Science.gov

Sample records for macrophage il-10 production

  1. LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms

    PubMed Central

    Chanteux, Hugues; Guisset, Amélie C; Pilette, Charles; Sibille, Yves

    2007-01-01

    Background IL-10 is a cytokine mainly produced by macrophages that plays key roles in tolerance to inhaled antigens and in lung homeostasis. Its regulation in alveolar macrophages (HAM), the resident lung phagocytes, remains however unknown. Methods The present study investigated the role of intracellular signalling and transcription factors controlling the production of IL-10 in LPS-activated HAM from normal nonsmoking volunteers. Results LPS (1–1000 pg/ml) induced in vitro IL-10 production by HAM, both at mRNA and protein levels. LPS also activated the phosphorylation of ERK, p38 and JNK MAPkinases (immunoblots) and Sp-1 nuclear activity (EMSA). Selective inhibitors of MAPKinases (respectively PD98059, SB203580 and SP600125) and of Sp-1 signaling (mithramycin) decreased IL-10 expression in HAM. In addition, whilst not affecting IL-10 mRNA degradation, the three MAPKinase inhibitors completely abolished Sp-1 activation by LPS in HAM. Conclusion These results demonstrate for the first time that expression of IL-10 in lung macrophages stimulated by LPS depends on the concomitant activation of ERK, p38 and JNK MAPKinases, which control downstream signalling to Sp-1 transcription factor. This study further points to Sp-1 as a key signalling pathway for IL-10 expression in the lung. PMID:17916230

  2. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    PubMed Central

    Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D

    2012-01-01

    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.

  3. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells

    PubMed Central

    Ma, Xiaojing; Yan, Wenjun; Zheng, Hua; Du, Qinglin; Zhang, Lixing; Ban, Yi; Li, Na; Wei, Fang

    2015-01-01

    Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12. PMID:26918147

  4. SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages.

    PubMed

    Okenwa, Chinonso; Kumar, Ashok; Rego, Dorothy; Konarski, Yulia; Nilchi, Ladan; Wright, Kathryn; Kozlowski, Maya

    2013-09-01

    The role of tyrosine phosphatase Src homology region 2 domain-containing phosphatase (SHP)-1 in LPS-activated cytokine production and inflammation was investigated by determining TNF-α and IL-10 production in splenic macrophages employing SHP-1-null (me/me) mouse model. LPS-stimulated me/me splenic macrophages secreted significantly less IL-10 with concomitantly elevated levels of TNF-α compared with wild-type (WT) macrophages irrespective of LPS dose and duration of stimulation. IL-10 significantly inhibited LPS-induced TNF-α production in both me/me and WT macrophages. The critical requirement for SHP-1 in regulating LPS-induced IL-10 and TNF-α production was confirmed by interfering with SHP-1 expression in WT macrophages and by reconstituting me/me macrophages with the SHP-1 gene. To delineate the role of SHP-1 in positive regulation of LPS-induced IL-10 production, signaling proteins representing SHP-1 targets were examined. The results reveal that tyrosine kinases Src and proline-rich tyrosine kinase 2 (Pyk2) regulate SHP-1-dependent LPS-induced IL-10 production and infer that optimal LPS-induced IL-10 production requires an assembly of a protein complex consisting of SHP-1-Pyk2-Src proteins. Moreover, LPS-induced IL-10 production also requires activation of the p38 MAPK independent of SHP-1 function. Overall, to our knowledge our results show for the first time that SHP-1 acts as a positive regulator of LPS-induced IL-10 production in splenic macrophages through two distinct and independent SHP-1-Pyk2-Src and p38 MAPK pathways. PMID:23904162

  5. Effects of β-endorphin on the production of reactive oxygen species, IL-1β, Tnf-Α, and IL-10 by murine peritoneal macrophages in vivo.

    PubMed

    Gein, S V; Baeva, T A; Nebogatikov, V O

    2016-07-01

    It has been demonstrated that β-endorphin stimulates the zymosan-induced secretion of reactive oxygen species and suppresses the spontaneous production of IL-1β and IL-10 by murine peritoneal macrophages in vivo. PMID:27595832

  6. Borrelia burgdorferi Elicited-IL-10 Suppresses the Production of Inflammatory Mediators, Phagocytosis, and Expression of Co-Stimulatory Receptors by Murine Macrophages and/or Dendritic Cells

    PubMed Central

    Wooten, R. Mark

    2013-01-01

    Borrelia burgdorferi (Bb) is a tick-borne spirochete that is the causative agent for Lyme disease. Our previous studies indicate that virulent Bb can potently enhance IL-10 production by macrophages (MØs) and that blocking IL-10 production significantly enhances bacterial clearance. We hypothesize that skin-associated APC types, such as MØs and dendritic cells (DCs) are potent producers of IL-10 in response to Bb, which may act in autocrine fashion to suppress APC responses critical for efficient Bb clearance. Our goal is to delineate which APC immune functions are dysregulated by Bb-elicited IL-10 using a murine model of Lyme disease. Our in vitro studies indicated that both APCs rapidly produce IL-10 upon exposure to Bb, that these levels inversely correlate with the production of many Lyme-relevant proinflammatory cytokines and chemokines, and that APCs derived from IL-10-/- mice produced greater amounts of these proinflammatory mediators than wild-type APCs. Phagocytosis assays determined that Bb-elicited IL-10 levels can diminish Bb uptake and trafficking by MØs, suppresses ROS production, but does not affect NO production; Bb-elicited IL-10 had little effect on phagocytosis, ROS, and NO production by DCs. In general, Bb exposure caused little-to-no upregulation of several critical surface co-stimulatory markers by MØs and DCs, however eliminating Bb-elicited IL-10 allowed a significant upregulation in many of these co-stimulatory receptors. These data indicate that IL-10 elicited from Bb-stimulated MØs and DCs results in decreased production of proinflammatory mediators and co-stimulatory molecules, and suppress phagocytosis-associated events that are important for mediating both innate and adaptive immune responses by APCs. PMID:24367705

  7. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. PMID:26729812

  8. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    SciTech Connect

    Matsumura, Takayuki; Oyama, Masaaki; Kozuka-Hata, Hiroko; Ishikawa, Kosuke; Inoue, Takafumi; Muta, Tatsushi; Semba, Kentaro; Inoue, Jun-ichiro

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  9. Effects of secretory leucocyte protease inhibitor on the production of the anti-inflammatory cytokines, IL-10 and transforming growth factor-beta (TGF-β), by lipopolysaccharide-stimulated macrophages

    PubMed Central

    Sano, C; Shimizu, T; Sato, K; Kawauchi, H; Tomioka, H

    2000-01-01

    We studied the effects of secretory leucocyte protease inhibitor (SLPI) on the production of the anti-inflammatory cytokines, IL-10 and TGF-β, by lipopolysaccharide (LPS)-stimulated macrophages, using half-sized SLPI (1/2 SLPI) containing the C-terminal domain (Arg58-Ala107). ELISA testing of macrophage culture fluids showed a temporary production of IL-10 by the macrophages in the early phase (24 h) after LPS stimulation at low (1 ng/ml) or high (10 μg/ml) concentrations. On the other hand, TGF-β production was initiated after day 3 and progressively increased. 1/2 SLPI significantly increased IL-10 and TGF-β production by macrophages in response to a low dose as well as a high dose of LPS. Reverse transcription-polymerase chain reaction analysis showed that 1/2 SLPI caused a significant increase in the expression of both IL-10 and TGF-β mRNAs by LPS-stimulated macrophages. Thus, although the profile of macrophage TGF-β production by LPS-stimulated macrophages is markedly different from that of their IL-10 production, SLPI causes an up-regulation of the production of these anti-inflammatory cytokines by LPS-stimulated macrophages. PMID:10886242

  10. IL-10 producing intestinal macrophages prevent excessive anti-bacterial innate immunity by limiting IL-23 synthesis

    PubMed Central

    Krause, Petra; Morris, Venetia; Greenbaum, Jason A.; Park, Yoon; Bjoerheden, Unni; Mikulski, Zbigniew; Muffley, Tracy; Shui, Jr-Wen; Kim, Gisen; Cheroutre, Hilde; Liu, Yun- Cai; Peters, Bjoern; Kronenberg, Mitchell; Murai, Masako

    2015-01-01

    Innate immune responses are regulated in the intestine to prevent excessive inflammation. Here we show that a subset of mouse colonic macrophages constitutively produce the anti-inflammatory cytokine IL-10. In mice infected with Citrobacter rodentium, a model for enteropathogenic Escherichia coli infection in humans, these macrophages are required to prevent intestinal pathology. IL-23 is significantly increased in infected mice with a myeloid cell-specific deletion of IL-10, and the addition of IL-10 reduces IL-23 production by intestinal macrophages. Furthermore, blockade of IL-23 leads to reduced mortality in the context of macrophage IL-10 deficiency. Transcriptome and other analyses indicate that IL-10-expressing macrophages receive an autocrine IL-10 signal. Interestingly, only transfer of the IL-10 positive macrophages could rescue IL-10 deficient infected mice. Therefore, these data indicate a pivotal role for intestinal macrophages that constitutively produce IL-10, in controlling excessive innate immune activation and preventing tissue damage after an acute bacterial infection. PMID:25959063

  11. Macrophage Polarization in IL-10 Treatment of Particle-Induced Inflammation and Osteolysis.

    PubMed

    Jiang, Jianhao; Jia, Tanghong; Gong, Weiming; Ning, Bin; Wooley, Paul H; Yang, Shang-You

    2016-01-01

    This study investigated the therapeutic influence and potential mechanism of IL-10 in ameliorating orthopedic debris particle-induced inflammation and osteolysis. A murine air pouch with bone implantation and polyethylene particles was also used to evaluate the therapeutic effects of IL-10. The data suggested that the particle challenges significantly promoted macrophage activation and osteoclastogenesis, with dramatically increased macrophage infiltration into the pouch membranes and elevated tartrate-resistant acid phosphatase-positive cell deposition. Immunohistochemical stains revealed a significantly higher ratio of induced nitric oxide synthase-expressing cells in the particle-challenged group; treatment with IL-10 resulted in marked switching to CD163(+) cells. Also, IL-10 effectively reduced tartrate-resistant acid phosphatase-positive stained cells in the pouch membranes, and minimized the bone mineral density loss compared with untreated samples. Real-time PCR and Western blot examination indicated that IL-10 treatment significantly diminished the particle-induced IL-1β expression but promoted expression of CD163, transforming growth factor-β1, and CCR2. Furthermore, IL-10 significantly inhibited the ultra-high-molecular-weight polyethylene particle-elevated phospho-STAT1 and phospho-NF-κB p65 productions, and promoted phospho-STAT3 expression. Overall, the data indicate the pivotal effects of IL-10 on macrophage polarization. The effects of IL-10 in ameliorating local inflammation and osteolysis may be associated with macrophage polarization through the up-regulation of the Janus activating kinase/STAT3 signaling pathway, and the down-regulation of NF-κB and Janus activating kinase/STAT1 expression. PMID:26597885

  12. Type I IFN Induces IL-10 Production in an IL-27–Independent Manner and Blocks Responsiveness to IFN-γ for Production of IL-12 and Bacterial Killing in Mycobacterium tuberculosis–Infected Macrophages

    PubMed Central

    Ewbank, John; Howes, Ashleigh; Moreira-Teixeira, Lucia; Martirosyan, Anna; Ghilardi, Nico; Saraiva, Margarida; O’Garra, Anne

    2014-01-01

    Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ∼1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis–infected macrophages and found that production of host-protective cytokines such as TNF-α, IL-12, and IL-1β is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27–independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-γ, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis. PMID:25187652

  13. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages.

    PubMed

    McNab, Finlay W; Ewbank, John; Howes, Ashleigh; Moreira-Teixeira, Lucia; Martirosyan, Anna; Ghilardi, Nico; Saraiva, Margarida; O'Garra, Anne

    2014-10-01

    Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ∼1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis-infected macrophages and found that production of host-protective cytokines such as TNF-α, IL-12, and IL-1β is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27-independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-γ, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis. PMID:25187652

  14. Inverse Correlation between IL-10 and HIF-1α in Macrophages Infected with Histoplasma capsulatum.

    PubMed

    Fecher, Roger A; Horwath, Michael C; Friedrich, Dirk; Rupp, Jan; Deepe, George S

    2016-07-15

    Hypoxia-inducible factor (HIF)-1α is a transcription factor that regulates metabolic and immune response genes in the setting of low oxygen tension and inflammation. We investigated the function of HIF-1α in the host response to Histoplasma capsulatum because granulomas induced by this pathogenic fungus develop hypoxic microenvironments during the early adaptive immune response. In this study, we demonstrated that myeloid HIF-1α-deficient mice exhibited elevated fungal burden during the innate immune response (prior to 7 d postinfection) as well as decreased survival in response to a sublethal inoculum of H. capsulatum The absence of myeloid HIF-1α did not alter immune cell recruitment to the lungs of infected animals but was associated with an elevation of the anti-inflammatory cytokine IL-10. Treatment with mAb to IL-10 restored protective immunity to the mutant mice. Macrophages (Mϕs) constituted most IL-10-producing cells. Deletion of HIF-1α in neutrophils or dendritic cells did not alter fungal burden, thus implicating Mϕs as the pivotal cell in host resistance. HIF-1α was stabilized in Mϕs following infection. Increased activity of the transcription factor CREB in HIF-1α-deficient Mϕs drove IL-10 production in response to H. capsulatum IL-10 inhibited Mϕ control of fungal growth in response to the activating cytokine IFN-γ. Thus, we identified a critical function for Mϕ HIF-1α in tempering IL-10 production following infection. We established that transcriptional regulation of IL-10 by HIF-1α and CREB is critical for activation of Mϕs by IFN-γ and effective handling of H. capsulatum. PMID:27271565

  15. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses anti-tuberculosis effector mechanisms without compromising T cell immunity1

    PubMed Central

    Schreiber, Tanja; Ehlers, Stefan; Heitmann, Lisa; Rausch, Alexandra; Mages, Jörg; Murray, Peter J.; Lang, Roland; Hölscher, Christoph

    2009-01-01

    Elevated IL-10 has been implicated in reactivation tuberculosis (TB). Since macrophages rather than T cells were reported to be the major source of IL-10 in TB, we analyzed the consequences of a macrophage-specific overexpression of IL-10 in transgenic mice (macIL-10-transgenic) after aerosol infection with Mycobacterium tuberculosis (Mtb). MacIL-10-transgenic mice were more susceptible to chronic Mtb infection than non-transgenic littermates, exhibiting higher bacterial loads in the lung after 12 weeks of infection and dying significantly earlier than controls. The differentiation, recruitment and activation of TH1 cells as well as the induction of IFN-gamma-dependent effector genes against Mtb were not affected by macrophage-derived IL-10. However, microarray analysis of pulmonary gene expression revealed patterns characteristic of alternative macrophage activation that were overrepresented in Mtb-infected macIL-10-transgenic mice. Importantly, arginase-1 gene expression and activity were strikingly enhanced in transgenic mice accompanied by a reduced production of reactive nitrogen intermediates. Moreover, IL-10-dependent arginase-1 induction diminished anti-mycobacterial effector mechanisms in macrophages. Together, macrophage-derived IL-10 triggers aspects of alternative macrophage activation and promotes Mtb recrudescence independent of overt effects on anti-TB T cell immunity. PMID:19561100

  16. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages.

    PubMed

    Zhu, Yanfang Peipei; Brown, Jonathan R; Sag, Duygu; Zhang, Lihua; Suttles, Jill

    2015-01-15

    AMP-activated protein kinase (AMPK) is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an anti-inflammatory phenotype. In addition, we reported previously that stimulation of macrophages with anti-inflammatory cytokines such as IL-10, IL-4, and TGF-β results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In this study, we investigated the role of AMPK in IL-10-induced gene expression and anti-inflammatory function. IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream targets Akt and mammalian target of rapamycin complex (mTORC1), an effect that was not seen in macrophages generated from AMPKα1-deficient mice. AMPK activation was not impacted by treatment with either the PI3K inhibitor LY294002 or the JAK inhibitor CP-690550, suggesting that IL-10-mediated activation of AMPK is independent of PI3K and JAK activity. IL-10 induced phosphorylation of both Tyr(705) and Ser(727) residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced suppressor of cytokine signaling 3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3-mediated anti-inflammatory pathways regulating macrophage

  17. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis

    PubMed Central

    2012-01-01

    Introduction Synovial tissue macrophages play a key role in chronic inflammatory arthritis, but the contribution of different macrophage subsets in this process remains largely unknown. The main in vitro polarized macrophage subsets are classically (M1) and alternatively (M2) activated macrophages, the latter comprising interleukin (IL)-4 and IL-10 polarized cells. Here, we aimed to evaluate the polarization status of synovial macrophages in spondyloarthritis (SpA) and rheumatoid arthritis (RA). Methods Expression of polarization markers on synovial macrophages, peripheral blood monocytes, and in vitro polarized monocyte-derived macrophages from SpA versus RA patients was assessed by immunohistochemistry and flow cytometry, respectively. The polarization status of the intimal lining layer and the synovial sublining macrophages was assessed by double immunofluorescence staining. Results The expression of the IL-10 polarization marker cluster of differentiation 163 (CD163) was increased in SpA compared with RA intimal lining layer, but no differences were found in other M1 and M2 markers between the diseases. Furthermore, no significant phenotypic differences in monocytes and in vitro polarized monocyte-derived macrophages were seen between SpA, RA, and healthy controls, indicating that the differential CD163 expression does not reflect a preferential M2 polarization in SpA. More detailed analysis of intimal lining layer macrophages revealed a strong co-expression of the IL-10 polarization markers CD163 and cluster of differentiation 32 (CD32) but not any of the other markers in both SpA and RA. In contrast, synovial sublining macrophages had a more heterogeneous phenotype, with a majority of cells co-expressing M1 and M2 markers. Conclusions The intimal lining layer but not synovial sublining macrophages display an IL-10 polarized-like phenotype, with increased CD163 expression in SpA versus RA synovitis. These differences in the distribution of the polarized

  18. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine

    PubMed Central

    Ochi, Takanori; Feng, Yongjia; Kitamoto, Sho; Nagao-Kitamoto, Hiroko; Kuffa, Peter; Atarashi, Koji; Honda, Kenya; Teitelbaum, Daniel H.; Kamada, Nobuhiko

    2016-01-01

    Intestinal resident macrophages (Mϕs) regulate gastrointestinal homeostasis via production of an anti-inflammatory cytokine interleukin (IL)-10. Although a constant replenishment by circulating monocytes is required to maintain the pool of resident Mϕs in the colonic mucosa, the homeostatic regulation of Mϕ in the small intestine (SI) remains unclear. Here, we demonstrate that direct stimulation by dietary amino acids regulates the homeostasis of intestinal Mϕs in the SI. Mice that received total parenteral nutrition (TPN), which deprives the animals of enteral nutrients, displayed a significant decrease of IL-10-producing Mϕs in the SI, whereas the IL-10-producing CD4+ T cells remained intact. Likewise, enteral nutrient deprivation selectively affected the monocyte-derived F4/80+ Mϕ population, but not non-monocytic precursor-derived CD103+ dendritic cells. Notably, in contrast to colonic Mϕs, the replenishment of SI Mϕs and their IL-10 production were not regulated by the gut microbiota. Rather, SI Mϕs were directly regulated by dietary amino acids. Collectively, our study highlights the diet-dependent, microbiota-independent regulation of IL-10-producing resident Mϕs in the SI. PMID:27302484

  19. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine.

    PubMed

    Ochi, Takanori; Feng, Yongjia; Kitamoto, Sho; Nagao-Kitamoto, Hiroko; Kuffa, Peter; Atarashi, Koji; Honda, Kenya; Teitelbaum, Daniel H; Kamada, Nobuhiko

    2016-01-01

    Intestinal resident macrophages (Mϕs) regulate gastrointestinal homeostasis via production of an anti-inflammatory cytokine interleukin (IL)-10. Although a constant replenishment by circulating monocytes is required to maintain the pool of resident Mϕs in the colonic mucosa, the homeostatic regulation of Mϕ in the small intestine (SI) remains unclear. Here, we demonstrate that direct stimulation by dietary amino acids regulates the homeostasis of intestinal Mϕs in the SI. Mice that received total parenteral nutrition (TPN), which deprives the animals of enteral nutrients, displayed a significant decrease of IL-10-producing Mϕs in the SI, whereas the IL-10-producing CD4(+) T cells remained intact. Likewise, enteral nutrient deprivation selectively affected the monocyte-derived F4/80(+) Mϕ population, but not non-monocytic precursor-derived CD103(+) dendritic cells. Notably, in contrast to colonic Mϕs, the replenishment of SI Mϕs and their IL-10 production were not regulated by the gut microbiota. Rather, SI Mϕs were directly regulated by dietary amino acids. Collectively, our study highlights the diet-dependent, microbiota-independent regulation of IL-10-producing resident Mϕs in the SI. PMID:27302484

  20. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production

    PubMed Central

    Yue, Yinpu; Huang, Wei; Liang, Jingjing; Guo, Jing; Ji, Jian; Yao, Yunliang; Zheng, Mingzhu; Cai, Zhijian; Lu, Linrong; Wang, Jianli

    2015-01-01

    Interleukin 4-induced gene-1 (IL4I1) was initially described as an early IL-4-inducible gene in B cells. IL4I1 protein can inhibit T cell proliferation by releasing its enzymatic catabolite, H2O2, and this effect is associated with transient down-regulation of T cell CD3 receptor-zeta (TCRζ) expression. Herein, we show that IL4I1 contributes to the regulation of macrophage programming. We found that expression of IL4I1 increased during bone marrow-derived macrophage (BMDM) differentiation, expression of IL4I1 is much higher in primary macrophages than monocytes, and IL4I1 expression in BMDMs could be induced by Th1 and Th2 cytokines in two different patterns. Gene expression analysis revealed that overexpression of IL4I1 drove the expression of M2 markers (Fizz1, Arg1, YM-1, MR) and inhibited the expression of M1-associated cytokines. Conversely, knockdown of IL4I1 by siRNA resulted in opposite effects, and also attenuated STAT-3 and STAT-6 phosphorylation. Furthermore, IL4I1 produced by macrophages catalyzed L-tryptophan degradation, while levo-1-methyl-tryptophan (L-1-MT), but not dextro-1-methyl-tryptophan, partially rescued IL4I1-dependent inhibition of T cell activation. Other inhibitors, such as diphenylene iodonium (DPI), an anti-IL-10Rα blocking antibody, and a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine, also had this effect. Overall, our findings indicate that IL4I1 promotes an enhanced M2 functional phenotype, which is most likely associated with the phosphorylation of STAT-6 and STAT-3. Moreover, DPI, L-1-MT, NG-monomethyl-L-arginine, and anti-IL-10Rα blocking antibody were all found to be effective IL4I1 inhibitors in vitro. PMID:26599209

  1. IL-10 induces gene expression in macrophages: partial overlap with IL-5 but not with IL-4 induced genes.

    PubMed

    Stumpo, Rita; Kauer, Manfred; Martin, Stephan; Kolb, Hubert

    2003-10-01

    The hypothesis that IL-10, in addition to down-regulating pro-inflammatory activities of macrophages, induces an alternative state of macrophage reactivity was tested. We therefore conducted a systematic search for genes induced by IL-10 using the method of suppression subtractive hybridisation. Of an initial 1,300 candidate clones obtained, several screening rounds led to the identification of 51 clones which were reproducibly at least twofold up-regulated in mouse J774 macrophages in response to treatment with IL-10. Of these, 41 genes were homologous to known genes involved in cell metabolism or immunoregulation, five contained novel sequences and another five were homologous to ESTs without known function. One major finding was that about 25% of the IL-10 genes were also found expressed in response to IFNgamma, and several of these also reappeared in IL-4 or IL-5 induced mRNA species. Hence, Th1 and Th2 type cytokines may elicit a common basal activation response in macrophages. The second major finding was that 57% of IL-10 induced genes reappeared in IL-5 induced mRNA but no more than 18% were also found in IL-4 induced mRNA of J774 cells. We conclude that the gene expression response to IL-10 in macrophages is partially different from the response to IL-5 and is substantially different from the response to IL-4, which suggests an unexpected diversity of biological phenotypes induced by different Th2 type cytokines. PMID:14561490

  2. Cyprinid Herpesvirus 3 Il10 Inhibits Inflammatory Activities of Carp Macrophages and Promotes Proliferation of Igm+ B Cells and Memory T Cells in a Manner Similar to Carp Il10.

    PubMed

    Piazzon, M Carla; Wentzel, Annelieke S; Tijhaar, Edwin J; Rakus, Krzysztof Ł; Vanderplasschen, Alain; Wiegertjes, Geert F; Forlenza, Maria

    2015-10-15

    Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of a lethal disease of carp and encodes for an Il10 homolog (ORF134). Our previous studies with a recombinant ORF134-deleted strain and the derived revertant strain suggested that cyprinid herpesvirus 3 Il10 (CyHV-3 Il10 [cyhv3Il10]) is not essential for viral replication in vitro, or virulence in vivo. In apparent contrast, cyhv3Il10 is one of the most abundant proteins of the CyHV-3 secretome and is structurally very similar to carp Il10 and also human IL10. To date, studies addressing the biological activity of cyhv3Il10 on cells of its natural host have not been performed. To address the apparent contradiction between the presence of a structurally conserved Il10 homolog in the genome of CyHV-3 and the lack of a clear phenotype in vivo using recombinant cyhv3Il10-deleted viruses, we used an in vitro approach to investigate in detail whether cyhv3Il10 exerts any biological activity on carp cells. In this study, we provide direct evidence that cyhv3Il10 is biologically active and, similarly to carp Il10, signals via a conserved Stat3 pathway modulating immune cells of its natural host, carp. In vitro, cyhv3Il10 deactivates phagocytes with a prominent effect on macrophages, while also promoting proliferation of Igm(+) B cells and memory T cells. Collectively, this study demonstrates a clear biological activity of cyhv3Il10 on cells of its natural host and indicates that cyhv3Il10 is a true viral ortholog of carp Il10. Furthermore, to our knowledge, this is the first report on biological activities of a nonmammalian viral Il10 homolog. PMID:26371255

  3. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury.

    PubMed

    Zhang, Bei; Bailey, William M; Braun, Kaitlyn J; Gensel, John C

    2015-11-01

    Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention. PMID:26263843

  4. IL-10 reduces Th2 cytokine production and eosinophilia but augments airway reactivity in allergic mice.

    PubMed

    van Scott, M R; Justice, J P; Bradfield, J F; Enright, E; Sigounas, A; Sur, S

    2000-04-01

    We investigated the effects of interleukin (IL)-10 administration on allergen-induced Th2 cytokine production, eosinophilic inflammation, and airway reactivity. Mice were sensitized by intraperitoneal injection of ragweed (RW) adsorbed to Alum and challenged by intratracheal instillation of the allergen. Sensitization and challenge with RW increased concentrations of IL-10 in bronchoalveolar lavage (BAL) fluid from undetectable levels to 60 pg/ml over 72 h. Intratracheal instillation of 25 ng of recombinant murine IL-10 at the time of RW challenge further elevated BAL fluid IL-10 concentration to 440 pg/ml but decreased BAL fluid IL-4, IL-5, and interferon-gamma levels by 40-85% and eosinophil numbers by 70% (P < 0.0001). Unexpectedly, the same IL-10 treatment increased airway reactivity to methacholine in spontaneously breathing mice that had been sensitized and challenged with RW (P < 0.001). IL-10 treatment in naive animals or RW-sensitized mice challenged with PBS failed to increase airway reactivity, demonstrating that IL-10 induces an increase in airway reactivity only when it is administered in conjunction with allergic sensitization and challenge. The results demonstrate that IL-10 reduces Th2 cytokine levels and eosinophilic inflammation but augments airway hyperreactivity. Thus, despite its potent anti-inflammatory activity, IL-10 could contribute to the decline in pulmonary function observed in asthma. PMID:10749743

  5. TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis.

    PubMed

    Andrade, Elva B; Alves, Joana; Madureira, Pedro; Oliveira, Liliana; Ribeiro, Adília; Cordeiro-da-Silva, Anabela; Correia-Neves, Margarida; Trieu-Cuot, Patrick; Ferreira, Paula

    2013-11-01

    Sepsis is the third most common cause of neonatal death, with Group B Streptococcus (GBS) being the leading bacterial agent. The pathogenesis of neonatal septicemia is still unsolved. We described previously that host susceptibility to GBS infection is due to early IL-10 production. In this study, we investigated whether triggering TLR2 to produce IL-10 is a risk factor for neonatal bacterial sepsis. We observed that, in contrast to wild-type (WT) pups, neonatal TLR2-deficient mice were resistant to GBS-induced sepsis. Moreover, if IL-10 signaling were blocked in WT mice, they also were resistant to sepsis. This increased survival rate was due to an efficient recruitment of neutrophils to infected tissues that leads to bacterial clearance, thus preventing the development of sepsis. To confirm that IL-10 produced through TLR2 activation prevents neutrophil recruitment, WT pups were treated with the TLR2 agonist Pam3CSK4 prior to nebulization with the neutrophil chemotactic agent LTB4. Neutrophil recruitment into the neonatal lungs was inhibited in pups treated with Pam3CSK4. However, the migration was restored in Pam3CSK4-treated pups when IL-10 signaling was blocked (either by anti-IL-10R mAb treatment or by using IL-10-deficient mice). Our findings highlight that TLR2-induced IL-10 production is a key event in neonatal susceptibility to bacterial sepsis. PMID:24078699

  6. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70).

    PubMed

    Lopes, Rafael L; Borges, Thiago J; Zanin, Rafael F; Bonorino, Cristina

    2016-09-01

    Macrophages are key cells in the innate immune system. They phagocytose pathogens and cellular debris, promote inflammation, and have important roles in tumor immunity. Depending on the microenvironment, macrophages can polarize to M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. Extracellular DnaK (the bacterial ortholog of the mammalian Hsp70) from Mycobacterium tuberculosis (Mtb) was described to exert immune modulatory roles in an IL-10 dependent manner. We have previously observed that endotoxin-free DnaK can polarize macrophages to an M2-like phenotype. However, the mechanisms that underlie this polarization need to be further investigated. IL-10 has been described to promote macrophage polarization, so we investigated the involvement of this cytokine in macrophages stimulated with extracellular DnaK. IL-10 was required to induce the expression of M2 markers - Ym1 and Fizz, when macrophages were treated with DnaK. Blockade of IL-10R also impaired DnaK induced polarization, demonstrating the requirement of the IL-10/IL-10R signaling pathway in this polarization. DnaK was able to induce TGF-β mRNA in treated macrophages in an IL-10 dependent manner. However, protein TGF-β could not be detected in culture supernatants. Finally, using an in vivo allogeneic melanoma model, we observed that DnaK-treated macrophages can promote tumor growth in an IL-10-dependent manner. Our results indicate that the IL-10/IL-10R axis is required for DnaK-induced M2-like polarization in murine macrophages. PMID:27337694

  7. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10.

    PubMed

    Svensson, Judit; Jenmalm, Maria C; Matussek, Andreas; Geffers, Robert; Berg, Göran; Ernerudh, Jan

    2011-10-01

    During pregnancy, the maternal immune system is challenged by the presence of the fetus, which must be tolerated despite being semiallogeneic. Uterine mucosal (or decidual) macrophages (M), one of the major leukocyte populations at the fetal-maternal interface, have been implicated in fetal tolerance, but information regarding their regulation is scarce. In this study, we investigated the role of several factors potentially involved in the differentiation and polarization of decidual M with an in vitro M differentiation model. By using flow cytometry, we showed that M-CSF and IL-10 were potent inducers of M2 (immunoregulatory) M markers expressed on human decidual M (CD14, CD163, CD206, CD209). In contrast, proinflammatory stimuli, and unexpectedly also the Th2-associated IL-4 and IL-13, induced different patterns of expression, indicating that a Th2-dominated environment is not required for decidual M polarization. M-CSF/IL-10-stimulated and decidual M also showed similar cytokine secretion patterns, with production of IL-10 as well as IL-6, TNF, and CCL4. Conversely, the proinflammatory, LPS/IFN-γ-stimulated M produced significantly higher levels of TNF and no IL-10. We also used a gene array with 420 M-related genes, of which 100 were previously reported to be regulated in a global gene expression profiling of decidual M, confirming that M-CSF/IL-10-induced M are closely related to decidual M. Taken together, our results consistently point to a central role for M-CSF and in particular IL-10 in the shaping of decidual M with regulatory properties. These cytokines may therefore play an important role in supporting the homeostatic and tolerant immune milieu required for a successful pregnancy. PMID:21890660

  8. HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway.

    PubMed

    Ji, Jiaxiang; Sahu, Gautam K; Braciale, Vivian L; Cloyd, Miles W

    2005-06-01

    In HIV-infected patients, increased levels of IL-10, mainly produced by virally infected monocytes, were reported to be associated with impaired cell-mediated immune responses. In this study, we investigated how HIV-1 induces IL-10 production in human monocytes. We found that CD14(+) monocytes infected by either HIV-1(213) (X4) or HIV-1(BaL) (R5) produced IL-10, IL-6, tumor necrosis factor-alpha (TNF-alpha), and to a lesser extent, IFN-gamma. However, the capacity of HIV-1 to induce these cytokines was not dependent on virus replication since UV-inactivated HIV-1 induced similar levels of these cytokines. In addition, soluble HIV-1 gp160 could induce CD14(+) monocytes to produce IL-10 but at lower levels. Cross-linking CD4 molecules (XLCD4) with anti-CD4 mAbs and goat anti-mouse IgG (GAM) resulted in high levels of IL-6, TNF-alpha and IFN-gamma but no IL-10 production by CD14(+) monocytes. Interestingly, neither anti-CD4 mAbs nor recombinant soluble CD4 (sCD4) receptor could block IL-10 secretion induced by HIV-1(213), HIV-1(BaL) or HIV-1 gp160 in CD14(+) monocytes, whereas anti-CD4 mAb or sCD4 almost completely blocked the secretion of the other cytokines. Furthermore, HIV-1(213) could induce IL-10 mRNA expression in CD14(+) monocytes while XLCD4 by anti-CD4 mAb and GAM failed to do so. As with IL-10 protein levels, HIV-1(213)-induced IL-10 mRNA expression in CD14(+) monocytes could not be inhibited by anti-CD4 mAb or sCD4. Taken together, HIV-1 binding to CD14(+) monocytes can induce CD4-independent IL-10 production at both mRNA and protein levels. This finding suggests that HIV induces the immunosuppressive IL-10 production in monocytes and is not dependent on CD4 molecules and that interference with HIV entry through CD4 molecules may have no impact on counteracting the effects of IL-10 during HIV infection. PMID:15937058

  9. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology

    PubMed Central

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H; Sheel, Meru; Faleiro, Rebecca J.; Bunn, Patrick T.; Best, Shannon E.; Beattie, Lynette; Ng, Susanna S.; Edwards, Chelsea L.; Muller, Werner; Cretney, Erika; Nutt, Stephen L.; Smyth, Mark J.; Haque, Ashraful; Hill, Geoffrey R.; Sundar, Shyam; Kallies, Axel; Engwerda, Christian R.

    2016-01-01

    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. PMID:26765224

  10. IL-10 Cytokine Released from M2 Macrophages Is Crucial for Analgesic and Anti-inflammatory Effects of Acupuncture in a Model of Inflammatory Muscle Pain

    PubMed Central

    da Silva, Morgana D.; Bobinski, Franciane; Sato, Karina L.; Kolker, Sandra J.; Sluka, Kathleen A.; Santos, Adair R. S.

    2014-01-01

    Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acu-puncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10−/−) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation. PMID:24961568

  11. Dynamic CpG-DNA methylation of Il10 and Il19 in CD4+ T lymphocytes and macrophages: effects on tissue-specific gene expression.

    PubMed

    Hofmann, S R; Möller, J; Rauen, T; Paul, D; Gahr, M; Rösen-Wolff, Z; Brenner, S; Hedrich, C M

    2012-03-01

    The IL-10 family of cytokines consists of 9 members, including the immune-regulatory IL-10; Il19 is in close physical relationship with Il10 in the so-called IL-10 cytokine cluster on chromosome 1q32. While IL-10 is ubiquitously expressed, IL-19 expression is restricted to myeloid and epithelial cells. Little is known about molecular mechanisms that control tissue-specific expression of IL-10, and IL-19. Modifications in CpG-DNA methylation are a key mechanism in controlling transcription. Using bisulfite sequencing, we demonstrate that murine Il19 is methylated in CD4+ T lymphocytes. Macrophages display site-specific demethylation of Il19. The ubiquitously expressed Il10 gene is methylated to a lower degree and exhibits tissue-specific methylation patterns. DNA demethylation with 5-azacytidine resulted in an induction of IL-10, and IL-19 expression in CD4+ T cells, and CpG-DNA methylation through DNMT3a resulted in transcriptional silencing in macrophages. Thus, our findings suggest a role of CpG-DNA methylation in the regulation of Il10 and Il19. PMID:22187331

  12. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production.

    PubMed

    Gorosito Serrán, Melisa; Fiocca Vernengo, Facundo; Beccaria, Cristian G; Acosta Rodriguez, Eva V; Montes, Carolina L; Gruppi, Adriana

    2015-11-14

    The term regulatory B cells (B regs) is ascribed to a heterogeneous population of B cells with the function of suppressing inflammatory responses. They have been described mainly during the last decade in the context of different immune-mediated diseases. Most of the work on B regs has been focused on IL-10-producing B cells. However, B cells can exert regulatory functions independently of IL-10 production. Here we discuss the phenotypes, development and effector mechanisms of B regs and advances in their role in autoimmunity, infections and cancer. PMID:26424657

  13. IL-10-Expressing Th2 Cells Contribute to the Elevated Antibody Production in Rheumatoid Arthritis.

    PubMed

    Wang, Jinliang; Ma, Liheng; Yang, Shufeng; Wang, Shaohua; Wei, Xuan; Song, Shuchun

    2016-06-01

    Rheumatoid arthritis (RA) is a common autoimmune disease associated with progressive disability, systemic complications, and early death. Multiple lines of evidence have placed adaptive immune responses in the center of RA pathogenesis. However, the functional roles of T helper cells are insufficiently described. Here, we examined the Th2 cell subsets and their functions in RA patients. A downregulation of IL-4(+) cells in CD4(+) T cells were observed in RA patients, indicating a downregulation of Th2 cells, and these results were confirmed by using and CXCR3 and CCR6 surface markers. We then found that CXCR3(-)CCR6(-) Th2 cells can be separated into IL-4(+) (single positive), IL-10(+) (single positive), and IL-4(+)IL-10(+) (double positive) subsets. Further results showed that CXCR5 only expressed on IL-10+ Th2 cells. The CXCR5(+) and CXCR5(-) Th2 cells each exhibited distinctive features in helping B cell antibody secretion. CXCR5(+) Th2 cells were more potent at stimulating total Ig and IgM secretion, while CXCR5(-) Th2 cells were more potent at stimulating IgE. IL-10 was required for helping B cell total Ig, IgM, and IgE production, while IL-4 was required for total Ig and IgE. The frequencies of IL-10(+) and IL-4(+)IL-10(+) Th2 cells were positively correlated with rheumatoid factor titer in vivo. Together, our study demonstrated distinctive subsets within Th2 cells, each with different impacts on antibody production and RA disease. PMID:26956472

  14. PD-1 modulates steady-state and infection-induced IL-10 production in vivo

    PubMed Central

    McBerry, Cortez; Dias, Alexandra; Shryock, Nathaniel; Lampe, Kristin; Gutierrez, Fredy R S; Boon, Louis; Herbert, De’Broski R; Aliberti, Julio

    2014-01-01

    Programmed death-1 (PD-1) plays an important role in mediating immune tolerance through mechanisms that remain unclear. Herein, we investigated whether PD-1 prevents excessive host tissue damage during infection with the protozoan parasite, Toxoplasma gondii. Surprisingly, our results demonstrate that PD-1-deficient mice have increased susceptibility to T. gondii, with increased parasite cyst counts along with reduced type-1 cytokine responses (IL-12 and IFN-γ). PD-1−/− DCs showed no cell intrinsic defect in IL-12 production in vitro. Instead, PD-1 neutralization via genetic or pharmacological approaches resulted in a striking increase in IL-10 release, which impaired type-1-inflammation during infection. Our results indicate that the absence of PD-1 increases IL-10 production even in the absence of infection. Although the possibility that such increased IL-10 protects against autoimmune damage is speculative, our results show that IL-10 suppresses the development of protective Th1 immune response after T. gondii infection. PMID:24165808

  15. Gut Microbial Dysbiosis Due to Helicobacter Drives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Gharaibeh, Raad Z; Cook, Lydia C; Kumar, Ranjit; Lefkowitz, Elliot J; Walker, Catherine R; Morrow, Casey D; Franklin, Craig L; Geiger, Terrence L; Salzman, Nita H; Fodor, Anthony; Dittel, Bonnie N

    2015-10-01

    It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10(-/-)) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track. PMID:26324769

  16. Impaired monocytic IL-10 production in sarcoidosis and potential link to abnormalities in iNKT cells

    PubMed Central

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2016-01-01

    Sarcoidosis is a multi-system granulomatous disorder characterised by marked TH1-biased T cell expansion. The cause of T cell over-activity is unknown. We hypothesized that a cellular source for IL-10 might be defective, resulting in loss of regulation of T cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from blood of corticosteroid-naïve sarcoidosis patients (n=51) produced less IL-10 compared to controls, and were less able to suppress T cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity. We then questioned if defects in iNKT cells (known to be reduced in sarcoidosis), might be responsible for this reduced IL-10 production since iNKT cells can interact with monocytes. We found that monocytic IL-10 production were higher where there were greater numbers of circulating iNKT cells. In vitro, iNKT cells enhanced monocytic IL-10 production. Defective IL-10 production and T cell suppression by sarcoidosis monocytes can be restored by co-culture with iNKT cells, in a CD1d-requiring and contact-dependent process. We suggest that reduced iNKT cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T cell expansion in sarcoidosis. The findings provide fresh insight into sarcoidosis disease mechanism, and interaction between iNKT cells and monocytes. PMID:24723379

  17. MicroRNA-155 potentiates the inflammatory response in hypothermia by suppressing IL-10 production.

    PubMed

    Billeter, Adrian T; Hellmann, Jason; Roberts, Henry; Druen, Devin; Gardner, Sarah A; Sarojini, Harshini; Galandiuk, Susan; Chien, Sufan; Bhatnagar, Aruni; Spite, Matthew; Polk, Hiram C

    2014-12-01

    Therapeutic hypothermia is commonly used to improve neurological outcomes in patients after cardiac arrest. However, therapeutic hypothermia increases sepsis risk and unintentional hypothermia in surgical patients increases infectious complications. Nonetheless, the molecular mechanisms by which hypothermia dysregulates innate immunity are incompletely understood. We found that exposure of human monocytes to cold (32°C) potentiated LPS-induced production of TNF and IL-6, while blunting IL-10 production. This dysregulation was associated with increased expression of microRNA-155 (miR-155), which potentiates Toll-like receptor (TLR) signaling by negatively regulating Ship1 and Socs1. Indeed, Ship1 and Socs1 were suppressed at 32°C and miR-155 antagomirs increased Ship1 and Socs1 and reversed the alterations in cytokine production in cold-exposed monocytes. In contrast, miR-155 mimics phenocopied the effects of cold exposure, reducing Ship1 and Socs1 and altering TNF and IL-10 production. In a murine model of LPS-induced peritonitis, cold exposure potentiated hypothermia and decreased survival (10 vs. 50%; P < 0.05), effects that were associated with increased miR-155, suppression of Ship1 and Socs1, and alterations in TNF and IL-10. Importantly, miR-155-deficiency reduced hypothermia and improved survival (78 vs. 32%, P < 0.05), which was associated with increased Ship1, Socs1, and IL-10. These results establish a causal role of miR-155 in the dysregulation of the inflammatory response to hypothermia. PMID:25231976

  18. IL-3 and CSF-1 Interact to Promote Generation of CD11c+ IL-10-Producing Macrophages

    PubMed Central

    Sheng, Kuo-Ching; Herrero, Lara J.; Taylor, Adam; Hapel, Andrew J.; Mahalingam, Suresh

    2014-01-01

    Unraveling the mechanisms of hematopoiesis regulated by multiple cytokines remains a challenge in hematology. IL-3 is an allergic cytokine with the multilineage potential, while CSF-1 is produced in the steady state with restricted lineage coverage. Here, we uncovered an instructive role of CSF-1 in IL-3-mediated hematopoiesis. CSF-1 significantly promoted IL-3-driven CD11c+ cell expansion and dampened basophil and mast cell generation from C57BL/6 bone marrow. Further studies indicated that the CSF-1/CSF-1R axis contributed significantly to IL-3-induced CD11c+ cell generation through enhancing c-Fos-associated monopoiesis. CD11c+ cells induced by IL-3 or IL-3/CSF-1 were competent in cellular maturation and endocytosis. Both IL-3 and IL-3/CSF-1 cells lacked classical dendritic cell appearance and resembled macrophages in morphology. Both populations produced a high level of IL-10, in addition to IL-1, IL-6 and TNFα, in response to LPS, and were relatively poor T cell stimulators. Collectively, these findings reveal a role for CSF-1 in mediating the IL-3 hematopoietic pathway through monopoiesis, which regulates expansion of CD11c+ macrophages. PMID:24743235

  19. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages

    PubMed Central

    Huynh, Linda; Kusnadi, Anthony; Park, Sung Ho; Murata, Koichi; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B.

    2016-01-01

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6–24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation. PMID:27558590

  20. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.

    PubMed

    Duan, Liang; Yi, Min; Chen, Juan; Li, Shengjin; Chen, Weixian

    2016-05-13

    Autophagy plays a crucial role in the progress of Mycobacterium tuberculosis (MTB) infection. Recently, MTB enhanced intracellular survival (EIS) protein was reported to be secreted from MTB cells and linked to the inhibition of autophagy and the intracellular persistence of the pathogen. Here, we investigated the mechanism of EIS-mediated inhibition of autophagy in a human phorbol myristate acetate (PMA)-treated THP-1 cell line as well as in murine macrophages. We confirmed that the presence of EIS led to the inhibition of rapamycin (Rapa)-induced autophagy, while IL-10 gene expression was increased and Akt/mTOR/p70S6K pathway was activated during the process. IL-10 gene silencing led to a significant recovery of EIS-mediated autophagy suppression and decreased activity of the Akt/mTOR/p70S6K pathway. IL-10 promoter activity was unaffected by EIS. Remarkably, EIS increased the acetylation level of histone H3 (Ac-H3), which binds to the SP1 and STAT3 region of the human IL-10 gene promoter sequence. Thus, EIS protein possibly increased IL-10 expression through the regulation of Ac-H3 of its promoter. Our data demonstrated that one possible mechanism of the MTB evasion of autophagy is that the EIS protein up-regulates IL-10 via Ac-H3 and thus activates Akt/mTOR/p70S6K pathway. PMID:27079235

  1. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression

    PubMed Central

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  2. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression.

    PubMed

    Zhang, Xu; Li, Na; Shao, Han; Meng, Yan; Wang, Liping; Wu, Qian; Yao, Ying; Li, Jinbao; Bian, Jinjun; Zhang, Yan; Deng, Xiaoming

    2016-01-01

    Inflammatory diseases such as sepsis and autoimmune colitis, characterized by an overwhelming activation of the immune system and the counteracting anti-inflammatory response, remain a major health problem in worldwide. Emerging evidence suggests that methane have a protective effect on many animal models, like ischaemia reperfusion injury and diabetes-associated diseases. Whether methane could modulating inflammatory diseases remains largely unknown. Here we show that methane-rich saline (MS) ip treatment (16 ml/kg) alleviated endotoxin shock, bacteria-induced sepsis and dextran-sulfate-sodium-induced colitis in mice via decreased production of TNF-α and IL-6. In MS-treated macrophages, LPS-induced activation of NF-κb/MAPKs was attenuated. Interestingly, MS treatment significantly elevated the levels of IL-10 both in vitro and in vivo. Neutralization of IL-10 abrogated the therapeutic effect of MS. Moreover, anti-IL10 blockade partially restored the MS-mediated attenuation of NF-κb/MAPKs phosphorylation. We further found that MS resulted in markedly enhanced phosphorylation of GSK-3β and AKT, which both mediate the release of Il-10. Additionally, inhibition of PI3K attenuated MS-mediated p-GSK-3β and IL-10 production and reversed the suppressed activation of NF-κb/ MAPKs in response to LPS. Our results reveal a novel effect and mechanisms of methane and support the potential value of MS as a therapeutic approach in innate inflammatory diseases. PMID:27405597

  3. TLR9 Ligands Induce S100A8 in Macrophages via a STAT3-Dependent Pathway which Requires IL-10 and PGE2

    PubMed Central

    Hsu, Kenneth; Chung, Yuen Ming; Endoh, Yasumi; Geczy, Carolyn L.

    2014-01-01

    S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a −178 to −34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation. PMID:25098409

  4. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    SciTech Connect

    Shi, Yang Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  5. Triptolide Inhibits Osteoclast Differentiation and Bone Resorption In Vitro via Enhancing the Production of IL-10 and TGF-β1 by Regulatory T Cells

    PubMed Central

    Xu, Huihui; Zhao, Hongyan; Wang, Gui; Huang, Jing; Guo, Minghui; Guo, Baosheng; Tan, Yong

    2016-01-01

    Triptolide, a purified component of Tripterygiumwilfordii Hook F, has been shown to have immunosuppressive and anti-inflammatory properties in rheumatoid arthritis (RA). Although triptolide has demonstrated that it could suppress bone destruction in collagen-induced mice, its therapeutic mechanism remains unclear. Many studies have investigated the effect of triptolide on Tregs and Tregs-related cytokine involved in RA. Additionally, previous studies have implied that Tregs inhibit osteoclast differentiation and bone resorption. Thus, in this study we aimed to explore the regulatory mechanism by which triptolide influences the Treg-mediated production of IL-10 and TGF-β1 to affect osteoclast differentiation and bone resorption. In cocultures system of Tregs and mouse bone marrow macrophages (BMMs), Tregs inhibited the differentiation of osteoclasts and reduced the resorbed areas significantly and the production of both IL-10 and TGF-β1 was upregulated. When the coculture systems were pretreated with triptolide, they produced higher levels of IL-10 and TGF-β1. Our data indicate that triptolide enhances the suppressive effects of Tregs on osteoclast differentiation and bone resorption by enhancing the secretion of IL-10 and TGF-β1. Tregs are most likely involved in the triptolide-mediated regulation of bone metabolism and may provide a potential therapeutic target for the treatment of inflammatory bone destruction. PMID:27413257

  6. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice.

    PubMed

    Jiang, Yang; Gao, Qi; Wang, Liyang; Guo, Chun; Zhu, Faliang; Wang, Bo; Wang, Qun; Gao, Fei; Chen, Youhai; Zhang, Lining

    2016-07-01

    Programmed cell death 4 (Pdcd4) is a newly defined inhibitor of transcription and translation and a tumor suppressor. Recent studies have suggested that Pdcd4 may also be involved in some inflammatory diseases. However, its role in atherosclerosis, a chronic inflammation of the arterial wall, remains to be investigated. Here, we found that Pdcd4 deficiency in mice increased the expression of IL-10 in macrophages and decreased the expression of IL-17 in T cells in the presence of an atherosclerosis-associated stimulator in vitro and in high fat-induced atherosclerotic plaques. Importantly, knocking out Pdcd4 led to a decrease in atherosclerotic lesions in Apoe(-/-) mice fed a high fat diet. This effect could be partly reversed by blocking IL-10 with a neutralizing antibody but not by the application of exogenous IL-17. Further mechanistic studies revealed that Pdcd4 negatively regulated the expression of IL-10 in an ERK1/2- and p38-dependent manner. These results demonstrate that Pdcd4 deficiency attenuates atherosclerosis in hyperlipidemic mice in part through the upregulation of the anti-inflammatory cytokine IL-10. This indicates that endogenous Pdcd4 promotes atherosclerosis and therefore represents a potential therapeutic target for patients with atherosclerosis. PMID:26166769

  7. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice

    PubMed Central

    Jiang, Yang; Gao, Qi; Wang, Liyang; Guo, Chun; Zhu, Faliang; Wang, Bo; Wang, Qun; Gao, Fei; Chen, Youhai; Zhang, Lining

    2016-01-01

    Programmed cell death 4 (Pdcd4) is a newly defined inhibitor of transcription and translation and a tumor suppressor. Recent studies have suggested that Pdcd4 may also be involved in some inflammatory diseases. However, its role in atherosclerosis, a chronic inflammation of the arterial wall, remains to be investigated. Here, we found that Pdcd4 deficiency in mice increased the expression of IL-10 in macrophages and decreased the expression of IL-17 in T cells in the presence of an atherosclerosis-associated stimulator in vitro and in high fat-induced atherosclerotic plaques. Importantly, knocking out Pdcd4 led to a decrease in atherosclerotic lesions in Apoe−/− mice fed a high fat diet. This effect could be partly reversed by blocking IL-10 with a neutralizing antibody but not by the application of exogenous IL-17. Further mechanistic studies revealed that Pdcd4 negatively regulated the expression of IL-10 in an ERK1/2- and p38-dependent manner. These results demonstrate that Pdcd4 deficiency attenuates atherosclerosis in hyperlipidemic mice in part through the upregulation of the anti-inflammatory cytokine IL-10. This indicates that endogenous Pdcd4 promotes atherosclerosis and therefore represents a potential therapeutic target for patients with atherosclerosis. PMID:26166769

  8. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus. PMID:12165544

  9. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria

    PubMed Central

    Verreck, Frank A. W.; de Boer, Tjitske; Langenberg, Dennis M. L.; Hoeve, Marieke A.; Kramer, Matthijs; Vaisberg, Elena; Kastelein, Robert; Kolk, Arend; de Waal-Malefyt, René; Ottenhoff, Tom H. M.

    2004-01-01

    Macrophages (Mϕ) play a central role as effector cells in immunity to intracellular pathogens such as Mycobacterium. Paradoxically, they also provide a habitat for intracellular bacterial survival. This paradoxical role of Mϕ remains poorly understood. Here we report that this dual role may emanate from the functional plasticity of Mϕ: Whereas Mϕ-1 polarized in the presence of granulocyte–Mϕ colony-stimulating factor promoted type 1 immunity, Mϕ-2 polarized with Mϕ colony-stimulating factor subverted type 1 immunity and thus may promote immune escape and chronic infection. Importantly, Mϕ-1 secreted high levels of IL-23 (p40/p19) but no IL-12 (p40/p35) after (myco)bacterial activation. In contrast, activated Mϕ-2 produced neither IL-23 nor IL-12 but predominantly secreted IL-10. Mϕ-1 required IFN-γ as a secondary signal to induce IL-12p35 gene transcription and IL-12 secretion. Activated dendritic cells produced both IL-12 and IL-23, but unlike Mϕ-1 they slightly reduced their IL-23 secretion after addition of IFN-γ. Binding, uptake, and outgrowth of a mycobacterial reporter strain was supported by both Mϕ subsets, but more efficiently by Mϕ-2 than Mϕ-1. Whereas Mϕ-1 efficiently stimulated type 1 helper cells, Mϕ-2 only poorly supported type 1 helper function. Accordingly, activated Mϕ-2 but not Mϕ-1 down-modulated their antigen-presenting and costimulatory molecules (HLA-DR, CD86, and CD40). These findings indicate that (i)Mϕ-1 and Mϕ-2 play opposing roles in cellular immunity and (ii) IL-23 rather than IL-12 is the primary type 1 cytokine produced by activated proinflammatory Mϕ-1. Mϕ heterogeneity thus may be an important determinant of immunity and disease outcome in intracellular bacterial infection. PMID:15070757

  10. Murine mesothelioma induces locally-proliferating IL-10(+)TNF-α(+)CD206(-)CX3CR1(+) M3 macrophages that can be selectively depleted by chemotherapy or immunotherapy.

    PubMed

    Jackaman, Connie; Yeoh, Teong L; Acuil, Manyual L; Gardner, Joanne K; Nelson, Delia J

    2016-06-01

    We used a murine model to monitor changes to myeloid cell subsets, i.e., myeloid-derived suppressor cells (MDSCs), M1 macrophages that secrete pro-inflammatory cytokines and express CD40 and CD80 and suppressive M2 macrophages that secrete anti-inflammatory cytokines and express CD206 and CX3CR1, during mesothelioma progression and during chemotherapy or immunotherapy-induced tumor regression. In vitro studies showed that mesothelioma-conditioned media generated CD206(-)CX3CR1(+)MCP-1(+)TGF-β(+) macrophages that induced T cell proliferation but prevented T cell IFNγ production. In vivo studies showed that co-inoculation of macrophages with mesothelioma cells led to faster tumor growth, and depleting macrophages using anti-F4/80 antibody induced tumor regression. Flow cytometry revealed increasing levels of different suppressive myeloid cells in lymphoid organs: MDSCs dominated bone marrow (BM) and spleens, M2 macrophages dominated tumor-draining lymph nodes (DLN) and a mixed IL-10(+)TNF-α(+)CD206(-)CX3CR1(+) M1/M2 (M3) macrophage subset dominated the mesothelioma microenvironment. Ki67 staining and cell cycle analysis showed that tumor-associated M1 and M3, but not M2, macrophages were proliferating in situ, with M1 cells arrested in the G1 phase while M3 cells progressed to mitosis. Immunohistochemistry showed that M1 and M3 cells were co-located supporting the hypothesis that M1 cells transition to M3 cells during proliferation. Gemcitabine reduced tumor-associated M3 and MDSCs, but not M2 macrophages, the latter likely contributing to the tumor outgrowth seen following treatment cessation. In contrast, IL-2/agonist anti-CD40 antibody therapy reduced M3 cells and polarized macrophages into M1 cells coinciding with tumor regression. These data show that myeloid cells, particularly M3 cells, represent a therapeutic target for the generation of antitumor immunity. PMID:27471652

  11. IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages.

    PubMed

    Schuetze, Nicole; Schoeneberger, Sabine; Mueller, Uwe; Freudenberg, Marina A; Alber, Gottfried; Straubinger, Reinhard K

    2005-05-01

    The members of the IL-12 family of heterodimeric cytokines play a pivotal role in initiation and regulation of cell-mediated immunity. Best known is IL-12p70, which promotes an immune response towards T(h)1 bias. Other members of this family (IL-23, IL-27) are less well characterized in terms of induction and function. Using either heat-killed or viable Salmonella Enteritidis or LPS as a stimulus, the kinetics of mRNA production of each member of the IL-12 family (p19, p28, p35, p40, Ebstein-Barr-Virus-induced gene 3 (EBI-3)) were determined in BMDMPhi originating from wild-type, Toll-like receptor (TLR)2- and/or TLR4-deficient mice. It was found that following either type of stimulation, a characteristic mRNA expression pattern was observed for each cytokine subunit. Whereas p19 was induced early and transiently, p40 and p35 were up-regulated later and then continuously, but the secretion of IL-23 and IL-12p70 was significantly reduced by IL-10. The up-regulation of p28 mRNA occurred also delayed and declined afterwards, whereas the initial high-level expression of EBI-3 remained almost unchanged in BMDMPhi. Furthermore, a splice variant of the EBI-3 mRNA was discovered. In this context, the cytokine mRNA up-regulation by whole Salmonella Enteritidis is mediated chiefly by TLR4, but depends on additional pattern recognition receptors other than TLR2 expressed by macrophages. PMID:15837713

  12. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production

    PubMed Central

    Adem, Emebet; Tajebe, Fitsumbirhan; Getahun, Mulusew; Kiflie, Amare; Diro, Ermias; Hailu, Asrat; Shkedy, Ziv; Mengesha, Bewketu; Mulaw, Tadele; Atnafu, Saba; Deressa, Tekalign; Mathewos, Biniam; Abate, Ebba; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale

    2016-01-01

    One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation. PMID:26962865

  13. Successful Treatment of Human Visceral Leishmaniasis Restores Antigen-Specific IFN-γ, but not IL-10 Production.

    PubMed

    Adem, Emebet; Tajebe, Fitsumbirhan; Getahun, Mulusew; Kiflie, Amare; Diro, Ermias; Hailu, Asrat; Shkedy, Ziv; Mengesha, Bewketu; Mulaw, Tadele; Atnafu, Saba; Deressa, Tekalign; Mathewos, Biniam; Abate, Ebba; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Takele, Yegnasew; Kropf, Pascale

    2016-03-01

    One of the key immunological characteristics of active visceral leishmaniasis (VL) is a profound immunosuppression and impaired production of Interferon-γ (IFN-γ). However, recent studies from Bihar in India showed using a whole blood assay, that whole blood cells have maintained the capacity to produce IFN-γ. Here we tested the hypothesis that a population of low-density granulocytes (LDG) might contribute to T cell responses hyporesponsiveness via the release of arginase. Our results show that this population is affected by the anticoagulant used to collect blood: the frequency of LDGs is significantly lower when the blood is collected with heparin as compared to EDTA; however, the anticoagulant does not impact on the levels of arginase released. Next, we assessed the capacity of whole blood cells from patients with active VL to produce IFN-γ and IL-10 in response to antigen-specific and polyclonal activation. Our results show that whole blood cells produce low or levels below detection limit of IFN-γ and IL-10, however, after successful treatment of VL patients, these cells gradually regain their capacity to produce IFN-γ, but not IL-10, in response to activation. These results suggest that in contrast to VL patients from Bihar, India, whole blood cells from VL patients from Gondar, Ethiopia, have lost their ability to produce IFN-γ during active VL and that active disease is not associated with sustained levels of IL-10 production following stimulation. PMID:26962865

  14. Effects of mitoxantrone on multiple sclerosis patients' lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10.

    PubMed

    Gbadamosi, Joystone; Buhmann, Carsten; Tessmer, Wiebke; Moench, Andrea; Haag, Friedrich; Heesen, Christoph

    2003-01-01

    We designed this longitudinal study to clarify the short- and long-term effects of mitoxantrone on the immune system in a subgroup of multiple sclerosis patients treated at our centre. After 14 days we found a highly significant sustained reduction of leucocytes, primarily affecting neutrophils and most lymphocyte subsets except for naive and activated T lymphocytes. The CD4/CD8 ratio and serum immmunoglobulin levels were not affected. Furthermore, whole blood-stimulated mononuclear cell IL-10 production showed a significant lower level 2 weeks treatment, whereas basal IL-10 as well as stimulated and basal TNF-alpha secretion showed no significant changes. Longitudinal data disclosed a persistent decrease of B lymphocytes, while secretion of immunoglobulins, IL-10, and TNF-alpha was not altered in the follow-up. In conclusion, we confirmed a selective short-term effect of mitoxantrone therapy on most lymphocyte subpopulations, but not on immunoglobulines or the pro- and anti-inflammatory cytokines TNF-alpha and IL-10, which do not serve as possible response markers. PMID:12646755

  15. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    PubMed

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly. PMID:26721376

  16. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion.

    PubMed

    Gleeson, M; Bishop, N; Oliveira, M; McCauley, T; Tauler, P; Muhamad, A S

    2012-06-01

    The purpose of this study was to examine factors influencing susceptibility to upper respiratory tract infections (URTI) in 18-35-year-old men and women engaged in endurance-based physical activity during the winter months. Eighty individuals (46 males, 34 females) provided resting blood and saliva samples for determination of markers of systemic immunity. Weekly training and illness logs were kept for the following 4 months. Thirty subjects did not experience an URTI episode and 24 subjects experienced 3 or more weeks of URTI symptoms. These illness-prone subjects had higher training loads and had ∼2.5-fold higher interleukin (IL)-4 and IL-10 production by antigen-stimulated whole blood culture than the illness-free subjects. Illness-prone subjects also had significantly lower saliva S-IgA secretion rate and higher plasma IgM (but not IgA or IgG) concentration than the illness-free subjects. There were no differences in circulating numbers of leukocyte subtypes or lymphocyte subsets between the illness-prone and illness-free subjects. The production of IL-10 was positively correlated and the S-IgA secretion rate was negatively correlated with the number of weeks with infection symptoms. It is concluded that high IL-10 production in response to antigen challenge and low S-IgA secretion are risk factors for development of URTI in physically active individuals. PMID:21385218

  17. The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF–trophoblast–IL-10 axis via Stat1 inhibition and Stat3 activation

    PubMed Central

    Dallagi, Angham; Girouard, Julie; Hamelin-Morrissette, Jovane; Dadzie, Rachel; Laurent, Laetitia; Vaillancourt, Cathy; Lafond, Julie; Carrier, Christian; Reyes-Moreno, Carlos

    2015-01-01

    Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF–trophoblast–IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines. PMID:25027966

  18. The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via Stat1 inhibition and Stat3 activation.

    PubMed

    Dallagi, Angham; Girouard, Julie; Hamelin-Morrissette, Jovane; Dadzie, Rachel; Laurent, Laetitia; Vaillancourt, Cathy; Lafond, Julie; Carrier, Christian; Reyes-Moreno, Carlos

    2015-05-01

    Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF-trophoblast-IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines. PMID:25027966

  19. HIV-infected CD4+ T Cells Use T-bet-dependent Pathway for Production of IL-10 Upon Antigen Recognition.

    PubMed

    Shete, A; Suryawanshi, P; Godbole, S; Pawar, J; Paranjape, R; Thakar, M

    2016-04-01

    Interleukin (IL)-10 has been implicated in persistence of pathogens in a number of chronic infections. Infected CD4+ cells upon reactivation with HIV antigens were also shown to produce IL-10, which might contribute to their persistence. Hence, it is crucial to determine mechanisms regulating IL-10 production after activation with HIV antigens for devising effective blocking strategies. In this study, ERK-, T-bet- and FoxP3-dependent pathways were evaluated for their possible roles in IL-10 production by infected CD4+ cells after reactivation with HIV Env. Intracellular and secreted IL-10 levels were determined by flow cytometry and Bioplex assay after treating PBMCs with PD98059, tipifarnib and cyclosporin A for blocking of ERK-, T-bet-and FoxP3-dependent pathways, respectively. Baseline levels of T-bet, pERK were higher in P24+ CD4+ cells as compared to uninfected CD4+ cells, which increased further after activation with Env. Inhibition of T-bet resulted in 2.3-fold reduction of IL-10 expression whereas ERK and FoxP3 inhibition failed to cause suppression of IL-10 expression. Conversely, IL-10 secreted by PBMCs was inhibited maximally after ERK inhibition suggesting its role in regulation of cytokine secretory pathway. IFN-γ was found to be suppressed after treatment with inhibitors of all these pathways. Thus, the study highlighted need for IL-10 blockade along with the use of antigens for therapeutic vaccinations or latency reversal and identified the T-bet-dependent pathway as an important pathway regulating IL-10 production by infected CD4+ cells. However, simultaneous blockade of IFN-γ precludes use of inhibitor of this pathway as an IL-10 blocking strategy. PMID:27028319

  20. First identification of regulatory B cell subsets expressing IL-10 in teleost fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IL-10 is an immunoregulatory cytokine with a potent anti-inflammatory activity, thus inhibiting the production of proinflammatory cytokines as well as processes of antigen presentation. IL-10 is produced by variety of cells, including antigen presentation cells (i.e., monocytes, macrophages and den...

  1. Proinflammatory responses and higher IL-10 production by T cells correlate with protection against malaria during pregnancy and delivery outcomes.

    PubMed

    Requena, Pilar; Barrios, Diana; Robinson, Leanne J; Samol, Paula; Umbers, Alexandra J; Wangnapi, Regina; Ome-Kaius, Maria; Rosanas-Urgell, Anna; Mayor, Alfredo; López, Marta; de Lazzari, Elisa; Arévalo-Herrera, Myriam; Fernández-Becerra, Carmen; del Portillo, Hernando; Chitnis, Chetan E; Siba, Peter M; Rogerson, Stephen; Mueller, Ivo; Bardají, Azucena; Menéndez, Clara; Dobaño, Carlota

    2015-04-01

    Pregnancy triggers immunological changes aimed to tolerate the fetus. However, it has not been properly addressed whether similar changes occur in tropical areas with high infection pressure and whether these changes render women more susceptible to infectious diseases. We compared the frequencies of T cell subsets, including regulatory T cells, in pregnant and nonpregnant women from Papua New Guinea, a high malaria transmission area, and from Spain, a malaria-free country. We also assessed the relationship among these cellular subsets, malaria infection, and delivery outcomes. CD4(+)FOXP3(+)CD127(low) T cells (Tregs) were decreased in pregnant women in both countries but were not associated with malaria infection or poor delivery outcomes. An expansion of IFN-γ-producing cells and intracytoplasmic IFN-γ levels was found in pregnant compared with nonpregnant women only in Papua New Guinea. Increased CD4(+)IL-10(+)IFN-γ(+) frequencies and Treg-IFN-γ production were found in women with current Plasmodium falciparum infection. Higher CD4(+)IL-10(-)IFN-γ(+) T cells frequencies and production of proinflammatory cytokines (including TNF and IL-2) at recruitment (first antenatal visit) had a protective association with birth weight and future (delivery) P. falciparum infection, respectively. Higher intracellular IL-10 levels in T cells had a protective association with future P. falciparum infection and hemoglobin levels at delivery. The protective associations were found also with nonmalaria-specific T cell responses. Treg frequencies positively correlated with plasma eotaxin concentrations, but this subset did not express eotaxin receptor CCR3. Thus, an activated immune system during pregnancy might contribute to protection against malaria during pregnancy and poor delivery outcomes. PMID:25725110

  2. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells.

    PubMed

    Motomura, Yasutaka; Kitamura, Hiroshi; Hijikata, Atsushi; Matsunaga, Yuko; Matsumoto, Koichiro; Inoue, Hiromasa; Atarashi, Koji; Hori, Shohei; Watarai, Hiroshi; Zhu, Jinfang; Taniguchi, Masaru; Kubo, Masato

    2011-05-01

    The immunoregulatory cytokine interleukin 10 (IL-10) is expressed mainly by T helper type 2 (T(H)2) cells but also by T(H)1 cells during chronic infection. Here we observed plasticity in the expression of IL-10 and IL-13 after chronic T(H)1 stimulation; furthermore, the expression of Il10 and Il13 was regulated by the transcription factor E4BP4. Chronically stimulated E4BP4-deficient (Nfil3(-/-); called 'E4bp4(-/-)' here) T(H)1 cells, regulatory T cells (T(reg) cells) and natural killer T cells (NKT cells) had attenuated expression of IL-10 and IL-13. Enforced expression of E4bp4 initiated the production of IL-10 and IL-13 by conventional T(H)1 cells. E4bp4(-/-) T(H)2 cells showed impairment of IL-10 production with no effect on IL-13. Our results indicate that E4BP4 has multiple functions in controlling the plasticity of IL-13 in T(H)1 cells and IL-10 in T(H)1 cells, T(H)2 cells, T(reg) cells and NKT cells. PMID:21460847

  3. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice.

    PubMed

    Corsetti, Patrícia P; de Almeida, Leonardo A; Carvalho, Natália B; Azevedo, Vasco; Silva, Teane M A; Teixeira, Henrique C; Faria, Ana C; Oliveira, Sergio C

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  4. Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice

    PubMed Central

    Corsetti, Patrícia P.; de Almeida, Leonardo A.; Carvalho, Natália B.; Azevedo, Vasco; Silva, Teane M. A.; Teixeira, Henrique C.; Faria, Ana C.; Oliveira, Sergio C.

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  5. Role of TLR2-dependent IL-10 production in the inhibition of the initial IFN-γ T cell response to Porphyromonas gingivalis.

    PubMed

    Gaddis, Dalia E; Maynard, Craig L; Weaver, Casey T; Michalek, Suzanne M; Katz, Jannet

    2013-01-01

    P.g., a Gram-negative bacterium, is one of the main etiological agents of the chronic inflammatory disease, periodontitis. Disease progression is thought to occur as a result of an inadequate immune response, which although happens locally, can also occur distally as a result of the dissemination of P.g. into the circulation. As IL-10 and TLR2 are pivotal molecules in the immune response that P.g. elicits, we hypothesized that TLR2-mediated IL-10 production, following the initial systemic exposure to P.g., inhibits the IFN-γ T cell response. To address this hypothesis, mice were primed with P.g., and the types of cells producing IL-10 and the capacity of T cells to produce IFN-γ following blocking or neutralization of IL-10 were assessed. Our results showed that upon initial encounter with P.g., splenic T cells and CD11b(+) cells produce IL-10, which when neutralized, resulted in a substantial increase in IFN-γ production by T cells. Furthermore, IL-10 production was dependent on TLR2/1 signaling, partly in response to the major surface protein, FimA of P.g. In addition, P.g. stimulation resulted in the up-regulation of PD-1 and its ligand PD-L1 on CD4 T cells and CD11b(+) cells, respectively. Up-regulation of PD-1 was partially dependent on IL-10 but independent of TLR2 or FimA. These results highlight the role of IL-10 in inhibiting T cell responses to the initial systemic P.g. exposure and suggest multiple inhibitory mechanisms potentially used by P.g. to evade the host's immune response, thus allowing its persistence in the host. PMID:23077245

  6. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness.

    PubMed

    Blatteau, Jean-Eric; de Maistre, Sébastien; Lambrechts, Kate; Abraini, Jacques; Risso, Jean-Jacques; Vallée, Nicolas

    2015-12-15

    Despite "gold standard" hyperbaric oxygen treatment, 30% of patients suffering from neurological decompression sickness still exhibit incomplete recovery, including sensory impairments. Fluoxetine, a well-known antidepressant, is recognized as having anti-inflammatory effects in the setting of cerebral ischemia. In this study, we focused on the assessment of sensory neurological deficits and measurement of circulating cytokines after decompression in rats treated or not with fluoxetine. Seventy-eight rats were divided into a clinical (n = 38) and a cytokine (n = 40) group. In both groups, the rats were treated with fluoxetine (30 mg/kg po, 6 h beforehand) or with a saccharine solution. All of the rats were exposed to 90 m seawater for 45 min before staged decompression. In the clinical group, paw withdrawal force after mechanical stimulation and paw withdrawal latency after thermal stimulation were evaluated before and 1 and 48 h after surfacing. At 48 h, a dynamic weight-bearing device was used to assess postural stability, depending on the time spent on three or four paws. For cytokine analysis, blood samples were collected from the vena cava 1 h after surfacing. Paw withdrawal force and latency were increased after surfacing in the controls, but not in the fluoxetine group. Dynamic weight-bearing assessment highlighted a better stability on three paws for the fluoxetine group. IL-10 levels were significantly decreased after decompression in the controls, but maintained at baseline level with fluoxetine. This study suggests that fluoxetine has a beneficial effect on sensory neurological recovery. We hypothesize that the observed effect is mediated through maintained anti-inflammatory cytokine IL-10 production. PMID:26494447

  7. Transient infiltration of neutrophils into the thymus following whole-body X-ray irradiation in IL-10 knockout mice

    SciTech Connect

    Fujiwara, Hiroya; Yamazaki, Takahiro; Uzawa, Akiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-05-02

    IL-10 is known to suppress the inflammatory responses in a variety of experimental models. Because we previously found that whole-body X-irradiation causes massive apoptosis in the thymus and transient infiltration of neutrophils, in this study, we examined whether or not IL-10 is involved in the regulation of neutrophil infiltration upon whole-body X-ray irradiation using IL-10 knockout mice. Although IL-10 was induced in the thymus on whole-body X-ray irradiation, apoptosis of thymocytes, neutrophil infiltration, and MIP-2 and KC production in the thymus were not affected by an IL-10 deficiency. Coculturing of bone marrow-derived macrophages with late apoptotic cells caused MIP-2 production, which was also not affected by an IL-10 deficiency. These results suggest the uniqueness of the inflammatory response induced by whole-body X-ray irradiation, which does not seem to be regulated by IL-10.

  8. IL-10 Modulates Th17 Pathogenicity during Autoimmune Diseases

    PubMed Central

    Guo, Beichu

    2016-01-01

    The immune system is essential for host defense against pathogen infections; however dysregulated immune response may lead to inflammatory or autoimmune diseases. Elevated activation of both innate immune cells and T cells such as Th17 cells are linked to many autoimmune diseases, including Multiple Sclerosis (MS), arthritis and inflammatory bowel disease (IBD). To keep immune homeostasis, the immune system develops a number of negative feedback mechanisms, such as the production of anti-inflammatory cytokine IL-10, to dampen excessive production of inflammatory cytokines and uncontrolled activation of immune cells. Our recent studies uncover a novel immunoregulatory function of interferon (IFN) pathways on the innate and antigen-specific immune response. Our results show that IFNα/β induced IL-10 production from macrophages and Th17 cells, which in turn negatively regulated Th17 function in autoimmune diseases such as Experimental Allergic Encephalomyelitis (EAE), an animal model of human MS. In a chronic colitis model resembling human IBD, we also found that IL-10 inhibited inflammasome/IL-1 pathway, and the pathogenicity of Th17 cells, leading to reduced chronic intestinal inflammation. Results from our and other studies further suggest that IL-10 produced by both macrophages and regulatory T cells may shift Th17 into more regulatory phenotypes, leading to reduced inflammatory response. PMID:27308096

  9. Interleukin-10 (IL-10) in Experimental Visceral Leishmaniasis and IL-10 Receptor Blockade as Immunotherapy

    PubMed Central

    Murray, Henry W.; Lu, Christina M.; Mauze, Smita; Freeman, Sherry; Moreira, Andre L.; Kaplan, Gilla; Coffman, Robert L.

    2002-01-01

    Interleukin-10 (IL-10) is thought to promote intracellular infection, including human visceral leishmaniasis, by disabling Th1 cell-type responses and/or deactivating parasitized tissue macrophages. To develop a rationale for IL-10 inhibition as treatment in visceral infection, Th1 cytokine-driven responses were characterized in Leishmania donovani-infected BALB/c mice in which IL-10 was absent or overexpressed or its receptor (IL-10R) was blockaded. IL-10 knockout and normal mice treated prophylactically with anti-IL-10R demonstrated accelerated granuloma assembly and rapid parasite killing without untoward tissue inflammation; IL-12 and gamma interferon mRNA expression, inducible nitric oxide synthase reactivity, and responsiveness to antimony chemotherapy were also enhanced in knockout mice. In IL-10 transgenic mice, parasite replication was unrestrained, and except for antimony responsiveness, measured Th1 cell-dependent events were all initially impaired. Despite subsequent granuloma assembly, high-level infection persisted, and antimony-treated transgenic mice also relapsed. In normal mice with established infection, anti-IL-10R treatment was remarkably active, inducing near-cure by itself and synergism with antimony. IL-10's deactivating effects regulate outcome in experimental visceral leishmaniasis, and IL-10R blockade represents a potential immuno- and/or immunochemotherapeutic approach in this infection. PMID:12379707

  10. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation.

    PubMed Central

    Oswald, I P; Wynn, T A; Sher, A; James, S L

    1992-01-01

    Interleukin 10 (IL-10) inhibits interferon gamma-induced macrophage activation for cytotoxicity against larvae of the human parasite Schistosoma mansoni by suppressing production of the toxic effector molecule nitric oxide (NO). In this study, the mechanism of IL-10 action was identified as inhibition of endogenous tumor necrosis factor alpha (TNF-alpha) production by interferon gamma-activated macrophages. TNF-alpha appears to serve as a cofactor for interferon gamma-mediated activation, since both schistosomulum killing and NO production were inhibited by anti-TNF-alpha antibody, whereas TNF-alpha alone was unable to stimulate these macrophage functions. IL-10 blocked TNF-alpha production by interferon gamma-treated macrophages at the levels of both protein and mRNA synthesis. Addition of exogenous TNF-alpha reversed IL-10-mediated suppression of macrophage cytotoxic activity as well as NO production. Likewise, addition of a macrophage-triggering agent (bacterial lipopolysaccharide or muramyl dipeptide), which induced the production of TNF-alpha, also reversed the suppressive effect of IL-10 on cytotoxic function. In contrast to IL-10, two other cytokines, IL-4 and transforming growth factor beta, which also inhibit macrophage activation for schistosomulum killing and NO production, did not substantially suppress endogenous TNF-alpha production. These results, therefore, describe a separate pathway by which macrophage microbicidal function is inhibited by the down-regulatory cytokine IL-10. Images PMID:1528880

  11. Enhanced inflammation in aged mice following infection with Streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production.

    PubMed

    Williams, Andrew E; José, Ricardo J; Brown, Jeremy S; Chambers, Rachel C

    2015-03-15

    Streptococcus pneumoniae is the most common cause of severe pneumonia in the elderly. However, the impact of aging on the innate inflammatory response to pneumococci is poorly defined. We compared the innate immune response in old vs. young adult mice following infection with S. pneumoniae. The accumulation of neutrophils recovered from bronchoalveolar lavage fluid and lung homogenates was increased in aged compared with young adult mice, although bacterial outgrowth was similar in both age groups, as were markers of microvascular leak. Aged mice had similar levels of IL-1β, TNF, IFN-γ, IL-17, and granulocyte colony-stimulating factor following S. pneumoniae infection, compared with young mice, but increased levels of the chemokines CXCL9, CXCL12, CCL3, CCL4, CCL5, CCL11, and CCL17. Moreover, levels of IL-10 were significantly lower in aged animals. Neutralization of IL-10 in infected young mice was associated with increased neutrophil recruitment but no decrease in bacterial outgrowth. Furthermore, IL-10 neutralization resulted in increased levels of CCL3, CCL5, and CXCL10. We conclude that aging is associated with enhanced inflammatory responses following S. pneumoniae infection as a result of a compromised immunomodulatory cytokine response. PMID:25595646

  12. Allergy or Tolerance: Reduced Inflammatory Cytokine Response and Concomitant IL-10 Production of Lymphocytes and Monocytes in Symptom-Free Titanium Dental Implant Patients

    PubMed Central

    Thomas, Peter; Wollenberg, Andreas

    2013-01-01

    Hypersensitivity reactions to titanium (Ti) are very rare. Thus, we assessed the proinflammatory response and also potential tolerance favoring in vitro reactivity of human blood lymphocytes and monocytes (PBMC) to Ti in healthy individuals (14 without, 6 with complication-free dental Ti implants). The proliferation index (SI) in lymphocyte transformation test (LTT) and production of cytokines linked to innate immune response (IL-1β, IL-6, and TNFα) or immune regulation (IL-10) were assessed in response to TiO2 particles or Ti discs. In both groups, the Ti-LTT reactivity was not enhanced (e.g., SI < 3). The control antigen tetanus toxoid (TT) gave adequate reactivity (median SI individuals without/with implant: 20.6 ± 5.97/19.58 ± 2.99). Individuals without implant showed higher cytokine response to Ti materials than individuals with symptom-free implants; for example, TiO2 rutile particle induced increase of IL-1β 70.27-fold/8.49-fold versus control medium culture. PBMC of 5 of the 6 individuals with complication-free Ti implants showed an ex vivo ongoing production of IL-10 (mean 4.18 ± 2.98 pg/mL)-but none of the 14 controls showed such IL-10 production. Thus in vitro IL-1β-, IL-6-, and TNF-α production reflects “normal” unspecific immune response to Ti. This might be reduced by production of tolerogenic IL-10 in individuals with symptom-free Ti dental implants. PMID:24106709

  13. Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells.

    PubMed

    Van Der Meeren, A; Squiban, C; Gourmelon, P; Lafont, H; Gaugler, M H

    1999-11-01

    Radiation exposure results in an inflammatory reaction with acute as well as subacute consequences. Leukocyte infiltration is one of the predominant early histological changes and involves both cytokines and adhesion molecules. Endothelial cells play a key role in this reaction. We have previously shown the increased production of interleukin 6 (IL-6) and IL-8 and the upregulation in intercellular adhesion molecule 1 (ICAM-1) expression by HUVEC following gamma ray exposure. In the present study, we used the cytokines IL-4 and IL-10 to regulate these radiation-induced manifestations. Human umbilical vascular endothelial cells (HUVEC) were treated with IL-4 and IL-10 (50 pg/ml) either before or after 10- Gy irradiation. Three and seven days after irradiation, IL-6 and IL-8 production by HUVEC (either treated or non-treated) was assessed by enzyme-linked immunosorbent assay (ELISA). Our results show that IL-4, when added after irradiation, reversed the radiation-induced increase in IL-8 production, although slightly increased IL-6 production. IL-10 decreased both IL-8 and IL-6 production when added after irradiation. ICAM-1 expression was evaluated 3 days after irradiation by flow cytometry. The radiation-induced upregulation in ICAM-1 expression remained unaffected by the use of IL-4. Altogether, our results show that radiation-induced endothelial cell activation may be ameliorated by IL-4 and/or IL-10, which is of significance in designing strategies for cytokine-mediated intervention and/or therapy of radiation damage. PMID:10547270

  14. rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia.

    PubMed

    Lee, Hyeon-Soo; Lee, Dong Gun

    2015-07-01

    Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)-10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL-10 production and pre-treatment with recombinant IL-10 (rIL-10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL-10 receptors (IL-10Rs) and IL-10 signalling proteins (IL-10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL-10. FATIICs were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 hrs. Cells in room air were used as controls. IL-10Rs protein and mRNA were analysed by ELISA and qRT-PCR, respectively. IL-10SPs were assessed by Western blot using phospho-specific antibodies. IL-10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL-8 (shown previously to be increased) and the role of IL-10Rs, IL-10SPs were reanalysed in IL-8-added normoxic cells and in the IL-10Rs' siRNA-treated hyperoxic cells. The IL-10Rs' siRNA-treated hyperoxic cells and IL-8-added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre-treatment with rIL-10 prior to hyperoxia exposure increased phosphorylated IL-10SPs, compared to the rIL-10-untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL-8 may play a role, and rIL-10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia. PMID:26059905

  15. Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice

    PubMed Central

    Devkota, Suzanne; Wang, Yunwei; Musch, Mark; Leone, Vanessa; Fehlner-Peach, Hannah; Nadimpalli, Anuradha; Antonopoulos, Dionysios A.; Jabri, Bana; Chang, Eugene B.

    2012-01-01

    The composite human microbiome of Western populations has likely changed over the past century, brought on by new environmental triggers that often have a negative impact on human health1. Here we show that consumption of a diet high in saturated (milk derived)-fat (MF), but not polyunsaturated (safflower oil)-fat (PUFA), changes the conditions for microbial assemblage and promotes expansion of a low abundance, sulfite-reducing pathobiont, Bilophila wadsworthia2. This was associated with a pro-inflammatory TH1 immune response and increased incidence of colitis in genetically susceptible IL-10−/−, but not wild type mice. These effects are mediated by MF-promoted taurine-conjugation of hepatic bile acids, which increases the availability of organic sulfur used by sulfite-reducing microbes like B. wadsworthia. When mice were fed a low-fat (LF) diet supplemented with taurocholic, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in IL10−/− mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can dramatically alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel diseases in genetically susceptible hosts. PMID:22722865

  16. Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA.

    PubMed

    Wu, Zhiguang; Hu, Tuanjun; Rothwell, Lisa; Vervelde, Lonneke; Kaiser, Pete; Boulton, Kay; Nolan, Matthew J; Tomley, Fiona M; Blake, Damer P; Hume, David A

    2016-10-01

    In mammals, the inducible cytokine interleukin 10 is a feedback negative regulator of inflammation. To determine the extent to which this function is conserved in birds, recombinant chicken IL-10 was expressed as a secreted human Ig Fc fusion protein (chIL-10-Fc) and used to immunise mice. Five monoclonal antibodies (mAb) which specifically recognise chicken IL-10 were generated and characterised. Two capture ELISA assays were developed which detected native chIL-10 secreted from chicken bone marrow-derived macrophages (chBMMs) stimulated with lipopolysaccharide (LPS). Three of the mAbs detected intracellular IL-10. This was detected in only a subset of the same LPS-stimulated chBMMs. The ELISA assay also detected massive increases in circulating IL-10 in chickens challenged with the coccidial parasite, Eimeria tenella. The same mAbs neutralised the bioactivity of recombinant chIL-10. The role of IL-10 in feedback control was tested in vitro. The neutralising antibodies prevented IL-10-induced inhibition of IFN-γ synthesis by mitogen-activated lymphocytes and increased nitric oxide production in LPS-stimulated chBMMs. The results confirm that IL-10 is an inducible feedback regulator of immune response in chickens, and could be the target for improved vaccine efficacy or breeding strategies. PMID:27108075

  17. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice.

    PubMed

    Jo, Sung-Gang; Noh, Eui-Jeong; Lee, Jun-Young; Kim, Green; Choi, Joo-Hee; Lee, Mo-Eun; Song, Jung-Hee; Chang, Ji-Yoon; Park, Jong-Hwan

    2016-07-01

    Probiotics such as lactobacilli and bifidobacteria have healthpromoting effects by immune modulation. In the present study, we examined the immunomodulatory properties of Lactobacillus curvatus WiKim38, which was newly isolated from baechu (Chinese cabbage) kimchi. The ability of L. curvatus WiKim38 to induce cytokine production in bone marrow-derived dendritic cells (BMDCs) was determined by enzyme-linked immunosorbent assay. To evaluate the molecular mechanisms underlying L. curvatus Wikim38-mediated IL-10 production, Western blot analyses and inhibitor assays were performed. Moreover, the in vivo anti-inflammatory effects of L. curvatus WiKim38 were examined in a dextran sodium sulfate (DSS)-induced colitis mouse model. L. curvatus WiKim38 induced significantly higher levels of IL-10 in BMDCs compared with that induced by LPS. NF-κB and ERK were activated by L. curvatus WiKim38, and an inhibitor assay revealed that these pathways were required for L. curvatus WiKim38-induced production of IL-10 in BMDCs. An in vivo experiment showed that oral administration of L. curvatus WiKim38 increased the survival rate of mice with DSS-induced colitis and improved clinical signs and histopathological severity in colon tissues. Taken together, these results indicate that L. curvatus Wikim38 may have health-promoting effects via immune modulation, and may thus be applicable for therapy of various inflammatory diseases. PMID:27350616

  18. Role of lipopolysaccharide in the induction of type I interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles.

    PubMed

    Durand, Vanessa; Mackenzie, Joanne; de Leon, Joel; Mesa, Circe; Quesniaux, Valérie; Montoya, Maria; Le Bon, Agnes; Wong, Simon Y C

    2009-03-18

    We investigated the contribution of lipopolysaccharide (LPS) to adjuvant properties of native outer membrane vesicles (NOMV), a vaccine candidate for meningococcal B disease. NOMV induce the maturation of and cytokine production by murine bone marrow-derived dendritic cells through both toll-like receptors (TLR) 2 and 4 which are mostly dependent on the signalling adaptor MyD88. NOMV are also able to induce B cell proliferation in splenocytes from LPS-hyporesponsive mice. However, induction of IL-10 and type I interferon-dependent, antigen-specific and IFN(gamma)-secreting CD8(+) cytotoxic T lymphocyte responses in vivo by NOMV requires LPS. The importance of LPS in the induction of IL-10 and functional cross-priming has implications for NOMV-based vaccine and adjuvant development. PMID:19368771

  19. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes.

    PubMed

    Rossato, Marzia; Curtale, Graziella; Tamassia, Nicola; Castellucci, Monica; Mori, Laura; Gasperini, Sara; Mariotti, Barbara; De Luca, Mariacristina; Mirolo, Massimiliano; Cassatella, Marco A; Locati, Massimo; Bazzoni, Flavia

    2012-11-01

    IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses. PMID:23071313

  20. IL-10 and TNFα Genotypes in SLE

    PubMed Central

    López, Patricia; Gutiérrez, Carmen; Suárez, Ana

    2010-01-01

    The production of two regulators of the inflammatory response, interleukin 10 (IL-10) and tumor necrosis factor α (TNFα), has been found to be deeply deregulated in SLE patients, suggesting that these cytokines may be involved in the pathogenesis of the disease. Genetic polymorphisms at the promoter regions of IL-10 and TNFα genes have been associated with different constitutive and induced cytokine production. Given that individual steady-state levels of these molecules may deviate an initial immune response towards different forms of lymphocyte activation, functional genetic variants in their promoters could influence the development of SLE. The present review summarizes the information previously reported about the involvement of IL-10 and TNFα genetic variants on SLE appearance, clinical phenotype, and outcome. We show that, in spite of the heterogeneity of the populations studied, the existing knowledge points towards a relevant role of IL-10 and TNFα genotypes in SLE. PMID:20625422

  1. microRNA-17–92 Regulates IL-10 Production by Regulatory T Cells and Control of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    de Kouchkovsky, Dimitri; Esensten, Jonathan H.; Rosenthal, Wendy L.; Morar, Malika M.; Bluestone, Jeffrey A.; Jeker, Lukas T.

    2014-01-01

    microRNAs (miRNA) are essential for regulatory T cell (Treg) function but little is known about the functional relevance of individual miRNA loci. We identified the miR-17–92 cluster as CD28 costimulation dependent, suggesting that it may be key for Treg development and function. Although overall immune homeostasis was maintained in mice with miR-17–92–deficient Tregs, expression of the miR-17–92 miRNA cluster was critical for Treg accumulation and function during an acute organ-specific autoimmune disease in vivo. Treg-specific loss of miR-17–92 expression resulted in exacerbated experimental autoimmune encephalitis and failure to establish clinical remission. Using peptide-MHC tetramers, we demonstrate that the miR-17–92 cluster was specifically required for the accumulation of activated Ag-specific Treg and for differentiation into IL-10–producing effector Treg. PMID:23858035

  2. Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells.

    PubMed

    Bommer, I; Muzzio, D O; Zygmunt, M; Jensen, F

    2016-08-01

    The main message of this work is the fact that female sex hormones, progesterone and estradiol, whose levels significantly rise during pregnancy, inhibit the production of anti-inflammatory cytokine IL-10 with no apparent effect on pro-inflammatory cytokine TNF-α by activated MZ B cells. This is an important piece of information and helps to better understand how the maternal immune system controls the balance between immune tolerance and immune activation during pregnancy leading to the simultaneously acceptance of the semi-allogeneic fetus and the proper defense of the mother against pathogens during this critical period of time. PMID:27317920

  3. DEAD-box proteins, like Leishmania eIF4A, modulate interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha production by human monocytes.

    PubMed

    Barhoumi, M; Meddeb-Garnaoui, A; Tanner, N K; Banroques, J; Kaabi, B; Guizani, I

    2013-01-01

    Previously we showed that His-tagged, recombinant, Leishmania infantum eukaryotic initiation factor (LeIF) was both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described for other members of the DEAD-box helicase family. In addition, we showed that LeIF induces the production of IL-12, IL-10, and TNF-α by human monocytes. This study aims to characterize the cytokine-inducing activity in human monocytes of several proteins belonging to the DEAD-box family from mammals and yeast. All tested proteins contained the 11 conserved motifs (Q, I, Ia, GG Ib, II, III, IV, QxxR, V and VI) characteristic of DEAD-box proteins, but they have different biological functions and different percentages of identities with LeIF. We show that these mammalian or yeast recombinant proteins also are able to induce IL-12, IL-10 and TNF-α secretion by monocytes of healthy human subjects. This cytokine-inducing activity is proteinase K sensitive and polymyxin B resistant. Our results show that the induction of cytokines in human monocytes is not unique to the protein LeIF of Leishmania, and it suggests that the activity of certain DEAD-box proteins can be exploited as adjuvant and/or to direct immune responses towards a Th1 profile in vaccination or immunotherapy protocols. PMID:23363368

  4. Involvement of TLR6 in the induction of COX-2, PGE2 and IL-10 in macrophages by lipids from virulent S2P and attenuated R1A Babesia bovis strains.

    PubMed

    Gimenez, G; Belaunzarán, M L; Magalhães, K G; Poncini, C V; Lammel, E M; González Cappa, S M; Bozza, P T; Isola, E L D

    2016-06-15

    Toll like receptors (TLRs) are involved in the modulation of diverse host genes expression through a complex network of signalling events that allow for an appropriate response to a microbial pathogen. In the present work we used TLR6KO mice in order to study the role of TLR6 in the immune discrimination of lipids from two Babesia bovis strains, attenuated R1A (LA) and virulent S2P (LV), and the consequent macrophage activation. We demonstrated that TLR6 is required for lipid body induction in murine peritoneal macrophages by both LA and LV. Interestingly, as regards IL-10 and COX-2/PGE2 pathway induction by LA and LV, we observed differences in the biological effects produced by these lipid extracts. Our results indicate a role of TLR6 in the down-modulation of these immunoregulators only in the case of LA, whereas this receptor was not implicated in pro-inflammatory TNFα, IL-6 and KC release induced by LA. Remarkably, LV did not exert the down-modulatory effect observed for LA, supporting the notion that LA and LV possess different lipid composition that could correlate with the polar pathogenic effect of both B. bovis strains. PMID:27198789

  5. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells; a critical mechanism for protection from severe immunopathology during malaria infection1

    PubMed Central

    Freitas do Rosário, Ana Paula; Lamb, Tracey; Spence, Philip; Stephens, Robin; Lang, Agathe; Roers, Axel; Muller, Werner; O’Garra, Anne; Langhorne, Jean

    2012-01-01

    Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. Interleukin (IL)-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. Here, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10−/− mice, with significant weight loss, drop in temperature and increased mortality. Furthermore, we show that IFN-γ+ Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS and low levels of CD127. Although Foxp3+ regulatory CD4+ T cells produce IL-10 during infection, highly activated IFN-γ+ Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria we demonstrate that the generation of protective IL10+IFN-γ+ Th1 cells is dependent on IL-27 signaling, and independent of IL-21. PMID:22205023

  6. IL10 Gene Polymorphisms Are Associated With Asthma Phenotypes in Children

    PubMed Central

    Lyon, Helen; Lange, Christoph; Lake, Stephen; Silverman, Edwin K.; Randolph, Adrienne G.; Kwiatkowski, David; Raby, Benjamin A.; Lazarus, Ross; Weiland, Katy M.; Laird, Nan; Weiss, Scott T.

    2013-01-01

    IL10 is an anti-inflammatory cytokine that has been found to have lower production in macrophages and mononuclear cells from asthmatics. Since reduced IL10 levels may influence the severity of asthma phenotypes, we examined IL10 single-nucleotide polymorphisms (SNPs) for association with asthma severity and allergy phenotypes as quantitative traits. Utilizing DNA samples from 518 Caucasian asthmatic children from the Childhood Asthma Management Program (CAMP) and their parents, we genotyped six IL10 SNPs: 3 in the promoter, 2 in introns, and one in the 3′ UTR. Using family-based association tests, each SNP was tested for association with asthma and allergy phenotypes individually. Population-based association analysis was performed with each SNP locus, the promoter haplotypes and the 6-loci haplotypes. The 3′ UTR SNP was significantly associated with FEV1 as a percent of predicted (FEV1PP) (P=0.0002) in both the family and population analyses. The promoter haplotype GCC was positively associated with IgE levels and FEV1PP (P=0.007 and 0.012, respectively). The promoter haplotype ATA was negatively associated with lnPC20 and FEV1PP (P=0.008 and 0.043, respectively). Polymorphisms in IL10 are associated with asthma phenotypes in this cohort. Further studies of variation in the IL10 gene may help elucidate the mechanism of asthma development in children. PMID:14748015

  7. Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression

    PubMed Central

    Hu, Xiang; Han, Chaofeng; Jin, Jing; Qin, Kewei; Zhang, Hua; Li, Tianliang; Li, Nan; Cao, Xuetao

    2016-01-01

    Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11bhi regulatory dendritic cells (DCs) can produce more IL-10, and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam−/−) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses. PMID:27188220

  8. Integrin CD11b attenuates colitis by strengthening Src-Akt pathway to polarize anti-inflammatory IL-10 expression.

    PubMed

    Hu, Xiang; Han, Chaofeng; Jin, Jing; Qin, Kewei; Zhang, Hua; Li, Tianliang; Li, Nan; Cao, Xuetao

    2016-01-01

    Interleukin-10 (IL-10) plays a central role in regulation of intestinal mucosal homeostasis and prevention of inflammatory bowel disease (IBD). We previously reported that CD11b(hi) regulatory dendritic cells (DCs) can produce more IL-10, and CD11b can negatively regulate Toll-like receptors (TLRs)-induced inflammatory responses in macrophages. However whether CD11b and its signaling can control autoimmunity via IL-10 production remains unclear. Here we found that CD11b deficient (Itgam(-/-)) mice were more susceptible to dextran sulfate sodium (DSS)-induced colitis, with more tumor necrosis factor α (TNF-α) while less IL-10 production. CD11b inhibited nuclear factor-kappa B (NF-κB) while promoted activator protein 1 (AP-1) activation through activating sarcoma oncogene (Src), leading to decreased TNF-α while increased IL-10 production. Src interacted with and promoted c-casitas B lineage lymphoma proto-oncogene (c-Cbl)-mediated degradation of the inhibitory subunit p85 of phosphatidylinositol 3-kinase (PI3K). Importantly, Src inhibitor dasatinib aggravated DSS-induced colitis by decreasing IL-10 while increasing TNF-α in vivo. Therefore, CD11b promotes IL-10 production by activating Src-Akt signal pathway. An axis of CD11b-Src pathway is important in balancing homeostasis of TLR-induced pro-inflammatory and anti-inflammatory responses. PMID:27188220

  9. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice

    PubMed Central

    Han, Xinbing; Kitamoto, Shiro; Wang, Hongwei; Boisvert, William A.

    2010-01-01

    In atherogenesis, macrophage foam cell formation is modulated by pathways involving both the uptake and efflux of cholesterol. We recently showed that interleukin-10 (IL-10) modulates lipid metabolism by enhancing both uptake and efflux of cholesterol in macrophages. However, the mechanistic details of these properties in vivo have been unclear. Thus, the purpose of this study was to determine whether expression of IL-10 in macrophages would alter susceptibility to atherosclerosis and whether IL-10 exerts its antiatherosclerotic properties by modulating lipid metabolism in macrophages. We utilized a macrophage-specific retroviral vector that allows long-term in vivo expression of IL-10 in macrophages through transplantation of retrovirally transduced bone marrow cells (BMCs). IL-10 expressed by macrophages derived from transduced BMCs inhibited atherosclerosis in LDLR−/− mice by reducing cholesteryl ester accumulation in atherosclerotic sites. Experiments with primary macrophages indicated that macrophage source of IL-10 stimulated both the uptake (by up-regulating scavenger receptors) and efflux of cholesterol (by activating the PPARγ-LXR-ABCA1/ABCG1 pathway), thereby reducing inflammation and apoptosis in atherosclerosis. These findings indicate that BMC-transduced macrophage IL-10 production can act as a strong antiatherogenic agent, and they highlight a novel antiatherosclerotic therapy using a simple, yet effective, stem cell transduction system that facilitates long-term expression of IL-10 in macrophages.—Han, X., Kitamoto, S., Wang, H., Boisvert, W. A. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice. PMID:20354139

  10. IL-10 inhibits alloreactive cytotoxic T lymphocyte generation in vivo.

    PubMed

    Wang, L; Goillot, E; Tepper, R I

    1994-12-01

    In this report, we present evidence that the CTL response directed against MHC Class I allo-determinants can be inhibited as a result of IL-10 expression in vivo. The presence of localized IL-10 secretion at the site of allogeneic tumor cell challenge resulted in marked inhibition of the CTL response and allowed growth of the tumor in the allogeneic host. Using purified CD4+ T cells from mice immunized in the presence or absence of IL-10, we have shown that the loss of alloreactivity as a consequence of IL-10 expression results from the inhibition of CD4+ T cell function. The expression of either IL-2 or IFN-gamma with IL-10 locally at the time of allogeneic cell challenge completely restored CTL alloreactivity, suggesting that the action of IL-10 could be bypassed by providing helper T lymphocyte-derived cytokines of the Th1 type at the site of immunization. Inhibition of alloreactivity by IL-10 was observed using either purified macrophages or dendritic cells as APC in an in vitro assay. Thus, the expression of IL-10 following antigenic challenge (such as that observed in Th2-like immune responses) may profoundly limit the ability for generating functional CTL in vivo. PMID:7994751

  11. Relationship of semen hyperviscosity with IL-6, TNF-α, IL-10 and ROS production in seminal plasma of infertile patients with prostatitis and prostato-vesiculitis.

    PubMed

    Castiglione, R; Salemi, M; Vicari, L O; Vicari, E

    2014-12-01

    Changes in levels of oxidative damage products in semen and their relationship to seminal fluid viscosity (SFV) have recently received increasing research interest. We analysed whether SFV was associated with ROS generation, levels of cytokines TNF-alpha (TNF-α), IL-6 and IL-10 and seminal leucocyte concentration, and whether ROS production was related to the extent of infections/inflammations at one (prostatitis) or two (prostato-vesiculitis) male accessory glands. We studied 169 infertile patients, with chronic bacterial prostatitis (PR, n = 74) and/or bilateral prostato-vesiculitis (PV, n = 95), as diagnosed by the ultrasound (US) criteria. Healthy fertile men (n = 42) served as controls. In the PV patient group, SFV, semen characteristics and ROS production had median values that were significantly higher than those found in PR patients and controls, although other sperm variables had values significantly lower than those found in PR patients or controls. In PV infertile patients, ROS generation and pro-inflammatory cytokines levels were higher than those found in PR infertile patients and controls, although seminal IL-10 levels in PV and PR patients were lower than those found in the controls. In PR patients, the levels of SFV were positively related to TNF-α (r = 0.67; P < 0.01), fMLP-stimulated ROS production in the 45% Percoll fraction (r = 0.687, P < 0.01) and the 90% Percoll fraction in basal condition (r = 0.695, P < 0.01), and after fMLP-stimulation (r = 0.688, P < 0.01). Thus, our data indicated that seminal hyperviscosity is associated with increased oxidative stress in infertile men and increased pro-inflammatory interleukins in patients with male accessory gland infection, more when the infection was extended to the seminal vesicles. PMID:24329571

  12. TonEBP suppresses IL-10-mediated immunomodulation

    PubMed Central

    Choi, Soo Youn; Lee, Hwan Hee; Lee, Jun Ho; Ye, Byeong Jin; Yoo, Eun Jin; Kang, Hyun Je; Jung, Gyu Won; An, Seung Min; Lee-Kwon, Whaseon; Chiong, Mario; Lavandero, Sergio; Kwon, Hyug Moo

    2016-01-01

    TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages. PMID:27160066

  13. TonEBP suppresses IL-10-mediated immunomodulation.

    PubMed

    Choi, Soo Youn; Lee, Hwan Hee; Lee, Jun Ho; Ye, Byeong Jin; Yoo, Eun Jin; Kang, Hyun Je; Jung, Gyu Won; An, Seung Min; Lee-Kwon, Whaseon; Chiong, Mario; Lavandero, Sergio; Kwon, Hyug Moo

    2016-01-01

    TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages. PMID:27160066

  14. In Pulmonary Paracoccidioidomycosis IL-10 Deficiency Leads to Increased Immunity and Regressive Infection without Enhancing Tissue Pathology

    PubMed Central

    Feriotti, Claudia; Araújo, Eliseu F.; Bassi, Ênio J.; Loures, Flávio V.; Calich, Vera L. G.

    2013-01-01

    Background Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM. Methodology/Principal Findings Wild type (WT) and IL-10−/− C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10−/− mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10−/− and WT mice were i.t. infected with 1×106 Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10−/− mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10−/− mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4+ and CD8+ T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10−/− mice. Conclusions/Significance Our work demonstrates for the first time that IL-10 plays a detrimental

  15. NAD+ regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4+ CD25+ Foxp3+ T cells independent

    PubMed Central

    Elkhal, Abdallah; Rodriguez Cetina Biefer, Hector; Heinbokel, Timm; Uehara, Hirofumi; Quante, Markus; Seyda, Midas; Schuitenmaker, Jeroen M.; Krenzien, Felix; Camacho, Virginia; de la Fuente, Miguel A.; Ghiran, Ionita; Tullius, Stefan G.

    2016-01-01

    CD4+ CD25+ Foxp3+ Tregs have been shown to play a central role in immune homeostasis while preventing from fatal inflammatory responses, while Th17 cells have traditionally been recognized as pro-inflammatory mediators implicated in a myriad of diseases. Studies have shown the potential of Tregs to convert into Th17 cells, and Th17 cells into Tregs. Increasing evidence have pointed out CD25 as a key molecule during this transdifferentiation process, however molecules that allow such development remain unknown. Here, we investigated the impact of NAD+ on the fate of CD4+ CD25+ Foxp3+ Tregs in-depth, dissected their transcriptional signature profile and explored mechanisms underlying their conversion into IL-17A producing cells. Our results demonstrate that NAD+ promotes Treg conversion into Th17 cells in vitro and in vivo via CD25 cell surface marker. Despite the reduced number of Tregs, known to promote homeostasis, and an increased number of pro-inflammatory Th17 cells, NAD+ was able to promote an impressive allograft survival through a robust systemic IL-10 production that was CD4+ CD25+ Foxp3+ independent. Collectively, our study unravels a novel immunoregulatory mechanism of NAD+ that regulates Tregs fate while promoting allograft survival that may have clinical applications in alloimmunity and in a wide spectrum of inflammatory conditions. PMID:26928119

  16. Is There Any Difference between the In Situ and Systemic IL-10 and IFN-γ Production when Clinical Forms of Cutaneous Sporotrichosis Are Compared?

    PubMed

    Morgado, Fernanda N; Schubach, Armando O; Pimentel, Maria Inês; Lyra, Marcelo R; Vasconcellos, Érica C F; Valete-Rosalino, Claudia M; Conceição-Silva, Fátima

    2016-01-01

    Fungus of the Sporothrix schenckii complex can produce skin lesions in humans, commonly lymphocutaneous (LC) and fixed (F) forms of sporotrichosis. Some authors have suggested that clinical forms are influenced by differences in virulence and genetic profile of isolates. But little is known about the role of immune response in determining the clinical outcome of sporotrichosis. To verify the profile of systemic and in situ IFN-γ and IL-10 expression in sporotrichosis patients, and consequently to detect any difference between the two compartments and/or clinical presentation, we quantified the number of IFN-γ and IL-10 producer peripheral blood mononuclear cells stimulated with S. schenckii antigen (Ss-Ag) by Elispot, and quantified cytokines expression by in situ immunohistochemistry in the same patient. Three groups were formed: 1- LC (n = 9); 2- F (n = 10); 3- healthy individuals (n = 14). All sporotrichosis patients produced high amounts of systemic IFN- γ when compared to uninfected individuals. No differences were observed between LC and F groups. Regarding in situ IL-10 expression, a difference between LC and F groups was observed: LC lesions presented higher amounts of IL-10 than F lesions differently from systemic IL-10 which showed similarities. Our data suggests that LC lesions present higher IL-10 expression which could be related to regulatory mechanisms for compensating the tissue injury, however favoring fungal persistence in the lesions. Surprisingly, there were no differences in systemic and in situ IFN- γ expression between CL and F patients, although it was significantly higher expressed in these patients than in healthy individuals. PMID:27622513

  17. Evaluation of TNF-α, IL-10 and IL-6 Cytokine Production and Their Correlation with Genotype Variants amongst Tuberculosis Patients and Their Household Contacts

    PubMed Central

    Joshi, Lavanya; Ponnana, Meenakshi; Sivangala, Ramya; Chelluri, Lakshmi Kiran; Nallari, Prathiba; Penmetsa, Sitaramaraju; Valluri, Vijayalakshmi; Gaddam, Sumanlatha

    2015-01-01

    Background Household contacts of diagnostically established tuberculosis (TB) patients are highly susceptible to disease development. It is surmised that cytokines perhaps play a synergistic and a prognostic role in the activation of the otherwise latent infection in these house hold contacts. Evaluation of the cytokines and any of their inherent polymorphisms might provide a useful diagnostic tool in evaluating the immune regulation and the progression of the disease. The cytokines thus released in a paracrine manner in serum may also provide an indirect measure of the cytokine function. Objective The present study was aimed to evaluate the levels of TNF-α, IL-10 & IL-6 cytokines and their correlation with genotype variants amongst tuberculosis patients and their household contacts. Methods The cytokine levels were estimated in serum by enzyme-linked immunosorbent assay (ELISA) and their polymorphisms were studied by amplification refractory mutation system polymerase chain reaction (ARMs PCR) in active pulmonary tuberculosis patients (APTB = 150), household contacts (HHC = 190), and healthy controls (HC = 150). Results The median values of TNF-α cytokine were significantly high among APTB and HHC compared to HCs (P< 0.0001 and 0.0001). IL-6 levels also were elevated among APTB compared to HHC and HC, and a significant difference was observed between APTB and HHC at P<0.0001; APTB & HC at P< 0.04; HHC & HC at P< 0.01. The IL-10 levels were low in APTB compared to HHC and HCs and no significant difference was observed. TNF-α/IL-10 ratio was significant and indicated Th1 predominance in APTB and HHC. IL-6/IL-10 showed pronounced Th1 expression in APTB and Th2 in HHC and HC. The ROC analysis indicated that both IL-10 and IL-6 can be used to decide the risk of exposed individual to a disease. The results of multivariate analysis indicate that IL-10 (-1082) GA genotype was significantly associated with p<0.028 in APTB. No significant association was observed between

  18. RNA interference of IL-10 in leukemic B-1 cells.

    PubMed

    McCarthy, Brian A; Mansour, Amal; Lin, Yi-Chu; Kotenko, Sergei; Raveche, Elizabeth

    2004-07-23

    RNA interference, or RNAi, is designed to work by Watson-Crick base pairing and to result in a posttranscriptional block in protein synthesis. Antiapoptotic proteins are a major focus of cancer therapy and make attractive targets for RNAi. An IL-10 RNAi sequence was designed in accordance with Tuschl rules and was modeled to a hairpin configuration. In chronic lymphocytic leukemia (CLL), the most common leukemia in the Western world, the failure to undergo apoptosis may be responsible for the accumulation of malignant B-1 cells. Interleukin-10, despite controversy, has been shown to have antiapoptotic properties, and increased endogenous IL-10 production has been found in CLL by several labs. A malignant B-1 cell line, LNC, derived from an NZB mouse (a murine model for CLL) was utilized as a target for IL-10 RNAi. Our earlier studies of antisense IL-10 resulted in antiproliferative and proapoptotic effects. The cytotoxic effects of IL-10 RNAi were dose- and time-dependent, with an optimal dose 10-fold lower than that of antisense IL-10. IL-10 RNAi lowered IL-10 protein as measured by ELISA. 2 micro M IL-10 RNAi initiated a G2/M block and a decrease in the message for cdc25C, the M-phase inducer phosphatase. IL-10 RNAi efficiently induced apoptosis. Bcl7C, a member of the antiapoptotic Bcl family, was significantly down-regulated. IL-10 modulating Bcl7C expression represents a novel mechanism in the evasion of apoptosis. This approach, by itself or in conjunction with current therapies, merits consideration in similar B-cell malignancies. PMID:15270555

  19. Activation of murine invariant NKT cells promotes susceptibility to candidiasis by IL-10 induced modulation of phagocyte antifungal activity.

    PubMed

    Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio

    2016-07-01

    Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. PMID:27151377

  20. Early-Life Gut Bacteria Associate with IL-4−, IL-10− and IFN-γ Production at Two Years of Age

    PubMed Central

    Johansson, Maria A.; Saghafian-Hedengren, Shanie; Haileselassie, Yeneneh; Roos, Stefan; Troye-Blomberg, Marita

    2012-01-01

    Microbial exposure early in life influences immune maturation and potentially also the development of immune-mediated disease. Here we studied early-life gut colonization in relation to cytokine responses at two years of age. Fecal samples were collected from infants during the first two months of life. DNA was extracted from the fecal samples and Bifidobacterium (B.) adolescentis, B. breve, B. bifidum, a group of lactobacilli (L. casei, L. paracasei and L. rhamnosus) as well as Staphylococcus (S.) aureus were detected with real time PCR. Peripheral mononuclear cells were stimulated with phytohaemagglutinin (PHA) and numbers of IL-4−, IL-10− and IFN-γ secreting cells were evaluated using ELISpot. We further stimulated peripheral blood mononuclear cells with bacterial supernatants in vitro and assessed the IL-4−, IL-10− and IFN-γ inducing capacity by flow cytometry and ELISA. Early S. aureus colonization associated with higher numbers of IL-4− (p = 0.022) and IL-10 (p = 0.016) producing cells at two years of age. In contrast to colonization with S. aureus alone, co-colonization with lactobacilli associated with suppression of IL-4− (p = 0.004), IL-10− (p = 0.004) and IFN-γ (p = 0.034) secreting cells. In vitro stimulations of mononuclear cells with bacterial supernatants supported a suppressive role of L. rhamnosus GG on S. aureus-induced cytokine responses. We demonstrate that the early gut colonization pattern associates with the PHA-induced cytokine profile at two years of age and our in vitro findings support that specific bacterial species influence the T helper cell subsets. This suggests that dysbiosis in the early microbiota may modulate the risk of developing inflammatory conditions like allergy. PMID:23185315

  1. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    NASA Astrophysics Data System (ADS)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  2. High Basal Activity of the PTPN22 Gain-of-Function Variant Blunts Leukocyte Responsiveness Negatively Affecting IL-10 Production in ANCA Vasculitis

    PubMed Central

    Cao, Yali; Yang, Jiajin; Colby, Kerry; Hogan, Susan L.; Hu, Yichun; Jennette, Caroline E.; Berg, Elisabeth A.; Zhang, Youkang; Jennette, J. Charles; Falk, Ronald J.; Preston, Gloria A.

    2012-01-01

    Consequences of expression of the protein tyrosine phosphatase nonreceptor 22 (PTPN22) gain-of-function variant were evaluated in leukocytes from patients with anti-neutrophil cytoplasmic autoantibody (ANCA) disease. The frequency of the gain-of-function allele within the Caucasian patient cohort was 22% (OR 1.45), compared to general American Caucasian population (16.5%, p = 0.03). Examination of the basal phosphatase activity of PTPN22 gain-of-function protein indicated persistently elevated activity in un-stimulated peripheral leukocytes, while basal activity was undetectable in leukocytes from patients without the gain-of-function variant. To examine consequences of persistently high PTPN22 activity, the activation status of ERK and p38 MAPK were analyzed. While moderate levels of activated ERK were observed in controls, it was undetectable in leukocytes expressing PTPN22 gain-of-function protein and instead p38MAPK was up-regulated. IL-10 transcription, reliant on the ERK pathway, was negatively affected. Over the course of disease, patients expressing variant PTPN22 did not show a spike in IL-10 transcription as they entered remission in contrast to controls, implying that environmentally triggered signals were blunted. Sustained activity of PTPN22, due to the gain-of-function mutation, acts as a dominant negative regulator of ERK activity leading to blunted cellular responsiveness to environmental stimuli and expression of protective cytokines. PMID:22880107

  3. Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFβ in patients with Multiple Sclerosis.

    PubMed

    Blumenfeld, Shiri; Staun-Ram, Elsebeth; Miller, Ariel

    2016-06-01

    Fingolimod, an oral therapeutic agent approved for patients with relapsing-remitting Multiple Sclerosis (MS), has been shown to prevent lymphocyte egress from secondary lymphoid tissues; however the specific drug effect on B cells in fingolimod-treated patients remains to be fully elucidated. We present here a comprehensive analysis on the proportions of B cell subsets in the periphery, and the levels of activation, functional surface markers and cytokine profile of B cells in MS patients, following initiation of fingolimod therapy, using flow cytometry and cytokine bead array. Fingolimod therapy increased the ratio of naïve to memory cells, elevated the percentage of plasma cells and highly increased the proportion of transitional B cells as well as additional regulatory subsets, including: IL10(+), CD25(+) and CD5(+) B cells. The percentage of activated CD69(+) cells was highly elevated in the remaining circulating B cells, which produced increased levels of IL10, TGFβ, IL6, IL4, LTα, TNFα and IFNγ cytokines, with an overall increased ratio of TGFβ to pro-inflammatory cytokines. Furthermore, fingolimod therapy reduced ICAM-1(+) cells, suggesting a possible reduction in antigen-presenting capacity. Phosphorylated-fingolimod was shown in vitro to reduce S1PR1 RNA and protein, to slightly increase viability and to activate anti-apoptotic Bcl2 in transformed B cells of patients with MS. In conclusion, fingolimod therapy modulates significantly the composition of circulating B cells, promoting regulatory subsets and an anti-inflammatory cytokine repertoire. PMID:27055778

  4. NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity.

    PubMed

    Kobayashi, Motoi; Usui, Fumitake; Karasawa, Tadayoshi; Kawashima, Akira; Kimura, Hiroaki; Mizushina, Yoshiko; Shirasuna, Koumei; Mizukami, Hiroaki; Kasahara, Tadashi; Hasebe, Naoyuki; Takahashi, Masafumi

    2016-01-01

    NLRP3 inflammasomes recognize non-microbial danger signals and induce release of proinflammatory cytokine interleukin (IL)-1β, leading to sterile inflammation in cardiovascular disease. Because sterile inflammation is involved in doxorubicin (Dox)-induced cardiotoxicity, we investigated the role of NLRP3 inflammasomes in Dox-induced cardiotoxicity. Cardiac dysfunction and injury were induced by low-dose Dox (15 mg/kg) administration in NLRP3-deficient (NLRP3(-/-)) mice but not in wild-type (WT) and IL-1β(-/-) mice, indicating that NLRP3 deficiency enhanced the susceptibility to Dox-induced cardiotoxicity independent of IL-1β. Although the hearts of WT and NLRP3(-/-) mice showed no significant difference in inflammatory cell infiltration, macrophages were the predominant inflammatory cells in the hearts, and cardiac IL-10 production was decreased in Dox-treated NLRP3(-/-) mice. Bone marrow transplantation experiments showed that bone marrow-derived cells contributed to the exacerbation of Dox-induced cardiotoxicity in NLRP3(-/-) mice. In vitro experiments revealed that NLRP3 deficiency decreased IL-10 production in macrophages. Furthermore, adeno-associated virus-mediated IL-10 overexpression restored the exacerbation of cardiotoxicity in the NLRP3(-/-) mice. These results demonstrated that NLRP3 regulates macrophage IL-10 production and contributes to the pathophysiology of Dox-induced cardiotoxicity, which is independent of IL-1β. Our findings identify a novel role of NLRP3 and provided new insights into the mechanisms underlying Dox-induced cardiotoxicity. PMID:27225830

  5. Locally Produced IL-10 Limits Cutaneous Vaccinia Virus Spread

    PubMed Central

    Cush, Stephanie S.; Reynoso, Glennys V.; Kamenyeva, Olena; Bennink, Jack R.; Yewdell, Jonathan W.; Hickman, Heather D.

    2016-01-01

    Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth. PMID:26991092

  6. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation

    PubMed Central

    Hsu, Tsung-I; Wang, Yi-Chang; Hung, Chia-Yang; Yu, Chun-Hui; Su, Wu-Chou; Chang, Wen-Chang; Hung, Jan-Jong

    2016-01-01

    The role of IL10 in the tumorigenesis of various cancer types is still controversial. Here, we found that increased IL10 levels are correlated with a poor prognosis in lung cancer patients. Moreover, IL10 levels were significantly increased in the lungs and serum of EGFRL858R- and Kras4bG12D-induced lung cancer mice, indicating that IL10 might facilitate lung cancer tumorigenesis. IL10 knockout in EGFRL858R and Kras4bG12D mice inhibited the development of lung tumors and decreased the levels of infiltrating M2 macrophages and tumor-promoting Treg lymphocytes. We also showed that EGF increases IL10 expression by enhancing IL10 mRNA stability, and IL10 subsequently activates JAK1/STAT3, Src, PI3K/Akt, and Erk signaling pathways. Interestingly, the IL10-induced recruitment of phosphorylated Src was critical for inducing EGFR through the activation of the JAK1/STAT3 pathway, suggesting that Src and JAK1 positively regulate each other to enhance STAT3 activity. Doxycycline-induced EGFRL858R mice treated with gefitinib and anti-IL10 antibodies exhibited poor tumor formation. In conclusion, IL10 and EGFR regulate each other through positive feedback, which leads to lung cancer formation. PMID:26956044

  7. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation.

    PubMed

    Hsu, Tsung-I; Wang, Yi-Chang; Hung, Chia-Yang; Yu, Chun-Hui; Su, Wu-Chou; Chang, Wen-Chang; Hung, Jan-Jong

    2016-04-12

    The role of IL10 in the tumorigenesis of various cancer types is still controversial. Here, we found that increased IL10 levels are correlated with a poor prognosis in lung cancer patients. Moreover, IL10 levels were significantly increased in the lungs and serum of EGFRL858R- and Kras4bG12D-induced lung cancer mice, indicating that IL10 might facilitate lung cancer tumorigenesis. IL10 knockout in EGFRL858R and Kras4bG12D mice inhibited the development of lung tumors and decreased the levels of infiltrating M2 macrophages and tumor-promoting Treg lymphocytes. We also showed that EGF increases IL10 expression by enhancing IL10 mRNA stability, and IL10 subsequently activates JAK1/STAT3, Src, PI3K/Akt, and Erk signaling pathways. Interestingly, the IL10-induced recruitment of phosphorylated Src was critical for inducing EGFR through the activation of the JAK1/STAT3 pathway, suggesting that Src and JAK1 positively regulate each other to enhance STAT3 activity. Doxycycline-induced EGFRL858R mice treated with gefitinib and anti-IL10 antibodies exhibited poor tumor formation. In conclusion, IL10 and EGFR regulate each other through positive feedback, which leads to lung cancer formation. PMID:26956044

  8. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10-Deficient Mice.

    PubMed

    Polukort, Stephanie H; Rovatti, Jeffrey; Carlson, Logan; Thompson, Chelsea; Ser-Dolansky, Jennifer; Kinney, Shannon R M; Schneider, Sallie S; Mathias, Clinton B

    2016-06-15

    IL-10 is a key pleiotropic cytokine that can both promote and curb Th2-dependent allergic responses. In this study, we demonstrate a novel role for IL-10 in promoting mast cell expansion and the development of IgE-mediated food allergy. Oral OVA challenge in sensitized BALB/c mice resulted in a robust intestinal mast cell response accompanied by allergic diarrhea, mast cell activation, and a predominance of Th2 cytokines, including enhanced IL-10 expression. In contrast, the development of intestinal anaphylaxis, including diarrhea, mast cell activation, and Th2 cytokine production, was significantly attenuated in IL-10(-/-) mice compared with wild-type (WT) controls. IL-10 also directly promoted the expansion, survival, and activation of mast cells; increased FcεRI expression on mast cells; and enhanced the production of mast cell cytokines. IL-10(-/-) mast cells had reduced functional capacity, which could be restored by exogenous IL-10. Similarly, attenuated passive anaphylaxis in IL-10(-/-) mice could be restored by IL-10 administration. The adoptive transfer of WT mast cells restored allergic symptoms in IL-10(-/-) mice, suggesting that the attenuated phenotype observed in these animals is due to a deficiency in IL-10-responding mast cells. Lastly, transfer of WT CD4 T cells also restored allergic diarrhea and intestinal mast cell numbers in IL-10(-/-) mice, suggesting that the regulation of IL-10-mediated intestinal mast cell expansion is T cell dependent. Our observations demonstrate a critical role for IL-10 in driving mucosal mast cell expansion and activation, suggesting that, in its absence, mast cell function is impaired, leading to attenuated food allergy symptoms. PMID:27183617

  9. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR.

    PubMed

    Du, Qian; Huang, Yong; Wang, Tongtong; Zhang, Xiujuan; Chen, Yu; Cui, Beibei; Li, Delong; Zhao, Xiaomin; Zhang, Wenlong; Chang, Lingling; Tong, Dewen

    2016-04-01

    Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages. PMID:26883107

  10. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR

    PubMed Central

    Wang, Tongtong; Zhang, Xiujuan; Chen, Yu; Cui, Beibei; Li, Delong; Zhao, Xiaomin; Zhang, Wenlong; Chang, Lingling; Tong, Dewen

    2016-01-01

    Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages. PMID:26883107

  11. The aryl hydrocarbon receptor/microRNA-212/132 axis in T cells regulates IL-10 production to maintain intestinal homeostasis.

    PubMed

    Chinen, Ichino; Nakahama, Taisuke; Kimura, Akihiro; Nguyen, Nam T; Takemori, Hiroshi; Kumagai, Ayako; Kayama, Hisako; Takeda, Kiyoshi; Lee, Soyoung; Hanieh, Hamza; Ripley, Barry; Millrine, David; Dubey, Praveen K; Nyati, Kishan K; Fujii-Kuriyama, Yoshiaki; Chowdhury, Kamal; Kishimoto, Tadamitsu

    2015-08-01

    Aryl hydrocarbon receptor (Ahr), a transcription factor, plays a critical role in autoimmune inflammation of the intestine. In addition, microRNAs (miRNAs), small non-coding oligonucleotides, mediate pathogenesis of inflammatory bowel diseases (IBD). However, the precise mechanism and interactions of these molecules in IBD pathogenesis have not yet been investigated. We analyzed the role of Ahr and Ahr-regulated miRNAs in colonic inflammation. Our results show that deficiency of Ahr in intestinal epithelial cells in mice exacerbated inflammation in dextran sodium sulfate-induced colitis. Deletion of Ahr in T cells attenuated colitis, which was manifested by suppressed Th17 cell infiltration into the lamina propria. Candidate miRNA analysis showed that induction of colitis elevated expression of the miR-212/132 cluster in the colon of wild-type mice, whereas in Ahr (-/-) mice, expression was clearly lower. Furthermore, miR-212/132(-/-) mice were highly resistant to colitis and had reduced levels of Th17 cells and elevated levels of IL-10-producing CD4(+) cells. In vitro analyses revealed that induction of type 1 regulatory T (Tr1) cells was significantly elevated in miR-212/132(-/-) T cells with increased c-Maf expression. Our findings emphasize the vital role of Ahr in intestinal homeostasis and suggest that inhibition of miR-212/132 represents a viable therapeutic strategy for treating colitis. PMID:25862525

  12. PPAR activation induces M1 macrophage polarization via cPLA₂-COX-2 inhibition, activating ROS production against Leishmania mexicana.

    PubMed

    Díaz-Gandarilla, J A; Osorio-Trujillo, C; Hernández-Ramírez, V I; Talamás-Rohana, P

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPAR γ , induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF- α , IL-1 β , and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  13. Expression of IL-10 in human normal and cancerous ovarian tissues and cells.

    PubMed

    Rabinovich, Alex; Medina, Liat; Piura, Benjamin; Huleihel, Mahmoud

    2010-06-01

    IL-10 is an 18-kd polypeptide that has been shown to be secreted by multiple cell types, including T and B cells, monocytes and some human tumors. However, which cell population is responsible for the elevated IL-10 levels in the serum and ascites of ovarian cancer patients, whether ovarian carcinoma cells produce IL-10, and how IL-10 influences the development and progression of ovarian carcinoma are issues that remain unclear. The aim of our study was to examine IL-10 production and secretion by ovarian carcinoma tissues and cells, and to determine its possible role in the cell and tumor micro-environment. The mean IL-10 protein levels expressed in normal ovarian tissue homogenates were significantly higher compared to cancerous ovarian tissue (p = 0.002). Yet, the IL-10 mRNA expression was significantly higher in cancerous ovarian tissues as compared to normal tissues (p = 0.021). The IL-10 receptor mRNA expression levels of the cancerous ovarian tissue homogenates were slightly, but not significantly, higher than the normal tissues. IL-10 immunostaining revealed that in both normal and cancerous ovarian tissues, IL-10 expression could be detected mainly in epithelial cells. In normal ovarian tissues, similar levels of IL-10R were demonstrated in epithelial and stromal cells. However, in cancerous ovarian tissues, epithelial cells expressed higher levels of IL-10R than the stroma. Primary normal and cancerous ovarian cell cultures and SKOV-3 cells secreted similar amounts of IL-10 after 24 hours of incubation. Our results suggest that epithelial cells are the main source of IL-10 in the ovary. Nevertheless, the target cells for IL-10 are different in normal and cancerous ovarian cells. Thus, IL-10 and its receptor could be involved in the pathogenesis of ovarian carcinoma. PMID:20430716

  14. IL-10 Modulates Placental Responses to TLR Ligands

    PubMed Central

    Bayraktar, Mehmet; Peltier, Morgan; Vetrano, Anna; Arita, Yuko; Gurzenda, Ellen; Joseph, Ansamma; Kazzaz, Jeffrey; Sharma, Surendra; Hanna, Nazeeh

    2013-01-01

    Problem Intra-uterine infections increase production of pro-inflammatory cytokines. It is unclear whether different infectious agents determine the relative expression of pro-and anti-inflammatory cytokines. Methods of study We compared the placental inflammatory response induced by bacterial lipopolysaccharide (LPS, endotoxin from Gram-negative bacteria) with those induced by lipoteichoic acid (LTA, a cell wall component of Gram-positive bacteria). Placental explants from term delivery were treated with either LPS or LTA, in the presence or absence of IL-10, for 24 hrs. Cytokines, prostaglandin E2 (PGE2) production and cyclo-oxygenase-2 (COX-2) expression were quantified. Results Both LTA and LPS significantly induced several cytokines with LPS eliciting more potent effects. IL-6 and IL-8 were induced to comparable levels in response to both LTA and LPS whereas monocyte chemotactic protein-1 (MCP-1) production was induced more by LTA, demonstrating a differential placental response to a specific toll-like receptor (TLR) ligand. IL-10 treatment significantly reduced most pro-inflammatory cytokines as well as PGE2 induced by both LPS and LTA. Interestingly, IL-10 down-regulated LTA-mediated MCP1 induction, but not that mediated by LPS. Moreover, IL-10 was more effective in down-regulating PGE2 after LPS- when compared with LTA stimulation. Conclusions Our results demonstrate that placental exposure to LTA and LPS appear to trigger distinct cytokine responses that can be modulated by IL-10. PMID:19821803

  15. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells

    PubMed Central

    Imaoka, Akemi; Shima, Tatsuichiro; Kato, Kimitoshi; Mizuno, Shigeaki; Uehara, Toshiki; Matsumoto, Satoshi; Setoyama, Hiromi; Hara, Taeko; Umesaki, Yoshinori

    2008-01-01

    AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms. METHODS: Peripheral blood mononuclear cells (PBMNC) from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted. RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY. Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heat-killed bacteria. The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY. DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8. CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM. CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis. PMID:18442197

  16. An In Vitro Model to Evaluate the Impact of the Soluble Factors from the Colonic Mucosa of Collagenous Colitis Patients on T Cells: Enhanced Production of IL-17A and IL-10 from Peripheral CD4+ T Cells

    PubMed Central

    Nyhlin, Nils; Wickbom, Anna; Bohr, Johan; Hultgren, Olof; Hultgren Hörnquist, Elisabeth

    2014-01-01

    Soluble factors from intestinal mucosal cells contribute to immune homeostasis in the gut. We have established an in vitro model to investigate the regulatory role of soluble factors from inflamed intestinal mucosa of collagenous colitis (CC) patients in the differentiation of T cells. Peripheral blood CD4+ T cells from healthy donors were polyclonally activated in the presence of conditioned medium (CM) generated from denuded biopsies (DNB) or isolated lamina propria mononuclear cells (LPMCs) from mucosal biopsies from CC patients compared to noninflamed controls, to determine proliferation and secretion of cytokines involved in T-cell differentiation. Compared to controls, we observed significantly increased production of the proinflammatory cytokines IFN-γ, IL-17A, IL-6, and IL-1β and the anti-inflammatory cytokines IL-4 and IL-10 in the presence of CC-DNB-CM. The most pronounced effect of CC-LPMC-CM on peripheral CD4+ T cells was a trend towards increased production of IL-17A and IL-10. A trend towards reduced inhibition of T-cell proliferation was noted in the presence of CC-DNB-CM. In conclusion, our in vitro model reveals implications of soluble factors from CC colonic mucosa on peripheral T cells, enhancing their production of both pro- and anti-inflammatory cytokines. PMID:25332518

  17. Malaria Parasite Infection Compromises Control of Concurrent Systemic Non-typhoidal Salmonella Infection via IL-10-Mediated Alteration of Myeloid Cell Function

    PubMed Central

    Butler, Brian P.; Xavier, Mariana N.; Chau, Jennifer Y.; Schaltenberg, Nicola; Begum, Ramie H.; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M.

    2014-01-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. PMID:24787713

  18. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.

    PubMed

    Lokken, Kristen L; Mooney, Jason P; Butler, Brian P; Xavier, Mariana N; Chau, Jennifer Y; Schaltenberg, Nicola; Begum, Ramie H; Müller, Werner; Luckhart, Shirley; Tsolis, Renée M

    2014-05-01

    Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. PMID:24787713

  19. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10.

    PubMed

    Bros, Matthias; Montermann, Evelyn; Cholaszczyńska, Anna; Reske-Kunz, Angelika B

    2016-06-01

    Phosphodiesterase 4 (PDE4) inhibitors serve to prevent degradation of the intracellular second messenger cAMP, resulting in broad anti-inflammatory effects on different cell types including immune cells. Agents that elevate cAMP levels via activation of adenylate cyclase have been shown to imprint a Th17-promoting capacity in dendritic cells (DCs). Therefore, we studied the potential of therapeutically relevant PDE inhibitors to induce a pronounced Th17-skewing capacity in DCs. Here we show that mouse bone marrow-derived (BM-) DCs when treated with the PDE4 inhibitor roflumilast (ROF, trade name: Daxas) in the course of stimulation with LPS (ROF-DCs) evoked elevated IL-17 levels in cocultured allogeneic T cells. In addition, as compared with control settings, levels of IFN-γ remained unaltered, while contents of Th2 cytokines (IL-5, IL-10) were diminished. ROF enhanced expression of the Th17-promoting factor IL-23 in BM-DCs. In line, neutralizing antibodies specific for IL-23 or IL-6 when applied to DC/T cell cocultures partially inhibited the IL17-promoting effect of ROF-DCs. Furthermore, ROF-DCs displayed a markedly diminished allogeneic T cell stimulatory capacity due to enhanced production of IL-10, which was restored upon application of IL-10 specific neutralizing antibody to DC/T cell cocultures. Both the IL-17-inducing and impaired T cell stimulatory capacity of BM-DCs were mimicked by a specific activator of protein kinase A, while stimulation of EPACs (exchange proteins of activated cAMP) did not yield such effects. Taken together, our findings suggest that PDE4 inhibitors aside from their broad overall anti-inflammatory effects may enhance the Th17-polarizing capacity in DCs as an unwanted side effect. PMID:27070502

  20. IL-10: Expanding the Immune Oncology Horizon

    PubMed Central

    Chan, Ivan H.; Wu, Victoria; McCauley, Scott; Grimm, Elizabeth A.; Mumm, John B.

    2015-01-01

    Recent advances in immunoncology have dramatically changed the treatment options available to cancer patients. However, the fundamental challenges with this therapeutic modality are not new and still persist with the current wave of immunoncology compounds. These challenges are centered on the activation and expansion, induction of intratumoral infiltration and persistence of highly activated, cytotoxic, tumor antigen specific CD8+ T cells. We have investigated the anti-tumor mechanism of action of pegylated recombinant interleukin-10, (PEG-rIL-10) both pre-clinically with murine (PEG-rMuIL-10) and now clinically (AM0010) with human pegylated interleukin-10. The preponderance of data suggest that IL-10’s engagement of its receptor on CD8+ T cells enhances their activation status leading to antigen specific expansion. Quantitation of CD8+ T cell tumor infiltration reveals that treatment of both humans and mice with pegylated rIL-10 results in 3–4 fold increases of intratumoral, cytotoxic, CD8+ T cells. In addition, mice cured of their tumors with PEG-rMuIL-10 exhibit long term immunological protection from tumor re-challenge and long term treatment of cancer patients with AM0010 results in the persistence of highly activated CD8+ T cells. Cumulatively, these data suggest the IL-10 represents an emerging therapeutic that specifically addresses the fundamental challenges of the current wave of immunoncology assets. PMID:26661378

  1. The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection.

    PubMed

    Arcanjo, Angélica F; LaRocque-de-Freitas, Isabel F; Rocha, Juliana Dutra B; Zamith, Daniel; Costa-da-Silva, Ana Caroline; Nunes, Marise Pinheiro; Mesquita-Santos, Fabio P; Morrot, Alexandre; Filardy, Alessandra A; Mariano, Mario; Bandeira-Melo, Christianne; DosReis, George A; Decote-Ricardo, Debora; Freire-de-Lima, Célio Geraldo

    2015-01-01

    B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10. PMID:25933287

  2. The PGE2/IL-10 Axis Determines Susceptibility of B-1 Cell-Derived Phagocytes (B-1CDP) to Leishmania major Infection

    PubMed Central

    Zamith, Daniel; Costa-da-Silva, Ana Caroline; Nunes, Marise Pinheiro; Mesquita-Santos, Fabio P.; Morrot, Alexandre; Filardy, Alessandra A.; Mariano, Mario; Bandeira-Melo, Christianne; DosReis, George A.; Decote-Ricardo, Debora; Freire-de-Lima, Célio Geraldo

    2015-01-01

    B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10. PMID:25933287

  3. IL-27 enhances Leishmania amazonensis infection via ds-RNA dependent kinase (PKR) and IL-10 signaling.

    PubMed

    Barreto-de-Souza, Victor; Ferreira, Pedro L C; Vivarini, Aislan de Carvalho; Calegari-Silva, Teresa; Soares, Deivid Costa; Regis, Eduardo G; Pereira, Renata M S; Silva, Aristóbolo M; Saraiva, Elvira M; Lopes, Ulisses G; Bou-Habib, Dumith Chequer

    2015-04-01

    The protozoan parasite Leishmania infects and replicates in macrophages, causing a spectrum of diseases in the human host, varying from cutaneous to visceral clinical forms. It is known that cytokines modulate the immunological response against Leishmania and are relevant for infection resolution. Here, we report that Interleukin (IL)-27 increases Leishmania amazonensis replication in human and murine macrophages and that the blockage of the IL-10 receptor on the surface of infected cells abolished the IL-27-mediated enhancement of Leishmania growth. IL-27 induced the activation/phosphorylation of protein kinase R (PKR) in macrophages, and PKR blockage or PKR gene deletion abrogated the enhancement of the parasite growth driven by IL-27, as well as the L. amazonensis-induced macrophage production of IL-27. We also observed that L. amazonensis-induced expression of IL-27 depends on type I interferon signaling and the engagement of Toll-like receptor 2. Treatment of Leishmania-infected mice with IL-27 increased lesion size and parasite loads in the footpad and lymph nodes of infected animals, indicating that this cytokine exerts a local and a systemic effect on parasite growth and propagation. In conclusion, we show that IL-27 is a L. amazonensis-enhancing factor and that the PKR/IFN1 axis and IL-10 are critical mediators of this IL-27 induced effect. PMID:25466588

  4. NLRP3 Deficiency Reduces Macrophage Interleukin-10 Production and Enhances the Susceptibility to Doxorubicin-induced Cardiotoxicity

    PubMed Central

    Kobayashi, Motoi; Usui, Fumitake; Karasawa, Tadayoshi; Kawashima, Akira; Kimura, Hiroaki; Mizushina, Yoshiko; Shirasuna, Koumei; Mizukami, Hiroaki; Kasahara, Tadashi; Hasebe, Naoyuki; Takahashi, Masafumi

    2016-01-01

    NLRP3 inflammasomes recognize non-microbial danger signals and induce release of proinflammatory cytokine interleukin (IL)-1β, leading to sterile inflammation in cardiovascular disease. Because sterile inflammation is involved in doxorubicin (Dox)-induced cardiotoxicity, we investigated the role of NLRP3 inflammasomes in Dox-induced cardiotoxicity. Cardiac dysfunction and injury were induced by low-dose Dox (15 mg/kg) administration in NLRP3-deficient (NLRP3−/−) mice but not in wild-type (WT) and IL-1β−/− mice, indicating that NLRP3 deficiency enhanced the susceptibility to Dox-induced cardiotoxicity independent of IL-1β. Although the hearts of WT and NLRP3−/− mice showed no significant difference in inflammatory cell infiltration, macrophages were the predominant inflammatory cells in the hearts, and cardiac IL-10 production was decreased in Dox-treated NLRP3−/− mice. Bone marrow transplantation experiments showed that bone marrow-derived cells contributed to the exacerbation of Dox-induced cardiotoxicity in NLRP3−/− mice. In vitro experiments revealed that NLRP3 deficiency decreased IL-10 production in macrophages. Furthermore, adeno-associated virus-mediated IL-10 overexpression restored the exacerbation of cardiotoxicity in the NLRP3−/− mice. These results demonstrated that NLRP3 regulates macrophage IL-10 production and contributes to the pathophysiology of Dox-induced cardiotoxicity, which is independent of IL-1β. Our findings identify a novel role of NLRP3 and provided new insights into the mechanisms underlying Dox-induced cardiotoxicity. PMID:27225830

  5. c-Maf Regulates IL-10 Expression during Th17 Polarization1

    PubMed Central

    Xu, Jiangnan; Yang, Yu; Qiu, Guixing; Lal, Girdhari; Wu, Zhihong; Levy, David E.; Ochando, Jordi C.; Bromberg, Jonathan S.; Ding, Yaozhong

    2010-01-01

    IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. Gene array analysis on Stat6 and T-bet double-deficient Th17 cells identified the Th2 transcription factor c-Maf to be synergistically up-regulated by IL-6 plus TGFβ and associated with Th17 IL-10 production. Both c-Maf and IL-10 induction during Th17 polarization depended on Stat3, but not Stat6 or Stat1, and mechanistically differed from IL-10 regulation by Th2 or IL-27 signals. TGFβ was also synergistic with IL-27 to induce c-Maf, and it induced Stat1-independent IL-10 expression in contrast to IL-27 alone. Retroviral transduction of c-Maf was able to induce IL-10 expression in Stat6-deficient CD4 and CD8 T cells, and c-Maf directly transactivated IL-10 gene expression through binding to a MARE (Maf recognition element) motif in the IL-10 promoter. Taken together, these data reveal a novel role for c-Maf in regulating T effector development, and they suggest that TGFβ may antagonize Th17 immunity by IL-10 production through c-Maf induction. PMID:19414776

  6. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: Low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life

    PubMed Central

    Belderbos, M.E.; van Bleek, G.M.; Levy, O.; Blanken, M.O.; Houben, M.L.; Schuijff, L.; Kimpen, J.L.L.; Bont, L.

    2010-01-01

    Newborns are highly susceptible to infectious diseases, which may be due to impaired immune responses. This study aims to characterize the ontogeny of neonatal TLR-based innate immunity during the first month of life. Cellularity and Toll-like receptor (TLR) agonist-induced cytokine production were compared between cord blood obtained from healthy neonates born after uncomplicated gestation and delivery (n=18), neonatal venous blood obtained at the age of one month (n=96), and adult venous blood (n=17). Cord blood TLR agonist-induced production of the Th1-polarizing cytokines IL-12p70 and IFN-α was generally impaired, but for TLR3, 7 and 9 agonists, rapidly increased to adult levels during the first month of life. In contrast, TLR4 demonstrated a slower maturation, with low LPS-induced IL-12p70 production and high IL-10 production up until the age of one month. Polarization in neonatal cytokine responses to LPS could contribute to neonatal susceptibility to severe bacterial infection. PMID:19648060

  7. Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    PubMed Central

    2011-01-01

    Background Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-α, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice. Findings All drugs inhibited TNF-α production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-α and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments. Conclusions Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings. PMID:21276247

  8. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  9. Glycogen synthase kinase-3 controls IL-10 expression in CD4+ effector T-cell subsets through epigenetic modification of the IL-10 promoter

    PubMed Central

    Hill, Elaine V; Ng, T H Sky; Burton, Bronwen R; Oakley, Charly M; Malik, Karim; Wraith, David C

    2015-01-01

    The serine/threonine kinase glycogen synthase kinase-3 (GSK3) plays an important role in balancing pro- and anti-inflammatory cytokines. We have examined the role of GSK3 in production of IL-10 by subsets of CD4+ T helper cells. Treatment of naive murine CD4+ T cells with GSK3 inhibitors did not affect their production of IL-10. However, treatment of Th1 and Th2 cells with GSK3 inhibitors dramatically increased production of IL-10. GSK3 inhibition also led to upregulation of IL-10 among Th1, Th2, and Th17 subsets isolated from human blood. The encephalitogenic potential of GSK3 inhibitor treated murine Th1 cells was significantly reduced in adoptive transfer experiments by an IL-10-dependent mechanism. Analysis of the murine IL-10 promoter in response to inhibition of GSK3 in Th1 cells showed modification to a transcriptionally active state indicated by changes in histone H3 acetylation and methylation. Additionally, GSK3 inhibition increased expression of the transcription factors c-Maf, Nfil3, and GATA3, correlating with the increase in IL-10. These findings are important in the context of autoimmune disease since they show that it is possible to reprogram disease-causing cells through GSK3 inhibition. PMID:25627813

  10. IL-10 gene polymorphism and herpesvirus infections.

    PubMed

    Hurme, M; Haanpää, M; Nurmikko, T; Wang, X-Y; Virta, M; Pessi, T; Kilpinen, S; Hulkkonen, J; Helminen, M

    2003-01-01

    Genetics has an important role in resistance to various infections and it also may modify the clinical picture of an infectious disease. Here, we briefly review our recent data demonstrating that the polymorphism of the IL-10 gene is associated with resistance to some common herpesviruses and, additionally, that this same gene is involved in the regulation of the severity of the infection and in the reactivation process. PMID:12627487

  11. Recombinant adenoviral expression of IL-10 protects beta cell from impairment induced by pro-inflammatory cytokine.

    PubMed

    Xu, Ai-Jing; Zhu, Wei; Tian, Fei; Yan, Li-Hua; Li, Tang

    2010-11-01

    Interleukin-10 (IL-10) is a pleiotropic immunosuppressive and immunostimulatory cytokine. In autoimmune diabetes of the nonobese diabetic (NOD) mouse, IL-10 has exhibited paradoxical effects. Systemic IL-10 expression prevented or delayed diabetes onset in NOD mice while local expression of IL-10 did not. As antigen-presenting cells (APCs) play a central role in the generation of primary T cell responses, the direct role of this gene in pancreatic beta (β) cell is not clear. The effects of IL-10 on the protection of β cells in vitro were examined. In the present study, we examined the effects of adenovirus vector-mediated murine IL-10 (mIL-10) gene transfer to islet cell line RINm5F cells in vitro and to explore if IL-10 overexpression may prevent cytokine-mediated cytotoxicity. We had established the recombinant adenovirus vector containing mIL-10 genes (Ad-mIL-10) successfully. After infection of Ad-mIL-10, both mRNA and protein were expressed in RINm5F cells. Moreover, RINm5F cells secreted IL-10 protein into culture medium. Ad-mIL-10 prevented IL-1β-mediated nitric oxide production from β cells in vitro as well as the suppression of β cells function as determined by glucose-stimulated insulin production. Furthermore, Ad-mIL-10 gene transfer led to a profound reduction of Fas-expressing β cells and caspase-3 activity which were induced by IL-1β and the apoptotic rates of Ad-mIL-10 group were decreased. These findings show that IL-10 gene transfer to β cells may be beneficial in maintaining cells function, protecting islet cells from apoptosis-mediated by factors, which showed the potential therapy for type 1 diabetes mellitus. PMID:20658311

  12. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B.

    PubMed

    Rajaram, Krithika; Nelson, David E

    2015-08-01

    The ability of certain species of Chlamydia to inhibit the biogenesis of phagolysosomes permits their survival and replication within macrophages. The survival of macrophage-adapted chlamydiae correlates with the multiplicity of infection (MOI), and optimal chlamydial growth occurs in macrophages infected at an MOI of ≤1. In this study, we examined the replicative capacity of Chlamydia muridarum in the RAW 264.7 murine macrophage cell line at different MOIs. C. muridarum productively infected these macrophages at low MOIs but yielded few viable elementary bodies (EBs) when macrophages were infected at a moderate (10) or high (100) MOI. While high MOIs caused cytotoxicity and irreversible host cell death, macrophages infected at a moderate MOI did not show signs of cytotoxicity until late in the infectious cycle. Inhibition of host protein synthesis rescued C. muridarum in macrophages infected at a moderate MOI, implying that chlamydial growth was blocked by activated defense mechanisms. Conditioned medium from these macrophages was antichlamydial and contained elevated levels of interleukin 1β (IL-1β), IL-6, IL-10, and beta interferon (IFN-β). Macrophage activation depended on Toll-like receptor 2 (TLR2) signaling, and cytokine production required live, transcriptionally active chlamydiae. A hydroxyl radical scavenger and inhibitors of inducible nitric oxide synthase (iNOS) and cathepsin B also reversed chlamydial killing. High levels of reactive oxygen species (ROS) led to an increase in cathepsin B activity, and pharmacological inhibition of ROS and cathepsin B reduced iNOS expression. Our data demonstrate that MOI-dependent TLR2 activation of macrophages results in iNOS induction via a novel ROS- and cathepsin-dependent mechanism to facilitate C. muridarum clearance. PMID:26015483

  13. IL-10 Inhibits the NF-κB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by Up-Regulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    PubMed Central

    Siffo, Sofía; Mirkin, Gerardo A.; Goren, Nora B.

    2013-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease. PMID:24260222

  14. Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis

    PubMed Central

    Lochhead, Robert B.; Zachary, James F.; Dalla Rosa, Luciana; Ma, Ying; Weis, John H.; O’Connell, Ryan M.; Weis, Janis J.

    2015-01-01

    MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity. PMID:26252010

  15. Antagonistic Interplay between MicroRNA-155 and IL-10 during Lyme Carditis and Arthritis.

    PubMed

    Lochhead, Robert B; Zachary, James F; Dalla Rosa, Luciana; Ma, Ying; Weis, John H; O'Connell, Ryan M; Weis, Janis J

    2015-01-01

    MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity. PMID:26252010

  16. Regulation of IL-10 by chondroitinase ABC promotes a distinct immune response following spinal cord injury.

    PubMed

    Didangelos, Athanasios; Iberl, Michaela; Vinsland, Elin; Bartus, Katalin; Bradbury, Elizabeth J

    2014-12-01

    Chondroitinase ABC (ChABC) has striking effects on promoting neuronal plasticity after spinal cord injury (SCI), but little is known about its involvement in other pathological mechanisms. Recent work showed that ChABC might also modulate the immune response by promoting M2 macrophage polarization. Here we investigate in detail the immunoregulatory effects of ChABC after SCI in rats. Initially, we examined the expression profile of 16 M1/M2 macrophage polarization markers at 3 h and 7 d postinjury. ChABC treatment had a clear effect on the immune signature after SCI. More specifically, ChABC increased the expression of the anti-inflammatory cytokine IL-10, accompanied by a reduction in the proinflammatory cytokine IL-12B in injured spinal tissue. These effects were associated with a distinct, IL-10-mediated anti-inflammatory response in ChABC-treated spinal cords. Mechanistically, we show that IL-10 expression is driven by tissue injury and macrophage infiltration, while the p38 MAPK is the central regulator of IL-10 expression in vivo. These findings provide novel insights into the effects of ChABC in the injured spinal cord and explain its immunoregulatory activity. PMID:25471580

  17. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    PubMed

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses. PMID:27383204

  18. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes.

    PubMed

    Adikari, T N; Gomes, L; Wickramasinghe, N; Salimi, M; Wijesiriwardana, N; Kamaladasa, A; Shyamali, N L A; Ogg, G S; Malavige, G N

    2016-04-01

    Both dengue NS1 antigen and serum interleukin (IL)-10 levels have been shown to associate with severe clinical disease in acute dengue infection, and IL-10 has also been shown to suppress dengue-specific T cell responses. Therefore, we proceeded to investigate the mechanisms by which dengue NS1 contributes to disease pathogenesis and if it is associated with altered IL-10 production. Serum IL-10 and dengue NS1 antigen levels were assessed serially in 36 adult Sri Lankan individuals with acute dengue infection. We found that the serum IL-10 levels correlated positively with dengue NS1 antigen levels (Spearman's r = 0·47, P < 0·0001), and NS1 also correlated with annexin V expression by T cells in acute dengue (Spearman's r = 0·63, P = 0·001). However, NS1 levels did not associate with the functionality of T cell responses or with expression of co-stimulatory molecules. Therefore, we further assessed the effect of dengue NS1 on monocytes and T cells by co-culturing primary monocytes and peripheral blood mononuclear cells (PBMC), with varying concentrations of NS1 for up to 96 h. Monocytes co-cultured with NS1 produced high levels of IL-10, with the highest levels seen at 24 h, and then declined gradually. Therefore, our data show that dengue NS1 appears to contribute to pathogenesis of dengue infection by inducing IL-10 production by monocytes. PMID:26621477

  19. IL10 inhibits starvation-induced autophagy in hypertrophic scar fibroblasts via cross talk between the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways

    PubMed Central

    Shi, J; Wang, H; Guan, H; Shi, S; Li, Y; Wu, X; Li, N; Yang, C; Bai, X; Cai, W; Yang, F; Wang, X; Su, L; Zheng, Z; Hu, D

    2016-01-01

    Hypertrophic scar (HS) is a serious skin fibrotic disease characterized by excessive hypercellularity and extracellular matrix (ECM) component deposition. Autophagy is a tightly regulated physiological process essential for cellular maintenance, differentiation, development, and homeostasis. Previous studies show that IL10 has potential therapeutic benefits in terms of preventing and reducing HS formation. However, no studies have examined IL10-mediated autophagy during the pathological process of HS formation. Here, we examined the effect of IL10 on starvation-induced autophagy and investigated the molecular mechanism underlying IL10-mediated inhibition of autophagy in HS-derived fibroblasts (HSFs) under starvation conditions. Immunostaining and PCR analysis revealed that a specific component of the IL10 receptor, IL10 alpha-chain (IL10Rα), is expressed in HSFs. Transmission electron microscopy and western blot analysis revealed that IL10 inhibited starvation-induced autophagy and induced the expression of p-AKT and p-STAT3 in HSFs in a dose-dependent manner. Blocking IL10R, p-AKT, p-mTOR, and p-STAT3 using specific inhibitors (IL10RB, LY294002, rapamycin, and cryptotanshinone, respectively) showed that IL10 inhibited autophagy via IL10Rα-mediated activation of STAT3 (the IL10R-STAT3 pathway) and by directly activating the AKT-mTOR pathway. Notably, these results suggest that IL10-mediated inhibition of autophagy is facilitated by the cross talk between STAT3, AKT, and mTOR; in other words, the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways. Finally, the results also indicate that mTOR-p70S6K is the molecule upon which these two pathways converge to induce IL10-mediated inhibition of autophagy in starved HSFs. In summary, the findings reported herein shed light on the molecular mechanism underlying IL10-mediated inhibition of autophagy and suggest that IL10 is a potential therapeutic agent for the treatment of HS. PMID:26962683

  20. IL-10 Gene Polymorphisms Are Associated with Post-Bronchiolitis Lung Function Abnormalities at Six Years of Age

    PubMed Central

    Lauhkonen, Eero; Koponen, Petri; Teräsjärvi, Johanna; Gröndahl-Yli-Hannuksela, Kirsi; Vuononvirta, Juho; Nuolivirta, Kirsi; Toikka, Jyri O.; Helminen, Merja; He, Qiushui; Korppi, Matti

    2015-01-01

    Aim Interleukin-10 (IL-10) has been associated with wheezing and asthma in children and the genetic variation of the IL-10 cytokine production may be linked to post-bronchiolitis lung function. We used impulse oscillometry (IOS) to evaluate the associations of IL10 polymorphisms with lung function at a median age of 6.3 years in children hospitalised for bronchiolitis before six months of age. Methods We performed baseline and post-exercise IOS on 103 former bronchiolitis patients. Data on single nucleotide polymorphisms (SNP) of IL10 rs1800896 (–1082G/A), rs1800871 (–819C/T), rs1800872 (–592C/A) were available for 99 children and of IL10 rs1800890 (–3575T/A) for 98 children. Results IL10 rs1800896, rs1800871 and rs1800872 combined genotype AA+CT+CA and carriage of haplotype ATA, respectively, were associated with higher resistance and lower reactance in baseline IOS in adjusted analyses. At IL10 rs1800890, the A/A-genotype and carriers of A-allele were associated with lower reactance in baseline IOS. There were no significant associations between the studied SNPs and airway hyper-reactivity to exercise. Conclusion Low-IL-10-producing polymorphisms in the IL-10 encoding gene were associated with obstructive lung function parameters, suggesting an important role for IL-10 in development of lung function deficit in early bronchiolitis patients. PMID:26473365

  1. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.

    PubMed

    Hoeksema, Marten A; Laan, Lisa C; Postma, Juliette J; Cummings, Richard D; de Winther, Menno P J; Dijkstra, Christine D; van Die, Irma; Kooij, Gijs

    2016-08-01

    Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling. PMID:27095802

  2. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma-dependent IL-10 reactivation.

    PubMed

    Shaw, Michael H; Freeman, Gordon J; Scott, Mark F; Fox, Barbara A; Bzik, David J; Belkaid, Yasmine; Yap, George S

    2006-06-15

    The Jak, Tyk2, is activated in response to IL-12 and IFN-alphabeta and promotes IFN-gamma production by Th1-type CD4 cells. Mice deficient in Tyk2 function have been previously shown to be resistant to autoimmune arthritis and septic shock but are acutely susceptible to opportunistic pathogens such as Toxoplasma gondii. In this study, we show that Tyk2, in addition to mediating the biological effects of IL-12 and IFN-alphabeta, is an important regulator for the signaling and expression of the immunosuppressive cytokine IL-10. In the absence of Tyk2, Ag-reactive CD4 cells exhibit impaired IL-10 synthesis following rechallenge of T. gondii vaccine-primed mice. The impaired IL-10 reactivation leads to unopposed antimicrobial effector mechanisms which results in a paradoxically superior protection of immune Tyk2(-/-) mice against virulent T. gondii challenge. We further demonstrate that Tyk2 indirectly controls CD4 IL-10 reactivation by signaling for maximal IFN-gamma secretion. The unexpected role of IFN-gamma in mediating IL-10 reactivation by Th1 cells provides compelling evidence that conditions driving Th1 responses establish a negative feedback loop, which will ultimately lead to its autoregulation. Thus, Tyk2 can be viewed as a dual-function Jak, mediating both pro and anti-inflammatory cytokine responses. PMID:16751369

  3. PEGylated IL-10 Activates Kupffer Cells to Control Hypercholesterolemia

    PubMed Central

    Chan, Ivan H.; Van Hoof, Dennis; Abramova, Marina; Bilardello, Melissa; Mar, Elliot; Jorgensen, Brett; McCauley, Scott; Bal, Harminder; Oft, Martin; Van Vlasselaer, Peter

    2016-01-01

    Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels. We have discovered that PEG-rMuIL-10’s dramatic lowering of plasma cholesterol is dependent on phagocytotic cells. In particular, PEG-rHuIL-10 enhances cholesterol uptake by Kupffer cells. In addition, removal of phagocytotic cells dramatically increases plasma cholesterol levels, suggesting for the first time that immunological cells are implicitly involved in regulating total cholesterol levels. These data suggest that treatment with PEG-rIL-10 potentiates endogenous cholesterol regulating cell populations not currently targeted by standard of care therapeutics. Furthermore, we show that IL-10’s increase of Kupffer cell cholesterol phagocytosis is concomitant with decreases in liver cholesterol and triglycerides. This leads to the reversal of early periportal liver fibrosis and facilitates the restoration of liver health. These data recommend PEG-rIL-10 for evaluation in the treatment of fatty liver disease and preventing its progression to non-alcoholic steatohepatitis. In direct confirmation of our in vivo findings in the treatment of hypercholesterolemic mice with PEG-rMuIL-10, we report that treatment of hypercholesterolemic cancer patients with PEG-rHuIL-10 lowers total plasma cholesterol by up to 50%. Taken together these data suggest that PEG-rIL-10’s cholesterol regulating biology is consistent between mice and humans. PMID:27299860

  4. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling

    PubMed Central

    Zhao, Yutong; Zhao, Jing; Donahoe, Michael P.; Barge, Suchitra; Horne, William T.; Kolls, Jay K.; McVerry, Bryan J.; Birukova, Anastasiya; Tighe, Robert M.; Foster, W. Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S.

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  5. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    PubMed

    Pinilla-Vera, Miguel; Xiong, Zeyu; Zhao, Yutong; Zhao, Jing; Donahoe, Michael P; Barge, Suchitra; Horne, William T; Kolls, Jay K; McVerry, Bryan J; Birukova, Anastasiya; Tighe, Robert M; Foster, W Michael; Hollingsworth, John; Ray, Anuradha; Mallampalli, Rama; Ray, Prabir; Lee, Janet S

    2016-01-01

    Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF)-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq). LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF)7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP)-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages. PMID:27434537

  6. IL10 in Lupus Nephritis: Detection and relationship with disease activity

    PubMed Central

    Zeid, Sameh Abou; Khalifa, Ghada; Nabil, Malak

    2015-01-01

    Introduction Glomerulonephritis is a major determinant of the course and prognosis of systemic lupus erythematosus (SLE) and is evident in 40%–85% of patients. IL10, a cytokine produced by monocytes and-to a lesser extent-lymphocytes, has pleiotropic effects in immune regulation and inflammation. It enhances B cell survival, proliferation, differentiation, and antibody production; these effects play a role in autoimmune diseases. Among identified polymorphisms in the IL10 promoter, three linked single nucleotide polymorphisms (SNPs) of −1082 G/A, 819 T/C, and −592 A/C have been shown to influence the IL10 gene expression. Compared with the −592 C allele, the 592 A is associated with lower IL10 production in vitro. The objectives of this study were to investigate the −592 A/C polymorphism in patients with and without lupus nephritis and to assess its influence on IL10 secretion in vivo and its role in pathogenesis and clinicopathological characteristics of lupus nephritis. Methods This case control study was conducted on 40 SLE patients recruited for the study from those attending the nephrology department of the Theodor Bilharz Research Institute (outpatient clinic and inpatient ward) in 2013. Patients were divided into two groups, group I (SLE patients without evidence of nephritis) and group II (SLE patients with lupus nephritis). Data were analyzed using SPSS (version 12), a t-test, Chi square, ANOVA, and the Pearson product–moment correlation coefficient. Results Our study found an increase in IL10 serum in lupus nephritis patients compared to those without renal involvement (without statistical significance). No significant differences emerged in the level of IL10 serum among different pathological classes. Conclusion The IL10 gene (−592 A/C) polymorphism, though not associated with lupus nephritis’s susceptibility in the present study, does play a role. PMID:26816594

  7. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis

    PubMed Central

    Lin, Wey-Ran; Lim, Siew-Na; Yen, Tzung-Hai; Alison, Malcolm R.

    2016-01-01

    This study aimed to understand the role of IL-10 secreted from bone marrow (BM) in a mouse model of pancreatic fibrosis. The severity of cerulein-induced inflammation, fibrosis, and the frequency of BM-derived myofibroblasts were evaluated in the pancreas of mice receiving either a wild-type (WT) BM or an IL-10 knockout (KO) BM transplantation. The area of collagen deposition increased significantly in the 3 weeks after cerulein cessation in mice with an IL-10 KO BM transplant (13.7 ± 0.6% and 18.4 ± 1.1%, p < 0.05), but no further increase was seen in WT BM recipients over this time. The percentage of BM-derived myofibroblasts also increased in the pancreas of the IL-10 KO BM recipients after cessation of cerulein (6.7 ± 1.1% and 11.9 ± 1.3%, p < 0.05), while this figure fell in WT BM recipients after cerulein withdrawal. Furthermore, macrophages were more numerous in the IL-10 KO BM recipients than the WT BM recipients after cerulein cessation (23.2 ± 2.3 versus 15.3 ± 1.7 per HPF, p < 0.05). In conclusion, the degree of fibrosis, inflammatory cell infiltration, and the number of BM-derived myofibroblasts were significantly different between IL-10 KO BM and WT BM transplanted mice, highlighting a likely role of IL-10 in pancreatitis. PMID:27314021

  8. Variants of the IL-10 gene associate with muscle strength in elderly from rural Africa: a candidate gene study

    PubMed Central

    Beenakker, Karel G M; Koopman, Jacob J E; van Bodegom, David; Kuningas, Maris; Slagboom, Pieternella E; Meij, Johannes J; Maier, Andrea B; Westendorp, Rudi G J

    2014-01-01

    Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin-10 (IL-10) gene regulates the production capacities of IL-10 and tumour necrosis factor-α (TNF-α). In rural Ghana, IL-10 gene variants associated with different production capacities of IL-10 and TNF-α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL-10 gene, production capacities of IL-10 and TNF-α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro-inflammatory haplotypes associated with low IL-10 production capacity and anti-inflammatory haplotypes with high IL-10 production capacity. We found that distinct haplotypes of the IL-10 gene associated with handgrip strength. A pro-inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (P = 0.015). An anti-inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (P = 0.006). In conclusion, variants of the IL-10 gene contributing to a pro-inflammatory cytokine response associate with higher muscle strength, whereas those with anti-inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL-10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases. PMID:25040424

  9. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity.

    PubMed

    Schnoor, Michael; Cullen, Paul; Lorkowski, Julia; Stolle, Katrin; Robenek, Horst; Troyer, David; Rauterberg, Jürgen; Lorkowski, Stefan

    2008-04-15

    Macrophages derived from human blood monocytes perform many tasks related to tissue injury and repair. The main effect of macrophages on the extracellular matrix is considered to be destructive in nature, because macrophages secrete metalloproteinases and ingest foreign material as part of the remodeling process that occurs in wound healing and other pathological conditions. However, macrophages also contribute to the extracellular matrix and hence to tissue stabilization both indirectly, by inducing other cells to proliferate and to release matrix components, and directly, by secreting components of the extracellular matrix such as fibronectin and type VIII collagen, as we have recently shown. We now report that monocytes and macrophages express virtually all known collagen and collagen-related mRNAs. Furthermore, macrophages secrete type VI collagen protein abundantly, depending upon their mode of activation, stage of differentiation, and cell density. The primary function of type VI collagen secreted by macrophages appears to be modulation of cell-cell and cell-matrix interactions. We suggest that the production of type VI collagen is a marker for a nondestructive, matrix-conserving macrophage phenotype that could profoundly influence physiological and pathophysiological conditions in vivo. PMID:18390756

  10. Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Alsharafi, Walid A.; Xiao, Bo; Abuhamed, Mutasem M.; Bi, Fang-Fang; Luo, Zhao-Hui

    2015-01-01

    Accumulating evidence is emerging that microRNAs (miRNAs) are key regulators in controlling neuroinflammatory responses that are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE). The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL)-10 as an anti-inflammatory cytokine and miR-187 as a post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE) and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus 2 h, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS) and IL-10-stimulated neurons were performed. Furthermore, we identified the effect of antagonizing miR-187 by its antagomir on IL-10 secretion. Here, we reported that IL-10 secretion and miR-187 expression levels are inversely correlated after SE. In patients with TLE, the expression of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10–dependent manner. On the other hand, antagonizing miR-187 promoted the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE. PMID:26696826

  11. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP. PMID:25700780

  12. Search for potent modulators of cytokine production by macrophages.

    PubMed

    Nikitin, A A; Abidov, M T; Kovalevskaya, E O; Kalyuzhin, O V

    2004-09-01

    We compared the effects of Tamerit, Polyoxidony, and Licopid on spontaneous and lipopolysaccharide-stimulated production of interleukin-1 and tumor necrosis factor by mouse peritoneal macrophages in vitro. The test preparations were equally potent in stimulating nonactivated cells. Licopid produced a costimulatory effect on macrophages primed with endotoxin. Tamerit in different doses suppressed cytokine production by cells. Polyoxidony in low doses activated, but in high doses suppressed this process. PMID:15665918

  13. Effects of in vivo administration of anti-IL-10 monoclonal antibody on the host defence mechanism against murine Salmonella infection.

    PubMed Central

    Arai, T; Hiromatsu, K; Nishimura, H; Kimura, Y; Kobayashi, N; Ishida, H; Nimura, Y; Yoshikai, Y

    1995-01-01

    Interleukin-10 (IL-10) is a cytokine that regulates various macrophage functions. To elucidate the involvement of endogenous IL-10 in the early stage of murine salmonellosis, we examined the effect of anti-IL-10 monoclonal antibody (mAb) administration on the host defence mechanism against Salmonella choleraesuis infection. The in vivo administration of anti-IL-10 mAb significantly enhanced host resistance at the early stage of Salmonella infection, as assessed by bacterial growth in the peritoneal cavity and the liver. Enhanced levels of monokine mRNA, including IL-1 alpha, tumour necrosis factor-alpha (TNF-alpha) and IL-12, were observed from day 1 after infection in the peritoneal macrophages in anti-IL-10 mAb-treated mice compared with those in control mAb-treated mice. Mice treated with anti-IL-10 mAb exhibited significantly higher levels of interferon-gamma (IFN-gamma) in the peritoneal exudates and major histocompatibility complex (MHC) class II expression on the peritoneal macrophages on days 3 and 5 after infection. Notably, in vivo anti-IL-10 mAb brought about an increment of gamma delta T cells in the peritoneal cavity at the early phase of infection, which was correlated with the expression of endogenous heat-shock protein 60 (HSP60), which is implicated as a potential ligand for gamma delta T cells, in the infected macrophages. Our results suggest that the neutralization of endogenous IL-10 accelerates some macrophage functions and, consequently, the activation of immunocompetent cells, including gamma delta T cells, at the early stage of infection, resulting in an enhanced host defence against Salmonella infection. Images Figure 4 Figure 6 PMID:7558125

  14. Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression

    PubMed Central

    Kelly, Jennifer A.; Brown, Elizabeth E.; Harley, John B.; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E.; Edberg, Jeffrey C.; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Kaufman, Kenneth M.; Vyse, Timothy J.; Jacob, Chaim O.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Kamen, Diane L.; Gilkeson, Gary S.; Niewold, Timothy B.; Merrill, Joan T.; Scofield, R. Hal; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A.; Freedman, Barry I.; Anaya, Juan-Manuel; Martin, Javier; Yu, C. Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D.; Chen, Weiling; Grossman, Jennifer M.; Cantor, Rita M.; Hahn, Bevra H.; Tsao, Betty P.

    2013-01-01

    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL

  15. NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells.

    PubMed

    Alrefai, Hani; Muhammad, Khalid; Rudolf, Ronald; Pham, Duong Anh Thuy; Klein-Hessling, Stefan; Patra, Amiya K; Avots, Andris; Bukur, Valesca; Sahin, Ugur; Tenzer, Stefan; Goebeler, Matthias; Kerstan, Andreas; Serfling, Edgar

    2016-01-01

    Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis. PMID:27222343

  16. NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells

    PubMed Central

    Alrefai, Hani; Muhammad, Khalid; Rudolf, Ronald; Pham, Duong Anh Thuy; Klein-Hessling, Stefan; Patra, Amiya K.; Avots, Andris; Bukur, Valesca; Sahin, Ugur; Tenzer, Stefan; Goebeler, Matthias; Kerstan, Andreas; Serfling, Edgar

    2016-01-01

    Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-α and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/αA, as a potential target to treat human psoriasis. PMID:27222343

  17. Photodynamic therapy affects the expression of IL-6 and IL-10 in vivo

    NASA Astrophysics Data System (ADS)

    Gollnick, Sandra O.; Musser, David A.; Henderson, Barbara W.

    1998-05-01

    Photodynamic therapy (PDT), which can effectively destroy malignant tissue, also induces a complex immune response which potentiates anti-tumor immunity, but also inhibits skin contact hypersensitivity (CHS) and prolongs skin graft survival. The underlying mechanisms responsible for these effects are poorly understood, but are likely to involve meditation by cytokines. We demonstrate in a BALB/c mouse model that PDT delivered to normal and tumor tissue in vivo causes marked changes in the expression of cytokines interleukin (IL)-6 and IL-10. IL-6 mRNA and protein are rapidly and strongly enhanced in the PDT treated EMT6 tumor. Previous studies have shown that intratumoral injection of IL- 6 or transduction of the IL-6 gene into tumor cells can enhance tumor immunogenicity and inhibit tumor growth in experimental murine tumor systems. Thus, PDT may enhance local anti-tumor immunity by up-regulating IL-6. PDT also results in an increase in IL-10 mRNA and protein in the skin. The same PDT regime which enhances IL-10 production in the skin has been shown to strongly inhibit the CHS response. The kinetics of IL-10 expression coincide with the known kinetics of PDT induced CHS suppression and we propose that the enhanced IL-10 expression plays a role in the observed suppression of cell mediated responses seen following PDT.

  18. Association Between IL-10 Gene Polymorphism and Diabetic Retinopathy

    PubMed Central

    Dong, Hongtao; Li, Qiuming; Wang, Menghua; Wan, Guangming

    2015-01-01

    Background Genetic and environmental factors both play important roles in the occurrence and progression of diabetic retinopathy (DR). IL-10 592 gene polymorphism is associated with diabetes pathogenesis. This study analyzed the relationship between IL-10 gene promoter-592 loci polymorphism (SNP) in a diabetic model rats with DR. Material/Methods Streptozotocin (STZ) was injected through the tail vein to establish a diabetic rat model. The rats were randomly divided into 2 groups for 3 months’ feeding, including 100 rats in the diabetes-positive control group and 100 rats only injected with citric acid buffer as the blank control group. Fundus fluorescein angiography (FFA) was used to observe retinal vascular changes. Polymerase chain reaction-restriction fragment polymorphisms assay (PCR-RFLP) was used to detect IL-10 gene promoter-592 loci polymorphism in DNA samples. Enzyme-linked immunosorbent assay (ELISA) was performed to test serum IL-10 concentration. Results Serum IL-10 level in DR rats was 33.18±5.0 pg/mL and in the control rats it was 53.33±4.16 pg/mL in (P<0.01). Diabetes susceptibility with IL-10-592 genotype frequency and gene frequency analysis showed that IL-10-592 genotype frequency and allele frequency were significantly different in the DR group compared with the control group (P<0.01). Conclusions IL-10 592 polymorphism was associated with DR susceptibility, suggesting that the gene polymorphism might be a risk factor for DR. PMID:26492380

  19. Production of leukotrienes by macrophage cells irradiated with ultraviolet light

    SciTech Connect

    Minoui, S.

    1986-01-01

    Mouse peritoneal macrophages were cultured, labelled with /sup 14/C-arachidonic acid, and then were irradiated with UV light (254 nm). Also, some /sup 14/C-arachidonic acid labelled macrophages were treated with Ca-ionophore (A-23187). The UV-treated macrophages produced two to three times as much arachidonic acid metabolites as did the Ca-ionophore treated cells, the UV irradiated cells produced about 20 ng of LTC/sub 4/ and 5 ng of LTB/sub 4/ per million cells, whereas the Ca-ionophore treated cells produced 10 ng LTC/sub 4/ and 1 ng LTB/sub 4/ per million cells. The irradiated cultures also exhibited a high degree of aggregation of viable macrophages around the lysed cells. There was little aggregation in the Ca-ionophore treated cultures. In phagocytosis and cell aggregation leukotrienes are produced by the viable macrophage cells. Leukotrienes are arachidonic acid oxygenation products that are thought to be mediators both in the expression of the immune-based and inflammatory responses. This study shows that macrophage cells under stressful conditions produced by a trauma-causing agent (UV light) respond by producing leukotrienes and chemotactic factors. These responses of the macrophage cells are the result of multiple biochemical events that promote the production of leukotrienes in the cultures.

  20. Immunological aspects in migraine: increase of IL-10 plasma levels during attack.

    PubMed

    Munno, I; Marinaro, M; Bassi, A; Cassiano, M A; Causarano, V; Centonze, V

    2001-09-01

    In the present study, 23 patients with migraine without aura were monitored during a migraine attack. Plasma levels of interleukin (IL)-4, IL-5, IL-10, and interferon-gamma were measured by enzyme-linked immunosorbent assay techniques. Interestingly, we observed low to undetectable IL-5 and IL-4 levels, whereas high IL-10 levels were seen in 52.2% of the patients. Interferon-gamma plasma levels were undetectable in all patients. After treatment with sumatriptan, 10 patients showed a subsequent decrease in IL-10 and an increase in both IL-4 and IL-5 plasma levels. Although these findings are derived from a limited number of patients, the apparent return to the IL-4 and IL-5 cytokine profile observed during the interictal period leads us to speculate that a preferential enhancement of TH2-type cytokine production may contribute to the pathogenesis of migraine. PMID:11576199

  1. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and, when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming.

    PubMed

    Nizzoli, Giulia; Larghi, Paola; Paroni, Moira; Crosti, Maria Cristina; Moro, Monica; Neddermann, Petra; Caprioli, Flavio; Pagani, Massimiliano; De Francesco, Raffaele; Abrignani, Sergio; Geginat, Jens

    2016-07-01

    IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans. PMID:27129615

  2. An in vitro model to evaluate the impact of the soluble factors from the colonic mucosa of collagenous colitis patients on T cells: enhanced production of IL-17A and IL-10 from peripheral CD4⁺ T cells.

    PubMed

    Kumawat, Ashok Kumar; Nyhlin, Nils; Wickbom, Anna; Tysk, Curt; Bohr, Johan; Hultgren, Olof; Hörnquist, Elisabeth Hultgren

    2014-01-01

    Soluble factors from intestinal mucosal cells contribute to immune homeostasis in the gut. We have established an in vitro model to investigate the regulatory role of soluble factors from inflamed intestinal mucosa of collagenous colitis (CC) patients in the differentiation of T cells. Peripheral blood CD4(+) T cells from healthy donors were polyclonally activated in the presence of conditioned medium (CM) generated from denuded biopsies (DNB) or isolated lamina propria mononuclear cells (LPMCs) from mucosal biopsies from CC patients compared to noninflamed controls, to determine proliferation and secretion of cytokines involved in T-cell differentiation. Compared to controls, we observed significantly increased production of the proinflammatory cytokines IFN-γ, IL-17A, IL-6, and IL-1β and the anti-inflammatory cytokines IL-4 and IL-10 in the presence of CC-DNB-CM. The most pronounced effect of CC-LPMC-CM on peripheral CD4(+) T cells was a trend towards increased production of IL-17A and IL-10. A trend towards reduced inhibition of T-cell proliferation was noted in the presence of CC-DNB-CM. In conclusion, our in vitro model reveals implications of soluble factors from CC colonic mucosa on peripheral T cells, enhancing their production of both pro- and anti-inflammatory cytokines. PMID:25332518

  3. Fasciola hepatica excretory-secretory products induce CD4+T cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way.

    PubMed

    Guasconi, Lorena; Chiapello, Laura S; Masih, Diana T

    2015-07-01

    Fasciola hepatica excretory-secretory products (FhESP) induce immunomodulatory effects on macrophages. Previously, we demonstrated that these effects are dependent on Dectin-1. Therefore, the aim of this study was to determine how this affects the CD4 T-cells immune response. We observed that FhESP induce an increased expression of PD-L2 in macrophages via Dectin-1. Furthermore, in co-cultures with CD4 T-cell we observed a suppressive effect on proliferative response, down-modulation of IFN-γ and up-modulation of IL-10 via Dectin-1 on macrophages. These results suggest that FhESP induce T-cell anergy via selective up-regulation of PD-L2 expression on macrophages in a Dectin-1 dependent way. PMID:25758714

  4. Leishmania mexicana Infection Induces IgG to Parasite Surface Glycoinositol Phospholipids that Can Induce IL-10 in Mice and Humans

    PubMed Central

    Buxbaum, Laurence U.

    2013-01-01

    Infection with the intracellular protozoan parasite Leishmania mexicana causes chronic disease in C57BL/6 mice, in which cutaneous lesions persist for many months with high parasite burdens (107–108 parasites). This chronic disease process requires host IL-10 and FcγRIII. When Leishmania amastigotes are released from cells, surface-bound IgG can induce IL-10 and suppress IL-12 production from macrophages. These changes decrease IFN-γ from T cells and nitric oxide production in infected cells, which are both required for Leishmania control. However, antibodies targets and the kinetics of antibody production are unknown. Several groups have been unsuccessful in identifying amastigote surface proteins that bind IgG. We now show that glycoinositol phospholipids (GIPLs) of L. mexicana are recognized by mouse IgG1 by 6 weeks of infection, with a rapid increase between 12 and 16 weeks, consistent with the timing of chronic disease in C57BL/6 mice vs. healing in FcγRIII-deficient mice. A single prominent spot on TLC is recognized by IgG, and the glycolipid is a glycosyl phosphatidylinositol containing a branched mannose structure. We show that the lipid structure of the GIPL (the sn-2 fatty acid) is required for antibody recognition. This GIPL is abundant in L. mexicana amastigotes, rare in stationary-phase promastigotes, and absent in L. major, consistent with a role for antibodies to GIPLs in chronic disease. A mouse monoclonal anti-GIPL IgG recognizes GIPLs on the parasite surface, and induces IL-10 from macrophages. The current work also extends this mouse analysis to humans, finding that L. mexicana-infected humans with localized and diffuse cutaneous leishmaniasis have antibodies that recognize GIPLs, can bind to the surface of amastigotes, and can induce IL-10 from human monocytes. Further characterization of the target glycolipids will have important implications for drug and vaccine development and will elucidate the poorly understood role of glycolipids in

  5. Serum IL-10 from systemic lupus erythematosus patients suppresses the differentiation and function of monocyte-derived dendritic cells

    PubMed Central

    Sun, Zhida; Zhang, Rong; Wang, Huijuan; Jiang, Pengtao; Zhang, Jiangquan; Zhang, Mingshun; Gu, Lei; Yang, Xiaofan; Zhang, Miaojia; Ji, Xiaohui

    2012-01-01

    The role played by cytokines, other than interferon (IFN)-α, in the differentiation and function of dendritic cells (DCs) in systemic lupus erythematosus (SLE), remains unclear. Serum interleukin-10 (IL-10) levels are generally elevated in SLE patients, which might modulate the differentiation of DCs. In this study, DCs were induced from monocytes either by transendothelial trafficking or by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) + IL-4 + tumor necrosis factor (TNF)-α. Both systems were used to investigate the effects of elevated serum IL-10 level on DC differentiation in SLE patients. The results showed that monocyte-derived DCs induced by either SLE serum or exogenous IL-10 reduced the expression of human leukocyte antigen (HLA)-DR and CD80, decreased IL-12p40 level, and increased IL-10 level, and exhibited an impaired capacity to stimulate allogenic T-cell proliferation. These results indicate that serum IL-10 may be involved in the pathogenesis of SLE by modulating the differentiation and function of DCs. PMID:23554785

  6. Manipulating IL-10 signalling blockade for better immunotherapy.

    PubMed

    Ni, Guoying; Wang, Tianfang; Walton, Shelley; Zhu, Bin; Chen, Shu; Wu, Xiaolian; Wang, Yuejian; Wei, Ming Q; Liu, Xiaosong

    2015-02-01

    Interleukin 10 is a cytokine with the ability to reduce or terminate inflammation. Chronic viral infection, such as infection of chronic hepatitis B, hepatitis C and HIV, has increased levels of interleukin 10 in peripheral blood. Serum IL-10 levels are also high in certain cancers. Blocking IL-10 signalling at the time of immunisation clears chronic viral infection and prevents tumour growth in animal models. We review recent advances in this area, with the emphasis on potential use of this novel strategy to treat chronic viral infection and cancer in human. PMID:25596475

  7. TIGIT negatively regulates inflammation by altering macrophage phenotype.

    PubMed

    Chen, Xi; Lu, Pu-Han; Liu, Lei; Fang, Ze-Min; Duan, Wu; Liu, Zhe-Long; Wang, Cong-Yi; Zhou, Ping; Yu, Xue-Feng; He, Wen-Tao

    2016-01-01

    Macrophages function as an essential component of innate immune system, contributing to both the initiation and appropriate resolution of inflammation. The exposure of macrophages to the microbial products, such as lipopolysaccharide (LPS), can strongly shift the balance between tissue homeostasis and inflammation in favor of causing systemic damage, in which macrophage M1 polarization play important roles. Strategies aiming at restoring the balance of macrophage polarization remain to be further explored. Herein, we have demonstrated that poliovirus receptor (PVR), the receptor of TIGIT, was dramatically upregulated on the surface of mouse peritoneal macrophages when exposed to LPS. TIGIT-Fc fusion protein not only inhibited the macrophage activation, but also skewed M1/M2 balance toward an anti-inflammatory profile, especially enhanced the secretion of IL-10. The activation of TIGIT/PVR pathway in macrophages correlated with increased nuclear translocation of c-Maf, which promotes IL-10 transcription. Treatment with fibroblasts stably secreting TIGIT-Fc fusion protein significantly reversed the lethal and sublethal endotoxic shock, which facilitated peritoneal macrophages to switch towards anti-inflammatory M2 cytokine profiles. These findings highlight a novel role of the TIGIT/PVR pathway in macrophage M2 polarization and suggest that TIGIT may have the potential to optimize the treatment of macrophage-involved inflammatory diseases. PMID:26307002

  8. Endogenous glucocorticoids released during acute toxic liver injury enhance hepatic IL-10 synthesis and release.

    PubMed

    Swain, M G; Appleyard, C; Wallace, J; Wong, H; Le, T

    1999-01-01

    Endogenous glucocorticoids are known to play a role in the regulation of the inflammatory response possibly by modulating pro- and anti-inflammatory cytokine expression. We examined endogenous glucocorticoid secretion, hepatic damage, tumor necrosis factor-alpha (TNF-alpha), and interleukin-10 (IL-10) mRNA expression and release in rats treated with carbon tetrachloride (CCl4) after treatment with vehicle or a glucocorticoid receptor antagonist (RU-486). Rats treated with CCl4 demonstrated striking elevations of plasma corticosterone levels. Inhibition of endogenous glucocorticoid activity by pretreatment with the glucocorticoid receptor antagonist RU-486 resulted in augmented CCl4-mediated hepatotoxicity, as reflected by histology and serum transaminase levels, which were independent of alterations in serum TNF-alpha levels or hepatic mRNA expression. CCl4 treatment resulted in enhanced hepatic IL-10 mRNA expression and elevated serum IL-10 levels, which were markedly attenuated by glucocorticoid receptor blockade. In summary, significant endogenous glucocorticoid release occurs during acute toxic liver injury in the rat and suppresses the inflammatory response independent of effects on TNF-alpha but possibly by upregulating hepatic IL-10 production. PMID:9886996

  9. IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia

    PubMed Central

    Harmon, Ashlyn; Cornelius, Denise; Amaral, Lorena; Paige, Adrienne; Herse, Florian; Ibrahim, Tarek; Wallukat, Gerd; Faulkner, Jessica; Moseley, Janae; Dechend, Ralf; LaMarca, Babbette

    2016-01-01

    Objective The reduced uterine perfusion pressure (RUPP) rat model of preeclampsia was used to determine the effects of added interleukin-10 (IL-10) on Tregs and hypertension in response to placental ischemia and how the decrease in these anti-inflammatory factors mediates the pathophysiology of preeclampsia. Methods IL-10 (2.5 ng/kg/d) was infused via osmotic mini-pump implanted intraperitoneally on day 14 of gestation and, at the same time, the RUPP procedure was performed. Results IL-10 reduced mean arterial pressure (p<0.001), decreased CD4+ T cells (p = 0.044), while increasing Tregs (p = 0.043) which led to lower IL-6 and TNF-α (p = 0.008 and p = 0.003), reduced AT1-AA production (p<0.001), and decreased oxidative stress (p = 0.029) in RUPP rats. Conclusion These data indicate that IL-10 supplementation increases Tregs and helps to balance the altered immune system seen during preeclampsia. PMID:25996051

  10. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    PubMed Central

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2013-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9D4) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of TR cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of TR cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human TR cells to express IL-10. PMID:22562448

  11. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    PubMed Central

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2013-01-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells. PMID:23440124

  12. Placental IL-10 dysregulation and association with bronchopulmonary dysplasia risk.

    PubMed

    McGowan, Elisabeth C; Kostadinov, Stefan; McLean, Kathryn; Gotsch, Francesca; Venturini, Deborah; Romero, Roberto; Laptook, Abbot R; Sharma, Surendra

    2009-10-01

    Cytokine profiles in amniotic fluid, cord serum, and tracheal aspirate of premature infants suggest a shift toward a proinflammatory state. Cytokines also contribute to the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesize that the initiating events for BPD are reflected in the placenta and propose that placental expression of cytokines provide a blueprint of events leading to BPD. This is a retrospective, case-controlled study of placental cytokines of premature infants with (n = 49) and without (n = 49) BPD, matched for gender, birth weight, and year of birth at Women and Infants Hospital between 2003 and 2005. Cytokine expression, including IL-6 and IL-10, was determined by immunohistochemistry in membrane rolls, umbilical cords, and placentas. IL-6 was similarly expressed in all tissues of infants with and without BPD. In contrast, anti-inflammatory cytokine IL-10 was less prominent in the placenta of patients with BPD compared with those without BPD. IL-10 expression in the villous trophoblast layer was associated with a reduced odds ratio of developing BPD (adjusted OR 0.08, 95% CI 0.01-0.70, p = 0.02). These results suggest that a placental balance between inflammatory and anti-inflammatory cytokines is crucial to normal lung organogenesis. Importantly, IL-10 seems to be protective against the development of BPD. PMID:19581835

  13. Placental IL-10 dysregulation and association with bronchopulmonary dysplasia risk

    PubMed Central

    McGowan, Elisabeth C.; Kostadinov, Stefan; McLean, Kathryn; Gotsch, Francesca; Venturini, Deborah; Romero, Roberto; Laptook, Abbot R.; Sharma, Surendra

    2009-01-01

    Cytokine profiles in amniotic fluid, cord serum, and tracheal aspirate of premature infants suggest a shift toward a pro-inflammatory state. Cytokines also contribute to the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesize that the initiating events for BPD are reflected in the placenta and propose that placental expression of cytokines provide a blueprint of events leading to BPD. This is a retrospective, case controlled study of placental cytokines of premature infants with (n=49) and without (n=49) BPD, matched for gender, birthweight and year of birth at Women and Infants Hospital between 2003 and 2005. Cytokine expression, including IL-6 and IL-10, was determined by immunohistochemistry in membrane rolls, umbilical cords, and placentas. IL-6 was similarly expressed in all tissues of infants with and without BPD. In contrast, anti-inflammatory cytokine IL-10 was less prominent in the placenta of patients with BPD compared to those without BPD. IL-10 expression in the villous trophoblast layer was associated with a reduced odds ratio of developing BPD (adjusted Odds Ratio 0.08, 95% confidence interval 0.01–0.70, p=0.02). These results suggest that a placental balance between inflammatory and anti-inflammatory cytokines is crucial to normal lung organogenesis. Importantly, IL-10 appears to be protective against the development of BPD. PMID:19581835

  14. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  15. Human Bladder Uroepithelial Cells Synergize with Monocytes to Promote IL-10 Synthesis and Other Cytokine Responses to Uropathogenic Escherichia coli

    PubMed Central

    Duell, Benjamin L.; Carey, Alison J.; Dando, Samantha J.; Schembri, Mark A.; Ulett, Glen C.

    2013-01-01

    Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions. PMID:24155979

  16. IL-10 Restrains IL-17 to Limit Lung Pathology Characteristics following Pulmonary Infection with Francisella tularensis Live Vaccine Strain

    PubMed Central

    Slight, Samantha R.; Monin, Leticia; Gopal, Radha; Avery, Lyndsay; Davis, Marci; Cleveland, Hillary; Oury, Tim D.; Rangel-Moreno, Javier; Khader, Shabaana A.

    2014-01-01

    IL-10 production during intracellular bacterial infections is generally thought to be detrimental because of its role in suppressing protective T-helper cell 1 (Th1) responses. Francisella tularensis is a facultative intracellular bacterium that activates both Th1 and Th17 protective immune responses. Herein, we report that IL-10–deficient mice (Il10−/−), despite having increased Th1 and Th17 responses, exhibit increased mortality after pulmonary infection with F. tularensis live vaccine strain. We demonstrate that the increased mortality observed in Il10−/−-infected mice is due to exacerbated IL-17 production that causes increased neutrophil recruitment and associated lung pathology. Thus, although IL-17 is required for protective immunity against pulmonary infection with F. tularensis live vaccine strain, its production is tightly regulated by IL-10 to generate efficient induction of protective immunity without mediating pathology. These data suggest a critical role for IL-10 in maintaining the delicate balance between host immunity and pathology during pulmonary infection with F. tularensis live vaccine strain. PMID:24007881

  17. Toll-Like Receptor-4 is Essential for Arcobacter Butzleri-Induced Colonic and Systemic Immune Responses in Gnotobiotic IL-10–/– Mice

    PubMed Central

    Gölz, Greta; Karadas, Gül; Fischer, André; Göbel, Ulf B.; Alter, Thomas; Bereswill, Stefan; Heimesaat, Markus M.

    2015-01-01

    Arcobacter butzleri causes sporadic cases of gastroenteritis, but the underlying immunopathological mechanisms of infection are unknown. We have recently demonstrated that A. butzleri-infected gnotobiotic IL-10–/– mice were clinically unaffected but exhibited intestinal and systemic inflammatory immune responses. For the first time, we here investigated the role of Toll-like receptor (TLR)-4, the main receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, in murine arcobacteriosis. Gnotobiotic TLR-4/IL-10-double deficient (TLR-4–/– IL-10–/–) and IL-10–/– control mice generated by broad-spectrum antibiotics were perorally infected with A. butzleri. Until day 16 postinfection, mice of either genotype were stably colonized with the pathogen, but fecal bacterial loads were approximately 0.5–2.0 log lower in TLR-4–/– IL-10–/– as compared to IL-10–/– mice. A. butzleri-infected TLR-4–/– IL-10–/– mice displayed less pronounced colonic apoptosis accompanied by lower numbers of macrophages and monocytes, T lymphocytes, regulatory T-cells, and B lymphocytes within the colonic mucosa and lamina propria as compared to IL-10–/– mice. Furthermore, colonic concentrations of nitric oxide, TNF, IL-6, MCP-1, and, remarkably, IFN-γ and IL-12p70 serum levels were lower in A. butzleri-infected TLR-4–/– IL-10–/– versus IL-10–/– mice. In conclusion, TLR-4 is involved in mediating murine A. butzleri infection. Further studies are needed to investigate the molecular mechanisms underlying Arcobacter–host interactions in more detail. PMID:26716021

  18. The macrophage chemotactic activity of Edwardsiella tarda extracellular products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from ...

  19. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    PubMed

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs. PMID:24818254

  20. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro.

    PubMed

    Onozawa, Yoshiko; Fujita, Yoshifumi; Kuwabara, Harumi; Nagasaki, Miyuki; Komai, Tomoaki; Oda, Tomiichiro

    2012-05-15

    An orphan G-protein-coupled receptor, T cell death-associated gene 8 (TDAG8) which has been reported to be a proton sensor, inhibits the production of pro-inflammatory cytokines induced by extracellular acidification. Recently, we have found that TDAG8 knockout mice showed significant exacerbation in various immune-mediated inflammation disease models. To elucidate the role of TDAG8, we screened an in-house library to find compounds which have a profile as a TDAG8 agonist using a cyclic adenosine 5'-monophosphate assay. Among the screening hits, we focused on (3-[(2,4-dichlorobenzyl)thio]-1,6-dimethyl-5,6-dihydro-1H-pyridazino[4,5-e][1,3,4]thiadiazin-5-one) (named BTB09089). BTB09089 did not act on other proton sensing G-protein-coupled receptors such as G-protein-coupled receptor 4 (GPR4) nor ovarian cancer G-protein-coupled receptor 1 (OGR1). Moreover, BTB09089 increased cAMP level in the splenocytes from wild-type littermates but not from TDAG8-deficient mice. Thus, BTB09089 was found to be a TDAG8 specific agonist. We then investigated the effects of BTB09089 on T cells and macrophages in vitro. In splenocytes, BTB09089 suppressed the production of IL-2 stimulated with anti-CD3 and anti-CD28 antibodies. In peritoneal exuded macrophages induced by thioglycollate, BTB09089 suppressed the production of TNF-α and IL-6 while it increased that of IL-10 when stimulated with lipopolysaccharide. These effects were observed in cells from wild type mice, but not those from TDAG8 knockout mice. These results indicate that activation of TDAG8 attenuates immune-mediated inflammation by regulating the cytokine production of T cells and macrophages. PMID:22445881

  1. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation

    PubMed Central

    Xiao, Sheng; Brooks, Craig R.; Sobel, Raymond A.; Kuchroo, Vijay K.

    2015-01-01

    T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss of function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multi-organ tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells with Tim-1 defects have impaired IL-10 production but increased proinflammatory cytokine production including IL-1 and IL-6. Tim-1-deficient B cells promote Th1 and Th17 responses but inhibit the generation of regulatory T cells (Foxp3+ and IL-10-producing type 1 regulatory T (Tr1) cells) and enhance the severity of experimental autoimmune encephalomyelitis (EAE). Mechanistically, Tim-1 on Bregs is required for apoptotic cell (AC) binding to Bregs and for AC-induced IL-10 production in Bregs. Treatment with AC reduces EAE severity in wildtype (WT) but not Tim-1-deficient Bregs. Collectively, these findings suggest that in addition to serving as a marker for identifying IL-10-producing Bregs, Tim-1 is also critical for maintaining self-tolerance by regulating IL-10 production in Bregs. PMID:25582854

  2. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    PubMed Central

    Venugopal, Gopinath; Rao, Gopala B.; Lucius, Richard; Srikantam, Aparna; Hartmann, Susanne

    2014-01-01

    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic

  3. Continuous high-dose antigen exposure preferentially induces IL-10, but intermittent antigen exposure induces IL-4.

    PubMed

    Yamanaka, Keiichi; Nakanishi, Takehisa; Watanabe, Jun; Kondo, Makoto; Yamagiwa, Akisa; Gabazza, Esteban C; Mizutani, Hitoshi

    2014-01-01

    IL-10 plays a critical role in the induction of specific T-cell tolerance. To date, whether IL-10 induction by antigen application is dose- or time-dependent remains unclear. In this study, IL-10 induction by allergen exposure was investigated in the several schedules. Oxazolone was repeatedly applied to mouse ear, and mRNA of inflammatory cytokines in lesional skins was measured. The results indicated that continuous high-dose antigen exposure induces IL-4 as well as abundant IL-10 production. Monocytes/dendritic cells and T cells are major source of IL-10. Allergen-specific immunotherapy is resumed before antigen scattering: preseason. We evaluated safe-loading dose of allergens in preseasonal therapy focusing Tr1 induction. Restarting immunotherapy with high dose effectively augmented IL-10 expression accompanied with further induction of IL-4 and inflammatory cytokines. Therefore, the protocol restarting with low-dose antigen is preferential to obviate the risk of exacerbation or anaphylaxis. PMID:24299227

  4. Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity.

    PubMed

    Payne, Natalie L; Sun, Guizhi; McDonald, Courtney; Moussa, Leon; Emerson-Webber, Ashley; Loisel-Meyer, Séverine; Medin, Jeffrey A; Siatskas, Christopher; Bernard, Claude C A

    2013-05-01

    Interleukin (IL)-10 is an important immunoregulatory cytokine shown to impact inflammatory processes as manifested in patients with multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Several lines of evidence indicate that the effectiveness of IL-10-based therapies may be dependent on the timing and mode of delivery. In the present study we engineered the expression of IL-10 in human adipose-derived mesenchymal stem cells (Adi-IL-10-MSCs) and transplanted these cells early in the disease course to mice with EAE. Adi-IL-10-MSCs transplanted via the intraperitoneal route prevented or delayed the development of EAE. This protective effect was associated with several anti-inflammatory response mechanisms, including a reduction in peripheral T-cell proliferative responses, a decrease in pro-inflammatory cytokine secretion as well as a preferential inhibition of Th17-mediated neuroinflammation. In vitro analyses revealed that Adi-IL-10-MSCs inhibited the phenotypic maturation, cytokine production and antigen presenting capacity of bone marrow-derived myeloid dendritic cells, suggesting that the mechanism of action may involve an indirect effect on pathogenic T-cells via the modulation of antigen presenting cell function. Collectively, these results suggest that early intervention with gene modified Adi-MSCs may be beneficial for the treatment of autoimmune diseases such as MS. PMID:23369732

  5. The paradoxical role of IL-10 in immunity and cancer.

    PubMed

    Mannino, Mark H; Zhu, Ziwen; Xiao, Huaping; Bai, Qian; Wakefield, Mark R; Fang, Yujiang

    2015-10-28

    Interleukin-10 (IL-10) produced by a wide-variety of cells is a highly pleiotropic cytokine. It has been implicated in the pathogenesis and/or development of autoimmune diseases and cancer, although it displays differential effects that seem to be contradictory sometimes. The ultimate role of this cytokine in disease, however, cannot be fully determined until the immunological contexts that regulate its function are further elucidated. In this review, we will discuss a wide variety of evidence of IL-10 in immunity and cancer in an effort to illuminate the remaining mysteries in the function of this cytokine that, when fully understood, may prove to be a powerful tool in the battle against cancer. PMID:26188281

  6. IL-10-producing type 1 regulatory T cells and allergy.

    PubMed

    Wu, Kui; Bi, Yutian; Sun, Kun; Wang, Changzheng

    2007-08-01

    As an important subset of regulatory T (Treg) cells, IL-10-producing type 1 regulatory T cells (Tr1), have some different features to thymic-derived naturally occurring CD4+CD25+Foxp3+ Treg cells(nTreg cells). Similar to nTreg cells, Tr1 also play important roles in the control of allergic inflammation in several ways. There is a fine balance between Tr1 and Th2 responses in healthy subjects. Skewing of allergic-specific effector T cells to a Tr1 phenotype appears to be a critical event in successful allergen-specific immunotherapy and glucocorticoids and beta2-agonists treatment. Tr1 suppress Th2 cells and effector cells of allergic inflammation, such as eosinophils, mast cells, basophils, through producing IL-10, and perhaps TGF-beta. Understanding of Tr1 may be helpful in developing new strategies for treatment of allergic diseases. PMID:17764617

  7. Simvastatin Suppresses Airway IL-17 and Upregulates IL-10 in Patients With Stable COPD

    PubMed Central

    Wongkajornsilp, Adisak; Adcock, Ian M.; Barnes, Peter J.

    2015-01-01

    BACKGROUND: Statins have immunomodulatory properties that may provide beneficial effects in the treatment of COPD. We investigated whether a statin improves the IL-17/IL-10 imbalance in patients with COPD, as has previously been demonstrated in patients with asthma. METHODS: Thirty patients with stable COPD were recruited to a double-blind, randomized, controlled, crossover trial comparing the effect of simvastatin, 20 mg po daily, with that of a matched placebo on sputum inflammatory markers and airway inflammation. Each treatment was administered for 4 weeks separated by a 4-week washout period. The primary outcome was the presence of T-helper 17 cytokines and indoleamine 2,3-dioxygenase (IDO) in induced sputum. Secondary outcomes included sputum inflammatory cells, FEV1, and symptoms using the COPD Assessment Test (CAT). RESULTS: At 4 weeks, there was a significant reduction in sputum IL-17A, IL-22, IL-6, and CXCL8 concentrations (mean difference, −16.4 pg/mL, P = .01; −48.6 pg/mL, P < .001; −45.3 pg/mL, P = .002; and −190.9 pg/mL, P = .007, respectively), whereas IL-10 concentrations, IDO messenger RNA expression (fold change), and IDO activity (kynurenine to tryptophan ratio) were markedly increased during simvastatin treatment compared with placebo treatment periods (mean difference, 24.7 pg/mL, P < .001; 1.02, P < .001; and 0.47, P < .001, respectively). The absolute sputum macrophage count, proportion of macrophages, and CAT score were reduced after simvastatin compared with placebo (mean difference, −0.16 × 106, P = .004; −14.1%, P < .001; and −3.2, P = .02, respectively). Values for other clinical outcomes were similar between the simvastatin and placebo treatments. CONCLUSIONS: Simvastatin reversed the IL-17A/IL-10 imbalance in the airways and reduced sputum macrophage but not neutrophil counts in patients with COPD. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01944176; www.clinicaltrials.gov PMID:26043025

  8. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels

    PubMed Central

    Meira, Cristina S.; Pereira-Chioccola, Vera L.; Vidal, José E.; de Mattos, Cinara C. Brandão; Motoie, Gabriela; Costa-Silva, Thais A.; Gava, Ricardo; Frederico, Fábio B.; de Mattos, Luiz C.

    2014-01-01

    This study analyzed the synthesis of Interferon gamma (IFN-γ), Tumor Necrosis Factor alpha (TNF-α), and Interleukin 10 (IL-10) in chronically infected patients which developed the symptomatic disease as cerebral or ocular toxoplasmosis. Blood from 61 individuals were divided into four groups: Cerebral toxoplasmosis/AIDS patients (CT/AIDS group) (n = 15), ocular toxoplasmosis patients (OT group) (n = 23), chronic toxoplasmosis individuals (CHR group) (n = 13) and healthy individuals (HI group) (n = 10). OT, CHR, and HI groups were human immunodeficiency virus (HIV) seronegative. The diagnosis was made by laboratorial (PCR and ELISA) and clinical subjects. For cytokine determination, peripheral blood mononuclear cells (PBMC) of each patient were isolated and stimulated in vitro with T. gondii antigen. IFN-γ, TNF-α, and IL-10 activities were determined by ELISA. Patients from CT/AIDS and OT groups had low levels of IFN-γ when were compared with those from CHR group. These data suggest the low resistance to develop ocular lesions by the low ability to produce IFN-γ against the parasite. The same patients, which developed ocular or cerebral toxoplasmosis had higher TNF-α levels than CHR individuals. High TNF-α synthesis contribute to the inflammatory response and damage of the choroid and retina in OT patients and in AIDS patients caused a high inflammatory response as the TNF-α synthesis is not affected since monocytes are the major source this cytokine in response to soluble T. gondii antigens. IL-10 levels were almost similar in CT/AIDS and OT patients but low when compared with CHR individuals. The deviation to Th2 immune response including the production of anti-inflammatory cytokines, such as IL-10 may promote the parasite's survival causing the tissue immune destruction. IL-10 production in T. gondii-infected brains may support the persistence of parasites as down-regulating the intracerebral immune response. All these indicate that OT and CT

  9. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    PubMed

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI. PMID:25445960

  10. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis.

    PubMed

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    Treg cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by Treg cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of Treg phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic Treg cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing Treg cells in SMAR1(-/-) mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic Treg cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining Treg physiology during inflammatory disorders. PMID:26168735

  11. Macrophages from IBD patients exhibit defective tumour necrosis factor-α secretion but otherwise normal or augmented pro-inflammatory responses to infection.

    PubMed

    Campos, Nair; Magro, Fernando; Castro, Ana Rita; Cabral, Joana; Rodrigues, Pedro; Silva, Ricardo; Appelberg, Rui; Rodrigues, Susana; Lopes, Susana; Macedo, Guilherme; Sarmento, Amélia

    2011-08-01

    Defects in macrophage function have been implicated in the establishment of Crohn's disease (CD). However, the response of macrophages from CD patients to live bacteria, particularly Mycobacterium avium subsp. paratuberculosis (MAP), has not been addressed. Considering MAP has long been associated to CD, our objective was to assess whether macrophages from CD patients showed impaired inflammatory response to infection by MAP comparing to M. avium subsp. avium (MA) and other live intestinal commensal bacteria. Human peripheral blood monocyte-derived macrophages were obtained from CD patients, ulcerative colitis (UC) patients and controls. Following in vitro infection with MAP, MA, Escherichia coli or Enterococcus faecalis, cytokine levels and cell surface receptor expression were evaluated at different time points. Macrophages from CD patients showed impaired TNF-α secretion in response to bacterial challenge, but augmented IL-23 secretion and preserved IL-12 secretion and CD-40 expression. In addition, CD macrophages showed low IL-10 secretion. Macrophages from IBD patients showed increased expression of TLR-2 and -4, unaffected by infection. Differences in cytokine secretion observed after bacterial challenge were not MAP-specific, as other bacteria (E. coli and MA) showed similar effects. Macrophages from UC patients showed a less compromised TNF-α synthesis in response to mycobacterial infection than CD macrophages, with increased constitutive IL-12 secretion, and preserved IL-10 secretion. The increased IL-23 levels in response to infection and decreased IL-10 production observed in macrophages from CD patients may contribute to the inflammatory exacerbation observed in those patients. PMID:21269730

  12. Macrophage Inflammatory Assay

    PubMed Central

    Ylostalo, Joni H.

    2016-01-01

    Macrophages represent a widely distributed and functionally diverse population of innate myeloid cells involved in inflammatory response to pathogens, tissue homeostasis and tissue repair (Murray and Wynn, 2011). Macrophages can be broadly grouped into two subpopulations with opposing activites: M1 or pro-inflammatory macrophages that promote T-helper type 1 (Th1) cell immunity and tissue damage, and M2 or anti-inflammatory/alternatively activated macrophages implicated in Th2 response and resolution of inflammation. Here we describe a rapid assay we used previously to monitor changes in pro-inflammatory and anti-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages in response to therapeutic paracrine factors produced by adult stem cells (Bartosh et al., 2010; Ylostalo et al., 2012; Bartosh et al., 2013). The assay can be adapted appropriately to test macrophage response to other agents as well that will be referred to herein as ‘test reagents’ or ‘test compounds’. In this protocol, the mouse macrophage cell line J774A.1 is expanded as an adherent monolayer on petri dishes allowing for the cells to be harvested easily without enzymes or cell scrapers that can damage the cells. The macropahges are then stimulated in suspension with LPS and seeded into 12-well cell culture plates containing the test reagents. After 16–18 h, the medium conditioned by the macrophages is harvested and the cytokine profile in the medium determined with enzyme-linked immunosorbent assays (ELISA). We routinely measure levels of the pro-inflammtory cytokine TNF-alpha and the anti-inflammatory cytokine interleukin-10 (IL-10).

  13. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence

    PubMed Central

    Manirarora, Jean N.; Parnell, Sarah A.; Hu, Yoon-Hyeon; Kosiewicz, Michele M.; Alard, Pascale

    2011-01-01

    Dendritic cells (DCs) from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2) or lipoteichoic acid (LTA) from Staphylococcus aureus (TLR2 agonist). LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential. PMID:21716731

  14. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    PubMed Central

    Ocaña, A.; Reglero, G.

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects. PMID:22577523

  15. IL-10 Controls Early Microglial Phenotypes and Disease Onset in ALS Caused by Misfolded Superoxide Dismutase 1.

    PubMed

    Gravel, Mathieu; Béland, Louis-Charles; Soucy, Geneviève; Abdelhamid, Essam; Rahimian, Reza; Gravel, Claude; Kriz, Jasna

    2016-01-20

    While reactive microgliosis is a hallmark of advanced stages of amyotrophic lateral sclerosis (ALS), the role of microglial cells in events initiating and/or precipitating disease onset is largely unknown. Here we provide novel in vivo evidence of a distinct adaptive shift in functional microglial phenotypes in preclinical stages of superoxide dismutase 1 (SOD1)-mutant-mediated disease. Using a mouse model for live imaging of microglial activation crossed with SOD1(G93A) and SOD1(G37R) mouse models, we discovered that the preonset phase of SOD1-mediated disease is characterized by development of distinct anti-inflammatory profile and attenuated innate immune/TLR2 responses to lipopolysaccharide (LPS) challenge. This microglial phenotype was associated with a 16-fold overexpression of anti-inflammatory cytokine IL-10 in baseline conditions followed by a 4.5-fold increase following LPS challenge. While infusion of IL-10R blocking antibody, initiated at day 60, caused a significant increase in markers of microglial activation and precipitated clinical onset of disease, a targeted overexpression of IL-10 in microglial cells, delivered via viral vectors expressed under CD11b promoter, significantly delayed disease onset and increased survival of SOD1(G93A) mice. We propose that the high IL-10 levels in resident microglia in early ALS represent a homeostatic and compensatory "adaptive immune escape" mechanism acting as a nonneuronal determinant of clinical onset of disease. Significance statement: We report here for the first time that changing the immune profile of brain microglia may significantly affect clinical onset and duration of disease in ALS models. We discovered that in presymptomatic disease microglial cells overexpress anti-inflammatory cytokine IL-10. Given that IL-10 is major homeostatic cytokine and its production becomes deregulated with aging, this may suggest that the capacity of microglia to adequately produce IL-10 may be compromised in ALS. We show

  16. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells

    PubMed Central

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-01-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4+ Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10–producing Tr1 cell population by transducing human CD4+ T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP+ LV-IL-10–transduced human CD4+ T (CD4LV-IL-10) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4LV-IL-10 T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4LV-IL-10 T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4+ T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells. PMID:22692497

  17. Protective mucosal immunity mediated by epithelial CD1d and IL-10.

    PubMed

    Olszak, Torsten; Neves, Joana F; Dowds, C Marie; Baker, Kristi; Glickman, Jonathan; Davidson, Nicholas O; Lin, Chyuan-Sheng; Jobin, Christian; Brand, Stephan; Sotlar, Karl; Wada, Koichiro; Katayama, Kazufumi; Nakajima, Atsushi; Mizuguchi, Hiroyuki; Kawasaki, Kunito; Nagata, Kazuhiro; Müller, Werner; Snapper, Scott B; Schreiber, Stefan; Kaser, Arthur; Zeissig, Sebastian; Blumberg, Richard S

    2014-05-22

    The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease. PMID:24717441

  18. IL-10-Producing Regulatory B Cells Are Decreased in Patients with Common Variable Immunodeficiency

    PubMed Central

    Costa, Priscilla Ramos; Barros, Myrthes Toledo; Kalil, Jorge; Kokron, Cristina Maria

    2016-01-01

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency in adults. CVID patients often present changes in the frequency and function of B lymphocytes, reduced number of Treg cells, chronic immune activation, recurrent infections, high incidence of autoimmunity and increased risk for malignancies. We hypothesized that the frequency of B10 cells would be diminished in CVID patients because these cells play an important role in the development of Treg cells and in the control of T cell activation and autoimmunity. Therefore, we evaluated the frequency of B10 cells in CVID patients and correlated it with different clinical and immunological characteristics of this disease. Forty-two CVID patients and 17 healthy controls were recruited for this study. Cryopreserved PBMCs were used for analysis of T cell activation, frequency of Treg cells and characterization of B10 cells by flow cytometry. IL-10 production by sorted B cells culture and plasma sCD14 were determined by ELISA. We found that CVID patients presented decreased frequency of IL-10-producing CD24hiCD38hi B cells in different cell culture conditions and decreased frequency of IL-10-producing CD24hiCD27+ B cells stimulated with CpG+PIB. Moreover, we found that CVID patients presented lower secretion of IL-10 by sorting-purified B cells when compared to healthy controls. The frequency of B10 cells had no correlation with autoimmunity, immune activation and Treg cells in CVID patients. This work suggests that CVID patients have a compromised regulatory B cell compartment which is not correlated with clinical and immunological characteristics presented by these individuals. PMID:26991898

  19. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma.

    PubMed

    Böhm, Livia; Maxeiner, Joachim; Meyer-Martin, Helen; Reuter, Sebastian; Finotto, Susetta; Klein, Matthias; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias; Taube, Christian

    2015-02-01

    Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells. PMID:25527785

  20. Expression and purification of rhIL-10-RGD from Escherichia coli as a potential wound healing agent.

    PubMed

    Yang, Fangfang; Wan, Yi; Liu, Jiaqi; Yang, Xuekang; Wang, Hongtao; Tao, Ke; Han, Juntao; Shi, Jihong; Hu, Dahai

    2016-08-01

    Various protocols for recombinant Interleukin-10 (IL-10) purification in wound healing have been reported previously. However, the therapeutic effect was not obvious. Thus, it is of great importance to find new and effective approaches for therapy. In this study, we propose that IL-10 and Arginine-Glycine-Aspartic (RGD) peptide would be a valuable therapeutic for wound healing. To explore a high-efficiency and cost-effective approach for the production of IL-10 and RGD peptide with bioactivity, a synthetic gene was cloned into a recombinant pTWIN1 vector. As a consequence, rhIL-10-RGD and the pH-induced self-cleavable Ssp DnaB mini-intein as a fusion protein was highly expressed by IPTG induction in Escherichia coli Rosetta without extra residues in a bioreactor. After Ni affinity chromatographic purification, rhIL-10-RGD was released by the Ssp DnaB intein-mediated self-cleavage that is triggered by pH shift. SDS-PAGE and silver staining showed a major band with an estimated molecular mass of 19.3kDa. Cell proliferation assay confirmed its potent proliferation activity on MC/9 murine mast cells. In conclusion, we report a novel strategy to produce rhIL-10-RGD mediated by the pH-induced self-cleavable Ssp DnaB mini-intein, and show that rhIL-10-RGD could play an effective role in wound healing of BALB/c mice. PMID:27241829

  1. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain

    PubMed Central

    2014-01-01

    Background Peri-spinal subarachnoid (intrathecal; i.t.) injection of non-viral naked plasmid DNA encoding the anti-inflammatory cytokine, IL-10 (pDNA-IL-10) suppresses chronic neuropathic pain in animal models. However, two sequential i.t. pDNA injections are required within a discrete 5 to 72-hour period for prolonged efficacy. Previous reports identified phagocytic immune cells present in the peri-spinal milieu surrounding the i.t injection site that may play a role in transgene uptake resulting in subsequent IL-10 transgene expression. Methods In the present study, we aimed to examine whether factors known to induce pro-phagocytic anti-inflammatory properties of immune cells improve i.t. IL-10 transgene uptake using reduced naked pDNA-IL-10 doses previously determined ineffective. Both the synthetic glucocorticoid, dexamethasone, and the hexose sugar, D-mannose, were factors examined that could optimize i.t. pDNA-IL-10 uptake leading to enduring suppression of neuropathic pain as assessed by light touch sensitivity of the rat hindpaw (allodynia). Results Compared to dexamethasone, i.t. mannose pretreatment significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 immunoreactivity. Macrophages exposed to D-mannose revealed reduced proinflammatory TNF-α, IL-1β, and nitric oxide, and increased IL-10 protein release, while IL-4 revealed no improvement in transgene uptake. Separately, D-mannose dramatically increased pDNA-derived IL-10 protein release in culture supernatants. Lastly, a single i.t. co-injection of mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in neuropathic rats. Conclusions Peri-spinal treatment with D-mannose may optimize naked pDNA-IL-10 transgene uptake for suppression of allodynia, and is a novel approach to tune spinal immune cells toward pro-phagocytic phenotype for improved non-viral gene therapy. PMID:24884664

  2. Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism.

    PubMed

    Fung, Thomas C; Bessman, Nicholas J; Hepworth, Matthew R; Kumar, Nitin; Shibata, Naoko; Kobuley, Dmytro; Wang, Kelvin; Ziegler, Carly G K; Goc, Jeremy; Shima, Tatsuichiro; Umesaki, Yoshinori; Sartor, R Balfour; Sullivan, Kaede V; Lawley, Trevor D; Kunisawa, Jun; Kiyono, Hiroshi; Sonnenberg, Gregory F

    2016-03-15

    Physical separation between the mammalian immune system and commensal bacteria is necessary to limit chronic inflammation. However, selective species of commensal bacteria can reside within intestinal lymphoid tissues of healthy mammals. Here, we demonstrate that lymphoid-tissue-resident commensal bacteria (LRC) colonized murine dendritic cells and modulated their cytokine production. In germ-free and antibiotic-treated mice, LRCs colonized intestinal lymphoid tissues and induced multiple members of the IL-10 cytokine family, including dendritic-cell-derived IL-10 and group 3 innate lymphoid cell (ILC3)-derived IL-22. Notably, IL-10 limited the development of pro-inflammatory Th17 cell responses, and IL-22 production enhanced LRC colonization in the steady state. Furthermore, LRC colonization protected mice from lethal intestinal damage in an IL-10-IL-10R-dependent manner. Collectively, our data reveal a unique host-commensal-bacteria dialog whereby selective subsets of commensal bacteria interact with dendritic cells to facilitate tissue-specific responses that are mutually beneficial for both the host and the microbe. PMID:26982365

  3. CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation

    PubMed Central

    Chen, Kun; Zhang, Chunmei; Song, Chaojun; Fang, Liang; Xu, Zhuwei; Yang, Kun; Jin, Boquan; Wang, Qintao; Chen, Lihua

    2016-01-01

    Treatment targeting CD226 can ameliorate experimental autoimmune encephalomyelitis (EAE), the widely accepted model of MS. However, the mechanisms still need to be elucidated. Here we showed that CD226 blockage by anti-CD226 blocking mAb LeoA1 efficiently promoted IL-10 production in human peripheral blood monocytes (PBMC) or in mixed lymphocyte culture (MLC) system, significantly induced the CD4+IL-10+ T cell differentiation while suppressing the generation of Th1 and Th17. Furthermore, CD226 pAb administration in vivo reduced the onset of EAE in mice by promoting IL-10 production and regulating T cell differentiation. Concomitantly, the onset and severity of EAE were reduced and the serum IL-10 expression levels were increased in CD226 knockout mice than that in control mice when both received EAE induction. These novel findings confirmed that CD226 played a pivotal role in mediating autoimmune diseases such as EAE. Furthermore, to our knowledge, we show for the first time that IL-10 is an important contributor in the inhibitory effects of CD226 ligation on EAE. PMID:26942885

  4. Lipoxygenase products mediate the attachment of rat macrophages to glomeruli in vitro

    SciTech Connect

    Baud, L.; Sraer, J.; Delarue, F.; Bens, M.; Balavoine, F.; Schlondorff, D.; Ardaillou, R.; Sraer, J.D.

    1985-06-01

    Because there is an accumulation of macrophages in the Bowman's space during human and experimental glomerulonephritis, the authors have studied the binding of (/sup 3/H)-uridine labeled macrophages to isolated glomeruli. Binding was related to the glomerular protein and macrophage concentrations, temperature, time of incubation, and was a saturable process. Macrophage adherence depended on glomerular lipoxygenase activity but not on glomerular cyclooxygenase activity since preincubation of glomeruli with nordihydroguaiaretic acid (NDGA) inhibited this phenomenon whereas preincubation with indomethacin was ineffective. Glomeruli interacted with macrophages in converting arachidonic acid (C20:4) to prostaglandins (PG) since productions of 6 keto-PGF1 alpha, TXB2, and PGD2 by glomeruli and macrophages incubated in combination were much greater than the sums of their respective productions by glomeruli and macrophages incubated separately. Macrophages were the source of the supplementary synthesis of PG which was abolished when these cells were pretreated with aspirin. Stimulation of macrophages by glomeruli was blunted by pretreatment of glomeruli with NDGA. Production of PG and of 12-HETE by macrophages was stimulated by a lipid extract of glomeruli containing the oxygenated metabolites of C20:4. Direct addition of 12-HPETE also stimulated macrophage functions. These data suggest that macrophage attachment to glomeruli and macrophage stimulation in the presence of glomeruli depend on glomerular lipoxygenase activity.

  5. Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages.

    PubMed

    Suzuki, Hiroaki; Hisamatsu, Tadakazu; Chiba, Sayako; Mori, Kiyoto; Kitazume, Mina T; Shimamura, Katsuyoshi; Nakamoto, Nobuhiro; Matsuoka, Katsuyoshi; Ebinuma, Hirotoshi; Naganuma, Makoto; Kanai, Takanori

    2016-08-01

    Cellular metabolic state and individual metabolites have been reported to regulate the functional phenotype of immune cells. Cytokine production by regulatory and inflammatory macrophages is thought to mainly involve fatty acid oxidation and glycolysis, respectively, which fuel mitochondrial oxidative phosphorylation. However, the association between metabolic pathways and the acquisition of specific macrophage phenotypes remains unclear. This study assessed the relationship between glycolysis and the differentiation of regulatory macrophages. Human monocytes derived from peripheral blood were cultured in vitro in the presence of macrophage colony-stimulating factor to yield regulatory macrophages (M-Mϕs). M-Mϕs had a regulatory macrophage phenotype and produced substantial IL-10 following stimulation with lipopolysaccharide. To analyze the role of glycolysis, glycolysis inhibitors (2-deoxy-d-glucose or dichloroacetate) were added during M-Mϕ differentiation. These cells cultured with glycolysis inhibitors produced significantly lower amounts of IL-10, but produced significantly higher amounts of IL-6 compared to M-Mϕs differentiated without glycolysis inhibitors. Such phenotypic change of M-Mϕs differentiated with glycolysis inhibitors was associated with the alteration of the gene expression pattern related to macrophage differentiation, such as CSF1, MMP9 and VEGFA. M-Mϕs differentiated with glycolysis inhibitors seemed to retain plasticity to become IL-10 producing cells. Furthermore, increased level of pyruvate in culture medium was found to partially reverse the effects of glycolysis inhibitors on cytokine production of M-Mϕs. These results indicate the importance of glycolytic pathway in macrophage differentiation to a regulatory phenotype, and pyruvate may be one of the key metabolites in this process. PMID:27208804

  6. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis.

    PubMed

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2014-07-01

    Sarcoidosis is a multisystem granulomatous disorder characterized by marked T-cell expansion of T helper 1 (Th1) cells. The cause of T-cell overactivity is unknown. We hypothesized that interleukin-10 (IL-10) production by a yet undefined cell type might be defective, resulting in loss of regulation of T-cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from the peripheral blood of corticosteroid-naïve sarcoidosis patients (n = 51) produced less IL-10 compared to controls, and were less able to suppress T-cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity score. As invariant natural killer T (iNKT) cells are known to both interact with monocytes and be reduced in sarcoidosis patients, we then asked whether iNKT-specific defects might be responsible for this reduced IL-10 production. We found that greater numbers of circulating iNKT cells was associated with higher IL-10 production. Moreover, iNKT cells enhanced monocytic IL-10 production in vitro. Defective IL-10 production and T-cell suppression by sarcoidosis monocytes could be restored following their coculture with iNKT cells, in a CD1d- and cell contact-dependent process. We suggest that reduced iNKT-cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T-cell expansion in sarcoidosis. These findings provide fresh insight into the mechanism of sarcoidosis disease, and interaction between iNKT cells and monocytes. PMID:24723379

  7. Cross-Regulation of Proinflammatory Cytokines by Interleukin-10 and miR-155 in Orientia tsutsugamushi-Infected Human Macrophages Prevents Cytokine Storm.

    PubMed

    Tsai, Ming-Hsien; Chang, Chung-Hsing; Tsai, Rong-Kung; Hong, Yi-Ren; Chuang, Tsung-Hsien; Fan, Kan-Tang; Peng, Chi-Wen; Wu, Ching-Ying; Hsu, Wen-Li; Wang, Lih-Shinn; Chen, Li-Kuang; Yu, Hsin-Su

    2016-07-01

    Scrub typhus is caused by the obligate intracellular bacterium Orientia tsutsugamushi. Macrophages are host cells for its replication and clearance. Severe complications in patients are mainly caused by a cytokine storm resulting from overproduction of proinflammatory cytokines; nevertheless, the molecular mechanism for the occurrence remains obscure. Herein, we investigate the interactive regulation of cytokines and micro-RNA (miR) in human macrophages infected with low and high doses of O. tsutsugamushi. During low dose infection, macrophages produce high levels of IL-10 through extracellular signal-regulated kinase activation, which inhibits proinflammatory cytokine production and facilitates pathogen replication. Increasing levels of pathogen results in reduced levels of IL-10, and macrophages begin to generate high levels of proinflammatory cytokines through NF-κB activation. However, during a high dose infection, macrophages produce high levels of miR-155 to slow the proinflammatory response. The extracellular signal-regulated kinase/IL-10 axis suppresses the NF-κB/tumor necrosis factor alpha axis via activation of signal transducer and activator of transcription 3. Both IL-10 and miR-155 inhibit the NF-κB signaling pathway. Furthermore, IL-10 is a potent inhibitor of miR-155. Patients susceptible to a cytokine storm, peripheral blood mononuclear cells showed significantly lower IL-10 and miR-155 responses to O. tsutsugamushi challenge. Thus, IL-10 and miR-155 operate inhibitory mechanisms to achieve a proper defense mechanism and prevent a cytokine storm. PMID:26921773

  8. Family-based association study of interleukin 10 (IL10) and interleukin 10 receptor alpha (IL10RA) functional polymorphisms in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2016-08-15

    Schizophrenia is a heterogeneous disorder and its etiology remains incompletely elucidated. Among possible causes, immunological factors have been implicated in its pathogenesis and course. Interleukin-10 (IL10) and it's receptor IL10RA may play an important role for immunological aspects in etiologies of major psychiatric disorders including schizophrenia. The aim of this study was to perform a transmission disequilibrium test (TDT) on a group of 146 schizophrenia trios from the Polish population. Functional polymorphisms from IL10 (rs1800872, rs1800871, rs1800896, rs1800890, and rs6676671) and IL10RA (rs3135932 and rs2229113) genes were analyzed. A lack of association with schizophrenia was detected for IL10 and IL10RA single polymorphisms and haplotypes. PMID:27397081

  9. A protective role for human IL-10-expressing CD4+ T cells in colitis

    PubMed Central

    Ranatunga, Dilini C.; Ramakrishnan, Amritha; Uprety, Priyanka; Wang, Fengying; Zhang, Hao; Margolick, Joseph B.; Brayton, Cory; Bream, Jay H.

    2012-01-01

    IL-10 is an immunoregulatory cytokine expressed by numerous cell-types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. Here, we utilized the previously described hIL10BAC transgenic model to examine the role of human IL-10 (hIL-10) in maintaining intestinal homeostasis. Genomically-controlled hIL-10 expression rescued Il10−/− mice from Helicobacter-induced colitis and was associated with control of pro-inflammatory cytokine expression and TH17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4+Foxp3+ T regulatory cells specifically within the lamina propria but not other secondary lymphoid tissues. Co-transfer of CD4+CD45RBlo cells from Il10−/−/hIL10BAC mice rescued Rag1−/− mice from colitis further suggesting that CD4+ T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4+CD44+ T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark AcH3 in both the human and mouse IL10 locus compared to the spleen. These results provide experimental evidence verifying the importance of T cell-derived human IL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus. PMID:22753934

  10. TLR4, IL10RA, and NOD2 mutation in paediatric Crohn's disease patients: an association with Mycobacterium avium subspecies paratuberculosis and TLR4 and IL10RA expression.

    PubMed

    Wagner, Josef; Skinner, Narelle A; Catto-Smith, Anthony G; Cameron, Donald J S; Michalski, Wojtek P; Visvanathan, Kumar; Kirkwood, Carl D

    2013-08-01

    Mycobacterium avium subspecies paratuberculosis (MAP) has been implicated in the pathogenesis of Crohn's disease (CD). The role of CD susceptibility genes in association with these microbes is not known. Sixty-two early onset paediatric CD patients and 46 controls with known MAP status were analysed for an association with 34 single nucleotide polymorphisms (SNPs) from 18 CD susceptibility genes. Functional studies on peripheral blood mononuclear cells (PBMCs) were conducted on 17 CD patients with known CD mutations to assess IL-6, IL-10, and TNF-α expression upon stimulation with MAP precipitated protein derivative (PPD) and lipopolysaccharide (LPS). In addition, surface expression of IL10R and TLR4 on resting B cells, NK cells, T cells, and monocytes was assessed. A mutation in TLR4 (rs4986790) and IL10RA (rs22291130) was significantly associated with MAP-positive CD patients compared to MAP-negative CD patients (27.6 vs. 6.1 %, p = 0.021, and 62.1 vs. 33.3 %, p = 0.024, respectively). PPD and LPS significantly increased IL-6, IL-10, and TNF-α production in PBMCs. IL-10 and TNF-α production were significantly lower in a subgroup of CD patients (5/12) with a known NOD2 mutation. Receptor for IL-10 was significantly higher expressed on NK cells (CD56low) and on NK T cells harbouring a NOD2 mutations compared to wildtype cells (p = 0.031 and 0.005, respectively). TLR4 was significantly higher expressed on NK cells (CD56high) harbouring a NOD2 mutations compared to wildtype cells (p = 0.038). PMID:23455702

  11. Suppression of PU.1-linked TLR4 expression by cilostazol with decrease of cytokine production in macrophages from patients with rheumatoid arthritis

    PubMed Central

    Park, SY; Lee, SW; Baek, SH; Lee, CW; Lee, WS; Rhim, BY; Hong, KW; Kim, CD

    2013-01-01

    Background and Purpose The present study assessed the effects of cilostazol on LPS-stimulated TLR4 signal pathways in synovial macrophages from patients with rheumatoid arthritis (RA). These effects were confirmed in collagen-induced arthritis (CIA) in mice. Experimental Approach Expression of TLR4, PU.1, NF-κB p65 and IκBα on synovial fluid macrophages from RA patients was determined by Western blotting, and cytokines were measured by elisa. Anti-arthritic effects were evaluated in CIA mice. Key Results Intracellular cAMP was concentration-dependently raised by cilostazol (1–100 μM). Cilostazol significantly suppressed LPS-stimulated increase of TLR4 expression by blocking PU.1 transcriptional activity in RA macrophages. In addition, cilostazol decreased LPS-induced myeloid differentiation factor 88 (MyD88) expression, but not that of TNF receptor-associated factor 6 (TRAF6). Cilostazol also suppressed IkBα degradation and NF-κB p65 nuclear translocation. Moreover, LPS-induced increase of cytokine production (TNF-α, IL-1β) was inhibited by cilostazol, an effect which was accompanied by suppression of IκBα degradation, and NF-κB p65 nuclear translocation. However, expression of anti-inflammatory IL-10 was elevated by cilostazol and forskolin/IBMX. In mice with CIA, post-treatment with cilostazol (30 mg kg−1 day−1) decreased expression of TLR4 in knee joints in association with decreased recruitment of macrophages. Consequently, synovial inflammation, proteoglycan depletion and bone erosion were significantly inhibited by cilostazol treatment. Conclusions and Implications Cilostazol down-regulated LPS-stimulated PU.1-linked TLR4 expression and TLR4/MyD88/NF-κB signal pathways, and then suppressed inflammatory cytokine production in synovial macrophages from RA patients. Also cilostazol markedly inhibited the severity of CIA in mice. PMID:23072581

  12. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  13. Infliximab therapy increases the frequency of circulating CD16(+) monocytes and modifies macrophage cytokine response to bacterial infection.

    PubMed

    Nazareth, N; Magro, F; Silva, J; Duro, M; Gracio, D; Coelho, R; Appelberg, R; Macedo, G; Sarmento, A

    2014-09-01

    Crohn's disease (CD) has been correlated with altered macrophage response to microorganisms. Considering the efficacy of infliximab treatment on CD remission, we investigated infliximab effects on circulating monocyte subsets and on macrophage cytokine response to bacteria. Human peripheral blood monocyte-derived macrophages were obtained from CD patients, treated or not with infliximab. Macrophages were infected with Escherichia coli, Enterococcus faecalis, Mycobacterium avium subsp. paratuberculosis (MAP) or M. avium subsp avium, and cytokine levels [tumour necrosis factor (TNF) and interleukin (IL)-10] were evaluated at different time-points. To evaluate infliximab-dependent effects on monocyte subsets, we studied CD14 and CD16 expression by peripheral blood monocytes before and after different infliximab administrations. We also investigated TNF secretion by macrophages obtained from CD16(+) and CD16(-) monocytes and the frequency of TNF(+) cells among CD16(+) and CD16(-) monocyte-derived macrophages from CD patients. Infliximab treatment resulted in elevated TNF and IL-10 macrophage response to bacteria. An infliximab-dependent increase in the frequency of circulating CD16(+) monocytes (particularly the CD14(++) CD16(+) subset) was also observed (before infliximab: 4·65 ± 0·58%; after three administrations: 10·68 ± 2·23%). In response to MAP infection, macrophages obtained from CD16(+) monocytes were higher TNF producers and CD16(+) macrophages from infliximab-treated CD patients showed increased frequency of TNF(+) cells. In conclusion, infliximab treatment increased the TNF production of CD macrophages in response to bacteria, which seemed to depend upon enrichment of CD16(+) circulating monocytes, particularly of the CD14(++) CD16(+) subset. Infliximab treatment of CD patients also resulted in increased macrophage IL-10 production in response to bacteria, suggesting an infliximab-induced shift to M2 macrophages. PMID:24816497

  14. Infliximab therapy increases the frequency of circulating CD16+ monocytes and modifies macrophage cytokine response to bacterial infection

    PubMed Central

    Nazareth, N; Magro, F; Silva, J; Duro, M; Gracio, D; Coelho, R; Appelberg, R; Macedo, G; Sarmento, A

    2014-01-01

    Crohn's disease (CD) has been correlated with altered macrophage response to microorganisms. Considering the efficacy of infliximab treatment on CD remission, we investigated infliximab effects on circulating monocyte subsets and on macrophage cytokine response to bacteria. Human peripheral blood monocyte-derived macrophages were obtained from CD patients, treated or not with infliximab. Macrophages were infected with Escherichia coli, Enterococcus faecalis, Mycobacterium avium subsp. paratuberculosis (MAP) or M. avium subsp avium, and cytokine levels [tumour necrosis factor (TNF) and interleukin (IL)-10] were evaluated at different time-points. To evaluate infliximab-dependent effects on monocyte subsets, we studied CD14 and CD16 expression by peripheral blood monocytes before and after different infliximab administrations. We also investigated TNF secretion by macrophages obtained from CD16+ and CD16− monocytes and the frequency of TNF+ cells among CD16+ and CD16− monocyte-derived macrophages from CD patients. Infliximab treatment resulted in elevated TNF and IL-10 macrophage response to bacteria. An infliximab-dependent increase in the frequency of circulating CD16+ monocytes (particularly the CD14++CD16+ subset) was also observed (before infliximab: 4·65 ± 0·58%; after three administrations: 10·68 ± 2·23%). In response to MAP infection, macrophages obtained from CD16+ monocytes were higher TNF producers and CD16+ macrophages from infliximab-treated CD patients showed increased frequency of TNF+ cells. In conclusion, infliximab treatment increased the TNF production of CD macrophages in response to bacteria, which seemed to depend upon enrichment of CD16+ circulating monocytes, particularly of the CD14++CD16+ subset. Infliximab treatment of CD patients also resulted in increased macrophage IL-10 production in response to bacteria, suggesting an infliximab-induced shift to M2 macrophages. PMID:24816497

  15. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  16. PROGESTERONE TREATMENT REDUCES DISEASE SEVERITY AND INCREASES IL-10 IN EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

    PubMed Central

    Yates, M.A; Li, Y.; Chlebeck, P.; Proctor, T.; Vandenbark, A.A.; Offner, H.

    2010-01-01

    Ovarian hormones, including progesterone, are known to have immunomodulatory and neuroprotective effects which may alter the disease course of experimental autoimmune encephalomyelitis (EAE). In the current study, we examined the treatment potential of progesterone beginning at the onset of EAE symptoms. Progesterone treated animals showed reduced peak disease scores and cumulative disease indices, and decreased inflammatory cytokine secretion (IL-2 and IL-17). In addition, increased production of IL-10 was accompanied by increased numbers of CD19+ cells and an increase in CD8+ cells. Decreased chemokine and chemokine receptor expression in the spinal cord also contributed to decreased lesions in the spinal cord. PMID:20153059

  17. IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model of Trypanosoma cruzi Infection

    PubMed Central

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C.; Marino, Ana Paula M. P.; Ribeiro-Gomes, Flavia L.; Eckhaus, Michael; Antonelli, Lis R. V.; Murphy, Philip M.

    2011-01-01

    Chagas’ Disease is a zoonosis prevalent in Latin America caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas’ Disease, has been extensively studied but is still poorly understood. Here we systematically compared clinical, microbiologic, pathologic, immunologic and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice, however most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold > C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8+ T cells and both CD4+ and CD8+ subsets of IFNγ+IL-10+ double-producing T cells. Furthermore, T. cruzi infection of IL-10−/− C57BL/6J mice phenocopied fatal infection in wild type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  18. IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection.

    PubMed

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C; Marino, Ana Paula M P; Ribeiro-Gomes, Flavia L; Eckhaus, Michael; Antonelli, Lis R V; Murphy, Philip M

    2012-01-15

    Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  19. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS.

    PubMed

    Domingues, Wilson; Kanunfre, Kelly Aparecida; Rodrigues, Jonatas Cristian; Teixeira, Leandro Emidio; Yamamoto, Lidia; Okay, Thelma Suely

    2016-01-01

    Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation. PMID:27074324

  20. IL-10 Genetic Polymorphisms Were Associated with Valvular Calcification in Han, Uygur and Kazak Populations in Xinjiang, China

    PubMed Central

    Ma, Yi-Tong; Wulasihan, Muhuyati; Huang, Ying; Adi, Dilare; Yang, Yi-Ning; Ma, Xiang; Li, Xiao-Mei; Xie, Xiang; Huang, Ding; Liu, Fen; Chen, Bang-Dang

    2015-01-01

    Objective Valvular calcification occurs via ongoing endothelial injury associated with inflammation. IL-10 is an anti-inflammatory cytokine and 75% of the variation in IL-10 production is genetically determined. However, the relationship between genetic polymorphisms of IL-10 and valvular calcification has not been studied. The objective of this study was to investigate the association between valvular calcification and IL-10 genetic polymorphisms in the Han, Uygur and Kazak populations in China. Patients and Methods All of the participants were selected from subjects participating in the Cardiovascular Risk Survey (CRS) study. The single nucleotide polymorphisms (SNPs) rs1800871 and rs1800872 of the IL-10 gene were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Three independent case-control studies involving the Han population, the Uygur population and the Kazak population were used in the analysis. Results For the Han and Kazak populations, rs1800871 was found to be associated with valvular calcification in the recessive model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.031, respectively). For the Han, Uygur and Kazak populations, rs1800872 was found to be associated with valvular calcification in the dominant model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.009, and p=0.023,respectively) Conclusion Both rs1800871 and rs1800872 of the IL-10 gene are associated with valvular calcification in the Han and Kazak populations in China. Rs1800872 is also associated with valvular calcification in the Uygur population. PMID:26039365

  1. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS

    PubMed Central

    DOMINGUES, Wilson; KANUNFRE, Kelly Aparecida; RODRIGUES, Jonatas Cristian; TEIXEIRA, Leandro Emidio; YAMAMOTO, Lidia; OKAY, Thelma Suely

    2016-01-01

    Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation. PMID:27074324

  2. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases

    PubMed Central

    Ozanne, James; Prescott, Alan R.; Clark, Kristopher

    2014-01-01

    Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti

  3. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  4. Regulation of Inflammatory Cytokine Production by MKP-5 in Macrophages.

    PubMed

    Hömmö, Tuija; Pesu, Marko; Moilanen, Eeva; Korhonen, Riku

    2015-08-01

    Mitogen-activated protein kinases (MAPKs) include p38 MAPKs, c-Jun N-terminal kinases (JNKs) and Extracellular signal-regulated kinases (ERKs), and they regulate many cell processes, such as cell division, differentiation and release of inflammatory mediators. MAPK activity is controlled by mitogen-activated protein kinase phosphatases (MKPs), a phosphatase family with 11 members. MKP-1 is the most studied member of MKP family, and it is one of the anti-inflammatory factors induced by glucocorticoids. Less is known about the other MAPK phosphatases although they hold a promise as anti-inflammatory drug targets. In this study, we investigated the effect of MKP-5 on MAPK phosphorylation and cytokine production in J774 mouse macrophages. We used MKP-5 siRNA and an MKP-5 inhibitor (AS077234-4) to modulate MKP-5 function. We found that MKP-5 controlled p38 MAPK phosphorylation, but not that of JNK or ERK. In addition, the production of IL-6 and TNF was suppressed by MKP-5 in macrophages. Our results introduce a novel concept that compounds able to enhance MKP-5 expression and/or activity hold anti-inflammatory potential, because MKP-5 down-regulates the release of inflammatory mediators by controlling p38 MAPK activity. PMID:25615285

  5. Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques.

    PubMed Central

    Tipping, P. G.; Hancock, W. W.

    1993-01-01

    The production of cytokines by atheromatous plaque macrophages from human endarterectomy tissue was assessed in vitro by short-term cell culture and in situ by immunohistology. Macrophages were isolated from plaques of 14 patients undergoing carotid endarterectomy and 7 patients undergoing reconstructive procedures on atheromatous distal aortic and femoral arteries. Tumor necrosis factor (TNF) and interleukin 1 (IL-1) production by plaque macrophages and blood monocytes isolated concurrently from these patients was assessed. TNF release by macrophages from carotid plaques (0.39 +/- 0.12 ng/10(6) cells/24 hours) was significantly augmented compared to the release by corresponding blood monocytes (0.014 +/- 0.011 ng/10(6) cells/24 hours, P = 0.03), and by macrophages from noncarotid lesions (0.038 +/- 0.036 ng/10(6) cells/24 hours, P < 0.04). Cellular TNF expression by macrophages within carotid plaques was also more prominent than in noncarotid lesions. By contrast, IL-1 production by plaque macrophages from both carotid and noncarotid plaques was not augmented compared to blood monocytes, and only infrequent and low-intensity labeling for IL-1 was present on macrophages within plaques from either group. These results provide functional and immunohistological evidence for increased production of TNF but not IL-1 by activated macrophages, indicating local and selective augmentation of cytokine production within carotid plaques. This suggests that macrophages play an active role in the inflammatory response within atheromatous carotid plaques. Images Figure 3 PMID:8506944

  6. Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages.

    PubMed

    Petricevich, Vera L; Hernández Cruz, Anselmo; Coronas, Fredy I V; Possani, Lourival D

    2007-10-01

    Fraction number II obtained from Sephadex G-50 gel filtration of the soluble venom from the Brazilian scorpion Tityus serrulatus (TSV) stimulates macrophage function in vitro. The aim of this study was to identify which one of the several components of this fraction was responsible for the main stimulatory activity on macrophages. This component was identified as sub-fraction II-11, also known by the name of gamma toxin or simply abbreviated Ts1, which stands for toxin 1 of T. serrulatus venom. The effect of Ts1 was analyzed by detection of inflammatory mediators. Several functional bioassays were performed: TNF activity was assayed by measuring its cytotoxicity on L929 cells, whereas IL-1, IL-6, IFN-gamma and IL-10 were assayed by enzyme-linked immunosorbent assay. The levels of NO were evaluated by Griess colorimetric reactions in supernatants of macrophages in culture exposed to Ts1 and compared with FII. Macrophages exposed to Ts1 increase the production of mediators. With respect to the pro-inflammatory cytokines, an increment of IL-1alpha, IL-1beta was observed after 12 h; the maximum levels of IL-6 and TNF were observed after 24 h; the highest levels of IFN-gamma and NO were observed after 72 h. In contrast, the highest levels of anti-inflammatory cytokines such as IL-10 were observed after 120 h. With respect to the balance of pro- and anti-inflammatory cytokines, IL-1alpha/IL-10 and IL-6/IL-10 ratios appear incremented between 12 and 48 h in macrophages exposed to Ts1. IL-1beta/IL-10 and TNF/IL-10 ratios were increased in macrophages exposed to Ts1 for 12 h. IFN-gamma/IL-10 ratios increased up to 48 h, decaying thereafter. Elevated IL-6/TNF ratios were observed up to 24 h. These ratios may possibly reflect the inflammatory status during exposition to the venom. In conclusion, these data indicate that Ts1 has an important immunomodulatory effect on macrophages, and add important knowledge for understanding scorpion envenomation. It also opens the field for

  7. IL-10 Dependent Suppression of Type 1, Type 2 and Type 17 Cytokines in Active Pulmonary Tuberculosis

    PubMed Central

    Kumar, Nathella Pavan; Gopinath, Venugopal; Sridhar, Rathinam; Hanna, Luke E.; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Background Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB), their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL) and latent tuberculosis (LTB) have not been well studied. Aim and Methods To identify cytokine responses associated with pulmonary tuberculosis (TB), TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA. Results PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2); Type 2 (IL-4) and Type 17 (IL-17A and IL-17F) cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially) the suppression of cytokine responses in PTB. Conclusion Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB. PMID:23544075

  8. Effects of molecular liposomal hybrid compositions with oxidized dextrans and isonicotinic acid hydrazide on production of granulocytic macrophage colony-stimulating factor by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-10-01

    The effects of molecular liposomal hybrid compositions consisting of liposomes (200-450 nm) containing oxidized dextrans (dextranals; 35-60 kDa) conjugated with isonicotinic acid hydrazide (dextrazides), their components, and native dextrans on the production of granulocytic macrophage CSF by peritoneal macrophages were studied in vitro. Dextranals proved to be more potent inductors of granulocytic macrophage CSF than native dextrans. Conjugation of nicotinic acid hydrazide with dextranals did not modify their capacity to stimulate the production of granulocytic macrophage CSF. Liposomes in the molecular liposomal hybrid compositions did not attenuate the dextrazide capacity to stimulate the production of granulocytic macrophage CSF. Molecular liposomal compositions containing 60 kDa dextrazide exhibited the most potent stimulatory effect on macrophage production of granulocytic macrophage CSF. PMID:20396775

  9. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages. PMID:27220404

  10. Secretory products of macrophages: twenty-five years on.

    PubMed

    Nathan, Carl

    2012-04-01

    No longer do scientists look down on macrophages as "garbage men" that act "nonspecifically." Last fall's Nobel Prizes honored two of the few scientists who studied macrophages three decades ago. Now perhaps thousands do, and the subtypes they describe reflect ongoing discoveries of macrophages' extraordinary plasticity. PMID:22570864

  11. Effect of Penicillium mycotoxins on the cytokine gene expression, reactive oxygen species production, and phagocytosis of bovine macrophage (BoMacs) function.

    PubMed

    Oh, Se-Young; Mead, Philip J; Sharma, Bhawani S; Quinton, V Margaret; Boermans, Herman J; Smith, Trevor K; Swamy, H V L N; Karrow, Niel A

    2015-12-25

    Bovine macrophages (BoMacs) were exposed to the following Penicillium mycotoxins (PM): citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA). PM exposure at the concentration that inhibits proliferation by 25% (IC25) differentially for 24h altered the gene expression of various cytokines. OTA significantly induced IL-1α expression (p<0.05), while the expression of IL-6 was suppressed (p<0.01). MPA significantly induced the expression of IL-1α (p<0.05) and reduced the expression of IL-12α (p<0.01) and IL-10 (p<0.01). PAT significantly suppressed the expression of IL-23 (p<0.01), IL-10 (p<0.05) and TGF-β (p<0.05). Some PMs also affected reactive oxygen species (ROS) and phagocytosis of Mycobacterium avium ssp. Paratuberculosis (MAP) at higher concentrations. PAT and PA for example, significantly decreased the percent phagocytosis of MAP at 5.0 (p<0.01) and 15.6 μM (p<0.01), respectively, but only PA significantly suppressed PAM-3-stimulated ROS production at 62.5 (p<0.05) and 250.0 μM (p<0.01). OTA significantly increased the percent phagocytosis of MAP at 6.3 (p<0.05) and 12.5 μM (p<0.01). These findings suggest that exposure to sub-lethal concentrations of PMs can affect macrophage function, which could affect immunoregulation and innate disease resistance to pathogens. PMID:26394380

  12. Current status of IL-10 and regulatory T-cells in cancer

    PubMed Central

    Dennis, Kristen L.; Blatner, Nichole R.; Gounari, Fotini; Khazaie, Khashayarsha

    2014-01-01

    Purpose of review Tumor growth elicits antigen-specific cytotoxic as well as immune suppressive responses. Interleukin-10 (IL-10) is a key immune-suppressive cytokine produced by regulatory T-cells (Tregs) and by helper T-cells (TH). Here we review pleiotropic functions of IL-10 that impact the immune pathology of cancer. Recent findings The role of IL-10 in cancer has become less certain with knowledge of its immune stimulatory functions. IL-10 is needed for T-helper cell functions, T-cell immune surveillance, and suppression of cancer-associated inflammation. By promoting tumor specific immune surveillance and hindering pathogenic inflammation IL-10 is emerging as a key cytokine in the battle of the host against cancer. Summary IL-10 functions at the cross roads of immune stimulation and immune suppression in cancer. Immunological mechanisms of action of IL-10 can be ultimately exploited to develop novel and effective cancer therapies. PMID:24076584

  13. Nitric oxide production by a murine macrophage cell line (RAW264.7 cells) stimulated with Aggregatibacter actinomycetemcomitans surface-associated material.

    PubMed

    Sosroseno, W; Bird, P S; Seymour, G J

    2011-10-01

    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion. PMID:21736946

  14. Critical role of the major histocompatibility complex and IL-10 in matrilin-1-induced relapsing polychondritis in mice.

    PubMed

    Hansson, Ann-Sofie; Johansson, Asa C M; Holmdahl, Rikard

    2004-01-01

    Relapsing polychondritis (RP) is an autoimmune disease that affects extra-articular cartilage. Matrilin-1-induced relapsing polychondritis (MIRP) is a model for RP and is useful for studies of the pathogenic mechanisms in this disease. There are indications that the major histocompatibility complex (MHC) class II plays a major role in RP, since DR4+ patients are more commonly affected than controls. We have now addressed the role of the MHC region, as well as the non-MHC contribution, using congenic mouse strains. Of the MHC congenic strains, B10.Q (H2q) was the most susceptible, the B10.P (H2p) and B10.R (H2r) strains developed mild disease, while B10 strains carrying the v, b, f, or u H2 haplotypes were resistant. A slight variation of susceptibility of H2q strains (B10.Q> C3H.Q> DBA/1) was observed and the (B10.Q x DBA/1)F1 was the most susceptible of all strains. Furthermore, macrophages and CD4+ T cells were the most prominent cell types in inflammatory infiltrates of the tracheal cartilage. Macrophages are the major source of many cytokines, such as interleukin-10 (IL-10), which is currently being tested as a therapeutic agent in several autoimmune diseases. We therefore investigated B10.Q mice devoid of IL-10 through gene deletion and found that they developed a significantly more severe disease, with an earlier onset, than their heterozygous littermates. In conclusion, MHC genes, as well as non-MHC genes, are important for MIRP induction, and IL-10 plays a major suppressive role in cartilage inflammation of the respiratory tract. PMID:15380048

  15. Rudimentary TCR signaling triggers default IL-10 secretion by human Th1 cells.

    PubMed

    Burrows, G G; Chou, Y K; Wang, C; Chang, J W; Finn, T P; Culbertson, N E; Kim, J; Bourdette, D N; Lewinsohn, D A; Lewinsohn, D M; Ikeda, M; Yoshioka, T; Allen, C N; Offner, H; Vandenbark, A A

    2001-10-15

    Understanding the process of inducing T cell activation has been hampered by the complex interactions between APC and inflammatory Th1 cells. To dissociate Ag-specific signaling through the TCR from costimulatory signaling, rTCR ligands (RTL) containing the alpha1 and beta1 domains of HLA-DR2b (DRA*0101:DRB1*1501) covalently linked with either the myelin basic protein peptide 85-99 (RTL303) or CABL-b3a2 (RTL311) peptides were constructed to provide a minimal ligand for peptide-specific TCRs. When incubated with peptide-specific Th1 cell clones in the absence of APC or costimulatory molecules, only the cognate RTL induced partial activation through the TCR. This partial activation included rapid TCR zeta-chain phosphorylation, calcium mobilization, and reduced extracellular signal-related kinase activity, as well as IL-10 production, but not proliferation or other obvious phenotypic changes. On restimulation with APC/peptide, the RTL-pretreated Th1 clones had reduced proliferation and secreted less IFN-gamma; IL-10 production persisted. These findings reveal for the first time the rudimentary signaling pattern delivered by initial engagement of the external TCR interface, which is further supplemented by coactivation molecules. Activation with RTLs provides a novel strategy for generating autoantigen-specific bystander suppression useful for treatment of complex autoimmune diseases. PMID:11591763

  16. Transient correlation between viremia levels and IL-10 expression in pigs subclinically infected with porcine circovirus type 2 (PCV2).

    PubMed

    Darwich, L; Segalés, J; Resendes, A; Balasch, M; Plana-Durán, J; Mateu, E

    2008-04-01

    Immunological impairment by porcine circovirus type 2 (PCV2) infection is well documented in pigs suffering from postweaning multisystemic wasting syndrome. Nonetheless, little is known about immune status of pigs that remain PCV2 subclinically infected. Thus, seven pigs successfully infected in an experimental inoculation and without developing disease and nine control non-inoculated pigs were examined. Serological, virological and immunological determinations were done throughout ten weeks post-infection (PI). At week 3 PI, inoculated animals presented the peak of viremia and produced higher levels of IL-10 than the controls; correlation between viral load and IL-10 amounts was observed (p<0.05). Also, the ratio IgM/IgG suffered a shift skewing IgM production towards an IgG response. By 10 weeks PI, levels of IL-10 disappeared and the viremia decreased. In summary, subclinically PCV2-infected pigs developed a transient PCV2-specific IL-10 response during the viremic phase of infection which coincided with the inversion of the IgM/IgG ratio. PMID:17592737

  17. Alveolar Macrophage Secretory Products Effect Type 2 Pneumocytes Undergoing Hypoxia/Reoxygenation

    PubMed Central

    McCourtie, Anton S.; Farivar, Alexander S.; Woolley, Steven M.; Merry, Heather E.; Wolf, Patrick S.; Mackinnon-Patterson, Brendan; Keech, John C.; FitzSullivan, Elizabeth; Mulligan, Michael S.

    2009-01-01

    Background Activation of the alveolar macrophage is centrally important to the development of lung ischemia reperfusion injury. Alveolar macrophages and type 2 pneumocytes secrete a variety of proinflammatory mediators in response to oxidative stress. The manner in which they interact and how the macrophage may influence pneumocyte responses in lung ischemia reperfusion injury is unknown. Utilizing an in vitro model of hypoxia and reoxygenation, we sought to determine if the proinflammatory response of type 2 pneumocytes to oxidative stress would be amplified by alveolar macrophage secretory products. Methods Cultured pneumocytes were exposed to control media or media from cultured macrophages exposed to hypoxia and reoxygenation. Pneumocytes were subsequently subjected to hypoxia and reoxygenation and assessed for both nuclear translocation of nuclear factor kappa B and inflammatory cytokine and chemokine secretion. To examine for any reciprocal interactions, we reversed the experiment, exposing macrophages to conditioned pneumocyte media. Results In the presence of media from stimulated macrophages, production of proinflammatory mediators by type 2 pneumocytes was dramatically enhanced. In contrast, exposure of the macrophage to conditioned pneumocyte media had an inhibitory effect on macrophage responses subsequently exposed to hypoxia and reoxygenation. Conclusions The alveolar macrophage drives the development of lung reperfusion injury in part through amplification of the inflammatory response of type 2 pneumocytes subjected to hypoxia and reoxygenation. PMID:19021974

  18. TNF-α and IL-10 polymorphisms increase the risk to hepatocellular carcinoma in HCV infected individuals.

    PubMed

    Aroucha, Dayse Celia; Carmo, Rodrigo Feliciano; Vasconcelos, Luydson Richardson Silva; Lima, Raul Emidio; Mendonça, Taciana Furtado; Arnez, Lucia Elena; Cavalcanti, Maria do Socorro Mendonça; Muniz, Maria Tereza Cartaxo; Aroucha, Marcilio Lins; Siqueira, Erika Rabelo; Pereira, Luciano Beltrão; Moura, Patrícia; Pereira, Leila Maria Moreira Beltrão; Coêlho, Maria Rosangela

    2016-09-01

    Hepatitis C virus (HCV) is the major cause of hepatocellular carcinoma (HCC). The risk to develop HCC increases with the severity of liver inflammation and hepatic fibrosis. It is believed that a balance between the releases of pro- and anti-inflammatory cytokines will determine the clinical course of HCV and the risk to develop HCC. The inteleukin-10 (IL-10) and the tumor necrosis factor alpha (TNF-α) play key roles in the Th1 and Th2 balance during the inflammatory response against HCV. The aim of the present study was to investigate the association between polymorphisms in TNF-α -308 G>A (rs1800629), IL-10 -1082 G>A (rs1800896) and -819/-592 (rs1800871/rs1800872) with HCC risk in individuals with HCV. The present study evaluated 388 chronic HCV patients. Polymorphisms were determined by real-time PCR. Diplotypes associated with low IL-10 production and the TNF-α GG genotype were significantly associated with HCC occurrence after multivariate logistic regression analysis (P = 0.027 and P = 0.029, respectively). Additionally, the IL-10 -819 (-592) TT (AA) genotype was significantly associated with multiple nodules and HCC severity according to BCLC staging (P = 0.044 and P = 0.025, respectively). Patients carrying low production haplotypes of IL-10 and the TNF-α GG genotype have higher risk to develop HCC. J. Med. Virol. 88:1587-1595, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890368

  19. Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Lippai, Rita; Béres, Nóra Judit; Fekete, Andrea; Szabó, Attila J.; Vannay, Ádám

    2015-01-01

    Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become a major public health problem. According to some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM) production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECM disturbs the original organ architecture leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines. PMID:26199463

  20. Lactobacillus rhamnosus GG and Streptococcus thermophilus induce suppressor of cytokine signalling 3 (SOCS3) gene expression directly and indirectly via interleukin-10 in human primary macrophages

    PubMed Central

    Latvala, S; Miettinen, M; Kekkonen, R A; Korpela, R; Julkunen, I

    2011-01-01

    In the present study we have characterized T helper type 2 (Th2) [interleukin (IL)-10]/Th1 (IL-12) cytokine expression balance in human primary macrophages stimulated with multiple non-pathogenic Gram-positive bacteria used in the food industry and as probiotic substances. Bacteria representing Lactobacillus, Bifidobacterium, Lactococcus, Leuconostoc, Propionibacterium and Streptococcus species induced anti-inflammatory IL-10 production, although quantitative differences between the bacteria were observed. S. thermophilus was able to induce IL-12 production, while the production of IL-12 induced by other bacteria remained at a low level. The highest anti-inflammatory potential was seen with bifidobacteria, as evidenced by high IL-10/IL-12 induction ratios. All studied non-pathogenic bacteria were able to stimulate the expression of suppressor of cytokine signalling (SOCS) 3 that controls the expression of proinflammatory cytokine genes. Lactobacillus and Streptococcus species induced SOCS3 mRNA expression directly in the absence of protein synthesis and indirectly via bacteria-induced IL-10 production, as demonstrated by experiments with cycloheximide (CHX) and anti-IL-10 antibodies, respectively. The mitogen-activated protein kinase (MAPK) p38 signalling pathway played a key role in bacteria-induced SOCS3 gene expression. Enhanced IL-10 production and SOCS3 gene expression induced by live non-pathogenic Lactobacillus and Streptococcus is also likely to contribute to their immunoregulatory effects in vivo. PMID:21545585

  1. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines

    PubMed Central

    Zhou, Lili; Cao, Xixi; Fang, Jie; Li, Yuhong; Fan, Mingwen

    2015-01-01

    Macrophages recognize microbes through Pattern Recognition Receptors (PRRs), and then release pro-inflammatory and anti-inflammatory cytokines. Recent studies have highlighted that collaboration between different PRRs. However, these studies have neglected the crosstalk between various PRRs on macrophages. In the present study, we investigated the interplay of nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2) and TLRs (TLR1, 2, 3, 4, 5, 6, 7, 8) in terms of macrophage activation, the expression and production of cytokines. The macrophages were stimulated with a single PRR ligand or a combination of TLR and NOD ligands. After 8 h of incubation, the mRNA expression of interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-12p35, IL-12p40, IL-13, and interferon-γ (IFN-γ) was evaluated. The production of these cytokines was also measured. NOD2 synergized with TLR3 agonists on enhancement of IL-10 release. However, the combination of NOD1 with TLR3 ligands showed little effect on IL-10 production. Moreover, NOD2 inhibited the percentages of CD11b + F4/80 + cells activated by TLR3 agonist. PMID:26617814

  2. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  3. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta.

    PubMed

    Gazzinelli, R T; Oswald, I P; Hieny, S; James, S L; Sher, A

    1992-10-01

    The present study was carried out to determine the effector mechanism of anti-Trypanosoma cruzi activity by interferon (IFN)-gamma plus lipopolysaccharide (LPS)-treated macrophages. A macrophage cell line (IC-21) that failed to mount an appreciable oxidative burst was nevertheless found able to control T. cruzi growth after exposure to IFN-gamma alone or IFN-gamma plus LPS. Moreover, microbicidal functions of both inflammatory macrophages and IC-21 against T. cruzi was found to be inhibited in the presence of NG-monomethyl-L-arginine (NGMMA), a competitive inhibitor of L-arginine. Addition of supplemental L-arginine to the culture overcame the capacity of NGMMA to block activated macrophage anti-T. cruzi functions. The ability of NGMMA to reverse both parasite growth inhibition and killing by IFN-gamma plus LPS-activated macrophages was found to correlate with the suppression of nitrite accumulation in the culture supernatants. Together, these results implicate the L-arginine-dependent production of nitric oxide in T. cruzi killing by activated macrophages. We also tested the ability of interleukin(IL)-10 and transforming growth factor (TGF)-beta, to block regulation of T. cruzi growth in this system. Both IL-10 and TGF-beta inhibited anti-parasite function by IFN-gamma-activated macrophages, with an optimal dose of 100 units/ml and 0.5 ng/ml, respectively. Moreover, when used in combination, suboptimal doses of IL-10 and TGF-beta were found to produce a synergistic inhibitory effect in the regulation of T. cruzi growth. The ability of IL-10 and TGF-beta to suppress microbicidal function was also positively correlated with inhibition of nitrite generation in macrophage culture supernatants. These results predict an in vivo role for IL-10 and TGF-beta in promoting parasite survival in the face of the host cell-mediated immune response. PMID:1396957

  4. Secretory products of macrophages: twenty-five years on

    PubMed Central

    Nathan, Carl

    2012-01-01

    No longer do scientists look down on macrophages as “garbage men” that act “nonspecifically.” Last fall’s Nobel Prizes honored two of the few scientists who studied macrophages three decades ago. Now perhaps thousands do, and the subtypes they describe reflect ongoing discoveries of macrophages’ extraordinary plasticity. PMID:22570864

  5. Functional characterization of a STAT3-dependent dendritic cell-derived CD14+ cell population arising upon IL-10-driven maturation

    PubMed Central

    Lindenberg, Jelle J.; van de Ven, Rieneke; Lougheed, Sinéad M.; Zomer, Anoek; Santegoets, Saskia J.A.M.; Griffioen, Arjan W.; Hooijberg, Erik; van den Eertwegh, Alfons J.M.; Thijssen, Victor L.; Scheper, Rik J.; Oosterhoff, Dinja; de Gruijl, Tanja D.

    2013-01-01

    Interleukin (IL)-10 is a major cancer-related immunosuppressive factor, exhibiting a unique ability to hamper the maturation of dendritic cells (DCs). We have previously reported that IL-10 induces the conversion of activated, migratory CD1a+ DCs found in the human skin to CD14+CD141+ macrophage-like cells. Here, as a model of tumor-conditioned DC maturation, we functionally assessed CD14- and CD14+ DCs that matured in vitro upon exposure to IL-10. IL-10-induced CD14+ DCs were phenotypically characterized by a low maturation state as well as by high levels of BDCA3 and DC-SIGN, and as such they closely resembled CD14+ cells infiltrating melanoma metastases. Compared with DC matured under standard conditions, CD14+ DCs were found to express high levels of B7-H1 on the cell surface, to secrete low levels of IL-12p70, to preferentially induce TH2 cells, to have a lower allogeneic TH cell and tumor antigen-specific CD8+ T-cell priming capacity and to induce proliferative T-cell anergy. In contrast to their CD14+ counterparts, CD14- monocyte-derived DCs retained allogeneic TH priming capacity but induced a functionally anergic state as they completely abolished the release of effector cytokines. Transcriptional and cytokine release profiling studies indicated a more profound angiogenic and pro-invasive signature of CD14+ DCs as compared with DCs matured in standard conditions or CD14− DCs matured in the presence of IL-10. Importantly, signal transducer and activator of transcription 3 (STAT3) depletion by RNA interference prevented the development of the IL-10-associated CD14+ phenotype, allowing for normal DC maturation and providing a potential means of therapeutic intervention. PMID:23734330

  6. NKG2D blockade inhibits poly(I:C)-triggered fetal loss in wild type but not in IL-10-/- mice.

    PubMed

    Thaxton, Jessica E; Nevers, Tania; Lippe, Eliana O; Blois, Sandra M; Saito, Shigeru; Sharma, Surendra

    2013-04-01

    Infection and inflammation can disturb immune tolerance at the maternal-fetal interface, resulting in adverse pregnancy outcomes. However, the underlying mechanisms for detrimental immune responses remain ill defined. In this study, we provide evidence for immune programming of fetal loss in response to polyinosinic:polycytidylic acid (polyI:C), a viral mimic and an inducer of inflammatory milieu. IL-10 and uterine NK (uNK) cells expressing the activating receptor NKG2D play a critical role in poly(I:C)-induced fetal demise. In wild type (WT) mice, poly(I:C) treatment induced expansion of NKG2D(+) uNK cells and expression of Rae-1 (an NKG2D ligand) on uterine macrophages and led to fetal resorption. In IL-10(-/-) mice, NKG2D(-) T cells instead became the source of fetal resorption during the same gestation period. Interestingly, both uterine NK and T cells produced TNF-α as the key cytotoxic factor contributing to fetal loss. Treatment of WT mice with poly(I:C) resulted in excessive trophoblast migration into the decidua and increased TUNEL-positive signal. IL-10(-/-) mice supplemented with recombinant IL-10 induced fetal loss through NKG2D(+) uNK cells, similar to the response in WT mice. Blockade of NKG2D in poly(I:C)-treated WT mice led to normal pregnancy outcome. Thus, we demonstrate that pregnancy-disrupting inflammatory events mimicked by poly(I:C) are regulated by IL-10 and depend on the effector function of uterine NKG2D(+) NK cells in WT mice and NKG2D(-) T cells in IL-10 null mice. PMID:23455498

  7. Contrasting roles for all-trans retinoic acid in TGF-β–mediated induction of Foxp3 and Il10 genes in developing regulatory T cells

    PubMed Central

    Maynard, Craig L.; Hatton, Robin D.; Helms, Whitney S.; Oliver, James R.; Stephensen, Charles B.

    2009-01-01

    Extrathymic induction of regulatory T (T reg) cells is essential to the regulation of effector T cell responses in the periphery. In addition to Foxp3, T reg cell expression of suppressive cytokines, such as IL-10, is essential for peripheral tolerance, particularly in the intestines. TGF-β has been shown to induce expression of Foxp3 as well as IL10 and the vitamin A metabolite; all-trans retinoic acid (RA [at-RA]) has been found to enhance the former. We report that in contrast to its enhancement of TGF-β–mediated Foxp3 induction, at-RA potently inhibits the TGF-β–mediated induction of Il10 in naive CD4 T cells. Thus, mucosal DC subsets that are active producers of at-RA inhibit induction of Il10 in naive CD4 T cells while promoting induction of Foxp3. Accordingly, mice with vitamin A deficiency have increased numbers of IL-10–competent T reg cells. Activation of DCs by certain Toll-like receptors (TLRs), particularly TLR9, suppresses T cell induction of Foxp3 and enables induction of Il10. Collectively, our data indicate that at-RA has reciprocal effects on the induction of Foxp3 and Il10 in developing CD4+ T reg cells and suggest that TLR9-dependent inhibition of at-RA production by antigen-presenting cells might represent one mechanism to promote the development of IL-10–expressing T cells. PMID:19204112

  8. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells.

    PubMed Central

    Edwards, I. J.; Wagner, W. D.; Owens, R. T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion. Images Figure 6 PMID:2316626

  9. Rat lung macrophage tumor cytotoxin production: impairment by chronic in vivo cigarette smoke exposure.

    PubMed

    Flick, D A; Gonzalez-Rothi, R J; Harris, J O; Gifford, G E

    1985-11-01

    Macrophages in the presence of bacteria-derived lipopolysaccharide (LPS) stimuli produce a soluble cytotoxin which is toxic to tumor cells. In this study, we examined various parameters of cytotoxin production from pulmonary lavage cells obtained from Fisher 344 cesarean-derived rats. Cultures of macrophages were derived from pulmonary lavage cells and stimulated in vitro with LPS. Cytotoxin production was assayed in vitro using an L-929 cell target assay. Pulmonary lavage preparations contained a relatively pure population of macrophages, and adherence studies revealed that nonadherent lavage cells contributed negligible amounts of cytotoxin, indicating that macrophages were responsible for cytotoxin production. After LPS stimulation, cytotoxin production became maximal within 10 h and thereafter plateaued. Doses of LPS above 0.1 microgram/ml were optimal for production, and in the absence of LPS, no cytotoxin was detected. Because cigarette smoke is the major etiological factor in the development of lung cancers and because smoking is known to profoundly alter the function of alveolar macrophages in humans and experimental animals, subsequent experiments examined the role of chronic cigarette smoke exposure on tumoricidal activity of lung macrophages. Rats were exposed in vivo for 8 wk to either cigarette smoke or air (sham-treated controls). When lavage cells were cultured and stimulated with LPS (1 microgram/ml), 5- to 10-fold less cytotoxin was produced by lavage cells from rats exposed to cigarette smoke. Similarly, using a direct cytotoxicity assay, lung macrophages of smoke-exposed animals also revealed marked impairment in cytotoxicity against L-929 cell targets, and this was noted over a wide range of macrophage:tumor target cell ratios. Another product of macrophages, interferon, was also decreased in rats exposed in vivo to cigarette smoke when compared to sham-treated controls. These results suggest that cigarette smoke exposure may impair pulmonary

  10. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    PubMed

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. PMID:26655428

  11. Kinsenoside isolated from Anoectochilus formosanus suppresses LPS-stimulated inflammatory reactions in macrophages and endotoxin shock in mice.

    PubMed

    Hsiao, Hung-Bo; Wu, Jin-Bin; Lin, Ho; Lin, Wen-Chuan

    2011-02-01

    In the present study, we reported that kinsenoside, a major component of Anoectochilus formosanus, inhibited inflammatory reactions in mouse peritoneal lavage macrophages and protects mice from endotoxin shock. In LPS-stimulated mouse peritoneal lavage macrophages, kinsenoside inhibited the inflammatory mediators, such as nitric oxide, TNF-[alpha], IL-1[beta], monocyte chemoattractant protein 1, and macrophage migration inhibitory factor production. Furthermore, kinsenoside decreased the formation of a nuclear factor [kappa]B-DNA complex and nuclear p65 and p50 protein levels. Kinsenoside inhibited nuclear factor [kappa]B translocation through both I[kappa]B[alpha]-dependent and -independent pathway. In contrast, it stimulated anti-inflammatory cytokine IL-10 generation and enhanced the mRNA expression of IL-10 and suppressor of cytokine signaling 3 in the same cells induced by LPS. In an animal model, both pretreatment and posttreatment of kinsenoside increased the survival rate of ICR mice challenged by LPS (80 mg/kg, i.p.). Pretreatment with kinsenoside decreased serum levels of TNF-[alpha], IL-1[beta], IL-10, monocyte chemoattractant protein 1, and migration inhibitory factor at 1 h after sublethal dose of LPS (40 mg/kg, i.p.) in mice. In contrast, kinsenoside enhanced serum IL-10 level at 24 h after LPS injection in mice. In conclusion, kinsenoside inhibited the production of inflammatory mediators and enhanced anti-inflammatory cytokine generation. Therefore, kinsenoside can alleviate acute inflammatory hazards. PMID:20661184

  12. Correlating macrophage morphology and cytokine production resulting from biomaterial contact

    PubMed Central

    Lee, Hyun-Su; Stachelek, Stanley J.; Tomczyk, Nancy; Finley, Matthew J.; Composto, Russell J.; Eckmann, David M.

    2012-01-01

    The morphological and inflammatory responses of adherent macrophages are correlated to evaluate the biocompatibility of surfaces. Monocyte derived macrophage, THP-1, and THP-1 cells expressing GFP-actin chimeric protein were seeded onto glass, polyurethane (PU), and glass surface modified with quaternary ammonium salt functionalized chitosan (CH-Q) and hyaluronic acid (HA). Using confocal microscopy, the surface area, volume and 3-D shape factor of adherent macrophages was quantified. For comparison, functional consequences of cell-surface interactions that activate macrophages and thereby elicit secretion of a pro-inflammatory cytokine were evaluated. Using an enzyme linked immune sorbent assay, tumor necrosis factor-alpha (TNF-α) was measured. On glass, macrophages exhibited mainly an amoeboid shape, exhibited the largest surface area, volume, and 3-D shape factor and produced the most TNF-α. On PU, macrophages displayed mainly a hemispherical shape, exhibited an intermediate volume, surface area and 3-D shape factor, and produced moderate TNF-α. In contrast, on CH-Q and HA surfaces, macrophages were spherical, exhibited the smallest volume, surface area, and 3-D shape factor, and produced the least TNF-α. These studies begin to validate the use of GFP-actin modified MDM as a novel tool to correlate cell morphology with inflammatory cell response. PMID:22847892

  13. Correlating macrophage morphology and cytokine production resulting from biomaterial contact.

    PubMed

    Lee, Hyun-Su; Stachelek, Stanley J; Tomczyk, Nancy; Finley, Matthew J; Composto, Russell J; Eckmann, David M

    2013-01-01

    The morphological and inflammatory responses of adherent macrophages are correlated to evaluate the biocompatibility of surfaces. Monocyte-derived macrophage (MDM), THP-1, and THP-1 cells expressing GFP-actin chimeric protein were seeded onto glass, polyurethane (PU), and glass surface modified with quaternary ammonium salt functionalized chitosan (CH-Q) and hyaluronic acid (HA). Using confocal microscopy, the surface area, volume and 3D shape factor of adherent macrophages was quantified. For comparison, functional consequences of cell-surface interactions that activate macrophages and thereby elicit secretion of a proinflammatory cytokine were evaluated. Using an enzyme linked immune sorbent assay, tumor necrosis factor-alpha (TNF-α) was measured. On glass, macrophages exhibited mainly an amoeboid shape, exhibited the largest surface area, volume, and 3D shape factor and produced the most TNF-α. On PU, macrophages displayed mainly a hemispherical shape, exhibited an intermediate volume, surface area and 3D shape factor, and produced moderate TNF-α. In contrast, on CH-Q and HA surfaces, macrophages were spherical, exhibited the smallest volume, surface area, and 3D shape factor, and produced the least TNF-α. These studies begin to validate the use of GFP-actin-modified MDM as a novel tool to correlate cell morphology with inflammatory cell response. PMID:22847892

  14. Association of interleukin-10 promoter haplotypes with disease susceptibility and IL-10 levels in Mexican patients with systemic lupus erythematosus.

    PubMed

    Palafox-Sánchez, Claudia Azucena; Oregon-Romero, Edith; Salazar-Camarena, Diana Celeste; Valle, Yeminia Maribel; Machado-Contreras, Jesús René; Cruz, Alvaro; Orozco-López, Mariana; Orozco-Barocio, Gerardo; Vázquez-Del Mercado, Mónica; Muñoz-Valle, José Francisco

    2015-11-01

    Systemic lupus erythematosus (SLE) is the prototype autoimmune rheumatic disease. The etiology of this disease is incompletely understood; however, environmental factors and genetic predisposition are involved. Cytokine-mediated immunity plays a crucial role in the pathogenesis of SLE. We investigate the association of interleukin-10 (IL-10) promoter polymorphisms and their haplotypes in SLE patients from the western Mexico. One hundred and twenty-five SLE patients fulfilling the 1997 ACR criteria and 260 unrelated healthy subjects (HS), both Mexican mestizos, were genotyped for IL-10 -1082A>G, -819C>T, and -592C>A polymorphisms. Haplotypes were inferred using the expectation-maximization algorithm, then allele and haplotype distributions were compared between patients and HS, as well as patients with different clinical variables. We identified at -1082, -819, and -592 four predominant haplotypes ACC (43.70 % in patients vs 46.55 % in HS), ATA (21.45 vs 22.97 %), GCC (16.28 vs 14.21 %), and GTA (14.12 vs 14.12 %). The ATC haplotype was more frequent in SLE respect to HS, suggesting a risk effect (3.23 vs 1.05 %; OR 3.55, CI 1.14-11.11; p = 0.0293). SLE patient carriers of -592 CC genotype as well as the dominant model of inheritance showed higher sIL-10 respect to AA genotype, suggesting that -592 C allele is associated with increased production of the cytokine (p < 0.05). The ACC haplotype had higher IL-10 serum levels and higher values of Mexican version of the Systemic Lupus Erythematosus Disease Activity Index compared with the other haplotype carriers; however, no association was found regarding autoantibodies. Our data suggest that the IL-10 promoter haplotypes play an important role in the risk of developing SLE and influence the production of IL-10 in Mexican population. Nevertheless, further studies are required to analyze the expression of mRNA as well as to investigate the interacting epigenetic factors that could help to define the true contribution of

  15. Effects of intracellular products of Bacillus subtilis VSG1 and Lactobacillus plantarum VSG3 on cytokine responses in the head kidney macrophages of Labeo rohita.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Chi, Cheng; Kim, Hyoun Joong; Yun, Saekil; Park, Se Chang; Sukumaran, V

    2015-12-01

    The efficiency of intracellular products (ICPs) of the probiotics Bacillus subtilis VSG1 and Lactobacillus plantarum VSG3 in stimulating cytokine responses in the head kidney (HK) macrophages of Labeo rohita was investigated. The HK macrophages were incubated with ICPs and lipopolysaccharide (LPS), and the responses of cytokine genes, namely interleukin-10 (IL-10), IL-1β, IL-12p35, IL-12p40, IL-18, tumour necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), cyclo-oxygenase-2 (COX-2), interferon-1 (IFN-1), and IFN-γ were assessed by quantitative real-time PCR (qRT-PCR) at 2, 6, 12, 24, and 48 h post-stimulation (hps). Among the proinflammatory cytokines, a strong increase in the gene expression of IL-1β and TNF-α was displayed mainly at 2-6 hps with ICPs, as compared to that of the positive control (LPS) or the negative control (PBS) (P < 0.05). However, COX-2 and NF-κB showed higher expression at 2 and 24 hps, and 6-24 hps with ICPs, respectively. Antiviral cytokines IFN-1 and IFN-γ displayed strong expressions (P < 0.05) at 6-12 hps, and 12-24 hps with ICPs, respectively. Upregulation of the anti-inflammatory cytokine, IL-10, was recorded at 6-24 hps with ICPs, as compared to that controls. Expressions of cell-mediated immune factor genes (IL-12p35, IL-12p40, and IL-18) were also significantly upregulated at different time points, except 48 hps, in HK macrophages stimulated with ICPs. Furthermore, enhanced cellular (phagocytic activity and nitroblue tetrazolium assay) and humoral (lysozyme) immune parameters in stimulated cells confirmed the induction of the inflammatory response. Therefore, the results of this in vitro study indicate that the ICPs of B. subtilis VSG1 or L. plantarum VSG3 have great potential for stimulating the cytokine responses in fish, and are thereby potential immunostimulants to fish. Further studies could be conducted to explore its suitability as an adjuvant vaccine in aquaculture. PMID:26520566

  16. p-Cresyl sulfate suppresses lipopolysaccharide-induced anti-bacterial immune responses in murine macrophages in vitro.

    PubMed

    Shiba, Takahiro; Makino, Ikuyo; Kawakami, Koji; Kato, Ikuo; Kobayashi, Toshihide; Kaneko, Kimiyuki

    2016-03-14

    p-Cresyl sulfate (pCS) is a known uremic toxin that is metabolized from p-cresol produced by intestinal bacteria. Abnormal accumulation of pCS in the blood is a characteristic of chronic kidney disease (CKD). pCS is suggested to cause immune dysfunction and increase the risk of infectious diseases in CKD patients. In this study, we focused on the effects of pCS on macrophage functions related to host defense. We evaluated the effects of pCS on cytokine production, nitric oxide (NO) production, arginase activity, expression of cell-surface molecules, and phagocytosis in the macrophage-like cell line, RAW264.7. pCS significantly decreased interleukin (IL)-12 p40 production and increased IL-10 production. pCS also decreased NO production, but did not influence arginase activity. pCS suppressed lipopolysaccharide-induced CD40 expression on the cell surface, but did not influence phagocytosis. We further assessed whether the effects of pCS observed in the macrophage-like cell line were consistent in primary macrophages. Similar to RAW264.7 cells, pCS decreased IL-12 p40 and p70 production and increased IL-10 production in primary peritoneal macrophages. These data indicate that pCS suppresses certain macrophage functions that contribute to host defense, and may play a role in CKD-related immune dysfunction. PMID:26784855

  17. Schistosoma mansoni Tegument (Smteg) Induces IL-10 and Modulates Experimental Airway Inflammation

    PubMed Central

    2016-01-01

    Background Previous studies have demonstrated that S. mansoni infection and inoculation of the parasite eggs and antigens are able to modulate airways inflammation induced by OVA in mice. This modulation was associated to an enhanced production of interleukin-10 and to an increased number of regulatory T cells. The S. mansoni schistosomulum is the first stage to come into contact with the host immune system and its tegument represents the host-parasite interface. The schistosomula tegument (Smteg) has never been studied in the context of modulation of inflammatory disorders, although immune evasion mechanisms take place in this phase of infection to guarantee the persistence of the parasite in the host. Methodology and Principal Findings The aim of this study was to evaluate the Smteg ability to modulate inflammation in an experimental airway inflammation model induced by OVA and to characterize the immune factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar lavage and IgE levels were measured in serum. Additionally, lungs were excised for histopathological analyses, cytokine measurement and characterization of the cell populations. Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage (BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 levels. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction observed in these inflammatory parameters was associated with increased levels of IL-10 in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs. Conclusion Taken together, these findings

  18. Atopic dermatitis patients carrying G allele in –1082 G/A IL-10 polymorphism are predisposed to higher serum concentration of IL-10

    PubMed Central

    Zakrzewski, Marcin; Przybyłowska, Karolina; Rogowski-Tylman, Michał; Wozniacka, Anna; Narbutt, Joanna

    2014-01-01

    Introduction Atopic dermatitis (AD) is a chronic skin inflammatory disease in which Th2-derived cytokines play an essential role. Aim of the study was to assess interleukin 4, 10 and 13 (IL-4, IL-10 and IL-13) serum concentrations in AD patients and to correlate the values with the occurrence of genotypes of selected polymorphisms in genes encoding these cytokines. Material and methods Seventy-six AD patients (mean age 11.4 years) and 60 healthy controls were enrolled in the study. Blood samples were analyzed for IL-4, IL-10 and IL-13 concentrations with ELISA assay and genotyping for –590C/T IL-4, –1082A/G IL-10 and –1055C/T IL-13 polymorphisms with PCR-RFLP. Results The obtained results revealed statistically higher serum concentration of IL-10 and IL-13 in AD patients when compared to healthy controls (10.30 pg/ml vs. 8.51 pg/ml for IL-10 and 5.67 pg/ml vs. 4.98 pg/ml for IL-13). There were no significant differences between AD patients and controls in regard to IL-4 serum level (5.10 pg/ml vs. 7.1 pg/ml). Analyzing the association between level of the examined cytokines and genotype polymorphisms –590 C/T for the IL-4 gene, –1082 A/G for the IL-10 gene and –1055 C/T for the IL-13 gene, we found a statistically higher IL-10 serum level among carriers of the G allele in the –1082 G/A IL-10 polymorphism both in AD and control groups. We did not find any significant differences between serum level of IL-4 and IL-13 in regard to genotype occurrence in examined polymorphisms: –590 C/T for the IL-4 gene and –1055 C/T for the IL-13 gene. Conclusions The obtained results confirm the genetic background of IL-10 synthesis in the Polish population. PMID:25624864

  19. The Polymorphism rs3024505 (C/T) Downstream of the IL10 Gene Is Associated with Crohn's Disease in Serbian Patients with Inflammatory Bowel Disease.

    PubMed

    Mijac, Dragana; Petrovic, Irena Vukovic; Djuranovic, Srdjan; Perovic, Vladimir; Bojic, Daniela; Culafic, Djordje; Popovic, Dragan; Krstic, Miodrag; Jankovic, Goran; Djoric, Milica; Pravica, Vera; Markovic, Milos

    2016-01-01

    Inflammatory bowel disease (IBD), manifesting as Crohn's disease (CD) and ulcerative colitis (UC), is characterized by recurring episodes of inflammation in gastrointestinal tract, in which aberrant production of regulatory cytokine interleukin-10 (IL-10) presumably plays important role. Single nucleotide polymorphisms (SNPs) that affect IL-10 production, such as rs1800896 (G/A) at position -1082 and rs1800871 (C/T) at position -819 in the promoter region of the IL10 gene, have been associated with CD and/or UC, but the results were inconsistent. Another SNP that may alter IL-10 production, rs3024505 (C/T) located immediately downstream of the IL10 gene has been recently identified. T allele of rs3024505 was associated with both UC and CD in Western populations, but the studies from East European countries are lacking. Therefore, our aim was to assess the association of rs3024505, rs1800896 and rs1800871 with Serbian IBD patients. To this end, 107 CD and 99 UC patients and 255 healthy controls were genotyped. As a result, T allele of rs3024505 was associated with CD at allelic, genotypic (GT genotype) and haplotypic (GCCT haplotype) level, suggesting potential role of this variant in susceptibility to CD. In contrast, CD patients carrying C allele of rs3024505 had significantly increased risk of anemia and stricturing/penetrating behavior. No association was observed between rs3024505 and UC or SNPs in IL10 promoter region and any form of IBD. In conclusion, rs3024505 SNP flanking the IL10 gene is associated with susceptibility and severity of disease in Serbian CD patients, further validating its role as a potential biomarker in IBD. PMID:27558476

  20. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages.

    PubMed

    Previtera, Michelle L; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  1. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  2. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis

    PubMed Central

    2009-01-01

    Introduction In this article, we present a comparative immunohistochemical evaluation of four clinical-stage antibodies (L19, F16, G11 and F8) directed against splice isoforms of fibronectin and of tenascin-C for their ability to stain synovial tissue alterations in rheumatoid arthritis patients. Furthermore we have evaluated the therapeutic potential of the most promising antibody, F8, fused to the anti-inflammatory cytokine interleukin (IL) 10. Methods F8-IL10 was produced and purified to homogeneity in CHO cells and shown to comprise biological active antibody and cytokine moieties by binding assays on recombinant antigen and by MC/9 cell proliferation assays. We have also characterized the ability of F8-IL10 to inhibit arthritis progression in the collagen-induced arthritis mouse model. Results The human antibody F8, specific to the extra-domain A of fibronectin, exhibited the strongest and most homogenous staining pattern in synovial biopsies and was thus selected for the development of a fully human fusion protein with IL10 (F8-IL10, also named DEKAVIL). Following radioiodination, F8-IL10 was able to selectively target arthritic lesions and tumor neo-vascular structures in mice, as evidenced by autoradiographic analysis and quantitative biodistribution studies. The subcutaneous administration route led to equivalent targeting results when compared with intravenous administration and was thus selected for the clinical development of the product. F8-IL10 potently inhibited progression of established arthritis in the collagen-induced mouse model when tested alone and in combination with methotrexate. In preparation for clinical trials in patients with rheumatoid arthritis, F8-IL10 was studied in rodents and in cynomolgus monkeys, revealing an excellent safety profile at doses tenfold higher than the planned starting dose for clinical phase I trials. Conclusions Following the encouraging preclinical results presented in this paper, clinical trials with F8-IL10

  3. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10.

    PubMed

    Rivas, J M; Ullrich, S E

    1992-12-15

    Exposing murine keratinocyte cultures to UV radiation causes the release of a suppressive cytokine that mimics the immunosuppressive effects of total-body UV exposure. Injecting supernatants from UV-irradiated keratinocyte cultures into mice inhibits their ability to generate a delayed-type hypersensitivity reaction against allogeneic histocompatibility Ag, and spleen cells from mice injected with supernatant do not respond to alloantigen in the in vitro MLR. A unique feature of the immunosuppression induced by either total-body UV-exposure or injecting the suppressive cytokine from UV-irradiated keratinocytes is the selectivity of suppression. Although cellular immune reactions such as delayed-type hypersensitivity are suppressed antibody production is unaffected. Because the selective nature to the UV-induced immunosuppression is similar to the biologic activity of IL-10, we examined the hypothesis that UV exposure of keratinocytes causes the release of IL-10. Keratinocyte monolayers were exposed to UV radiation and at specific times after exposure mRNA was isolated or the culture supernatant from the cells was collected. IL-10 mRNA expression was enhanced in UV-irradiated keratinocytes. The secretion of IL-10 by the irradiated keratinocytes was determined by Western blot analysis. A band reactive with anti-IL-10 mAb was found in supernatants from the UV-irradiated but not the mock-irradiated cells. IL-10 biologic activity was determined by the ability of the supernatants from the UV-irradiated keratinocytes to suppress IFN-gamma production by Ag-activated Th 1 cell clones. Anti-IL-10 mAb neutralized the ability of supernatants from UV-irradiated keratinocytes to suppress the induction of delayed-type hypersensitivity in vivo. Furthermore, injecting UV-irradiated mice with antibodies against IL-10 partially inhibited in vivo immunosuppression. These data indicate that activated keratinocytes are capable of secreting IL-10 and suggest that the release of IL-10 by

  4. Role of interleukin-10 (IL-10) in regulation of GABAergic transmission and acute response to ethanol.

    PubMed

    Suryanarayanan, A; Carter, J M; Landin, J D; Morrow, A L; Werner, D F; Spigelman, I

    2016-08-01

    Mounting evidence indicates that ethanol (EtOH) exposure activates neuroimmune signaling. Alterations in pro-inflammatory cytokines after acute and chronic EtOH exposure have been heavily investigated. In contrast, little is known about the regulation of neurotransmission and/or modulation by anti-inflammatory cytokines in the brain after an acute EtOH exposure. Recent evidence suggests that interleukin-10 (IL-10), an anti-inflammatory cytokine, is upregulated during withdrawal from chronic EtOH exposure. In the present study, we show that IL-10 is increased early (1 h) after a single intoxicating dose of EtOH (5 g/kg, intragastric) in Sprague Dawley rats. We also show that IL-10 rapidly regulates GABAergic transmission in dentate gyrus neurons. In brain slice recordings, IL-10 application dose-dependently decreases miniature inhibitory postsynaptic current (mIPSC) area and frequency, and decreases the magnitude of the picrotoxin sensitive tonic current (Itonic), indicating both pre- and postsynaptic mechanisms. A PI3K inhibitor LY294002 (but not the negative control LY303511) ablated the inhibitory effects of IL-10 on mIPSC area and Itonic, but not on mIPSC frequency, indicating the involvement of PI3K in postsynaptic effects of IL-10 on GABAergic transmission. Lastly, we also identify a novel neurobehavioral regulation of EtOH sensitivity by IL-10, whereby IL-10 attenuates acute EtOH-induced hypnosis. These results suggest that EtOH causes an early release of IL-10 in the brain, which may contribute to neuronal hyperexcitability as well as disturbed sleep seen after binge exposure to EtOH. These results also identify IL-10 signaling as a potential therapeutic target in alcohol-use disorders and other CNS disorders where GABAergic transmission is altered. PMID:27016017

  5. Glycoconjugates as Mediators of Nitric Oxide Production upon Exposure to Bacterial Spores by Macrophages

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed; Soderberg, Lee; Tarasenko, Olga

    2011-06-01

    Phagocytes generate nitric oxide (NO) in large quantities to combat bacteria. The spore-producing Gram-positive organisms of Bacillus cereus family are causative agents from mild to a life threatening infection in humans and domestic animals. Our group have shown that glycoconjugates (GCs) activate macrophages and enhance killing of Bacillus spores. In this investigation, we will explore the effect of different GCs structures on NO production. The objective of this study is to study effects of GCs 2, 4, 6, 8, 10 on NO release upon exposure to B. cereus and Bacillus anthracis spores by macrophages. Our results demonstrated that GCs activated macrophages and increased NO production using studied GCs ligands compared to macrophage only (p<0.001). GC2 and GC8 were able to further increase NO production in macrophages compared to the B. anthracis spores treated macrophages (p<0.001). Our finding suggests that GCs could be used as potential mediators of NO production in macrophages to fight B. anthracis and other pathogens.

  6. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production.

    PubMed

    Eger, M; Hussen, J; Koy, M; Dänicke, S; Schuberth, H-J; Breves, G

    2016-03-01

    The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which

  7. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10.

    PubMed

    Itoga, Masamichi; Konno, Yasunori; Moritoki, Yuki; Saito, Yukiko; Ito, Wataru; Tamaki, Mami; Kobayashi, Yoshiki; Kayaba, Hiroyuki; Kikuchi, Yuta; Chihara, Junichi; Takeda, Masahide; Ueki, Shigeharu; Hirokawa, Makoto

    2015-01-01

    Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response. PMID:25826377

  8. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis

    PubMed Central

    Lim, Jung-Yeon; Im, Keon-Il; Lee, Eun-Sol; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2016-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties and have potential, however, there have been conflicting reports regarding their effects in rheumatoid arthritis (RA), which causes inflammation and destruction of the joints. Through a comparative analysis of regulatory T (Treg) and IL-10-producing type 1 regulatory T (Tr1) cells, we hypothesized that Tr1 cells enhance the immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy may exert synergistic immunomodulatory effects in an experimental animal model of rheumatoid arthritis (RA). A combination of MSCs and Tr1 cells prevented the development of destructive arthritis compared to single cell therapy. These therapeutic effects were associated with an increase in type II collagen (CII)-specific CD4+CD25+Foxp3+ Treg cells and inhibition of CII-specific CD4+IL-17+ T cells. We observed that Tr1 cells produce high levels of IL-10-dependent interferon (IFN)-β, which induces toll-like receptor (TLR) 3 expression in MSCs. Moreover, induction of indoleamine 2,3-dioxygenase (IDO) by TLR3 involved an autocrine IFN-β that was dependent on STAT1 signaling. Furthermore, we observed that production of IFN-β and IL-10 in Tr1 cells synergistically induces IDO in MSCs through the STAT1 pathway. These findings suggest co-administration of MSCs and Tr1 cells to be a novel therapeutic modality for clinical autoimmune diseases. PMID:27246365

  9. The Lactic Acid Bacterium Pediococcus acidilactici Suppresses Autoimmune Encephalomyelitis by Inducing IL-10-Producing Regulatory T Cells

    PubMed Central

    Takata, Kazushiro; Kinoshita, Makoto; Okuno, Tatsusada; Moriya, Masayuki; Kohda, Tohru; Honorat, Josephe A.; Sugimoto, Tomoyuki; Kumanogoh, Atsushi; Kayama, Hisako; Takeda, Kiyoshi; Sakoda, Saburo; Nakatsuji, Yuji

    2011-01-01

    Background Certain intestinal microflora are thought to regulate the systemic immune response. Lactic acid bacteria are one of the most studied bacteria in terms of their beneficial effects on health and autoimmune diseases; one of which is Multiple sclerosis (MS) which affects the central nervous system. We investigated whether the lactic acid bacterium Pediococcus acidilactici, which comprises human commensal bacteria, has beneficial effects on experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methodology/Principal Findings P. acidilactici R037 was orally administered to EAE mice to investigate the effects of R037. R037 treatment suppressed clinical EAE severity as prophylaxis and therapy. The antigen-specific production of inflammatory cytokines was inhibited in R037-treated mice. A significant increase in the number of CD4+ Interleukin (IL)-10-producing cells was observed in the mesenteric lymph nodes (MLNs) and spleens isolated from R037-treated naive mice, while no increase was observed in the number of these cells in the lamina propria. Because only a slight increase in the CD4+Foxp3+ cells was observed in MLNs, R037 may primarily induce Foxp3− IL10-producing T regulatory type 1 (Tr1) cells in MLNs, which contribute to the beneficial effect of R037 on EAE. Conclusions/Significance An orally administered single strain of P. acidilactici R037 ameliorates EAE by inducing IL10-producing Tr1 cells. Our findings indicate the therapeutic potential of the oral administration of R037 for treating multiple sclerosis. PMID:22110705

  10. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis.

    PubMed

    Lim, Jung-Yeon; Im, Keon-Il; Lee, Eun-Sol; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2016-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties and have potential, however, there have been conflicting reports regarding their effects in rheumatoid arthritis (RA), which causes inflammation and destruction of the joints. Through a comparative analysis of regulatory T (Treg) and IL-10-producing type 1 regulatory T (Tr1) cells, we hypothesized that Tr1 cells enhance the immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy may exert synergistic immunomodulatory effects in an experimental animal model of rheumatoid arthritis (RA). A combination of MSCs and Tr1 cells prevented the development of destructive arthritis compared to single cell therapy. These therapeutic effects were associated with an increase in type II collagen (CII)-specific CD4+CD25+Foxp3+ Treg cells and inhibition of CII-specific CD4+IL-17+ T cells. We observed that Tr1 cells produce high levels of IL-10-dependent interferon (IFN)-β, which induces toll-like receptor (TLR) 3 expression in MSCs. Moreover, induction of indoleamine 2,3-dioxygenase (IDO) by TLR3 involved an autocrine IFN-β that was dependent on STAT1 signaling. Furthermore, we observed that production of IFN-β and IL-10 in Tr1 cells synergistically induces IDO in MSCs through the STAT1 pathway. These findings suggest co-administration of MSCs and Tr1 cells to be a novel therapeutic modality for clinical autoimmune diseases. PMID:27246365

  11. Berberine in combination with yohimbine attenuates sepsis-induced neutrophil tissue infiltration and multiorgan dysfunction partly via IL-10-mediated inhibition of CCR2 expression in neutrophils.

    PubMed

    Wang, Yuan; Wang, Faqiang; Yang, Duomeng; Tang, Xiangxu; Li, Hongmei; Lv, Xiuxiu; Lu, Daxiang; Wang, Huadong

    2016-06-01

    Infiltration of activated neutrophils into the vital organs contributes to the multiple organ dysfunctions in sepsis. In the present study, we investigated the effects of berberine in combination with yohimbine (BY) on neutrophil tissue infiltration and multiple organ damage during sepsis, and further elucidated the involved mechanisms. Sepsis was induced in mice by cecal ligation and puncture (CLP). BY or CCR2 antagonist was administered 2h after CLP, and anti-IL-10 antibody (IL-10 Ab) or control IgG was injected intraperitoneally just before BY treatment. We found that IL-10 production was enhanced by BY therapy in septic mice. BY significantly attenuated neutrophil tissue infiltration and multiple organ injury in CLP-challenged mice, all of which were completely reversed by IL-10 Ab pretreatment. The levels of KC, MCP-1, MIP-1α and MIP-2 in the lung, liver and kidney were markedly increased 6h after CLP. BY reduced the tissue concentrations of these chemokines in septic mice, but IL-10 Ab pretreatment did not completely eliminate these inhibitory effects of BY. Particularly, dramatically increased CCR2 expression in circulating neutrophils of septic mice was reduced by BY and this effect was completely abolished by IL-10 Ab pretreatment. Furthermore, CCR2 antagonist also inhibited lung and renal injury and neutrophil infiltration in septic mice. Taken together, our data strongly suggest that BY therapy attenuates neutrophil tissue infiltration and multiple organ injury in septic mice, at least in part, via IL-10-mediated inhibition of CCR2 expression in circulating neutrophils. PMID:27082997

  12. Properties and requirements for production of a macrophage product which suppresses steroid production by adrenocortical cells.

    PubMed Central

    Mathison, J C; La Forest, A C; Ulevitch, R J

    1984-01-01

    Lipopolysaccharide-treated murine peritoneal exudate macrophages (PEM) release a factor or factors into the supernatant that suppress adrenocorticotropic hormone-induced steroidogenesis in explanted rabbit adrenocortical cells (J. C. Mathison et al., J. Immunol. 130:2757-2762, 1983). To determine the requirements for suppression, PEM supernatants (30 microliters) were added to explanted rabbit adrenocortical cells in a final volume of 120 microliters with 10 mU of adrenocorticotropic hormone per ml, and after 18 h at 37 degrees C, steroid concentrations were measured by a fluorometric assay. Supernatant from proteose peptone-elicited C3HeB/FeJ PEM (5 X 10(6) PEM per 3.5-cm well, 10 micrograms of Salmonella minnesota Re595 LPS per ml, 18 h) suppressed steroid production ca. 50%, and kinetic studies demonstrated that the appearance of suppressive activity in the supernatant was gradual over 4 to 18 h. Release of suppressive activity was not associated with decreased viability of the PEM (assessed by fluorescein diacetate staining and measurement of lactic dehydrogenase in the supernatant). Suppression was not observed when the PEM supernatant was diluted 10-fold before addition to the adrenocortical cells, whereas supernatant concentrated 20-fold (prepared with a 10,000-molecular-weight-cutoff filter) produced 75 to 80% suppression. The suppressive activity was stable at pH 4, pH 11, or 70 degrees C for 30 min but was inactivated at 100 degrees C (10 min). Suppressive activity was also induced in C3HeB/FeJ PEM by O111:B4 lipopolysaccharide or heat-killed Listeria monocytogenes. In contrast, PEM from C3H/HeJ mice did not produce detectable suppressive activity in response to Re595 lipopolysaccharide or heat-killed L. monocytogenes. Thus, these results provide additional support for the inducible, selective release of a macrophage product that could affect the host response to lipopolysaccharide by regulation of the adrenocortical response to adrenocorticotropic

  13. Production of MMP-9 and inflammatory cytokines by Trypanosoma cruzi-infected macrophages.

    PubMed

    de Pinho, Rosa Teixeira; da Silva, Wellington Seguins; de Castro Côrtes, Luzia Monteiro; da Silva Vasconcelos Sousa, Periela; de Araujo Soares, Renata Oliveira; Alves, Carlos Roberto

    2014-12-01

    Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1β or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1β, TNF-α and IL-6. PMID:25448360

  14. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    SciTech Connect

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  15. Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages.

    PubMed

    Kim, Young-il; Mohri, Shinsuke; Hirai, Shizuka; Lin, Shan; Goto, Tsuyoshi; Ohyane, Chie; Sakamoto, Tomoya; Takahashi, Haruya; Shibata, Daisuke; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obese adipose tissue is characterized by enhanced macrophage infiltration. A loop involving monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNFα) between adipocytes and macrophages establishes a vicious cycle that augments inflammatory changes and insulin resistance in obese adipose tissue. Tomatoes, one of the most popular crops worldwide, contain many beneficial phytochemicals that improve obesity-related diseases such as diabetes. Some of them have also been reported to have anti-inflammatory properties. In this study, we focused on the potential protective effects of phytochemicals in tomatoes on inflammation. We screened fractions of tomato extract using nitric oxide (NO) assay in lipopolysaccharide (LPS)-stimulated RAW264 macrophages. One fraction, RF52, significantly inhibited NO production in LPS-stimulated RAW264 macrophages. Furthermore, RF52 significantly decreased MCP-1 and TNFα productions. The coculture of 3T3-L1 adipocytes and RAW264 macrophages markedly enhanced MCP-1, TNFα, and NO productions compared with the control cultures; however, the treatment with RF52 inhibited the production of these proinflammatory mediators. These results suggest that RF52 from tomatoes may have the potential to suppress inflammation by inhibiting the production of NO or proinflammatory cytokines during the interaction between adipocytes and macrophages. PMID:25603813

  16. The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage.

    PubMed

    Xiang, Yanxiao; Yan, Hui; Zhou, Jun; Zhang, Qi; Hanley, Gregory; Caudle, Yi; LeSage, Gene; Zhang, Xiumei; Yin, Deling

    2015-01-01

    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing

  17. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    SciTech Connect

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  18. Apoptosis of macrophages during pulmonary Mycobacterium bovis infection: correlation with intracellular bacillary load and cytokine levels

    PubMed Central

    Rodrigues, Michele F; Barsante, Michele M; Alves, Caio C S; Souza, Maria A; Ferreira, Ana P; Amarante-Mendes, Gustavo P; Teixeira, Henrique C

    2009-01-01

    Apoptosis of macrophages infected with pathogenic mycobacteria is an alternative host defence capable of removing the environment supporting bacterial growth. In this work the influence of virulence and bacterial load on apoptosis of alveolar macrophages during the initial phase of infection by Mycobacterium bovis was investigated. BALB/c mice were infected intratracheally with high or low doses of the virulent (ATCC19274) or attenuated (bacillus Calmette–Guérin Moreau) strains of M. bovis. The frequency of macrophage apoptosis, the growth of mycobacteria in macrophages, and the in situ levels of the cytokines tumour necrosis factor-α (TNF-α), interleukin-10 (IL-10) and IL-12 and of the anti-apoptotic protein Bcl-2 were measured at day 3 and day 7 post-infection. An increase of macrophage apoptosis was observed after infection with both strains but the virulent strain induced less apoptosis than the attenuated strain. On the 3rd day after infection with the virulent strain macrophage apoptosis was reduced in the high-dose group, while on the 7th day post-infection macrophage apoptosis was reduced in the low-dose group. Inhibition of apoptosis was correlated with increased production of IL-10, reduced production of TNF-α and increased production of Bcl-2. In addition, the production of IL-12 was reduced at points where the lowest levels of macrophage apoptosis were observed. Our results indicate that virulent mycobacteria are able to modulate macrophage apoptosis to an extent dependent on the intracellular bacterial burden, which benefits its intracellular growth and dissemination to adjacent cells. PMID:19740330

  19. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages.

    PubMed

    Bannantine, John P; Stabel, Judith R; Laws, Elizabeth; D Cardieri, Maria Clara; Souza, Cleverson D

    2015-01-01

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages. PMID:26076028

  20. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  1. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut

    PubMed Central

    Goto, Yoshiyuki; Lamichhane, Aayam; Kamioka, Mariko; Sato, Shintaro; Honda, Kenya; Kunisawa, Jun; Kiyono, Hiroshi

    2015-01-01

    Fucosylated glycans on the surface of epithelial cells (ECs) regulate intestinal homeostasis by serving as attachment receptors and a nutrient source for some species of bacteria. We show here that epithelial fucosylation in the ileum is negatively regulated by IL-10-producing CD4+ T cells. The number of fucosylated ECs was increased in the ileum of mice lacking T cells, especially those expressing αβ T cell receptor (TCR), CD4, and IL-10. No such effect was observed in mice lacking B cells. Adoptive transfer of αβTCR+ CD4+ T cells from normal mice, but not IL-10-deficient mice, normalized fucosylation of ECs. These findings suggest that IL-10-producing CD4+ T cells contribute to the maintenance of the function of ECs by regulating their fucosylation. PMID:26522513

  2. Reprogramming macrophages to an anti-inflammatory phenotype by helminth antigens reduces murine atherosclerosis.

    PubMed

    Wolfs, Ine M J; Stöger, J Lauran; Goossens, Pieter; Pöttgens, Chantal; Gijbels, Marion J J; Wijnands, Erwin; van der Vorst, Emiel P C; van Gorp, Patrick; Beckers, Linda; Engel, David; Biessen, Erik A L; Kraal, Georg; van Die, Irma; Donners, Marjo M P C; de Winther, Menno P J

    2014-01-01

    Atherosclerosis is a lipid-driven inflammatory disease of the vessel wall, characterized by the chronic activation of macrophages. We investigated whether the helminth-derived antigens [soluble egg antigens (SEAs)] could modulate macrophage inflammatory responses and protect against atherosclerosis in mice. In bone marrow-derived macrophages, SEAs induce anti-inflammatory macrophages, typified by high levels of IL-10 and reduced secretion of proinflammatory mediators. In hyperlipidemic LDLR(-/-) mice, SEA treatment reduced plaque size by 44%, and plaques were less advanced compared with PBS-injected littermate controls. The atheroprotective effect of SEAs was found to be mainly independent of cholesterol lowering and T-lymphocyte responses but instead could be attributed to diminished myeloid cell activation. SEAs reduced circulating neutrophils and inflammatory Ly6C(high) monocytes, and macrophages showed high IL-10 production. In line with the observed systemic effects, atherosclerotic lesions of SEA-treated mice showed reduced intraplaque inflammation as inflammatory markers [TNF-α, monocyte chemotactic protein 1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and CD68], neutrophil content, and newly recruited macrophages were decreased. We show that SEA treatment protects against atherosclerosis development by dampening inflammatory responses. In the future, helminth-derived components may provide novel opportunities to treat chronic inflammatory diseases, as they diminish systemic inflammation and reduce the activation of immune cells. PMID:24043262

  3. Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.

    PubMed

    Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei

    2013-07-01

    Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer. PMID:23772925

  4. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis

    PubMed Central

    Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2007-01-01

    Targeted Interleukin (IL)-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild type (WT) littermates (n=127) were subjected to cecal ligation and puncture with a 27-gauge needle. Seven-day survival was 45% in transgenic animals and 30% in WT animals (p≤0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals, regardless of whether they expressed the transgene. Local parameters of injury including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines and stimulated cytokines from intraepithelial lymphocytes were similar between transgenic and wildtype mice. However, in stimulated splenocytes, pro-inflammatory cytokines MCP-1 (189 ± 43 pg/ml vs. 40 ± 8 pg/ml) and IL-6 (116 ± 28 pg/ml vs. 34 ± 9 pg/ml) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (p<0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the two groups as were circulating LPS levels. Transgenic mice also had lower white blood cell counts, associated with lower absolute neutrophil counts (0.5 ± 0.1 103/mm3 vs. 1.0 ± 0.2 103/mm3, p<0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage. PMID:17998890

  5. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.

    PubMed

    Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-04-01

    Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage. PMID:17998890

  6. IL10 Promoter Polymorphisms are Associated with Rheumatic Heart Disease in Saudi Arabian Patients.

    PubMed

    Abdallah, Atiyeh M; Alnuzha, Aisha; Al-Mazroea, Abdulhadi H; Eldardear, Amr E; AlSamman, Ala Y; Almohammadi, Yousef; Al-Harbi, Khalid M

    2016-01-01

    Rheumatic heart disease (RHD) is an inflammatory disease that develops following streptococcal infections. IL10 helps to balance immune responses to pathogens. IL10 polymorphisms have been associated with RHD, although results remain inconclusive. Our aim was to investigate the association between IL10 polymorphisms and RHD in Saudi Arabian patients. IL10 promoter polymorphisms (-1082A/G, -829C/T, and -592C/A) were genotyped in 118 RHD patients and 200 matched controls using the TaqMan allelic discrimination assay. There was a significant difference in IL10-1082 genotype frequency between patients and controls (p = 0.01). -1082G allele carriage (GG+GA vs AA) and the (-1082, -819, -592) GCC haplotype carriage were associated with an increased risk of RHD (p = 0.004, OR 2.1, 95% CIs 1.7-3.4 and p = 0.004, OR 2, 95% CIs 1.3-3.4, respectively). The ACC haplotype was associated with a decrease in RHD risk (p = 0.015, OR 0.6, 95% CIs 0.4-0.9). IL10 promoter polymorphisms may play an important role in the development of RHD and provide an opportunity for therapeutic stratification. PMID:26255050

  7. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells.

    PubMed

    Bermúdez-Morales, V H; Peralta-Zaragoza, O; Alcocer-González, J M; Moreno, J; Madrid-Marina, V

    2011-01-01

    It has been found that certain cytokines (IL-4, IL-10 and TGF-β1) are highly expressed locally in biopsies from patients with premalignant lesions and cervical cancer, and may induce a local immune-suppression state. In particular, IL-10 is highly expressed in tumor cells and its expression is directly proportional to the development of HPV-positive cervical cancer, suggesting an important role of HPV proteins in the expression of IL-10. In fact, we demonstrated that E6 and E7 HPV proteins regulate TGF-β1 gene expression in cervical cancer cells. Here, we found by band shifting analysis that the HPV E2 protein binds to the regulatory region of the human IL-10 gene (-2054 nt) and induces high promoter activity in epithelial cells. Additionally, cervical cancer cells transfected to express the HPV E2 protein induce elevated levels of IL-10 mRNA in human papillomavirus-infected cells. The elevated expression of IL-10 may allow for virus persistency, the transformation of cervical epithelial cells, and consequently cancer development. PMID:21468579

  8. Role of IL-10 gene polymorphisms in the development of acute pancreatitis.

    PubMed

    Jiang, B Z; Tang, L; Xue, H; Liu, D P

    2016-01-01

    Recent studies have suggested that chemokines contribute to the initiation and development of acute pancreatitis. We evaluated the relationship between IL-10 gene polymorphisms (-1082A/G and -819T/C) and development of acute pancreatitis in the Chinese population, in order to provide data for screening high-risk Chinese individuals. In total, 182 patients with confirmed cases of acute pancreatitis and 262 control subjects were recruited from the Shaanxi Provincial People's Hospital between April 2012 and December 2014. IL-10 gene polymorphisms at positions -1082A/G and -819T/C were examined using the polymerase chain reaction-restriction fragment length polymorphism method. Through multiple-logistic regression analysis, the GG genotype in IL-10 -1082A/G could influence the susceptibility to acute pancreatitis compared to the AA genotype, and the adjusted OR (95%CI) was 2.68 (1.34-5.39) (P = 0.002). Individuals who carried the AG+GG genotype of IL-10 -1082A/G were associated with greater risk for acute pancreatitis compared to the wide-type genotype, and the adjusted OR (95%CI) was 1.64 (1.09-2.46). However, no significant difference in susceptibility to acute pancreatitis was found between the IL-10 gene polymorphism at -819T/C. In conclusion, this study demonstrates that the IL-10 -1082A/G gene polymorphism contributes to the development of acute pancreatitis. PMID:27173345

  9. Analysis of TGFβ1 and IL-10 transcriptional regulation in CTCL cells by chromatin immunoprecipitation.

    PubMed

    Chang, Tzu-Pei; Kim, Myra; Vancurova, Ivana

    2014-01-01

    The immunosuppressive cytokines transforming growth factor β1 (TGFβ1) and interleukin-10 (IL-10) regulate a variety of biological processes including differentiation, proliferation, tissue repair, tumorigenesis, inflammation, and host defense. Aberrant expression of TGFβ1 and IL-10 has been associated with many types of autoimmune and inflammatory disorders, as well as with many types of cancer and leukemia. Patients with cutaneous T cell lymphoma (CTCL) have high levels of malignant CD4+ T cells expressing IL-10 and TGFβ1 that suppress the immune system and diminish the antitumor responses. The transcriptional regulation of TGFβ1 and IL-10 expression is orchestrated by several transcription factors, including NFκB. However, while the transcriptional regulation of pro-inflammatory and anti-apoptotic genes by NFκB has been studied extensively, much less is known about the NFκB regulation of immunosuppressive genes. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the transcriptional regulation of TGFβ1 and IL-10 by measuring recruitment of NFκB p65, p50, c-Rel, Rel-B, and p52 subunits to TGFβ1 and IL-10 promoters in human CTCL Hut-78 cells. PMID:24908319

  10. Association Between 3 IL-10 Gene Polymorphisms and Cardiovascular Disease Risk

    PubMed Central

    Xuan, Yang; Wang, Lina; Zhi, Hong; Li, Xiaoshan; Wei, Pingmin

    2016-01-01

    Abstract Previous studies have yielded controversial results related to the contribution of interleukin 10 (IL-10) gene polymorphisms (IL-10 -592C/A, IL-10 -1082G/A, and IL-10 -819C/T) in the progression of cardiovascular disease (CVD). Thus, we performed a meta-analysis to summarize this situation. Eligible studies were retrieved by searching PubMed, Embase, Web of Science, and Cochrane Library with the last search up to July 7, 2015. Data were pooled by odds ratios (ORs) and their 95% confidence intervals (CIs). False-positive report probability (FPRP) analysis was conducted for all significant findings. Genotype-based mRNA expression analysis was also performed using data from 270 individuals with different ethnicities. Finally, 19 studies for IL-10 -592C/A polymorphism (7284 cases and 7469 controls), 21 studies for IL-10 -1082G/A polymorphism (8263 cases and 5765 controls), and 12 studies for IL-10 -819C/T polymorphism (4502 cases and 3190 controls) were included in the meta-analyses. With respect to IL-10 -819C/T polymorphism, statistically significant decreased CVD risk was found when all studies were pooled into the meta-analysis (T vs C: OR = 0.91, 95% CI = 0.84–0.98; TT + TC vs CC: OR = 0.90, 95% CI = 0.81–1.00). Subgroup analyses stratified by disease subtype suggested the -819C/T polymorphism was significantly associated with a decreased CAD risk (T vs C: OR = 0.90, 95% CI = 0.83–0.97; TT vs CC: OR = 0.81, 95% CI = 0.66–1.00; TT vs TC + CC: OR = 0.82, 95% CI = 0.69–0.98; TT + TC vs CC: OR = 0.89, 95% CI = 0.80–0.99), which was noteworthy finding as evaluated by FPRP. However, with regard to IL-10 -592C/A and IL-10 -1082G/A polymorphisms, no significant association with CVD risk was observed in the overall and subgroup analyses. In conventional meta-analyses, the results suggested that IL-10 -819C/T polymorphism was associated with decreased risk of CVD, especially CAD outcome

  11. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice

    PubMed Central

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-01-01

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1–14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8–14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD. PMID:27548140

  12. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice.

    PubMed

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-01-01

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1-14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8-14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD. PMID:27548140

  13. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM

    PubMed Central

    Miao, Hongming; Ou, Juanjuan; Peng, Yuan; Zhang, Xuan; Chen, Yujuan; Hao, Lijun; Xie, Ganfeng; Wang, Zhe; Pang, Xueli; Ruan, Zhihua; Li, Jianjun; Yu, Liqing; Xue, Bingzhong; Shi, Hang; Shi, Chunmeng; Liang, Houjie

    2016-01-01

    Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. PMID:27189574

  14. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM.

    PubMed

    Miao, Hongming; Ou, Juanjuan; Peng, Yuan; Zhang, Xuan; Chen, Yujuan; Hao, Lijun; Xie, Ganfeng; Wang, Zhe; Pang, Xueli; Ruan, Zhihua; Li, Jianjun; Yu, Liqing; Xue, Bingzhong; Shi, Hang; Shi, Chunmeng; Liang, Houjie

    2016-01-01

    Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. PMID:27189574

  15. Blocking the Function of Inflammatory Cytokines and Mediators by Using IL-10 and TGF-β: A Potential Biological Immunotherapy for Intervertebral Disc Degeneration in a Beagle Model

    PubMed Central

    Li, Wei; Liu, Tianyi; Wu, Liangliang; Chen, Chun; Jia, Zhiwei; Bai, Xuedong; Ruan, Dike

    2014-01-01

    The debilitating effects of lower back pain are a major health issue worldwide. A variety of factors contribute to this, and oftentimes intervertebral disk degeneration (IDD) is an underlying cause of this disorder. Inflammation contributes to IDD, and inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, play key roles in the pathology of IDD. Therefore, the development of treatments that inhibit the expression and/or effects of TNF-α and IL-1β in IDD patients should be a promising therapeutic approach to consider. This study characterized the potential to suppress inflammatory cytokine production in degenerative intervertebral disc (NP) cells by treatment with IL-10 and TGF-β in a canine model of IDD. IDD was induced surgically in six male beagles, and degenerative NP cells were isolated and cultured for in vitro studies on cytokine production. Cultured degenerative NP cells were divided into four experimental treatment groups: untreated control, IL-10-treated, TGF-β-treated, and IL-10- plus TGF-β-treated cells. Cultured normal NP cells served as a control group. TNF-α expression was evaluated by fluorescence activated cell sorting (FACS) analysis and enzyme-linked immunosorbent assay (ELISA); moreover, ELISA and real-time PCR were also performed to evaluate the effect of IL-10 and TGF-β on NP cell cytokine expression in vitro. Our results demonstrated that IL-10 and TGF-β treatment suppressed the expression of IL-1β and TNF-α and inhibited the development of inflammatory responses. These data suggest that IL-10 and TGF-β should be evaluated as therapeutic approaches for the treatment of lower back pain mediated by IDD. PMID:25264742

  16. T cell derived IL-10 is dispensable for tolerance induction in a murine model of allergic airway inflammation.

    PubMed

    Kunz, Stefanie; Dolch, Anja; Surianarayanan, Sangeetha; Dorn, Britta; Bewersdorff, Mayte; Alessandrini, Francesca; Behrendt, Rayk; Karp, Christopher L; Muller, Werner; Martin, Stefan F; Roers, Axel; Jakob, Thilo

    2016-08-01

    Regulatory mechanisms initiated by allergen-specific immunotherapy are mainly attributed to T cell derived IL-10. However, it has not been shown that T cell derived IL-10 is required for successful tolerance induction (TI). Here, we analyze cellular sources and the functional relevance of cell type specific IL-10 during TI in a murine model of allergic airway inflammation. While TI was effective in IL-10 competent mice, neutralizing IL-10 prior to tolerogenic treatment completely abrogated the beneficial effects. Cellular sources of IL-10 during TI were identified by using transcriptional reporter mice as T cells, B cells, and to a lesser extent DCs. Interestingly, TI was still effective in mice with T cell, B cell, B and T cell, or DC-specific IL-10 deficiency. In contrast, TI was not possible in mice lacking IL-10 in all hematopoetic cells, while it was effective in bone marrow (BM) chimera that lacked IL-10 only in nonhematopoetic cells. Taken together, allergen-specific tolerance depends on IL-10 from hematopoetic sources. The beneficial effects of allergen-specific immunotherapy cannot solely be attributed to IL-10 from T cells, B cells, or even DCs, suggesting a high degree of cellular redundancy in IL-10-mediated tolerance. PMID:27287239

  17. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  18. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies

  19. Polymorphisms of IL-10 gene in patients infected with HCV under antiviral treatment in southern Brazil.

    PubMed

    da Silva, Naylê Maria Oliveira; Germano, Fabiana Nunes; Vidales-Braz, Beatris Maria; Carmo Zanella, Ricardo do; dos Santos, Deise Machado; Lobato, Rubens; de Martinez, Ana Maria Barral

    2015-06-01

    Interleukin-10 (IL-10) is a cytokine that plays an important role in the regulation of the immune system. Gene polymorphisms of IL-10 have been associated with the different expression levels of this cytokine. In hepatitis C virus infection, IL-10 appears to interfere with the progression of disease, viral persistence and the response to therapy. This study investigated genetic variability in the IL-10 gene promoter between patients infected with hepatitis C virus (HCV) and healthy individuals, associating the frequency of polymorphisms with different aspects of viral infection. This is a case-control study with 260 patients who were infected with HCV and 260 healthy individuals. Genotyping of the polymorphisms was performed using the technique of amplification refractory mutation system PCR (ARMS-PCR) for regions of the IL-10 gene promoter (-1082 G/A, -819 C/T, -592 C/A). The frequencies of alleles and genotypes related to polymorphisms in the IL-10 gene promoter showed a higher frequency of the G allele and genotype GG in the -1082 region between the infected group and the control group (p=0.005 and p=0.001, respectively), whereas the AA genotype was significantly more frequent in the control group. The frequencies of the haplotypes GTA and GCC were higher in the group of infected individuals, whereas the haplotype ATA was more frequent in the healthy group (p<0.006). It was also observed that the genotypes GG and AG in the region -1082 were significantly more frequent among patients infected with HCV who were in advanced stages of fibrosis and cirrhosis (p=0.042). No association was observed between polymorphisms of IL-10 and sustained virologic response (SVR). PMID:25797191

  20. Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Avalos, Claudia R.; Price, Sarah L.; Forsyth, Ellen R.; Pin, Julia N.; Shirk, Erin N.; Bullock, Brandon T.; Queen, Suzanne E.; Li, Ming; Gellerup, Dane; O'Connor, Shelby L.; Zink, M. Christine; Mankowski, Joseph L.; Gama, Lucio

    2016-01-01

    ABSTRACT Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4+ T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4+ T cells and to evaluate the number of CD4+ T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4+ T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor β RNA was measured as a control to assess the potential contribution of CD4+ T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE Infection of CD4+ T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue

  1. Modulation of the effects of alveolar macrophages on lung fibroblast collagen production rate

    SciTech Connect

    Clark, J.G.; Greenberg, J.

    1987-01-01

    Alveolar macrophages (AM) may function as effector cells that can either stimulate or inhibit lung fibroblast collagen production. However, conditions that determine the predominant effect of AM on fibroblasts are not well understood. To delineate factors that modulate the effects of AM on lung fibroblasts, we studied the interaction of AM products and fibroblasts in vitro. The AM were obtained by bronchoalveolar lavage of hamsters with bleomycin-induced pulmonary fibrosis. Conditioned medium (CM) from the AM cultures was incubated in varying amounts with lung fibroblast (IMR-90) cultures. After metabolic labeling with (/sup 3/H)proline, fibroblast collagen production based on procollagen-specific radioactivity was determined. Macrophage CM in concentrations greater than 5% suppressed collagen production, an event attributed to the macrophage-derived suppressive factor that we have previously characterized. Macrophages were also determined to produce PGE2 in culture. Authentic PGE2 at concentrations found in CM was found to suppress fibroblast collagen production, indicating that AM-derived PGE2 contributes to the suppressive activity in CM. To examine possible stimulatory factors in CM, the fibroblasts were preincubated with indomethacin. This approach was based on our previous observation that AM-derived suppressive factor increases endogenous fibroblast PGE2 and that its activity can be blocked by indomethacin. Macrophage CM in a concentration of 20% did not suppress the collagen production of indomethacin-treated fibroblasts. However, CM concentrations of 5 and 10% increased collagen production (173 and 143% of control values, respectively), indicating the presence of stimulatory factor(s) in macrophage-conditioned medium.

  2. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  3. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    EPA Science Inventory

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  4. Haplotypes of the IL10 Gene as Potential Protection Factors in Leprosy Patients

    PubMed Central

    Garcia, Patricia; Alencar, Dayse; Pinto, Pablo; Santos, Ney; Salgado, Claudio; Sortica, Vinicius A.; Hutz, Mara H.; Santos, Sidney

    2013-01-01

    Leprosy is an infectious disease caused by Mycobacterium leprae characterized by dermatoneurological signs and symptoms that has a large number of new cases worldwide. Several studies have associated interleukin 10 with susceptibility/resistance to several diseases. We investigated haplotypes formed by three single nucleotide polymorphisms (SNPs) located in the IL10 gene (A-1082G, C-819T, and C-592A) in order to better understand the susceptibility to and severity of leprosy in an admixed northern Brazil population, taking into account estimates of interethnic admixture. We observed the genotypes ACC/ACC (P = 0.021, odds ratio [OR] [95% confidence interval (CI)] = 0.290 [0.085 to 0823]) and ACC/GCC (P = 0.003, OR [95% CI] = 0.220 [0.504 to 0.040]) presenting significant results for protection against leprosy development, framed in the profiles of low and medium interleukin production, respectively. Therefore, we suggest that genotypes A-1082G, C-819T, and C-592A formed by interleukin-10 polymorphisms are closely related to protection of the leprosy development in an admixed northern Brazil population, in particular ACC/ACC and ACC/GCC genotypes. PMID:23966553

  5. Effects of ozone and photochemical oxidants on interferon production by rabbit alveolar macrophages

    SciTech Connect

    Shingu, H.; Sugiyama, M.; Watanabe, M.; Nakajima, T.

    1980-03-01

    The results obtained in this study demonstrated that the capacity of interferon production by alveolar macrophage was depressed immediately after exposure to O/sub 3/ greater than 1 ppM or Ox exceeding average of 0.3 ppM (max. 0.7 ppM) for 3 hours. In these experiments, it was shown that depression in interferon production corresponded in degree to elevation of gas concentration. This finding suggested that alveolar macrophages, existing in a state of single cell in the lung, were probably exposed directly to the inhaled gas in this experimental system. The results that depression of interferon production in Dutch rabbit under the same O/sub 3/ concentration was greater in degree than that in rabbit suggest that sensitivity of alveolar macrophage to O/sub 3/ or presumably to other irritating gases is different among species.

  6. Expansion of Parasite-Specific CD4+ and CD8+ T Cells Expressing IL-10 Superfamily Cytokine Members and Their Regulation in Human Lymphatic Filariasis

    PubMed Central

    Anuradha, Rajamanickam; George, Parakkal Jovvian; Hanna, Luke E.; Kumaran, Paul; Chandrasekaran, Vedachalam; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Background Lymphatic filariasis (LF) is known to be associated with an increased production of IL-10. The role of the other IL-10 family members in the pathogenesis of infection and/or disease is not known. Methodology/Principal Findings We examined the expression patterns of IL-10 family members – IL-19, IL-24 and IL-26 in LF. We demonstrate that both CD4+ and CD8+ T cells express IL-19, IL-24 and IL-26 and that the frequency of CD4+ T cells expressing IL-19 and IL-24 (as well as IL-10) is significantly increased at baseline and following filarial antigen stimulation in patients with LF in comparison to individuals with filarial lymphedema and uninfected individuals. This CD4+ T cell expression pattern was associated with increased production of IL-19 and IL-24 by filarial – antigen stimulated PBMC. Moreover, the frequency of CD4+ and CD8+ T cells expressing IL-26 was significantly increased following filarial antigen stimulation in filarial lymphedema individuals. Interestingly, IL-10 blockade resulted in diminished frequencies of IL-19+ and IL-24+ T cells, whereas the addition of recombinant IL-10 resulted in significantly increased frequency of IL-19+ and IL-24+ T cells as well as significantly up regulated IL-19 and IL-24 gene expression, suggesting that IL-10 regulates IL-19 and IL-24 expression in T cells. In addition, IL-1β and IL-23 blockade also induced a diminution in the frequency of IL-19+ and IL-24+ T cells, indicating a novel role for these cytokines in the induction of IL-19 and IL-24 expressing T cells. Finally, elimination of infection resulted in significantly decreased frequencies of antigen – specific CD4+ T cells expressing IL-10, IL-19 and IL-24. Conclusions Our findings, therefore, suggest that IL-19 and IL-24 are associated with the regulation of immune responses in active filarial infection and potentially with protection against development of pathology, while IL-26 is predominantly associated with pathology in LF. PMID:24699268

  7. Intragraft Expression of the IL-10 Gene Is Up-Regulated in Renal Protocol Biopsies with Early Interstitial Fibrosis, Tubular Atrophy, and Subclinical Rejection

    PubMed Central

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; O'Valle, Francisco; Pérez-Riba, Mercè; del Moral, Raimundo García; Grinyó, Josep M.; Serón, Daniel

    2010-01-01

    Grafts with subclinical rejection associated with interstitial fibrosis and tubular atrophy (SCR+IF/TA) show poorer survival than grafts with subclinical rejection without IF/TA (SCR). Aiming to detect differences among SCR+IF/TA and SCR, we immunophenotyped the inflammatory infiltrate (CD45, CD3, CD20, CD68) and used a low-density array to determine levels of TH1 (interleukin IL-2, IL-3, γ-interferon, tumor necrosis factor-α, lymphotoxin-α, lymphotoxin-β, granulocyte-macrophage colony-stimulating factor) and TH2 (IL-4, IL-5, IL-6, IL-10, and IL-13) transcripts as well as of IL-2R (as marker for T-cell activation) in 31 protocol biopsies of renal allografts. Here we show that grafts with early IF/TA and SCR can be distinguished from grafts with SCR on the basis of the activation of IL-10 gene expression and of an increased infiltration by B-lymphocytes in a cellular context in which the degree of T-cell activation is similar in both groups of biopsies, as demonstrated by equivalent levels of IL-2R mRNA. These results suggest that the up-regulation of the IL-10 gene expression, as well as an increased proportion of B-lymphocytes in the inflammatory infiltrates, might be useful as markers of early chronic lesions in grafts with SCR. PMID:20150436

  8. Impairment of the cellular immune response in acute murine toxoplasmosis: regulation of interleukin 2 production and macrophage-mediated inhibitory effects.

    PubMed Central

    Haque, S; Khan, I; Haque, A; Kasper, L

    1994-01-01

    Depression of the cellular immune response to Toxoplasma gondii has been reported in both mice and humans. The present study was undertaken to determine the kinetics and mechanism of the observed downregulation of interleukin 2 (IL-2) production during experimental murine toxoplasmosis. For these investigations, the cell-mediated immune response to the wild type (PTg) was compared with that to the less-virulent mutant parasite (PTgB), which is deficient in the major surface antigen, p30 (SAG-1). Spleen cells from infected A/J mice failed to proliferate in response to Toxoplasma antigens during the first week of infection. Both PTg- and PTgB-infected A/J mice exhibited a significant reduction in the concanavalin A (Con A)-induced lymphoproliferative response. Further, the response of splenocytes from mice infected with the wild-type parasite was significantly diminished compared with that of mice infected with PTgB. The lymphoproliferative response to Con A reached its nadir at day 7 and remained below control levels for at least 14 days postinfection. By day 21 postinfection, the response to Con A and to Toxoplasma antigens was restored to the level observed prior to day 7. Con A-stimulated culture supernatants of spleen cells from mice on day 7 postinfection contained significantly less IL-2 than normal mice. There was no significant difference in the numbers of binding sites or capacity of high-affinity IL-2 receptors between infected and normal mouse splenocytes as determined by Scatchard analysis. Exogenous IL-2 at different concentrations failed to restore the proliferative response of lymphocytes from infected mice to Con A. Adherent macrophages from 7-day-infected mice were able to suppress IL-2 production by normal splenocytes following stimulation with Con A. The inhibitory activity mediated by infected cells was reversed by the antibody to IL-10 but not transforming growth factor beta. There were insignificant levels of nitric oxide production in both

  9. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445

  10. Acute Phase IL-10 Plasma Concentration Associates with the High Risk Sources of Cardiogenic Stroke

    PubMed Central

    Arponen, Otso; Muuronen, Antti; Taina, Mikko; Sipola, Petri; Hedman, Marja; Jäkälä, Pekka; Vanninen, Ritva; Pulkki, Kari; Mustonen, Pirjo

    2015-01-01

    Background Etiological assessment of stroke is essential for accurate treatment decisions and for secondary prevention of recurrence. There is evidence that interleukin-10 (IL-10) associates with ischemic stroke. The aim of this prospective study was to assess the levels of IL-10 in ischemic stroke with unknown or suspected cardiogenic etiology, and evaluate the correlation between IL-10 plasma concentration and the number of diagnosed high risk sources for cardioembolism. Methods A total of 141 patients (97 males; mean age 61±11 years) with acute ischemic stroke with unknown etiology or suspected cardiogenic etiology other than known atrial fibrillation (AF) underwent imaging investigations to assess high risk sources for cardioembolic stroke established by the European Association of Echocardiography (EAE). IL-10 was measured on admission to the hospital and on a three month follow-up visit. Results Acute phase IL-10 concentration was higher in patients with EAE high risk sources, and correlated with their number (p<0.01). In patients with no risk sources (n = 104), the mean IL-10 concentration was 2.7±3.1 ng/L (range 0.3–16.3 ng/L), with one risk source (n = 26) 3.7±5.5 ng/L (0.3–23.6 ng/L), with two risk sources (n = 10) 7.0±10.0 ng/L (1.29–34.8 ng/L) and with three risk sources (n = 1) 37.2 ng/L. IL-10 level was not significantly associated with cerebral infarct volume, presence of previous or recent myocardial infarction, carotid/vertebral artery atherosclerosis, paroxysmal AF registered on 24-hour ECG Holter monitoring or given intravenous thrombolytic treatment. Conclusion IL-10 plasma concentration correlates independently with the number of EAE cardioembolic risk sources in patients with acute stroke. IL-10 may have potential to improve differential diagnostics of stroke with unknown etiology. PMID:25923658

  11. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  12. Evaluation of serum concentrations of interleukin (IL)-4, IL-10, and IL-12 during pregnancy in bitches.

    PubMed

    Pantaleo, M; Piccinno, M; Roncetti, M; Mutinati, M; Rizzo, A; Sciorsci, R L

    2013-04-01

    Complex cytokine networks play an important role in a wide range of pregnancy-related processes. During physiological pregnancy, the balance of T helper lymphocytes Th1 and Th2 is strongly shifted toward Th2, which has a protective role in the feto-maternal interaction. The aim of the present study is to establish the serum concentrations, ranges, and trends of anti-inflammatory interleukin (IL)-4 and IL-10, and inflammatory IL-12A, during three phases of gestation in the bitch (20-30, 31-40, and 41-57 days of gestation). Our results indicate that, in early gestation, IL-4 and -10 serum concentrations are elevated and might depend on progesterone that could act as a potent inhibitor of Th1 responses inducing, conversely, the production of Th2-type cytokines (i.e., IL-10 and IL-4). On the other hand, between 30 and 40 days of gestation, the concentrations of the anti-inflammatory ILs decrease probably because of high concentrations of prolactin, which is endowed with immunostimulatory properties on different immune cell types. In the third phase of gestation (41-57 days), an increase in IL-10 occurs, which might depend on high levels of 17β-estradiol that, during pregnancy, interfere with the ability of dendritic cells to stimulate T lymphocytes, acting as an anti-inflammatory factor. Conversely, the low and persistent concentrations of inflammatory IL-12A, throughout pregnancy, compared with anti-inflammatory ILs, might depend on the characteristic cytokine products of Thl and Th2 cells that are known to be mutually inhibitory. The monitoring of immunological status via the levels of cytokines during pregnancy in the bitch, could represent a diagnostic tool to predict and/or prevent pregnancy abnormality, as demonstrated in women. PMID:23422356

  13. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin.

    PubMed

    Bennett, Jared R; Lateef, Zabeen; Fleming, Stephen B; Mercer, Andrew A; Wise, Lyn M

    2016-02-01

    Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin. PMID:26732486

  14. Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis.

    PubMed

    Gonçalves, Andréia Souza; Oliveira, Jéssica Petini; Oliveira, Carolina Ferrari Piloni; Silva, Tarcília Aparecida; Mendonça, Elismauro Francisco; Wastowski, Isabela Jubé; Batista, Aline Carvalho

    2016-09-01

    HLA-G, HLA-E and IL-10 are molecules which can provide tumor immunosuppression as well as the capacity of evasion to the immune system host. This study set out to evaluate HLA-G, HLA-E and IL-10 expression in lip squamous cell carcinoma (LSCC) and in a potentially malignant disorder (actinic cheilitis - AC), correlating the expression of these proteins with the degree of epithelial dysplasia. Immunohistochemistry was undertaken to identify HLA-G, HLA-E and IL-10 in samples from patients with LSCC (n=20), AC (n=30) and healthy lip mucosa (control) (n=10). A semiquantitative scoring system was used for analysis. Differences between the groups were evaluated using the Pearson Chi-Squared test. The percentage of LSCC samples showing high immunoreactivity (IRS>2) for HLA-G, HLA-E and IL-10 (neoplastic/epithelial cells) and HLA-E (stroma/connective tissue) was significantly higher that of the control (P<0.05). A tendency for a progressive increase in the proteins analyzed was observed from the control to AC and to LSCC. The degree of dysplasia in the AC samples was not significantly associated with the proteins evaluated (P>0.05). The high expression of HLA-G, HLA-E and IL-10 in AC and LSCC reflects the capacity that these pathologies have for evasion and progression. PMID:26723902

  15. Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria.

    PubMed

    Gad, Monika; Ravn, Peter; Søborg, Ditte A; Lund-Jensen, Karina; Ouwehand, Arthur C; Jensen, Simon S

    2011-10-01

    In this study, we have used monocyte-derived dendritic cells (DCs) to design a screening model for the selection of microorganisms with the ability to suppress DC-secreted IL-12p70, a critical cytokine for the induction of T-helper cell type 1 immune responses under inflammatory conditions. By the treatment of DCs with cocktails containing TLR agonists and proinflammatory cytokines, the cells increased the secretion of the Th1-promoting cytokine IL-12p70. Clinically used probiotics were tested for their IL-10- and IL-12p70-stimulating properties in immature DCs, and showed a dose-dependent change in the IL-10/IL-12p70 balance. Lactobacillus acidophilus NCFM(™) and the probiotic mixture VSL#3 showed a strong induction of IL-12p70, whereas Lactobacillus salivarius Ls-33 and Bifidobacterium infantis 35624 preferentially induced IL-10. Escherichia coli Nissle 1917 induced both IL-10 and IL-12p70, whereas the probiotic yeast Saccharomyces boulardii induced low levels of cytokines. When combining these microorganisms with the Th1-promoting cocktails, E. coli Nissle 1917 and B. infantis 35624 were potent suppressors of IL-12p70 secretion in an IL-10-independent manner, indicating a suppressive effect on Th1-inducing antigen-presenting cells. The present model, using cocktail-stimulated DCs with potent IL-12p70-stimulating capacity, may be used as an efficient tool to assess the anti-inflammatory properties of microorganisms for potential clinical use. PMID:21707779

  16. N-Acetyl-l-cysteine exacerbates generation of IL-10 in cells stimulated with endotoxin in vitro and produces antipyresis via IL-10 dependent pathway in vivo.

    PubMed

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Piotrowski, Jakub; Kozak, Wiesław

    2016-09-01

    N-Acetyl-l-cysteine (NAC) is a well-known medication, primarily used as a mucolytic agent in pulmonary disease. Recently, we have found that NAC possesses antipyretic properties. The aim of the present study was to investigate the mechanism by which NAC attenuates fever. The concentration of interleukin (IL)-10 and prostaglandin (PG) E2 were measured using ELISA kit in the supernatants aspirated after stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS, 1μg/mL) and NAC (10mM). The body temperature of the Wistar rats was measured using biotelemetry system. To inhibit endotoxic fever, NAC (200mg/kg; i.p.) was injected into the rats one hour prior to the LPS administration (50μg/kg; i.p.). The pre-treatment of LPS-stimulated PBMCs with NAC resulted in a significant decrease in PGE2 concentration in comparison to the cells treated with LPS alone (PGE2 level was 386.1±61.9pg/mL vs. 2078.9±157.9pg/mL, respectively, p<0.001). Furthermore, in these cells we observed a significant increase in IL-10 level (142.1±2.62pg/mL in NAC+LPS stimulated cells vs. 54.4±0.6pg/mL in LPS stimulated cells, p<0.001). The injection of anti-IL-10 antibody into the rats abolished antipyretic properties of NAC. Body temperature in animals treated with anti-IL-10+NAC/LPS was 38.28±0.12°C vs. 37.73±0.06°C in IgG+NAC/LPS rats (p<0.001) and 38.31±0.20°C in NaCl/LPS-treated animals (n.s.). Based on these data, we conclude that NAC acts as an antipyretic via IL-10 stimulation. This finding provides a new insight into the immunopharmacology of NAC, and we believe that in a future it will contribute to the new and/or more accurate application of NAC in medicine. PMID:27363620

  17. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    PubMed

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  18. Decrease in free-radical production with age in rat peritoneal macrophages.

    PubMed Central

    Alvarez, E; Conde, M; Machado, A; Sobrino, F; Santa Maria, C

    1995-01-01

    The respiratory-burst reaction has been studied in rat peritoneal macrophages of different ages (3, 12 and 24 months) using phorbol 12-myristate 13-acetate (PMA) to stimulate NADPH oxidase. Production of O2-. and H2O2 decreased with age (about 50 and 75% respectively); however, no difference in NADPH oxidase activity was found. NO. production was also reduced with age (40%). Furthermore, a progressive and significant decrease in the pentose phosphate flux was detected as a function of age in control and PMA-stimulated macrophages. The NADPH/NADP+ ratio decreased with age in control and PMA-stimulated macrophages. Glucose uptake was lower in middle-aged (12 months) and old (24 months) animals but no differences were found between these groups. PMID:8526870

  19. HF-LPLI-treated tumor cells induce NO production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Zhou, Feifan; Wu, Shengnan; Xing, Da

    2013-02-01

    High fluence low-power laser irradiation (HF-LPLI) provides a new stimulator to trigger cell apoptosis, and it is well known that apoptotic cells provide antigens to effectively trigger recognition by the immune system. In order to investigate the effect of HF-LPLI on the professional antigen-presenting cell (APC) function, in our primary study, we focused our attention on the effect of HF-LPLI-treated tumor cells on macrophages phagocytosis and NO production. Both confocal microscopy and flowcytometry analysis showed that HF-LPLI (120 J/cm2) induced significantly EMT6 death. Further experiments showed that HF-LPLI-treated EMT6 cells could be phagocyted by the murine macrophage cells RAW264.7, and could induce NO production in macrophages. Taken together, our results indicate that HF-LPLI-treated tumor cells effectively regulated the immune system. The HF-LPLI effect on the APC function needs to be further studied.

  20. The mycotoxin alternariol induces DNA damage and modify macrophage phenotype and inflammatory responses.

    PubMed

    Solhaug, A; Wisbech, C; Christoffersen, T E; Hult, L O; Lea, T; Eriksen, G S; Holme, J A

    2015-11-19

    Alternariol (AOH), a mycotoxin produced by Alternaria fungi, is frequently found as a contaminant in fruit and grain products. Here we examined if AOH could modify macrophage phenotype and inflammatory responses. In RAW 264.7 mouse macrophages AOH changed the cell morphology of from round to star-shaped cells, with increased levels of CD83, CD86, CD11b, MHCII and endocytic activity. TNFα and IL-6 were enhanced at mRNA-level, but only TNFα showed increased secretion. No changes were found in IL-10 or IL-12p40 expression. Primary human macrophages changed the cell morphology from round into elongated shapes with dendrite-like protrusions in response to AOH. The levels of CD83 and CD86 were increased, HLA-DR and CD68 were down-regulated and CD80, CD200R and CD163 remained unchanged. Increased secretion of TNFα and IL-6 were found after AOH exposure, while IL-8, IL-10 and IL-12p70 were not changed. Furthermore, AOH reduced macrophage endocytic activity and autophagosomes. AOH was also found to induce DNA damage, which is suggested to be linked to the morphological and phenotypical changes. Thus, AOH was found to change the morphology and phenotype of the two cell models, but either of them could be characterized as typical M1/M2 macrophages or as dendritic cells (DC). PMID:26341179

  1. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(-/-) colitis.

    PubMed

    Hagenlocher, Yvonne; Hösel, Angela; Bischoff, Stephan C; Lorentz, Axel

    2016-04-01

    Inflammatory bowel disease (IBD) shows an increasing prevalence and harm in western countries. Conventional therapies are associated with bad compliance and adverse side effects. Natural substances like cinnamon extract (CE) could be an additional therapy. We found recently that CE acts anti-inflammatory on mast cells - discussed of being relevant in IBD. Here, we analysed the effects of CE on murine IL-10(-/-) colitis as model for IBD. Mice were treated 12 weeks with or without CE in drinking water. Clinical scores and disease activity index were assessed. Colonic tissue samples were analysed for infiltration, tissue damage, bowel wall thickness, expression of pro-inflammatory mediators, mast cell proteases, tight junction proteins, and NF-κB signaling. Following treatment with CE, symptoms of murine colitis as well as increased infiltration of immune cells, tissue damage and bowel wall thickness in colon tissue of IL-10(-/-) mice were diminished significantly. MIP-2, TNF, IFNγ, CCL2, CCL3, CCL4 and IL-1β as well as MC-CPA, MCP-1 and MCP-4 were strongly upregulated in IL-10(-/-) mice compared to WT, but noteworthy not in CE group. Expression of tight junction proteins was not influenced by CE. Phosphorylation of IκB was slightly down-regulated in CE treated IL-10(-/-) mice compared to IL-10(-/-) controls. In summary, CE decreases inflammatory symptoms and expression of inflammatory markers in murine IL-10(-/-) colitis. CE has no influence on tight junction proteins, but seems acting via reducing pro-inflammatory mediators and recruitment of neutrophil granulocytes probably by inhibiting NF-κB signaling. PMID:27012624

  2. Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis

    PubMed Central

    Trachsel, Eveline; Bootz, Frank; Silacci, Michela; Kaspar, Manuela; Kosmehl, Hartwig; Neri, Dario

    2007-01-01

    The antibody-mediated targeted delivery of cytokines to sites of disease is a promising avenue for cancer therapy, but it is largely unexplored for the treatment of chronic inflammatory conditions. Using both radioactive and fluorescent techniques, the human monoclonal antibodies L19 and G11 (specific to two markers of angiogenesis that are virtually undetectable in normal adult tissues) were found to selectively localize at arthritic sites in the murine collagen-induced model of rheumatoid arthritis following intravenous (i.v.) administration. The same animal model was used to study the therapeutic action of the L19 antibody fused to the cytokines IL-2, tumour necrosis factor (TNF) and IL-10. Whereas L19–IL-2 and L19–TNF treatment led to increased arthritic scores and paw swellings, the fusion protein L19–IL-10 displayed a therapeutic activity, which was superior to the activity of IL-10 fused to an antibody of irrelevant specificity in the mouse. The anti-inflammatory cytokine IL-10 has been investigated for the treatment of patients with rheumatoid arthritis, but clinical development plans have been discontinued because of a lack of efficacy. Because the antigen recognised by L19 is strongly expressed at sites of arthritis in humans and identical in both mice and humans, it suggests that the fusion protein L19–IL-10 might help overcome some of the clinical limitations of IL-10 and provide a therapeutic benefit to patients with chronic inflammatory disorders, including arthritis. PMID:17261171

  3. Role of IL-10 -819(t/c) promoter polymorphism in preeclampsia.

    PubMed

    Sowmya, Sabnavis; Ramaiah, Aruna; Sunitha, Tella; Nallari, Pratibha; Jyothy, Akka; Venkateshwari, Ananthapur

    2014-08-01

    Preeclampsia is a severe complication of pregnancy characterized by an excessive maternal systemic inflammatory response with activation of both the innate and adaptive immune system. Interleukin-10 affects maternal intravascular inflammation, as well as endothelial dysfunction. The aim of the study was to investigate the association between IL-10 T-819 C polymorphism and preeclampsia. A total of 120 pregnant women with preeclampsia and 120 women with normal pregnancy attending the Gynecological Unit of Government Maternity Hospital, Petlaburz, Hyderabad, India, were considered for the present study. A standard amplification refractory mutation system (ARMS) PCR was carried out for genotyping of IL-10 T-819 C promoter polymorphism in all the participants. Genotypic distribution of the control and patient groups was compared with values predicted by the Hardy-Weinberg equilibrium using χ2 test. Odds ratios (OR) and their respective 95 % confidence intervals were used to measure the strength of association between IL-10 gene polymorphism and preeclampsia. The frequencies of IL-10 T-819 C genotypes, CC, CT, and TT, were 47.5, 28.3, and 24.2 % in women with preeclampsia and 20.8, 48.3, and 30.8 % in the controls, respectively. There is a significant difference in the distribution of genotypes and alleles of IL-10 T-819 C between the two groups (test power = 0.66). The present study suggests that the IL-10 T-819 C gene promoter polymorphism can be a major genetic regulator in the etiology of preeclampsia. PMID:24477695

  4. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.

    PubMed

    Fortes, Guilherme B; Alves, Leticia S; de Oliveira, Rosane; Dutra, Fabianno F; Rodrigues, Danielle; Fernandez, Patricia L; Souto-Padron, Thais; De Rosa, María José; Kelliher, Michelle; Golenbock, Douglas; Chan, Francis K M; Bozza, Marcelo T

    2012-03-01

    Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS. PMID:22262768

  5. IL-10/microRNA-155/SHIP-1 signaling pathway is crucial for commensal bacteria induced spontaneous colitis.

    PubMed

    Li, Yi; Tian, Yun; Zhu, Weiming; Gong, Jianfeng; Guo, Zhen; Guo, Feilong; Gu, Lili; Li, Jieshou

    2016-09-15

    Interleukin 10 (IL-10) microRNA-155 (miR-155)/Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP-1) signaling pathway plays an important role in maintaining immune homeostasis. We aimed to determine and characterize the changes induced by commensal bacteria on the IL-10/miR-155/SHIP-1 signaling pathway, as well as the potential therapeutic effects of anti-miR-155 on colitis in IL-10 deficient (IL-10(-)/(-)) mice. Age- and sex-matched C57BL/6 IL-10(-)/(-) and wild type mice were transferred from a germ-free environment to a specific pathogen free condition. Part of IL-10(-)/(-) mice were then treated with anti-miR-155. IL-10/miR-155/SHIP-1 signaling pathway was evaluated and the therapeutic effects of anti-miR-155 treatment on colitis in IL-10(-)/(-) mice was assessed. The expression and the relationship of IL-10, miR-155, and SHIP-1 were also measured in patients with active Crohn's colitis. IL-10/miR-155/SHIP-1 signaling pathway was activated in IL-10(-)/(-) mice transferring from a germ-free environment to a specific pathogen free condition. Anti-miR-155 treatment significantly ameliorated the severity of colitis in IL-10(-)/(-) mice. Additionally, administration of anti-miR-155 was associated with a restoration of SHIP-1 signaling pathway. The relationship of IL-10, miR-155, and SHIP-1 was confirmed in human study using samples from patients with active Crohn's colitis. IL-10/miR-155/SHIP-1 pathways play a critical role in commensal bacteria induced colitis and miR-155 may be a potential therapeutic target for human inflammatory bowel disease. PMID:27395764

  6. Zika virus productively infects primary human placenta-specific macrophages

    PubMed Central

    Jurado, Kellie Ann; Simoni, Michael K.; Tang, Zhonghua; Uraki, Ryuta; Hwang, Jesse; Householder, Sarah; Wu, Mingjie; Lindenbach, Brett D.; Abrahams, Vikki M.; Guller, Seth; Fikrig, Erol

    2016-01-01

    The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus–associated pregnancy complications. PMID:27595140

  7. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production

    PubMed Central

    Yang, Kun; Wu, Yongjian; Xie, Heping; Li, Miao; Ming, Siqi; Li, Liyan; Li, Meiyu; Wu, Minhao; Gong, Sitang; Huang, Xi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection. PMID:27251437

  8. Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production.

    PubMed

    Yang, Kun; Wu, Yongjian; Xie, Heping; Li, Miao; Ming, Siqi; Li, Liyan; Li, Meiyu; Wu, Minhao; Gong, Sitang; Huang, Xi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a hard-to-eradicate intracellular microbe, which escapes host immune attack during latent infection. Recent studies reveal that mesenchymal stem cells (MSCs) provide a protective niche for MTB to maintain latency. However, the regulation of mycobacterial residency in MSCs in the infectious microenvironment remains largely unknown. Here, we found that macrophage-mediated inflammatory response during MTB infection facilitated the clearance of bacilli residing in mouse MSCs. Higher inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production were observed in mouse MSCs under macrophage-mediated inflammatory circumstance. Blocking NO production in MSCs increased the survival of intracellular mycobacteria, indicating NO-mediated antimycobacterial activity. Moreover, both nuclear factor κB (NF-κB) and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways were involved in iNOS expression and NO production in inflammatory microenvironment. Furthermore, pro-inflammatory cytokine interleukin-1β could trigger NO production in MSCs and exert anti-mycobacterial activity via NF-κB signaling pathway. Neutralization of interleukin-1β in macrophage-mediated inflammatory microenvironment dampened the ability of mouse MSCs to produce NO. Together, our findings demonstrated that macrophage-mediated inflammatory response during mycobacterial infection promotes the clearance of bacilli in mouse MSCs by increasing NO production, which may provide a better understanding of latent MTB infection. PMID:27251437

  9. Selective differences in macrophage populations and monokine production in resolving pulmonary granuloma and fibrosis.

    PubMed Central

    Lemaire, I.

    1991-01-01

    Alveolar macrophages (AM) and their production of interleukin-1-like activity (IL-1) and macrophage-derived growth factor for fibroblasts (MDGF) were examined during chronic inflammatory reactions leading to either granuloma formation or fibrosis. Groups of five rats each received, respectively, a single transtracheal injection of xonotlite, attapulgite, short chrysotile 4T30, UICC chrysotile B asbestos, or saline. One month later, such treatments induced either no change (xonotlite), granuloma formation (attapulgite and short chrysotile 4T30), or fibrosis (UICC chrysotile B). By 8 months, however, the granulomatous reactions had resolved or greatly diminished, whereas the fibrosis persisted irreversibly. Parallel examination of cell populations obtained by bronchoalveolar lavage revealed that multinucleated giant macrophages (MGC) were present in lavage fluids of animals with resolving granulomatous reactions but absent in those obtained from animals with lung fibrosis. Evaluation of monokine production by inflammatory macrophages also revealed significant differences. Enhanced production of IL-1-like activity was seen in both types of lung injury, although especially during the early stage (1 month) and decreased thereafter (8 months). By contrast, augmentation of MDGF production was observed in animals with lung fibrosis only and persisted up to 9 months. Taken together, these data indicate that production of selected cytokines, as well as AM differentiation along a given pathway, may modulate the outcome of a chronic inflammatory response. PMID:1992772

  10. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.

    PubMed

    Svensson-Arvelund, Judit; Mehta, Ratnesh B; Lindau, Robert; Mirrasekhian, Elahe; Rodriguez-Martinez, Heriberto; Berg, Göran; Lash, Gendie E; Jenmalm, Maria C; Ernerudh, Jan

    2015-02-15

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-γ (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-β, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance. PMID:25560409

  11. Chinese herbal medicinal ingredients affect secretion of NO, IL-10, ICAM-1 and IL-2 by endothelial cells.

    PubMed

    Hu, Yiyi; He, Kongwang; Zhu, Haodan

    2015-06-01

    The aim of this study was to investigate the anti-endotoxin effects of sinomenine, fangchinoline, stachydrine, chuanxionggzine, oxymartrine and evodiamine alkaloids commonly found in Chinese herbal medicines. Porcine endothelial cells were challenged with 1 μg LPS/ml for 3 h and then treated with one of the six alkaloids at three concentrations (1, 5 or 10 μg/ml) for a further 21 h. The supernatants of the cultures were then collected and analyzed for levels of nitric oxide (NO), interleukin (IL)-10, intercellular cell adhesion molecule-1 (ICAM-1) and IL-2 using ELISA kits. The results revealed that sinomenine, stachydrine and chuanxionggzine inhibited production of NO; stachydrine and evodiamine inhibited secretion of IL-10; sinomenine and chuanxionggzine down-regulated ICAM-1 expression; oxymartrine and evodiamine decreased production of IL-2 by the LPS-stimulated endothelial cells. Overall, the data from these studies suggested to us that these six alkaloids might effectively reduce inflammatory responses in situ via changes in the formation of these key regulatory molecules/proteins. PMID:25986990

  12. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  13. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production

    PubMed Central

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-01-01

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis. PMID:27025258

  14. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  15. Lactobacillus reuteri promotes Helicobacter hepaticus-associated typhlocolitis in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice.

    PubMed

    Whary, Mark T; Taylor, Nancy S; Feng, Yan; Ge, Zhongming; Muthupalani, Suresh; Versalovic, James; Fox, James G

    2011-06-01

    To model inflammatory bowel disease, we assessed infection with Helicobacter hepaticus 3B1 (ATCC 51449) and a potential probiotic Lactobacillus reuteri (ATCC PTA-6475) in gnotobiotic B6.129P2-IL-10(tm1Cgn) (IL-10(-/-) ) mice. No typhlocolitis developed in germ-free controls (n=21) or in L. reuteri (n=8) or H. hepaticus (n=18) mono-associated mice for 20 weeks post-infection. As positive controls, three specific pathogen-free IL-10(-/-) mice dosed with H. hepaticus developed severe typhlocolitis within 11 weeks. Because L. reuteri PTA-6475 has anti-inflammatory properties in vitro, it was unexpected to observe significant typhlocolitis (P<0·0001) in mice that had been infected with L. reuteri followed in 1 week by H. hepaticus (n=16). The H. hepaticus colonization was not affected through 20 weeks post-infection but L. reuteri colonization was lower in co-infected compared with L. reuteri mono-associated mice at 8-11 weeks post-infection (P<0·05). Typhlocolitis was associated with an increased T helper type 1 serum IgG2c response to H. hepaticus in co-infected mice compared with H. hepaticus mono-associated mice (P<0·005) and similarly, mRNA expression in caecal-colonic tissue was elevated at least twofold for chemokine ligands and pro-inflammatory interleukin-1α (IL-1α), IL-1β, IL-12 receptor, tumour necrosis factor-α and inducible nitric oxide synthase. Anti-inflammatory transforming growth factor-β, lactotransferrin, peptidoglycan recognition proteins, Toll-like receptors 4, 6, 8 and particularly 9 gene expression, were also elevated only in co-infected mice (P<0·05). These data support that the development of typhlocolitis in H. hepaticus-infected IL-10(-/-) mice required co-colonization with other microbiota and in this study, required only L. reuteri. Although the effects other microbiota may have on H. hepaticus virulence properties remain speculative, further investigations using this gnotobiotic model are now possible. PMID:21426337

  16. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  17. No effect of exposure to static and sinusoidal magnetic fields on nitric oxide production by macrophages

    SciTech Connect

    Mnaimneh, S.; Bizri, M.; Veyret, B.

    1996-12-31

    The effects of exposure to static (1--100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields.

  18. Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

    PubMed

    Yao, Yingying; Wang, Yi; Zhang, Zhijun; He, Long; Zhu, Jianghui; Zhang, Meng; He, Xiaoyu; Cheng, Zhenshun; Ao, Qilin; Cao, Yong; Yang, Ping; Su, Yunchao; Zhao, Jianping; Zhang, Shu; Yu, Qilin; Ning, Qin; Xiang, Xudong; Xiong, Weining; Wang, Cong-Yi; Xu, Yongjian

    2016-05-01

    C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages. PMID:26883801

  19. Characterization of the Kynurenine Pathway and Quinolinic Acid Production in Macaque Macrophages

    PubMed Central

    Lim, Chai K.; Yap, Margaret M.C.; Kent, Stephen J.; Gras, Gabriel; Samah, Boubekeur; Batten, Jane C.; De Rose, Robert; Heng, Benjamin; Brew, Bruce J.; Guillemin, Gilles J.

    2013-01-01

    The kynurenine pathway (KP) and one of its end-products, the excitotoxin quinolinic acid (QUIN), are involved in the pathogenesis of several major neuroinflammatory brain diseases. A relevant animal model to study KP metabolism is now needed to assess whether intervention in this pathway may improve the outcome of such diseases. Humans and macaques share a very similar genetic makeup. In this study, we characterized the KP metabolism in macaque primary macrophages of three different species in comparison to human cells. We found that the KP profiles in simian macrophages were very similar to those in humans when challenged with inflammatory cytokines. Further, we found that macaque macrophages are capable of producing a pathophysiological concentration of QUIN. Our data validate the simian model as a relevant model to study the human cellular KP metabolism in the context of inflammation. PMID:23761975

  20. Lactate production by human monocytes/macrophages determined by proton MR spectroscopy.

    PubMed

    López-Villegas, D; Lenkinski, R E; Wehrli, S L; Ho, W Z; Douglas, S D

    1995-07-01

    Elevated brain lactate has been observed by in vivo proton MRS in different pathological situations. The origin of this lactate remains controversial. The possibility that it was produced by the metabolism of phagocytic cells has been proposed. To investigate this hypothesis, the authors have employed high-resolution proton MRS to monitor changes in glucose, lactate, and other metabolites in the medium used to culture human monocyte-derived macrophages in vitro. Results show that the differentiation of human monocytes/macrophages in the presence of physiological stimulating factors (M-CSF or GM-CSF) was associated with an increase in lactate production and glucose utilization. The present results are consistent with the hypothesis that lactate detected by proton MRS in vivo may be produced by the metabolism of macrophages when infiltrates of these cells are present. The possible extrapolation of the authors' finding to the in vivo situation and its relevance are discussed. PMID:7674895

  1. Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis.

    PubMed

    Schaut, Robert G; Lamb, Ian M; Toepp, Angela J; Scott, Benjamin; Mendes-Aguiar, Carolina O; Coutinho, Jose F V; Jeronimo, Selma M B; Wilson, Mary E; Harty, John T; Waldschmidt, Thomas J; Petersen, Christine A

    2016-05-15

    During visceral leishmaniasis (VL), Th1-based inflammation is induced to control intracellular parasites. Inflammation-based pathology was shown to be dampened by IL-10 and eventual programmed death 1-mediated T cell exhaustion. Cell type(s) responsible for the initiation of T cell-produced IL-10 during VL are unknown. CD19(+), CD5(-), CD1d(-), IgD(hi) regulatory B cells from healthy controls produced IL-10 in the absence of infection or stimulation, in contrast to IgD(lo/neg) B cells. IgD(hi) B cells may have a de novo versus induced regulatory program. The population of IgD(hi) B cells increased 3-fold as VL progressed. B cells from VL dogs were necessary and sufficient to suppress Th1 cell effector function. IgD(hi) B cells induced IL-10 production by T cells and IgD(lo) B cells. Blockage of B cell-specific PD-L1 restored Th1 responses. IgD(hi) regulatory B cells represent a novel regulatory B cell that may precipitate T cell exhaustion during VL. PMID:27076677

  2. Micro RNA-17-92 cluster mediates interleukin-4-suppressed IL-10 expression in B cells

    PubMed Central

    Liu, Zhi-Qiang; Yang, Gui; Geng, Xiao-Rui; Liu, Jiang-Qi; Mo, Li-Hua; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    The pathogenesis of allergen-related inflammation in the intestine is to be further understood. Micro RNA (miR) can regulate immune responses. This study aims to investigate the role of miR-17-92 cluster in the induction of food allergen-related inflammation in the intestine. In this study, a mouse model of food allergen-related intestinal inflammation was developed. Expression of miR-17-92 cluster in B cells of the intestinal mucosa was analyzed by real time quantitative RT-PCR. The results showed that the levels of miR-19a, one of the members of the miR-17-92 cluster, were detected in the B cells of the intestine of mice sensitized to ovalbumin, which was significantly higher than that in naïve control mice. The expression of IL-10 by B cells was significantly lower in the sensitized mice as compared with naive control mice. Exposure to IL-4 in the culture increased the expression of miR-19a as well as suppression the expression of IL-10 in B cells via remolding DNA structure at the IL-10 promoter locus. We conclude that B cells from sensitized mice show higher levels of miR-19a, which plays an important role in the suppression of IL-10 in the B cells. PMID:27347339

  3. Functional polymorphisms in the IL-10 gene with susceptibility to esophageal, nasopharyngeal, and oral cancers.

    PubMed

    Li, Yu-Fen; Yang, Pei-Zhen; Li, Hua-Feng

    2016-03-18

    Emerging evidence showed that functional polymorphisms in the IL-10 gene may have effects on individuals' susceptibility to nasopharyngeal, oral and esophageal cancers, yet individually published findings are inconsistent. We therefore designed the meta-analysis to investigate the correlations of IL-10 genetic polymorphisms with susceptibility to nasopharyngeal, oral and esophageal cancers. The EMBASE, MEDLINE, CINAHL, Web of Science and the Chinese Biomedical Database (CBM) databases were searched with no language restrictions. We use Comprehensive Meta-analysis 2.0 software to carry out statistical analysis. Ten case-control studies with a number of 1,883 patients and 2,857 healthy subjects were enrolled. Our results revealed that IL-10 rs1800872 T>G and rs1800896 A>G polymorphisms has a significantly association with the increased risk of esophageal cancer under the allele and dominant models; rs1800871 T>G, rs1800872 T>G and rs1800896 A>G under allele and dominant models could increase the risk of nasopharyngeal cancer; rs1800871T>G, rs1800872T>G and rs1800896 A>G SNPs under allele model were closely related to the susceptibility to oral cancer. Our findings support the point that IL-10 genetic polymorphisms may play essential role in identifying esophageal cancer, nasopharyngeal cancer and oral cancer at early stage. PMID:27002767

  4. Maternal filarial infection: association of anti-sheath antibody responses with plasma levels of IFN-γ and IL-10.

    PubMed

    Achary, K G; Mandal, N N; Mishra, S; Sarangi, S S; Kar, S K; Satapathy, A K; Bal, M S

    2013-04-01

    Maternal filarial infection influences the risk of acquiring infection and development of immunity in children. Here we have analysed the blood samples of 60 mothers (24 infected and 36 uninfected) and their corresponding cord bloods to assess the impact of maternal infection on the anti-sheath antibodies and cytokine production in neonates born from them. About 69·4% of non-infected mothers and their cord bloods showed the presence of anti-sheath antibodies, while only 16·6% of the cord bloods from infected mothers were positive for it. The IL-10 level was significantly high in cord bloods of infected mothers compared with non-infected mothers. At the same time the IL-10 level was also observed to be remarkably high in cord bloods of both infected and non-infected mothers negative for anti-sheath antibody. In contrast, IFN-γ levels were significantly high in cord bloods of non-infected mothers compared with infected mothers and the increment was prominent in cord bloods of both infected and non-infected mothers positive for anti-sheath antibody. The study reveals that the presence or absence of anti-sheath antibodies in association with cytokines skews the filarial specific immunity to either Th1 or Th2 responses in neonates. This may affect the natural history of filarial infection in early childhood. PMID:23343479

  5. PCT-233, a novel modulator of pro- and anti-inflammatory cytokine production

    PubMed Central

    BISSONNETTE, E Y; PROULX, L-I; TURMEL, V; DROUIN, R; PURCELL, M

    2004-01-01

    Plant extracts have been implicated in various immunoregulatory effects that are poorly understood. Thus, we investigated the modulatory activity of PureCell Complex (PCT)-233, an active molecular complex from mesophyll tissue of Spinacia oleacea on the inflammatory process. Alveolar macrophages (AM) were treated with PCT-233 and/or budesonide, a well-known anti-inflammatory agent, before or after being stimulated with lipopolysaccharides (LPS). Pro- and anti-inflammatory cytokine production, tumour necrosis factor (TNF) and interleukin (IL)-10, respectively, were measured in cell-free supernatants at different times after the treatment. PCT-233 increased unstimulated AM release of both TNF and IL-10, whereas heat- and light-inactivated PCT-233 stimulated only the release of TNF without affecting IL-10 production, suggesting that different mechanisms are involved in the modulation of TNF and IL-10 release by PCT-233. The presence of LPS did not modify PCT-233-stimulated TNF production, but the ratio TNF/IL-10 production by LPS-stimulated AM was reduced significantly in the presence of PCT-233. Pretreatment of AM with PCT-233 and budesonide before LPS stimulation reduced TNF production at both protein and mRNA levels, whereas IL-10 production was increased. Moreover, TNF/IL-10 ratio was reduced further with the combination PCT-233/budesonide. Interestingly, AM treatment with PCT-233 and budesonide 18 h after LPS stimulation did not modulate TNF release significantly but it did increase IL-10 production, and a synergistic effect was observed with the combination PCT-233/budesonide. These exciting data suggest that PCT-233 possesses some anti-inflammatory properties, even when added during the inflammatory process, and could potentiate the effect of other anti-inflammatory agents. PMID:15008976

  6. Indicators of Moderate and Severe Preeclampsia in Correlation with Maternal IL10

    PubMed Central

    Markova, Ana Daneva; Hadži-Lega, Marija; Mijakoski, Dragan

    2016-01-01

    AIM: The purpose of the actual study was to evaluate the relationship between the formation of anti-inflammatory cytokine IL10 and several indicators of moderate and severe preeclampsia in the third trimester of pregnancy. MATERIAL AND METHODS: Examination of the indicators of preeclampsia and maternal IL10 levels was conducted in 50 women with pregnancies complicated by varying degrees of preeclampsia in the third trimester of gestation as well as in 50 normotensive patients, hospitalized at the University Clinic of Gynecology and Obstetrics, Skopje, Republic of Macedonia. The levels of IL10 were determined with a commercial test developed by Orgenium Laboratories (Finland), using reagents from AviBion ELISA research kits. Patients with preeclampsia were categorized into moderate and severe preeclampsia group according to the degree of preeclampsia. Logistic regression analysis was used to determine the predictive value of different parameters for the occurrence of severe preeclampsia. Odds ratios and 95% Confidence Intervals were calculated in order to quantify independent associations. RESULTS: The regression analysis detected systolic blood pressure (160 mmHg or higher), diastolic blood pressure (100 mmHg or higher), persistent proteinuria in pregnancy, serum LDH concentration (450 U/L or higher) and reduced serum concentrations of IL10 as significant predictors of severe preeclampsia in pregnant women after adjusting for age. CONCLUSION: The findings of significantly lower serum IL10 concentrations in patients with severe preeclampsia in comparison with respective concentrations in patients with moderate preeclampsia can be considered as major pathognomonic laboratory sign of severe preeclampsia. PMID:27335593

  7. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features.

    PubMed

    Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna

    2015-11-01

    The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. PMID:26385774

  8. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    SciTech Connect

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  9. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury.

    PubMed

    Hofmann, S R; Rösen-Wolff, A; Tsokos, G C; Hedrich, C M

    2012-05-01

    The IL-10 cytokine family has nine members, four of which are located in the IL10 cluster on chromosome 1q32. These cytokines are the immune regulatory cytokine IL-10 itself, and the IL-20 subfamily members IL-19, IL-20, and IL-24. IL-10 instructs innate and adaptive immune responses and limits pro-inflammatory responses in order to prevent tissue damage. The IL-20 subfamily members are involved in host defense mechanisms, particularly from epithelial cells and seem essential for tissue integrity. Dysregulation of IL-10 family cytokines results in inflammation and autoimmune disease. Here, we discuss cellular source, gene regulation, and receptor complexes of cytokines in the IL10 cluster and their contribution to autoimmune disease and tissue damage. PMID:22459704

  10. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout.

    PubMed

    Galvão, Izabela; Dias, Ana Carolina Fialho; Tavares, Livia Duarte; Rodrigues, Irla Paula Stopa; Queiroz-Junior, Celso Martins; Costa, Vivian Vasconcelos; Reis, Alesandra Corte; Ribeiro Oliveira, Rene Donizeti; Louzada-Junior, Paulo; Souza, Daniele Glória; Leng, Lin; Bucala, Richard; Sousa, Lirlândia Pires; Bozza, Marcelo Torres; Teixeira, Mauro Martins; Amaral, Flávio Almeida

    2016-06-01

    This study evaluated the role of macrophage migration inhibitory factor in inflammation caused by monosodium urate crystals. The concentration of macrophage migration inhibitory factor was increased in synovial fluid of patients with acute gout, and there was a positive correlation between intra-articular macrophage migration inhibitory factor and IL-1β concentrations. In mice, the injection of monosodium urate crystals into the knee joint increased the levels of macrophage migration inhibitory factor in macrophages and in inflamed tissue. The injection of recombinant macrophage migration inhibitory factor into the joint of mice reproduced the inflammatory response observed in acute gout, including histologic changes, the recruitment of neutrophils, and increased levels of IL-1β and CXCL1. Importantly, the accumulation of neutrophils and the amount IL-1β in the joints were reduced in macrophage migration inhibitory factor-deficient mice when injected with monosodium urate crystals. We observed a similar effect when we blocked macrophage migration inhibitory factor with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid or anti-macrophage migration inhibitory factor. In addition, the blockade of IL-1R and CXCR2 reduced recombinant macrophage migration inhibitory factor-induced neutrophil recruitment. Mechanistically, recombinant macrophage migration inhibitory factor is important for the synthesis of il1β mRNA in vivo and in isolated macrophages. Altogether, macrophage migration inhibitory factor promotes neutrophil accumulation and is important for IL-1β production, which are 2 crucial events contributing to the pathogenesis of acute gout. PMID:26868525

  11. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma

    PubMed Central

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  12. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma.

    PubMed

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  13. Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene

    PubMed Central

    De Kozak, Y; Thillaye-Goldenberg, B; Naud, M -C; Viana Da Costa, A; Auriault, C; Verwaerde, C

    2002-01-01

    Pathological ocular manifestations result from a dysregulation in the balance between proinflammatory type 1 cytokines and regulatory type 2 cytokines. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with potent immunosuppressive effects. We have examined the efficiency of viral IL-10 adenovirus (Ad-vIL-10)-mediated gene transfer on experimental autoimmune uveoretinitis (EAU) induced in mice and rats by purified retinal autoantigens, respectively, interphotoreceptor binding protein (IRBP) and S-antigen (S-Ag). B10-A mice that received a single unilateral injection of Ad-vIL-10 in the retro-orbital sinus venosus performed 1 day before immunization with IRBP in the footpads showed high levels of circulating vIL-10 in their sera and a significant reduction in pathological ocular manifestations. Lower levels of IFN-γ and IL-2 were found in cellular supernatants from IRBP-stimulated splenic cells in these treated mice. The local effect on ocular disease of vIL-10 was neutralized completely by injection of a monoclonal anti-vIL-10 antibody, demonstrating the specificity of the treatment. To determine whether the transfer of the vIL-10 gene within the periocular tissues of the eye could prevent acute EAU, a subconjunctival injection of Ad-vIL-10 was performed in Lewis rats simultaneously with S-antigen in the footpads. This injection determined in situ vIL-10 expression with very low circulating vIL-10 and led to a significant reduction of EAU without affecting the systemic immune response. The present results suggest that Ad-mediated gene transfer resulting in systemic and local expression of vIL-10 provide a promising approach for the treatment of uveitis. PMID:12390308

  14. Effects of asbestos and silica on superoxide anion production in the guinea pig alveolar macrophage

    SciTech Connect

    Roney, P.L.

    1988-01-01

    This study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production. Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues. On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C).

  15. Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47

    PubMed Central

    Stein, Erica V.; Miller, Thomas W.; Ivins-O’Keefe, Kelly; Kaur, Sukhbir; Roberts, David D.

    2016-01-01

    Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia. PMID:26813769

  16. Leishmania donovani secretory serine protease alters macrophage inflammatory response via COX-2 mediated PGE-2 production.

    PubMed

    Das, Partha; De, Tripti; Chakraborti, Tapati

    2014-12-01

    Leishmania parasites determine the outcome of the infection by inducing inflammatory response that suppresses macrophage's activation. Defense against Leishmania is dependent on Th1 inflammatory response by turning off macrophages' microbicidal property by upregulation of COX-2, as well as immunosuppressive PGE-2 production. To understand the role of L. donovani secretory serine protease (pSP) in these phenomena, pSP was inhibited by its antibody and serine protease inhibitor, aprotinin. Western blot and TAME assay demonstrated that pSP antibody and aprotinin significantly inhibited protease activity in the live Leishmania cells and reduced infection index of L. donovani-infected macrophages. Additionally, ELISA and RT-PCR analysis showed that treatment with pSP antibody or aprotinin hold back COX-2-mediated immunosuppressive PGE-2 secretion with enhancement of Th1 cytokine like IL-12 expression. This was also supported in Griess test and NBT assay, where inhibition of pSP with its inhibitors elevated ROS and NO production. Overall, our study implies the pSP is involved in down-regulation of macrophage microbicidal activity by inducing host inflammatory responses in terms of COX-2-mediated PGE-2 release with diminished reactive oxygen species generation and thus suggests its importance as a novel drug target of visceral leishmaniasis. PMID:25823228

  17. Low-dose testosterone protects against renal ischemia-reperfusion injury by increasing renal IL-10-to-TNF-α ratio and attenuating T-cell infiltration.

    PubMed

    Patil, Chetan N; Wallace, Kedra; LaMarca, Babbette D; Moulana, Mohadetheh; Lopez-Ruiz, Arnaldo; Soljancic, Andrea; Juncos, Luis A; Grande, Joseph P; Reckelhoff, Jane F

    2016-08-01

    Renal ischemia-reperfusion (I/R) in male rats causes reductions in plasma testosterone, and infusion of testosterone 3 h postreperfusion is protective. We tested the hypotheses that acute high doses of testosterone promote renal injury after I/R, and that acute low-dose testosterone is protective by the following: 1) increasing renal IL-10 and reducing TNF-α; 2) its effects on nitric oxide; and 3) reducing intrarenal T-cell infiltration. Rats were subjected to renal I/R, followed by intravenous infusion of vehicle or testosterone (20, 50, or 100 μg/kg) 3 h postreperfusion. Low-dose testosterone (20 μg/kg) reduced plasma creatinine, increased nitrate/nitrite excretion, increased intrarenal IL-10, and reduced intrarenal TNF-α, whereas 50 μg/kg testosterone failed to reduce plasma creatinine, increased IL-10, but failed to reduce TNF-α. A higher dose of testosterone (100 mg/kg) not only failed to reduce plasma creatinine, but significantly increased both IL-10 and TNF-α compared with other groups. Low-dose nitro-l-arginine methyl ester (1 mg·kg(-1)·day(-1)), given 2 days before I/R, prevented low-dose testosterone (20 μg/kg) from protecting against I/R injury, and was associated with lack of increase in intrarenal IL-10. Intrarenal CD4(+) and CD8(+) T cells were significantly increased with I/R, but were attenuated with low-dose testosterone, as were effector T helper 17 cells. The present studies suggest that acute, low-dose testosterone is protective against I/R AKI in males due to its effects on inflammation by reducing renal T-cell infiltration and by shifting the balance to favor anti-inflammatory cytokine production rather than proinflammatory cytokines. PMID:27252490

  18. REDUCED NITRIC OXIDE PRODUCTION AND INOS MRNA EXPRESSION IN IFN-G STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH INOS SIRNAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the inhibition or knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-y' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biolo...

  19. PAFR activation of NF-κB p65 or p105 precursor dictates pro- and anti-inflammatory responses during TLR activation in murine macrophages

    PubMed Central

    Ishizuka, Edson K.; Filgueiras, Luciano Ribeiro; Rios, Francisco J.; Serezani, Carlos H.; Jancar, Sonia

    2016-01-01

    Platelet-activating factor receptor (PAFR) is a G protein-coupled receptor (GPCR) implicated in many diseases. Toll-like receptors (TLRs) play a critical role in shaping innate and adaptive immune responses. In this study, we investigated whether PAFR signaling changes the macrophages responsiveness to agonists of TLR2 (Pam3Cys), TLR4 (LPS), and TLR3 agonist Poly(I:C). Exogenous PAF inhibited the production of pro-inflammatory cytokines (IL-12p40, IL-6, and TNF-α) and increased anti-inflammatory IL-10 in macrophages challenged with Pam3Cys and LPS, but not with Poly (I:C). PAF did not affect mRNA expression of MyD88, suggesting that PAF acts downstream the adaptor. PAF inhibited LPS-induced phosphorylation of NF-κB p65 and increased NF-κB p105 phosphorylation, which is processed in the proteasome to generate p50 subunit. The PAF potentiation of IL-10 production was dependent on proteasome processing but independent of NF-κB transactivation domain. Inhibition of p50 abolished the PAF-induced IL-10 production. These findings indicate that the impaired transcriptional activity of the p65 subunit and the enhanced p105 phosphorylation induced by PAF are responsible for down regulation of pro-inflammatory cytokines and up regulation of IL-10, respectively, in LPS-challenged macrophages. Together, our data unveil a heretofore unrecognized role for PAFR in modulating activation of NF-κB in macrophages. PMID:27554194

  20. Impact of Notch1 Deletion in Macrophages on Proinflammatory Cytokine Production and the Outcome of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wongchana, Wipawee; Lawlor, Rebecca G; Osborne, Barbara A; Palaga, Tanapat

    2015-12-01

    Notch signaling is involved in regulating TLR-mediated responses in activated macrophages. In this study, we investigated the impact of Notch signaling in macrophages in an experimental autoimmune encephalomyelitis (EAE) model. To examine the impact of deficiency in Notch signaling in activated macrophages in EAE, an adoptive transfer of activated macrophages derived from Notch1(fl/fl) × Mx1cre(+/-) (Notch1 knockout [N1KO]) or CSL/Rbp-jκ(fl/fl) × Mx1cre(+/-) (CSL/RBP-Jκ KO) mice was performed prior to induction of EAE. Mice receiving activated N1KO macrophages showed decreased severity of EAE compared with mice receiving wild-type or CSL/RBP-Jκ KO macrophages. In vitro restimulation of splenocytes by myelin oligodendrocyte glycoprotein 35-55 peptide from these mice revealed that cells from mice receiving N1KO macrophages produced significantly less IL-17 compared with the control mice, whereas IFN-γ production was similar in both groups. We found that activated N1KO, but not CSL/RBP-Jκ KO, macrophages produced less IL-6 and had lower CD80 expression compared with wild-type and did not exhibit any defect in IL-12p40/70 production, whereas activated macrophages from CSL/RBP-Jκ KO mice phenocopied γ-secretase inhibitor treatment for reduced IL-12p40/70 production. Furthermore, the nuclear translocation of the NF-κB subunit c-Rel was compromised in γ-secretase inhibitor-treated and CSL/RBP-Jκ KO but not N1KO macrophages. These results suggest that Notch1 and CSL/RBP-Jκ in macrophages may affect the severity of EAE differently, possibly through modulating IL-6 and CD80 expression, which is involved in the Th17 but not Th1 response. PMID:26503951

  1. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product. PMID:19662581

  2. Immunopharmacological activity of Echinacea preparations following simulated digestion on murine macrophages and human peripheral blood mononuclear cells.

    PubMed

    Rininger, J A; Kickner, S; Chigurupati, P; McLean, A; Franck, Z

    2000-10-01

    We have investigated the immunostimulatory, anti-inflammatory, and antioxidant activities of various Echinacea raw materials and commercially available products on murine macrophages and human peripheral blood mononuclear cells (PBMCs). To emulate oral dosing, a simulated digestion protocol was employed as a means of sample preparation. Echinacea-induced macrophage activation was used as a measure of immunostimulatory activity determined via quantitative assays for macrophage-derived factors including tumor necrosis factor alpha, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and nitric oxide. Echinacea herb and root powders were found to stimulate murine macrophage cytokine secretion as well as to significantly enhance the viability and/or proliferation of human PBMCs in vitro. In contrast, Echinacea extracts chemically standardized to phenolic acid or echinacoside content and fresh pressed juice preparations were found to be inactive as immunostimulatory agents but did display, to varying degrees, anti-inflammatory and antioxidant properties. PMID:11037971

  3. Expression of functional NK1 receptors in human alveolar macrophages: superoxide anion production, cytokine release and involvement of NF-kappaB pathway.

    PubMed

    Bardelli, Claudio; Gunella, Gabriele; Varsaldi, Federica; Balbo, Pietro; Del Boca, Elisa; Bernardone, Ilaria Seren; Amoruso, Angela; Brunelleschi, Sandra

    2005-06-01

    1 Substance P (SP) is deeply involved in lung pathophysiology and plays a key role in the modulation of inflammatory-immune processes. We previously demonstrated that SP activates guinea-pig alveolar macrophages (AMs) and human monocytes, but a careful examination of its effects on human AMs is still scarce. 2 This study was undertaken to establish the role of SP in human AM isolated from healthy smokers and non-smokers, by evaluating the presence of tachykinin NK(1) receptors (NK-1R) and SP's ability to induce superoxide anion (O(2)(-)) production and cytokine release, as well as activation of the nuclear factor-kappaB (NF-kappaB) pathway. 3 By Western blot analysis and immunofluorescence, we demonstrate that authentic NK-1R are present on human AMs, a three-fold enhanced expression being observed in healthy smokers. These NK-1R are functional, as SP and NK(1) agonists dose-dependently induce O(2)(-) production and cytokine release. In AMs from healthy smokers, SP evokes an enhanced respiratory burst and a significantly increased release of tumor necrosis factor-alpha as compared to healthy non-smokers, but has inconsistent effects on IL-10 release. The NK(1) selective antagonist CP 96,345 ((2S,3S)-cis-2-diphenylmethyl-N[(2-methoxyphenyl)-methyl]-1-azabicyclo-octan-3-amine)) competitively antagonized SP-induced effects. 4 SP activates the transcription factor NF-kappaB, a three-fold increased nuclear translocation being observed in AMs from healthy smokers. This effect is receptor-mediated, as it is reproduced by the NK(1) selective agonist [Sar(9)Met(O(2))(11)]SP and reverted by CP 96,345. 5 These results clearly indicate that human AMs possess functional NK-1R on their surface, which are upregulated in healthy smokers, providing new insights on the mechanisms involved in tobacco smoke toxicity. PMID:15778738

  4. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-01

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth. PMID:26644475

  5. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    PubMed

    Xisto, Mariana I D S; Bittencourt, Vera C B; Liporagi-Lopes, Livia Cristina; Haido, Rosa M T; Mendonça, Morena S A; Sassaki, Guilherme; Figueiredo, Rodrigo T; Romanos, Maria Teresa V; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  6. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  7. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity. PMID:27622052

  8. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro

    SciTech Connect

    Enk, C.D.; Blauvelt, A.; Katz, S.I.

    1995-05-01

    Numerous studies have demonstrated that ultraviolet B (UVB) irradiation has profound effects on the skin and systemic immune systems. Because many of the effects of UVB result in suppression of contact sensitivity responses and because IL-10 induces a Th2 rather than a Th1 response, we sought to determine whether UVB irradiation induces IL-10 transcription and subsequent protein secretion by human epidermal cells. Skin of nine volunteers was exposed to UVB or sham irradiation, and epidermal cell suspensions were prepared from suction blister roofs 24 h thereafter. mRNA was extracted using oligo dT-coated magnetic beads, and IL-10 cDNA was amplified with a sensitive RT-PCR technique. We found that IL-10 was constitutively expressed by epidermal cells in 5 of 9 volunteers and that IL-10 message was up-regulated by UVB exposure in all experiments. Since epidermis consists of a heterogeneous cell population with distinct cytokine profiles, we determined whether UVB caused enhanced IL-10 transcription and protein secretion in human keratinocyte cultures. In these experiments, IL-10 was constitutively expressed by keratinocytes and UVB up-regulated IL-10 gene expression in a dose-dependent manner 24 h after in vitro irradiation, coinciding with IL-10 protein secretion into the culture supernatants. Taken together, the findings indicate that UVB irradiation induces IL-10 in human keratinocytes and suggest that keratinocyte-derived IL-10 may be an important component of the immunosuppression that results from UVB irradiation. 55 refs., 5 figs.

  9. Importance of IL-10 Modulation by Probiotic Microorganisms in Gastrointestinal Inflammatory Diseases

    PubMed Central

    de Moreno de LeBlanc, Alejandra; del Carmen, Silvina; Zurita-Turk, Meritxell; Santos Rocha, Clarissa; van de Guchte, Maarten; Azevedo, Vasco; Miyoshi, Anderson; LeBlanc, Jean Guy

    2011-01-01

    Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of one of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of gastrointestinal inflammatory disease through their immune-modulating properties. A special emphasis will be placed on the critical role of the anti-inflammatory cytokine IL-10, and a brief overview of the uses of genetically engineered LAB that produce this important immune response mediator will also be discussed. Thus, this paper will demonstrate the critical role that IL-10 plays in gastrointestinal inflammatory diseases and how probiotics could be used in their treatment. PMID:21991534

  10. A CB2-Selective Cannabinoid Suppresses T-cell Activities and Increases Tregs and IL-10

    PubMed Central

    Robinson, Rebecca H.; Meissler, Joseph J.; Fan, Xiaoxuan; Yu, Daohai; Adler, Martin W.; Eisenstein, Toby K.

    2015-01-01

    We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability. PMID:25980325

  11. Image guided thermal ablation of tumors increases the plasma level of IL-6 and IL-10

    PubMed Central

    Erinjeri, Joseph P; Thomas, Contessa T; Samoila, Alaiksandra; Fleisher, Martin; Gonen, Mithat; Sofocleous, Constantinos T.; Thornton, Raymond H; Siegelbaum, Robert H.; Covey, Anne M.; Brody, Lynn A.; Alago, William; Maybody, Majid; Brown, Karen T.; Getrajdman, George; Solomon, Stephen B.

    2014-01-01

    PURPOSE To identify changes in plasma cytokine levels following image-guided thermal ablation of human tumors and to identify the factors that independently predict changes in plasma cytokine levels. MATERIALS AND METHODS Whole blood samples were collected from 36 patients at 3 time points: pre-ablation, post-ablation (within 48 hours), and in follow-up (1–5 weeks after ablation). Plasma levels of IL-1a, IL-2, IL-6, IL-10 and TNFa were measured using a multiplex immunoassay. Univariate and multivariate analyses were performed using cytokine level as the dependent variable and sample collection, time, age, sex, primary diagnosis, metastatic status, ablation site, and ablation type as the independent variables. RESULTS There was a significant increase in the plasma level of IL-6 post-ablation when compared to pre-ablation (9.6+/−31 fold, p<0.002). IL-10 also showed a significant increase postablation (1.9 +/−2.8 fold, p<0.02). Plasma levels of IL-1a, IL-2, and TNFa were not significantly changed after ablation. Cryoablation resulted in the largest change in IL-6 level (>54 fold), while radiofrequency and microwave ablation showed 3.6 and 3.4-fold changes, respectively. Ablation of melanomas showed the largest change in IL-6 48 hours after ablation (92×), followed by ablation of kidney (26×), liver (8×), and lung (6×) cancers. Multivariate analysis revealed that ablation type (p<0.0003), and primary diagnosis (p<0.03) were independent predictors of changes to IL-6 following ablation. Age was the only independent predictor of IL-10 levels following ablation (p<0.019). CONCLUSION Image guided thermal ablation of tumors increases the plasma level of IL-6 and IL-10, without increasing the plasma level of IL-1a, IL-2, or TNFa. PMID:23582441

  12. Statins and IL-1β, IL-10, and MPO Levels in Gingival Crevicular Fluid: Preliminary Results.

    PubMed

    Cicek Ari, Vuslat; Ilarslan, Yagmur Deniz; Erman, Baran; Sarkarati, Bahram; Tezcan, Ilhan; Karabulut, Erdem; Oz, Serife Gul; Tanriover, Mine Durusu; Sengun, Dilek; Berker, Ezel

    2016-08-01

    Statins possess a wide variety of pleiotropic properties that are independent of their lipid-lowering abilities such as attenuating inflammation, oxidative stress, coagulation, platelet aggregation and stimulating bone formation. The aim of the study is to evaluate the effect of statins on clinical periodontal parameters and gingival crevicular fluid (GCF) levels of IL-1β, IL-10, and myeloperoxidase (MPO) in inflammatory periodontal diseases. Seventy-nine subjects with hyperlipidemia and 48 systemically healthy controls (C) were included. Hyperlipidemic patients were either given a diet (HD) or prescribed statin (HS). Patients were classified into three subgroups as those who were periodontally healthy (h), who had gingivitis (g), or who had chronic periodontitis (p). Blood samples were collected for the measurement of lipid profiles. Plaque index (PI), gingival index (GI), probing pocket depth (PD), clinical attachment level (CAL), and percentage of bleeding on probing (BOP) were recorded. Gingival crevicular fluid levels of IL-1β, IL-10, and MPO were measured in order to determine the anti-inflammatory and antioxidant effects of statins. Probing depth values of the HSp group were significantly lower than those of the Cp group. Percentage of BOP of the HSg group was significantly lower than those of the HDg and Cg groups. While the IL-1β level of the HSp group was significantly lower than that of the HDp group, IL-10 levels of the HSg group were significantly higher than those of the HDg group. MPO levels were significantly lower in the HSg group when compared to those in the HDg and Cg groups. Statin use decreased the IL-1β and MPO levels and enhanced IL-10 in GCF. It can be suggested that statins may attenuate periodontal inflammation and progression of periodontal inflammation. PMID:27290718

  13. Human adipose-derived stem cells attenuate inflammatory bowel disease in IL-10 knockout mice.

    PubMed

    Jung, Woo Yeun; Kang, Joo Hwan; Kim, Kyung Gon; Kim, Hee Snn; Jang, Byung Ik; Park, Yong Hoon; Song, In-Hwan

    2015-02-01

    Inflammatory bowel disease (IBD) is a complex immunological disorder characterized by chronic inflammation caused mainly by unknown factors. The interleukin-10 knockout (IL-10 KO) mouse is a well-established murine model of IBD which develops spontaneous intestinal inflammation that resembles Crohn's disease. In the present study, human adipose-derived mesenchymal stem cells (hAMSCs) were administrated to IL-10 KO mice to evaluate the anti-inflammatory effects of hAMSCs that may attenuate the progress of or treat IBD. After IBD was induced by feeding the IL-10 KO mouse a 125-250 ppm piroxicam mixed diet for 1 week, 2×10(6) hAMSCs were injected into the peritoneum and the mice were switched to a normal diet. After 1 week, the mice were sacrificed and tissue samples were harvested. Tissue scores for inflammation and inflammation-related genes expression were determined. The hAMSC-treated group showed significantly reduced inflammatory changes in histological analysis. Reverse transcription-PCR analysis showed that RANTES, Toll-like receptor 9, and IL-4 expression levels were not significantly different between the groups while IL-12, INF-γ, and TNF-α levels were significantly decreased in the hAMSC treated group. hAMSC attenuated IBD in the IL-10 KO mice by suppressing inflammatory cytokine expression, was mediated by the type 1 helper T cell pathway. Even though only a single injection of hAMSCs was delivered, the effect influenced chronic events associated with inflammatory changes and demonstrated that hAMSCs are a powerful candidate for IBD therapy. PMID:25544730

  14. IL-15 temporally reorients IL-10 biased B-1a cells toward IL-12 expression.

    PubMed

    Kanti Ghosh, Amlan; Sinha, Debolina; Mukherjee, Subhadeep; Biswas, Ratna; Biswas, Tapas

    2016-03-01

    Interleukin (IL)-15 is known to strongly modulate T-cell function; however, its role in controlling mucosal immunity, including its ability to modulate B-1a cell activity, remains to be elucidated. Here, we show that IL-15 upregulates activation molecules and the costimulatory molecule CD80 on viable B-1a cells. Cell activation was accompanied by the depletion of sialic acid-binding immunoglobulin-like lectin (Siglec)-G, an inhibitor of cell activation that is present on B-1a cells. The IL-15 receptor CD122 was stimulated on B-1a cells by the cytokine showing its direct involvement in IL-15-mediated responses. IL-10 is responsible for the long term survival of B-1a cells in culture, which is initially promoted by IL-15. The upregulation of IL-10 was followed by the appearance of suppressor of cytokine signaling (SOCS)1 in the presence of IL-15 and the loss of IL-10. This resulted in the cells switching to IL-12 expression. This anti-inflammatory to pro-inflammatory shift in the B-1a cell character was independent of the cell-specific marker CD5, which remained highly expressed throughout the in vitro life of the cells. The presence of the immunosuppressive receptor programmed cell death (PD)-1 and its ligand PD-L2 were features of a predominantly IL-10 response. PD-1 and PD-L2 can mediate juxtacrine signaling. However, the abrogation of PD-1 and its ligand was observed when the cells expressed IL-12. This demonstrates an inverse relationship between the receptor and ligand and the pro-inflammatory cytokine. The induction of IgM and IgA, which can play pivotal roles in mucosal immunity, was promoted in the presence of IL-15. Collectively, the data implicate IL-15 as the master cytokine that induces B-1a cells to mount a mucosal immune response. PMID:25748019

  15. Combined 17β-Estradiol with TCDD Promotes M2 Polarization of Macrophages in the Endometriotic Milieu with Aid of the Interaction between Endometrial Stromal Cells and Macrophages.

    PubMed

    Wang, Yun; Chen, Hong; Wang, NingLing; Guo, HaiYan; Fu, Yonglun; Xue, Songguo; Ai, Ai; Lyu, Qifeng; Kuang, Yanping

    2015-01-01

    The goal of this study is to elucidate the effects of 17β-estradiol and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on macrophage phenotypes in the endometriotic milieu. Co-culture of endometrial stromal cells (ESCs) and U937 cells (macrophage cell line) was performed to simulate the endometriotic milieu and to determine the effects of 17β-estradiol and/or TCDD on IL10, IL12 production and HLA-DR, CD86 expression by U937 macrophages. We found that combining 17β-estradiol with TCDD has a synergistic effect on inducing M2 activation when macrophages are co-cultured with ESCs. Moreover, the combination of 17β-estradiol and TCDD significantly enhanced STAT3 and P38 phosphorylation in macrophages. Differentiation of M2 macrophages induced by 17β-estradiol and TCDD were effectively abrogated by STAT3 and P38MAPK inhibitors, but not by ERK1/2 and JNK inhibitors. In conclusion, 17β-estradiol and TCDD in the ectopic milieu may lead to the development of endometriosis by inducing M2 polarization of macrophages through activation of the STAT3 and P38MAPK pathways. PMID:25950905

  16. Combined 17β-Estradiol with TCDD Promotes M2 Polarization of Macrophages in the Endometriotic Milieu with Aid of the Interaction between Endometrial Stromal Cells and Macrophages

    PubMed Central

    Wang, NingLing; Guo, HaiYan; Fu, Yonglun; Xue, Songguo; Ai, Ai; Lyu, Qifeng; Kuang, Yanping

    2015-01-01

    The goal of this study is to elucidate the effects of 17β-estradiol and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on macrophage phenotypes in the endometriotic milieu. Co-culture of endometrial stromal cells (ESCs) and U937 cells (macrophage cell line) was performed to simulate the endometriotic milieu and to determine the effects of 17β-estradiol and/or TCDD on IL10, IL12 production and HLA-DR, CD86 expression by U937 macrophages. We found that combining 17β-estradiol with TCDD has a synergistic effect on inducing M2 activation when macrophages are co-cultured with ESCs. Moreover, the combination of 17β-estradiol and TCDD significantly enhanced STAT3 and P38 phosphorylation in macrophages. Differentiation of M2 macrophages induced by 17β-estradiol and TCDD were effectively abrogated by STAT3 and P38MAPK inhibitors, but not by ERK1/2 and JNK inhibitors. In conclusion, 17β-estradiol and TCDD in the ectopic milieu may lead to the development of endometriosis by inducing M2 polarization of macrophages through activation of the STAT3 and P38MAPK pathways. PMID:25950905

  17. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    PubMed

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  18. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression.

    PubMed

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. PMID:26706406

  19. IL-10 Gene Polymorphisms and Their Association with Immune Traits in Four Rabbit Populations

    PubMed Central

    WAN, Xiaoying; MAO, Liuliu; LI, Ting; QIN, Lizhi; PAN, Yulai; LI, Bichun; WU, Xinsheng

    2013-01-01

    ABSTRACT Interleukin-10 (IL-10) has been recently identified as a multifunctional cytokine, because of its close link with immunoregulation and anti-inflammatory responses. This study investigated the association of IL-10 genetic polymorphisms with the immune traits of New Zealand white rabbits (N-W), Fujian yellow rabbits (F-Y) and their reciprocal crosses (N-Y and Y-N, respectively). SNPs on five exons of the IL-10 gene were genotyped in 204 healthy rabbits via PCR-SSCP and DNA sequencing. Two SNPs (A1435G and G1519A, both were synonymous mutations) and six genotypes (AA, BB, CC, AB, AC and BC) were found on exon 3 and one SNP (T base insertion between loci 2532 and 2533, which caused a frameshift mutation), and three genotypes (OO, TT and TO) were present on exon 4. Allele A was the most frequent allele on exon 3 (from 0.548 to 0.771), whereas O was the most frequent on exon 4 (from 0.808 to 0.968). These four populations were all in Hardy-Weinberg equilibrium on both exon3 and exon4. Association analysis between polymorphisms and immune parameters showed that SNPs on exon 3 were significantly associated with immune traits, while SNP on exon 4 may not significantly affect immune traits, but the mechanism is yet to be further studied. PMID:24240540

  20. IL-10 and ET-1 as biomarkers of rheumatic valve disease

    PubMed Central

    Leão, Sydney Correia; Lima, Maria Regina Menezes; do Nascimento, Hertaline Menezes; Octacilio-Silva, Shirlei; Rodrigues, Tania Maria de Andrade

    2014-01-01

    Objective To evaluate the immunological profile and gene expression of endothelin-1 (ET-1) in mitral valves of patients with rheumatic fever originated from a reference service in cardiovascular surgery. Methods This was a quantitative, observational and cross-sectional study. Thirty-five subjects (divided into four groups) participated in the study, 25 patients with chronic rheumatic heart disease and ten control subjects. The mean age of the sample studied was 34.5 years. Seventeen of them (48.58%) were male and 18 (51.42%) were female. Inflammatory cytokines (TNF-α, IL-4 and IL-10) were measured and ten mitral valves of patients who underwent first valve replacement were collected for determination of gene expression of endothelin-1 by real time PCR. Results Among the groups studied (patients vs. controls), there was a statistically significant difference in IL-10 levels (P=0.002), and no differences in other cytokines. Expression of endothelin-1 was observed in 70% of samples. Quantitatively, average of ET-1 expression was 62.85±25.63%. Conclusion Inflammatory cytokine IL-10 participates in the maintenance of chronicity of rheumatic fever in patients who underwent valve replacement and those who are undergoing medical treatment. The expression of endothelin-1 in heart valve lesions in patients undergoing mitral valve replacement confirms its association with inflammatory activity in rheumatic fever. PMID:24896159

  1. The role of IL-10 in regulating immunity to persistent viral infections

    PubMed Central

    Wilson, Elizabeth B.; Brooks, David G.

    2012-01-01

    The immune system has evolved multipronged responses that are critical to effectively defend the body from invading pathogens and to clear infection. However, the same weapons employed to eradicate infection can have caustic effects on normal bystander cells. Therefore, tight regulation is vital and the host must balance engendering correct and sufficient immune responses to pathogens while limiting errant and excessive immunopathology. To accomplish this task a complex network of positive and negative immune signals are delivered that in most instances successfully eliminate pathogen. However, in response to some viral infections, immune function is rapidly suppressed leading to viral persistence. Immune suppression is a critical obstacle to the control of many persistent virus infections such as HIV, hepatitis C and hepatitis B virus, which together affect more than 500 million individuals worldwide. Thus, the ability to therapeutically enhance immunity is a potentially powerful approach to resolve persistent infections. The host derived cytokine IL-10 is a key player in the establishment and perpetuation of viral persistence. This chapter discusses the role of IL-10 in viral persistence and explores the exciting prospect of therapeutically blocking IL-10 to increase antiviral immunity and vaccine efficacy. PMID:20703965

  2. α1-antitrypsin production by proinflammatory and antiinflammatory macrophages and dendritic cells.

    PubMed

    van 't Wout, Emily F A; van Schadewijk, Annemarie; Savage, Nigel D L; Stolk, Jan; Hiemstra, Pieter S

    2012-05-01

    α(1)-Antitrypsin (AAT) acts as an important neutrophil elastase inhibitor in the lung. Although the hepatocyte is considered to be the primary source of AAT, local production by monocytes, macrophages, and epithelial cells may contribute to the formation of an antielastase screen. Because monocytes can differentiate into a heterogeneous population of macrophages with subpopulations ranging from proinflammatory properties (MΦ-1) to antiinflammatory properties (ΜΦ-2) and into dendritic cells (DCs), we studied whether LPS, TNF-α, and oncostatin M (OSM) enhance AAT production differentially in cultured ΜΦ-1, ΜΦ-2, and DCs. Monocytes from healthy blood donors were cultured for 7 days in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor, or GM-CSF with IL-4 to obtain ΜΦ-1, ΜΦ-2, and immature (i)DCs, respectively. Cells were stimulated with LPS, TNF-α, or OSM, and AAT synthesis was assessed by quantitative RT-PCR, immunocytochemistry, and ELISA. Spontaneous release of AAT was higher in ΜΦ-1 than in ΜΦ-2 and iDCs, and only LPS significantly increased AAT production in ΜΦ-1, ΜΦ-2, and DC. TNF-α and OSM did not affect AAT secretion. The secretion levels of the related protease inhibitors α-1 antichymotrypsin and secretory leukocyte proteinase inhibitor were below the limits of detection by ELISA. In contrast to the protein data, analysis by quantitative RT-PCR showed that 24-hour LPS exposure caused a maximal 2.1-fold AAT mRNA increase in ΜΦ-1, a 21-fold increase in ΜΦ-2, and an 11-fold increase in DCs. These data suggest that cellular differentiation is a regulator of local AAT production. PMID:22162908

  3. Arcobacter butzleri Induce Colonic, Extra-Intestinal and Systemic Inflammatory Responses in Gnotobiotic IL-10 Deficient Mice in a Strain-Dependent Manner

    PubMed Central

    Alutis, Marie E.; Fischer, André; Kühl, Anja A.; Breithaupt, Angele; Göbel, Ulf B.; Alter, Thomas; Bereswill, Stefan; Heimesaat, Markus M.

    2015-01-01

    Background The immunopathological impact of human Arcobacter (A.) infections is under current debate. Episodes of gastroenteritis with abdominal pain and acute or prolonged watery diarrhea were reported for A. butzleri infected patients. Whereas adhesive, invasive and cytotoxic capacities have been described for A. butzleri in vitro, only limited information is available about the immunopathogenic potential and mechanisms of infection in vivo. Methodology/Principal Findings Gnotobiotic IL-10-/- mice were generated by broad-spectrum antibiotic treatment and perorally infected with the A. butzleri strains CCUG 30485 and C1 shown to be invasive in cell culture assays. Bacterial colonization capacities, clinical conditions, intestinal, extra-intestinal and systemic immune responses were monitored at day six and 16 postinfection (p.i.). Despite stable intestinal A. butzleri colonization at high loads, gnotobiotic IL-10-/- mice were virtually unaffected and did not display any overt symptoms at either time point. Notably, A. butzleri infection induced apoptosis of colonic epithelial cells which was paralleled by increased abundance of proliferating cells. Furthermore A. butzleri infection caused a significant increase of distinct immune cell populations such as T and B cells, regulatory T cells, macrophages and monocytes in the colon which was accompanied by elevated colonic TNF, IFN-γ, nitric oxide (NO), IL-6, IL-12p70 and MCP-1 concentrations. Strikingly, A. butzleri induced extra-intestinal and systemic immune responses as indicated by higher NO concentrations in kidney and increased TNF, IFN-γ, IL-12p70 and IL-6 levels in serum samples of infected as compared to naive mice. Overall, inflammatory responses could be observed earlier in the course of infection by the CCUG 30485 as compared to the C1 strain. Conclusion/Significance Peroral A. butzleri infection induced not only intestinal but also extra-intestinal and systemic immune responses in gnotobiotic IL-10

  4. Topical glucocorticoids application induced an augmentation in the expression of IL-1alpha while inhibiting the expression of IL-10 in the epidermis in murine contact hypersensitivity.

    PubMed

    Igawa, K; Yokozeki, H; Miyazaki, Y; Minatohara, K; Satoh, T; Katayama, I; Nishioka, K

    2001-03-01

    non-GC-pretreated mice. These results indicated that both an up-regulation of IL-1alpha production and the inhibition of the IL-10 production in the epidermis at the challenged skin sites in the GC-pretreated mice appear to play a critical role in the GC-induced augmentation of murine CHS. PMID:11260162

  5. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    SciTech Connect

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  6. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration. PMID:22828991

  7. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury.

    PubMed

    Ma, Shan-Feng; Chen, Yue-Juan; Zhang, Jing-Xing; Shen, Lin; Wang, Rui; Zhou, Jian-Sheng; Hu, Jian-Guo; Lü, He-Zuo

    2015-03-01

    Classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) macrophages populate the local microenvironment after spinal cord injury (SCI). The former type is neurotoxic while the latter has positive effects on neuroregeneration and is less toxic. In addition, while the M1 macrophage response is rapidly induced and sustained, M2 induction is transient. A promising strategy for the repair of SCI is to increase the fraction of M2 cells and prolong their residence time. This study investigated the effect of M2 macrophages induced from bone marrow-derived macrophages on the local microenvironment and their possible role in neuroprotection after SCI. M2 macrophages produced anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor β and infiltrated into the injured spinal cord, stimulated M2 and helper T (Th)2 cells, and produced high levels of IL-10 and -13 at the site of injury. M2 cell transfer decreased spinal cord lesion volume and resulted in increased myelination of axons and preservation of neurons. This was accompanied by significant locomotor improvement as revealed by Basso, Beattie and Bresnahan locomotor rating scale, grid walk and footprint analyses. These results indicate that M2 adoptive transfer has beneficial effects for the injured spinal cord, in which the increased number of M2 macrophages causes a shift in the immunological response from Th1- to Th2-dominated through the production of anti-inflammatory cytokines, which in turn induces the polarization of local microglia and/or macrophages to the M2 subtype, and creates a local microenvironment that is conducive to the rescue of residual myelin and neurons and preservation of neuronal function. PMID:25476600

  8. Bleomycin-induced pulmonary fibrosis in hamsters. An alveolar macrophage product increases fibroblast prostaglandin E2 and cyclic adenosine monophosphate and suppresses fibroblast proliferation and collagen production.

    PubMed Central

    Clark, J G; Kostal, K M; Marino, B A

    1983-01-01

    Bleomycin-induced pulmonary fibrosis in hamsters is associated with collagen accumulation that results from increased lung collagen synthesis rates. However, 1-2 wk after intratracheal instillation of bleomycin, lung collagen synthesis rates decline toward control values. To evaluate the potential role of the bronchoalveolar macrophage in regulating lung collagen production, we studied the effects of macrophages from normal and bleomycin-treated hamsters upon fibroblasts in vitro. We observed: (a) Medium from macrophage cultures decreased fibroblast [3H]thymidine incorporation and nondialyzable [3H]hydroxyproline production in a dose-dependent manner. Fibroblast cell counts were decreased in exposed cultures, and fibroblast viability was unchanged. Procollagen prolyl hydroxylation and prolyl-transfer RNA-specific activity were not altered by macrophage medium; this indicates that [3H]hydroxyproline reflects collagen production rate under the experimental conditions. (b) The suppressive effect of macrophage medium was selective for collagen since collagen production decreased more than noncollagen protein production. (c) Medium from bleomycin-treated hamster macrophages suppressed fibroblast proliferation and collagen production to a greater degree than medium from normal hamster macrophages. (d) Fibroblast suppression by macrophage medium was associated with increased fibroblast endogenous prostaglandin E2 production and intracellular cyclic AMP (cAMP). (e) Incubation of fibroblasts with indomethacin before exposure completely inhibited prostaglandin E2 production and increases in cAMP, and eliminated suppression of fibroblast proliferation and collagen production. The macrophage-derived suppressive factor has an apparent molecular weight of 20,000-30,000 and is heat stable. It does not appear to be species restricted since both hamster and human lung fibroblasts are similarly suppressed. It is at least in part preformed in macrophages obtained by lavage, but its

  9. Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo.

    PubMed

    Ni, Guoying; Wang, Yuejian; Wu, Xiaolian; Wang, Xiongfei; Chen, Shu; Liu, Xiaosong

    2012-12-17

    Interleukin 10 is an anti-inflammatory cytokine which limits immune responses to both self and foreign antigens. Blocking IL10 at the time of immunization increases cytotoxic T cell responses in antigen experienced host, a situation similar to therapeutic vaccination for cancer and chronic viral infection, where patients usually develop ineffective immune responses to tumour or viral antigens before immunotherapy starts. Graphene oxide (GO) is a nano material often used for drug delivery and tissue engineering. In the current paper, we demonstrated that GO is able to absorb anti-IL10 receptor antibodies. The anti-IL10R antibodies absorbed in GO are slowly released and the release of absorbed antibodies is pH dependent. GO absorbed anti-IL10R antibodies are bioactive both in vitro and in vivo. GO absorbed anti-IL10R antibodies are more efficient than free anti-IL10R antibodies at eliciting LPS stimulated CD8 T cell responses. Our results suggest that GO is able to absorb anti-IL10R antibodies and absorbed anti-IL10R antibody may be useful as an adjuvant for vaccination and ideal for delivering to tumour site, and breaking of suppressive tumour environment. PMID:23064239

  10. IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation

    PubMed Central

    Verma, Suresh K.; Garikipati, Venkata Naga Srikanth; Krishnamurthy, Prasanna; Khan, Mohsin; Thorne, Tina; Qin, Gangjian; Losordo, Douglas W.; Kishore, Raj

    2016-01-01

    The role of inflammation on atherosclerosis and restenosis is well established. Restenosis is thought to be a complex response to injury, which includes early thrombus formation, acute inflammation and neo-intimal growth. Inflammatory cells are likely contributors in the host response to vascular injury, via cytokines and chemokines secretion, including TNF-alpha (TNF). We have previously shown that IL-10 inhibits TNF and other inflammatory mediators produced in response to cardiovascular injuries. The specific effect of IL-10 on endothelial cell (ECs) biology is not well elucidated. Here we report that in a mouse model of carotid denudation, IL-10 knock-out mice (IL-10KO) displayed significantly delayed Re-endothelialization and enhanced neo-intimal growth compared to their WT counterparts. Exogenous recombinant IL-10 treatment dramatically blunted the neo-intimal thickening while significantly accelerating the recovery of the injured endothelium in WT mice. In vitro, IL-10 inhibited negative effects of TNF on ECs proliferation, ECs cell cycle, ECs-monocyte adhesion and ECs apoptosis. Furthermore, IL-10 treatment attenuated TNF-induced smooth muscle cells proliferation. Our data suggest that IL-10 differentially regulate endothelial and vascular smooth cells proliferation and function and thus inhibits neo-intimal hyperplasia. Thus, these results may provide insights necessary to develop new therapeutic strategies to limit vascular restenosis during percutaneous coronary intervention (PCI) in the clinics. PMID:26808574

  11. Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes

    PubMed Central

    Marzouki, Soumaya; Belhadj Hmida, Nadia; Boussoffara, Thouraya; Belhaj Hamida, Nabil; Ben Salah, Afif; Louzir, Hechmi

    2011-01-01

    Background The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response. Methodology/Principal Findings We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ. Conclusion Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development. PMID:21991402

  12. Immunomodulatory Effects of Lippia sidoides Extract: Induction of IL-10 Through cAMP and p38 MAPK-Dependent Mechanisms

    PubMed Central

    Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.

    2015-01-01

    Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252

  13. Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells

    PubMed Central

    Richardson, Edward T.; Shukla, Supriya; Sweet, David R.; Wearsch, Pamela A.; Tsichlis, Philip N.; Boom, W. Henry

    2015-01-01

    Mycobacterium tuberculosis survives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrict M. tuberculosis to latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by which M. tuberculosis modulates host responses to promote its survival remain unclear. In these studies, we demonstrate that M. tuberculosis induction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion of Tpl2 blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate that M. tuberculosis regulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway in Tpl2−/− macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4+ T cells responding to M. tuberculosis infection. These data indicate that M. tuberculosis and its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen. PMID:25776754

  14. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid.

    PubMed

    Pang, Xiaoli; Wang, Zhaoxia; Zhai, Naicui; Zhang, Qianqian; Song, Hongxiao; Zhang, Yujiao; Li, Tianyang; Li, Haijun; Su, Lishan; Niu, Junqi; Tu, Zhengkun

    2016-09-01

    Hepatitis C virus (HCV) can cause persistent infection and chronic liver disease, and viral factors are involved in HCV persistence. HCV core protein, a highly conserved viral protein, not only elicits an immunoresponse, but it also regulates it. In addition, HCV core protein interacts with toll-like receptors (TLRs) on monocytes, inducing them to produce cytokines. Polyinosinic acid:polycytodylic acid (polyI:C) is a synthetic analogue of double-stranded RNA that binds to TLR3 and can induce secretion of type I IFN from monocytes. Cytokine response against HCV is likely to affect the natural course of infection as well as HCV persistence. However, possible effects of cytokines induced by HCV core protein and polyI:C remain to be investigated. In this study, we isolated CD14(+) monocytes from healthy donors, cultured them in the presence of HCV core protein and/or polyI:C, and characterized the induced cytokines, phenotypes and mechanisms. We demonstrated that HCV core protein- and polyI:C-stimulated CD14(+) monocytes secreted tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, and type I interferon (IFN). Importantly, TNF-α and IL-1β regulated the secretion of IL-10, which then influenced the expression of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) and subsequently the production of type I IFN. Interestingly, type I IFN also regulated the production of IL-10, which in turn inhibited the nuclear factor (NF)-κB subunit, reducing TNF-α and IL-1β levels. Therefore, IL-10 appears to play a central role in regulating the production of cytokines induced by HCV core protein and polyI:C. PMID:27337528

  15. Influence of Phthalates on Cytokine Production in Monocytes and Macrophages: A Systematic Review of Experimental Trials

    PubMed Central

    Hansen, Juliana Frohnert; Bendtzen, Klaus; Boas, Malene; Frederiksen, Hanne; Nielsen, Claus H.; Rasmussen, Åse Krogh; Feldt-Rasmussen, Ulla

    2015-01-01

    Background Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which could affect both pro- and anti-inflammatory abilities of these cells. Strategy and Results A systematic search was performed in Medline, Embase and Toxline in June 2013, last updated 3rd of August 2014. Criteria used to select studies were described and published beforehand online on Prospero (http://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236). In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four different phthalate diesters, six primary metabolites (phthalate monoesters) and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies. Conclusion Results from this review have suggested that at least one phthalate (di-2-ethylhexyl phthalate) has the ability to enhance tumour necrosis factor-α production/secretion from monocytes/macrophages in vitro, but also observed ex vivo. Influence of other phthalates on other cytokines has only been investigated in few studies. Thus, in vitro studies on primary human monocytes/macrophages as well as more in vivo studies are needed to confirm or dispute these findings. PMID:25811352

  16. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J.; Moon, Sung K.

    2015-01-01

    Cochlear inflammatory diseases such as tympanogenic labyrinthitis are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aim to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on interleukin-10 (IL-10) and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10 receptors (IL-10Rs) are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line (RSL) was found to inhibit nontypeable H. influenzae (NTHi)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1/CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt protoporphyrin IX (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2). In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced RSL-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 up-regulation. Chromatin immunoprecipitation (ChIP) assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying therapeutic potential of a carbon monoxide (CO)-based approach for inflammation-associated cochlear diseases. PMID:25780042

  17. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses

    PubMed Central

    Nova-Lamperti, Estefania; Fanelli, Giorgia; Becker, Pablo D.; Chana, Prabhjoat; Elgueta, Raul; Dodd, Philippa C.; Lord, Graham M.; Lombardi, Giovanna; Hernandez-Fuentes, Maria P.

    2016-01-01

    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production. PMID:26795594

  18. Revelation of the IFNα, IL-10, IL-8 and IL-1β as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington's disease model.

    PubMed

    Valekova, Ivona; Jarkovska, Karla; Kotrcova, Eva; Bucci, John; Ellederova, Zdenka; Juhas, Stefan; Motlik, Jan; Gadher, Suresh Jivan; Kovarova, Hana

    2016-04-15

    Studies on Huntington's disease (HD) demonstrated altered immune response in HD gene carriers. Using multiplexing immunoassay, we simultaneously investigated seven cytokines in secretomes of microglia and blood monocytes, cerebrospinal fluid (CSF) and serum collected from transgenic HD minipigs at pre-symptomatic disease stage. Decline in IFNα and IL-10 was observed in CSF and secretome of microglia whilst elevated IL-8 and IL-1β levels were secreted by microglia. Additionally, IL-8 was increased in serum. The proportion of mutant huntingtin in microglia may have causative impact on cytokine production. IFNα, IL-10, IL-8 and IL-1β represent promising biomarkers reflecting immuno-pathological mechanisms in porcine HD model. PMID:27049565

  19. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB

    PubMed Central

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  20. IL-27 and TGFβ mediated expansion of Th1 and adaptive regulatory T cells expressing IL-10 correlates with bacterial burden and disease severity in pulmonary tuberculosis

    PubMed Central

    Kumar, Nathella P; Moideen, Kadar; Banurekha, Vaithilingam V; Nair, Dina; Sridhar, Rathinam; Nutman, Thomas B; Babu, Subash

    2015-01-01

    CD4+ T cell expression of IL-10 is an important mechanism controlling immunity to tuberculosis (TB). To identify the CD4+ T cell subsets producing IL-10 in human TB, we enumerated the frequencies of IL-10 expressing CD4+ T cell subsets following TB—antigen stimulation of cells from individuals with pulmonary (PTB) and latent TB (LTB). We first demonstrate that TB antigens induce an expansion of IL-10 expressing Th1 (IL-10+, IFNγ+, T-bet+), Th2 (IL-10+, IL-4+, GATA-3+), Th9 (IL-10+, IL-9+, IL-4−), Th17 (IL-10+, IL-17+, IFNγ−), and natural and adaptive regulatory T cells [nTregs; IL-10+, CD4+, CD25+, Foxp3+ and aTregs; IL-10 single+, CD4+, CD25−, Foxp3−] in PTB and LTB individuals, with frequencies being significantly higher in the former. However, only Th1 cells and adaptive Tregs expressing IL-10 exhibit a positive relationship with bacterial burdens and extent of disease in PTB. Finally, we show that IL-27 and TGFβ play an important role in the regulation of IL-10+ Th cell subsets. Thus, active PTB is characterized by an IL-27 and TGFβ mediated expansion of IL-10 expressing CD4+ T cell subsets, with IL-10+ Th1 and IL-10+ aTreg cells playing a potentially pivotal role in the pathogenesis of active disease. PMID:26417443

  1. IL-27 and TGFβ mediated expansion of Th1 and adaptive regulatory T cells expressing IL-10 correlates with bacterial burden and disease severity in pulmonary tuberculosis.

    PubMed

    Kumar, Nathella P; Moideen, Kadar; Banurekha, Vaithilingam V; Nair, Dina; Sridhar, Rathinam; Nutman, Thomas B; Babu, Subash

    2015-09-01

    CD4(+) T cell expression of IL-10 is an important mechanism controlling immunity to tuberculosis (TB). To identify the CD4(+) T cell subsets producing IL-10 in human TB, we enumerated the frequencies of IL-10 expressing CD4(+) T cell subsets following TB-antigen stimulation of cells from individuals with pulmonary (PTB) and latent TB (LTB). We first demonstrate that TB antigens induce an expansion of IL-10 expressing Th1 (IL-10(+), IFNγ(+), T-bet(+)), Th2 (IL-10(+), IL-4(+), GATA-3(+)), Th9 (IL-10(+), IL-9(+), IL-4(-)), Th17 (IL-10(+), IL-17(+), IFNγ(-)), and natural and adaptive regulatory T cells [nTregs; IL-10(+), CD4(+), CD25(+), Foxp3(+) and aTregs; IL-10 single(+), CD4(+), CD25(-), Foxp3(-)] in PTB and LTB individuals, with frequencies being significantly higher in the former. However, only Th1 cells and adaptive Tregs expressing IL-10 exhibit a positive relationship with bacterial burdens and extent of disease in PTB. Finally, we show that IL-27 and TGFβ play an important role in the regulation of IL-10(+) Th cell subsets. Thus, active PTB is characterized by an IL-27 and TGFβ mediated expansion of IL-10 expressing CD4(+) T cell subsets, with IL-10(+) Th1 and IL-10(+) aTreg cells playing a potentially pivotal role in the pathogenesis of active disease. PMID:26417443

  2. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    PubMed

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products. PMID:23794138