Science.gov

Sample records for macrophage derived factor

  1. Uptake of exogenous free cholesterol induces upregulation of tissue factor expression in human monocyte-derived macrophages.

    PubMed Central

    Lesnik, P; Rouis, M; Skarlatos, S; Kruth, H S; Chapman, M J

    1992-01-01

    Lipid-laden macrophages present as foam cells may contribute to the hyperthrombotic state of human atherosclerotic lesions by the production of tissue factor (TF). We investigated the effect of exogenous nonlipoprotein cholesterol on the expression of TF by human monocyte-derived macrophages in culture. Nonlipoprotein cholesterol at 50 micrograms/ml increased TF activity 4-fold; TF induction was dose- and time-dependent. Expression of TF activity was positively correlated with the free cholesterol content of monocyte-derived macrophages, was increased upon inhibition of cholesterol esterification, and reflected de novo synthesis of TF protein. TF expression in cholesterol-loaded macrophages remained sensitive to stimulation (approximately 12-fold) by bacterial lipopolysaccharide, indicating that intracellular free cholesterol and lipopolysaccharide act by distinct mechanisms in inducing TF procoagulant activity. Our results suggest that loading human monocyte-derived macrophages with free cholesterol induces upregulation of TF expression, thereby contributing to thrombus formation at sites of plaque rupture. Images PMID:1438222

  2. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  3. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    PubMed

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. PMID:26704185

  4. Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and partial characterization.

    PubMed Central

    Merrill, W W; Naegel, G P; Matthay, R A; Reynolds, H Y

    1980-01-01

    Alveolar macrophages are the initial phagocytic cells that encounter foreign material and particulates deposited in the terminal airways. We have examined a mechanism by which these cells, after phagocytic challenge, may control or amplify the inflammatory response in lung parenchyma. Normal human alveolar macrophages (AM) were studied from eight subjects. With in vitro culture, AM produced and released two substances into culture media which have potent chemoattractant activity for blood polymorphonuclear granulocytes (PMN) and negligible activity for mononuclear cells. Release of these factors is maximally stimulated by aggregated human immunoglobulin (Ig)G or zymosan particles; however, simple adhesion of the macrophages to plastic surfaces is also sufficient to stimulate release of these chemotactic substances. The larger substance (10,000 daltons) is immunologically distinct from C5a and interacts with a different PMN membrane receptor than that known to exist for formyl-methionyl-leucyl-phenylalanine. Its chemotactic activity is sensitive to the enzymatic effect of trypsin. Although producing a single elution peak on gelfiltration chromatography, electrofocusing in polyacrylamide gels yielded five peaks of radioactivity. Chemotactic activity was localized to a fraction with a pI = 5.0. The smaller molecular weight substance has been less well characterized. Thus, the human AM can produce at least two factors which attract PMN and this capability may augment the local inflammatory response in the lung. PMID:7356678

  5. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  6. Macrophage-derived neutrophil chemotactic factor is involved in the neutrophil recruitment inhibitory activity present in the supernatants of LPS-stimulated macrophages

    PubMed Central

    Tavares-Murta, B. M.; Cunha, F. Q.; Dias-Baruffi, M.; Roque-Barreira, M. C.

    1996-01-01

    In a previous study, we demonstrated the presence of a neutrophil recruitment inhibitory factor (NRIF) in the supernatants of LPS-stimulated macrophages. Recently, the purification of a 54 kDa protein, identified as the macrophage-derived neutrophil chemotactic factor (MNCF) was reported. Since NRIF and MNCF are obtained under the same conditions, and, since the intravenous administration of TNF-α and IL-8 inhibits neutrophil migration, we have investigated whether MNCF could be responsible for this inhibitory activity. After affinity chromatography of the macrophage supernatants on a D-galactose column, the inhibitory activity was recovered in both the unbound (D-gal−) and bound (D-gal+) fractions, with MNCF being found in the D-gal+ fraction. Further gel filtration of the latter on Superdex 75 yielded a single peak containing both activities. In a cytotoxicity assay, most of the TNF found in the crude supernatants was recovered in the D-gal− fraction. Furthermore, the incubation of the D-gal− fraction with anti-TNF-α plus anti-IL-8 antisera partially prevents its inhibitory effect on neutrophil migration, but had no effect on the D-gal+ activity. Overall, these results suggest that the D-gal− inhibitory effect is partially mediated by TNF-α and IL-8, and that MNCF accounts for the inhibition of neutrophil migration in vivo by the D-gal+ fraction. PMID:18475709

  7. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    PubMed

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  8. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia.

    PubMed

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S Joseph

    2016-05-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  9. Macrophage-derived IL-33 is a critical factor for placental growth.

    PubMed

    Fock, Valerie; Mairhofer, Mario; Otti, Gerlinde R; Hiden, Ursula; Spittler, Andreas; Zeisler, Harald; Fiala, Christian; Knöfler, Martin; Pollheimer, Jürgen

    2013-10-01

    IL-33, the most recently discovered member of the IL-1 superfamily and ligand for the transmembrane form of ST2 (ST2L), has been linked to several human pathologies including rheumatoid arthritis, asthma, and cardiovascular disease. Deregulated levels of soluble ST2, the natural IL-33 inhibitor, have been reported in sera of preeclamptic patients. However, the role of IL-33 during healthy pregnancy remains elusive. In the current study, IL-33 was detected in the culture supernatants of human placental and decidual macrophages, identifying them as a major source of secreted IL-33 in the uteroplacental unit. Because flow cytometry and immunofluorescence stainings revealed membranous ST2L expression on specific trophoblast populations, we hypothesized that IL-33 stimulates trophoblasts in a paracrine manner. Indeed, BrdU incorporation assays revealed that recombinant human IL-33 significantly increased proliferation of primary trophoblasts as well as of villous cytotrophoblasts and cell column trophoblasts in placental explant cultures. These effects were fully abolished upon addition of soluble ST2. Interestingly, Western blot and immunofluorescence analyses demonstrated that IL-33 activates AKT and ERK1/2 in primary trophoblasts and placental explants. Inhibitors against PI3K (LY294002) and MEK1/2 (UO126) efficiently blocked IL-33-induced proliferation in all model systems used. In summary, with IL-33, we define for the first time, to our knowledge, a macrophage-derived regulator of placental growth during early pregnancy. PMID:23997215

  10. Alveolar macrophage-derived vascular endothelial growth factor contributes to allergic airway inflammation in a mouse asthma model.

    PubMed

    Song, C; Ma, H; Yao, C; Tao, X; Gan, H

    2012-06-01

    Vascular endothelial growth factor (VEGF) is a potent proangiogenic factor that correlates with vascular permeability and remodelling in asthma. Recently, alveolar macrophages (AM) were shown to be an important source of VEGF during lung injury. Our previous studies demonstrated that AM are an important subset of macrophages in the initiation of asthmatic symptoms. Here, we further investigated whether AM-derived VEGF was required for allergic airway inflammation in asthma. In this study, we reported that the expression of VEGF in AM was significantly increased after allergen challenge. Depleting AM or neutralizing VEGF in alveolus prevented ovalbumin (OVA)-induced asthma-related inflammation by inhibiting the infiltration of inflammatory cells in the lung, reduced the level of the cytokines, IL-4, IL-5, and IL-13, in the bronchoalveolar lavage fluid (BALF) and decreased airway hyperresponsiveness (AHR). Moreover, the inhibition of miR-20b increased the protein level of VEGF in normal AM; conversely, increasing miR-20b in asthmatic AM resulted in decreased VEGF protein levels. These findings suggest that AM-derived VEGF is necessary for allergic airway inflammation in asthmatic mice and miR-20b negatively regulates this expression. PMID:22324377

  11. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  12. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  13. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    PubMed Central

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  14. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  15. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor.

    PubMed

    Pierce, G F; Mustoe, T A; Lingelbach, J; Masakowski, V R; Gramates, P; Deuel, T F

    1989-04-01

    Transforming growth factor beta (TGF-beta) and the platelet-derived growth factor (PDGF) are potent mitogenic polypeptides which enhance rates of wound healing in experimental animals; in contrast, glucocorticoids inhibit wound repair. The potential of TGF-beta and PDGF to reverse this inhibition in healing was tested in methylprednisolone-treated rats with deficits in skin wound strength of 50%. Single applications of TGF-beta (10-40 pmol per wound, 0.25-1 micrograms) applied locally at the time of wounding fully reversed this deficit in a concentration-dependent and highly reproducible manner. Wounds in glucocorticoid-treated animals were characterized by a near total absence of neutrophils and macrophages and by a delayed influx and reduced density of fibroblasts; however, such wounds treated with TGF-beta showed significant increases in wound fibroblasts and in intracellular procollagen type I. PDGF did not reverse the deficit in wound breaking strength in glucocorticoid-treated rats; there were more fibroblasts in the PDGF-treated wounds, but these fibroblasts lacked the enhanced expression of procollagen type I found in TGF-beta-treated wounds. The wound macrophages, required for normal tissue repair, remained absent from both PDGF- and TGF-beta-treated wounds in glucocorticoid-treated animals. This result suggested that macrophages might normally act as an intermediate in the induction of procollagen synthesis in fibroblasts of PDGF-treated wounds and that TGF-beta might bypass the macrophage through its capacity to stimulate directly new synthesis of procollagen type I in fibroblasts. Whereas PDGF does not stimulate procollagen synthesis, in a rodent macrophage cell line, PDGF induced a highly significant, time-dependent enhancement of expression of TGF-beta. PMID:2928327

  16. Patient-derived Granulocyte/Macrophage Colony–Stimulating Factor Autoantibodies Reproduce Pulmonary Alveolar Proteinosis in Nonhuman Primates

    PubMed Central

    Sakagami, Takuro; Beck, David; Uchida, Kanji; Suzuki, Takuji; Carey, Brenna C.; Nakata, Koh; Keller, Gary; Wood, Robert E.; Wert, Susan E.; Ikegami, Machiko; Whitsett, Jeffrey A.; Luisetti, Maurizio; Davies, Stella; Krischer, Jeffrey P.; Brody, Alan; Ryckman, Fred; Trapnell, Bruce C.

    2010-01-01

    Rationale: Granulocyte/macrophage colony–stimulating factor (GM-CSF) autoantibodies (GMAb) are strongly associated with idiopathic pulmonary alveolar proteinosis (PAP) and are believed to be important in its pathogenesis. However, levels of GMAb do not correlate with disease severity and GMAb are also present at low levels in healthy individuals. Objectives: Our primary objective was to determine whether human GMAb would reproduce PAP in healthy primates. A secondary objective was to determine the concentration of GMAb resulting in loss of GM-CSF signaling in vivo (i.e., critical threshold). Methods: Nonhuman primates (Macaca fascicularis) were injected with highly purified, PAP patient-derived GMAb in dose-ranging (2.2–50 mg) single and multiple administration studies, and after blocking antihuman immunoglobulin immune responses, in chronic administration studies maintaining serum levels greater than 40 μg/ml for up to 11 months. Measurements and Main Results: GMAb blocked GM-CSF signaling causing (1) a milky-appearing bronchoalveolar lavage fluid containing increased surfactant lipids and proteins; (2) enlarged, foamy, surfactant-filled alveolar macrophages with reduced PU.1 and PPARγ mRNA, and reduced tumor necrosis factor-α secretion; (3) pulmonary leukocytosis; (4) increased serum surfactant protein-D; and (5) impaired neutrophil functions. GM-CSF signaling varied inversely with GMAb concentration below a critical threshold of 5 μg/ml, which was similar in lungs and blood and to the value observed in patients with PAP. Conclusions: GMAb reproduced the molecular, cellular, and histopathologic features of PAP in healthy primates, demonstrating that GMAb directly cause PAP. These results have implications for therapy of PAP and help define the therapeutic window for potential use of GMAb to treat other disorders. PMID:20224064

  17. Developmental derivation of embryonic and adult macrophages.

    PubMed

    Shepard, J L; Zon, L I

    2000-01-01

    The macrophage cell lineage continually arises from hematopoietic stem cells during embryonic, fetal, and adult life. Previous theories proposed that macrophages are the recent progeny of bone marrow-derived monocytes and that they function primarily in phagocytosis. More recently, however, observations have shown that the ontogeny of macrophages in early mouse and human embryos is different from that occurring during adult development, and that the embryonic macrophages do not follow the monocyte pathway. Fetal macrophages are thought to differentiate from yolk sac-derived primitive macrophages before the development of adult monocytes. Further support for a separate lineage of fetal macrophages has come from studies of several species, including chicken, zebrafish, Xenopus, Drosophila, and C. elegans. The presence of fetal macrophages in PU.1-null mice indicates their independence from monocyte precursors and their existence as an alternative macrophage lineage. PMID:10608497

  18. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    PubMed

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039. PMID:27145382

  19. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    NASA Astrophysics Data System (ADS)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  20. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  1. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo JV; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-01-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as “incurable” diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  2. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo Jv; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-08-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as "incurable" diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  3. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function.

    PubMed

    Dickerhof, Nina; Schindler, Lisa; Bernhagen, Jürgen; Kettle, Anthony J; Hampton, Mark B

    2015-12-01

    Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF. PMID:26453918

  4. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    PubMed Central

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer’s disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F2-isoprostanes, was significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. PMID:21704645

  5. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    PubMed

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. PMID:25782915

  6. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  7. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  8. Macrophage Migration Inhibitory Factor Inhibits the Migration of Cartilage End Plate-Derived Stem Cells by Reacting with CD74

    PubMed Central

    Xiong, Cheng-jie; Huang, Bo; Zhou, Yue; Cun, Yan-ping; Liu, Lan-tao; Wang, Jian; Li, Chang-qing; Pan, Yong; Wang, Hai

    2012-01-01

    Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that regulates inflammatory reactions and the pathophysiology of many inflammatory diseases. Intervertebral disc (IVD) degeneration is characterized by an inflammatory reaction, but the potential role of MIF in IVD degeneration has not been determined. Recent studies have shown that MIF and its receptor, CD74, are involved in regulating the migration of human mesenchymal stem cells (MSCs); Thus, MIF might impair the ability of mesenchymal stem cells (MSCs) to home to injured tissues. Our previous studies indicated that cartilage endplate (CEP)-derived stem cells (CESCs) as a type of MSCs exist in human degenerate IVDs. Here, we investigate the role of MIF in regulating the migration of CESCs. Methods and Findings CESCs were isolated and identified. We have shown that MIF was distributed in human degenerate IVD tissues and was subject to regulation by the pro-inflammatory cytokine TNF-α. Furthermore, in vitro cell migration assays revealed that nucleus pulposus (NP) cells inhibited the migration of CESCs in a number-dependent manner, and ELISA assays revealed that the amount of MIF in conditioned medium (CM) was significantly increased as a function of increasing cell number. Additionally, recombinant human MIF (r-MIF) inhibited the migration of CESCs in a dose-dependent manner. CESCs migration was restored when an antagonist of MIF, (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), was added. Finally, a CD74 activating antibody (CD74Ab) was used to examine the effect of CD74 on CESCs motility and inhibited the migration of CESCs in a dose-dependent manner. Conclusions We have identified and characterized a novel regulatory mechanism governing cell migration during IVD degeneration. The results will benefit understanding of another possible mechanism for IVD degeneration, and might provide a new method to repair degenerate IVD by enhancing CESCs

  9. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients. PMID:14767536

  10. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression. PMID:26245897

  11. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  12. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    PubMed Central

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  13. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    SciTech Connect

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Fan, Guo-Huang; Richmond, Ann

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or

  14. A Novel Carboline Derivative Inhibits Nitric Oxide Formation in Macrophages Independent of Effects on Tumor Necrosis Factor α and Interleukin-1β Expression

    PubMed Central

    Poola, Bhaskar; Pasupuleti, Nagarekha; Nantz, Michael H.; Lein, Pamela J.; Gorin, Fredric

    2015-01-01

    Neuropathic pain is a maladaptive immune response to peripheral nerve injury that causes a chronic painful condition refractory to most analgesics. Nitric oxide (NO), which is produced by nitric oxide synthases (NOSs), has been implicated as a key factor in the pathogenesis of neuropathic pain. β-Carbolines are a large group of natural and synthetic indole alkaloids, some of which block activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), a predominant transcriptional regulator of NOS expression. Here, we characterize the inhibitory effects of a novel 6-chloro-8-(glycinyl)-amino-β-carboline (8-Gly carb) on NO formation and NF-κB activation in macrophages. 8-Gly carb was significantly more potent than the NOS inhibitor NG-nitro-l-arginine methyl ester in inhibiting constitutive and inducible NO formation in primary rat macrophages. 8-Gly carb interfered with NF-κB–mediated gene expression in differentiated THP1-XBlue cells, a human NF-κB reporter macrophage cell line, but only at concentrations severalfold higher than needed to significantly inhibit NO production. 8-Gly carb also had no effect on tumor necrosis factor α (TNFα)–induced phosphorylation of the p38 mitogen-activated protein kinase in differentiated THP1 cells, and did not inhibit lipopolysaccharide- or TNFα-stimulated expression of TNFα and interleukin-1β. These data demonstrate that relative to other carbolines and pharmacologic inhibitors of NOS, 8-Gly carb exhibits a unique pharmacological profile by inhibiting constitutive and inducible NO formation independent of NF-κB activation and cytokine expression. Thus, this novel carboline derivative holds promise as a parent compound, leading to therapeutic agents that prevent the development of neuropathic pain mediated by macrophage-derived NO without interfering with cytokine expression required for neural recovery following peripheral nerve injury. PMID:25538105

  15. [Adipose-derived stem cells promote the polarization from M1 macrophages to M2 macrophages].

    PubMed

    Yin, Xuehong; Pang, Chunyan; Bai, Li; Zhang, Ying; Geng, Lixia

    2016-03-01

    Objective To investigate the effects of adipose-derived stem cells (ADSCs) on M1/M2 macrophages and whether ADSCs are able to promote the polarization from M1 macrophages to M2 macrophages. Methods M1 macrophages were induced from J774.1 macrophages by 24-hour stimulation of lipopolysaccharide (LPS) and interferon γ (IFN-γ), and M2 macrophages were induced from J774.1 macrophages by interleukin 4 (IL-4) for another 24 hours. Then M1/M2 macrophages were separately cultured in the presence of ADSCs for 24 hours. The M1/M2 macrophages and their corresponding supernatants were collected for further analysis. The expressions of IL-6, tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), CC chemokine ligand 2 (CCL2), CD86, arginase 1 (Arg1), mannose receptors/CD206 (MR/CD206), IL-10, found in inflammatory zone 1 (FIZZ1), chitinase 3-like 3 (Ym-1) were detected by real-time PCR and ELISA. Results ADSCs significantly decreased the levels of IL-6, TNF-α, iNOS, CCL2 and CD86, and increased the levels of Arg1, CD206 and IL-10 in M1 macrophages. In the supernatant of M1 macrophages, the expressions of IL-6 and TNF-α were reduced, while those of CD206 were enhanced. In M2 macrophages, ADSCs resulted in down-regulation of IL-6, TNF-α, iNOS, CD86 and up-regulation of Arg1, CD206, FIZZ-1, Ym-1 and IL-10. In the supernatant of M2 macrophages, the expression levels of IL-6 and TNF-α were down-regulated and those of CD206 were up-regulated. Conclusion ADSCs can inhibit the gene expression of M1 macrophages and promote the gene expression of M2 macrophages, as well as mediate the polarization from M1 macrophages to M2 macrophages. PMID:26927552

  16. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  17. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-01-01

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228

  18. Stromal cell-derived factor-1α and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells.

    PubMed

    Shin, Han-Na; Moon, Hyun-Hye; Ku, Ja-Lok

    2012-12-01

    Metastasis of cancer cells is a major cause of death in cancer patients. The process of cancer metastasis includes the proliferation of primary cancer cells, local invasion, intravasation and cancer cell survival in blood flow, extravasation and attachment to secondary organs and metastatic growth in a new environment. In these mechanisms of cancer metastasis, CXC chemokine receptor 4 (CXCR4) and its ligand play an important role. Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is well known as a ligand of CXCR4, and macrophage migration-inhibitory factor (MIF) has recently become known as a ligand of CXCR4. In many types of cancers including breast, pancreatic and colorectal cancer (CRC), CXCR4/SDF-1α has been investigated in metastasis-related cancer behavior, which include cell proliferation, adhesion, migration and invasion. However, CXCR4/MIF has rarely been investigated in the metastatic behavior of colon cancer cells. In this report, the effect of SDF-1α or MIF was studied on cell cycle, cell proliferation, adhesion and migration of the CXCR4-expressing colon cancer cell line SW480. SDF-1α or MIF caused a decrease in the number of cells in G0/G1 phase and an increase in the numbers of cells in S and G2/M phases. In addition, SDF-1α or MIF caused an increase in cell proliferation, cell adhesion to fibronectin and migration. AMD3100, a CXCR4 antagonist, attenuated these effects, which included increased cell proliferation, adhesion and migration due to treatment of CXCR4-expressing colon cancer cells with SDF-1α or MIF. In conclusion, SDF-1α or MIF affects the metastasis-related behaviors of CXCR4-expressing colon cancer cells. PMID:23023114

  19. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    PubMed

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. PMID:27515218

  20. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  1. Purification and partial biochemical characterization of a Mycoplasma fermentans-derived substance that activates macrophages to release nitric oxide, tumor necrosis factor, and interleukin-6.

    PubMed Central

    Mühlradt, P F; Frisch, M

    1994-01-01

    Mycoplasmal products may exert a number of diverse in vitro effects on cells of the immune system. A macrophage-activating substance from Mycoplasma fermentans was described in this laboratory and named mycoplasma-derived high-molecular-weight material (MDHM). Using synthesis of nitric oxide by peritoneal cells from endotoxin low-responder mice as an assay system, MDHM was purified as follows. After freeze-thawing of M. fermentans, MDHM activity was sedimented with the membrane fraction. Membranes were delipidated with chloroform-methanol, and MDHM activity was extracted with octyl glucoside. Coextracted proteins were degraded by proteinase K. MDHM was further purified by reversed-phase high-pressure liquid chromatography and eluted in one major and one minor peak of activity. Neither carbohydrates nor amino acids were found as constituents. MDHM had the following properties: it partitioned into the phenol phase upon phenol-water extraction and into the Triton phase after extraction with Triton X-114. MDHM was not inactivated by either phospholipase A2 or triglyceride lipases. However, mild periodate treatment led to a > 95% loss of activity. Also, alkaline hydrolysis at 25 degrees C completely abolished MDHM activity with a half-life of 2 min. MDHM activity was spread out over a wide molecular weight range upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes, whereas after proteinase treatment MDHM activity migrated close to the front. These features of MDHM, taken together, speak in favor of an amphiphilic molecule with a lipid moiety carrying fatty acids in ester linkage and a polyol moiety of unknown character. MDHM was active in the nanogram-per-milliliter range, activating macrophages to release nitric oxide, interleukin-6, and tumor necrosis factor. Images PMID:8063396

  2. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. PMID:9070663

  3. Involvement of insulin-like growth factor-1 and its binding proteins in proliferation and differentiation of murine bone marrow-derived macrophage precursors.

    PubMed

    Long, E; Huynh, H T; Zhao, X

    1998-10-01

    Insulin-like growth factor 1 (IGF-1) and its binding proteins (IGFBPs) are involved in proliferation and differentiation of many cell types. In the present study, the involvement of IGF-1 and IGFBPs in proliferation and differentiation of murine bone marrow-derived macrophages (BMDM) was investigated. L929-conditioned media (LCM) containing abundant macrophage colony-stimulating factor CSF-1 were used to stimulate BMDM development from their bone marrow precursors. The alteration of IGF-1 and IGFBPs during LCM-induced BMDM proliferation and differentiation was first studied. The cells were cultured in RPMI complete media containing 20% LCM for different time periods and then incubated in serum-free media for 24 h. The supernatants were collected for Western ligand blotting and immunoblotting analyses, and the cell pellets for Northern blotting analyses. The mRNA level of IGF-1 increased in a time-dependent manner. An increase of IGFBP-4 accumulation in the conditioned media was also observed during this process. However the mRNA expression of IGFBP-4 remained constant, indicating a posttranscriptional regulation of IGFBP-4 secretion and/or stability. The effects of exogenous recombinant human IGF-1 (rhIGF-1) on BMDM proliferation and differentiation were further studied. Two IGF-1 analogs (long R3 IGF-1 and des [1-3] IGF-1) were also used in parallel with regular IGF-1 to indicate the involvement of IGFBPs in BMDM development. Cells were cultured in complete media containing 20% LCM for different time periods, and then incubated in serum-free media in the presence of rhIGF-1 or its analogs for 24 h. These three forms of IGF-1 all potentiated the proliferation of freshly isolated BMDM precursors (d 0). rhIGF-1 and long R3 IGF-1, but not des (1-3) IGF-1, continued to stimulate the cell proliferation on d 1. The effects of these three forms of IGF-1 on BMDM differentiation were investigated using mannose receptor expression as a marker. Long R3 IGF-1 and des (1-3) IGF

  4. Modulation of adhesion molecule expression on endothelial cells during the late asthmatic reaction: role of macrophage-derived tumour necrosis factor-alpha.

    PubMed Central

    Lassalle, P; Gosset, P; Delneste, Y; Tsicopoulos, A; Capron, A; Joseph, M; Tonnel, A B

    1993-01-01

    In a previous work we have demonstrated that in patients exhibiting a late allergic reaction (LAR), alveolar macrophages (AM) collected 18 h after bronchial allergen challenge produced high levels of IL-6 and tumour necrosis factor-alpha (TNF) which is known to up-regulate the endothelial cell expression of adhesion molecules participating in the development of the inflammatory reaction in bronchial asthma. For these reasons, we evaluated the effect of AM supernatants from asthmatic patients developing an LAR on intercellular adhesion molecule-1 (ICAM-1) and endothelial leucocyte adhesion molecule-1 (ELAM-1) expression by human endothelial cells. The expression of adhesion molecules was assessed by an ELISA method and compared with the effect of an optimal dose of human recombinant (hr) TNF. Results showed that AM supernatants, from challenged asthmatics developing an LAR, increased significantly the ICAM-1 and ELAM-1 expression on endothelial cells to a level similar to that obtained in the presence of hrTNF (500 U/ml) (P < 0.001 in both cases, respectively 90.4% and 75.2% of the level obtained with hrTNF). In contrast, AM supernatants from asthmatics at baseline or exhibiting, after challenge, a single early reaction had no significant effect on these parameters (P = NS in both cases, respectively 23.5% and 24.7% of the ICAM-1 expression, 22.7% and 15.3% of the ELAM-1 expression obtained with hrTNF). AM-derived TNF present in these supernatants was thought to play a key role in endothelial cell stimulation, since: (i) TNF concentration in AM supernatants correlated with its effect on ICAM-1 (r = 0.80, P < 10(-4)) and ELAM-1 expression (r = 0.88, P < 10(-5)); and (ii) a neutralizing anti-TNF antibody decreased their effect (68% and 80% respectively on ICAM-1 and ELAM-1 expression). Moreover, the role of IL-6 was excluded on the basis both of the hrIL-6 inefficiency to induce ICAM-1 and ELAM-1 synthesis, even in costimulation with hrTNF, and of anti-IL-6 antibody

  5. Prostate Field Cancerization: Deregulated Expression of Macrophage Inhibitory Cytokine 1 (MIC-1) and Platelet Derived Growth Factor A (PDGF-A) in Tumor Adjacent Tissue

    PubMed Central

    Jones, Anna C.; Shoshan, Dor S.; Fischer, Edgar G.; Trujillo, Kristina A.; Bisoffi, Marco

    2015-01-01

    Prostate field cancerization denotes molecular alterations in histologically normal tissues adjacent to tumors. Such alterations include deregulated protein expression, as we have previously shown for the key transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS). Here we add the two secreted factors macrophage inhibitory cytokine 1 (MIC-1) and platelet derived growth factor A (PDGF-A) to the growing list of protein markers of prostate field cancerization. Expression of MIC-1 and PDGF-A was measured quantitatively by immunofluorescence and comprehensively analyzed using two methods of signal capture and several groupings of data generated in human cancerous (n = 25), histologically normal adjacent (n = 22), and disease-free (n = 6) prostate tissues. A total of 208 digitized images were analyzed. MIC-1 and PDGF-A expression in tumor tissues were elevated 7.1x to 23.4x and 1.7x to 3.7x compared to disease-free tissues, respectively (p<0.0001 to p = 0.08 and p<0.01 to p = 0.23, respectively). In support of field cancerization, MIC-1 and PDGF-A expression in adjacent tissues were elevated 7.4x to 38.4x and 1.4x to 2.7x, respectively (p<0.0001 to p<0.05 and p<0.05 to p = 0.51, respectively). Also, MIC-1 and PDGF-A expression were similar in tumor and adjacent tissues (0.3x to 1.0x; p<0.001 to p = 0.98 for MIC-1; 0.9x to 2.6x; p<0.01 to p = 1.00 for PDGF-A). All analyses indicated a high level of inter- and intra-tissue heterogeneity across all types of tissues (mean coefficient of variation of 86.0%). Our data shows that MIC-1 and PDGF-A expression is elevated in both prostate tumors and structurally intact adjacent tissues when compared to disease-free specimens, defining field cancerization. These secreted factors could promote tumorigenesis in histologically normal tissues and lead to tumor multifocality. Among several clinical applications, they could also be exploited as indicators of disease in false negative

  6. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors.

    PubMed

    Gomez Perdiguero, Elisa; Klapproth, Kay; Schulz, Christian; Busch, Katrin; Azzoni, Emanuele; Crozet, Lucile; Garner, Hannah; Trouillet, Celine; de Bruijn, Marella F; Geissmann, Frederic; Rodewald, Hans-Reimer

    2015-02-26

    Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages. PMID:25470051

  7. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype

    PubMed Central

    Campbell, Gillian M.; Nicol, Marlynne Q.; Dransfield, Ian; Shaw, Darren J.; Nash, Anthony A.

    2015-01-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection. PMID:26297234

  8. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    PubMed

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection. PMID:26297234

  9. Antibodies binding granulocyte-macrophage colony stimulating factor produced by cord blood-derived B cell lines immortalized by Epstein-Barr virus in vitro.

    PubMed

    Revoltella, R P; Laricchia Robbio, L; Liberati, A M; Reato, G; Foa, R; Funaro, A; Vinante, F; Pizzolo, G

    2000-09-15

    We detected natural antibodies (auto-Abs) binding human granulocyte-macrophage colony stimulating factor (GM-CSF) in umbilical cord blood (CB) (23 of 94 samples screened) and peripheral blood of women at the end of pregnancy (6 of 42 samples tested). To demonstrate that Abs detected in CB were produced by the fetus, CB mononuclear cells were infected with Epstein-Barr virus in vitro. Ten cell lines producing constitutively anti-recombinant human GM-CSF (rhGM-CSF) Abs were isolated and characterized. These cells displayed a male karyotype, an early activated B cell phenotype, coexpressed surface IgM and IgD, and secreted only IgM with prevailing lambda clonal restriction. Specific cell surface binding of biotinylated rhGM-CSF and high-level anti-rhGM-CSF IgM Ab production were typical features of early cell cultures. In late cell passages the frequency of more undifferentiated B cells increased. Serum Abs of either maternal or fetal origin or Abs produced in culture did not affect the granulocyte and macrophage colony stimulating activity of rhGM-CSF from bone marrow progenitors in soft agar, suggesting that the Abs produced were nonneutralizing. PMID:11069719

  10. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization.

    PubMed

    Tonkin, Joanne; Temmerman, Lieve; Sampson, Robert D; Gallego-Colon, Enrique; Barberi, Laura; Bilbao, Daniel; Schneider, Michael D; Musarò, Antonio; Rosenthal, Nadia

    2015-07-01

    Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration. PMID:25896247

  11. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.

    PubMed

    Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia

    2015-07-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  12. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages

    PubMed Central

    Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.

    2015-01-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  13. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function

    PubMed Central

    Yeung, A. T. Y.; Hale, C.; Xia, J.; Tate, P. H.; Goulding, D.; Keane, J. A.; Mukhopadhyay, S.; Forrester, L.; Billker, O.; Skarnes, W. C.; Hancock, R. E. W.; Dougan, G.

    2015-01-01

    The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection. PMID:25752829

  14. Candida albicans-Derived β-1,2-Linked Mannooligosaccharides Induce Desensitization of Macrophages

    PubMed Central

    Jouault, Thierry; Fradin, Chantal; Trinel, Pierre-André; Poulain, Daniel

    2000-01-01

    Candida albicans β-1,2-oligomannosides stimulate macrophage tumor necrosis factor alpha (TNF-α) but not NO release. This stimulation desensitized macrophages by altering β-1,2-oligomannoside-dependent TNF-α production and lipopolysaccharide-dependent TNF-α and NO secretion. Desensitization was not related to tyrosine phosphorylation signal transduction but was transferred by culture supernatants in which arachidonic acid derivatives were evidenced. PMID:10639473

  15. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  16. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region.

    PubMed

    Jobe, Ousman; Trinh, Hung V; Kim, Jiae; Alsalmi, Wadad; Tovanabutra, Sodsai; Ehrenberg, Philip K; Peachman, Kristina K; Gao, Guofen; Thomas, Rasmi; Kim, Jerome H; Michael, Nelson L; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2016-06-01

    Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1

  17. Changes in the proteomic profile during differentiation and maturation of human monocyte-derived dendritic cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide.

    PubMed

    Pereira, Sandra Rodrigues; Faça, Vitor Marcel; Gomes, Glauce Gaspar; Chammas, Roger; Fontes, Aparecida Maria; Covas, Dimas Tadeu; Greene, Lewis Joel

    2005-04-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that play an essential role in the immune response. We used the proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry to identify the protein changes that occur during differentiation of DCs from monocytes (Mo) stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 (GM-CSF/IL-4) and during the maturation of immature DCs stimulated with lipopolysaccharide. Sixty-three differentially expressed proteins (+/- two-fold) were unambiguously identified with sequence coverage greater than 20%. They corresponded to only 36 different proteins, because 11 were present as 38 electrophoretic forms. Some proteins such as tropomyosin 4 and heat shock protein 71 presented differentially expressed electrophoretic forms, suggesting that many of the changes in protein expression that accompany differentiation and maturation of DCs occur in post-translationally modified proteins. The largest differences in expression were observed for actin (21-fold in Mo), Rho GDP-dissociation inhibitor 2 (20-fold in Mo), vimentin (eight-fold in immature DCs), lymphocyte-specific protein 1 (12-fold in mature DCs) and thioredoxin (14-fold in mature DCs). Several proteins are directly related to functional and morphological characteristics of DCs, such as cytoskeletal proteins (cytoskeleton rearrangement) and chaperones (antigen processing and presentation), but other proteins have not been assigned specific functions in DCs. Only a few proteins identified here were the same as those reported in proteomic studies of DCs, which used different stimuli to produce the cells (GM-CSF/IL-4 and tumor necrosis factor-alpha). These data suggest that the DC protein profile depends on the stimuli used for differentiation and especially for maturation. PMID:15800872

  18. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  19. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  20. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  1. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  2. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation

    PubMed Central

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  3. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    PubMed

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  4. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype.

    PubMed

    Kohlstedt, Karin; Trouvain, Caroline; Namgaladze, Dmitry; Fleming, Ingrid

    2011-03-01

    Human monocytes/macrophages express the angiotensin-converting enzyme (ACE) but nothing is known about its role under physiological conditions. As adipose tissue contains resident macrophages that have been implicated in the generation of insulin resistance in expanding fat mass, we determined whether adipocytes release factors that affect ACE expression and function in monocytes. Incubation of human monocyte-derived macrophages with conditioned medium from freshly isolated human adipocytes (BMI = 25.4 ± 0.96) resulted in a 4-fold increase in ACE expression. The effect was insensitive to denaturation and different proteases but abolished after lipid extraction. mRNA levels of the major histocompatibility complex class II protein increased in parallel with ACE, whereas the expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and cyclooxygenase-2 decreased. As a consequence of the reduction in MCP-1, monocyte recruitment was also attenuated. Moreover, adipocyte-conditioned medium prevented the interferon (IFN)-γ induced formation of TNF-α, IL-6, and MCP-1, all markers of classically-activated (M1 type) macrophages. The decrease in cytokine expression in adipocyte-conditioned medium-treated macrophages was sensitive to ACE silencing by small interfering RNA (siRNA). Accordingly, ACE overexpression in THP-1 cells mimicked the effect of adipocyte-conditioned medium. In both cell types, ACE inhibition failed to affect the changes induced by adipocyte conditioned-medium treatment and ACE overexpression. Thus, the modulation of macrophage polarization by ACE appears to be mediated independently of enzyme activity, probably via intracellular signaling. Interestingly, human macrophage ACE expression was also upregulated by IL-4 and IL-13, which promote the "alternative" activation of macrophages and decreased by LPS and IFN-γ. Mechanistically, adipocyte-conditioned medium stimulated the phosphorylation of

  5. Functional characterization of the turkey macrophage migration inhibitory factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...

  6. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus

    PubMed Central

    Tacke, Robert; Hilgendorf, Ingo; Garner, Hannah; Waterborg, Claire; Park, Kiwon; Nowyhed, Heba; Hanna, Richard N.; Wu, Runpei; Swirski, Filip K.; Geissmann, Frederic; Hedrick, Catherine C.

    2015-01-01

    Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset. PMID:26091486

  7. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation.

    PubMed

    Guidez, F; Li, A C; Horvai, A; Welch, J S; Glass, C K

    1998-07-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages. PMID:9632769

  8. Amyloid fibril formation by macrophage migration inhibitory factor

    SciTech Connect

    Lashuel, Hilal A. . E-mail: hilal.lashuel@epfl.ch; Aljabari, Bayan; Sigurdsson, Einar M.; Metz, Christine N.; Leng Lin; Callaway, David J.E.; Bucala, Richard

    2005-12-16

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.

  9. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF. PMID:21170647

  10. Krüppel-like factor KLF10 deficiency predisposes to colitis through colonic macrophage dysregulation.

    PubMed

    Papadakis, Konstantinos A; Krempski, James; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F; Lomberk, Gwen A; Urrutia, Raul A; Faubion, William A

    2015-12-01

    Krüppel-like factor (KLF)-10 is an important transcriptional regulator of TGF-β1 signaling in both CD8(+) and CD4(+) T lymphocytes. In the present study, we demonstrate a novel role for KLF10 in the regulation of TGFβRII expression with functional relevance in macrophage differentiation and activation. We first show that transfer of KLF10(-/-) bone marrow-derived macrophages into wild-type (WT) mice leads to exacerbation of experimental colitis. At the cell biological level, using two phenotypic strategies, we show that KLF10-deficient mice have an altered colonic macrophage phenotype with higher frequency of proinflammatory LyC6(+)MHCII(+) cells and a reciprocal decrease of the anti-inflammatory LyC6(-)MHCII(+) subset. Additionally, the anti-inflammatory CD11b(+)CX3CR1(hi) subset of colonic macrophages is significantly decreased in KLF10(-/-) compared with WT mice under inflammatory conditions. Molecularly, CD11b(+) colonic macrophages from KLF10(-/-) mice exhibit a proinflammatory cytokine profile with increased production of TNF-α and lower production of IL-10 in response to LPS stimulation. Because KLF10 is a transcription factor, we explored how this protein may regulate macrophage function. Consequently, we analyzed the expression of TGFβRII expression in colonic macrophages and found that, in the absence of KLF10, macrophages express lower levels of TGFβRII and display an attenuated Smad-2 phosphorylation following TGF-β1 stimulation. We further show that KLF10 directly binds to the TGFβRII promoter in macrophages, leading to enhanced gene expression through histone H3 acetylation. Collectively, our data reveal a critical role for KLF10 in the epigenetic regulation of TGFβRII expression in macrophages and the acquisition of a "regulatory" phenotype that contributes to intestinal mucosal homeostasis. PMID:26472224

  11. Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized Unopsonized Escherichia coli

    PubMed Central

    Hamrick, Terri S.; Havell, Edward A.; Horton, John R.; Orndorff, Paul E.

    2000-01-01

    In an effort to better understand genetic and cellular factors that influence innate immunity, we examined host and bacterial factors involved in the nonopsonic phagocytosis and killing of Escherichia coli K-12 by mouse macrophages. Unelicited (resident) peritoneal macrophages from five different mouse strains, BALB/c, C57BL/6, CD-1, C3H/HeJ, and C3H/HeN, were employed. Additional macrophage populations were obtained from CD-1 mice (bone marrow-derived macrophages). Also, for BALB/c and C57BL/6 mice, peritoneal macrophages elicited with either thioglycolate or proteose peptone, bone marrow-derived macrophages, and macrophage-like cell lines derived from the two strains were employed. Two E. coli K-12 strains that differed specifically in their abilities to produce type 1 pili containing the adhesive protein FimH were examined. The parameters used to assess macrophage bacteriocidal activity were (i) the killing of internalized (gentamicin-protected) E. coli during the approximately 4-h assay and (ii) the initial rate at which internalized E. coli were eliminated. Data on these parameters allowed the following conclusions: (i) unelicited or proteose peptone-elicited peritoneal macrophages were significantly better at eliminating internalized bacteria than thioglycolate-elicited peritoneal macrophages, bone marrow-derived macrophages, or macrophage cell lines; (ii) the host genetic background had no significant effect upon the ability of unelicited peritoneal macrophages to kill E. coli (even though the mouse strains differ widely in their in vivo susceptibilities to bacterial infection); and (iii) the FimH phenotype had no significant effect upon E. coli survival once the bacterium was inside a macrophage. Additionally, there was no correlation between the bacteriocidal effectiveness of a macrophage population and the number of bacteria bound per macrophage. However, macrophage populations that were the least bacteriocidal tended to bind higher ratios of FimH+ to Fim

  12. Superinduction of interleukin 8 mRNA in activated monocyte derived macrophages from rheumatoid arthritis patients

    PubMed Central

    Rodenburg, R.; van den Hoogen, F. H J; Barrera, P.; van Venrooij, W. J; van de Putte, L. B A

    1999-01-01

    OBJECTIVE—Synovial inflammation in patients with rheumatoid arthritis (RA) is characterised by the presence of large numbers of highly activated monocytes and macrophages. The importance of these cells in the aethiopathogenesis and prognosis of RA is increasingly recognised. The object of this report is to determine whether monocytes and monocyte derived macrophages of RA patients produce increased cytokine mRNA levels.
METHODS—Monocyte derived macrophages from RA patients and healthy controls were cultured either in the absence or presence of lipopolysaccharide. The expression levels of the mRNAs encoding GAPDH, interleukin 1β (IL1β), IL8, and α2 macroglobulin in these cells were analysed by reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS—Activated monocyte derived macrophages from RA patients produce significantly higher IL8 mRNA levels than activated macrophages from healthy controls. By contrast, resting RA and control macrophages produce similar levels of IL8 mRNA. Culturing of activated macrophages in the presence of RA or control sera has no effect on the expression levels of IL8 mRNA. No significant differences between RA and control macrophages were observed in the expression levels of IL1β and α2 macroglobulin mRNAs.
CONCLUSION—These data indicate that the increased IL8 mRNA production capacity of RA macrophages upon activation is an intrinsic property of these cells, and is not attributable to factors present in the circulation. Based on these observations, it is postulated that this innate hyper-responsiveness of RA macrophages contributes to the high IL8 levels present in the synovial fluid of rheumatoid joints, and is implicated in the chemotactic gradient leading to the homing of leucocytes to the joints.

 PMID:10491366

  13. Multipotent hematopoietic cell lines derived from C/EBPalpha(-/-) knockout mice display granulocyte macrophage-colony-stimulating factor, granulocyte- colony-stimulating factor, and retinoic acid-induced granulocytic differentiation.

    PubMed

    Collins, S J; Ulmer, J; Purton, L E; Darlington, G

    2001-10-15

    The transcription factor C/EBPalpha is an important mediator of granulocyte differentiation and regulates the expression of multiple granulocyte-specific genes including the granulocyte-colony-stimulating factor (G-CSF) receptor, neutrophil elastase, and myeloperoxidase. Indeed C/EBPalpha knockout mice display a profound block in granulocyte differentiation. To study this block in granulocytic differentiation in more detail, retroviral vector-mediated transduction of a dominant-negative retinoic acid receptor was used to establish hematopoietic growth factor-dependent, lympho-myeloid progenitor cell lines from the fetal livers of both the C/EBPalpha knockout animals (C/EBPalpha(-/-)) and their heterozygous littermates (C/EBPalpha(+/-)). Surprisingly, the C/EBPalpha(-/-) cell lines displayed significant spontaneous granulocytic differentiation, and this differentiation was markedly enhanced when the cells were stimulated with granulocyte macrophage (GM)-CSF. This GM-CSF-mediated differentiation was associated with the up-regulation of G-CSF receptor mRNA, and the combination of GM-CSF and G-CSF generated more than 95% mature neutrophils in the C/EBPalpha(-/-) cultures. The addition of all-trans retinoic acid also enhanced this granulocytic differentiation of the cultured C/EBPalpha(-/-) cells, indicating that the activated retinoic acid receptors can enhance granulocytic differentiation through a molecular pathway that is independent of C/EBPalpha. These studies clearly indicate that terminal granulocytic differentiation associated with the up-regulation of C/EBPalpha-responsive genes can occur in the absence of C/EBPalpha, and they indicate the existence of multiple independent molecular pathways potentially used by primitive hematopoietic precursors that can lead to the development of mature granulocytes. PMID:11588034

  14. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. PMID:26852662

  15. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.

    PubMed

    Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James

    2016-06-01

    MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers. PMID:27163877

  16. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    PubMed Central

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Da Ros, Tatiana; Prato, Maurizio

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells. PMID:26090460

  17. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  18. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  19. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  20. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    PubMed

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-01

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis. PMID:26159717

  1. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  2. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  3. Characterization of Neospora caninum macrophage migration inhibitory factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study is the first characterization of Neospora caninum macrophage migration inhibitory factor (NcMIF). BLAST-N analysis of NcMIF revealed high similarity (87%) to the Toxoplasma gondii MIF. NcMIF was cloned and expressed in Escherichia coli in three forms, NcMIF (mature protein), NcMI...

  4. Granulocyte macrophage colony stimulating factor therapy for pulmonary alveolar proteinosis.

    PubMed

    Shende, Ruchira P; Sampat, Bhavin K; Prabhudesai, Pralhad; Kulkarni, Satish

    2013-03-01

    We report a case of 58 year old female diagnosed with Pulmonary Alveolar Proteinosis (PAP) with recurrence of PAP after 5 repeated whole lung lavage, responding to subcutaneous injections of Granulocyte Macrophage Colony Stimulating Factor therapy (GM-CSF). Thus indicating that GM-CSF therapy is a promising alternative in those requiring repeated whole lung lavage PMID:24475687

  5. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing

    PubMed Central

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio

    2011-01-01

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1–mutant (CSF-1op/op) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing. PMID:21411758

  6. Macrophage-mediated myelin-related mitogenic factor for cultured Schwann cells.

    PubMed Central

    Baichwal, R R; Bigbee, J W; DeVries, G H

    1988-01-01

    Conditioned medium from cultured peritoneal macrophages that have phagocytosed a myelin membrane fraction is mitogenic for cultured Schwann cells. Production of the mitogenic supernatant was time- and dose-dependent with a maximal Schwann cell-proliferative response from supernatants after 48-hr incubation of cultured macrophages with myelin-enriched fraction (200 micrograms of protein per ml). The response was specific for myelin membrane: supernatants derived from macrophages incubated with axolemma, liver microsomes, polystyrene beads, or lipopolysaccharide were not mitogenic. Lysosomal processing of the myelin membrane was necessary for the production of the mitogenic factor, which was shown to be heat labile and trypsin sensitive. There was no species specificity because myelin membranes isolated from the central and peripheral nervous systems of rat, bovine, and human were equally potent in eliciting mitogenic supernatant. However, supernatants derived from central nervous system myelin membranes were two to three times more mitogenic than those obtained from peripheral nervous system fractions of the same species. Previous observations that myelin is mitogenic for cultured Schwann cells may, in part, involve the intermediate processing of myelin by macrophages that are present in Schwann cell cultures. These results suggest that macrophages play a crucial role in Schwann cell proliferation during Wallerian degeneration. Images PMID:3422757

  7. Simultaneous Addition of Shikonin and Its Derivatives with Lipopolysaccharide Induces Rapid Macrophage Death.

    PubMed

    Koike, Atsushi; Shibano, Makio; Mori, Hideya; Kohama, Kiyoko; Fujimori, Ko; Amano, Fumio

    2016-01-01

    Macrophages play pivotal roles in inflammatory responses. Previous studies showed that various natural products exert antiinflammatory effects by regulating macrophage activation. Recent studies have shown that shikonin (SHK) and its derivatives (β-hydroxyisovalerylshikonin, acetylshikonin, and isobutylshikonin), which are 1,4-naphthoquinone pigments extracted from the roots of Lithospermum erythrorhizon, have various pharmacological, including antiinflammatory and antitumor, effects. Even though there have been many studies on the antiinflammatory activities of SHK derivatives, only a few have described their direct effects on macrophages. We investigated the effects of SHK derivatives on lipopolysaccharide (LPS)-treated macrophages. Low doses of SHK derivatives induced significant macrophage cytotoxicity (mouse macrophage-like J774.1/JA-4 cells and mouse peritoneal macrophages) in the presence of LPS. SHK activated caspases-3 and -7, which led to DNA fragmentation, but this cytotoxicity was prevented through a pan-caspase inhibitor in LPS-treated JA-4 cells. Maximal cytotoxic effects were achieved when SHK was added immediately before LPS addition. These results indicate that SHK derivatives induce caspase-dependent apoptotic cell death of LPS-treated macrophages and suggest that SHK acts during an early stage of LPS signaling. PMID:27251498

  8. Differential Responses Between Monocytes and Monocyte-Derived Macrophages for Lipopolysaccharide Stimulation of Calves

    PubMed Central

    Guo, Yijie; Zhao, Guoqi; Tanaka, Sachi; Yamaguchi, Takahiro

    2009-01-01

    In this experiment Toll-like receptor expression pattern in monocytes and monocyte-derived macrophages by lipopolysaccharide (LPS) stimulation was examined. Jugular venous blood was collected from four Japanese calves, and the peripheral blood mononuclear cells (PBMCs) were isolated. The cells were directly used for collecting monocytes by magnetic cell sorting or cultured for 7 days to collect monocyte-derived macrophages in Repcell. Then we analyzed the mRNA expression pattern of TLRs and cytokines in monocytes and monocyte-derived macrophages after LPS stimulation for 24 h. LPS stimulation of both monocytes and monocyte-derived macrophages resulted in an increase in the levels of mRNA transcripts for TNF-α, IL-6 and IL-8. Moreover, TNF-α and IL-6 mRNA expressions were significantly augmented by LPS stimulation in monocyte-derived macrophages. TLRs mRNA expressions were unchanged after LPS stimulation of monocytes, while TLRs mRNA expressions in monocyte-derived macrophages were complicated. TLR1, 3, 5, 8 and 10 were significantly decreased after LPS stimulation and there were no differences in the mRNA expressions of TLR2, 4, 6 and 7 between the groups of control and LPS stimulation. Besides, no expression of TLR9 was found. As antigen presenting cells, monocytes and monocyte-derived macrophages respond differently to LPS, so they may have different functions in the innate immune system. PMID:19567206

  9. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis.

    PubMed

    Carmi, Yaron; Voronov, Elena; Dotan, Shahar; Lahat, Nitza; Rahat, Michal A; Fogel, Mina; Huszar, Monika; White, Malka R; Dinarello, Charles A; Apte, Ron N

    2009-10-01

    Inflammation and angiogenesis are pivotal processes in the progression of many diseases, including malignancies. A hypoxic microenvironment often results in a milieu of proinflammatory and proangiogenic cytokines produced by infiltrating cells. We assessed the role of macrophage-derived hypoxia-associated cytokines in promoting inflammation and angiogenesis. Supernatants of macrophages, stimulated under hypoxia with or without an inflammatory stimulus (LPS), promoted angiogenesis when incorporated into Matrigel plugs. However, neutralization of IL-1 in the supernatants, particularly IL-1beta, completely abrogated cell infiltration and angiogenesis in Matrigel plugs and reduced vascular endothelial growth factor (VEGF) levels by 85%. Similarly, supernatants from macrophages of IL-1beta knockout mice did not induce inflammatory or angiogenic responses. The importance of IL-1 signaling in the host was demonstrated by the dramatic reduction of inflammatory and angiogenic responses in Matrigel plugs that contained macrophage supernatants from control mice which had been implanted in IL-1 receptor type I knockout mice. Myeloid cells infiltrating into Matrigel plugs were of bone marrow origin and represented the major source of IL-1 and other cytokines/chemokines in the plugs. Cells of endothelial lineage were the main source of VEGF and were recruited mainly from neighboring tissues, rather than from the bone marrow. Using the aortic ring sprouting assay, it was shown that in this experimental system, IL-1 does not directly activate endothelial cell migration, proliferation and organization into blood vessel-like structures, but rather activates infiltrating cells to produce endothelial cell activating factors, such as VEGF. Thus, targeting IL-1beta has the potential to inhibit angiogenesis in pathological situations and may be of considerable clinical value. PMID:19752225

  10. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis.

    PubMed

    Jung, Michaela; Ören, Bilge; Mora, Javier; Mertens, Christina; Dziumbla, Sarah; Popp, Rüdiger; Weigert, Andreas; Grossmann, Nina; Fleming, Ingrid; Brüne, Bernhard

    2016-01-01

    Tumor cell-derived factors skew macrophages toward a tumor-supporting phenotype associated with the secretion of protumorigenic mediators. Apoptosing tumor cells release sphingosine 1-phosphate (S1P), which stimulates the production of lipocalin 2 (LCN2) in tumor-associated macrophages and is associated with tumor metastasis. We explored the mechanism by which S1P induces LCN2 in macrophages and investigated how this contributed to tumor growth and metastasis. Knockdown of S1P receptor 1 (S1PR1) in primary human macrophages and experiments with bone marrow-derived macrophages from S1PR1-deficient mice showed that S1P signaled through S1PR1 to induce LCN2 expression. The LCN2 promoter contains a consensus sequence for signal transducer and activator of transcription 3 (STAT3), and deletion of the STAT3 recognition sequence reduced expression of an LCN2-controlled reporter gene. Conditioned medium from coculture experiments indicated that the release of LCN2 from macrophages induced tube formation and proliferation in cultures of primary human lymphatic endothelial cells in a manner dependent on the kinase PI3K and subsequent induction of the growth factor VEGFC, which functioned as an autocrine signal stimulating the receptor VEGFR3. Knockout of Lcn2 attenuated tumor-associated lymphangiogenesis and breast tumor metastasis both in the breast cancer model MMTV-PyMT mice and in mice bearing orthotopic wild-type tumors. Our findings indicate that macrophages respond to dying tumor cells by producing signals that promote lymphangiogenesis, which enables metastasis. PMID:27353364

  11. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide.

    PubMed

    Fei, Fan; Lee, Keith M; McCarry, Brian E; Bowdish, Dawn M E

    2016-01-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6-8 wk) and old (18-22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age. PMID:26940652

  12. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    PubMed Central

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-01-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age. PMID:26940652

  13. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  14. Generation and characterization of bovine bone marrow-derived macrophage cell line.

    PubMed

    Xiao, Jiajia; Xie, Rongxia; Li, Qiaoqiao; Chen, Wuju; Zhang, Yong

    2016-05-01

    Macrophages, as the forefront of innate immune defense, have an important role in the host responses to mycobacterial infection. Therefore, a stable macrophage cell line is needed for future bovine immune system research on the bacterial infection. In this study, we established a bovine macrophage cell line by introducing the human telomerase reverse transcriptase (hTERT) gene into bovine bone marrow-derived macrophages (bBMMs). The TERT-bBMMs cells expressed macrophage surface antigen (CD11b, CD282) and upregulated expression of the cytokines IL-1β, IL-6, IL-10, IL-12, TNF-α in response to bacterial invasion. These results demonstrate that this cell line provide reliable cell model system for future studies on interactions between the bovine macrophages and Mycobacterium tuberculosis. PMID:26936441

  15. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    PubMed

    Daigneault, Marc; Preston, Julie A; Marriott, Helen M; Whyte, Moira K B; Dockrell, David H

    2010-01-01

    Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD(3)) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3) and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells. PMID:20084270

  16. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.

    PubMed

    Epelman, Slava; Lavine, Kory J; Beaudin, Anna E; Sojka, Dorothy K; Carrero, Javier A; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L; Ivanov, Stoyan; Satpathy, Ansuman T; Schilling, Joel D; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E Camilla; Yokoyama, Wayne M; Unanue, Emil R; Colonna, Marco; Randolph, Gwendalyn J; Mann, Douglas L

    2014-01-16

    Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size. PMID:24439267

  17. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  18. Protective effects of macrophage-derived interferon against encephalomyocarditis virus-induced diabetes mellitus in mice.

    PubMed

    Hirasawa, K; Ogiso, Y; Takeda, M; Lee, M J; Itagaki, S; Doi, K

    1995-12-01

    The involvement of macrophages in protection against diabetes mellitus in mice of BALB/c (susceptible) and C57BL (resistant) strains infected with the B (non-diabetogenic) or D (highly diabetogenic) variant of encephalomyocarditis (EMC) virus was examined. Pretreatment with the B variant of EMC virus (EMC-B), avirulent interferon (IFN) inducer, or Corynebacterium parvum inhibited diabetes in BALB/c mice infected with the D variant of EMC virus (EMC-D). Treatment of C57BL mice with carrageenan to compromise macrophage function rendered C57BL mice susceptible to EMC-D-induced diabetes. In macrophage culture for BALB/c mice, EMC-B induced IFN at an earlier stage than did EMC-D. The C57BL mouse-derived macrophages produced more IFN than did BALB/c mouse-derived macrophages after stimulation with EMC-D. Moreover, C. parvum increased IFN production in macrophage cultures from BALB/c mice, whereas carrageenan inhibited that in macrophage cultures from C57BL mice. These results suggest that IFN derived from macrophages may have an important role in protecting mice against EMC virus infection. PMID:8746525

  19. Characterization of subsets of bone marrow-derived macrophages by flow cytometry analysis

    SciTech Connect

    Walker, E.B.; Akporiaye, E.T.; Warner, N.L.; Stewart, C.C.

    1985-01-01

    Normal C3H bone marrow cells were grown 7 days in medium containing L cell-derived colony stimulating factor-1 (CSF-1). During the first 4 days of culture, erythroid and granulocytic cells decreased while macrophages increased exponentially with a doubling time of about 31 hr. Only 0.3% of all cells in the initial bone marrrow suspension formed discrete colonies of mononuclear phagocytes, but by day 6 60% of the nonadherent cells were capable of forming macrophage colonies, representing a 200-fold enrichment of the original progenitor population. Using flow cytometry, mononuclear phagocytes obtained after 4 days of culture were separated into two distinct phenotypes based on their autofluorescence. Nonadherent cells were a discrete population of small cells exhibiting low autofluorescence, and the adherent cells were a broad heterogenous population of large cells exhibiting high autofluorescence. A panel of currently available rat monoclonal antibodies (MABs) against murine hematopoietic cells were used to determine whether unique subsets of macrophages could be resolved. The MABs RA 31B6 and H-11 stained virtually all the nonadherent cells but not adherent cells. The MABs E-2 and 11-4.1 (anti-H-2K/sup k/) stained almost all the adherent cells and demonstrated no significant staining of nonadherent cells. Nearly all the nonadherent and adherent cells were stained by the MABs DNL 4.4 and MAC-1. Additionally, the data suggest that the epitopes for MAC-2 and MAC-3 and ..gamma..2a Fc receptors develop late in nonadherent progenitor cells as they mature into adherent macrophages. 37 references, 5 figures, 5 tables.

  20. FABP4-mediated homocysteine-induced cholesterol accumulation in THP-1 monocyte-derived macrophages and the potential epigenetic mechanism.

    PubMed

    Jiang, Yideng; Ma, Shengchao; Zhang, Huiping; Yang, Xiaoling; Lu, Guan Jun; Zhang, Hui; He, Yangyang; Kong, Fanqi; Yang, Anning; Xu, Hua; Zhang, Minghao; Jiao, Yun; Li, Guizhong; Cao, Jun; Jia, Yuexia; Jin, Shaoju; Wei, Jun; Shi, Yingkang

    2016-07-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for the development of atherosclerosis (AS), according to overwhelming number of clinical and epidemiological studies. However, the underlying pathogenic molecular mechanisms by which HHcy promotes AS remain to be fully elucidated. Fatty acid binding protein 4 (FABP4) has been shown to be important in macrophage cholesterol trafficking. The objective of the present study was to determine whether homocysteine (Hcy) accelerates AS through regulating FABP4, and then mediates cholesterol accumulation in macrophages. Hcy concentrations of 0, 50, 100, 200 and 500 µM, and 100 µM Hcy+30 µM vitamin B12 (VB12)+30 µM folic acid (FA) were respectively added to cultured THP‑1 monocyte‑derived macrophages for 24 h. The levels of FABP4, which acts as a key factor connecting cellular lipid accumulation to inflammation, were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses in the macrophages. The present study used a nested touchdown methylation‑specific PCR assay to detect the DNA methylation status of the FABP4 promoter region. In addition, the FABP4 gene fragment was inserted into the cloning vector, pcDNA3.1‑EGFP, to construct the recombinant plasmid, pcDNA3.1‑EGFP/FABP4, which was identified using restriction endonuclease digestion analysis and DNA sequencing. The pcDNA3.1‑EGFP/FABP4 expression plasmid was transfected into THP‑1 monocyte‑derived macrophages, mediated by liposome reagent, following which the expression levels of FABP4 were detected using RT‑qPCR and western blot analyses. The present study also determined the intracellular accumulation of total cholesterol in the macrophages. The results indicated that Hcy decreased the levels of FABP4 promoter methylation, but increased the mRNA and protein expression levels of FABP4 in the macrophages, compared with the control group (0 µM Hcy). However, no dose

  1. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  2. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses1

    PubMed Central

    Kamir, Daniela; Zierow, Swen; Leng, Lin; Cho, Yoonsang; Diaz, Yira; Griffith, Jason; McDonald, Courtney; Merk, Melanie; Mitchell, Robert A.; Trent, John; Chen, Yibang; Kwong, Yuen-Kwan Amy; Xiong, Huabao; Vermeire, Jon; Cappello, Michael; McMahon-Pratt, Diane; Walker, John; Bernhagen, Jurgen; Lolis, Elias; Bucala, Richard

    2009-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction. PMID:18523291

  3. Fine-tuning of macrophage activation using synthetic rocaglate derivatives

    PubMed Central

    Bhattacharya, Bidisha; Chatterjee, Sujoy; Devine, William G.; Kobzik, Lester; Beeler, Aaron B.; Porco, John A.; Kramnik, Igor

    2016-01-01

    Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource. PMID:27086720

  4. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74.

    PubMed

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M; Zok, Stephanie; Klaener, Ole; Braun, Gerald S; Lindenmeyer, Maja T; Cohen, Clemens D; Bucala, Richard; Tittel, Andre P; Kurts, Christian; Moeller, Marcus J; Floege, Juergen; Ostendorf, Tammo; Bernhagen, Jürgen; Boor, Peter

    2016-06-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  5. Effect of a standardized liver and spleen fraction of peptides on the differentiation of human monocyte-derived macrophages.

    PubMed

    Spessotto, P; Bulla, R; Mittenzwei, H; Dri, P

    1994-06-01

    The effect of Factor AF2 (AF2), a standardized fraction of peptides with a molecular weight of < 10,000 Dalton obtained from livers and spleens of newborn lambs, on the differentiation of human monocyte-derived macrophages was studied, in view of the central role played by these cells in inflammation and tumor cytotoxicity. The results show that the drug 1. increases the cell density of cultures, 2. favours the morphologic differentiation of monocytes into macrophages, and 3. increases the macrophages phagocytic capacity. The first two effects are observed when monocytes are cultured in 1% serum but not in 10% serum while the enhancement of phagocytic activity is detected at both serum concentrations. PMID:8053979

  6. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    PubMed Central

    Bacher, M; Metz, C N; Calandra, T; Mayer, K; Chesney, J; Lohoff, M; Gemsa, D; Donnelly, T; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755565

  7. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    PubMed

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  8. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    PubMed Central

    Abu Khweek, Arwa; Fernández Dávila, Natalia S.; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Novotny, Laura A.; Bakaletz, Lauren O.; Amer, Amal O.

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  9. Evaluation of transduction efficiency in macrophage colony-stimulating factor differentiated human macrophages using HIV-1 based lentiviral vectors

    PubMed Central

    2011-01-01

    Background Monocyte-derived macrophages contribute to atherosclerotic plaque formation. Therefore, manipulating macrophage function could have significant therapeutic value. The objective of this study was to determine transduction efficiency of two HIV-based lentiviral vector configurations as delivery systems for the transduction of primary human blood monocyte-derived macrophages. Results Human blood monocytes were transduced using two VSV-G pseudotyped HIV-1 based lentiviral vectors containing EGFP expression driven by either native HIV-LTR (VRX494) or EF1α promoters (VRX1090). Lentiviral vectors were added to cultured macrophages at different times and multiplicities of infection (MOI). Transduction efficiency was assessed using fluorescence microscopy and flow cytometry. Macrophages transduced between 2 and 120 hours after culturing showed the highest transduction efficiency at 2-hours transduction time. Subsequently, cells were transduced 2 hours after culturing at various vector concentrations (MOIs of 5, 10, 25 and 50) to determine the amount of lentiviral vector particles required to maximally transduce human monocyte-derived macrophages. On day 7, all transduced cultures showed EGFP-positive cells by microscopy. Flow cytometric analysis showed with all MOIs a peak shift corresponding to the presence of EGFP-positive cells. For VRX494, transduction efficiency was maximal at an MOI of 25 to 50 and ranged between 58 and 67%. For VRX1090, transduction efficiency was maximal at an MOI of 10 and ranged between 80 and 90%. Thus, transductions performed with VRX1090 showed a higher number of EGFP-positive cells than VRX494. Conclusions This report shows that VSV-G pseudotyped HIV-based lentiviral vectors can efficiently transduce human blood monocyte-derived macrophages early during differentiation using low particle numbers that do not interfere with differentiation of monocytes into macrophages. PMID:21281514

  10. The immune-microenvironment confers resistance to MAP kinase pathway inhibitors through macrophage-derived TNFα

    PubMed Central

    O’Brien, Kate; Brunton, Holly; Ferguson, Jennifer; Young, Helen; Dhomen, Nathalie; Flaherty, Keith T.; Frederick, Dennie T.; Cooper, Zachary A.; Wargo, Jennifer A.; Marais, Richard; Wellbrock, Claudia

    2014-01-01

    Recently the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune-microenvironment can act as source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma-growth factor that provides resistance to MAPK pathway inhibitors through the lineage-transcription factor MITF. Most strikingly, in BRAF mutant melanomas of patients and BRafV600E-melanoma allografts MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα-signaling with IκB-kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells, but also the microenvironment. In summary, we identify the immune-microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. PMID:25256614

  11. Bone marrow-derived macrophages exclusively expressed caveolin-2: The role of inflammatory activators and hypoxia.

    PubMed

    Maceckova, Michaela; Martiskova, Hana; Koudelka, Adolf; Kubala, Lukas; Lojek, Antonin; Pekarova, Michaela

    2015-11-01

    Caveolins are specific proteins involved in regulation of signal transduction to intracellular space. Still, their contribution to immune functions has not been completely clarified. Thus, we decided to characterize the expression of caveolins in bone marrow-derived macrophages (BMDMs) under resting and inflammatory conditions. The effect of classical activators (lipopolysaccharide, LPS; interferon-gamma, IFN-γ) was further potentiated with hypoxic (5% O2) conditions. The activation of p44/42-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and expression of caveolin-1, -2, and -3, hypoxia inducible factor-1 alpha (HIF-1α), as well as inducible nitric oxide synthase (iNOS) was monitored using the Western blot technique. The production of nitric oxide (NO) and tumor necrosis factor-alpha (TNFα) was analyzed by Griess method or ELISA, respectively. BMDMs were also transfected with siRNA against caveolin-2. Importantly, our study showed for the first time that BMDMs expressed only caveolin-2, and its level decreased after activation of macrophages with LPS, IFN-γ, and/or hypoxia. The expression of caveolin-2 negatively correlates with the iNOS and HIF-1α protein levels, as well as with the LPS/IFN-γ- and hypoxia-induced activation of ERK1/2. We concluded that caveolin-2 is most probably involved in regulation of pro-inflammatory responses of BMDMs, triggered via activation of ERK1/2. PMID:26215374

  12. Reduced Simian Immunodeficiency Virus Replication in Macrophages of Sooty Mangabeys Is Associated with Increased Expression of Host Restriction Factors

    PubMed Central

    Mir, Kiran D.; Mavigner, Maud; Wang, Charlene; Paiardini, Mirko; Sodora, Donald L.; Chahroudi, Ann M.; Bosinger, Steven E.

    2015-01-01

    ABSTRACT Macrophages are target cells of HIV/SIV infection that may play a role in AIDS pathogenesis and contribute to the long-lived reservoir of latently infected cells during antiretroviral therapy (ART). In previous work, we and others have shown that during pathogenic SIV infection of rhesus macaques (RMs), rapid disease progression is associated with high levels of in vivo macrophage infection. In contrast, during nonpathogenic SIV infection of sooty mangabeys (SMs), neither spontaneous nor experimental CD4+ T cell depletion results in substantial levels of in vivo macrophage infection. To test the hypothesis that SM macrophages are intrinsically more resistant to SIV infection than RM macrophages, we undertook an in vitro comparative assessment of monocyte-derived macrophages (MDMs) from both nonhuman primate species. Using the primary isolate SIVM949, which replicates well in lymphocytes from both RMs and SMs, we found that infection of RM macrophages resulted in persistent SIV-RNA production while SIV-RNA levels in SM macrophage cultures decreased 10- to 100-fold over a similar temporal course of in vitro infection. To explore potential mechanisms responsible for the lower levels of SIV replication and/or production in macrophages from SMs we comparatively assessed, in the two studied species, the expression of the SIV coreceptor as well as the expression of a number of host restriction factors. While previous studies showed that SM monocytes express lower levels of CCR5 (but not CD4) than RM monocytes, the level of CCR5 expression in MDMs was similar in the two species. Interestingly, we found that SM macrophages exhibited a significantly greater increase in the expression of tetherin (P = 0.003) and TRIM22 (P = 0.0006) in response to alpha interferon stimulation and increased expression of multiple host restriction factors in response to lipopolysaccharide stimulation and exposure to SIV. Overall, these findings confirm, in an in vitro infection system

  13. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages.

    PubMed

    Ryzhova, Elena V; Vos, Robin M; Albright, Andrew V; Harrist, Alexia V; Harvey, Thomas; González-Scarano, Francisco

    2006-03-01

    Human immunodeficiency virus (HIV) replication in the major natural target cells, CD4+ T lymphocytes and macrophages, is parallel in many aspects of the virus life cycle. However, it differs as to viral assembly and budding, which take place on plasma membranes in T cells and on endosomal membranes in macrophages. It has been postulated that cell type-specific host factors may aid in directing viral assembly to distinct destinations. In this study we defined annexin 2 (Anx2) as a novel HIV Gag binding partner in macrophages. Anx2-Gag binding was confined to productively infected macrophages and was not detected in quiescently infected monocyte-derived macrophages (MDM) in which an HIV replication block was mapped to the late stages of the viral life cycle (A. V. Albright, R. M. Vos, and F. Gonzalez-Scarano, Virology 325:328-339, 2004). We demonstrate that the Anx2-Gag interaction likely occurs at the limiting membranes of late endosomes/multivesicular bodies and that Anx2 depletion is associated with a significant decline in the infectivity of released virions; this coincided with incomplete Gag processing and inefficient incorporation of CD63. Cumulatively, our data suggest that Anx2 is essential for the proper assembly of HIV in MDM. PMID:16501079

  14. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    PubMed Central

    Jung, Michaela; Brüne, Bernhard; Hotter, Georgina; Sola, Anna

    2016-01-01

    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury. PMID:26911537

  15. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-01

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity. PMID:26989197

  16. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  17. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  18. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis

    PubMed Central

    Heinrichs, Daniel; Berres, Marie-Luise; Coeuru, Melanie; Knauel, Meike; Nellen, Andreas; Fischer, Petra; Philippeit, Claudia; Bucala, Richard; Trautwein, Christian; Wasmuth, Hermann E.; Bernhagen, Jürgen

    2014-01-01

    , P., Philippeit, C., Bucala, R., Trautwein, C., Wasmuth, H. E., Bernhagen, J. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. PMID:25122558

  19. Activated Human Mast Cells Induce LOX-1-Specific Scavenger Receptor Expression in Human Monocyte-Derived Macrophages

    PubMed Central

    Alanne-Kinnunen, Mervi; Lappalainen, Jani; Öörni, Katariina; Kovanen, Petri T.

    2014-01-01

    Objective Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs). Results Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1) mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta (TGF-β1), which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell –induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages. Conclusions Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis. PMID:25250731

  20. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF).

    PubMed

    Zhao, Bin; Li, Yifu; Buono, Chiara; Waldo, Stephen W; Jones, Nancy L; Mori, Masahiro; Kruth, Howard S

    2006-06-01

    Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors. PMID:16606620

  1. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    SciTech Connect

    Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  2. Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells.

    PubMed

    Sheng, Jianpeng; Ruedl, Christiane; Karjalainen, Klaus

    2015-08-18

    Macrophages are one of the most diverse cell populations in terms of their anatomical location and functional specialization during both homeostasis and disease. Although it has been shown in different fate mapping models that some macrophages present in adult tissues are already established during fetal development, their exact origins are still under debate. In the current study, we developed a fate mapping strain, based on the Kit locus, which allowed us to readdress "the origins" question. Different types of macrophages from various adult tissues were traced to their fetal or adult sources by inducing labeling in precursors at several time points either during fetal development or in adult mice. We show that all adult macrophages, resident or infiltrating, are progenies of classical hematopoietic stem cells (HSC) with the exception of microglia and, partially epidermal Langerhans cells, which are yolk sac (YS)-derived. PMID:26287683

  3. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    PubMed

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity. PMID:27543614

  4. Particulate matter phagocytosis induces tissue factor in differentiating macrophages.

    PubMed

    Milano, M; Dongiovanni, P; Artoni, A; Gatti, S; Rosso, L; Colombo, F; Bollati, V; Maggioni, M; Mannucci, P M; Bertazzi, P A; Fargion, S; Valenti, L

    2016-01-01

    Airborne exposure to particulate matter with diameter < 10 mcM (PM10) has been linked to an increased risk of thromboembolic events, but the mechanisms are not completely understood. The aim of this study was to evaluate the effect of PM10 phagocytosis on the release of procoagulant molecules in human differentiating macrophages, and that of PM10 inhalation in an experimental model in rats. Human monocytes were separated from the peripheral blood by the lymphoprep method, differentiated in vitro and treated with standard PM10 or vehicle. Sprague-Dawley rats were instilled intratracheally with PM10 or vehicle alone. The outcome was expression of proinflammatory genes and of tissue factor (TF). In human differentiating macrophages, PM10 exposure upregulated inflammatory genes, but most consistently induced TF mRNA and protein levels, but not TF protein inhibitor, resulting in increased TF membrane expression and a procoagulant phenotype. Differentiation towards the anti-inflammatory M2 phenotype inhibited PM10 -mediated TF expression. TF induction required phagocytosis of PM10 , whereas phagocytosis of inert particles was less effective. PM10 phagocytosis was associated with a gene expression profile consistent with intracellular retention of iron, inducing oxidative stress. Both PM10 and iron activated the stress kinases ERK1/2 pathway, involved in the induction of TF expression. In rats, alveolar exposure to PM10 was associated with pulmonary recruitment of inflammatory cells and resulted in local, but not systemic, induction of TF expression, which was sufficient to increase circulating TF levels. In conclusion, TF induction by differentiating lung macrophages, activated following phagocytosis, contributes to the increased risk of thromboembolic complications associated with PM10 exposure. PMID:25858758

  5. Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages.

    PubMed

    Eguchi, Keisuke; Kato, Hikaru; Fujiwara, Yukio; Losung, Fitje; Mangindaan, Remy E P; de Voogd, Nicole J; Takeya, Motohiro; Tsukamoto, Sachiko

    2015-11-15

    The formation of foam cells in macrophages has been suggested to play an essential role in the progression of early atherosclerotic lesions in vivo and, thus, its suppression is considered to be one of the major approaches for the treatment of atherosclerosis. We isolated eight brominated-tyrosine derivatives, bastadins, from the EtOH extract of the marine sponge Ianthella vasta as inhibitors of the formation of foam cells induced by acetylated low-density lipoproteins in human monocyte-derived macrophages. Bastadin 6 was the strongest inhibitor of foam cell formation due to its suppression of acyl-coenzyme A:cholesterol acyltransferase. PMID:26403929

  6. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination. PMID:20864644

  7. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease.

    PubMed

    Däbritz, Jan

    2014-03-01

    Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD. PMID:24503766

  8. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.

    PubMed

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  9. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice

    PubMed Central

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  10. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    SciTech Connect

    Zhao Yong . E-mail: yongzhao@uic.edu; Mazzone, Theodore

    2005-11-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-M{phi}). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-M{phi} (CB f-M{phi}) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-M{phi} (TCB f-M{phi}) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1, Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-M{phi} differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-M{phi} and may lead to develop new therapeutic strategy for treating dominant disease.

  11. Potentiation of photodynamic therapy by granulocyte-macrophage colony stimulating factor immunotherapy

    NASA Astrophysics Data System (ADS)

    Krosl, Gorazd; Korbelik, Mladen; Krosl, Jana; Dougherty, Graeme J.

    1995-03-01

    The murine squamous carcinoma cell line (SCCVII) was genetically engineered to produce high levels of granulocyte-macrophage colony stimulating factor (GM-CSF). Lethally irradiated GM-CSF producing cells were injected under the subcutaneously growing parental SCCVII tumor at various times before and/or after PDT. Even a single treatment with GM- CSF producing cells injected two days before PDT markedly enhanced the tumor cure rate when compared to the PDT treatment alone. Effective potentiation was observed with PDT mediated either by Photofrin or by benzoporphyrin derivative.

  12. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ

    PubMed Central

    2014-01-01

    Background In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Methods Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/− IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. Results M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ–activated M2-like macrophages had low anti-tumor activity, IL-10–polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. Conclusion This study demonstrates that human macrophages can be induced to exert direct anti

  13. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages.

    PubMed

    Libby, S J; Lesnick, M; Hasegawa, P; Weidenhammer, E; Guiney, D G

    2000-02-01

    The pathogenesis of serious systemic Salmonella infections is characterized by survival and proliferation of bacteria inside macrophages. Infection of human monocyte-derived macrophages in vitro with S. typhimurium or S. dublin produces cytopathology characterized by detachment of cells that contain large numbers of proliferating bacteria. This cytopathology is dependent on the expression of the bacterial spv genes, a virulence locus previously shown to markedly enhance the ability of Salmonella to produce systemic disease. After 24 h of infection, macrophage cultures contain two populations of bacteria: (i) proliferating organisms present in a detached cell fraction; and (ii) a static bacterial population in macrophages remaining attached to the culture well. Mutations in either the essential transcriptional activator SpvR or the key SpvB protein markedly reduce the cytopathic effect of Salmonella infection. The spv-dependent cytopathology in macrophages exhibits characteristics of apoptosis, with release of nucleosomes into the cytoplasm, nuclear condensation and DNA fragmentation. The current findings suggest that the mechanism of the spv effect is through induction of increased cytopathology in host macrophages. PMID:11207562

  14. CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease

    PubMed Central

    Alexander, Kylie A.; Flynn, Ryan; Lineburg, Katie E.; Kuns, Rachel D.; Teal, Bianca E.; Olver, Stuart D.; Lor, Mary; Raffelt, Neil C.; Koyama, Motoko; Leveque, Lucie; Le Texier, Laetitia; Melino, Michelle; Markey, Kate A.; Varelias, Antiopi; Engwerda, Christian; Serody, Jonathan S.; Janela, Baptiste; Ginhoux, Florent; Clouston, Andrew D.; Blazar, Bruce R.; Hill, Geoffrey R.; MacDonald, Kelli P.A.

    2014-01-01

    Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17–dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS–). Cutaneous cGVHD developed in a CSF-1/CSF-1R–dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r–/– mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti–CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD. PMID:25157821

  15. Orthologs of macrophage migration inhibitory factor from parasitic nematodes

    PubMed Central

    Vermeire, Jon J.; Cho, Yoonsang; Lolis, Elias; Bucala, Richard; Cappello, Michael

    2013-01-01

    Chronic helminth infections are associated with modulation of host cellular immune responses, presumably to prolong parasite survival within the mammalian host. This phenomenon is attributed, at least in part, to the elaboration of parasite molecules, including orthologs of host cytokines and receptors, at the host–parasite interface. This review describes recent progress in the characterization of macrophage migration inhibitory factor (MIF) orthologs from parasitic nematodes. The roles of these molecules in parasite developmental biology and pathogenesis are discussed. Further knowledge of the species-specific activities and three-dimensional structures of human and parasitic nematode MIF molecules should make them ideal targets for drug- and/or vaccine-based strategies aimed at nematode disease control. PMID:18603473

  16. Molecular Cloning and Functional Characterization of the Avian Macrophage Migration Inhibitory Factor (MIF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor produced by sensitized T lymphocytes and inhibits the random migration of macrophages. Recent studies have revealed a more prominent role for MIF as a multi-functional cytokine mediating both innate and adaptive immune r...

  17. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    SciTech Connect

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y. )

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitrites (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.

  18. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  19. Xylitol, an Anticaries Agent, Exhibits Potent Inhibition of Inflammatory Responses in Human THP-1-Derived Macrophages Infected With Porphyromonas gingivalis

    PubMed Central

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2016-01-01

    Background Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Methods Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis–induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Results Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection– and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ–induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis– induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted anti-phagocytic activity against both Escherichia coli and P. gingivalis. Conclusion These findings suggest that xylitol acts as an antiinflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis. PMID:24592909

  20. Functional characterization of the turkey macrophage migration inhibitory factor.

    PubMed

    Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A

    2016-08-01

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. PMID:27062968

  1. Lipopolysaccharide-Related Stimuli Induce Expression of the Secretory Leukocyte Protease Inhibitor, a Macrophage-Derived Lipopolysaccharide Inhibitor

    PubMed Central

    Jin, Fenyu; Nathan, Carl F.; Radzioch, Danuta; Ding, Aihao

    1998-01-01

    Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-κB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417–426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins—interleukin-10 (IL-10) and IL-6—also induced SLPI, while TNF and IL-1β did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules—taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls—also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI’s slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria. PMID:9596701

  2. Oxidative metabolism in cord blood monocytes and monocyte-derived macrophages.

    PubMed Central

    Speer, C P; Ambruso, D R; Grimsley, J; Johnston, R B

    1985-01-01

    Little is known about phagocytosis-associated oxidative metabolism in mononuclear phagocytes from the human neonate. We investigated this phenomenon in monocytes from the cord blood of term newborn infants by measuring generation of superoxide anion (O2-) and hydroxyl radical (X OH) after stimulation with opsonized zymosan or phorbol myristate acetate. Production of these microbicidal oxygen metabolites by monocytes from neonates and healthy adult volunteers was equivalent. When cultured in the presence of the macrophage activator lipopolysaccharide or muramyl dipeptide, monocytes from neonates and adults differentiated into cells with the appearance of macrophages and with an enhanced capacity to release O2- compared with cells cultured in the absence of an activator. Monocyte-derived macrophages from neonates produced only slightly less O2- than did adult cells. Thus, unlike the cord blood neutrophil, which exhibits abnormalities in oxidative metabolism, the cord blood mononuclear phagocyte has a respiratory burst that is quantitatively comparable to that of the adult cell. PMID:2999001

  3. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    PubMed

    Karpurapu, Manjula; Ranjan, Ravi; Deng, Jing; Chung, Sangwoon; Lee, Yong Gyu; Xiao, Lei; Nirujogi, Teja Srinivas; Jacobson, Jeffrey R; Park, Gye Young; Christman, John W

    2014-01-01

    The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation. PMID:24695324

  4. Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages.

    PubMed

    Delton-Vandenbroucke, Isabelle; Bouvier, Jerome; Makino, Asami; Besson, Nelly; Pageaux, Jean-François; Lagarde, Michel; Kobayashi, Toshihide

    2007-03-01

    Bis(monoacylglycero)phosphate (BMP), also called lysobisphosphatidic acid, is a phospholipid highly enriched in the internal membranes of multivesicular late endosomes, in which it forms specialized lipid domains. It has been suggested that BMP-rich membranes regulate cholesterol transport. Here, we examine the effects of an anti-BMP antibody on cholesterol metabolism and transport in two macrophage cell lines, RAW 264.7 and THP-1, during loading with acetylated low density lipoprotein (AcLDL). Anti-BMP antibody was internalized and accumulated in both macrophage cell types. Cholesterol staining with filipin and mass measurements indicate that AcLDL-stimulated accumulation of free cholesterol (FC) was enhanced in macrophages that had accumulated the antibody. Unlike the hydrophobic amine U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), esterification of AcLDL-derived cholesterol by ACAT was not modified after anti-BMP treatment. AcLDL loading led to an increase of FC in the plasma membrane. This increase was further enhanced in anti-BMP-treated macrophages. However, cholesterol efflux to HDL was reduced in antibody-treated cells. These results suggest that the accumulation of anti-BMP antibody alters cholesterol homeostasis in AcLDL-loaded macrophages. PMID:17146116

  5. Expression and Function of Semaphorin 3A and Its Receptors in Human Monocyte-derived Macrophages

    PubMed Central

    Ji, Jong-Dae; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B.

    2016-01-01

    Semaphorins are a large family of secreted and membrane-bound proteins. Recently, several roles of semaphorins in the immune system have emerged. Several semaphorins and their receptors are expressed in a variety of lymphoid and myeloid cells and affect immune cell functions, including cell proliferation, differentiation, chemotaxis, and cytokine production. However, the roles of class 3 semaphorins in human myeloid cells are not well known. Here we examined the regulation of expression of class 3 semaphorins and their receptors by inflammatory stimuli and their function in human macrophages. We show that the expression of Sema3A receptors (neuropilin-1 (NRP-1), NRP-2, plexin A1, plexin A2 and plexin A3) significantly increased during M-CSF-mediated differentiation of monocytes into macrophages under conditions that promote an M2 alternatively activated macrophage phenotype. Consistent with increased NRP-1 expression, cell surface binding of Sema3A increased during M2 differentiation. IFN-γ and LPS that promote classical M1 macrophage activation affected expression of NRP-1, NRP-2 and plexin A1. IFN-γ decreased NRP-1 expression and LPS suppressed NRP-2 and plexin A1 expression. Furthermore we show that Sema3A induced apoptosis in monocyte-derived macrophages, and cooperated with anti-Fas CH11 antibody to augment apoptosis. Our results suggest Sema3A plays a role in induction of apoptosis in monocyte-derived macrophages that are resistant to Fas-induced apoptosis and that its function can be modulated in inflammatory conditions. PMID:19480842

  6. Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques.

    PubMed Central

    Tipping, P. G.; Hancock, W. W.

    1993-01-01

    The production of cytokines by atheromatous plaque macrophages from human endarterectomy tissue was assessed in vitro by short-term cell culture and in situ by immunohistology. Macrophages were isolated from plaques of 14 patients undergoing carotid endarterectomy and 7 patients undergoing reconstructive procedures on atheromatous distal aortic and femoral arteries. Tumor necrosis factor (TNF) and interleukin 1 (IL-1) production by plaque macrophages and blood monocytes isolated concurrently from these patients was assessed. TNF release by macrophages from carotid plaques (0.39 +/- 0.12 ng/10(6) cells/24 hours) was significantly augmented compared to the release by corresponding blood monocytes (0.014 +/- 0.011 ng/10(6) cells/24 hours, P = 0.03), and by macrophages from noncarotid lesions (0.038 +/- 0.036 ng/10(6) cells/24 hours, P < 0.04). Cellular TNF expression by macrophages within carotid plaques was also more prominent than in noncarotid lesions. By contrast, IL-1 production by plaque macrophages from both carotid and noncarotid plaques was not augmented compared to blood monocytes, and only infrequent and low-intensity labeling for IL-1 was present on macrophages within plaques from either group. These results provide functional and immunohistological evidence for increased production of TNF but not IL-1 by activated macrophages, indicating local and selective augmentation of cytokine production within carotid plaques. This suggests that macrophages play an active role in the inflammatory response within atheromatous carotid plaques. Images Figure 3 PMID:8506944

  7. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4–CXCR7

    PubMed Central

    Chatterjee, M; von Ungern-Sternberg, S N I; Seizer, P; Schlegel, F; Büttcher, M; Sindhu, N A; Müller, S; Mack, A; Gawaz, M

    2015-01-01

    Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4–CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4–CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1–M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4–CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163+ macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies

  8. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination.

    PubMed

    Döring, Axinia; Sloka, Scott; Lau, Lorraine; Mishra, Manoj; van Minnen, Jan; Zhang, Xu; Kinniburgh, David; Rivest, Serge; Yong, V Wee

    2015-01-21

    Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin. PMID:25609628

  9. Induction of prostanoid, nitric oxide, and cytokine formation in rat bone marrow derived macrophages by activin A.

    PubMed

    Nüsing, R M; Barsig, J

    1999-06-01

    1. In this study we describe that activin A, a transforming growth factor (TGF) beta-like polypeptide affects the expression of inflammatory response genes and their products. 2. In rat bone marrow derived macrophages 15 nM activin A caused the stimulation of prostaglandin (PG) E2 and thromboxane (TX) A2 formation, production of nitrite as a marker for nitric oxide (NO) and the release of the cytokines tumour necrosis factor (TNF) alpha and interleukin (IL) -1beta. As shown by mRNA analysis induction of cyclo-oxygenase-2 and inducible nitric oxide synthase by activin A gave rise to the enhanced release of prostanoids and NO. 3. Costimulation of bone marrow derived macrophages with 15 nM activin A and 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA) potentiated the synthesis of prostanoids in a synergistic manner. With respect to NO formation the effect of activin A and TPA was additive. 4. In contrast to the nitrite production activin A induced PGE2 synthesis was susceptible to tyrosine kinase inhibition by genistein and tyrphostin 46 (IC50 was 10 and 20 microM, respectively). This observed inhibition was caused by the selective suppression of activin A induced cyclo-oxygenase-2 mRNA expression. Further, the release of TNFalpha in the presence of activin A was potentiated by tyrosine kinase inhibition. 5. In summary, we report that activin A exerts proinflammatory activity which results in the formation of prostanoids, NO and cytokines in rat bone marrow derived macrophages. Tyrosine kinase dependent and independent signalling pathways are involved leading to the increased synthesis of these metabolites. Based upon these results, we speculate that activin A may be considered as a possible component of inflammatory processes affecting at least the haematopoietic system. PMID:10433499

  10. Adipocyte-derived PAMM suppresses macrophage inflammation by inhibiting MAPK signalling.

    PubMed

    Guo, Fang; He, Hui; Fu, Zhi-Chao; Huang, Shengping; Chen, Tingtao; Papasian, Christopher J; Morse, Leslie R; Xu, Yan; Battaglino, Ricardo A; Yang, Xiao-Feng; Jiang, Zhisheng; Xin, Hong-Bo; Fu, Mingui

    2015-12-15

    Macrophages within adipose tissue play a key role in mediating inflammatory responses in adipose tissue that are associated with obesity-related metabolic complications. In an effort to identify novel proteins secreted from adipocytes that may negatively regulate macrophage inflammation, we found that peroxiredoxin (PRX)-like 2 activated in M-CSF stimulated monocytes (PAMM), a CXXC-type PRX-like 2 domain-containing redox regulatory protein, is a novel secreted protein with potent anti-inflammatory properties. PAMM is secreted from mature human adipocytes but not preadipocytes. Overexpression of PAMM significantly attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. Incubation of macrophages with adipocyte-conditional medium treated with anti-PAMM antibody significantly enhanced LPS-induced interleukin-12 (IL-12) expression in Raw264.7 cells. In addition, incubation of Raw264.7 cells with purified PAMM protein had a similar anti-inflammatory effect. Moreover, forced expression of PAMM in Raw264.7 cells resulted in decreased LPS-induced ERK1/2, p38 and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting that PAMM exerted the anti-inflammatory function probably by suppressing the mitogen-activated protein kinase (MAPK) signalling pathway. Mutations in the CXXC motif of PAMM that suppressed its anti-redox activity were still able to suppress production of inflammatory cytokines in LPS-stimulated macrophages, suggesting that PAMM's anti-inflammatory properties may be independent of its antioxidant properties. Finally, PAMM was highly expressed in both white (WAT) and brown adipose tissues (BAT) and further increased in obesity status. Our results suggest that adipocyte-derived PAMM may suppress macrophage activation by inhibiting MAPK signalling pathway. PMID:26438880

  11. An integrated signal transduction network of macrophage migration inhibitory factor.

    PubMed

    Subbannayya, Tejaswini; Variar, Prathyaksha; Advani, Jayshree; Nair, Bipin; Shankar, Subramanian; Gowda, Harsha; Saussez, Sven; Chatterjee, Aditi; Prasad, T S Keshava

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath ( http://www.netpath.org ), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF. PMID:27139435

  12. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed Central

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-01-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. Images PMID:7504626

  13. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    SciTech Connect

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  14. Macrophage Migration Inhibitory Factor in Clinical Kidney Disease

    PubMed Central

    Bruchfeld, Annette; Wendt, Mårten; Miller, Edmund J.

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine implicated in acute and chronic inflammatory conditions, including sepsis, autoimmune disease, atherogenesis, plaque instability, and pulmonary arterial hypertension. MIF in plasma and urine is significantly elevated in patients with acute kidney injury (AKI) and elevated MIF in serum is associated with markers of oxidative stress, endothelial dysfunction, arterial stiffness, and markers of myocardial damage in chronic kidney disease (CKD). Furthermore, MIF seems to be involved in vascular processes and cardiovascular disease associated with CKD, glomerulonephritis, autosomal dominant polycystic kidney disease, and possibly also in progression to renal failure. Moreover, in active anti-neutrophil cytoplasmatic antibody-associated vasculitis, plasma MIF levels have been shown to be significantly elevated as compared with samples from patients in remission. A significant difference in the genotype frequency of high production MIF -173 G/C genotype has been found in end-stage renal disease, compared to controls. Inhibition of MIF in a diabetic nephropathy model ameliorated blood glucose and albuminuria and in a model of adult polycystic kidney disease cyst growth was delayed. Preclinical studies support a potential therapeutic role for MIF in AKI and in a number of CKDs, whereas these data in human disease are still observational. Future interventional studies are needed to delineate the role of MIF as a treatment target in clinical kidney disease. PMID:26858715

  15. Non-identical twins - microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation.

    PubMed

    Jung, Steffen; Schwartz, Michal

    2012-01-01

    The brain has been commonly regarded as a "tissue behind walls." Appearance of immune cells in the brain has been taken as a sign of pathology. Moreover, since infiltrating monocyte-derived macrophages and activated resident microglia were indistinguishable by conventional means, both populations were considered together as inflammatory cells that should be mitigated. Yet, because the microglia permanently reside in the brain, attributing to them negative properties evoked an ongoing debate; why cells that are supposed to be the brain guardians acquire only destructive potential? Studies over the last two decades in the immune arena in general, and in the context of central nervous system pathology in particular, have resulted in a paradigm shift toward a more balanced appreciation of the contributions of immune cells in the context of brain maintenance and repair, and toward the recognition of distinct roles of resident microglia and infiltrating monocyte-derived macrophages. PMID:22566968

  16. BDMC33, A Curcumin Derivative Suppresses Inflammatory Responses in Macrophage-Like Cellular System: Role of Inhibition in NF-κB and MAPK Signaling Pathways

    PubMed Central

    Lee, Ka-Heng; Chow, Yuh-Lit; Sharmili, Vidyadaran; Abas, Faridah; Alitheen, Noorjahan Banu Mohamed; Shaari, Khozirah; Israf, Daud Ahmad; Lajis, Nordin Haji; Syahida, Ahmad

    2012-01-01

    Our preliminary screening has shown that curcumin derivative BDMC33 [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] exerted promising nitric oxide inhibitory activity in activated macrophages. However, the molecular basis and mechanism for its pharmacological action is yet to be elucidated. The aim of this study was to investigate the anti-inflammatory properties of BDMC33 and elucidate its underlying mechanism action in macrophage cells. Our current study demonstrated that BDMC33 inhibits the secretion of major pro-inflammatory mediators in stimulated macrophages, and includes NO, TNF-α and IL-1β through interference in both nuclear factor kappaB (NF-κB) and mitogen activator protein kinase (MAPK) signaling cascade in IFN-γ/LPS-stimulated macrophages. Moreover, BDMC33 also interrupted LPS signaling through inhibiting the surface expression of CD-14 accessory molecules. In addition, the inhibitory action of BDMC33 not only restricted the macrophages cell (RAW264.7), but also inhibited the secretion of NO and TNF-α in IFN-γ/LPS-challenged microglial cells (BV-2). The experimental data suggests the inflammatory action of BDMC33 on activated macrophage-like cellular systems, which could be used as a future therapeutic agent in the management of chronic inflammatory diseases. PMID:22489138

  17. Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus.

    PubMed

    Bragg, D C; Hudson, L C; Liang, Y H; Tompkins, M B; Fernandes, A; Meeker, R B

    2002-06-01

    Recent observations have suggested that lentiviruses stimulate the proliferation and activation of microglia. A similar effect within the dense macrophage population of the choroid plexus could have significant implications for trafficking of virus and inflammatory cells into the brain. To explore this possibility, we cultured fetal feline macrophages and examined their response to feline immunodeficiency virus (FIV) or the T-cell-derived protein, recombinant human CD40-ligand trimer (rhuCD40-L). The rhCD40-L was the most potent stimulus for macrophage proliferation, often inducing a dramatic increase in macrophage density. Exposure to FIV resulted in a small increase in the number of macrophages and macrophage nuclei labeled with bromodeoxyuridine. The increase in macrophage density after FIV infection also correlated with an increase in neurotoxic activity of the macrophage-conditioned medium. Starting at 16-18 weeks postinfection, well after the peak of viremia, a similar toxic activity was detected in cerebrospinal fluid (CSF) from FIV-infected cats. Toxicity in the CSF increased over time and was paralleled by strong CD18 staining of macrophages/microglia in the choroid plexus and adjacent parenchyma. These results suggest that lentiviral infection of the choroid plexus can induce a toxic inflammatory response that is fueled by local macrophage proliferation. Together with the observation of increasing toxic activity in the CSF and increased CD18 staining in vivo, these observations suggest that choroid plexus macrophages may contribute to an inflammatory cascade in the brain that progresses independently of systemic and CSF viral load. PMID:12053277

  18. Macrophage-derived reactive oxygen species protects against autoimmune priming with a defined polymeric adjuvant.

    PubMed

    Shakya, Akhilesh Kumar; Kumar, Ashok; Holmdahl, Rikard; Nandakumar, Kutty Selva

    2016-01-01

    Understanding the nature of adjuvants and the immune priming events in autoimmune diseases, such as rheumatoid arthritis, is a key challenge to identify their aetiology. Adjuvants are, however, complex structures with inflammatory and immune priming properties. Synthetic polymers provide a possibility to separate these functions and allow studies of the priming mechanisms in vivo. A well-balanced polymer, poly-N-isopropyl acrylamide (PNiPAAm) mixed with collagen type II (CII) induced relatively stronger autoimmunity and arthritis compared with more hydrophilic (polyacrylamide) or hydrophobic (poly-N-isopropylacrylamide-co-poly-N-tertbutylacrylamide and poly-N-tertbutylacrylamide) polymers. Clearly, all the synthesized polymers except the more hydrophobic poly-N-tertbutylacrylamide induced arthritis, especially in Ncf1-deficient mice, which are deficient in reactive oxygen species (ROS) production. We identified macrophages as the major infiltrating cells present at PNiPAAm-CII injection sites and demonstrate that ROS produced by the macrophages attenuated the immune response and the development of arthritis. Our results reveal that thermo-responsive polymers with high immune priming capacity could trigger an autoimmune response to CII and the subsequent arthritis development, in particular in the absence of NOX2 derived ROS. Importantly, ROS from macrophages protected against the autoimmune priming, demonstrating a critical regulatory role of macrophages in immune priming events. PMID:26455429

  19. Resistance of LPS-activated bone marrow derived macrophages to apoptosis mediated by dexamethasone

    PubMed Central

    Haim, Yasmin Ohana; Unger, Naamit Deshet; Souroujon, Miriam C.; Mittelman, Moshe; Neumann, Drorit

    2014-01-01

    Glucocorticoids (GC) display pleiotropic effects on the immune system. Macrophages are a major target for GC action. Here we show that dexamethasone (DEX), a synthetic GC, decreased viability of naïve bone marrow-derived macrophages (BMDM), involving an apoptotic mechanism. Administration of DEX together with lipopolysaccharide (LPS) protected BMDM against DEX-mediated cell death, suggesting that activated BMDM respond to DEX differently than naïve BMDM. An insight to the molecular basis of LPS actions was provided by a 7 fold increase in mRNA levels of glucocorticoid receptor beta (GRβ), a GR dominant-negative splice variant which inhibits GRα's transcriptional activity. LPS did not inhibit all DEX-mediated effects on BMDM; DEX significantly reduced the percentage of BMDM expressing high levels of the cell surface markers F4/80 and CD11b and led to a decrease in macrophage inflammatory protein 1 alpha (MIP1-α) mRNA and protein levels. These two DEX-mediated effects were not prevented by LPS. Our finding that LPS did not reduce the DEX-induced elevation of glucocorticoid-induced leucine zipper (GILZ), a mediator of GCs anti-inflammatory actions, may provide an underlying mechanism. These findings enable a better understanding of clinical states, such as sepsis, in which macrophages are activated by endotoxins and treatment by GCs is considered. PMID:24608810

  20. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes.

    PubMed

    Lacasa, Danièle; Taleb, Soraya; Keophiphath, Mayoura; Miranville, Alexandra; Clement, Karine

    2007-02-01

    Obesity is considered a chronic low-grade inflammatory state. The white adipose tissue produces a variety of inflammation-related proteins whose expression is increased in obese subjects. The nonadipose cell fraction, which includes infiltrated macrophages, is a determinant source of inflammation-related molecules within the adipose tissue. Our working hypothesis is that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Human primary preadipocytes were then differentiated in the presence of conditioned media obtained from macrophages differentiated from blood monocytes. Preadipocytes treated by macrophage-conditioned medium displayed marked reduction of adipogenesis as assessed by decreased cellular lipid accumulation and reduced gene expression of adipogenic and lipogenic markers. In addition to this effect, the activation of macrophages by lipopolysaccharides stimulated nuclear factor kappaB signaling, increased gene expression and release of proinflammatory cytokines and chemokines, and induced preadipocyte proliferation. This phenomenon was associated with increased cyclin D1 gene expression and maintenance of the fibronectin-rich matrix. Anti-TNFalpha neutralizing antibody inhibits the inflammatory state of preadipocytes positioning TNFalpha as an important mediator of inflammation in preadipocytes. Strikingly, conditioned media produced by macrophages isolated from human adipose tissue exerted comparable effects with activated macrophages, i.e. decreased adipogenesis and increased inflammatory state in the preadipocytes. These data show that macrophage-secreted factors inhibit the formation of mature adipocytes, suggesting possible role in limiting adipose tissue expansion in humans. PMID:17082259

  1. A Novel Allosteric Inhibitor of Macrophage Migration Inhibitory Factor (MIF)*

    PubMed Central

    Bai, Fengwei; Asojo, Oluwatoyin A.; Cirillo, Pier; Ciustea, Mihai; Ledizet, Michel; Aristoff, Paul A.; Leng, Lin; Koski, Raymond A.; Powell, Thomas J.; Bucala, Richard; Anthony, Karen G.

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases. PMID:22782901

  2. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  3. Macrophage migration inhibitory factor, a role in COPD.

    PubMed

    Husebø, Gunnar R; Bakke, Per S; Grønseth, Rune; Hardie, Jon A; Ueland, Thor; Aukrust, Pål; Eagan, Tomas M L

    2016-07-01

    Macrophage migration inhibitor factor (MIF) is a pluripotent cytokine associated with several different inflammatory conditions, but its role within lung inflammation and chronic obstructive pulmonary disease (COPD) is unclear. This study aimed to examine MIF in both stable COPD and during acute exacerbations (AECOPD). The study included 433 patients with COPD aged 41-76 and 325 individuals from the Bergen COPD cohort study who served as controls. All patients had an FEV1 of <80% predicted, FEV1/FVC ratio of <0.7, and a smoking history >10 pack-years. Serum levels of MIF were compared between the two groups at baseline, and for 149 patients, measurements were also carried out during AECOPD. Linear regression models were fitted with MIF as the outcome variable and adjusted for sex, age, body composition, smoking, and Charlson Comorbidity Score (CCS). Median MIF (interquartile range) in patients with COPD was 20.1 ng/ml (13.5-30.9) compared with 14.9 ng/ml (11.1-21.6) in controls (P < 0.01). MIF was bivariately associated with sex, body composition, and CCS (P < 0.05 for all). In the regression analyses, MIF was significantly higher in patients with COPD, coefficient 1.32 (P < 0.01) and 1.30 (P < 0.01) unadjusted and adjusted, respectively. In addition, in 149 patients during episodes of AECOPD, MIF was significantly elevated, with a median of 23.2 ng/ml (14.1-42.3) compared with measurements at stable disease of 19.3 ng/ml (12.4-31.3, P < 0.01). Serum levels of MIF were significantly higher in patients with COPD compared with controls. We also identified an additional increase in MIF levels during episodes of AECOPD. PMID:27190066

  4. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB

    PubMed Central

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  5. The Kmif (Kveim-induced macrophage migration inhibition factor) test in sarcoidosis

    PubMed Central

    Williams, W. Jones; Pioli, E.; Jones, D. J.; Dighero, M.

    1972-01-01

    Circulating lymphocytes from 30 patients with sarcoidosis when stimulated in vitro with Kveim-induced macrophage migration factor, the Kmif test, produced a guinea-pig macrophage migration inhibition factor in 21 of 30 cases (70%). In those patients not on steroids the results showed a good correlation with the cutaneous Kveim test. One positive test was found in 16 normal subjects. Our results suggest that the Kmif test may prove a useful rapid alternative to the Kveim test. PMID:4675181

  6. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  7. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  8. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  9. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    PubMed Central

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  10. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    PubMed

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  11. Human alveolar macrophages synthesize factor VII in vitro. Possible role in interstitial lung disease.

    PubMed Central

    Chapman, H A; Allen, C L; Stone, O L; Fair, D S

    1985-01-01

    Both fibrin and tissue macrophages are prominent in the histopathology of chronic inflammatory pulmonary disease. We therefore examined the procoagulant activity of freshly lavaged human alveolar macrophages in vitro. Intact macrophages (5 X 10(5) cells) from 13 healthy volunteers promoted clotting of whole plasma in a mean of 65 s. Macrophage procoagulant activity was at least partially independent of exogenous Factor VII as judged by a mean clotting time of 99 s in Factor VII-deficient plasma and by neutralization of procoagulant activity by an antibody to Factor VII. Immunoprecipitation of extracts of macrophages metabolically labeled with [35S]methionine by Factor VII antibody and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a labeled protein consistent in size with the known molecular weight of blood Factor VII, 48,000. The addition of 50 micrograms of unlabeled, purified Factor VII blocked recovery of the 48,000-mol wt protein. In addition, supernatants of cultured macrophages from six normal volunteers had Factor X-activating activity that was suppressed an average of 71% after culture in the presence of 50 microM coumadin or entirely by the Factor VII antibody indicating that Factor VII synthesized by the cell was biologically active. Endotoxin in vitro induced increases in cellular tissue factor but had no consistent effect on macrophage Factor VII activity. We also examined the tissue factor and Factor VII activities of freshly lavaged alveolar cells from nine subjects with clinical and/or histologic evidence of sarcoidosis. Four of the nine subjects expressed increased tissue factor and seven of nine had increased Factor VII activity over the normal range (P less than 0.01). We estimate the mean Factor VII associated with the cells of sarcoid patients to be 4.7 ng/10(6) cells (range 0.4-20) as compared to a mean of 0.74 ng/10(6) cells (range 0.2-2) for that of normal subjects. Along with previous data showing synthesis

  12. Pharmacologic reduction in tumor necrosis factor activity of pulmonary alveolar macrophages.

    PubMed

    Leeper-Woodford, S K; Fisher, B J; Sugerman, H J; Fowler, A A

    1993-02-01

    Tumor necrosis factor-alpha (TNF), an inflammatory cytokine released by macrophages, may be a mediator of lung injury during septicemia. We previously reported that the cyclooxygenase inhibitor ibuprofen and histamine receptor antagonists cimetidine (H2 antagonist) and diphenhydramine (H1 antagonist) attenuate lung injury and reduce circulating TNF surges during porcine sepsis. Since pulmonary alveolar macrophages (PAM) may participate in early sepsis by producing TNF, we hypothesized that the TNF activity of PAM is reduced by ibuprofen, cimetidine, and diphenhydramine. To test this, we examined changes in PAM-derived TNF bioactivity and cell viability of freshly isolated porcine PAM during exposure to bacterial endotoxin (LPS), ibuprofen, cimetidine, and diphenhydramine. The TNF activity (% L929 cytotoxicity of PAM conditioned medium) was elevated in LPS-stimulated PAM cultures (15 to 25% increase at 1 to 6 h and 40 to 43% increase at 6 to 48 h, compared with non-LPS-stimulated cultures), and ibuprofen (150 micrograms/ml) added with LPS decreased the TNF activity for 24 h (20 to 28% reduction at 1 to 24 h). Ibuprofen added 1 h after LPS was less effective in reducing the PAM-derived TNF activity (20 to 22% reduction at 2 to 6 h). Cimetidine (112 micrograms/ml) reduced the TNF activity of LPS-stimulated PAM cultures during the first 4 h of LPS exposure (15 to 24% decrease at 1 to 4 h). Diphenhydramine (150 micrograms/ml) attenuated the PAM-derived TNF activity but also decreased viability of PAM, indicating a toxic effect of this agent on PAM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8093999

  13. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages

    PubMed Central

    Gibbings, Sophie L.; Goyal, Rajni; Desch, A. Nicole; Leach, Sonia M.; Prabagar, Miglena; Atif, Shaikh M.; Bratton, Donna L.; Janssen, William

    2015-01-01

    Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell. PMID:26232173

  14. Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression

    PubMed Central

    Laoui, Damya; Van Overmeire, Eva; De Baetselier, Patrick; Van Ginderachter, Jo A.; Raes, Geert

    2014-01-01

    The current review article describes the functional relationship between tumor-associated macrophages (TAM) as key cellular contributors to cancer malignancy on the one hand and macrophage-colony-stimulating factor (M-CSF or CSF-1) as an important molecular contributor on the other. We recapitulate the available data on expression of M-CSF and the M-CSF receptor (M-CSFR) in human tumor tissue as constituents of a stromal macrophage signature and on the limits of the predictive and prognostic value of plasma M-CSF levels. After providing an update on current insights into the nature of TAM heterogeneity at the level of M1/M2 phenotype and TAM subsets, we give an overview of experimental evidence, based on genetic, antibody-mediated, and pharmacological disruption of M-CSF/M-CSFR signaling, for the extent to which M-CSFR signaling can not only determine the TAM quantity, but can also contribute to shaping the phenotype and heterogeneity of TAM and other related tumor-infiltrating myeloid cells (TIM). Finally, we review the accumulating information on the – sometimes conflicting – effects blocking M-CSFR signaling may have on various aspects of cancer progression such as tumor growth, invasion, angiogenesis, metastasis, and resistance to therapy and we thereby discuss in how far these different effects actually reflect a contribution of TAM. PMID:25339957

  15. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    SciTech Connect

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  16. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT).

    PubMed

    Petreaca, Melissa L; Yao, Min; Ware, Carl; Martins-Green, Manuela M

    2008-01-01

    Resolution of inflammation is critical for normal wound healing. Inflammation is prolonged and fails to resolve properly in chronic wounds. We used in vivo and in vitro approaches to show that vascular endothelial growth factor (VEGF) induces macrophage apoptosis and to delineate mechanisms involved in this process. VEGF inhibition during wound healing leads to an increased number of macrophages remaining in wounds, suggesting the involvement of VEGF in removal of these cells from the wound. If this effect has physiological relevance, it likely occurs via apoptosis. We show that VEGF increases apoptosis of macrophages in vitro using Annexin V-FITC staining and caspase activation. Microarray analysis, reverse transcription-polymerase chain reaction, and immunoblotting showed that VEGF increases the expression of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT) in macrophages. We also show that in macrophages LIGHT promotes apoptosis through the lymphotoxin beta receptor. Moreover, inhibition of LIGHT prevents VEGF-induced death, suggesting that LIGHT mediates VEGF-induced macrophage apoptosis. Taken together, our results identify a novel role for VEGF and for LIGHT in macrophage apoptosis during wound healing, an event critical in the resolution of inflammation. This finding may lead to the development of new strategies to improve resolution of inflammation in problematic wounds. PMID:19128255

  17. Hyperbaric oxygen enhances neutrophil apoptosis and their clearance by monocyte-derived macrophages.

    PubMed

    Almzaiel, Anwar J; Billington, Richard; Smerdon, Gary; Moody, A John

    2015-08-01

    Neutrophil apoptosis and clearance by macrophages are essential for wound healing. Evidence suggests that hyperbaric oxygen (HBO) exposure may enhance neutrophil apoptosis, but HBO effects leading to neutrophil clearance by macrophages are still unclear. In the current study, bovine neutrophils and monocyte-derived macrophages (MDMΦ) were co-cultured under HBO (97.9% O2, 2.1% CO2 at 2.4 atm absolute (ATA)) (1 atm = 101.325 kPa), hyperbaric normoxia (8.8% O2 at 2.4 ATA), normobaric hyperoxia (95% O2, 5% CO2), normoxia (air), and normobaric hypoxia (5% O2, 5% CO2). Phagocytosis of fresh and 22 h aged neutrophils by MDMΦ was increased after HBO pre-treatment, assessed using flow cytometry and light microscopy. Enhanced clearance of neutrophils was accompanied by an increase in H2O2 levels following HBO pre-treatment with upregulation of IL-10 (anti-inflammatory cytokine) mRNA expression in LPS-stimulated MDMΦ that had ingested aged neutrophils. TNF-α (pro-inflammatory cytokine) gene expression did not change in LPS-stimulated MDMΦ that had ingested fresh or aged neutrophils after HBO, pressure, and hyperoxia. These findings suggest that HBO-activated MDMΦ participate in the clearance of apoptotic cells. Uptake of neutrophils by MDMΦ exposed to HBO may contribute to resolution of inflammation, because HBO induced up-regulation of IL-10 mRNA expression. PMID:26194051

  18. Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages

    PubMed Central

    Hollenbaugh, Joseph A.; Montero, Catherine; Schinazi, Raymond F.; Munger, Joshua; Kim, Baek

    2016-01-01

    We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC–MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages. PMID:26895248

  19. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens

    PubMed Central

    Prolo, Carolina; Álvarez, María Noel; Radi, Rafael

    2013-01-01

    Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill microorganisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage-derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens. PMID:24281946

  20. Macrophage-derived lipid agonists of PPAR-α as intrinsic controllers of inflammation.

    PubMed

    Pontis, Silvia; Ribeiro, Alison; Sasso, Oscar; Piomelli, Daniele

    2016-01-01

    Macrophages are multi-faceted phagocytic effector cells that derive from circulating monocytes and undergo differentiation in target tissues to regulate key aspects of the inflammatory process. Macrophages produce and degrade a variety of lipid mediators that stimulate or suppress pain and inflammation. Among the analgesic and anti-inflammatory lipids released from these cells are the fatty acid ethanolamides (FAEs), which produce their effects by engaging nuclear peroxisome proliferator activated receptor-α (PPAR-α). Two members of this lipid family, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), have recently emerged as important intrinsic regulators of nociception and inflammation. These substances are released from the membrane precursor, N-acylphosphatidylethanolamine (NAPE), by the action of a NAPE-specific phospholipase D (NAPE-PLD), and in macrophage are primarily deactivated by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). NAPE-PLD and NAAA regulate FAE levels, exerting a tight control over the ability of these lipid mediators to recruit PPAR-α and attenuate the inflammatory response. This review summarizes recent findings on the contribution of the FAE-PPAR-α signaling complex in inflammation, and on NAAA inhibition as a novel mechanistic approach to treat chronic inflammatory disorders. PMID:26585314

  1. Protective role of macrophage-derived ceruloplasmin in inflammatory bowel disease

    PubMed Central

    Bakhautdin, Bakytzhan; Febbraio, Maria; Goksoy, Esen; de la Motte, Carol A; Gulen, Muhammet F; Childers, Erin Patricia; Hazen, Stanley L; Li, Xiaoxia; Fox, Paul L

    2013-01-01

    Objective Intestinal microflora and inflammatory cell infiltrates play critical roles in the pathogenesis of acute colitis. Ceruloplasmin is an acute-phase plasma protein produced by hepatocytes and activated macrophages, and has ferroxidase with bactericidal activities. The goal is to understand the role of ceruloplasmin in colitis progression in a genetically modified murine model. Design Experimental colitis was induced in ceruloplasmin null (Cp−/−) and wild-type (WT) mice by dextran sulphate sodium administration. The role of ceruloplasmin was further evaluated by transplantation of WT macrophages into Cp−/− mice. Results Cp−/− mice rapidly lost weight and were moribund by day 14, while WT mice survived at least 30 days. Colon culture supernatants from Cp−/− mice exhibited elevated levels of TNFα, KC and MCP-1, indicative of increased inflammation and neutrophil and macrophage infiltration. Elevated leucocytes and severe histopathology were observed in Cp−/− mice. Elevated protein carbonyl content was detected in colons from Cp−/− mice suggesting ceruloplasmin antioxidant activity might contribute to its protective function. Unexpectedly, intraperitoneal administration of human ceruloplasmin into Cp−/− mice did not afford protection. Bone marrow transplantation from WT mice or injection of isolated peripheral blood monocytes markedly reduced severity of colitis and morbidity in Cp−/− mice. Conclusion Macrophage-derived ceruloplasmin contributes importantly to protection against inflammation and tissue injury in acute and chronic experimental colitis. The findings suggest that defects in ceruloplasmin expression or processing may influence the onset or progression of inflammatory bowel disease in patients. PMID:22345661

  2. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout.

    PubMed

    Galvão, Izabela; Dias, Ana Carolina Fialho; Tavares, Livia Duarte; Rodrigues, Irla Paula Stopa; Queiroz-Junior, Celso Martins; Costa, Vivian Vasconcelos; Reis, Alesandra Corte; Ribeiro Oliveira, Rene Donizeti; Louzada-Junior, Paulo; Souza, Daniele Glória; Leng, Lin; Bucala, Richard; Sousa, Lirlândia Pires; Bozza, Marcelo Torres; Teixeira, Mauro Martins; Amaral, Flávio Almeida

    2016-06-01

    This study evaluated the role of macrophage migration inhibitory factor in inflammation caused by monosodium urate crystals. The concentration of macrophage migration inhibitory factor was increased in synovial fluid of patients with acute gout, and there was a positive correlation between intra-articular macrophage migration inhibitory factor and IL-1β concentrations. In mice, the injection of monosodium urate crystals into the knee joint increased the levels of macrophage migration inhibitory factor in macrophages and in inflamed tissue. The injection of recombinant macrophage migration inhibitory factor into the joint of mice reproduced the inflammatory response observed in acute gout, including histologic changes, the recruitment of neutrophils, and increased levels of IL-1β and CXCL1. Importantly, the accumulation of neutrophils and the amount IL-1β in the joints were reduced in macrophage migration inhibitory factor-deficient mice when injected with monosodium urate crystals. We observed a similar effect when we blocked macrophage migration inhibitory factor with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid or anti-macrophage migration inhibitory factor. In addition, the blockade of IL-1R and CXCR2 reduced recombinant macrophage migration inhibitory factor-induced neutrophil recruitment. Mechanistically, recombinant macrophage migration inhibitory factor is important for the synthesis of il1β mRNA in vivo and in isolated macrophages. Altogether, macrophage migration inhibitory factor promotes neutrophil accumulation and is important for IL-1β production, which are 2 crucial events contributing to the pathogenesis of acute gout. PMID:26868525

  3. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2016-05-01

    The fatty acid composition of monocytes changes substantially during differentiation into macrophages, increasing the proportion of saturated fatty acids. These changes prompted us to investigate whether fatty acid accumulation in the extracellular milieu could affect the differentiation of bystander mononuclear phagocytes. An esterified fatty acid derivative, stearate, was the only fatty acid that significantly increased in macrophage supernatants, and there were higher levels when cells differentiated in the presence of Mycobacterium tuberculosis H37Rv or purified protein derivative (PPD). Exogenous stearic acid enhanced the expression of HLA-DR and CD64; there was also accumulation of IL-12, TNF-α, IL-6, MIP-1 α and β and a reduction in MCP-1 and the bacterial load. These results suggested that during differentiation, a derivative of stearic acid, which promotes the process as well as the effector mechanisms of phagocytes against the mycobacterium, accumulates in the cell supernatants. PMID:26932544

  4. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis.

    PubMed

    Gambelli, Federica; Di, Peter; Niu, Xiaomei; Friedman, Mitchell; Hammond, Timothy; Riches, David W H; Ortiz, Luis A

    2004-01-16

    Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure. PMID:14570868

  5. Functional significance of macrophage-derived exosomes in inflammation and pain

    PubMed Central

    McDonald, Marguerite K.; Tian, Yuzhen; Qureshi, Rehman A.; Gormley, Michael; Ertel, Adam; Gao, Ruby; Lopez, Enrique Aradillas; Alexander, Guillermo M.; Sacan, Ahmet; Fortina, Paolo; Ajit, Seena K.

    2014-01-01

    Exosomes, secreted microvesicles transporting microRNAs (miRNAs), mRNAs, and proteins through bodily fluids, facilitate intercellular communication and elicit immune responses. Exosomal contents vary depending on the source and the physiological conditions of cells and can provide insights into how cells and systems cope with physiological perturbations. Previous analysis of circulating miRNAs in patients with complex regional pain syndrome (CRPS), a debilitating chronic pain disorder, revealed a subset of miRNAs in whole blood that are altered in the disease. To determine functional consequences of alterations in exosomal biomolecules in inflammation and pain, we investigated exosome-mediated information transfer in vitro, in a rodent model of inflammatory pain and in exosomes from patients with CRPS. Mouse macrophage cells stimulated with lipopolysaccharides (LPS) secrete exosomes containing elevated levels of cytokines and miRNAs that mediate inflammation. Transcriptome sequencing of exosomal RNA revealed global alterations in both innate and adaptive immune pathways. Exosomes from LPS-stimulated cells were sufficient to cause NF-kappaB activation in naïve cells, indicating functionality in recipient cells. A single injection of exosomes attenuated thermal hyperalgesia in a mouse model of inflammatory pain, suggesting an immunoprotective role for macrophage-derived exosomes. We also show that circulating miRNAs altered in patients with complex regional pain syndrome are trafficked by exosomes. Macrophage-derived exosomes carry a protective signature that is altered when secreting cells are exposed to an inflammatory stimulus. With their systemic signaling capabilities, exosomes can induce pleiotropic effects potentially mediating the multifactorial pathology underlying chronic pain and should be explored for their therapeutic utility. PMID:24792623

  6. Effect of size of man-made and natural mineral fibers on chemiluminescent response in human monocyte-derived macrophages.

    PubMed Central

    Ohyama, M; Otake, T; Morinaga, K

    2001-01-01

    Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers in animal experiments. We examined the time course of the ability to induce lucigenin-dependent chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refractory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker, titanium oxide whisker, and wollastonite). We determined how fiber length or width might modify the response of cells. We found that the patterns of time-dependent increase of CL (sigmoid type) were similar for each sample except wollastonite. We observed a strong correlation between geometric-mean length and ability to induce CL in seven samples > 6 microm in length over the time course (largest r(2) = 0.9760). Although we also observed a close positive correlation between geometric-mean width and the ability to induce CL in eight samples < 1.8 microm in width at 15 min (r(2) = 0.8760), a sample of 2.4 microm in width had a low ability to induce CL. Moreover, the relationship between width and the rate of increase in ability to induce CL had a negative correlation at 30-60 min (largest r(2) = 0.7473). Our findings suggest that the release of superoxide from macrophages occurs nonspecifically for various types of mineral fibers depending on fiber length. PMID:11675268

  7. The major plant-derived cannabinoid Δ(9)-tetrahydrocannabinol promotes hypertrophy and macrophage infiltration in adipose tissue.

    PubMed

    Wong, A; Gunasekaran, N; Hancock, D P; Denyer, G S; Meng, L; Radford, J L; McGregor, I S; Arnold, J C

    2012-02-01

    Synthetic cannabinoid receptor agonists activate lipoprotein lipase and the formation of lipid droplets in cultured adipocytes. Here we extend this work by examining whether Δ(9)-tetrahydrocannabinol (THC), a major plant-derived cannabinoid, increases adipocyte size in vivo. Further, possibly as a consequence of hypertrophy, we hypothesize that THC exposure promotes macrophage infiltration into adipose tissue, an inflammatory state observed in obese individuals. Rats repeatedly exposed to THC in vivo had reduced body weight, fat pad weight, and ingested less food over the drug injection period. However, THC promoted adipocyte hypertrophy that was accompanied by a significant increase in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) expression, an enzyme important in packaging triglycerides. We also showed that THC induced macrophage infiltration and increased expression of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) in adipose tissue but did not induce apoptosis as measured by TUNEL staining. That THC increased adipocyte cell size in the absence of greater food intake, body weight and fat provides a unique model to explore mechanisms underlying changes in adipocyte size associated with a mild inflammatory state in fat tissue. PMID:22189757

  8. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    PubMed Central

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  9. Tissue factor activity. A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.

    PubMed Central

    Rothberger, H; McGee, M P; Lee, T K

    1984-01-01

    Experiments were carried out to examine relationships between alveolar macrophage maturity and amounts of tissue factor (Clotting Factor III) in these cells under physiologic conditions and during immunologically induced pneumonitis. Using discontinuous density gradient centrifugation, alveolar macrophages from healthy rabbits were rapidly isolated into five subpopulations at different stages of maturation, as demonstrated by morphologic and morphometric evaluation. Very large amounts of tissue factor activity were found in fully mature cells that were purified in the lowest density subpopulation and assayed without preliminary in vitro stimulation or culture. In the remaining four subpopulations of increasing density, amounts of tissue factor were found to progressively diminish in direct correlation with declines of cell maturity. These differences at mean levels were as great as 35-fold. In addition, blood monocytes had less than 1/219 and less than 1/6 of the activity of the fully mature and the least mature subpopulations, respectively. After 16 h culture of the five isolated subpopulations in the absence of lymphokines or of significant numbers of lymphocytes, tissue factor activity increased in inverse correlation with the preincubation stage of cell maturity (2,387 and 109% in the least mature and most mature subpopulations, respectively). These increases required protein synthesis and were accompanied by morphologic and morphometric changes which indicated cellular maturation during the period of tissue factor activity generation in vitro, thus further demonstrating relationships between macrophage maturity and tissue factor content. In additional experiments, direct correlations between cell maturity and tissue factor activity content were also found in activated alveolar macrophage populations from rabbits with Bacillus Calmette Guering (BCG)-induced granulomatous pneumonitis. However, as compared with controls, the BCG populations had increased total

  10. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis.

    PubMed

    Heinrichs, Daniel; Berres, Marie-Luise; Coeuru, Melanie; Knauel, Meike; Nellen, Andreas; Fischer, Petra; Philippeit, Claudia; Bucala, Richard; Trautwein, Christian; Wasmuth, Hermann E; Bernhagen, Jürgen

    2014-12-01

    MIF is an inflammatory cytokine but is hepatoprotective in models of hepatotoxin-induced liver fibrosis. Hepatic fibrosis can also develop from metabolic liver disease, such as nonalcoholic fatty liver disease (NASH). We investigated the role of MIF in high-fat or methionine- and choline-deficient diet mouse models of NASH. Mif(-/-) mice showed elevated liver triglyceride levels (WT, 53±14 mg/g liver; Mif(-/-), 103±7 mg/g liver; P<0.05) and a 2-3-fold increased expression of lipogenic genes. Increased fatty degeneration in the livers of Mif(-/-) mice was associated with increased hepatic inflammatory cells (1.6-fold increase in F4/80(+) macrophages) and proinflammatory cytokines (e.g., 2.3-fold increase in Tnf-α and 2-fold increase in Il-6 expression). However, inflammatory cells and cytokines were decreased by 50-90% in white adipose tissue (WAT) of Mif(-/-) mice. Subset analysis showed that macrophage phenotypes in livers of Mif(-/-) mice were skewed toward M2 (e.g., 1.7-fold and 2.5-fold increase in Arg1 and Il-13, respectively, and 2.5-fold decrease in iNos), whereas macrophages were generally reduced in WAT of these mice (70% reduction in mRNA expression of F4/80(+) macrophages). The protective MIF effect was scrutinized in isolated hepatocytes. MIF reversed inflammation-induced triglyceride accumulation in Hepa1-6 cells and primary hepatocytes and also attenuated oleic acid-elicited triglyceride increase in 3T3-L1 adipocytes. Protection from fatty hepatocyte degeneration was paralleled by a 2- to 3-fold reduction by MIF of hepatocyte proinflammatory cytokine production. Blockade of MIF receptor cluster of differentiation 74 (CD74) but not of CXCR2 or CXCR4 fully reverted the protective effect of MIF, comparable to AMPK inhibition. In summary, we demonstrate that MIF mediates hepatoprotection through the CD74/AMPK pathway in hepatocytes in metabolic models of liver injury. PMID:25122558

  11. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  12. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    PubMed

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection. PMID:24469081

  13. Activating transcription factor 4 promotes angiogenesis of breast cancer through enhanced macrophage recruitment.

    PubMed

    Liu, Chen; Li, Zongjin; Wang, Lina; Tong, Lingling; He, Ningning; Chen, Yanan; Liu, Yanhua; Wu, Zhongjun; Sun, Peiqing; Xiang, Rong; Ren, Guosheng; Su, Weijun

    2015-01-01

    Angiogenesis plays an important role in the progression of tumor. Besides being regulated by tumor cells per se, tumor angiogenesis is also influenced by stromal cells in tumor microenvironment (TME), for example, tumor associated macrophages (TAMs). Activating transcription factor 4 (ATF4), a member of the ATF/CREB family, has been reported to be related to tumor angiogenesis. In this study, we found that exogenous overexpression of ATF4 in mouse breast cancer cells promotes tumor growth via increasing tumor microvascular density. However, ATF4 overexpression failed to increase the expression level of a series of proangiogenic factors including vascular endothelial growth factor A (VEGFA) in tumor cells in this model. Thus, we further investigated the infiltration of proangiogenic macrophages in tumor tissues and found that ATF4-overexpressing tumors could recruit more macrophages via secretion of macrophage colony stimulating factor (M-CSF). Overall, we concluded that exogenous overexpression of ATF4 in breast cancer cells may facilitate the recruitment of macrophages into tumor tissues and promote tumor angiogenesis and tumor growth indirectly. PMID:25883982

  14. Effect of Mycobacterium tuberculosis-Specific 10-Kilodalton Antigen on Macrophage Release of Tumor Necrosis Factor Alpha and Nitric Oxide

    PubMed Central

    Trajkovic, Vladimir; Singh, Gyanesh; Singh, Balwan; Singh, Sarman; Sharma, Pawan

    2002-01-01

    Secreted proteins of Mycobacterium tuberculosis are major targets of the specific immunity in tuberculosis and constitute promising candidates for the development of more efficient vaccines and diagnostic tests. We show here that M. tuberculosis-specific antigen 10 (MTSA-10, originally designated CFP-10) can bind to the surface of mouse J774 macrophage-like cells and stimulate the secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). MTSA-10 also synergized with gamma interferon (IFN-γ) for the induction of the microbicidal free radical nitric oxide (NO) in J774 cells, as well as in bone marrow-derived and peritoneal macrophages. On the other hand, pretreatment of J774 cells with MTSA-10 markedly reduced NO but not TNF-α or interleukin 10 (IL-10) release upon subsequent stimulation with lipopolysaccharide or the cell lysate of M. tuberculosis. The presence of IFN-γ during stimulation with M. tuberculosis lysate antagonized the desensitizing effect of MTSA-10 pretreatment on macrophage NO production. The activation of protein tyrosine kinases (PTK) and the serine/threonine kinases p38 MAPK and ERK was apparently required for MTSA-10 induction of TNF-α and NO release, as revealed by specific kinase inhibitors. However, only p38 MAPK activity, not PTK or ERK activity, was partly responsible for MTSA-10-mediated macrophage desensitization. The modulation of macrophage function by MTSA-10 suggests a novel mechanism for its involvement in immunopathogenesis of tuberculosis and might have implications for the prevention, diagnosis, and therapy of this disease. PMID:12438325

  15. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization.

    PubMed

    Chagnon, Frederic; Metz, Christine N; Bucala, Richard; Lesur, Olivier

    2005-05-27

    The pathophysiology of sepsis-induced myocardial dysfunction still remains controversial. Macrophage migration inhibitory factor (MIF) has recently been identified as a cardiac-derived myocardial depressant factor in septic shock. Putative mechanisms by which MIF affects cardiac function are unknown. In an investigation of possible mechanisms of action, a rat model of endotoxin toxicity was designed using intraperitoneal (I/P) injection of lipopolysaccharides (LPS) with or without coinfusion of neutralizing anti-MIF or isotypic-matched antibodies. Echocardiographic evaluation revealed that MIF neutralization reversed endotoxin-induced myocardial dysfunction at 24 hours after injection. RNase protection assay (RPA) and Western blot established that MIF neutralization prevented LPS-induced mRNA expression and production of heart-derived inflammatory paracrine and autocrine cytokines such as IL-1s and IL-6. Moreover, MIF immunoneutralization increased heart Bcl-2/Bax protein ratio and suppressed endotoxin-induced release of mitochondrial cytochrome-c, as demonstrated by Western blotting. Inhibition of mitochondrial loss of cytochrome-c decreased in heart caspase-3 activity at 6 and 24 hours after injection. MIF neutralization also restored the LPS-induced deficient nuclear translocation of phospho-Akt and consequently the expression of the heart survival nuclear factor GATA-4. The restoration of the translocation/expression of survival factors by MIF inhibition resulted in lowered endotoxin-induced DNA fragmentation at 24 hours, a hallmark of downstream cardiomyocyte apoptosis. Our data indicate that early inactivation of MIF significantly reverses the imbalance of proapoptotic to prosurvival pathways and reduces acute inflammation of the heart thereby improving myocardial dysfunction induced by endotoxin. PMID:15879312

  16. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.

    PubMed

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth B; Biswas, Subhra K; Harris, Adrian L; Johnson, Randall S; Imityaz, Hongxia Z; Simon, M Celeste; Fredlund, Erik; Greten, Florian R; Rius, Jordi; Lewis, Claire E

    2009-07-23

    Ischemia exists in many diseased tissues, including arthritic joints, atherosclerotic plaques, and malignant tumors. Macrophages accumulate in these sites and up-regulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18 hours. For example, they were seen to up-regulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, vascular endothelial growth factor A, interleukin (IL)-1beta and IL-8, adrenomedullin, CXCR4, and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the nuclear factor-kappaB (NF-kappaB) signaling pathway. We then used both genetic and pharmacologic methods to manipulate the levels of HIFs-1alpha and 2alpha or NF-kappaB in primary macrophages to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIF-1 and -2, but not NF-kappaB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues, such as malignant tumors. PMID:19454749

  17. A novel role of breast cancer-derived hyaluronan on inducement of M2-like tumor-associated macrophages formation.

    PubMed

    Zhang, Guoliang; Guo, Lin; Yang, Cuixia; Liu, Yiwen; He, Yiqing; Du, Yan; Wang, Wenjuan; Gao, Feng

    2016-06-01

    Microenvironmental signals determine the differentiation types and distinct functions of macrophages. Tumor-associated macrophages (TAM) constitute major infiltrates around solid tumor cells and accelerate tumor progression due to their immunosuppressive functions. However, the mechanisms through which tumor microenvironment modulates macrophages transition are not completely elucidated. Hyaluronan (HA), a prominent component in tumor microenvironment, is a notable immunoregulator and its high level is often related to poor prognosis. Herein, we found that the number of M2 macrophages was highly correlated with HA expression in tumor tissues from breast cancer patients. Experimental data showed that breast cancer-derived HA stimulated M2-like TAM formation in a mouse model and had multiple effects on macrophages transformation in vitro, including upregulating CD204, CD206, IL-10 and TGF-β, activating STAT3 signal, and suppressing killing capacity. These data indicate that HA derived from breast cancer activates macrophages in an alternative manner. Further mechanism study revealed that HA-CD44-ERK1/2-STAT3 pathway served as an important regulator in M2-like TAM formation. Therefore, targeting TAM by abrogating HA-CD44 interaction may be a potential strategy for breast cancer immunotherapy. PMID:27471651

  18. Elastin-Derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization.

    PubMed

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D; Meisinger, Trevor M; Casale, George P; Baxter, B Timothy

    2016-06-01

    Abdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Proinflammatory M1 macrophages initially are recruited to sites of injury, but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. Abdominal aortic aneurysm tissue reveals a high M1/M2 ratio in which proinflammatory cells and their associated markers dominate. In the current study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57BL/6 mice, Ab-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and proinflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2-polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a proinflammatory environment in aortic tissue by inducing M1 polarization, and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  19. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted Intracortical microelectrodes

    PubMed Central

    Ravikumar, Madhumitha; Sunil, Smrithi; Black, James; Barkauskas, Deborah S.; Haung, Alex Y.; Miller, Robert H.; Selkirk, Stephen M.; Capadona, Jeffrey R.

    2014-01-01

    Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation. PMID:24973296

  20. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted intracortical microelectrodes.

    PubMed

    Ravikumar, Madhumitha; Sunil, Smrithi; Black, James; Barkauskas, Deborah S; Haung, Alex Y; Miller, Robert H; Selkirk, Stephen M; Capadona, Jeffrey R

    2014-09-01

    Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation. PMID:24973296

  1. Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel

    PubMed Central

    Ohradanova-Repic, Anna; Machacek, Christian; Fischer, Michael B; Stockinger, Hannes

    2016-01-01

    The mononuclear phagocyte system, consisting of monocytes, macrophages and dendritic cells (DCs), has an important role in tissue homeostasis as well as in eliciting immune responses against invading pathogens. Blood monocytes have been viewed for decades as precursors of tissue macrophages. Although the newest data show that in the steady state resident macrophages of many organs are monocyte independent, blood monocytes critically contribute to tissue macrophage and DC pools upon inflammation. To better understand the relationship between these populations and their phenotype, we isolated and differentiated human blood CD14+ monocytes in vitro into immature and mature monocyte-derived dendritic cells (MoDCs) as well as into seven different monocyte-derived macrophage subsets. We used the panel of 70 monoclonal antibodies (mAbs) submitted to the 10th Human Leukocyte Differentiation Antigen Workshop to determine the expression profiles of these 10 populations by flow cytometry. We now can compile subpanels of mAbs to differentiate the 10 monocyte/macrophage/MoDC subsets, providing the basis for novel diagnostic and therapeutic tools. PMID:26900469

  2. Unilamellar liposomes modulate secretion of tumor necrosis factor by lipopolysaccharide-stimulated macrophages.

    PubMed Central

    Brisseau, G F; Kresta, A; Schouten, D; Bohnen, J M; Shek, P N; Fok, E; Rotstein, O D

    1994-01-01

    Liposomal encapsulation of antimicrobial agents has been used to improve drug delivery, particularly against intracellular pathogens. The effect of unilamellar liposomes on macrophage activation in response to Escherichia coli lipopolysaccharide was examined. Liposomes caused a dose- and time-dependent inhibition of tumor necrosis factor release by lipopolysaccharide-treated cells. The accumulation of tumor necrosis factor mRNA transcripts was unaffected, suggesting a posttranscriptional mechanism for this effect. However, induction of macrophage procoagulant activity was unaffected by liposomes, indicating a selective rather than a global inhibition. These data suggest that liposomes used for drug delivery may modulate the host response to infection. Images PMID:7872768

  3. Bjcul, a snake venom lectin, modulates monocyte-derived macrophages to a pro-inflammatory profile in vitro.

    PubMed

    Dias-Netipanyj, M F; Boldrini-Leite, L M; Trindade, E S; Moreno-Amaral, A N; Elifio-Esposito, S

    2016-06-01

    Macrophages are cells of high plasticity and can act in different ways to ensure that the appropriate immune response remains controlled. This study shows the effects of the C-type Bothrops jararacussu venom lectin (BJcuL) on the activation of human macrophages derived from the U937 cell line. BJcuL binds on the cell surface, and this event is inhibited by its specific carbohydrate. It induced phagocytosis and production of H2O2, and expression of antigen presentation molecules. It also enhanced the production of TNF-α, GM-CSF and IL-6 by macrophages and indirectly induced T cells to an increased production of TNF-α, IFN-γ and IL-6 in the presence of LPS. Our results suggest that BJcuL can modulate macrophage functional activation towards an M1 state. PMID:26944802

  4. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  5. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development. PMID:23172918

  6. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. PMID:26666965

  7. Myeloid-Derived Suppressor Cells Impair Alveolar Macrophages through PD-1 Receptor Ligation during Pneumocystis Pneumonia

    PubMed Central

    Lei, Guang-Sheng; Zhang, Chen

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) were recently found to accumulate in the lungs during Pneumocystis pneumonia (PcP). Adoptive transfer of these cells caused lung damage in recipient mice, suggesting that MDSC accumulation is a mechanism of pathogenesis in PcP. In this study, the phagocytic activity of alveolar macrophages (AMs) was found to decrease by 40% when they were incubated with MDSCs from Pneumocystis-infected mice compared to those incubated with Gr-1+ cells from the bone marrow of uninfected mice. The expression of the PU.1 gene in AMs incubated with MDSCs also was decreased. This PU.1 downregulation was due mainly to decreased histone 3 acetylation and increased DNA methylation caused by MDSCs. MDSCs were found to express high levels of PD-L1, and alveolar macrophages (AMs) were found to express high levels of PD-1 during PcP. Furthermore, PD-1 expression in AMs from uninfected mice was increased by 18-fold when they were incubated with MDSCs compared to those incubated with Gr-1+ cells from the bone marrow of uninfected mice. The adverse effects of MDSCs on AMs were diminished when the MDSCs were pretreated with anti-PD-L1 antibody, suggesting that MDSCs disable AMs through PD-1/PD-L1 ligation during PcP. PMID:25404033

  8. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect.

    PubMed

    Jeong, Hye-yun; Kang, Wan Seok; Hong, Moon Hwa; Jeong, Hae Chang; Shin, Myun-Geun; Jeong, Myung Ho; Kim, Yong Sook; Ahn, Youngkeun

    2015-01-01

    Macrophages are actively involved in inflammatory responses during the progression of cardiac injury, including myocardial infarction (MI). A previous study showed that 5-azacytidine (5AZ), a DNA methylation inhibitor, can ameliorate cardiac injury by shifting macrophages toward an anti-inflammatory phenotype via iNOS inhibition. Here, we show that the beneficial effect of 5AZ is associated with sumoylation of interferon regulatory factor-1 (IRF1) in macrophages. IRF1 is a critical transcription factor for iNOS induction and is antagonized by IRF2. In the stimulated macrophages, IRF1 accumulated in the nucleus without degradation by 5AZ treatment. In animal study, 5AZ administration resulted in significant improvements in cardiac function and fibrosis. IRF1-expressing macrophages were more abundant in the 5AZ-treated MI group than in the PBS-treated MI group. Because sumoylated IRF1 is known to mimic IRF2, we examined the IRF1 sumoylation. Sumoylated IRF1 was resistant to degradation and significantly increased in the 5AZ-treated MI group. Collectively, 5AZ had a protective effect after MI by potentiation of IRF1 sumoylation and is suggested as a novel therapeutic intervention for cardiac repair. PMID:26510961

  9. 5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect

    PubMed Central

    Jeong, Hye-yun; Kang, Wan Seok; Hong, Moon Hwa; Jeong, Hae Chang; Shin, Myun-Geun; Jeong, Myung Ho; Kim, Yong Sook; Ahn, Youngkeun

    2015-01-01

    Macrophages are actively involved in inflammatory responses during the progression of cardiac injury, including myocardial infarction (MI). A previous study showed that 5-azacytidine (5AZ), a DNA methylation inhibitor, can ameliorate cardiac injury by shifting macrophages toward an anti-inflammatory phenotype via iNOS inhibition. Here, we show that the beneficial effect of 5AZ is associated with sumoylation of interferon regulatory factor-1 (IRF1) in macrophages. IRF1 is a critical transcription factor for iNOS induction and is antagonized by IRF2. In the stimulated macrophages, IRF1 accumulated in the nucleus without degradation by 5AZ treatment. In animal study, 5AZ administration resulted in significant improvements in cardiac function and fibrosis. IRF1-expressing macrophages were more abundant in the 5AZ-treated MI group than in the PBS-treated MI group. Because sumoylated IRF1 is known to mimic IRF2, we examined the IRF1 sumoylation. Sumoylated IRF1 was resistant to degradation and significantly increased in the 5AZ-treated MI group. Collectively, 5AZ had a protective effect after MI by potentiation of IRF1 sumoylation and is suggested as a novel therapeutic intervention for cardiac repair. PMID:26510961

  10. Viral and host factors induce macrophage activation and loss of Toll Like Receptor tolerance in chronic HCV infection

    PubMed Central

    Dolganiuc, Angela; Norkina, Oxana; Kodys, Karen; Catalano, Donna; Bakis, Gennadiy; Marshall, Christopher; Mandrekar, Pranoti; Szabo, Gyongyi

    2007-01-01

    Background&Aims Persistent inflammation contributes to progression of liver damage in chronic HCV (cHCV) infection. Repeated exposure to Toll like receptor (TLR) ligands results in tolerance, a protective mechanism aimed at limiting inflammation. Methods Monocytes/macrophages were repeatedly stimulated via pro-inflammatory cytokine-inducing TLRs and evaluated for activation markers. Results Unlike monocytes (Mo) of controls or patients with non-alcoholic steatohepatitis, the Mo of cHCV patients were hyper-responsive and failed to show homo- or hetero-tolerance to TLR ligands, manifested by elevated TNFα production. Serum levels of IFNγ, endotoxin (TLR4 ligand) and HCV core protein (TLR2 ligand) were elevated in cHCV patients suggesting potential mechanisms for in vivo monocyte pre-activation. Treatment of normal monocytes with IFNγ resulted in loss of tolerance to LPS or HCV core protein. Further, we found increased levels of MyD88-IRAK1 complexes and NFκB activity both in monocytes of cHCV patients and in normal monocytes that lost TLR tolerance after IFNγ+LPS pretreatment. In vitro differentiation of TLR tolerant cHCV monocytes into macrophages restored their capacity to exhibit TLR tolerance to LPS and HCV core protein and this could be reversed by administration of IFNγ. cHCV patients exhibited increased TNFα in the circulation and in the liver. In cHCV livers we found Kupffer cell/macrophage activation indicated by increased CD163 and CD33 expression. Conclusions We identified that host-derived factors (IFNγ and endotoxin) and viral factors (HCV core protein) act in tandem to induce and maintain monocyte/macrophage activation, thus favoring persistent inflammation in patients with cHCV infection. PMID:17916356

  11. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration

    PubMed Central

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-01

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases. PMID:24481445

  12. uPAR Induces Expression of Transforming Growth Factor β and Interleukin-4 in Cancer Cells to Promote Tumor-Permissive Conditioning of Macrophages

    PubMed Central

    Hu, Jingjing; Jo, Minji; Eastman, Boryana M.; Gilder, Andrew S.; Bui, Jack D.; Gonias, Steven L.

    2015-01-01

    Cancer cells condition macrophages and other inflammatory cells in the tumor microenvironment so that these cells are more permissive for cancer growth and metastasis. Conditioning of inflammatory cells reflects, at least in part, soluble mediators (such as transforming growth factor β and IL-4) that are released by cancer cells and alter the phenotype of cells of the innate immune system. Signaling pathways in cancer cells that potentiate this activity are incompletely understood. The urokinase receptor (uPAR) is a cell-signaling receptor known to promote cancer cell survival, proliferation, metastasis, and cancer stem cell–like properties. The present findings show that uPAR expression in diverse cancer cells, including breast cancer, pancreatic cancer, and glioblastoma cells, promotes the ability of these cells to condition co-cultured bone marrow–derived macrophages so that the macrophages express significantly increased levels of arginase 1, a biomarker of the alternatively activated M2 macrophage phenotype. Expression of transforming growth factor β was substantially increased in uPAR-expressing cancer cells via a mechanism that requires uPA-initiated cell signaling. uPAR also controlled expression of IL-4 in cancer cells via a mechanism that involves activation of ERK1/2. The ability of uPAR to induce expression of factors that condition macrophages in the tumor microenvironment may constitute an important mechanism by which uPAR promotes cancer progression. PMID:25310970

  13. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. PMID:26129676

  14. Equine monocyte-derived macrophage cultures and their applications for infectivity and neutralization studies of equine infectious anemia virus.

    PubMed

    Raabe, M R; Issel, C J; Montelaro, R C

    1998-03-01

    Equine infectious anemia virus (EIAV) has been shown to infect cells of monocyte/macrophage lineage. These primary cells are intrinsically difficult to obtain, to purify and to culture in vitro for extended periods of time. As a result, most in vitro studies concerning this lentivirus make use of primary equine fibroblasts or transformed canine or feline cell lines. We describe methods that yield reproducibly pure cultures of equine blood monocytes from peripheral blood mononuclear cells. The in vitro differentiation of these cells into mature equine macrophage was verified using various cytochemical staining methods. The equine monocyte-derived macrophage (MDM) cultures were found to replicate cell-adapted and field strains of EIAV more efficiently than cultures of fully differentiated equine splenic macrophage. Having established reproducible and fully differentiated cultures of equine macrophage, in vitro assays of virus infectivity and serum neutralization were developed using the in vivo target cell of EIAV. These procedures, while developed for the EIAV system, should be equally useful for in vitro cultures of other macrophage-tropic pathogens of horses. PMID:9628225

  15. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  16. Macrophage Migration Inhibitory Factor (MIF): A Key Player in Protozoan Infections

    PubMed Central

    de Dios Rosado, Juan; Rodriguez-Sosa, Miriam

    2011-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by the pituitary gland and multiple cell types, including macrophages (Mø), dendritic cells (DC) and T-cells. Upon releases MIF modulates the expression of several inflammatory molecules, such as TNF-α, nitric oxide and cyclooxygenase 2 (COX-2). These important MIF characteristics have prompted investigators to study its role in parasite infections. Several reports have demonstrated that MIF plays either a protective or deleterious role in the immune response to different pathogens. Here, we review the role of MIF in the host defense response to some important protozoan infections. PMID:22110378

  17. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages.

    PubMed Central

    Nishizawa, M; Nagata, S

    1990-01-01

    Granulocyte colony-stimulating factor (G-CSF) plays an essential role in granulopoiesis during bacterial infection. Macrophages produce G-CSF in response to bacterial endotoxins such as lipopolysaccharide (LPS). To elucidate the mechanism of the induction of G-CSF gene in macrophages or macrophage-monocytes, we have examined regulatory cis elements in the promoter of mouse G-CSF gene. Analyses of linker-scanning and internal deletion mutants of the G-CSF promoter by the chloramphenicol acetyltransferase assay have indicated that at least three regulatory elements are indispensable for the LPS-induced expression of the G-CSF gene in macrophages. When one of the three elements was reiterated and placed upstream of the TATA box of the G-CSF promoter, it mediated inducibility as a tissue-specific and orientation-independent enhancer. Although this element contains a conserved NF-kappa B-like binding site, the gel retardation assay and DNA footprint analysis with nuclear extracts from macrophage cell lines demonstrated that nuclear proteins bind to the DNA sequence downstream of the NF-kappa B-like element, but not to the conserved element itself. The DNA sequence of the binding site was found to have some similarities to the LPS-responsive element which was recently identified in the promoter of the mouse class II major histocompatibility gene. Images PMID:1691438

  18. Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia

    PubMed Central

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth; Biswas, Subhra K.; Harris, Adrian L.; Johnson, Randall S.; Imityaz, Hongxia Z.; Simon, M. Celeste; Fredlund, Erik; Greten, Florian; Rius, Jordi; Lewis, Claire E.

    2010-01-01

    Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and malignant tumors. Macrophages accumulate in these sites and upregulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18h. For example, they were seen to upregulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, VEGFA, interleukins 1β and 8, adrenomedullin, CXCR4 and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the NF-κB signalling pathway. We then used both genetic and pharmacological methods to manipulate the levels of HIFs 1α and 2α or NF-κB in primary macrophages in order to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIFs 1 and 2, but not NF-κB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues like malignant tumors. PMID:19454749

  19. Granulocyte-macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness.

    PubMed

    Ruef, C; Coleman, D L

    1990-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 23-kDa glycoprotein with remarkably diverse effects on immune and nonimmune cells. GM-CSF induces differentiation of granulocyte, macrophage, and eosinophil precursor cells. Proliferation of monocyte-macrophages, T lymphocytes, keratinocytes, and endothelial cells is also stimulated by GM-CSF. In addition, GM-CSF alters the functional properties of mature granulocytes, macrophages, eosinophils, and basophils. GM-CSF is produced by T lymphocytes, macrophages, and several cell types in extramedullary sites, where it may act in a paracrine manner to regulate the local response to antigenic challenge. Clinical trials of GM-CSF have been conducted in patients with AIDS, aplastic anemia, myelodysplastic syndromes, and sarcoma and following bone marrow transplantation and accidental radiation exposure. GM-CSF significantly increased circulating numbers of several myeloid cells and produced dose-dependent toxicity consisting primarily of myalgias, fever, fluid retention, and serosal effusions. Additional studies are needed to define the role of GM-CSF in treatment of patients with qualitative and quantitative dysfunction of immune cells. PMID:2405468

  20. Adiponectin Regulates Vascular Endothelial Growth Factor-C Expression in Macrophages via Syk-ERK Pathway

    PubMed Central

    Hu, Di; Fukuhara, Atsunori; Miyata, Yugo; Yokoyama, Chieko; Otsuki, Michio; Kihara, Shinji; Shimomura, Iichiro

    2013-01-01

    Adiponectin is exclusively expressed in adipose tissues and exhibits protective effects against cardiovascular and metabolic diseases. It enhances AMP-activated kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα) signaling in the liver and skeletal muscles, however, its signaling pathways in macrophages remain to be elucidated. Here, we show that adiponectin upregulated the expression of vascular endothelial growth factor (VEGF)-C, and induced phosphorylation of extracellular signal-regulated kinase (ERK) in macrophages. Inhibition of Syk abrogated adiponectin-induced VEGF-C expression and ERK phosphorylation. Furthermore, inhibition of ERK blocked the induction of VEGF-C gene. Inhibition of Syk, but not that of ERK, abrogated adiponectin-induced expression of cyclooxygenase (COX)-2, tissue inhibitor of metalloproteinase (TIMP)-1, and interleukin (IL)-6. These results indicate that adiponectin regulates VEGF-C expression via Syk-ERK pathway in macrophages. PMID:23424645

  1. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    PubMed

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  2. Macrophage Phenotype as a Predictor of Constructive Remodeling following the Implantation of Biologically Derived Surgical Mesh Materials

    PubMed Central

    Brown, Bryan N.; Londono, Ricardo; Tottey, Stephen; Zhang, Li; Kukla, Kathryn A.; Wolf, Matthew T.; Daly, Kerry A.; Reing, Janet E.; Badylak, Stephen F.

    2015-01-01

    Macrophages have been classified as having plastic phenotypes which exist within a spectrum between M1 (classically activated; pro-inflammatory) and M2 (alternatively activated; regulatory, homeostatic). To date, the effects of polarization towards a predominantly M1 or M2 phenotype have been studied largely in the context of response to pathogen or cancer. Recently, M1 and M2 macrophages have been shown to play distinct roles in tissue remodeling following injury. In the present study, the M1/M2 paradigm was utilized to examine the role of macrophages in the remodeling process following implantation of 14 biologically derived surgical mesh materials in the rat abdominal wall. In situ polarization of macrophages responding to the materials was examined and correlated to a quantitative measure of the observed tissue remodeling response to determine whether macrophage polarization is an accurate predictor of the ability of a biologic scaffold to promote constructive tissue remodeling. Additionally the ability of M1 and M2 macrophages to differentially recruit progenitor-like cells in vitro, which are commonly observed to participate in the remodeling of those ECM scaffolds which have a positive clinical outcome, was examined as a possible mechanism underlying the differences in the observed remodeling responses. The results of the present study show that there is a strong correlation between the early macrophage response to implanted materials and the outcome of tissue remodeling. Increased numbers of M2 macrophages and higher ratios of M2:M1 macrophages within the site of remodeling at 14 days were associated with more positive remodeling outcomes (r2=0.525–0.686, p<0.05). Further, the results of the present study suggest that the constructive remodeling outcome may be due to the recruitment and survival of different cell populations to the sites of remodeling associated with materials that elicit an M1 versus M2 response. Both M2 and M0 macrophage conditioned

  3. Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.

    PubMed

    Hagemeyer, Nora; Kierdorf, Katrin; Frenzel, Kathrin; Xue, Jia; Ringelhan, Marc; Abdullah, Zeinab; Godin, Isabelle; Wieghofer, Peter; Costa Jordão, Marta Joana; Ulas, Thomas; Yorgancioglu, Gülden; Rosenbauer, Frank; Knolle, Percy A; Heikenwalder, Mathias; Schultze, Joachim L; Prinz, Marco

    2016-08-15

    Recent studies have shown that tissue macrophages (MΦ) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize tissues before birth. Further studies have proposed that developmentally distinct tissue MΦ can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we took advantage of an inducible fate-mapping system that facilitated the identification of CD45(+)c-kit(-)CX3CR1(+)F4/80(+) (A2) progenitors of the YS as the source of F4/80(hi) but not CD11b(hi) MΦ. Large-scale transcriptional profiling of MΦ precursors from the YS stage to adulthood allowed for building computational models for F4/80(hi) tissue macrophages being direct descendants of A2 progenitors. We further identified a distinct molecular signature of F4/80(hi) and CD11b(hi) MΦ and found that Irf8 was vital for MΦ maturation. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MΦ. PMID:27412700

  4. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities.

    PubMed

    Bain, Calum C; Hawley, Catherine A; Garner, Hannah; Scott, Charlotte L; Schridde, Anika; Steers, Nicholas J; Mack, Matthias; Joshi, Anagha; Guilliams, Martin; Mowat, Allan Mc I; Geissmann, Frederic; Jenkins, Stephen J

    2016-01-01

    Peritoneal macrophages are one of the most studied macrophage populations in the body, yet the composition, developmental origin and mechanisms governing the maintenance of this compartment are controversial. Here we show resident F4/80(hi)GATA6(+) macrophages are long-lived, undergo non-stochastic self-renewal and retain cells of embryonic origin for at least 4 months in mice. However, Ly6C(+) monocytes constitutively enter the peritoneal cavity in a CCR2-dependent manner, where they mature into short-lived F4/80(lo)MHCII(+) cells that act, in part, as precursors of F4/80(hi)GATA6(+) macrophages. Notably, monocyte-derived F4/80(hi) macrophages eventually displace the embryonic population with age in a process that is highly gender dependent and not due to proliferative exhaustion of the incumbent embryonic population, despite the greater proliferative activity of newly recruited cells. Furthermore, although monocyte-derived cells acquire key characteristics of the embryonic population, expression of Tim4 was impaired, leading to cumulative changes in the population with age. PMID:27292029

  5. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities

    PubMed Central

    Bain, Calum C.; Hawley, Catherine A.; Garner, Hannah; Scott, Charlotte L.; Schridde, Anika; Steers, Nicholas J.; Mack, Matthias; Joshi, Anagha; Guilliams, Martin; Mowat, Allan Mc I.; Geissmann, Frederic; Jenkins, Stephen J.

    2016-01-01

    Peritoneal macrophages are one of the most studied macrophage populations in the body, yet the composition, developmental origin and mechanisms governing the maintenance of this compartment are controversial. Here we show resident F4/80hiGATA6+ macrophages are long-lived, undergo non-stochastic self-renewal and retain cells of embryonic origin for at least 4 months in mice. However, Ly6C+ monocytes constitutively enter the peritoneal cavity in a CCR2-dependent manner, where they mature into short-lived F4/80loMHCII+ cells that act, in part, as precursors of F4/80hiGATA6+ macrophages. Notably, monocyte-derived F4/80hi macrophages eventually displace the embryonic population with age in a process that is highly gender dependent and not due to proliferative exhaustion of the incumbent embryonic population, despite the greater proliferative activity of newly recruited cells. Furthermore, although monocyte-derived cells acquire key characteristics of the embryonic population, expression of Tim4 was impaired, leading to cumulative changes in the population with age. PMID:27292029

  6. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    PubMed Central

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  7. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  8. Pasteurella haemolytica A1-Derived Leukotoxin and Endotoxin Induce Intracellular Calcium Elevation in Bovine Alveolar Macrophages by Different Signaling Pathways

    PubMed Central

    Hsuan, S. L.; Kannan, M. S.; Jeyaseelan, S.; Prakash, Y. S.; Sieck, G. C.; Maheswaran, S. K.

    1998-01-01

    Leukotoxin and endotoxin derived from Pasteurella haemolytica serotype 1 are the primary virulence factors contributing to the pathogenesis of lung injury in bovine pneumonic pasteurellosis. Activation of bovine alveolar macrophages with endotoxin or leukotoxin results in the induction of cytokine gene expression, with different kinetics (H. S. Yoo, S. K. Maheswaran, G. Lin, E. L. Townsend, and T. R. Ames, Infect. Immun. 63:381–388, 1995; H. S. Yoo, B. S. Rajagopal, S. K. Maheswaran, and T. R. Ames, Microb. Pathog. 18:237–252, 1995). Furthermore, extracellular Ca2+ is required for leukotoxin-induced cytokine gene expression. However, the involvement of Ca2+ in endotoxin effects and the precise signaling mechanisms in the regulation of intracellular Ca2+ by leukotoxin and endotoxin are not known. In fura-2-acetoxymethyl ester-loaded alveolar macrophages, intracellular Ca2+ regulation by leukotoxin and endotoxin was studied by video fluorescence microscopy. Leukotoxin induced a sustained elevation of intracellular Ca2+ in a concentration-dependent fashion by influx of extracellular Ca2+ through voltage-gated channels. In the presence of fetal bovine serum, endotoxin elevated intracellular Ca2+ even in the absence of extracellular Ca2+. Leukotoxin-induced intracellular Ca2+ elevation was inhibited by pertussis toxin, inhibitors of phospholipases A2 and C, and the arachidonic acid analog 5,8,11,14-eicosatetraynoic acid. Intracellular Ca2+ elevation by endotoxin was inhibited by inhibitors of phospholipase C and protein tyrosine kinase, but not by pertussis toxin, or the arachidonic acid analog. To the best of our knowledge, this is the first report of Ca2+ signaling by leukotoxin through a G-protein-coupled mechanism involving activation of phospholipases A2 and C and release of arachidonic acid in bovine alveolar macrophages. Ca2+ signaling by endotoxin, on the other hand, involves activation of phospholipase C and requires tyrosine phosphorylation. The

  9. Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor

    PubMed Central

    Gow, Deborah J; Sauter, Kristin A; Pridans, Clare; Moffat, Lindsey; Sehgal, Anuj; Stutchfield, Ben M; Raza, Sobia; Beard, Philippa M; Tsai, Yi Ting; Bainbridge, Graeme; Boner, Pamela L; Fici, Greg; Garcia-Tapia, David; Martin, Roger A; Oliphant, Theodore; Shelly, John A; Tiwari, Raksha; Wilson, Thomas L; Smith, Lee B; Mabbott, Neil A; Hume, David A

    2014-01-01

    We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule. PMID:24962162

  10. Synthesis of antimony complexes of yeast mannan and mannan derivatives and their effect on Leishmania-infected macrophages.

    PubMed Central

    Cantos, G; Barbieri, C L; Iacomini, M; Gorin, P A; Travassos, L R

    1993-01-01

    Antimony(Sb)-yeast mannan complexes were synthesized as a strategy to introduce Sb into macrophages infected with Leishmania amastigotes. The complexes were taken up by endocytosis after specific recognition by alpha-D-mannosyl receptors on the macrophage membrane. About 90% of the intracellular parasites were destroyed by Sb-mannan in vitro, whereas the corresponding Sb concentration used as the pentavalent antimonial drug glucantime destroyed about 60% of the amastigotes. None of the Sb complexes prepared with mannan acid or basic derivatives was as effective as the simple Sb-mannan complex in clearing macrophage infection by Leishmania (L) amazonensis. The leishmanicidal effect of Sb-mannan was also demonstrated in vivo with infected hamsters. The alternative use of Sb-mannan complex in the treatment of human leishmaniasis is envisaged on the basis of parasite-killing efficiency and the use of a low antimony dose. Images Figure 1 PMID:8424752

  11. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    PubMed

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  12. Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1

    SciTech Connect

    Mizoguchi, Izuru; Ooe, Yoshihiro; Hoshino, Shigeki; Shimura, Mari; Kasahara, Tadashi; Kano, Shigeyuki; Ohta, Toshiko; Takaku, Fumimaro; Nakayama, Yasuhide; Ishizaka, Yukihito . E-mail: zakay@ri.imcj.go.jp

    2005-12-23

    Vpr, an accessory gene product of human immunodeficiency virus type-1, is thought to transport a viral DNA from the cytoplasm to the nucleus in resting macrophages. Previously, we reported that a peptide encompassing amino acids 52-78 of Vpr (C45D18) promotes the nuclear trafficking of recombinant proteins that are conjugated with C45D18. Here, we present evidence that C45D18, when conjugated with a six-branched cationic polymer of poly(N,N-dimethylaminopropylacrylamide)-block-oligo(4-aminostyrene) (SV: star vector), facilitates gene expression in resting macrophages. Although there was no difference between SV alone and C45D18-SV with respect to gene transduction into growing cells, C45D18-SV resulted in more than 40-fold greater expression of the exogenous gene upon transduction into chemically differentiated macrophages and human quiescent monocyte-derived macrophages. The data suggest that C45D18 contributes to improving the ability of a non-viral vector to transduce macrophages with exogenous genes and we discuss its further application.

  13. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages.

    PubMed Central

    Reddy, V Y; Zhang, Q Y; Weiss, S J

    1995-01-01

    Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7731994

  14. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation.

    PubMed

    Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas; Mony, Sridevi; Languino, Lucia R; McCaffrey, Judith C; Hockstein, Neil; Guarino, Michael; Masters, Gregory; Penman, Emily; Denstman, Fred; Xu, Xiaowei; Altieri, Dario C; Du, Hong; Yan, Cong; Gabrilovich, Dmitry I

    2016-02-16

    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy. PMID:26885857

  15. Immunocytochemical Localization of Latent Transforming Growth Factor-B1 Activation by Stimulated Macrophages

    SciTech Connect

    Chong, Hyonkyong; Vodovotz, Yoram; Cox, G.W.; Barcellos-Hoff, M.H.

    1998-09-22

    Transforming growth factor-{beta}1 (TGF-{beta}) is secreted in a latent form consisting of mature TGF-{beta} noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-{beta} from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-{beta} action. We have identified two events associated with latent TGF-{beta} (LTGF-{beta}) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-{beta} concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-{gamma} and lipopolysaccharide reportedly activate LTGF-{beta} via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-{beta} activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-{beta} epitopes. The induction of TGF-{beta} immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-{beta} activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-{beta} and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-{beta} activation provides an important tool for studies of its regulation.

  16. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  17. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion.

    PubMed

    Pamir, Nathalie; Liu, Ning-Chun; Irwin, Angela; Becker, Lev; Peng, YuFeng; Ronsein, Graziella E; Bornfeldt, Karin E; Duffield, Jeremy S; Heinecke, Jay W

    2015-06-01

    The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion. PMID:25931125

  18. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  19. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway

    PubMed Central

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  20. Myelin-Derived Lipids Modulate Macrophage Activity by Liver X Receptor Activation

    PubMed Central

    Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J. M.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J. A.

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  1. Myelin-derived lipids modulate macrophage activity by liver X receptor activation.

    PubMed

    Bogie, Jeroen F J; Timmermans, Silke; Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J M; Gustafsson, Jan-Åke; Steffensen, Knut R; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  2. Macrophage-derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways.

    PubMed

    Kim, Hyun-A; Seo, Goo-Young; Kim, Pyeung-Hyeun

    2011-03-01

    BAFF is expressed primarily by macrophages and DCs. BAFF stimulates the differentiation and survival of B cells and induces Ig production. We have demonstrated previously that murine macrophages treated with TGF-β1 or IFN-γ express membrane-bound and soluble forms of BAFF. The ability of these two forms of BAFF to induce expression of AID, which plays a critical role in Ig CSR in B cells, was investigated. Both forms of BAFF, derived from macrophages activated by IFN-γ or TGF-β1, can increase AID expression. Subsequent analysis of BAFF signaling suggested that BAFF induces AID through BCMA, a BAFF-receptor, and p38MAPK and CREB act as intermediates in AID expression. In addition, JNK and AP-1 have similar activities. Our findings suggest that macrophage-derived BAFF stimulates B cells to express AID through BCMA and at least two different pathways, including the p38MAPK/CREB and the JNK/AP-1 pathways. PMID:21169521

  3. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis.

    PubMed

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-07-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  4. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis

    PubMed Central

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  5. Immune Enhancing Activity of β-(1,3)-Glucan Isolated from Genus Agrobacterium in Bone-Marrow Derived Macrophages and Mice Splenocytes.

    PubMed

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-01-01

    An effective method for activating macrophages and deriving a Th1 immune response could be used to improve the defenses of hosts. In this study, we investigated the immunomodulation effect and the related signaling mechanism of [Formula: see text]-(1,3)-glucan, isolated from the Agrobacterium species. Here, we found that [Formula: see text]-(1,3)-glucan predominantly induced the tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], IL-6, IL-12p70, and nitric oxide, which was dependent on mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-[Formula: see text]B signaling. Additionally, [Formula: see text]-(1,3)-glucan treatment significantly up-regulated the expression of the co-stimulatory molecules CD80 and CD86, and also significantly increased the expression of iNOS and Dectin-1, which is a transmembrane protein that binds [Formula: see text]-glucan and associates with macrophage activation. Importantly, the splenic T cells co-cultured with [Formula: see text]-(1,3)-glucan-treated macrophages produced the a Th1 cytokine profile that includes high levels of IFN-[Formula: see text], but not IL-4 (Th2 cytokine), indicating that [Formula: see text]-(1,3)-glucan contributes to Th1 polarization of the immune response. Taken together, our results suggest that [Formula: see text]-(1,3)-glucan isolated from Agrobacterium species can induce macrophage activation through the MAPK and NF-[Formula: see text]B signaling pathway, as well as Th1 polarization. PMID:27430908

  6. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair

    PubMed Central

    London, Anat; Cohen, Merav; Schwartz, Michal

    2013-01-01

    Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair. PMID:23596391

  7. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    PubMed

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation. PMID:26101328

  8. Dual transcriptome sequencing reveals resistance of TLR4 ligand-activated bone marrow-derived macrophages to inflammation mediated by the BET inhibitor JQ1

    PubMed Central

    Das, Amitabh; Chai, Jin Choul; Yang, Chul-su; Lee, Young Seek; Das, Nando Dulal; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders. PMID:26582142

  9. Infection of porcine bone marrow-derived macrophages by porcine respiratory and reproductive syndrome virus impairs phagosomal maturation.

    PubMed

    Chaudhuri, Sibapriya; McKenna, Neil; Balce, Dale R; Yates, Robin M

    2016-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense, ssRNA virus of the genus Arterivirus, is a devastating disease of swine worldwide. Key early targets of PRRSV infection in pigs include professional phagocytes in the lung, such as alveolar and interstitial macrophages and dendritic cells, the dysfunction of which is believed to be responsible for much of the associated mortality. In order to study the effect of virus infection on phagocyte function, the development of a robust, reproducible model would be advantageous. Given the limitations of current models, we set out to develop a porcine bone marrow-derived macrophage (PBMMΦ) cell model to study phagosomal maturation and function during PRRSV infection. Derivation of PBMMΦs from marrow using cultured L929 fibroblast supernatant produced a homogeneous population of cells that exhibited macrophage-like morphology and proficiency in Fc-receptor-mediated phagocytosis and phagosomal maturation. PBMMΦs were permissive to PRRSV infection, resulting in a productive infection that peaked at 24 h. Assessment of the effect of PRRSV infection on the properties of phagosomal maturation in PBMMΦs revealed a significant decrease in phagosomal proteolysis and lowered production of reactive oxygen species, but no change in PBMMΦ viability, phagocytosis or the ability of phagosomes to acidify. In this study, we present a new model to investigate PRRSV infection of phagocytes, which demonstrates a significant effect on phagosomal maturation with the associated implications on proper macrophage function. This model can also be used to study the effect on the phagosomal microenvironment of infection by other viruses targeting porcine macrophages. PMID:26702996

  10. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection

    PubMed Central

    Shiloh, Michael U.; Manzanillo, Paolo; Cox, Jeffery S.

    2010-01-01

    Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistance in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment. PMID:18474359