via Co-activation of Macrophages and Mast Cells

    PubMed Central

    Chen, Chong; Khismatullin, Damir B.

    2015-01-01

    Oxidized low-density lipoprotein (OxLDL) is a risk factor for atherosclerosis, due to its role in endothelial dysfunction and foam cell formation. Tissue-resident cells such as macrophages and mast cells release inflammatory mediators upon activation that in turn cause endothelial activation and monocyte adhesion. Two of these mediators are tumor necrosis factor (TNF)-α, produced by macrophages, and histamine, produced by mast cells. Static and microfluidic flow experiments were conducted to determine the number of adherent monocytes on vascular endothelium activated by supernatants of oxLDL-treated macrophages and mast cells or directly by oxLDL. The expression of adhesion molecules on activated endothelial cells and the concentration of TNF-α and histamine in the supernatants were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. A low dose of oxLDL (8 μg/ml), below the threshold for the clinical presentation of coronary artery disease, was sufficient to activate both macrophages and mast cells and synergistically increase monocyte-endothelium adhesion via released TNF-α and histamine. The direct exposure of endothelial cells to a much higher dose of oxLDL (80 μg/ml) had less effect on monocyte adhesion than the indirect activation via oxLDL-treated macrophages and mast cells. The results of this work indicate that the co-activation of macrophages and mast cells by oxLDL is an important mechanism for the endothelial dysfunction and atherogenesis. The observed synergistic effect suggests that both macrophages and mast cells play a significant role in early stages of atherosclerosis. Allergic patients with a lipid-rich diet may be at high risk for cardiovascular events due to high concentration of low-density lipoprotein and histamine in arterial vessel walls. PMID:25811595

  3. Macrophage migration inhibitory factor, a role in COPD.

    PubMed

    Husebø, Gunnar R; Bakke, Per S; Grønseth, Rune; Hardie, Jon A; Ueland, Thor; Aukrust, Pål; Eagan, Tomas M L

    2016-07-01

    Macrophage migration inhibitor factor (MIF) is a pluripotent cytokine associated with several different inflammatory conditions, but its role within lung inflammation and chronic obstructive pulmonary disease (COPD) is unclear. This study aimed to examine MIF in both stable COPD and during acute exacerbations (AECOPD). The study included 433 patients with COPD aged 41-76 and 325 individuals from the Bergen COPD cohort study who served as controls. All patients had an FEV1 of <80% predicted, FEV1/FVC ratio of <0.7, and a smoking history >10 pack-years. Serum levels of MIF were compared between the two groups at baseline, and for 149 patients, measurements were also carried out during AECOPD. Linear regression models were fitted with MIF as the outcome variable and adjusted for sex, age, body composition, smoking, and Charlson Comorbidity Score (CCS). Median MIF (interquartile range) in patients with COPD was 20.1 ng/ml (13.5-30.9) compared with 14.9 ng/ml (11.1-21.6) in controls (P < 0.01). MIF was bivariately associated with sex, body composition, and CCS (P < 0.05 for all). In the regression analyses, MIF was significantly higher in patients with COPD, coefficient 1.32 (P < 0.01) and 1.30 (P < 0.01) unadjusted and adjusted, respectively. In addition, in 149 patients during episodes of AECOPD, MIF was significantly elevated, with a median of 23.2 ng/ml (14.1-42.3) compared with measurements at stable disease of 19.3 ng/ml (12.4-31.3, P < 0.01). Serum levels of MIF were significantly higher in patients with COPD compared with controls. We also identified an additional increase in MIF levels during episodes of AECOPD. PMID:27190066

  4. The Kmif (Kveim-induced macrophage migration inhibition factor) test in sarcoidosis

    PubMed Central

    Williams, W. Jones; Pioli, E.; Jones, D. J.; Dighero, M.

    1972-01-01

    Circulating lymphocytes from 30 patients with sarcoidosis when stimulated in vitro with Kveim-induced macrophage migration factor, the Kmif test, produced a guinea-pig macrophage migration inhibition factor in 21 of 30 cases (70%). In those patients not on steroids the results showed a good correlation with the cutaneous Kveim test. One positive test was found in 16 normal subjects. Our results suggest that the Kmif test may prove a useful rapid alternative to the Kveim test. PMID:4675181

  5. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  6. Targeting macrophage activation for the prevention and treatment of S. aureus biofilm infections†

    PubMed Central

    Hanke, Mark L.; Heim, Cortney E.; Angle, Amanda; Sanderson, Sam D.; Kielian, Tammy

    2013-01-01

    Biofilm infections often lead to significant morbidity due to their chronicity and recalcitrance to antibiotics. We have demonstrated that methicillin-resistant Staphylococcus aureus (MRSA) biofilms can evade macrophage antibacterial effector mechanisms by skewing macrophages towards an alternatively activated M2 phenotype. To overcome this immune evasion, we have utilized two complementary approaches. In the first, a proinflammatory milieu was elicited by local administration of classically-activated M1 macrophages and second, by treatment with the C5a receptor (CD88) agonist EP67, which invokes macrophage proinflammatory activity. Early administration of M1-activated macrophages or EP67 significantly attenuated biofilm formation in a mouse model of MRSA catheter-associated infection. Several proinflammatory mediators were significantly elevated in biofilm infected tissues from macrophage- and EP67-treated animals, revealing effective reprogramming of the biofilm environment to a proinflammatory milieu. A requirement for macrophage proinflammatory activity was demonstrated by the fact that transfer of MyD88-deficient macrophages had minimal impact on biofilm growth. Likewise, neutrophil administration had no effect on biofilm formation. Treatment of established biofilm infections with M1-activated macrophages also significantly reduced catheter-associated biofilm burdens compared to antibiotic treatment. Collectively, these results demonstrate that targeting macrophage proinflammatory activity can overcome the local immune inhibitory environment created during biofilm infections and represents a novel therapeutic strategy. PMID:23365077

  7. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  8. Successful therapy of macrophage activation syndrome with dexamethasone palmitate.

    PubMed

    Nakagishi, Yasuo; Shimizu, Masaki; Kasai, Kazuko; Miyoshi, Mari; Yachie, Akihiro

    2016-07-01

    Macrophage activation syndrome (MAS) is a severe and potential life-threatening complication of childhood systemic inflammatory disorders. Corticosteroids are commonly used as the first-line therapy for MAS. We report four patients with MAS who were successfully treated with dexamethasone palmitate (DexP), a liposome-incorporated dexamethasone, much more efficient than free corticosteroids. DexP effectively inhibited inflammation in MAS patients in whom the response to pulse methylprednisolone was not sufficient to manage their diseases. DexP was also effective as the first-line therapy for MAS. Based on these findings, DexP is an effective therapy in treating MAS patients. PMID:24754272

  9. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  10. CD14 and tissue factor expression by bacterial lipopolysaccharide-stimulated bovine alveolar macrophages in vitro.

    PubMed Central

    Yang, Z; Carter, C D; Miller, M S; Bochsler, P N

    1995-01-01

    The membrane-associated CD14 receptor (mCD14) is a monocyte/macrophage differentiation antigen, and it has been demonstrated to serve as a receptor for bacterial lipopolysaccharide (LPS; endotoxin). Binding of LPS to mCD14 has been shown to be associated with LPS-induced macrophage, monocyte, and neutrophil activation in humans. In this report, we describe the presence and function of an mCD14-like receptor on bovine alveolar macrophages (bAM). An immunofluorescence technique and flow cytometric analysis indicated binding of anti-human CD14 monoclonal antibodies (MAb) My4, 3C10, and 60bd to bAM. Binding of anti-CD14 MAb (3C10 and MY4) was reduced over 20% by pretreatment of bAM with phosphatidylinositol-specific phospholipase C (0.5 to 1.0 U/ml), indicating that bovine mCD14 is a glycosyl phosphatidylinositol-anchored protein. In addition, pretreatment of bAM with anti-CD14 MAb decreased binding of 125I-labeled LPS to macrophages, suggesting that bovine mCD14 serves as a receptor for LPS. A cDNA probe based on the human sequence for CD14 was used in Northern (RNA) blot analysis, and hybridization to human monocyte CD14 yielded the expected 1.5-kb band. Hybridization to bovine mRNA yielded a 1.5-kb band plus an unexpected 3.1-kb band. Constitutive expression of bovine CD14 mRNA was observed, and the expression level was modestly elevated in bAM stimulated for 24 h with LPS (1 ng/ml) in the presence of bovine serum. The function and activation of bAM were assessed by quantitation of tissue factor (TF) expression on the cells using an activated factor X-related chromogenic assay and S-2222 substrate. LPS (1 ng/ml)-mediated upregulation of TF expression on bAM was dependent on the presence of bovine serum components, and TF expression was inhibited by anti-CD14 MAb. In addition, TF mRNA levels in LPS-stimulated bAM were decreased by pretreatment of cells with anti-CD14 MAb (MAb 60bd, 10 micrograms/ml). PMID:7528735

  11. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages

    PubMed Central

    Batista-Silva, L. R.; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T. G.; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  12. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages.

    PubMed

    Batista-Silva, L R; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T G; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  13. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  14. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation

    PubMed Central

    2014-01-01

    Background In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of neurons. Their migration within the central nervous system may be of critical importance in the final outcome of neurodegeneration in neuroinflammatory diseases e.g. multiple sclerosis (MS). To provide insight into this process, we examined the migratory capacity of human monocyte-derived M1 and M2 polarised macrophages towards chemoattractants, relevant for neuroinflammatory diseases like MS. Methods Primary cultures of human monocyte-derived macrophages were exposed to interferon gamma and lipopolysaccharide (LPS) to evoke proinflammatory (M1) activation or IL-4 to evoke anti-inflammatory (M2) activation. In a TAXIScan assay, migration of M0, M1 and M2 towards chemoattractants was measured and quantified. Furthermore the adhesion capacity and the expression levels of integrins as well as chemokine receptors of M0, M1 and M2 were assessed. Alterations in cell morphology were analysed using fluorescent labelling of the cytoskeleton. Results Significant differences were observed between M1 and M2 macrophages in the migration towards chemoattractants. We show that M2 macrophages migrated over longer distances towards CCL2, CCL5, CXCL10, CXCL12 and C1q compared to non-activated (M0) and M1 macrophages. No differences were observed in the adhesion of M0, M1 and M2 macrophages to multiple matrix components, nor in the expression of integrins and chemokine receptors. Significant changes were observed in the cytoskeleton organization upon stimulation with CCL2, M0, M1 and M2 macrophages adopt a spherical morphology and the cytoskeleton is rapidly rearranged. M0 and M2 macrophages are able to form filopodia, whereas M1 macrophages only adapt a spherical morphology. Conclusions

  15. Macrophage Activation Syndrome-Associated Markers in Severe Dengue.

    PubMed

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  16. Macrophage Activation Syndrome-Associated Markers in Severe Dengue

    PubMed Central

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  17. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO. PMID:26351277

  18. Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression

    PubMed Central

    Laoui, Damya; Van Overmeire, Eva; De Baetselier, Patrick; Van Ginderachter, Jo A.; Raes, Geert

    2014-01-01

    The current review article describes the functional relationship between tumor-associated macrophages (TAM) as key cellular contributors to cancer malignancy on the one hand and macrophage-colony-stimulating factor (M-CSF or CSF-1) as an important molecular contributor on the other. We recapitulate the available data on expression of M-CSF and the M-CSF receptor (M-CSFR) in human tumor tissue as constituents of a stromal macrophage signature and on the limits of the predictive and prognostic value of plasma M-CSF levels. After providing an update on current insights into the nature of TAM heterogeneity at the level of M1/M2 phenotype and TAM subsets, we give an overview of experimental evidence, based on genetic, antibody-mediated, and pharmacological disruption of M-CSF/M-CSFR signaling, for the extent to which M-CSFR signaling can not only determine the TAM quantity, but can also contribute to shaping the phenotype and heterogeneity of TAM and other related tumor-infiltrating myeloid cells (TIM). Finally, we review the accumulating information on the – sometimes conflicting – effects blocking M-CSFR signaling may have on various aspects of cancer progression such as tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy and we thereby discuss in how far these different effects actually reflect a contribution of TAM. PMID:25339957

  19. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  20. Complement factor H interferes with Mycobacterium bovis BCG entry into macrophages and modulates the pro-inflammatory cytokine response.

    PubMed

    Abdul-Aziz, Munirah; Tsolaki, Anthony G; Kouser, Lubna; Carroll, Maria V; Al-Ahdal, Mohammed N; Sim, Robert B; Kishore, Uday

    2016-09-01

    Mycobacterium tuberculosis is an accomplished intracellular pathogen, particularly within the macrophage and this is of the utmost importance in the host-pathogen stand-off observed in the granuloma during latent tuberculosis. Contact with innate immune molecules is one of the primary interactions that can occur with the pathogen M. tuberculosis once inhaled. Complement proteins may play a role in facilitating M. tuberculosis interactions with macrophages. Here, we demonstrate that factor H, a complement regulatory protein that down-regulates complement alternative pathway activation, binds directly to the model organism M. bovis BCG. Binding of factor H reaches saturation at 5-10μg of factor H/ml, well below the plasma level. C4 binding protein (C4BP) competed with factor H for binding to mycobacteria. Factor H was also found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Real-time qPCR analysis showed stark differential responses of pro- and anti-inflammatory cytokines during the early stages of phagocytosis, as evident from elevated levels of TNF-α, IL-1β and IL-6, and a concomitant decrease in IL-10, TGF-β and IL-12 levels, when THP-1:BCG interaction took place in the presence of factor H. Our results suggest that factor H can interfere with mycobacterial entry into macrophages and modulate inflammatory cytokine responses, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. Our results offer novel insights into complement activation-independent functions of factor H during the host-pathogen interaction in tuberculosis. PMID:27262511

  1. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects. PMID:26143263

  2. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Monroy, R.L.; Skelly, R.R.; Taylor, P.; Dubois, A.; Donahue, R.E.; MacVittie, T.J.

    1988-06-01

    The ability of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) to enhance recovery of a radiation-suppressed hematopoietic system was evaluated in a nonuniform radiation exposure model using the rhesus monkey. Recombinant human GM-CSF treatment for 7 days after a lethal, nonuniform radiation exposure of 800 cGy was sufficient to enhance hematopoietic reconstitution, leading to an earlier recovery. Monkeys were treated with 72,000 U/kg/day of rhGM-CSF delivered continuously through an Alzet miniosmotic pump implanted subcutaneously on day 3. Treated monkeys demonstrated effective granulocyte and platelet levels in the peripheral blood, 4 and 7 days earlier, respectively, than control monkeys. Granulocyte-macrophage colony-forming unit (CFU-GM) activity in the bone marrow was monitored to evaluate the effect of rhGM-CSF on marrow recovery. Treatment with rhGM-CSF led to an early recovery of CFU-GM activity suggesting that rhGM-CSF acted on an earlier stem cell population to generate CFU-GM. Thus, the effect of rhGM-CSF on hematopoietic regeneration, granulocyte recovery, and platelet recovery are evaluated in this paper.

  3. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ

    PubMed Central

    2014-01-01

    Background In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Methods Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/− IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. Results M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ–activated M2-like macrophages had low anti-tumor activity, IL-10–polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. Conclusion This study demonstrates that human macrophages can be induced to exert direct anti

  4. Toll-like receptor activation of XBP1 regulates innate immune responses in macrophages

    PubMed Central

    Martinon, Fabio; Chen, Xi; Lee, Ann-Hwee; Glimcher, Laurie H.

    2011-01-01

    Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER)-stress sensor kinase IRE1α and its downstream target, the transcription factor XBP1. Previously described XBP1 ER stress target genes were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with this finding, IRE1α activation by ER-stress synergized with TLR activation for cytokine production. Moreover, XBP1 deficiency markedly increased bacterial burden in animals infected with the TLR2-activating human pathogen Francisella tularensis. Our findings uncover an unsuspected critical new function for the XBP1 transcription factor in mammalian host defenses. PMID:20351694

  5. Estrogen Represses Hepatocellular Carcinoma (HCC) Growth via Inhibiting Alternative Activation of Tumor-associated Macrophages (TAMs)*

    PubMed Central

    Yang, Weiwei; Lu, Yan; Xu, Yichen; Xu, Lizhi; Zheng, Wei; Wu, Yuanyuan; Li, Long; Shen, Pingping

    2012-01-01

    Hepatocarcinoma cancer (HCC), one of the most malignant cancers, occurs significantly more often in men than in women; however, little is known about its underlying molecular mechanisms. Here we identified that 17β-estradiol (E2) could suppress tumor growth via regulating the polarization of macrophages. We showed that E2 re-administration reduced tumor growth in orthotopic and ectopic mice HCC models. E2 functioned as a suppressor for macrophage alternative activation and tumor progression by keeping estrogen receptor β (ERβ) away from interacting with ATP5J (also known as ATPase-coupling factor 6), a part of ATPase, thus inhibiting the JAK1-STAT6 signaling pathway. These studies introduce a novel mechanism for suppressing male-predominant HCC. PMID:22908233

  6. Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages.

    PubMed

    Mahnke, Alexander; Meier, Robert J; Schatz, Valentin; Hofmann, Julian; Castiglione, Kirstin; Schleicher, Ulrike; Wolfbeis, Otto S; Bogdan, Christian; Jantsch, Jonathan

    2014-09-01

    Cure of infections with Leishmania major is critically dependent on the ability of macrophages to induce the type 2 nitic oxide (NO) synthase (NOS2) that produces high levels of NO in the presence of ample oxygen. Therefore, we analyzed the oxygen levels found in leishmanial skin lesions and their effect on the NOS2-dependent leishmanicidal activity of macrophages (MΦ). When L. major skin lesions of self-healing C57BL/6 mice reached their maximum size, the infected tissue displayed low oxygen levels (pO2∼21 Torr). MΦ activated under these oxygen tensions failed to produce sufficient amounts of NO to clear L. major. Nos2-deficient and hypoxic wild-type macrophages displayed a similar phenotype. Killing was restored when MΦ were reoxygenated or exposed to a NO donor. The resolution of the lesion in C57BL/6 mice was paralleled by an increase of lesional pO2. When mice were kept under normobaric hypoxia, this caused a persistent suppression of the lesional pO2 and a concurrent increase of the parasite load. In Nos2-deficient mice, there was no effect of atmospheric hypoxia. Low oxygen levels found at leishmanial skin lesions impaired the NOS2-dependent leishmanicidal activity of MΦ. Hence, tissue oxygenation represents an underestimated local milieu factor that participates in the persistence of Leishmania. PMID:24583949

  7. Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice.

    PubMed

    Kang, Xia; Hou, Along; Wang, Rui; Liu, Da; Xiang, Wei; Xie, Qingyun; Zhang, Bo; Gan, Lixia; Zheng, Wei; Miao, Hongming

    2016-07-01

    Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice. PMID:27129186

  8. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    PubMed

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  9. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout.

    PubMed

    Galvão, Izabela; Dias, Ana Carolina Fialho; Tavares, Livia Duarte; Rodrigues, Irla Paula Stopa; Queiroz-Junior, Celso Martins; Costa, Vivian Vasconcelos; Reis, Alesandra Corte; Ribeiro Oliveira, Rene Donizeti; Louzada-Junior, Paulo; Souza, Daniele Glória; Leng, Lin; Bucala, Richard; Sousa, Lirlândia Pires; Bozza, Marcelo Torres; Teixeira, Mauro Martins; Amaral, Flávio Almeida

    2016-06-01

    This study evaluated the role of macrophage migration inhibitory factor in inflammation caused by monosodium urate crystals. The concentration of macrophage migration inhibitory factor was increased in synovial fluid of patients with acute gout, and there was a positive correlation between intra-articular macrophage migration inhibitory factor and IL-1β concentrations. In mice, the injection of monosodium urate crystals into the knee joint increased the levels of macrophage migration inhibitory factor in macrophages and in inflamed tissue. The injection of recombinant macrophage migration inhibitory factor into the joint of mice reproduced the inflammatory response observed in acute gout, including histologic changes, the recruitment of neutrophils, and increased levels of IL-1β and CXCL1. Importantly, the accumulation of neutrophils and the amount IL-1β in the joints were reduced in macrophage migration inhibitory factor-deficient mice when injected with monosodium urate crystals. We observed a similar effect when we blocked macrophage migration inhibitory factor with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid or anti-macrophage migration inhibitory factor. In addition, the blockade of IL-1R and CXCR2 reduced recombinant macrophage migration inhibitory factor-induced neutrophil recruitment. Mechanistically, recombinant macrophage migration inhibitory factor is important for the synthesis of il1β mRNA in vivo and in isolated macrophages. Altogether, macrophage migration inhibitory factor promotes neutrophil accumulation and is important for IL-1β production, which are 2 crucial events contributing to the pathogenesis of acute gout. PMID:26868525

  10. Extracellular magnesium and calcium blockers modulate macrophage activity.

    PubMed

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  11. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    SciTech Connect

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  12. MicroRNAs Constitute a Negative Feedback Loop in Streptococcus pneumoniae-Induced Macrophage Activation.

    PubMed

    Griss, Kathrin; Bertrams, Wilhelm; Sittka-Stark, Alexandra; Seidel, Kerstin; Stielow, Christina; Hippenstiel, Stefan; Suttorp, Norbert; Eberhardt, Martin; Wilhelm, Jochen; Vera, Julio; Schmeck, Bernd

    2016-07-15

    Streptococcus pneumoniae causes high mortality as a major pneumonia-inducing pathogen. In pneumonia, control of innate immunity is necessary to prevent organ damage. We assessed the role of microRNAs (miRNAs) as regulators in pneumococcal infection of human macrophages. Exposure of primary blood-derived human macrophages with pneumococci resulted in transcriptional changes in several gene clusters and a significant deregulation of 10 microRNAs. Computational network analysis retrieved miRNA-146a as one putatively important regulator of pneumococci-induced host cell activation. Its induction depended on bacterial structural integrity and was completely inhibited by blocking Toll-like receptor 2 (TLR-2) or depleting its mediator MyD88. Furthermore, induction of miRNA-146a release did not require the autocrine feedback of interleukin 1β and tumor necrosis factor α released from infected macrophages, and it repressed the TLR-2 downstream mediators IRAK-1 and TRAF-6, as well as the inflammatory factors cyclooxygenase 2 and interleukin 1β. In summary, pneumococci recognition induces a negative feedback loop, preventing excessive inflammation via miR-146a and potentially other miRNAs. PMID:26984146

  13. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

    PubMed Central

    Keller, R; Fischer, W; Keist, R; Bassetti, S

    1992-01-01

    Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacillus subtilis, S. pyogenes, E. faecalis, and Enterococcus hirae, were able to affect each of the macrophage parameters measured, i.e., reductive capacity, secretion of tumor necrosis factor and nitrite, and tumoricidal activity. As after stimulation with whole organisms or other bacterial products, secretion of tumor necrosis factor induced by these LTAs reached its maximum within the first few hours of the interaction, while secretion of nitrite and tumoricidal activity required 24 to 36 h for full expression. Other purified LTAs, i.e., LTAs from Streptococcus sanguis, S. pneumoniae, and L. monocytogenes, as well as lipomannan from Micrococcus luteus affected only some of these parameters, while native LTA from S. aureus was inactive. There was no obvious correlation between biological activity and chain length, kind of glycosyl substituents, glycolipid structures, or fatty acid composition of LTAs. Deacylation of LTAs resulted in a complete loss of activity, and deacylated LTAs did not impair the activity of their acylated counterparts, suggesting that acyl chains may be essential for binding of LTA to the cell surface. The results demonstrate that some LTA species are potent inducers of macrophage secretory and cellular activities. PMID:1500175

  14. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy. PMID:22042223

  15. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation.

    PubMed

    Dasgupta, Preeta; Dorsey, Nicolas J; Li, Jiaqi; Qi, Xiulan; Smith, Elizabeth P; Yamaji-Kegan, Kazuyo; Keegan, Achsah D

    2016-01-01

    Insulin receptor substrate 2 (IRS2) is an adaptor protein that becomes tyrosine-phosphorylated in response to the cytokines interleukin-4 (IL-4) and IL-13, which results in activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. IL-4 and IL-13 contribute to allergic lung inflammation. To examine the role of IRS2 in allergic disease, we evaluated the responses of IRS2-deficient (IRS2(-/-)) mice. Unexpectedly, loss of IRS2 resulted in a substantial increase in the expression of a subset of genes associated with the generation of alternatively activated macrophages (AAMs) in response to IL-4 or IL-13 in vitro. AAMs secrete factors that enhance allergic responses and promote airway remodeling. Moreover, compared to IRS2(+/+) mice, IRS2(+/-) and IRS2(-/-) mice developed enhanced pulmonary inflammation, accumulated eosinophils and AAMs, and exhibited airway and vascular remodeling upon allergen stimulation, responses that partially depended on macrophage-intrinsic IRS2 signaling. Both in unstimulated and IL-4-stimulated macrophages, lack of IRS2 enhanced phosphorylation of Akt and ribosomal S6 protein. Thus, we identified a critical inhibitory loop downstream of IRS2, demonstrating an unanticipated and previously unrecognized role for IRS2 in suppressing allergic lung inflammation and remodeling. PMID:27330190

  16. Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression

    PubMed Central

    Blich, Miry; Golan, Amnon; Arvatz, Gil; Sebbag, Anat; Shafat, Itay; Sabo, Edmond; Cohen-Kaplan, Victoria; Petcherski, Sirouch; Avniel-Polak, Shani; Eitan, Amnon; Hammerman, Haim; Aronson, Doron; Axelman, Elena; Ilan, Neta; Nussbaum, Gabriel; Vlodavsky, Israel

    2012-01-01

    Objective Factors and mechanisms that activate macrophages in atherosclerotic plaques are incompletely understood. We examined the capacity of heparanase to activate macrophages. Results/Methods Highly purified heparanase was added to mouse peritoneal macrophages (MPM) and macrophage-like J774 cells and the levels of TNFα, MMP-9, IL-1, and MCP-1 were evaluated by ELISA. Gene expression was determined by RT-PCR. Cells collected from Toll like receptor (TLR)-2 and -4 knockout mice (KO) were evaluated similarly. Heparanase levels in the plasma of patients with acute myocardial infarction (MI), stable angina (SA), and healthy subjects were determined by ELISA. Immunohistochemistry was applied to detect the expression of heparanase in control specimens and specimens of patients with SA or acute MI. Addition or over expression of heparanase variants resulted in marked increase in TNFα, MMP-9, IL-1 and MCP-1 levels. MPM harvested from TLR-2 or TLR-4 knockout mice were not activated by heparanase. Plasma heparanase level was higher in patients with acute MI, compared to patients with SA and healthy subjects. Pathologic coronary specimens obtained from vulnerable plaques showed increased heparanase staining compared to specimens of stable plaque and controls. Conclusion Heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression towards vulnerability. PMID:23162016

  17. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  18. Biological markers of macrophage activation: applications for fish phagocytes.

    PubMed Central

    Enane, N A; Frenkel, K; O'Connor, J M; Squibb, K S; Zelikoff, J T

    1993-01-01

    The immune defence mechanisms of fish seem to be related and similarly competent to those of mammals. Because of this, there is an increased interest in the immune responses of fish as models for higher vertebrates in immunological/immunotoxicological studies. Macrophages (M phi), phagocytic cells of the mammalian and teleost immune system which reside in tissues, represent a quiescent population of cells. However, upon stimulation, alterations in the physiology of these resident M phi occur which can be defined in terms of activation. This study was undertaken to determine whether biological markers used to assess mammalian M phi activation are applicable for use with fish M phi. Cells were recovered from the peritoneal cavity of non-injected and Aeromonas salmonicida-injected fish, and differences between resident and elicited M phi were evaluated with respect to protein content, phagocytic competence, enzyme activities and hydrogen peroxide production. Results demonstrate that biological markers used to assess mammalian M phi activation, with the exception of acid phosphatase activity, can be used to characterize the activation state of trout M phi, and that the activation process in both fish and mammals may occur by similar mechanism(s). PMID:8244466

  19. Secretion of monocyte chemotactic activity by alveolar macrophages.

    PubMed Central

    Denholm, E. M.; Wolber, F. M.; Phan, S. H.

    1989-01-01

    The purpose of this study was to determine if alveolar macrophages (AMs) are a source of monocyte chemoattractants and the role bleomycin interaction with AMs may play in the recruitment of monocytes to the lung in a rodent model of bleomycin-induced pulmonary fibrosis. AMs isolated from rats with bleomycin-induced fibrosis secreted significantly greater amounts of monocyte chemoattractants than those isolated from normal rats. When AMs from normal rats were stimulated with bleomycin in vitro, monocyte chemotactic activity was secreted into the medium. Chemotactic activity secretion by AM stimulated with 0.01 to 0.1 micrograms/ml bleomycin was significantly higher than that of cells incubated in medium alone. This activity was truly chemotactic for monocytes, but caused only minimal migration of normal AMs. Bleomycin itself at concentrations of 1 pg/ml to 10 micrograms/ml had no monocyte chemoattractant activity. Characterization of the chemotactic activity in conditioned media (CM) from bleomycin-stimulated AM demonstrated that the major portion of the activity bound to gelatin, was heterogeneous, with estimated molecular weights of 20 to 60 kd, and was inactivated by specific antifibronectin antibody. These findings suggest that fibronectin fragments are primarily responsible for the monocyte chemotactic activity secreted by AMs. Through increased secretion of such chemotactic substances, AMs could play a key role in the recruitment of peripheral blood monocytes into the lung in inflammatory lung disease and fibrosis. PMID:2476935

  20. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  1. Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages.

    PubMed

    Shen, Jimmy Z; Morgan, James; Tesch, Greg H; Rickard, Amanda J; Chrissobolis, Sophocles; Drummond, Grant R; Fuller, Peter J; Young, Morag J

    2016-08-01

    Macrophage mineralocorticoid receptor (MR) signaling is an important mediator of cardiac tissue inflammation and fibrosis. The goal of the present study was to determine the cellular mechanisms of MR signaling in macrophages that promote cardiac tissue injury and remodeling. We sought to identify specific markers of MR signaling in isolated tissue macrophages (cardiac, aortic) vs splenic mononuclear cells from wild-type and myeloid MR-null mice given vehicle/salt or deoxycorticosterone (DOC)/salt for 8 weeks. Cardiac tissue fibrosis in response to 8 weeks of DOC/salt treatment was found in the hearts from wild-type but not myeloid MR-null mice. This was associated with an increased expression of the profibrotic markers TGF-β1 and matrix metalloproteinase-12 and type 1 inflammatory markers TNFα and chemokine (C-X-C motif) ligand-9 in cardiac macrophages. Differential expression of immunomodulatory M2-like markers (eg, arginase-1, macrophage scavenger receptor 1) was dependent on the tissue location of wild-type and MR-null macrophages. Finally, intact MR signaling is required for the phosphorylation of c-Jun NH2-terminal kinase in response to a proinflammatory stimulus in bone marrow monocytes/macrophages in culture. These data suggest that the activation of the c-Jun NH2-terminal kinase pathway in macrophages after a tissue injury and inflammatory stimuli in the DOC/salt model is MR dependent and regulates the transcription of downstream profibrotic factors, which may represent potential therapeutic targets in heart failure patients. PMID:27253999

  2. Macrophage activation syndrome in the era of biologic therapy.

    PubMed

    Grom, Alexei A; Horne, AnnaCarin; De Benedetti, Fabrizio

    2016-05-01

    Macrophage activation syndrome (MAS) refers to acute overwhelming inflammation caused by a 'cytokine storm'. Although increasingly recognized as a life-threatening complication of various rheumatic diseases, clinically, MAS is strikingly similar to primary and secondary forms of haemophagocytic lymphohistiocytosis (HLH). Not surprisingly, many rheumatologists prefer the term secondary HLH rather than MAS to describe this condition, and efforts to change the nomenclature are in progress. The pathophysiology of MAS remains elusive, but observations in animal models, as well as data on the effects of new anticytokine therapies on rates and clinical presentations of MAS in patients with systemic juvenile idiopathic arthritis (sJIA), provide clues to the understanding of this perplexing clinical phenomenon. In this Review, we explore the latest available evidence and discuss potential diagnostic challenges in the era of increasing use of biologic therapies. PMID:27009539

  3. Bone marrow-derived macrophages exclusively expressed caveolin-2: The role of inflammatory activators and hypoxia.

    PubMed

    Maceckova, Michaela; Martiskova, Hana; Koudelka, Adolf; Kubala, Lukas; Lojek, Antonin; Pekarova, Michaela

    2015-11-01

    Caveolins are specific proteins involved in regulation of signal transduction to intracellular space. Still, their contribution to immune functions has not been completely clarified. Thus, we decided to characterize the expression of caveolins in bone marrow-derived macrophages (BMDMs) under resting and inflammatory conditions. The effect of classical activators (lipopolysaccharide, LPS; interferon-gamma, IFN-γ) was further potentiated with hypoxic (5% O2) conditions. The activation of p44/42-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and expression of caveolin-1, -2, and -3, hypoxia inducible factor-1 alpha (HIF-1α), as well as inducible nitric oxide synthase (iNOS) was monitored using the Western blot technique. The production of nitric oxide (NO) and tumor necrosis factor-alpha (TNFα) was analyzed by Griess method or ELISA, respectively. BMDMs were also transfected with siRNA against caveolin-2. Importantly, our study showed for the first time that BMDMs expressed only caveolin-2, and its level decreased after activation of macrophages with LPS, IFN-γ, and/or hypoxia. The expression of caveolin-2 negatively correlates with the iNOS and HIF-1α protein levels, as well as with the LPS/IFN-γ- and hypoxia-induced activation of ERK1/2. We concluded that caveolin-2 is most probably involved in regulation of pro-inflammatory responses of BMDMs, triggered via activation of ERK1/2. PMID:26215374

  4. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis.

    PubMed

    Heinrichs, Daniel; Berres, Marie-Luise; Coeuru, Melanie; Knauel, Meike; Nellen, Andreas; Fischer, Petra; Philippeit, Claudia; Bucala, Richard; Trautwein, Christian; Wasmuth, Hermann E; Bernhagen, Jürgen

    2014-12-01

    MIF is an inflammatory cytokine but is hepatoprotective in models of hepatotoxin-induced liver fibrosis. Hepatic fibrosis can also develop from metabolic liver disease, such as nonalcoholic fatty liver disease (NASH). We investigated the role of MIF in high-fat or methionine- and choline-deficient diet mouse models of NASH. Mif(-/-) mice showed elevated liver triglyceride levels (WT, 53±14 mg/g liver; Mif(-/-), 103±7 mg/g liver; P<0.05) and a 2-3-fold increased expression of lipogenic genes. Increased fatty degeneration in the livers of Mif(-/-) mice was associated with increased hepatic inflammatory cells (1.6-fold increase in F4/80(+) macrophages) and proinflammatory cytokines (e.g., 2.3-fold increase in Tnf-α and 2-fold increase in Il-6 expression). However, inflammatory cells and cytokines were decreased by 50-90% in white adipose tissue (WAT) of Mif(-/-) mice. Subset analysis showed that macrophage phenotypes in livers of Mif(-/-) mice were skewed toward M2 (e.g., 1.7-fold and 2.5-fold increase in Arg1 and Il-13, respectively, and 2.5-fold decrease in iNos), whereas macrophages were generally reduced in WAT of these mice (70% reduction in mRNA expression of F4/80(+) macrophages). The protective MIF effect was scrutinized in isolated hepatocytes. MIF reversed inflammation-induced triglyceride accumulation in Hepa1-6 cells and primary hepatocytes and also attenuated oleic acid-elicited triglyceride increase in 3T3-L1 adipocytes. Protection from fatty hepatocyte degeneration was paralleled by a 2- to 3-fold reduction by MIF of hepatocyte proinflammatory cytokine production. Blockade of MIF receptor cluster of differentiation 74 (CD74) but not of CXCR2 or CXCR4 fully reverted the protective effect of MIF, comparable to AMPK inhibition. In summary, we demonstrate that MIF mediates hepatoprotection through the CD74/AMPK pathway in hepatocytes in metabolic models of liver injury. PMID:25122558

  5. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP. PMID:26529190

  6. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  7. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  8. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus

    PubMed Central

    Tacke, Robert; Hilgendorf, Ingo; Garner, Hannah; Waterborg, Claire; Park, Kiwon; Nowyhed, Heba; Hanna, Richard N.; Wu, Runpei; Swirski, Filip K.; Geissmann, Frederic; Hedrick, Catherine C.

    2015-01-01

    Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset. PMID:26091486

  9. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses.

    PubMed

    Ambrozova, Gabriela; Martiskova, Hana; Koudelka, Adolf; Ravekes, Thorben; Rudolph, Tanja K; Klinke, Anna; Rudolph, Volker; Freeman, Bruce A; Woodcock, Steven R; Kubala, Lukas; Pekarova, Michaela

    2016-01-01

    Inflammation is an immune response triggered by microbial invasion and/or tissue injury. While acute inflammation is directed toward invading pathogens and injured cells, thus enabling tissue regeneration, chronic inflammation can lead to severe pathologies and tissue dysfunction. These processes are linked with macrophage polarization into specific inflammatory "M1-like" or regulatory "M2-like" subsets. Nitro-fatty acids (NO2-FAs), produced endogenously as byproducts of metabolism and oxidative inflammatory conditions, may be useful for treating diseases associated with dysregulated immune homeostasis. The goal of this study was to characterize the role of nitro-oleic acid (OA-NO2) in regulating the functional specialization of macrophages induced by bacterial lipopolysaccharide or interleukin-4, and to reveal specific signaling mechanisms which can account for OA-NO2-dependent modulation of inflammation and fibrotic responses. Our results show that OA-NO2 inhibits lipopolysaccharide-stimulated production of both pro-inflammatory and immunoregulatory cytokines (including transforming growth factor-β) and inhibits nitric oxide and superoxide anion production. OA-NO2 also decreases interleukin-4-induced macrophage responses by inhibiting arginase-I expression and transforming growth factor-β production. These effects are mediated via downregulation of signal transducers and activators of transcription, mitogen-activated protein kinase and nuclear factor-кB signaling responses. Finally, OA-NO2 inhibits fibrotic processes in an in vivo model of angiotensin II-induced myocardial fibrosis by attenuating expression of α-smooth muscle actin, systemic transforming growth factor-β levels and infiltration of both "M1-" and "M2-like" macrophage subsets into afflicted tissue. Overall, the electrophilic fatty acid derivative OA-NO2 modulates a broad range of "M1-" and "M2-like" macrophage functions and represents a potential therapeutic approach to target diseases

  10. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization.

    PubMed

    Andrews, Karen L; Sampson, Amanda K; Irvine, Jennifer C; Shihata, Waled A; Michell, Danielle L; Lumsden, Natalie G; Lim, Chloe; Huet, Olivier; Drummond, Grant R; Kemp-Harper, Barbara K; Chin-Dusting, Jaye P F

    2016-09-01

    Nitroxyl anion (HNO) donors are currently being assessed for their therapeutic utility in several cardiovascular disorders including heart failure. Here, we examine their effect on factors that precede atherosclerosis including endothelial cell and monocyte activation, leucocyte adhesion to the endothelium and macrophage polarization. Similar to the NO donor glyceryl trinitrate (GTN), the HNO donors Angeli's salt (AS) and isopropylamine NONOate (IPA/NO) decreased leucocyte adhesion to activated human umbilical vein endothelial cells (HUVECs) and mouse isolated aorta. This reduction in adhesion was accompanied by a reduction in intercellular adhesion molecule-1 (ICAM-1) and the cytokines monocyte chemoattractant protein 1 (MCP-1) and interleukin 6 (IL-6) which was inhibitor of nuclear factor κB (NFκB) α (IκBα)- and subsequently NFκB-dependent. Intriguingly, the effects of AS on leucocyte adhesion, like those on vasodilation, were found to not be susceptible to pharmacological tolerance, unlike those observed with GTN. As well, HNO reduces monocyte activation and promotes polarization of M2 macrophages. Taken together, our data demonstrate that HNO donors can reduce factors that are associated with and which precede atherosclerosis and may thus be useful therapeutically. Furthermore, since the effects of the HNO donors were not subject to tolerance, this confers an additional advantage over NO donors. PMID:27231254

  11. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon β (IFNβ) and promoted the activation of nuclear factor kappa B (NF-κB) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  12. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    PubMed Central

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  13. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    PubMed

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype. PMID:26754935

  14. Effect of Mycobacterium tuberculosis-Specific 10-Kilodalton Antigen on Macrophage Release of Tumor Necrosis Factor Alpha and Nitric Oxide

    PubMed Central

    Trajkovic, Vladimir; Singh, Gyanesh; Singh, Balwan; Singh, Sarman; Sharma, Pawan

    2002-01-01

    Secreted proteins of Mycobacterium tuberculosis are major targets of the specific immunity in tuberculosis and constitute promising candidates for the development of more efficient vaccines and diagnostic tests. We show here that M. tuberculosis-specific antigen 10 (MTSA-10, originally designated CFP-10) can bind to the surface of mouse J774 macrophage-like cells and stimulate the secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). MTSA-10 also synergized with gamma interferon (IFN-γ) for the induction of the microbicidal free radical nitric oxide (NO) in J774 cells, as well as in bone marrow-derived and peritoneal macrophages. On the other hand, pretreatment of J774 cells with MTSA-10 markedly reduced NO but not TNF-α or interleukin 10 (IL-10) release upon subsequent stimulation with lipopolysaccharide or the cell lysate of M. tuberculosis. The presence of IFN-γ during stimulation with M. tuberculosis lysate antagonized the desensitizing effect of MTSA-10 pretreatment on macrophage NO production. The activation of protein tyrosine kinases (PTK) and the serine/threonine kinases p38 MAPK and ERK was apparently required for MTSA-10 induction of TNF-α and NO release, as revealed by specific kinase inhibitors. However, only p38 MAPK activity, not PTK or ERK activity, was partly responsible for MTSA-10-mediated macrophage desensitization. The modulation of macrophage function by MTSA-10 suggests a novel mechanism for its involvement in immunopathogenesis of tuberculosis and might have implications for the prevention, diagnosis, and therapy of this disease. PMID:12438325

  15. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  16. Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages

    PubMed Central

    Matta, S K; Kumar, D

    2016-01-01

    Cellular reactive oxygen species (ROS) is a major antibacterial defense mechanism used by macrophages upon activation. Exposure of Mycobacterium tuberculosis (Mtb)-infected macrophages to hypoxia is known to compromise the survival of the pathogen. Here we report that the hypoxia-induced control of intracellular Mtb load in RAW 264.7 macrophages was mediated by regulating the cellular ROS levels. We show that similar to classical activation, hypoxia incubation of macrophages resulted in decreased mitochondrial outer membrane potential (MOMP) and a concomitant increase in the cellular ROS levels. Mitochondrial depolarization and consequently higher ROS could be blocked by knocking down Akt using siRNAs, which acted by inhibiting the switch to glycolytic mode of metabolism, an essential adaptive response upon classical activation or hypoxic incubation of macrophages. Moreover, in the classically activated macrophages or in the macrophages under hypoxia incubation, supplementation with additional glucose had similar effects as Akt knockdown. Interestingly, in both the cases, the reversal of phenotype was linked with the ability of the mitochondrial F0–F1 ATP synthase activity to maintain the MOMP in the absence of oxidative phosphorylation. Both Akt knockdown and glucose supplementation were also able to rescue Mtb survival in these macrophages upon classical activation or hypoxia incubation. These results provide a framework for better understanding of how the interplay between oxygen supply, which is limiting in the human tubercular granulomas, and nutrient availability could together direct the outcome of infections in vivo. PMID:27551515

  17. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    PubMed

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  18. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  19. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  20. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  1. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Methods Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Results Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Conclusions Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy. PMID:23597096

  2. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  3. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    SciTech Connect

    Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  4. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages.

    PubMed Central

    Kawabe, T; Isobe, K I; Hasegawa, Y; Nakashima, I; Shimokata, K

    1992-01-01

    Alveolar macrophages (AM) from normal rats had immunosuppressive activity to mitogen-induced proliferative responses of splenic lymphocytes. We studied the mechanism and the implication of the nitric oxide synthetase pathway in AM-mediated suppression of concanavalin A (Con A)-induced lymphocyte proliferation. The culture supernatant from AM cultures alone did not have immunosuppressive activity to Con A-induced proliferative responses of non-adherent spleen cells (n-ad SC), but the culture supernatant from co-culture of AM and autologous n-ad SC had this activity. Con A-pulsed AM also liberated the immunosuppressive factor. When AM and autologous n-ad SC were cultured separately under the condition that medium could freely communicate, the culture supernatant did not suppress the Con A-induced proliferative response of n-ad SC. This indicated that the immunosuppressive factor was liberated when AM was activated by cell-to-cell contact with n-ad SC. Further, we examined the immunosuppressive activity of the culture supernatant of co-culture of AM and autologous n-ad SC to Con A-induced responses of allogeneic n-ad SC and xenogeneic murine n-ad SC, and allogeneic mixed leucocyte reaction, and found that this culture supernatant could suppress all these proliferative responses. Nitrate (NO2-) synthesis was markedly augmented in the culture supernatants of Con A-pulsed AM and co-culture of AM and n-ad SC. NG-monomethyl-L-arginine (MMA), a specific competitive inhibitor of the nitric oxide synthetase pathway (NOSP), extinguished both NO2- synthesis by AM and AM-mediated immunosuppressive activity. These data suggest that NOSP was important in AM-mediated suppression of Con A-induced lymphocyte proliferation. PMID:1385798

  5. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.

    PubMed

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth B; Biswas, Subhra K; Harris, Adrian L; Johnson, Randall S; Imityaz, Hongxia Z; Simon, M Celeste; Fredlund, Erik; Greten, Florian R; Rius, Jordi; Lewis, Claire E

    2009-07-23

    Ischemia exists in many diseased tissues, including arthritic joints, atherosclerotic plaques, and malignant tumors. Macrophages accumulate in these sites and up-regulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18 hours. For example, they were seen to up-regulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, vascular endothelial growth factor A, interleukin (IL)-1beta and IL-8, adrenomedullin, CXCR4, and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the nuclear factor-kappaB (NF-kappaB) signaling pathway. We then used both genetic and pharmacologic methods to manipulate the levels of HIFs-1alpha and 2alpha or NF-kappaB in primary macrophages to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIF-1 and -2, but not NF-kappaB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues, such as malignant tumors. PMID:19454749

  6. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy.

    PubMed

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  7. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy

    PubMed Central

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  8. Peroxidatic activity distinct from myeloperoxidase in human monocytes cultured in vitro and in alveolar macrophages.

    PubMed

    Breton-Gorius, J; Vildé, J L; Guichard, J; Vainchenker, W; Basset, F

    1982-01-01

    Human monocytes develop a peroxidatic activity (PA) in rough endoplasmic reticulum (RER) after adherence or after culture in semi-solid medium. This enzyme activity disappears after three days of culture in the majority of macrophages derived from adult monocytes but persists for one week in macrophages derived from neonatal monocytes. The PA is due to an enzyme distinct from myeloperoxidase (MPO), since monocytes from a patient with MPO deficiency develop the same PA as that of normal monocytes after adherence. By its localization and other characteristics, PA of adherent monocytes resembles that of rodent macrophages. We therefore investigated whether human alveolar macrophages exhibit PA, using a sensitive cytochemical method which prevents inhibition by aldehyde in adherent monocytes. In various pathological cases, four types of macrophages could be identified: the majority were peroxidase-negative, a small percentage was of exudate type exhibiting a PA in granules as blood monocytes, while few macrophages were intermediate, possessing only PA in RER i.e. of type resident and a smaller proportion had PA in RER and in granules i.e. exudate-resident macrophages. These findings demonstrate that human macrophages and adherent monocytes may exhibit PA in RER as has been reported for rodent macrophages. The true nature and function of the enzyme responsible for this PA, which is distinct from MPO, remains unknown, but some arguments seem to suggest its role in prostaglandin synthesis. PMID:6283838

  9. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement.

    PubMed

    Tu, Ming-Gene; Chen, Yi-Wen; Shie, Ming-You

    2015-12-01

    The use of calcium silicate (CS) cement holds great promise for bone substitute biomaterials. However, the effects of CS on osteoblast and macrophage cells are not fully understood. This study examines cell proliferation and differentiation of mono- or co-cultured MC3T3-E1 and Raw 264.7 cells on CS cement. Very few studies to date have looked at the effects of osteoblast and macrophages on biomaterial-regulated osteogenesis. In this study the proliferation and differentiation of MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 on CS cements have been analyzed using a PrestoBlue kit and ELISA. In addition, the effect of macrophages on CS-coordinated osteogenesis of MC3T3-E1 has been investigated. Results show that MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 adhere to and proliferate well on the CS cement. In a co-culture, the CS cements inhibit receptor activator of nuclear factor kappa B ligand expression of both genes and proteins in Raw 264.7 cells when compared to those grown in mono-cultured system. Ca deposition of MC3T3-E1 in the co-culture is higher than that of cells in a mono-culture. Bone morphogenetic protein 2 (BMP2) is also significantly up-regulated by the CS cement stimulation, indicating that macrophages may participate in the CS stimulated osteogenesis. Interestingly, when macrophage are cultured with BMP2 receptor-blocking MC3T3-E1 on the CS cements, the osteogenesis differentiation of the cells is significantly inhibited, indicating the important role of macrophages in biomaterial-induced osteogenesis via BMP2 receptors. It is assumed that it is an increase in the secretion of the BMP2 from the Raw 264.7 cell that is primarily involved in the promotion of the osteogenesis of the MC3T3-E1. These results provide valuable insights into both the mechanism of CS-stimulated osteogenesis, and strategies to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute biomaterials. PMID:26543022

  10. Myeloid-Specific Krüppel-Like Factor 2 Inactivation Increases Macrophage and Neutrophil Adhesion and Promotes Atherosclerosis

    PubMed Central

    Lingrel, Jerry B; Pilcher-Roberts, Robyn; Basford, Joshua E.; Manoharan, Palanikumar; Neumann, Jon; Konaniah, Eddy S.; Srinivasan, Ramprasad; Bogdanov, Vladimir Y; Hui, David Y.

    2012-01-01

    Rationale and Objective Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. Methods and Results Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2-/-) mice were similar to myeKlf2+/+ macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2+/+ macrophages, myeKlf2-/- macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2-/- mice also adhered more robustly to endothelial cells, and less myeKlf2-/- neutrophils survived in culture over a 24 hr period in comparison with myeKlf2+/+ neutrophils. When myeKlf2-/- mice were mated to Ldlr-/- mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2-/-Ldlr-/- mice compared to myeKlf2+/+Ldlr-/- littermates. The increased atherosclerosis in myeKlf2-/-Ldlr-/- mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated- and nitrosylated-tyrosine epitopes in their lesion areas compared to myeKlf2+/+Ldlr-/- mice. Conclusions This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis. PMID:22474254

  11. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  12. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages.

    PubMed

    Huang, Yan; Wang, Yarui; Li, Xiaofeng; Chen, Zhaolin; Li, Xiaohui; Wang, Huan; Ni, Mingming; Li, Jun

    2015-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages. PMID:25827060

  13. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production.

    PubMed

    Winkler, Aaron R; Nocka, Karl N; Williams, Cara M M

    2012-08-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating condition resulting from exposure to pollutants such as cigarette smoke. Pulmonary macrophages secrete a plethora of inflammatory mediators that are increased in the lungs of COPD patients, but whether this phenotype results directly from smoke exposure remains unknown. Using an in vitro model for alveolar macrophages (AM) derived from human peripheral blood monocytes with granulocyte-macrophage stimulating factor (GM-MØ), we analyzed the mechanistic connection between cigarette smoke exposure and histone deacetylase (HDAC) regulation, hypothesized to be a contributing factor in COPD pathophysiology. Here we show that acute smoke exposure inhibits HDAC enzymatic activity in GM-MØ. Analysis of mRNA and total cellular proteins for expression of class I (1, 2, 3 and 8), class II (4, 5, 6, 7, 9, 10), and class IV (11) HDAC revealed no effect of smoke exposure, whereas nuclear HDAC3 protein content was reduced. To better understand the physiological significance of reduced HDAC3 activity, we utilized siRNA to knockdown HDAC1, 2 and 3 individually. Interestingly, siRNA-mediated reduction of HDAC3 resulted in increased production of IL8 and IL1β in response to LPS stimulation, while HDAC2 knockdown had no effect on either cytokine. Lower nuclear content of HDAC3 in the context of equivalent total HDAC protein levels following smoke exposure may reflect increased nuclear export of HDAC3, allowing increased nuclear factor kappa b (NF-κB ) driven cytokine expression that can contribute to inflammation. PMID:22613758

  14. Active macrophage-associated TGF-beta co-localizes with type I procollagen gene expression in atherosclerotic human pulmonary arteries.

    PubMed Central

    Bahadori, L.; Milder, J.; Gold, L.; Botney, M.

    1995-01-01

    Vascular remodeling in adult atherosclerotic pulmonary arteries is characterized by discrete areas of neointimal smooth muscle cell extracellular matrix gene expression in close proximity to non-foamy macrophages, suggesting regulation by local macrophage-associated factors. The purpose of these studies was to begin addressing the role of putative macrophage-associated factors such as transforming growth factor-beta (TGF-beta), by determining the spatial relationship between TGF-beta and neointimal matrix gene expression in human atherosclerotic pulmonary arteries. For example, the participation of TGF-beta in vascular remodeling could be inferred by its colocalization with non-foamy macrophages in areas of active matrix synthesis. In situ hybridization and immunohistochemistry demonstrated focal neointimal procollagen gene expression in close association with non-foamy but not foamy macrophages. Immunohistochemistry with isoform-specific anti-TGF-beta antibodies demonstrated all three isoforms of TGF-beta associated with non-foamy macrophages, but foamy macrophages were not immunoreactive. Neointimal and medial smooth muscle cells stained lightly. In contrast, intense TGF-beta immunoreactivity was also associated with medial smooth muscle cells in normal nonremodeling vessels. Immunohistochemistry with antibodies specific for latent TGF-beta was similar to immunohistochemistry for mature TGF-beta in both remodeling and nonremodeling vessels. Finally, using an antibody specific for active TGF-beta 1, immunoreactivity was only seen in non-foamy neointimal macrophages but not in foamy macrophages or medial smooth muscle cells from hypertensive or normal vessels. These observations suggest non-foamy macrophages may participate in modulating matrix gene expression in atherosclerotic remodeling via a TGF-beta-dependent mechanism. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7747808

  15. Trehalose diester glycolipids are superior to the monoesters in binding to Mincle, activation of macrophages in vitro and adjuvant activity in vivo.

    PubMed

    Huber, Alexandra; Kallerup, Rie S; Korsholm, Karen S; Franzyk, Henrik; Lepenies, Bernd; Christensen, Dennis; Foged, Camilla; Lang, Roland

    2016-08-01

    The T-cell adjuvanticity of mycobacterial cord factor trehalose 6,6'-dimycolate (TDM) is well established. The identification of the C-type lectin Mincle on innate immune cells as the receptor for TDM and its synthetic analogue trehalose 6,6'-dibehenate (TDB) has raised interest in development of synthetic Mincle ligands as novel adjuvants. Trehalose mono- (TMXs) and diesters (TDXs) with symmetrically shortened acyl chains [denoted by X: arachidate (A), stearate (S), palmitate (P), and myristate (M)] were tested. Upon stimulation of murine macrophages, G-CSF secretion and NO production were strongly augmented by all TDXs tested, in a wide concentration range. In contrast, the TMXs triggered macrophage activation only at high concentrations. Macrophage activation by all TDXs required Mincle, but was independent of MyD88. The superior capacity of TDXs for activating macrophages was paralleled by direct binding of TDXs, but not of TMXs, to a Mincle-Fc fusion protein. Insertion of a short polyethylene glycol between the sugar and acyl chain in TDS reduced Mincle-binding and macrophage activation. Immunization of mice with cationic liposomes containing the analogues demonstrated the superior adjuvant activity of trehalose diesters. Overall, immune activation in vitro and in vivo by trehalose esters of simple fatty acids requires two acyl chains of length and involves Mincle. PMID:27252171

  16. Activation of murine peritoneal macrophages by water-soluble extracts of Bursaphelenchus xylophilus, a pine wood nematode.

    PubMed

    Kaji, Hiroaki; Tai, Akihiro; Matsushita, Kazufumi; Kanzaki, Hiroshi; Yamamoto, Itaru

    2006-01-01

    In our previous study, water-soluble extracts from Bursaphelenchus xylophilus (B. xylophilus), a pine wood nematode, were shown to enhance interleukin (IL)-4 plus lipopolysaccharide-induced polyclonal immunoglobulin (Ig) E production in vitro in mice and to increase serum levels of an antigen-nonspecific IgE in vivo. Here we examined whether the nematode extracts stimulate immunofunctions of murine peritoneal macrophages. In both resident and inflammatory macrophages, Fcgamma receptor-mediated phagocytosis was markedly activated by B. xylophilus extracts, while non-specific phagocytosis was not. The enhancement of specific phagocytosis was accompanied by an increase in the formation of IgG-Fcgamma receptor rosettes. B. xylophilus extracts also stimulated IL-1beta production in both types of macrophages, and enhanced NO production and mRNA expression of inflammatory cytokines in inflammatory macrophages. These results indicate that the extracts of B. xylophilus contain an activating substance(s) for immunofunctions in macrophages, besides an enhancing factor for polyclonal IgE production. PMID:16428838

  17. Blockade of MMP14 Activity in Murine Breast Carcinomas: Implications for Macrophages, Vessels, and Radiotherapy

    PubMed Central

    Ager, Eleanor I.; Kozin, Sergey V.; Kirkpatrick, Nathaniel D.; Seano, Giorgio; Kodack, David P.; Askoxylakis, Vasileios; Huang, Yuhui; Goel, Shom; Snuderl, Matija; Muzikansky, Alona; Finkelstein, Dianne M.; Dransfield, Daniel T.; Devy, Laetitia; Boucher, Yves

    2015-01-01

    Background: Matrix metalloproteinase (MMP) 14 may mediate tumor progression through vascular and immune-modulatory effects. Methods: Orthotopic murine breast tumors (4T1 and E0771 with high and low MMP14 expression, respectively; n = 5–10 per group) were treated with an anti-MMP14 inhibitory antibody (DX-2400), IgG control, fractionated radiation therapy, or their combination. We assessed primary tumor growth, transforming growth factor β (TGFβ) and inducible nitric oxide synthase (iNOS) expression, macrophage phenotype, and vascular parameters. A linear mixed model with repeated observations, with Mann-Whitney or analysis of variance with Bonferroni post hoc adjustment, was used to determine statistical significance. All statistical tests were two-sided. Results: DX-2400 inhibited tumor growth compared with IgG control treatment, increased macrophage numbers, and shifted the macrophage phenotype towards antitumor M1-like. These effects were associated with a reduction in active TGFβ and SMAD2/3 signaling. DX-2400 also transiently increased iNOS expression and tumor perfusion, reduced tissue hypoxia (median % area: control, 20.2%, interquartile range (IQR) = 6.4%-38.9%; DX-2400: 1.2%, IQR = 0.2%-3.2%, P = .044), and synergistically enhanced radiation therapy (days to grow to 800mm3: control, 12 days, IQR = 9–13 days; DX-2400 plus radiation, 29 days, IQR = 26–30 days, P < .001) in the 4T1 model. The selective iNOS inhibitor, 1400W, abolished the effects of DX-2400 on vessel perfusion and radiotherapy. On the other hand, DX-2400 was not capable of inducing iNOS expression or synergizing with radiation in E0771 tumors. Conclusion: MMP14 blockade decreased immunosuppressive TGFβ, polarized macrophages to an antitumor phenotype, increased iNOS, and improved tumor perfusion, resulting in reduced primary tumor growth and enhanced response to radiation therapy, especially in high MMP14-expressing tumors. PMID:25710962

  18. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  19. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  20. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  1. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID:25578260

  2. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis. PMID:26485286

  3. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages

    PubMed Central

    Binger, Katrina J.; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A.; Lang, Florian; Voehringer, David; Wright, Mark D.; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N.

    2015-01-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt–induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis. PMID:26485286

  4. The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF–trophoblast–IL-10 axis via Stat1 inhibition and Stat3 activation

    PubMed Central

    Dallagi, Angham; Girouard, Julie; Hamelin-Morrissette, Jovane; Dadzie, Rachel; Laurent, Laetitia; Vaillancourt, Cathy; Lafond, Julie; Carrier, Christian; Reyes-Moreno, Carlos

    2015-01-01

    Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF–trophoblast–IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines. PMID:25027966

  5. The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via Stat1 inhibition and Stat3 activation.

    PubMed

    Dallagi, Angham; Girouard, Julie; Hamelin-Morrissette, Jovane; Dadzie, Rachel; Laurent, Laetitia; Vaillancourt, Cathy; Lafond, Julie; Carrier, Christian; Reyes-Moreno, Carlos

    2015-05-01

    Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF-trophoblast-IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines. PMID:25027966

  6. Development and characterization of antiserum to murine granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Mochizuki, D.Y.; Eisenman, J.R.; Conlon, P.J.; Park, L.S.; Urdal, D.L.

    1986-05-15

    The expression in yeast of a cDNA clone encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF) has made possible the purification of large quantities of this recombinant protein. Rabbits immunized with pure recombinant GM-CSF generated antibodies that were shown to be specific for both recombinant GM-CSF and GM-CSF isolated from natural sources. Other lymphokines, including IL 1..beta.., IL 2, IL 3, and recombinant human GM-CSF did not react with the antiserum. The antiserum together with recombinant GM-CSF that had been radiolabeled with /sup 125/I to high specific activity, formed the foundation for a rapid, sensitive, and quantitative radioimmunoassay specific for murine GM-CSF. Furthermore, the antiserum was found to inhibit the biologic activities of GM-CSF as measured in both a bone marrow proliferation assay and a colony assay, and thus should prove to be a useful reagent for dissecting the complex growth factor activities involved in murine hematopoiesis.

  7. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    PubMed Central

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; Hare, Alissa A.; Danford, Nadia E.; Baxter, Richard H. G.; Jorgensen, William L.

    2015-01-01

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13. PMID:25697265

  8. IFN-gamma reduces specific binding of tumor necrosis factor on murine macrophages

    SciTech Connect

    Drapier, J.C.; Wietzerbin, J. )

    1991-02-15

    Because IFN-gamma is the main cytokine activating macrophages and TNF cooperates in this activation, we assessed TNF binding capacity during the course of murine macrophage activation by IFN-gamma. TNF binding to elicited macrophages increased with time, was maximal by 8 h of culture, and required de novo protein synthesis. {sup 125}I-TNF bound to about 40,000 sites/cell with a Kd of 1 x 10(-9) M. Cross-linking experiments performed with a bifunctional cross-linking agent revealed a specific band with a m.w. of 94,000. Preincubation of macrophages with IFN-gamma prevented the binding of TNF to receptors. This effect was dose-dependent and maximal at 100 U/ml. IFN-gamma also reduced specific TNF binding to preexisting receptors (50% inhibition in 3 h), but IFN-gamma did not change the internalization rate of TNF. These studies showed that the number of TNF receptors increased on macrophages vs maturation in culture and was negatively controlled by IFN-gamma.

  9. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria. PMID:26802244

  10. Protumoral TSP50 Regulates Macrophage Activities and Polarization via Production of TNF-α and IL-1β, and Activation of the NF-κB Signaling Pathway

    PubMed Central

    Yang, Cheng; Zhang, Dong-Mei; Song, Zhen-Bo; Hou, Ya-Qin; Bao, Yong-Li; Sun, Lu-Guo; Yu, Chun-Lei; Li, Yu-Xin

    2015-01-01

    Testes-specific protease 50 (TSP50) is abnormally overexpressed in many kinds of cancers and promotes cell proliferation and migration. However, whether TSP50 can influence the tumor microenvironment, especially the function of immune cells in the microenvironment, remains largely unknown. We demonstrated that exposure to the conditioned medium from TSP50-overexpressing cells, or co-culture with TSP50-overexpressing cells, enhanced the cytokine production and phagocytic activities of macrophages, and induced M2b polarization. Further investigation showed that production of TNF-α and IL-1β was strongly induced by TSP50 in TSP50-overexpressing cells. TSP50-induced TNF-α and IL-1β were main factors that mediated the effects of TSP50-overexpressing cells on macrophages. The NF-κB pathway could be activated in macrophages upon the treatment of conditioned medium of TSP50-overexpressing cells and its activation is necessary for the observed effects on macrophages. Taken together, our results suggested that oncogenic TSP50 expressed in cells could activate surrounding macrophages and induce M2b polarization, partly through inducing TNF-α/ IL-1β secretion and subsequent NF-κB pathway activation. This implies a potential mechanism by which oncogene TSP50 regulates tumor microenvironment to support tumor development. PMID:26684869

  11. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro.

    PubMed

    McLaren, D J; James, S L

    1985-05-01

    Immunologically activated murine macrophages have been shown elsewhere to kill skin stage schistosomula of Schistosoma mansoni in vitro, in a manner analogous to the extracellular killing of tumour cell targets. In this study, the kinetics of the interaction between activated macrophages and larval targets and the resultant ultrastructural changes in parasite morphology that culminated in death have been analysed in detail. Unlike granulocyte-mediated schistosomular killing, macrophage-mediated cytotoxicity did not appear to be directed against the surface tissues of the parasite. Macrophages adhered only transiently following initiation of the cultures, yet changes in the subtegumental mitochondria and muscle cells of the larva were detected within the first hour of incubation. Progressive internal disorganisation followed rapidly, but the tegument and tegumental outer membrane remained intact, to form a 'shell' that maintained the general shape of the parasite. Such changes were recognised irrespective of whether the effector cell population comprised peritoneal macrophages activated by lymphokine treatment in vitro, or by infection with Mycobacterium bovis (strain BCG), or S. mansoni in vivo. That macrophages rather than contaminating granulocytes or lymphocytes, had mediated the observed damage was demonstrated by the use of a lymphokine treated macrophage cell line, IC-21. The observation that macrophage cytotoxicity is directed against internal organelles rather than the tegumental outer membrane of this multicellular target, may help to elucidate the general mechanism of extracellular killing by these cells. PMID:3892433

  12. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages.

    PubMed

    Previtera, Michelle L; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  13. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  14. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion

    PubMed Central

    Abd-Elrahman, Ihab; Kosuge, Hisanori; Wises Sadan, Tommy; Ben-Nun, Yael; Meir, Karen; Rubinstein, Chen; Bogyo, Matthew; McConnell, Michael V.

    2016-01-01

    Background and Purpose Cardiovascular disease is the leading cause of death worldwide, mainly due to an increasing prevalence of atherosclerosis characterized by inflammatory plaques. Plaques with high levels of macrophage infiltration are considered “vulnerable” while those that do not have significant inflammation are considered stable; cathepsin protease activity is highly elevated in macrophages of vulnerable plaques and contributes to plaque instability. Establishing novel tools for non-invasive molecular imaging of macrophages in plaques could aid in preclinical studies and evaluation of therapeutics. Furthermore, compounds that reduce the macrophage content within plaques should ultimately impact care for this disease. Methods We have applied quenched fluorescent cathepsin activity-based probes (ABPs) to a murine atherosclerosis model and evaluated their use for in vivo imaging using fluorescent molecular tomography (FMT), as well as ex vivo fluorescence imaging and fluorescent microscopy. Additionally, freshly dissected human carotid plaques were treated with our potent cathepsin inhibitor and macrophage apoptosis was evaluated by fluorescent microscopy. Results We demonstrate that our ABPs accurately detect murine atherosclerotic plaques non-invasively, identifying cathepsin activity within plaque macrophages. In addition, our cathepsin inhibitor selectively induced cell apoptosis of 55%±10% of the macrophage within excised human atherosclerotic plaques. Conclusions Cathepsin ABPs present a rapid diagnostic tool for macrophage detection in atherosclerotic plaque. Our inhibitor confirms cathepsin-targeting as a promising approach to treat atherosclerotic plaque inflammation. PMID:27532109

  15. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    SciTech Connect

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y. )

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitrites (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.

  16. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway. PMID:12938159

  17. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lion